1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveDebugVariables analysis. 11 // 12 // Remove all DBG_VALUE instructions referencing virtual registers and replace 13 // them with a data structure tracking where live user variables are kept - in a 14 // virtual register or in a stack slot. 15 // 16 // Allow the data structure to be updated during register allocation when values 17 // are moved between registers and stack slots. Finally emit new DBG_VALUE 18 // instructions after register allocation is complete. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "LiveDebugVariables.h" 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/IntervalMap.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/CodeGen/LexicalScopes.h" 32 #include "llvm/CodeGen/LiveInterval.h" 33 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineDominators.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/VirtRegMap.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/Metadata.h" 47 #include "llvm/MC/MCRegisterInfo.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetInstrInfo.h" 55 #include "llvm/Target/TargetOpcodes.h" 56 #include "llvm/Target/TargetRegisterInfo.h" 57 #include "llvm/Target/TargetSubtargetInfo.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <iterator> 61 #include <memory> 62 #include <utility> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "livedebugvars" 67 68 static cl::opt<bool> 69 EnableLDV("live-debug-variables", cl::init(true), 70 cl::desc("Enable the live debug variables pass"), cl::Hidden); 71 72 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 73 74 char LiveDebugVariables::ID = 0; 75 76 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, 77 "Debug Variable Analysis", false, false) 78 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 79 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 80 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, 81 "Debug Variable Analysis", false, false) 82 83 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 84 AU.addRequired<MachineDominatorTree>(); 85 AU.addRequiredTransitive<LiveIntervals>(); 86 AU.setPreservesAll(); 87 MachineFunctionPass::getAnalysisUsage(AU); 88 } 89 90 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { 91 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 92 } 93 94 /// LocMap - Map of where a user value is live, and its location. 95 using LocMap = IntervalMap<SlotIndex, unsigned, 4>; 96 97 namespace { 98 99 class LDVImpl; 100 101 /// UserValue - A user value is a part of a debug info user variable. 102 /// 103 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 104 /// holds part of a user variable. The part is identified by a byte offset. 105 /// 106 /// UserValues are grouped into equivalence classes for easier searching. Two 107 /// user values are related if they refer to the same variable, or if they are 108 /// held by the same virtual register. The equivalence class is the transitive 109 /// closure of that relation. 110 class UserValue { 111 const MDNode *Variable; ///< The debug info variable we are part of. 112 const MDNode *Expression; ///< Any complex address expression. 113 bool IsIndirect; ///< true if this is a register-indirect+offset value. 114 DebugLoc dl; ///< The debug location for the variable. This is 115 ///< used by dwarf writer to find lexical scope. 116 UserValue *leader; ///< Equivalence class leader. 117 UserValue *next = nullptr; ///< Next value in equivalence class, or null. 118 119 /// Numbered locations referenced by locmap. 120 SmallVector<MachineOperand, 4> locations; 121 122 /// Map of slot indices where this value is live. 123 LocMap locInts; 124 125 /// Set of interval start indexes that have been trimmed to the 126 /// lexical scope. 127 SmallSet<SlotIndex, 2> trimmedDefs; 128 129 /// coalesceLocation - After LocNo was changed, check if it has become 130 /// identical to another location, and coalesce them. This may cause LocNo or 131 /// a later location to be erased, but no earlier location will be erased. 