1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LiveDebugVariables analysis. 10 // 11 // Remove all DBG_VALUE instructions referencing virtual registers and replace 12 // them with a data structure tracking where live user variables are kept - in a 13 // virtual register or in a stack slot. 14 // 15 // Allow the data structure to be updated during register allocation when values 16 // are moved between registers and stack slots. Finally emit new DBG_VALUE 17 // instructions after register allocation is complete. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "LiveDebugVariables.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/IntervalMap.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/LexicalScopes.h" 33 #include "llvm/CodeGen/LiveInterval.h" 34 #include "llvm/CodeGen/LiveIntervals.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineDominators.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/Passes.h" 43 #include "llvm/CodeGen/SlotIndexes.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetOpcodes.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSubtargetInfo.h" 49 #include "llvm/CodeGen/VirtRegMap.h" 50 #include "llvm/Config/llvm-config.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DebugLoc.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/InitializePasses.h" 56 #include "llvm/MC/MCRegisterInfo.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Target/TargetMachine.h" 63 #include <algorithm> 64 #include <cassert> 65 #include <iterator> 66 #include <memory> 67 #include <utility> 68 69 using namespace llvm; 70 71 #define DEBUG_TYPE "livedebugvars" 72 73 static cl::opt<bool> 74 EnableLDV("live-debug-variables", cl::init(true), 75 cl::desc("Enable the live debug variables pass"), cl::Hidden); 76 77 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 78 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted"); 79 80 char LiveDebugVariables::ID = 0; 81 82 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, 83 "Debug Variable Analysis", false, false) 84 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 85 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 86 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, 87 "Debug Variable Analysis", false, false) 88 89 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 90 AU.addRequired<MachineDominatorTree>(); 91 AU.addRequiredTransitive<LiveIntervals>(); 92 AU.setPreservesAll(); 93 MachineFunctionPass::getAnalysisUsage(AU); 94 } 95 96 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { 97 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 98 } 99 100 enum : unsigned { UndefLocNo = ~0U }; 101 102 namespace { 103 /// Describes a debug variable value by location number and expression along 104 /// with some flags about the original usage of the location. 105 class DbgVariableValue { 106 public: 107 DbgVariableValue(ArrayRef<unsigned> NewLocs, bool WasIndirect, bool WasList, 108 const DIExpression &Expr) 109 : WasIndirect(WasIndirect), WasList(WasList), Expression(&Expr) { 110 assert(!(WasIndirect && WasList) && 111 "DBG_VALUE_LISTs should not be indirect."); 112 SmallVector<unsigned> LocNoVec; 113 for (unsigned LocNo : NewLocs) { 114 auto It = find(LocNoVec, LocNo); 115 if (It == LocNoVec.end()) 116 LocNoVec.push_back(LocNo); 117 else { 118 // Loc duplicates an element in LocNos; replace references to Op 119 // with references to the duplicating element. 120 unsigned OpIdx = LocNoVec.size(); 121 unsigned DuplicatingIdx = std::distance(LocNoVec.begin(), It); 122 Expression = 123 DIExpression::replaceArg(Expression, OpIdx, DuplicatingIdx); 124 } 125 } 126 // FIXME: Debug values referencing 64+ unique machine locations are rare and 127 // currently unsupported for performance reasons. If we can verify that 128 // performance is acceptable for such debug values, we can increase the 129 // bit-width of LocNoCount to 14 to enable up to 16384 unique machine 130 // locations. We will also need to verify that this does not cause issues 131 // with LiveDebugVariables' use of IntervalMap. 132 if (LocNoVec.size() < 64) { 133 LocNoCount = LocNoVec.size(); 134 if (LocNoCount > 0) { 135 LocNos = std::make_unique<unsigned[]>(LocNoCount); 136 std::copy(LocNoVec.begin(), LocNoVec.end(), loc_nos_begin()); 137 } 138 } else { 139 LLVM_DEBUG(dbgs() << "Found debug value with 64+ unique machine " 140 "locations, dropping...\n"); 141 LocNoCount = 1; 142 // Turn this into an undef debug value list; right now, the simplest form 143 // of this is an expression with one arg, and an undef debug operand. 144 Expression = 145 DIExpression::get(Expr.getContext(), {dwarf::DW_OP_LLVM_arg, 0, 146 dwarf::DW_OP_stack_value}); 147 if (auto FragmentInfoOpt = Expr.getFragmentInfo()) 148 Expression = *DIExpression::createFragmentExpression( 149 Expression, FragmentInfoOpt->OffsetInBits, 150 FragmentInfoOpt->SizeInBits); 151 LocNos = std::make_unique<unsigned[]>(LocNoCount); 152 LocNos[0] = UndefLocNo; 153 } 154 } 155 156 DbgVariableValue() : LocNoCount(0), WasIndirect(false), WasList(false) {} 157 DbgVariableValue(const DbgVariableValue &Other) 158 : LocNoCount(Other.LocNoCount), WasIndirect(Other.getWasIndirect()), 159 WasList(Other.getWasList()), Expression(Other.getExpression()) { 160 if (Other.getLocNoCount()) { 161 LocNos.reset(new unsigned[Other.getLocNoCount()]); 162 std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin()); 163 } 164 } 165 166 DbgVariableValue &operator=(const DbgVariableValue &Other) { 167 if (this == &Other) 168 return *this; 169 if (Other.getLocNoCount()) { 170 LocNos.reset(new unsigned[Other.getLocNoCount()]); 171 std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin()); 172 } else { 173 LocNos.release(); 174 } 175 LocNoCount = Other.getLocNoCount(); 176 WasIndirect = Other.getWasIndirect(); 177 WasList = Other.getWasList(); 178 Expression = Other.getExpression(); 179 return *this; 180 } 181 182 const DIExpression *getExpression() const { return Expression; } 183 uint8_t getLocNoCount() const { return LocNoCount; } 184 bool containsLocNo(unsigned LocNo) const { 185 return is_contained(loc_nos(), LocNo); 186 } 187 bool getWasIndirect() const { return WasIndirect; } 188 bool getWasList() const { return WasList; } 189 bool isUndef() const { return LocNoCount == 0 || containsLocNo(UndefLocNo); } 190 191 DbgVariableValue decrementLocNosAfterPivot(unsigned Pivot) const { 192 SmallVector<unsigned, 4> NewLocNos; 193 for (unsigned LocNo : loc_nos()) 194 NewLocNos.push_back(LocNo != UndefLocNo && LocNo > Pivot ? LocNo - 1 195 : LocNo); 196 return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); 197 } 198 199 DbgVariableValue remapLocNos(ArrayRef<unsigned> LocNoMap) const { 200 SmallVector<unsigned> NewLocNos; 201 for (unsigned LocNo : loc_nos()) 202 // Undef values don't exist in locations (and thus not in LocNoMap 203 // either) so skip over them. See getLocationNo(). 204 NewLocNos.push_back(LocNo == UndefLocNo ? UndefLocNo : LocNoMap[LocNo]); 205 return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); 206 } 207 208 DbgVariableValue changeLocNo(unsigned OldLocNo, unsigned NewLocNo) const { 209 SmallVector<unsigned> NewLocNos; 210 NewLocNos.assign(loc_nos_begin(), loc_nos_end()); 211 auto OldLocIt = find(NewLocNos, OldLocNo); 212 assert(OldLocIt != NewLocNos.end() && "Old location must be present."); 213 *OldLocIt = NewLocNo; 214 return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); 215 } 216 217 bool hasLocNoGreaterThan(unsigned LocNo) const { 218 return any_of(loc_nos(), 219 [LocNo](unsigned ThisLocNo) { return ThisLocNo > LocNo; }); 220 } 221 222 void printLocNos(llvm::raw_ostream &OS) const { 223 for (const unsigned &Loc : loc_nos()) 224 OS << (&Loc == loc_nos_begin() ? " " : ", ") << Loc; 225 } 226 227 friend inline bool operator==(const DbgVariableValue &LHS, 228 const DbgVariableValue &RHS) { 229 if (std::tie(LHS.LocNoCount, LHS.WasIndirect, LHS.WasList, 230 LHS.Expression) != 231 std::tie(RHS.LocNoCount, RHS.WasIndirect, RHS.WasList, RHS.Expression)) 232 return false; 233 return std::equal(LHS.loc_nos_begin(), LHS.loc_nos_end(), 234 RHS.loc_nos_begin()); 235 } 236 237 friend inline bool operator!=(const DbgVariableValue &LHS, 238 const DbgVariableValue &RHS) { 239 return !(LHS == RHS); 240 } 241 242 unsigned *loc_nos_begin() { return LocNos.get(); } 243 const unsigned *loc_nos_begin() const { return LocNos.get(); } 244 unsigned *loc_nos_end() { return LocNos.get() + LocNoCount; } 245 const unsigned *loc_nos_end() const { return LocNos.get() + LocNoCount; } 246 ArrayRef<unsigned> loc_nos() const { 247 return ArrayRef<unsigned>(LocNos.get(), LocNoCount); 248 } 249 250 private: 251 // IntervalMap requires the value object to be very small, to the extent 252 // that we do not have enough room for an std::vector. Using a C-style array 253 // (with a unique_ptr wrapper for convenience) allows us to optimize for this 254 // specific case by packing the array size into only 6 bits (it is highly 255 // unlikely that any debug value will need 64+ locations). 