132 void coalesceLocation(unsigned LocNo); 133 134 /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo. 135 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx, unsigned LocNo, 136 LiveIntervals &LIS, const TargetInstrInfo &TII); 137 138 /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs 139 /// is live. Returns true if any changes were made. 140 bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 141 LiveIntervals &LIS); 142 143 public: 144 /// UserValue - Create a new UserValue. 145 UserValue(const MDNode *var, const MDNode *expr, bool i, DebugLoc L, 146 LocMap::Allocator &alloc) 147 : Variable(var), Expression(expr), IsIndirect(i), dl(std::move(L)), 148 leader(this), locInts(alloc) {} 149 150 /// getLeader - Get the leader of this value's equivalence class. 151 UserValue *getLeader() { 152 UserValue *l = leader; 153 while (l != l->leader) 154 l = l->leader; 155 return leader = l; 156 } 157 158 /// getNext - Return the next UserValue in the equivalence class. 159 UserValue *getNext() const { return next; } 160 161 /// match - Does this UserValue match the parameters? 162 bool match(const MDNode *Var, const MDNode *Expr, const DILocation *IA, 163 bool indirect) const { 164 return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA && 165 indirect == IsIndirect; 166 } 167 168 enum : unsigned { UndefLocNo = ~0U }; 169 170 /// merge - Merge equivalence classes. 171 static UserValue *merge(UserValue *L1, UserValue *L2) { 172 L2 = L2->getLeader(); 173 if (!L1) 174 return L2; 175 L1 = L1->getLeader(); 176 if (L1 == L2) 177 return L1; 178 // Splice L2 before L1's members. 179 UserValue *End = L2; 180 while (End->next) { 181 End->leader = L1; 182 End = End->next; 183 } 184 End->leader = L1; 185 End->next = L1->next; 186 L1->next = L2; 187 return L1; 188 } 189 190 /// getLocationNo - Return the location number that matches Loc. 191 unsigned getLocationNo(const MachineOperand &LocMO) { 192 if (LocMO.isReg()) { 193 if (LocMO.getReg() == 0) 194 return UndefLocNo; 195 // For register locations we dont care about use/def and other flags. 196 for (unsigned i = 0, e = locations.size(); i != e; ++i) 197 if (locations[i].isReg() && 198 locations[i].getReg() == LocMO.getReg() && 199 locations[i].getSubReg() == LocMO.getSubReg()) 200 return i; 201 } else 202 for (unsigned i = 0, e = locations.size(); i != e; ++i) 203 if (LocMO.isIdenticalTo(locations[i])) 204 return i; 205 locations.push_back(LocMO); 206 // We are storing a MachineOperand outside a MachineInstr. 207 locations.back().clearParent(); 208 // Don't store def operands. 209 if (locations.back().isReg()) 210 locations.back().setIsUse(); 211 return locations.size() - 1; 212 } 213 214 /// mapVirtRegs - Ensure that all virtual register locations are mapped. 215 void mapVirtRegs(LDVImpl *LDV); 216 217 /// addDef - Add a definition point to this value. 218 void addDef(SlotIndex Idx, const MachineOperand &LocMO) { 219 // Add a singular (Idx,Idx) -> Loc mapping. 220 LocMap::iterator I = locInts.find(Idx); 221 if (!I.valid() || I.start() != Idx) 222 I.insert(Idx, Idx.getNextSlot(), getLocationNo(LocMO)); 223 else 224 // A later DBG_VALUE at the same SlotIndex overrides the old location. 225 I.setValue(getLocationNo(LocMO)); 226 } 227 228 /// extendDef - Extend the current definition as far as possible down. 229 /// Stop when meeting an existing def or when leaving the live 230 /// range of VNI. 231 /// End points where VNI is no longer live are added to Kills. 232 /// @param Idx Starting point for the definition. 233 /// @param LocNo Location number to propagate. 234 /// @param LR Restrict liveness to where LR has the value VNI. May be null. 235 /// @param VNI When LR is not null, this is the value to restrict to. 236 /// @param Kills Append end points of VNI's live range to Kills. 237 /// @param LIS Live intervals analysis. 238 void extendDef(SlotIndex Idx, unsigned LocNo, 239 LiveRange *LR, const VNInfo *VNI, 240 SmallVectorImpl<SlotIndex> *Kills, 241 LiveIntervals &LIS); 242 243 /// addDefsFromCopies - The value in LI/LocNo may be copies to other 244 /// registers. Determine if any of the copies are available at the kill 245 /// points, and add defs if possible. 246 /// @param LI Scan for copies of the value in LI->reg. 247 /// @param LocNo Location number of LI->reg. 248 /// @param Kills Points where the range of LocNo could be extended. 249 /// @param NewDefs Append (Idx, LocNo) of inserted defs here. 250 void addDefsFromCopies(LiveInterval *LI, unsigned LocNo, 251 const SmallVectorImpl<SlotIndex> &Kills, 252 SmallVectorImpl<std::pair<SlotIndex, unsigned>> &NewDefs, 253 MachineRegisterInfo &MRI, 254 LiveIntervals &LIS); 255 256 /// computeIntervals - Compute the live intervals of all locations after 257 /// collecting all their def points. 258 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 259 LiveIntervals &LIS, LexicalScopes &LS); 260 261 /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is 262 /// live. Returns true if any changes were made. 263 bool splitRegister(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 264 LiveIntervals &LIS); 265 266 /// rewriteLocations - Rewrite virtual register locations according to the 267 /// provided virtual register map. 268 void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI); 269 270 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 271 void emitDebugValues(VirtRegMap *VRM, 272 LiveIntervals &LIS, const TargetInstrInfo &TRI); 273 274 /// getDebugLoc - Return DebugLoc of this UserValue. 275 DebugLoc getDebugLoc() { return dl;} 276 277 void print(raw_ostream &, const TargetRegisterInfo *); 278 }; 279 280 /// LDVImpl - Implementation of the LiveDebugVariables pass. 281 class LDVImpl { 282 LiveDebugVariables &pass; 283 LocMap::Allocator allocator; 284 MachineFunction *MF = nullptr; 285 LiveIntervals *LIS; 286 const TargetRegisterInfo *TRI; 287 288 /// Whether emitDebugValues is called. 289 bool EmitDone = false; 290 291 /// Whether the machine function is modified during the pass. 292 bool ModifiedMF = false; 293 294 /// userValues - All allocated UserValue instances. 295 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 296 297 /// Map virtual register to eq class leader. 298 using VRMap = DenseMap<unsigned, UserValue *>; 299 VRMap virtRegToEqClass; 300 301 /// Map user variable to eq class leader. 302 using UVMap = DenseMap<const MDNode *, UserValue *>; 303 UVMap userVarMap; 304 305 /// getUserValue - Find or create a UserValue. 306 UserValue *getUserValue(const MDNode *Var, const MDNode *Expr, 307 bool IsIndirect, const DebugLoc &DL); 308 309 /// lookupVirtReg - Find the EC leader for VirtReg or null. 310 UserValue *lookupVirtReg(unsigned VirtReg); 311 312 /// handleDebugValue - Add DBG_VALUE instruction to our maps. 313 /// @param MI DBG_VALUE instruction 314 /// @param Idx Last valid SLotIndex before instruction. 315 /// @return True if the DBG_VALUE instruction should be deleted. 316 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 317 318 /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding 319 /// a UserValue def for each instruction. 320 /// @param mf MachineFunction to be scanned. 321 /// @return True if any debug values were found. 322 bool collectDebugValues(MachineFunction &mf); 323 324 /// computeIntervals - Compute the live intervals of all user values after 325 /// collecting all their def points. 326 void computeIntervals(); 327 328 public: 329 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 330 331 bool runOnMachineFunction(MachineFunction &mf); 332 333 /// clear - Release all memory. 