256 std::unique_ptr<unsigned[]> LocNos; 257 uint8_t LocNoCount : 6; 258 bool WasIndirect : 1; 259 bool WasList : 1; 260 const DIExpression *Expression = nullptr; 261 }; 262 } // namespace 263 264 /// Map of where a user value is live to that value. 265 using LocMap = IntervalMap<SlotIndex, DbgVariableValue, 4>; 266 267 /// Map of stack slot offsets for spilled locations. 268 /// Non-spilled locations are not added to the map. 269 using SpillOffsetMap = DenseMap<unsigned, unsigned>; 270 271 /// Cache to save the location where it can be used as the starting 272 /// position as input for calling MachineBasicBlock::SkipPHIsLabelsAndDebug. 273 /// This is to prevent MachineBasicBlock::SkipPHIsLabelsAndDebug from 274 /// repeatedly searching the same set of PHIs/Labels/Debug instructions 275 /// if it is called many times for the same block. 276 using BlockSkipInstsMap = 277 DenseMap<MachineBasicBlock *, MachineBasicBlock::iterator>; 278 279 namespace { 280 281 class LDVImpl; 282 283 /// A user value is a part of a debug info user variable. 284 /// 285 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 286 /// holds part of a user variable. The part is identified by a byte offset. 287 /// 288 /// UserValues are grouped into equivalence classes for easier searching. Two 289 /// user values are related if they are held by the same virtual register. The 290 /// equivalence class is the transitive closure of that relation. 291 class UserValue { 292 const DILocalVariable *Variable; ///< The debug info variable we are part of. 293 /// The part of the variable we describe. 294 const Optional<DIExpression::FragmentInfo> Fragment; 295 DebugLoc dl; ///< The debug location for the variable. This is 296 ///< used by dwarf writer to find lexical scope. 297 UserValue *leader; ///< Equivalence class leader. 298 UserValue *next = nullptr; ///< Next value in equivalence class, or null. 299 300 /// Numbered locations referenced by locmap. 301 SmallVector<MachineOperand, 4> locations; 302 303 /// Map of slot indices where this value is live. 304 LocMap locInts; 305 306 /// Set of interval start indexes that have been trimmed to the 307 /// lexical scope. 308 SmallSet<SlotIndex, 2> trimmedDefs; 309 310 /// Insert a DBG_VALUE into MBB at Idx for DbgValue. 311 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 312 SlotIndex StopIdx, DbgVariableValue DbgValue, 313 ArrayRef<bool> LocSpills, 314 ArrayRef<unsigned> SpillOffsets, LiveIntervals &LIS, 315 const TargetInstrInfo &TII, 316 const TargetRegisterInfo &TRI, 317 BlockSkipInstsMap &BBSkipInstsMap); 318 319 /// Replace OldLocNo ranges with NewRegs ranges where NewRegs 320 /// is live. Returns true if any changes were made. 321 bool splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs, 322 LiveIntervals &LIS); 323 324 public: 325 /// Create a new UserValue. 326 UserValue(const DILocalVariable *var, 327 Optional<DIExpression::FragmentInfo> Fragment, DebugLoc L, 328 LocMap::Allocator &alloc) 329 : Variable(var), Fragment(Fragment), dl(std::move(L)), leader(this), 330 locInts(alloc) {} 331 332 /// Get the leader of this value's equivalence class. 333 UserValue *getLeader() { 334 UserValue *l = leader; 335 while (l != l->leader) 336 l = l->leader; 337 return leader = l; 338 } 339 340 /// Return the next UserValue in the equivalence class. 341 UserValue *getNext() const { return next; } 342 343 /// Merge equivalence classes. 344 static UserValue *merge(UserValue *L1, UserValue *L2) { 345 L2 = L2->getLeader(); 346 if (!L1) 347 return L2; 348 L1 = L1->getLeader(); 349 if (L1 == L2) 350 return L1; 351 // Splice L2 before L1's members. 352 UserValue *End = L2; 353 while (End->next) { 354 End->leader = L1; 355 End = End->next; 356 } 357 End->leader = L1; 358 End->next = L1->next; 359 L1->next = L2; 360 return L1; 361 } 362 363 /// Return the location number that matches Loc. 364 /// 365 /// For undef values we always return location number UndefLocNo without 366 /// inserting anything in locations. Since locations is a vector and the 367 /// location number is the position in the vector and UndefLocNo is ~0, 368 /// we would need a very big vector to put the value at the right position. 369 unsigned getLocationNo(const MachineOperand &LocMO) { 370 if (LocMO.isReg()) { 371 if (LocMO.getReg() == 0) 372 return UndefLocNo; 373 // For register locations we dont care about use/def and other flags. 374 for (unsigned i = 0, e = locations.size(); i != e; ++i) 375 if (locations[i].isReg() && 376 locations[i].getReg() == LocMO.getReg() && 377 locations[i].getSubReg() == LocMO.getSubReg()) 378 return i; 379 } else 380 for (unsigned i = 0, e = locations.size(); i != e; ++i) 381 if (LocMO.isIdenticalTo(locations[i])) 382 return i; 383 locations.push_back(LocMO); 384 // We are storing a MachineOperand outside a MachineInstr. 385 locations.back().clearParent(); 386 // Don't store def operands. 387 if (locations.back().isReg()) { 388 if (locations.back().isDef()) 389 locations.back().setIsDead(false); 390 locations.back().setIsUse(); 391 } 392 return locations.size() - 1; 393 } 394 395 /// Remove (recycle) a location number. If \p LocNo still is used by the 396 /// locInts nothing is done. 397 void removeLocationIfUnused(unsigned LocNo) { 398 // Bail out if LocNo still is used. 399 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 400 const DbgVariableValue &DbgValue = I.value(); 401 if (DbgValue.containsLocNo(LocNo)) 402 return; 403 } 404 // Remove the entry in the locations vector, and adjust all references to 405 // location numbers above the removed entry. 406 locations.erase(locations.begin() + LocNo); 407 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 408 const DbgVariableValue &DbgValue = I.value(); 409 if (DbgValue.hasLocNoGreaterThan(LocNo)) 410 I.setValueUnchecked(DbgValue.decrementLocNosAfterPivot(LocNo)); 411 } 412 } 413 414 /// Ensure that all virtual register locations are mapped. 415 void mapVirtRegs(LDVImpl *LDV); 416 417 /// Add a definition point to this user value. 418 void addDef(SlotIndex Idx, ArrayRef<MachineOperand> LocMOs, bool IsIndirect, 419 bool IsList, const DIExpression &Expr) { 420 SmallVector<unsigned> Locs; 421 for (const MachineOperand &Op : LocMOs) 422 Locs.push_back(getLocationNo(Op)); 423 DbgVariableValue DbgValue(Locs, IsIndirect, IsList, Expr); 424 // Add a singular (Idx,Idx) -> value mapping. 425 LocMap::iterator I = locInts.find(Idx); 426 if (!I.valid() || I.start() != Idx) 427 I.insert(Idx, Idx.getNextSlot(), std::move(DbgValue)); 428 else 429 // A later DBG_VALUE at the same SlotIndex overrides the old location. 430 I.setValue(std::move(DbgValue)); 431 } 432 433 /// Extend the current definition as far as possible down. 434 /// 435 /// Stop when meeting an existing def or when leaving the live 436 /// range of VNI. End points where VNI is no longer live are added to Kills. 437 /// 438 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 439 /// data-flow analysis to propagate them beyond basic block boundaries. 440 /// 441 /// \param Idx Starting point for the definition. 442 /// \param DbgValue value to propagate. 443 /// \param LiveIntervalInfo For each location number key in this map, 444 /// restricts liveness to where the LiveRange has the value equal to the\ 445 /// VNInfo. 446 /// \param [out] Kills Append end points of VNI's live range to Kills. 447 /// \param LIS Live intervals analysis. 448 void extendDef(SlotIndex Idx, DbgVariableValue DbgValue, 449 SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> 450 &LiveIntervalInfo, 451 Optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills, 452 LiveIntervals &LIS); 453 454 /// The value in LI may be copies to other registers. Determine if 455 /// any of the copies are available at the kill points, and add defs if 456 /// possible. 457 /// 458 /// \param DbgValue Location number of LI->reg, and DIExpression. 459 /// \param LocIntervals Scan for copies of the value for each location in the 460 /// corresponding LiveInterval->reg. 461 /// \param KilledAt The point where the range of DbgValue could be extended. 462 /// \param [in,out] NewDefs Append (Idx, DbgValue) of inserted defs here. 463 void addDefsFromCopies( 464 DbgVariableValue DbgValue, 465 SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals, 466 SlotIndex KilledAt, 467 SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, 468 MachineRegisterInfo &MRI, LiveIntervals &LIS); 469 470 /// Compute the live intervals of all locations after collecting all their 471 /// def points. 472 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 473 LiveIntervals &LIS, LexicalScopes &LS); 474 475 /// Replace OldReg ranges with NewRegs ranges where NewRegs is 476 /// live. Returns true if any changes were made. 477 bool splitRegister(Register OldReg, ArrayRef<Register> NewRegs, 478 LiveIntervals &LIS); 479 480 /// Rewrite virtual register locations according to the provided virtual 481 /// register map. Record the stack slot offsets for the locations that 482 /// were spilled. 483 void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 484 const TargetInstrInfo &TII, 485 const TargetRegisterInfo &TRI, 486 SpillOffsetMap &SpillOffsets); 487 488 /// Recreate DBG_VALUE instruction from data structures. 