334 void clear() { 335 MF = nullptr; 336 userValues.clear(); 337 virtRegToEqClass.clear(); 338 userVarMap.clear(); 339 // Make sure we call emitDebugValues if the machine function was modified. 340 assert((!ModifiedMF || EmitDone) && 341 "Dbg values are not emitted in LDV"); 342 EmitDone = false; 343 ModifiedMF = false; 344 } 345 346 /// mapVirtReg - Map virtual register to an equivalence class. 347 void mapVirtReg(unsigned VirtReg, UserValue *EC); 348 349 /// splitRegister - Replace all references to OldReg with NewRegs. 350 void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs); 351 352 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 353 void emitDebugValues(VirtRegMap *VRM); 354 355 void print(raw_ostream&); 356 }; 357 358 } // end anonymous namespace 359 360 #ifndef NDEBUG 361 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 362 const LLVMContext &Ctx) { 363 if (!DL) 364 return; 365 366 auto *Scope = cast<DIScope>(DL.getScope()); 367 // Omit the directory, because it's likely to be long and uninteresting. 368 CommentOS << Scope->getFilename(); 369 CommentOS << ':' << DL.getLine(); 370 if (DL.getCol() != 0) 371 CommentOS << ':' << DL.getCol(); 372 373 DebugLoc InlinedAtDL = DL.getInlinedAt(); 374 if (!InlinedAtDL) 375 return; 376 377 CommentOS << " @[ "; 378 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 379 CommentOS << " ]"; 380 } 381 382 static void printExtendedName(raw_ostream &OS, const DILocalVariable *V, 383 const DILocation *DL) { 384 const LLVMContext &Ctx = V->getContext(); 385 StringRef Res = V->getName(); 386 if (!Res.empty()) 387 OS << Res << "," << V->getLine(); 388 if (auto *InlinedAt = DL->getInlinedAt()) { 389 if (DebugLoc InlinedAtDL = InlinedAt) { 390 OS << " @["; 391 printDebugLoc(InlinedAtDL, OS, Ctx); 392 OS << "]"; 393 } 394 } 395 } 396 397 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 398 auto *DV = cast<DILocalVariable>(Variable); 399 OS << "!\""; 400 printExtendedName(OS, DV, dl); 401 402 OS << "\"\t"; 403 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 404 OS << " [" << I.start() << ';' << I.stop() << "):"; 405 if (I.value() == UndefLocNo) 406 OS << "undef"; 407 else 408 OS << I.value(); 409 } 410 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 411 OS << " Loc" << i << '='; 412 locations[i].print(OS, TRI); 413 } 414 OS << '\n'; 415 } 416 417 void LDVImpl::print(raw_ostream &OS) { 418 OS << "********** DEBUG VARIABLES **********\n"; 419 for (unsigned i = 0, e = userValues.size(); i != e; ++i) 420 userValues[i]->print(OS, TRI); 421 } 422 #endif 423 424 void UserValue::coalesceLocation(unsigned LocNo) { 425 unsigned KeepLoc = 0; 426 for (unsigned e = locations.size(); KeepLoc != e; ++KeepLoc) { 427 if (KeepLoc == LocNo) 428 continue; 429 if (locations[KeepLoc].isIdenticalTo(locations[LocNo])) 430 break; 431 } 432 // No matches. 433 if (KeepLoc == locations.size()) 434 return; 435 436 // Keep the smaller location, erase the larger one. 437 unsigned EraseLoc = LocNo; 438 if (KeepLoc > EraseLoc) 439 std::swap(KeepLoc, EraseLoc); 440 locations.erase(locations.begin() + EraseLoc); 441 442 // Rewrite values. 443 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 444 unsigned v = I.value(); 445 if (v == EraseLoc) 446 I.setValue(KeepLoc); // Coalesce when possible. 447 else if (v > EraseLoc) 448 I.setValueUnchecked(v-1); // Avoid coalescing with untransformed values. 