489 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 490 const TargetInstrInfo &TII, 491 const TargetRegisterInfo &TRI, 492 const SpillOffsetMap &SpillOffsets, 493 BlockSkipInstsMap &BBSkipInstsMap); 494 495 /// Return DebugLoc of this UserValue. 496 const DebugLoc &getDebugLoc() { return dl; } 497 498 void print(raw_ostream &, const TargetRegisterInfo *); 499 }; 500 501 /// A user label is a part of a debug info user label. 502 class UserLabel { 503 const DILabel *Label; ///< The debug info label we are part of. 504 DebugLoc dl; ///< The debug location for the label. This is 505 ///< used by dwarf writer to find lexical scope. 506 SlotIndex loc; ///< Slot used by the debug label. 507 508 /// Insert a DBG_LABEL into MBB at Idx. 509 void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 510 LiveIntervals &LIS, const TargetInstrInfo &TII, 511 BlockSkipInstsMap &BBSkipInstsMap); 512 513 public: 514 /// Create a new UserLabel. 515 UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx) 516 : Label(label), dl(std::move(L)), loc(Idx) {} 517 518 /// Does this UserLabel match the parameters? 519 bool matches(const DILabel *L, const DILocation *IA, 520 const SlotIndex Index) const { 521 return Label == L && dl->getInlinedAt() == IA && loc == Index; 522 } 523 524 /// Recreate DBG_LABEL instruction from data structures. 525 void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII, 526 BlockSkipInstsMap &BBSkipInstsMap); 527 528 /// Return DebugLoc of this UserLabel. 529 const DebugLoc &getDebugLoc() { return dl; } 530 531 void print(raw_ostream &, const TargetRegisterInfo *); 532 }; 533 534 /// Implementation of the LiveDebugVariables pass. 535 class LDVImpl { 536 LiveDebugVariables &pass; 537 LocMap::Allocator allocator; 538 MachineFunction *MF = nullptr; 539 LiveIntervals *LIS; 540 const TargetRegisterInfo *TRI; 541 542 /// Position and VReg of a PHI instruction during register allocation. 543 struct PHIValPos { 544 SlotIndex SI; /// Slot where this PHI occurs. 545 Register Reg; /// VReg this PHI occurs in. 546 unsigned SubReg; /// Qualifiying subregister for Reg. 547 }; 548 549 /// Map from debug instruction number to PHI position during allocation. 550 std::map<unsigned, PHIValPos> PHIValToPos; 551 /// Index of, for each VReg, which debug instruction numbers and corresponding 552 /// PHIs are sensitive to splitting. Each VReg may have multiple PHI defs, 553 /// at different positions. 554 DenseMap<Register, std::vector<unsigned>> RegToPHIIdx; 555 556 /// Record for any debug instructions unlinked from their blocks during 557 /// regalloc. Stores the instr and it's location, so that they can be 558 /// re-inserted after regalloc is over. 559 struct InstrPos { 560 MachineInstr *MI; ///< Debug instruction, unlinked from it's block. 561 SlotIndex Idx; ///< Slot position where MI should be re-inserted. 562 MachineBasicBlock *MBB; ///< Block that MI was in. 563 }; 564 565 /// Collection of stored debug instructions, preserved until after regalloc. 566 SmallVector<InstrPos, 32> StashedDebugInstrs; 567 568 /// Whether emitDebugValues is called. 569 bool EmitDone = false; 570 571 /// Whether the machine function is modified during the pass. 572 bool ModifiedMF = false; 573 574 /// All allocated UserValue instances. 575 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 576 577 /// All allocated UserLabel instances. 578 SmallVector<std::unique_ptr<UserLabel>, 2> userLabels; 579 580 /// Map virtual register to eq class leader. 581 using VRMap = DenseMap<unsigned, UserValue *>; 582 VRMap virtRegToEqClass; 583 584 /// Map to find existing UserValue instances. 585 using UVMap = DenseMap<DebugVariable, UserValue *>; 586 UVMap userVarMap; 587 588 /// Find or create a UserValue. 589 UserValue *getUserValue(const DILocalVariable *Var, 590 Optional<DIExpression::FragmentInfo> Fragment, 591 const DebugLoc &DL); 592 593 /// Find the EC leader for VirtReg or null. 594 UserValue *lookupVirtReg(Register VirtReg); 595 596 /// Add DBG_VALUE instruction to our maps. 597 /// 598 /// \param MI DBG_VALUE instruction 599 /// \param Idx Last valid SLotIndex before instruction. 600 /// 601 /// \returns True if the DBG_VALUE instruction should be deleted. 602 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 603 604 /// Track variable location debug instructions while using the instruction 605 /// referencing implementation. Such debug instructions do not need to be 606 /// updated during regalloc because they identify instructions rather than 607 /// register locations. However, they needs to be removed from the 608 /// MachineFunction during regalloc, then re-inserted later, to avoid 609 /// disrupting the allocator. 610 /// 611 /// \param MI Any DBG_VALUE / DBG_INSTR_REF / DBG_PHI instruction 612 /// \param Idx Last valid SlotIndex before instruction 613 /// 614 /// \returns Iterator to continue processing from after unlinking. 615 MachineBasicBlock::iterator handleDebugInstr(MachineInstr &MI, SlotIndex Idx); 616 617 /// Add DBG_LABEL instruction to UserLabel. 618 /// 619 /// \param MI DBG_LABEL instruction 620 /// \param Idx Last valid SlotIndex before instruction. 621 /// 622 /// \returns True if the DBG_LABEL instruction should be deleted. 623 bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx); 624 625 /// Collect and erase all DBG_VALUE instructions, adding a UserValue def 626 /// for each instruction. 627 /// 628 /// \param mf MachineFunction to be scanned. 629 /// \param InstrRef Whether to operate in instruction referencing mode. If 630 /// true, most of LiveDebugVariables doesn't run. 631 /// 632 /// \returns True if any debug values were found. 633 bool collectDebugValues(MachineFunction &mf, bool InstrRef); 634 635 /// Compute the live intervals of all user values after collecting all 636 /// their def points. 637 void computeIntervals(); 638 639 public: 640 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 641 642 bool runOnMachineFunction(MachineFunction &mf, bool InstrRef); 643 644 /// Release all memory. 645 void clear() { 646 MF = nullptr; 647 PHIValToPos.clear(); 648 RegToPHIIdx.clear(); 649 StashedDebugInstrs.clear(); 650 userValues.clear(); 651 userLabels.clear(); 652 virtRegToEqClass.clear(); 653 userVarMap.clear(); 654 // Make sure we call emitDebugValues if the machine function was modified. 655 assert((!ModifiedMF || EmitDone) && 656 "Dbg values are not emitted in LDV"); 657 EmitDone = false; 658 ModifiedMF = false; 659 } 660 661 /// Map virtual register to an equivalence class. 662 void mapVirtReg(Register VirtReg, UserValue *EC); 663 664 /// Replace any PHI referring to OldReg with its corresponding NewReg, if 665 /// present. 666 void splitPHIRegister(Register OldReg, ArrayRef<Register> NewRegs); 667 668 /// Replace all references to OldReg with NewRegs. 669 void splitRegister(Register OldReg, ArrayRef<Register> NewRegs); 670 671 /// Recreate DBG_VALUE instruction from data structures. 672 void emitDebugValues(VirtRegMap *VRM); 673 674 void print(raw_ostream&); 675 }; 676 677 } // end anonymous namespace 678 679 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 680 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 681 const LLVMContext &Ctx) { 682 if (!DL) 683 return; 684 685 auto *Scope = cast<DIScope>(DL.getScope()); 686 // Omit the directory, because it's likely to be long and uninteresting. 687 CommentOS << Scope->getFilename(); 688 CommentOS << ':' << DL.getLine(); 689 if (DL.getCol() != 0) 690 CommentOS << ':' << DL.getCol(); 691 692 DebugLoc InlinedAtDL = DL.getInlinedAt(); 693 if (!InlinedAtDL) 694 return; 695 696 CommentOS << " @[ "; 697 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 698 CommentOS << " ]"; 699 } 700 701 static void printExtendedName(raw_ostream &OS, const DINode *Node, 702 const DILocation *DL) { 703 const LLVMContext &Ctx = Node->getContext(); 704 StringRef Res; 705 unsigned Line = 0; 706 if (const auto *V = dyn_cast<const DILocalVariable>(Node)) { 707 Res = V->getName(); 708 Line = V->getLine(); 709 } else if (const auto *L = dyn_cast<const DILabel>(Node)) { 710 Res = L->getName(); 711 Line = L->getLine(); 712 } 713 714 if (!Res.empty()) 715 OS << Res << "," << Line; 716 auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr; 717 if (InlinedAt) { 718 if (DebugLoc InlinedAtDL = InlinedAt) { 719 OS << " @["; 720 printDebugLoc(InlinedAtDL, OS, Ctx); 721 OS << "]"; 722 } 723 } 724 } 725 726 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 727 OS << "!\""; 728 printExtendedName(OS, Variable, dl); 729 730 OS << "\"\t"; 731 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 732 OS << " [" << I.start() << ';' << I.stop() << "):"; 733 if (I.value().isUndef()) 734 OS << " undef"; 735 else { 736 I.value().printLocNos(OS); 737 if (I.value().getWasIndirect()) 738 OS << " ind"; 739 else if (I.value().getWasList()) 740 OS << " list"; 741 } 742 } 743 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 744 OS << " Loc" << i << '='; 745 locations[i].print(OS, TRI); 746 } 747 OS << '\n'; 748 } 749 750 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 751 OS << "!\""; 752 printExtendedName(OS, Label, dl); 753 754 OS << "\"\t"; 755 OS << loc; 756 OS << '\n'; 757 } 758 759 void LDVImpl::print(raw_ostream &OS) { 760 OS << "********** DEBUG VARIABLES **********\n"; 761 for (auto &userValue : userValues) 762 userValue->print(OS, TRI); 763 OS << "********** DEBUG LABELS **********\n"; 764 for (auto &userLabel : userLabels) 765 userLabel->print(OS, TRI); 766 } 767 #endif 768 769 void UserValue::mapVirtRegs(LDVImpl *LDV) { 770 for (unsigned i = 0, e = locations.size(); i != e; ++i) 771 if (locations[i].isReg() && 772 Register::isVirtualRegister(locations[i].getReg())) 773 LDV->mapVirtReg(locations[i].getReg(), this); 774 } 775 776 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var, 777 Optional<DIExpression::FragmentInfo> Fragment, 778 const DebugLoc &DL) { 779 // FIXME: Handle partially overlapping fragments. See 780 // https://reviews.llvm.org/D70121#1849741. 781 DebugVariable ID(Var, Fragment, DL->getInlinedAt()); 782 UserValue *&UV = userVarMap[ID]; 783 if (!UV) { 784 userValues.push_back( 785 std::make_unique<UserValue>(Var, Fragment, DL, allocator)); 786 UV = userValues.back().get(); 787 } 788 return UV; 789 } 790 791 void LDVImpl::mapVirtReg(Register VirtReg, UserValue *EC) { 792 assert(Register::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 793 UserValue *&Leader = virtRegToEqClass[VirtReg]; 794 Leader = UserValue::merge(Leader, EC); 795 } 796 797 UserValue *LDVImpl::lookupVirtReg(Register VirtReg) { 798 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 799 return UV->getLeader(); 800 return nullptr; 801 } 802 803 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { 804 // DBG_VALUE loc, offset, variable, expr 805 // DBG_VALUE_LIST variable, expr, locs... 806 if (!MI.isDebugValue()) { 807 LLVM_DEBUG(dbgs() << "Can't handle non-DBG_VALUE*: " << MI); 808 return false; 809 } 810 if (!MI.getDebugVariableOp().isMetadata()) { 811 LLVM_DEBUG(dbgs() << "Can't handle DBG_VALUE* with invalid variable: " 812 << MI); 813 return false; 814 } 815 if (MI.isNonListDebugValue() && 816 (MI.getNumOperands() != 4 || 817 !(MI.getDebugOffset().isImm() || MI.getDebugOffset().isReg()))) { 818 LLVM_DEBUG(dbgs() << "Can't handle malformed DBG_VALUE: " << MI); 819 return false; 820 } 821 822 // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual 823 // register that hasn't been defined yet. If we do not remove those here, then 824 // the re-insertion of the DBG_VALUE instruction after register allocation 825 // will be incorrect. 826 bool Discard = false; 827 for (const MachineOperand &Op : MI.debug_operands()) { 828 if (Op.isReg() && Register::isVirtualRegister(Op.getReg())) { 829 const Register Reg = Op.getReg(); 830 if (!LIS->hasInterval(Reg)) { 831 // The DBG_VALUE is described by a virtual register that does not have a 832 // live interval. Discard the DBG_VALUE. 833 Discard = true; 834 LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx 835 << " " << MI); 836 } else { 837 // The DBG_VALUE is only valid if either Reg is live out from Idx, or 838 // Reg is defined dead at Idx (where Idx is the slot index for the 839 // instruction preceding the DBG_VALUE). 840 const LiveInterval &LI = LIS->getInterval(Reg); 841 LiveQueryResult LRQ = LI.Query(Idx); 842 if (!LRQ.valueOutOrDead()) { 843 // We have found a DBG_VALUE with the value in a virtual register that 844 // is not live. Discard the DBG_VALUE. 845 Discard = true; 846 LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx 847 << " " << MI); 848 } 849 } 850 } 851 } 852 853 // Get or create the UserValue for (variable,offset) here. 854 bool IsIndirect = MI.isDebugOffsetImm(); 855 if (IsIndirect) 856 assert(MI.getDebugOffset().getImm() == 0 && 857 "DBG_VALUE with nonzero offset"); 858 bool IsList = MI.isDebugValueList(); 859 const DILocalVariable *Var = MI.getDebugVariable(); 860 const DIExpression *Expr = MI.getDebugExpression(); 861 UserValue *UV = getUserValue(Var, Expr->getFragmentInfo(), MI.getDebugLoc()); 862 if (!Discard) 863 UV->addDef(Idx, 864 ArrayRef<MachineOperand>(MI.debug_operands().begin(), 865 MI.debug_operands().end()), 866 IsIndirect, IsList, *Expr); 867 else { 868 MachineOperand MO = MachineOperand::CreateReg(0U, false); 869 MO.setIsDebug(); 870 // We should still pass a list the same size as MI.debug_operands() even if 871 // all MOs are undef, so that DbgVariableValue can correctly adjust the 872 // expression while removing the duplicated undefs. 873 SmallVector<MachineOperand, 4> UndefMOs(MI.getNumDebugOperands(), MO); 874 UV->addDef(Idx, UndefMOs, false, IsList, *Expr); 875 } 876 return true; 877 } 878 879 MachineBasicBlock::iterator LDVImpl::handleDebugInstr(MachineInstr &MI, 880 SlotIndex Idx) { 881 assert(MI.isDebugValue() || MI.isDebugRef() || MI.isDebugPHI()); 882 883 // In instruction referencing mode, there should be no DBG_VALUE instructions 884 // that refer to virtual registers. They might still refer to constants. 885 if (MI.isDebugValue()) 886 assert(!MI.getOperand(0).isReg() || !MI.getOperand(0).getReg().isVirtual()); 887 888 // Unlink the instruction, store it in the debug instructions collection. 889 auto NextInst = std::next(MI.getIterator()); 890 auto *MBB = MI.getParent(); 891 MI.removeFromParent(); 892 StashedDebugInstrs.push_back({&MI, Idx, MBB}); 893 return NextInst; 894 } 895 896 bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) { 897 // DBG_LABEL label 898 if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) { 899 LLVM_DEBUG(dbgs() << "Can't handle " << MI); 900 return false; 901 } 902 903 // Get or create the UserLabel for label here. 904 const DILabel *Label = MI.getDebugLabel(); 905 const DebugLoc &DL = MI.getDebugLoc(); 906 bool Found = false; 907 for (auto const &L : userLabels) { 908 if (L->matches(Label, DL->getInlinedAt(), Idx)) { 909 Found = true; 910 break; 911 } 912 } 913 if (!Found) 914 userLabels.push_back(std::make_unique<UserLabel>(Label, DL, Idx)); 915 916 return true; 917 } 918 919 bool LDVImpl::collectDebugValues(MachineFunction &mf, bool InstrRef) { 920 bool Changed = false; 921 for (MachineBasicBlock &MBB : mf) { 922 for (MachineBasicBlock::iterator MBBI = MBB.begin(), MBBE = MBB.end(); 923 MBBI != MBBE;) { 924 // Use the first debug instruction in the sequence to get a SlotIndex 925 // for following consecutive debug instructions. 926 if (!MBBI->isDebugOrPseudoInstr()) { 927 ++MBBI; 928 continue; 929 } 930 // Debug instructions has no slot index. Use the previous 931 // non-debug instruction's SlotIndex as its SlotIndex. 932 SlotIndex Idx = 933 MBBI == MBB.begin() 934 ? LIS->getMBBStartIdx(&MBB) 935 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 936 // Handle consecutive debug instructions with the same slot index. 937 do { 938 // In instruction referencing mode, pass each instr to handleDebugInstr 939 // to be unlinked. Ignore DBG_VALUE_LISTs -- they refer to vregs, and 940 // need to go through the normal live interval splitting process. 941 if (InstrRef && (MBBI->isNonListDebugValue() || MBBI->isDebugPHI() || 942 MBBI->isDebugRef())) { 943 MBBI = handleDebugInstr(*MBBI, Idx); 944 Changed = true; 945 // In normal debug mode, use the dedicated DBG_VALUE / DBG_LABEL handler 946 // to track things through register allocation, and erase the instr. 947 } else if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) || 948 (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) { 949 MBBI = MBB.erase(MBBI); 950 Changed = true; 951 } else 952 ++MBBI; 953 } while (MBBI != MBBE && MBBI->isDebugOrPseudoInstr()); 954 } 955 } 956 return Changed; 957 } 958 959 void UserValue::extendDef( 960 SlotIndex Idx, DbgVariableValue DbgValue, 961 SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> 962 &LiveIntervalInfo, 963 Optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills, 964 LiveIntervals &LIS) { 965 SlotIndex Start = Idx; 966 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 967 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 968 LocMap::iterator I = locInts.find(Start); 969 970 // Limit to the intersection of the VNIs' live ranges. 971 for (auto &LII : LiveIntervalInfo) { 972 LiveRange *LR = LII.second.first; 973 assert(LR && LII.second.second && "Missing range info for Idx."); 974 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 975 assert(Segment && Segment->valno == LII.second.second && 976 "Invalid VNInfo for Idx given?"); 977 if (Segment->end < Stop) { 978 Stop = Segment->end; 979 Kills = {Stop, {LII.first}}; 980 } else if (Segment->end == Stop && Kills.hasValue()) { 981 // If multiple locations end at the same place, track all of them in 982 // Kills. 983 Kills->second.push_back(LII.first); 984 } 985 } 986 987 // There could already be a short def at Start. 988 if (I.valid() && I.start() <= Start) { 989 // Stop when meeting a different location or an already extended interval. 990 Start = Start.getNextSlot(); 991 if (I.value() != DbgValue || I.stop() != Start) { 992 // Clear `Kills`, as we have a new def available. 