449 } 450 } 451 452 void UserValue::mapVirtRegs(LDVImpl *LDV) { 453 for (unsigned i = 0, e = locations.size(); i != e; ++i) 454 if (locations[i].isReg() && 455 TargetRegisterInfo::isVirtualRegister(locations[i].getReg())) 456 LDV->mapVirtReg(locations[i].getReg(), this); 457 } 458 459 UserValue *LDVImpl::getUserValue(const MDNode *Var, const MDNode *Expr, 460 bool IsIndirect, const DebugLoc &DL) { 461 UserValue *&Leader = userVarMap[Var]; 462 if (Leader) { 463 UserValue *UV = Leader->getLeader(); 464 Leader = UV; 465 for (; UV; UV = UV->getNext()) 466 if (UV->match(Var, Expr, DL->getInlinedAt(), IsIndirect)) 467 return UV; 468 } 469 470 userValues.push_back( 471 llvm::make_unique<UserValue>(Var, Expr, IsIndirect, DL, allocator)); 472 UserValue *UV = userValues.back().get(); 473 Leader = UserValue::merge(Leader, UV); 474 return UV; 475 } 476 477 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) { 478 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 479 UserValue *&Leader = virtRegToEqClass[VirtReg]; 480 Leader = UserValue::merge(Leader, EC); 481 } 482 483 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) { 484 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 485 return UV->getLeader(); 486 return nullptr; 487 } 488 489 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { 490 // DBG_VALUE loc, offset, variable 491 if (MI.getNumOperands() != 4 || 492 !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) || 493 !MI.getOperand(2).isMetadata()) { 494 DEBUG(dbgs() << "Can't handle " << MI); 495 return false; 496 } 497 498 // Get or create the UserValue for (variable,offset). 499 bool IsIndirect = MI.isIndirectDebugValue(); 500 if (IsIndirect) 501 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 502 const MDNode *Var = MI.getDebugVariable(); 503 const MDNode *Expr = MI.getDebugExpression(); 504 //here. 505 UserValue *UV = getUserValue(Var, Expr, IsIndirect, MI.getDebugLoc()); 506 UV->addDef(Idx, MI.getOperand(0)); 507 return true; 508 } 509 510 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 511 bool Changed = false; 512 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; 513 ++MFI) { 514 MachineBasicBlock *MBB = &*MFI; 515 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); 516 MBBI != MBBE;) { 517 if (!MBBI->isDebugValue()) { 518 ++MBBI; 519 continue; 520 } 521 // DBG_VALUE has no slot index, use the previous instruction instead. 522 SlotIndex Idx = 523 MBBI == MBB->begin() 524 ? LIS->getMBBStartIdx(MBB) 525 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 526 // Handle consecutive DBG_VALUE instructions with the same slot index. 527 do { 528 if (handleDebugValue(*MBBI, Idx)) { 529 MBBI = MBB->erase(MBBI); 530 Changed = true; 531 } else 532 ++MBBI; 533 } while (MBBI != MBBE && MBBI->isDebugValue()); 534 } 535 } 536 return Changed; 537 } 538 539 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 540 /// data-flow analysis to propagate them beyond basic block boundaries. 541 void UserValue::extendDef(SlotIndex Idx, unsigned LocNo, LiveRange *LR, 542 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills, 543 LiveIntervals &LIS) { 544 SlotIndex Start = Idx; 545 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 546 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 547 LocMap::iterator I = locInts.find(Start); 548 549 // Limit to VNI's live range. 550 bool ToEnd = true; 551 if (LR && VNI) { 552 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 553 if (!Segment || Segment->valno != VNI) { 554 if (Kills) 555 Kills->push_back(Start); 556 return; 557 } 558 if (Segment->end < Stop) { 559 Stop = Segment->end; 560 ToEnd = false; 561 } 562 } 563 564 // There could already be a short def at Start. 565 if (I.valid() && I.start() <= Start) { 566 // Stop when meeting a different location or an already extended interval. 567 Start = Start.getNextSlot(); 568 if (I.value() != LocNo || I.stop() != Start) 569 return; 570 // This is a one-slot placeholder. Just skip it. 571 ++I; 572 } 573 574 // Limited by the next def. 575 if (I.valid() && I.start() < Stop) { 576 Stop = I.start(); 577 ToEnd = false; 578 } 579 // Limited by VNI's live range. 580 else if (!ToEnd && Kills) 581 Kills->push_back(Stop); 582 583 if (Start < Stop) 584 I.insert(Start, Stop, LocNo); 585 } 586 587 void 588 UserValue::addDefsFromCopies(LiveInterval *LI, unsigned LocNo, 589 const SmallVectorImpl<SlotIndex> &Kills, 590 SmallVectorImpl<std::pair<SlotIndex, unsigned>> &NewDefs, 591 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 592 if (Kills.empty()) 593 return; 594 // Don't track copies from physregs, there are too many uses. 595 if (!TargetRegisterInfo::isVirtualRegister(LI->reg)) 596 return; 597 598 // Collect all the (vreg, valno) pairs that are copies of LI. 599 SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues; 600 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) { 601 MachineInstr *MI = MO.getParent(); 602 // Copies of the full value. 603 if (MO.getSubReg() || !MI->isCopy()) 604 continue; 605 unsigned DstReg = MI->getOperand(0).getReg(); 606 607 // Don't follow copies to physregs. These are usually setting up call 608 // arguments, and the argument registers are always call clobbered. We are 609 // better off in the source register which could be a callee-saved register, 610 // or it could be spilled. 611 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 612 continue; 613 614 // Is LocNo extended to reach this copy? If not, another def may be blocking 615 // it, or we are looking at a wrong value of LI. 616 SlotIndex Idx = LIS.getInstructionIndex(*MI); 617 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 618 if (!I.valid() || I.value() != LocNo) 619 continue; 620 621 if (!LIS.hasInterval(DstReg)) 622 continue; 623 LiveInterval *DstLI = &LIS.getInterval(DstReg); 624 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 625 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 626 CopyValues.push_back(std::make_pair(DstLI, DstVNI)); 627 } 628 629 if (CopyValues.empty()) 630 return; 631 632 DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI << '\n'); 633 634 // Try to add defs of the copied values for each kill point. 635 for (unsigned i = 0, e = Kills.size(); i != e; ++i) { 636 SlotIndex Idx = Kills[i]; 637 for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) { 638 LiveInterval *DstLI = CopyValues[j].first; 639 const VNInfo *DstVNI = CopyValues[j].second; 640 if (DstLI->getVNInfoAt(Idx) != DstVNI) 641 continue; 642 // Check that there isn't already a def at Idx 643 LocMap::iterator I = locInts.find(Idx); 644 if (I.valid() && I.start() <= Idx) 645 continue; 646 DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #" 647 << DstVNI->id << " in " << *DstLI << '\n'); 648 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 649 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 650 unsigned LocNo = getLocationNo(CopyMI->getOperand(0)); 651 I.insert(Idx, Idx.getNextSlot(), LocNo); 652 NewDefs.push_back(std::make_pair(Idx, LocNo)); 653 break; 654 } 655 } 656 } 657 658 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 659 const TargetRegisterInfo &TRI, 660 LiveIntervals &LIS, LexicalScopes &LS) { 661 SmallVector<std::pair<SlotIndex, unsigned>, 16> Defs; 662 663 // Collect all defs to be extended (Skipping undefs). 664 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 665 if (I.value() != UndefLocNo) 666 Defs.push_back(std::make_pair(I.start(), I.value())); 667 668 // Extend all defs, and possibly add new ones along the way. 669 for (unsigned i = 0; i != Defs.size(); ++i) { 670 SlotIndex Idx = Defs[i].first; 671 unsigned LocNo = Defs[i].second; 672 const MachineOperand &Loc = locations[LocNo]; 673 674 if (!Loc.isReg()) { 675 extendDef(Idx, LocNo, nullptr, nullptr, nullptr, LIS); 676 continue; 677 } 678 679 // Register locations are constrained to where the register value is live. 680 if (TargetRegisterInfo::isVirtualRegister(Loc.getReg())) { 681 LiveInterval *LI = nullptr; 682 const VNInfo *VNI = nullptr; 683 if (LIS.hasInterval(Loc.getReg())) { 684 LI = &LIS.getInterval(Loc.getReg()); 685 VNI = LI->getVNInfoAt(Idx); 686 } 687 SmallVector<SlotIndex, 16> Kills; 688 extendDef(Idx, LocNo, LI, VNI, &Kills, LIS); 689 if (LI) 690 addDefsFromCopies(LI, LocNo, Kills, Defs, MRI, LIS); 691 continue; 692 } 693 694 // For physregs, use the live range of the first regunit as a guide. 