993 Kills = None; 994 return; 995 } 996 // This is a one-slot placeholder. Just skip it. 997 ++I; 998 } 999 1000 // Limited by the next def. 1001 if (I.valid() && I.start() < Stop) { 1002 Stop = I.start(); 1003 // Clear `Kills`, as we have a new def available. 1004 Kills = None; 1005 } 1006 1007 if (Start < Stop) { 1008 DbgVariableValue ExtDbgValue(DbgValue); 1009 I.insert(Start, Stop, std::move(ExtDbgValue)); 1010 } 1011 } 1012 1013 void UserValue::addDefsFromCopies( 1014 DbgVariableValue DbgValue, 1015 SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals, 1016 SlotIndex KilledAt, 1017 SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, 1018 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 1019 // Don't track copies from physregs, there are too many uses. 1020 if (any_of(LocIntervals, [](auto LocI) { 1021 return !Register::isVirtualRegister(LocI.second->reg()); 1022 })) 1023 return; 1024 1025 // Collect all the (vreg, valno) pairs that are copies of LI. 1026 SmallDenseMap<unsigned, 1027 SmallVector<std::pair<LiveInterval *, const VNInfo *>, 4>> 1028 CopyValues; 1029 for (auto &LocInterval : LocIntervals) { 1030 unsigned LocNo = LocInterval.first; 1031 LiveInterval *LI = LocInterval.second; 1032 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg())) { 1033 MachineInstr *MI = MO.getParent(); 1034 // Copies of the full value. 1035 if (MO.getSubReg() || !MI->isCopy()) 1036 continue; 1037 Register DstReg = MI->getOperand(0).getReg(); 1038 1039 // Don't follow copies to physregs. These are usually setting up call 1040 // arguments, and the argument registers are always call clobbered. We are 1041 // better off in the source register which could be a callee-saved 1042 // register, or it could be spilled. 1043 if (!Register::isVirtualRegister(DstReg)) 1044 continue; 1045 1046 // Is the value extended to reach this copy? If not, another def may be 1047 // blocking it, or we are looking at a wrong value of LI. 1048 SlotIndex Idx = LIS.getInstructionIndex(*MI); 1049 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 1050 if (!I.valid() || I.value() != DbgValue) 1051 continue; 1052 1053 if (!LIS.hasInterval(DstReg)) 1054 continue; 1055 LiveInterval *DstLI = &LIS.getInterval(DstReg); 1056 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 1057 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 1058 CopyValues[LocNo].push_back(std::make_pair(DstLI, DstVNI)); 1059 } 1060 } 1061 1062 if (CopyValues.empty()) 1063 return; 1064 1065 #if !defined(NDEBUG) 1066 for (auto &LocInterval : LocIntervals) 1067 LLVM_DEBUG(dbgs() << "Got " << CopyValues[LocInterval.first].size() 1068 << " copies of " << *LocInterval.second << '\n'); 1069 #endif 1070 1071 // Try to add defs of the copied values for the kill point. Check that there 1072 // isn't already a def at Idx. 1073 LocMap::iterator I = locInts.find(KilledAt); 1074 if (I.valid() && I.start() <= KilledAt) 1075 return; 1076 DbgVariableValue NewValue(DbgValue); 1077 for (auto &LocInterval : LocIntervals) { 1078 unsigned LocNo = LocInterval.first; 1079 bool FoundCopy = false; 1080 for (auto &LIAndVNI : CopyValues[LocNo]) { 1081 LiveInterval *DstLI = LIAndVNI.first; 1082 const VNInfo *DstVNI = LIAndVNI.second; 1083 if (DstLI->getVNInfoAt(KilledAt) != DstVNI) 1084 continue; 1085 LLVM_DEBUG(dbgs() << "Kill at " << KilledAt << " covered by valno #" 1086 << DstVNI->id << " in " << *DstLI << '\n'); 1087 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 1088 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 1089 unsigned NewLocNo = getLocationNo(CopyMI->getOperand(0)); 1090 NewValue = NewValue.changeLocNo(LocNo, NewLocNo); 1091 FoundCopy = true; 1092 break; 1093 } 1094 // If there are any killed locations we can't find a copy for, we can't 1095 // extend the variable value. 1096 if (!FoundCopy) 1097 return; 1098 } 1099 I.insert(KilledAt, KilledAt.getNextSlot(), NewValue); 1100 NewDefs.push_back(std::make_pair(KilledAt, NewValue)); 1101 } 1102 1103 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 1104 const TargetRegisterInfo &TRI, 1105 LiveIntervals &LIS, LexicalScopes &LS) { 1106 SmallVector<std::pair<SlotIndex, DbgVariableValue>, 16> Defs; 1107 1108 // Collect all defs to be extended (Skipping undefs). 1109 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 1110 if (!I.value().isUndef()) 1111 Defs.push_back(std::make_pair(I.start(), I.value())); 1112 1113 // Extend all defs, and possibly add new ones along the way. 1114 for (unsigned i = 0; i != Defs.size(); ++i) { 1115 SlotIndex Idx = Defs[i].first; 1116 DbgVariableValue DbgValue = Defs[i].second; 1117 SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> LIs; 1118 SmallVector<const VNInfo *, 4> VNIs; 1119 bool ShouldExtendDef = false; 1120 for (unsigned LocNo : DbgValue.loc_nos()) { 1121 const MachineOperand &LocMO = locations[LocNo]; 1122 if (!LocMO.isReg() || !Register::isVirtualRegister(LocMO.getReg())) { 1123 ShouldExtendDef |= !LocMO.isReg(); 1124 continue; 1125 } 1126 ShouldExtendDef = true; 1127 LiveInterval *LI = nullptr; 1128 const VNInfo *VNI = nullptr; 1129 if (LIS.hasInterval(LocMO.getReg())) { 1130 LI = &LIS.getInterval(LocMO.getReg()); 1131 VNI = LI->getVNInfoAt(Idx); 1132 } 1133 if (LI && VNI) 1134 LIs[LocNo] = {LI, VNI}; 1135 } 1136 if (ShouldExtendDef) { 1137 Optional<std::pair<SlotIndex, SmallVector<unsigned>>> Kills; 1138 extendDef(Idx, DbgValue, LIs, Kills, LIS); 1139 1140 if (Kills) { 1141 SmallVector<std::pair<unsigned, LiveInterval *>, 2> KilledLocIntervals; 1142 bool AnySubreg = false; 1143 for (unsigned LocNo : Kills->second) { 1144 const MachineOperand &LocMO = this->locations[LocNo]; 1145 if (LocMO.getSubReg()) { 1146 AnySubreg = true; 1147 break; 1148 } 1149 LiveInterval *LI = &LIS.getInterval(LocMO.getReg()); 1150 KilledLocIntervals.push_back({LocNo, LI}); 1151 } 1152 1153 // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that 1154 // if the original location for example is %vreg0:sub_hi, and we find a 1155 // full register copy in addDefsFromCopies (at the moment it only 1156 // handles full register copies), then we must add the sub1 sub-register 1157 // index to the new location. However, that is only possible if the new 1158 // virtual register is of the same regclass (or if there is an 1159 // equivalent sub-register in that regclass). For now, simply skip 1160 // handling copies if a sub-register is involved. 1161 if (!AnySubreg) 1162 addDefsFromCopies(DbgValue, KilledLocIntervals, Kills->first, Defs, 1163 MRI, LIS); 1164 } 1165 } 1166 1167 // For physregs, we only mark the start slot idx. DwarfDebug will see it 1168 // as if the DBG_VALUE is valid up until the end of the basic block, or 1169 // the next def of the physical register. So we do not need to extend the 1170 // range. It might actually happen that the DBG_VALUE is the last use of 1171 // the physical register (e.g. if this is an unused input argument to a 1172 // function). 1173 } 1174 1175 // The computed intervals may extend beyond the range of the debug 1176 // location's lexical scope. In this case, splitting of an interval 1177 // can result in an interval outside of the scope being created, 1178 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 1179 // this, trim the intervals to the lexical scope in the case of inlined 1180 // variables, since heavy inlining may cause production of dramatically big 1181 // number of DBG_VALUEs to be generated. 1182 if (!dl.getInlinedAt()) 1183 return; 1184 1185 LexicalScope *Scope = LS.findLexicalScope(dl); 1186 if (!Scope) 1187 return; 1188 1189 SlotIndex PrevEnd; 1190 LocMap::iterator I = locInts.begin(); 1191 1192 // Iterate over the lexical scope ranges. Each time round the loop 1193 // we check the intervals for overlap with the end of the previous 1194 // range and the start of the next. The first range is handled as 1195 // a special case where there is no PrevEnd. 1196 for (const InsnRange &Range : Scope->getRanges()) { 1197 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 1198 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 1199 1200 // Variable locations at the first instruction of a block should be 1201 // based on the block's SlotIndex, not the first instruction's index. 1202 if (Range.first == Range.first->getParent()->begin()) 1203 RStart = LIS.getSlotIndexes()->getIndexBefore(*Range.first); 1204 1205 // At the start of each iteration I has been advanced so that 1206 // I.stop() >= PrevEnd. Check for overlap. 1207 if (PrevEnd && I.start() < PrevEnd) { 1208 SlotIndex IStop = I.stop(); 1209 DbgVariableValue DbgValue = I.value(); 1210 1211 // Stop overlaps previous end - trim the end of the interval to 1212 // the scope range. 1213 I.setStopUnchecked(PrevEnd); 1214 ++I; 1215 1216 // If the interval also overlaps the start of the "next" (i.e. 1217 // current) range create a new interval for the remainder (which 1218 // may be further trimmed). 1219 if (RStart < IStop) 1220 I.insert(RStart, IStop, DbgValue); 1221 } 1222 1223 // Advance I so that I.stop() >= RStart, and check for overlap. 1224 I.advanceTo(RStart); 1225 if (!I.valid()) 1226 return; 1227 1228 if (I.start() < RStart) { 1229 // Interval start overlaps range - trim to the scope range. 1230 I.setStartUnchecked(RStart); 1231 // Remember that this interval was trimmed. 1232 trimmedDefs.insert(RStart); 1233 } 1234 1235 // The end of a lexical scope range is the last instruction in the 1236 // range. To convert to an interval we need the index of the 1237 // instruction after it. 1238 REnd = REnd.getNextIndex(); 1239 1240 // Advance I to first interval outside current range. 1241 I.advanceTo(REnd); 1242 if (!I.valid()) 1243 return; 1244 1245 PrevEnd = REnd; 1246 } 1247 1248 // Check for overlap with end of final range. 1249 if (PrevEnd && I.start() < PrevEnd) 1250 I.setStopUnchecked(PrevEnd); 1251 } 1252 1253 void LDVImpl::computeIntervals() { 1254 LexicalScopes LS; 1255 LS.initialize(*MF); 1256 1257 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 1258 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 1259 userValues[i]->mapVirtRegs(this); 1260 } 1261 } 1262 1263 bool LDVImpl::runOnMachineFunction(MachineFunction &mf, bool InstrRef) { 1264 clear(); 1265 MF = &mf; 1266 LIS = &pass.getAnalysis<LiveIntervals>(); 1267 TRI = mf.getSubtarget().getRegisterInfo(); 1268 LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 1269 << mf.getName() << " **********\n"); 1270 1271 bool Changed = collectDebugValues(mf, InstrRef); 1272 computeIntervals(); 1273 LLVM_DEBUG(print(dbgs())); 1274 1275 // Collect the set of VReg / SlotIndexs where PHIs occur; index the sensitive 1276 // VRegs too, for when we're notified of a range split. 1277 SlotIndexes *Slots = LIS->getSlotIndexes(); 1278 for (const auto &PHIIt : MF->DebugPHIPositions) { 1279 const MachineFunction::DebugPHIRegallocPos &Position = PHIIt.second; 1280 MachineBasicBlock *MBB = Position.MBB; 1281 Register Reg = Position.Reg; 1282 unsigned SubReg = Position.SubReg; 1283 SlotIndex SI = Slots->getMBBStartIdx(MBB); 1284 PHIValPos VP = {SI, Reg, SubReg}; 1285 PHIValToPos.insert(std::make_pair(PHIIt.first, VP)); 1286 RegToPHIIdx[Reg].push_back(PHIIt.first); 1287 } 1288 1289 ModifiedMF = Changed; 1290 return Changed; 1291 } 1292 1293 static void removeDebugInstrs(MachineFunction &mf) { 1294 for (MachineBasicBlock &MBB : mf) { 1295 for (MachineInstr &MI : llvm::make_early_inc_range(MBB)) 1296 if (MI.isDebugInstr()) 1297 MBB.erase(&MI); 1298 } 1299 } 1300 1301 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 1302 if (!EnableLDV) 1303 return false; 1304 if (!mf.getFunction().getSubprogram()) { 1305 removeDebugInstrs(mf); 1306 return false; 1307 } 1308 1309 // Have we been asked to track variable locations using instruction 1310 // referencing? 1311 bool InstrRef = mf.useDebugInstrRef(); 1312 1313 if (!pImpl) 1314 pImpl = new LDVImpl(this); 1315 return static_cast<LDVImpl *>(pImpl)->runOnMachineFunction(mf, InstrRef); 1316 } 1317 1318 void LiveDebugVariables::releaseMemory() { 1319 if (pImpl) 1320 static_cast<LDVImpl*>(pImpl)->clear(); 1321 } 1322 1323 LiveDebugVariables::~LiveDebugVariables() { 1324 if (pImpl) 1325 delete static_cast<LDVImpl*>(pImpl); 1326 } 1327 1328 //===----------------------------------------------------------------------===// 1329 // Live Range Splitting 1330 //===----------------------------------------------------------------------===// 1331 1332 bool 1333 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs, 1334 LiveIntervals& LIS) { 1335 LLVM_DEBUG({ 1336 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 1337 print(dbgs(), nullptr); 1338 }); 1339 bool DidChange = false; 1340 LocMap::iterator LocMapI; 1341 LocMapI.setMap(locInts); 1342 for (Register NewReg : NewRegs) { 1343 LiveInterval *LI = &LIS.getInterval(NewReg); 1344 if (LI->empty()) 1345 continue; 1346 1347 // Don't allocate the new LocNo until it is needed. 1348 unsigned NewLocNo = UndefLocNo; 1349 1350 // Iterate over the overlaps between locInts and LI. 1351 LocMapI.find(LI->beginIndex()); 1352 if (!LocMapI.valid()) 1353 continue; 1354 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 1355 LiveInterval::iterator LIE = LI->end(); 1356 while (LocMapI.valid() && LII != LIE) { 1357 // At this point, we know that LocMapI.stop() > LII->start. 1358 LII = LI->advanceTo(LII, LocMapI.start()); 1359 if (LII == LIE) 1360 break; 1361 1362 // Now LII->end > LocMapI.start(). Do we have an overlap? 1363 if (LocMapI.value().containsLocNo(OldLocNo) && 1364 LII->start < LocMapI.stop()) { 1365 // Overlapping correct location. Allocate NewLocNo now. 1366 if (NewLocNo == UndefLocNo) { 1367 MachineOperand MO = MachineOperand::CreateReg(LI->reg(), false); 1368 MO.setSubReg(locations[OldLocNo].getSubReg()); 1369 NewLocNo = getLocationNo(MO); 1370 DidChange = true; 1371 } 1372 1373 SlotIndex LStart = LocMapI.start(); 1374 SlotIndex LStop = LocMapI.stop(); 1375 DbgVariableValue OldDbgValue = LocMapI.value(); 1376 1377 // Trim LocMapI down to the LII overlap. 1378 if (LStart < LII->start) 1379 LocMapI.setStartUnchecked(LII->start); 1380 if (LStop > LII->end) 1381 LocMapI.setStopUnchecked(LII->end); 1382 1383 // Change the value in the overlap. This may trigger coalescing. 1384 LocMapI.setValue(OldDbgValue.changeLocNo(OldLocNo, NewLocNo)); 1385 1386 // Re-insert any removed OldDbgValue ranges. 1387 if (LStart < LocMapI.start()) { 1388 LocMapI.insert(LStart, LocMapI.start(), OldDbgValue); 1389 ++LocMapI; 1390 assert(LocMapI.valid() && "Unexpected coalescing"); 1391 } 1392 if (LStop > LocMapI.stop()) { 1393 ++LocMapI; 1394 LocMapI.insert(LII->end, LStop, OldDbgValue); 1395 --LocMapI; 1396 } 1397 } 1398 1399 // Advance to the next overlap. 1400 if (LII->end < LocMapI.stop()) { 1401 if (++LII == LIE) 1402 break; 1403 LocMapI.advanceTo(LII->start); 1404 } else { 1405 ++LocMapI; 1406 if (!LocMapI.valid()) 1407 break; 1408 LII = LI->advanceTo(LII, LocMapI.start()); 1409 } 1410 } 1411 } 1412 1413 // Finally, remove OldLocNo unless it is still used by some interval in the 1414 // locInts map. One case when OldLocNo still is in use is when the register 1415 // has been spilled. In such situations the spilled register is kept as a 1416 // location until rewriteLocations is called (VirtRegMap is mapping the old 1417 // register to the spill slot). So for a while we can have locations that map 1418 // to virtual registers that have been removed from both the MachineFunction 1419 // and from LiveIntervals. 1420 // 1421 // We may also just be using the location for a value with a different 1422 // expression. 1423 removeLocationIfUnused(OldLocNo); 1424 1425 LLVM_DEBUG({ 1426 dbgs() << "Split result: \t"; 1427 print(dbgs(), nullptr); 1428 }); 1429 return DidChange; 1430 } 1431 1432 bool 1433 UserValue::splitRegister(Register OldReg, ArrayRef<Register> NewRegs, 1434 LiveIntervals &LIS) { 1435 bool DidChange = false; 1436 // Split locations referring to OldReg. Iterate backwards so splitLocation can 1437 // safely erase unused locations. 1438 for (unsigned i = locations.size(); i ; --i) { 1439 unsigned LocNo = i-1; 1440 const MachineOperand *Loc = &locations[LocNo]; 1441 if (!Loc->isReg() || Loc->getReg() != OldReg) 1442 continue; 1443 DidChange |= splitLocation(LocNo, NewRegs, LIS); 1444 } 1445 return DidChange; 1446 } 1447 1448 void LDVImpl::splitPHIRegister(Register OldReg, ArrayRef<Register> NewRegs) { 1449 auto RegIt = RegToPHIIdx.find(OldReg); 1450 if (RegIt == RegToPHIIdx.end()) 1451 return; 1452 1453 std::vector<std::pair<Register, unsigned>> NewRegIdxes; 1454 // Iterate over all the debug instruction numbers affected by this split. 1455 for (unsigned InstrID : RegIt->second) { 1456 auto PHIIt = PHIValToPos.find(InstrID); 1457 assert(PHIIt != PHIValToPos.end()); 1458 const SlotIndex &Slot = PHIIt->second.SI; 1459 assert(OldReg == PHIIt->second.Reg); 1460 1461 // Find the new register that covers this position. 1462 for (auto NewReg : NewRegs) { 1463 const LiveInterval &LI = LIS->getInterval(NewReg); 1464 auto LII = LI.find(Slot); 1465 if (LII != LI.end() && LII->start <= Slot) { 1466 // This new register covers this PHI position, record this for indexing. 1467 NewRegIdxes.push_back(std::make_pair(NewReg, InstrID)); 1468 // Record that this value lives in a different VReg now. 1469 PHIIt->second.Reg = NewReg; 1470 break; 1471 } 1472 } 1473 1474 // If we do not find a new register covering this PHI, then register 1475 // allocation has dropped its location, for example because it's not live. 1476 // The old VReg will not be mapped to a physreg, and the instruction 1477 // number will have been optimized out. 1478 } 1479 1480 // Re-create register index using the new register numbers. 1481 RegToPHIIdx.erase(RegIt); 1482 for (auto &RegAndInstr : NewRegIdxes) 1483 RegToPHIIdx[RegAndInstr.first].push_back(RegAndInstr.second); 1484 } 1485 1486 void LDVImpl::splitRegister(Register OldReg, ArrayRef<Register> NewRegs) { 1487 // Consider whether this split range affects any PHI locations. 1488 splitPHIRegister(OldReg, NewRegs); 1489 1490 // Check whether any intervals mapped by a DBG_VALUE were split and need 1491 // updating. 1492 bool DidChange = false; 1493 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 1494 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 1495 1496 if (!DidChange) 1497 return; 1498 1499 // Map all of the new virtual registers. 1500 UserValue *UV = lookupVirtReg(OldReg); 1501 for (Register NewReg : NewRegs) 1502 mapVirtReg(NewReg, UV); 1503 } 1504 1505 void LiveDebugVariables:: 1506 splitRegister(Register OldReg, ArrayRef<Register> NewRegs, LiveIntervals &LIS) { 1507 if (pImpl) 1508 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 1509 } 1510 1511 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 1512 const TargetInstrInfo &TII, 1513 const TargetRegisterInfo &TRI, 1514 SpillOffsetMap &SpillOffsets) { 1515 // Build a set of new locations with new numbers so we can coalesce our 1516 // IntervalMap if two vreg intervals collapse to the same physical location. 1517 // Use MapVector instead of SetVector because MapVector::insert returns the 1518 // position of the previously or newly inserted element. The boolean value 1519 // tracks if the location was produced by a spill. 1520 // FIXME: This will be problematic if we ever support direct and indirect 1521 // frame index locations, i.e. expressing both variables in memory and 1522 // 'int x, *px = &x'. The "spilled" bit must become part of the location. 1523 MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations; 1524 SmallVector<unsigned, 4> LocNoMap(locations.size()); 1525 for (unsigned I = 0, E = locations.size(); I != E; ++I) { 1526 bool Spilled = false; 1527 unsigned SpillOffset = 0; 1528 MachineOperand Loc = locations[I]; 1529 // Only virtual registers are rewritten. 1530 if (Loc.isReg() && Loc.getReg() && 1531 Register::isVirtualRegister(Loc.getReg())) { 1532 Register VirtReg = Loc.getReg(); 1533 if (VRM.isAssignedReg(VirtReg) && 1534 Register::isPhysicalRegister(VRM.getPhys(VirtReg))) { 1535 // This can create a %noreg operand in rare cases when the sub-register 1536 // index is no longer available. That means the user value is in a 1537 // non-existent sub-register, and %noreg is exactly what we want. 1538 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 1539 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 1540 // Retrieve the stack slot offset. 1541 unsigned SpillSize; 1542 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1543 const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg); 1544 bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize, 1545 SpillOffset, MF); 1546 1547 // FIXME: Invalidate the location if the offset couldn't be calculated. 1548 (void)Success; 1549 1550 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 1551 Spilled = true; 1552 } else { 1553 Loc.setReg(0); 1554 Loc.setSubReg(0); 1555 } 1556 } 1557 1558 // Insert this location if it doesn't already exist and record a mapping 1559 // from the old number to the new number. 1560 auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}}); 1561 unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first); 1562 LocNoMap[I] = NewLocNo; 1563 } 1564 1565 // Rewrite the locations and record the stack slot offsets for spills. 1566 locations.clear(); 1567 SpillOffsets.clear(); 1568 for (auto &Pair : NewLocations) { 1569 bool Spilled; 1570 unsigned SpillOffset; 1571 std::tie(Spilled, SpillOffset) = Pair.second; 1572 locations.push_back(Pair.first); 1573 if (Spilled) { 1574 unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair); 1575 SpillOffsets[NewLocNo] = SpillOffset; 1576 } 1577 } 1578 1579 // Update the interval map, but only coalesce left, since intervals to the 1580 // right use the old location numbers. This should merge two contiguous 1581 // DBG_VALUE intervals with different vregs that were allocated to the same 1582 // physical register. 1583 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 1584 I.setValueUnchecked(I.value().remapLocNos(LocNoMap)); 1585 I.setStart(I.start()); 1586 } 1587 } 1588 1589 /// Find an iterator for inserting a DBG_VALUE instruction. 1590 static MachineBasicBlock::iterator 1591 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, LiveIntervals &LIS, 1592 BlockSkipInstsMap &BBSkipInstsMap) { 1593 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1594 Idx = Idx.getBaseIndex(); 1595 1596 // Try to find an insert location by going backwards from Idx. 1597 MachineInstr *MI; 1598 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1599 // We've reached the beginning of MBB. 1600 if (Idx == Start) { 1601 // Retrieve the last PHI/Label/Debug location found when calling 1602 // SkipPHIsLabelsAndDebug last time. Start searching from there. 1603 // 1604 // Note the iterator kept in BBSkipInstsMap is one step back based 1605 // on the iterator returned by SkipPHIsLabelsAndDebug last time. 1606 // One exception is when SkipPHIsLabelsAndDebug returns MBB->begin(), 1607 // BBSkipInstsMap won't save it. This is to consider the case that 1608 // new instructions may be inserted at the beginning of MBB after 1609 // last call of SkipPHIsLabelsAndDebug. If we save MBB->begin() in 1610 // BBSkipInstsMap, after new non-phi/non-label/non-debug instructions 1611 // are inserted at the beginning of the MBB, the iterator in 1612 // BBSkipInstsMap won't point to the beginning of the MBB anymore. 1613 // Therefore The next search in SkipPHIsLabelsAndDebug will skip those 1614 // newly added instructions and that is unwanted. 1615 MachineBasicBlock::iterator BeginIt; 1616 auto MapIt = BBSkipInstsMap.find(MBB); 1617 if (MapIt == BBSkipInstsMap.end()) 1618 BeginIt = MBB->begin(); 1619 else 1620 BeginIt = std::next(MapIt->second); 1621 auto I = MBB->SkipPHIsLabelsAndDebug(BeginIt); 1622 if (I != BeginIt) 1623 BBSkipInstsMap[MBB] = std::prev(I); 1624 return I; 1625 } 1626 Idx = Idx.getPrevIndex(); 1627 } 1628 1629 // Don't insert anything after the first terminator, though. 1630 return MI->isTerminator() ? MBB->getFirstTerminator() : 1631 std::next(MachineBasicBlock::iterator(MI)); 1632 } 1633 1634 /// Find an iterator for inserting the next DBG_VALUE instruction 1635 /// (or end if no more insert locations found). 1636 static MachineBasicBlock::iterator 1637 findNextInsertLocation(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, 1638 SlotIndex StopIdx, ArrayRef<MachineOperand> LocMOs, 1639 LiveIntervals &LIS, const TargetRegisterInfo &TRI) { 1640 SmallVector<Register, 4> Regs; 1641 for (const MachineOperand &LocMO : LocMOs) 1642 if (LocMO.isReg()) 1643 Regs.push_back(LocMO.getReg()); 1644 if (Regs.empty()) 1645 return MBB->instr_end(); 1646 1647 // Find the next instruction in the MBB that define the register Reg. 1648 while (I != MBB->end() && !I->isTerminator()) { 1649 if (!LIS.isNotInMIMap(*I) && 1650 SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I))) 1651 break; 1652 if (any_of(Regs, [&I, &TRI](Register &Reg) { 1653 return I->definesRegister(Reg, &TRI); 1654 })) 1655 // The insert location is directly after the instruction/bundle. 1656 return std::next(I); 1657 ++I; 1658 } 1659 return MBB->end(); 1660 } 1661 1662 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 1663 SlotIndex StopIdx, DbgVariableValue DbgValue, 1664 ArrayRef<bool> LocSpills, 1665 ArrayRef<unsigned> SpillOffsets, 1666 LiveIntervals &LIS, const TargetInstrInfo &TII, 1667 const TargetRegisterInfo &TRI, 1668 BlockSkipInstsMap &BBSkipInstsMap) { 1669 SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB); 1670 // Only search within the current MBB. 1671 StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx; 1672 MachineBasicBlock::iterator I = 1673 findInsertLocation(MBB, StartIdx, LIS, BBSkipInstsMap); 1674 // Undef values don't exist in locations so create new "noreg" register MOs 1675 // for them. See getLocationNo(). 1676 SmallVector<MachineOperand, 8> MOs; 1677 if (DbgValue.isUndef()) { 1678 MOs.assign(DbgValue.loc_nos().size(), 1679 MachineOperand::CreateReg( 1680 /* Reg */ 0, /* isDef */ false, /* isImp */ false, 1681 /* isKill */ false, /* isDead */ false, 1682 /* isUndef */ false, /* isEarlyClobber */ false, 1683 /* SubReg */ 0, /* isDebug */ true)); 1684 } else { 1685 for (unsigned LocNo : DbgValue.loc_nos()) 1686 MOs.push_back(locations[LocNo]); 1687 } 1688 1689 ++NumInsertedDebugValues; 1690 1691 assert(cast<DILocalVariable>(Variable) 1692 ->isValidLocationForIntrinsic(getDebugLoc()) && 1693 "Expected inlined-at fields to agree"); 1694 1695 // If the location was spilled, the new DBG_VALUE will be indirect. If the 1696 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate 1697 // that the original virtual register was a pointer. Also, add the stack slot 1698 // offset for the spilled register to the expression. 1699 const DIExpression *Expr = DbgValue.getExpression(); 1700 bool IsIndirect = DbgValue.getWasIndirect(); 1701 bool IsList = DbgValue.getWasList(); 1702 for (unsigned I = 0, E = LocSpills.size(); I != E; ++I) { 1703 if (LocSpills[I]) { 1704 if (!IsList) { 1705 uint8_t DIExprFlags = DIExpression::ApplyOffset; 1706 if (IsIndirect) 1707 DIExprFlags |= DIExpression::DerefAfter; 1708 Expr = DIExpression::prepend(Expr, DIExprFlags, SpillOffsets[I]); 1709 IsIndirect = true; 1710 } else { 1711 SmallVector<uint64_t, 4> Ops; 1712 DIExpression::appendOffset(Ops, SpillOffsets[I]); 1713 Ops.push_back(dwarf::DW_OP_deref); 1714 Expr = DIExpression::appendOpsToArg(Expr, Ops, I); 1715 } 1716 } 1717 1718 assert((!LocSpills[I] || MOs[I].isFI()) && 1719 "a spilled location must be a frame index"); 1720 } 1721 1722 unsigned DbgValueOpcode = 1723 IsList ? TargetOpcode::DBG_VALUE_LIST : TargetOpcode::DBG_VALUE; 1724 do { 1725 BuildMI(*MBB, I, getDebugLoc(), TII.get(DbgValueOpcode), IsIndirect, MOs, 1726 Variable, Expr); 1727 1728 // Continue and insert DBG_VALUES after every redefinition of a register 1729 // associated with the debug value within the range 1730 I = findNextInsertLocation(MBB, I, StopIdx, MOs, LIS, TRI); 1731 } while (I != MBB->end()); 1732 } 1733 1734 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 1735 LiveIntervals &LIS, const TargetInstrInfo &TII, 1736 BlockSkipInstsMap &BBSkipInstsMap) { 1737 MachineBasicBlock::iterator I = 1738 findInsertLocation(MBB, Idx, LIS, BBSkipInstsMap); 1739 ++NumInsertedDebugLabels; 1740 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL)) 1741 .addMetadata(Label); 1742 } 1743 1744 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1745 const TargetInstrInfo &TII, 1746 const TargetRegisterInfo &TRI, 1747 const SpillOffsetMap &SpillOffsets, 1748 BlockSkipInstsMap &BBSkipInstsMap) { 1749 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1750 1751 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1752 SlotIndex Start = I.start(); 1753 SlotIndex Stop = I.stop(); 1754 DbgVariableValue DbgValue = I.value(); 1755 1756 SmallVector<bool> SpilledLocs; 1757 SmallVector<unsigned> LocSpillOffsets; 1758 for (unsigned LocNo : DbgValue.loc_nos()) { 1759 auto SpillIt = 1760 !DbgValue.isUndef() ? SpillOffsets.find(LocNo) : SpillOffsets.end(); 1761 bool Spilled = SpillIt != SpillOffsets.end(); 1762 SpilledLocs.push_back(Spilled); 1763 LocSpillOffsets.push_back(Spilled ? SpillIt->second : 0); 1764 } 1765 1766 // If the interval start was trimmed to the lexical scope insert the 1767 // DBG_VALUE at the previous index (otherwise it appears after the 1768 // first instruction in the range). 1769 if (trimmedDefs.count(Start)) 1770 Start = Start.getPrevIndex(); 1771 1772 LLVM_DEBUG(auto &dbg = dbgs(); dbg << "\t[" << Start << ';' << Stop << "):"; 1773 DbgValue.printLocNos(dbg)); 1774 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1775 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1776 1777 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1778 insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs, LocSpillOffsets, 1779 LIS, TII, TRI, BBSkipInstsMap); 1780 // This interval may span multiple basic blocks. 1781 // Insert a DBG_VALUE into each one. 1782 while (Stop > MBBEnd) { 1783 // Move to the next block. 1784 Start = MBBEnd; 1785 if (++MBB == MFEnd) 1786 break; 1787 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1788 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1789 insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs, 1790 LocSpillOffsets, LIS, TII, TRI, BBSkipInstsMap); 1791 } 1792 LLVM_DEBUG(dbgs() << '\n'); 1793 if (MBB == MFEnd) 1794 break; 1795 1796 ++I; 1797 } 1798 } 1799 1800 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII, 1801 BlockSkipInstsMap &BBSkipInstsMap) { 1802 LLVM_DEBUG(dbgs() << "\t" << loc); 1803 MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator(); 1804 1805 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB)); 1806 insertDebugLabel(&*MBB, loc, LIS, TII, BBSkipInstsMap); 1807 1808 LLVM_DEBUG(dbgs() << '\n'); 1809 } 1810 1811 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1812 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1813 if (!MF) 1814 return; 1815 1816 BlockSkipInstsMap BBSkipInstsMap; 1817 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1818 SpillOffsetMap SpillOffsets; 1819 for (auto &userValue : userValues) { 1820 LLVM_DEBUG(userValue->print(dbgs(), TRI)); 1821 userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets); 1822 userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets, 1823 BBSkipInstsMap); 1824 } 1825 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n"); 1826 for (auto &userLabel : userLabels) { 1827 LLVM_DEBUG(userLabel->print(dbgs(), TRI)); 1828 userLabel->emitDebugLabel(*LIS, *TII, BBSkipInstsMap); 1829 } 1830 1831 LLVM_DEBUG(dbgs() << "********** EMITTING DEBUG PHIS **********\n"); 1832 1833 auto Slots = LIS->getSlotIndexes(); 1834 for (auto &It : PHIValToPos) { 1835 // For each ex-PHI, identify its physreg location or stack slot, and emit 1836 // a DBG_PHI for it. 1837 unsigned InstNum = It.first; 1838 auto Slot = It.second.SI; 1839 Register Reg = It.second.Reg; 1840 unsigned SubReg = It.second.SubReg; 1841 1842 MachineBasicBlock *OrigMBB = Slots->getMBBFromIndex(Slot); 1843 if (VRM->isAssignedReg(Reg) && 1844 Register::isPhysicalRegister(VRM->getPhys(Reg))) { 1845 unsigned PhysReg = VRM->getPhys(Reg); 1846 if (SubReg != 0) 1847 PhysReg = TRI->getSubReg(PhysReg, SubReg); 1848 1849 auto Builder = BuildMI(*OrigMBB, OrigMBB->begin(), DebugLoc(), 1850 TII->get(TargetOpcode::DBG_PHI)); 1851 Builder.addReg(PhysReg); 1852 Builder.addImm(InstNum); 1853 } else if (VRM->getStackSlot(Reg) != VirtRegMap::NO_STACK_SLOT) { 1854 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1855 const TargetRegisterClass *TRC = MRI.getRegClass(Reg); 1856 unsigned SpillSize, SpillOffset; 1857 1858 // Test whether this location is legal with the given subreg. 1859 bool Success = 1860 TII->getStackSlotRange(TRC, SubReg, SpillSize, SpillOffset, *MF); 1861 1862 if (Success) { 1863 auto Builder = BuildMI(*OrigMBB, OrigMBB->begin(), DebugLoc(), 1864 TII->get(TargetOpcode::DBG_PHI)); 1865 Builder.addFrameIndex(VRM->getStackSlot(Reg)); 1866 Builder.addImm(InstNum); 1867 } 1868 } 1869 // If there was no mapping for a value ID, it's optimized out. Create no 1870 // DBG_PHI, and any variables using this value will become optimized out. 1871 } 1872 MF->DebugPHIPositions.clear(); 1873 1874 LLVM_DEBUG(dbgs() << "********** EMITTING INSTR REFERENCES **********\n"); 1875 1876 // Re-insert any debug instrs back in the position they were. We must 1877 // re-insert in the same order to ensure that debug instructions don't swap, 1878 // which could re-order assignments. Do so in a batch -- once we find the 1879 // insert position, insert all instructions at the same SlotIdx. They are 1880 // guaranteed to appear in-sequence in StashedDebugInstrs because we insert 1881 // them in order. 1882 for (auto StashIt = StashedDebugInstrs.begin(); 1883 StashIt != StashedDebugInstrs.end(); ++StashIt) { 1884 SlotIndex Idx = StashIt->Idx; 1885 MachineBasicBlock *MBB = StashIt->MBB; 1886 MachineInstr *MI = StashIt->MI; 1887 1888 auto EmitInstsHere = [this, &StashIt, MBB, Idx, 1889 MI](MachineBasicBlock::iterator InsertPos) { 1890 // Insert this debug instruction. 1891 MBB->insert(InsertPos, MI); 1892 1893 // Look at subsequent stashed debug instructions: if they're at the same 1894 // index, insert those too. 1895 auto NextItem = std::next(StashIt); 1896 while (NextItem != StashedDebugInstrs.end() && NextItem->Idx == Idx) { 1897 assert(NextItem->MBB == MBB && "Instrs with same slot index should be" 1898 "in the same block"); 1899 MBB->insert(InsertPos, NextItem->MI); 1900 StashIt = NextItem; 1901 NextItem = std::next(StashIt); 1902 }; 1903 }; 1904 1905 // Start block index: find the first non-debug instr in the block, and 1906 // insert before it. 1907 if (Idx == Slots->getMBBStartIdx(MBB)) { 1908 MachineBasicBlock::iterator InsertPos = 1909 findInsertLocation(MBB, Idx, *LIS, BBSkipInstsMap); 1910 EmitInstsHere(InsertPos); 1911 continue; 1912 } 1913 1914 if (MachineInstr *Pos = Slots->getInstructionFromIndex(Idx)) { 1915 // Insert at the end of any debug instructions. 1916 auto PostDebug = std::next(Pos->getIterator()); 1917 PostDebug = skipDebugInstructionsForward(PostDebug, MBB->instr_end()); 1918 EmitInstsHere(PostDebug); 1919 } else { 1920 // Insert position disappeared; walk forwards through slots until we 1921 // find a new one. 1922 SlotIndex End = Slots->getMBBEndIdx(MBB); 1923 for (; Idx < End; Idx = Slots->getNextNonNullIndex(Idx)) { 1924 Pos = Slots->getInstructionFromIndex(Idx); 1925 if (Pos) { 1926 EmitInstsHere(Pos->getIterator()); 1927 break; 1928 } 1929 } 1930 1931 // We have reached the end of the block and didn't find anywhere to 1932 // insert! It's not safe to discard any debug instructions; place them 1933 // in front of the first terminator, or in front of end(). 1934 if (Idx >= End) { 1935 auto TermIt = MBB->getFirstTerminator(); 1936 EmitInstsHere(TermIt); 1937 } 1938 } 1939 } 1940 1941 EmitDone = true; 1942 BBSkipInstsMap.clear(); 1943 } 1944 1945 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1946 if (pImpl) 1947 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1948 } 1949 1950 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1951 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { 1952 if (pImpl) 1953 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1954 } 1955 #endif 1956