695 unsigned Unit = *MCRegUnitIterator(Loc.getReg(), &TRI); 696 LiveRange *LR = &LIS.getRegUnit(Unit); 697 const VNInfo *VNI = LR->getVNInfoAt(Idx); 698 // Don't track copies from physregs, it is too expensive. 699 extendDef(Idx, LocNo, LR, VNI, nullptr, LIS); 700 } 701 702 // Erase all the undefs. 703 for (LocMap::iterator I = locInts.begin(); I.valid();) 704 if (I.value() == UndefLocNo) 705 I.erase(); 706 else 707 ++I; 708 709 // The computed intervals may extend beyond the range of the debug 710 // location's lexical scope. In this case, splitting of an interval 711 // can result in an interval outside of the scope being created, 712 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 713 // this, trim the intervals to the lexical scope. 714 715 LexicalScope *Scope = LS.findLexicalScope(dl); 716 if (!Scope) 717 return; 718 719 SlotIndex PrevEnd; 720 LocMap::iterator I = locInts.begin(); 721 722 // Iterate over the lexical scope ranges. Each time round the loop 723 // we check the intervals for overlap with the end of the previous 724 // range and the start of the next. The first range is handled as 725 // a special case where there is no PrevEnd. 726 for (const InsnRange &Range : Scope->getRanges()) { 727 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 728 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 729 730 // At the start of each iteration I has been advanced so that 731 // I.stop() >= PrevEnd. Check for overlap. 732 if (PrevEnd && I.start() < PrevEnd) { 733 SlotIndex IStop = I.stop(); 734 unsigned LocNo = I.value(); 735 736 // Stop overlaps previous end - trim the end of the interval to 737 // the scope range. 738 I.setStopUnchecked(PrevEnd); 739 ++I; 740 741 // If the interval also overlaps the start of the "next" (i.e. 742 // current) range create a new interval for the remainder (which 743 // may be further trimmed). 744 if (RStart < IStop) 745 I.insert(RStart, IStop, LocNo); 746 } 747 748 // Advance I so that I.stop() >= RStart, and check for overlap. 749 I.advanceTo(RStart); 750 if (!I.valid()) 751 return; 752 753 if (I.start() < RStart) { 754 // Interval start overlaps range - trim to the scope range. 755 I.setStartUnchecked(RStart); 756 // Remember that this interval was trimmed. 757 trimmedDefs.insert(RStart); 758 } 759 760 // The end of a lexical scope range is the last instruction in the 761 // range. To convert to an interval we need the index of the 762 // instruction after it. 763 REnd = REnd.getNextIndex(); 764 765 // Advance I to first interval outside current range. 766 I.advanceTo(REnd); 767 if (!I.valid()) 768 return; 769 770 PrevEnd = REnd; 771 } 772 773 // Check for overlap with end of final range. 774 if (PrevEnd && I.start() < PrevEnd) 775 I.setStopUnchecked(PrevEnd); 776 } 777 778 void LDVImpl::computeIntervals() { 779 LexicalScopes LS; 780 LS.initialize(*MF); 781 782 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 783 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 784 userValues[i]->mapVirtRegs(this); 785 } 786 } 787 788 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 789 clear(); 790 MF = &mf; 791 LIS = &pass.getAnalysis<LiveIntervals>(); 792 TRI = mf.getSubtarget().getRegisterInfo(); 793 DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 794 << mf.getName() << " **********\n"); 795 796 bool Changed = collectDebugValues(mf); 797 computeIntervals(); 798 DEBUG(print(dbgs())); 799 ModifiedMF = Changed; 800 return Changed; 801 } 802 803 static void removeDebugValues(MachineFunction &mf) { 804 for (MachineBasicBlock &MBB : mf) { 805 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) { 806 if (!MBBI->isDebugValue()) { 807 ++MBBI; 808 continue; 809 } 810 MBBI = MBB.erase(MBBI); 811 } 812 } 813 } 814 815 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 816 if (!EnableLDV) 817 return false; 818 if (!mf.getFunction()->getSubprogram()) { 819 removeDebugValues(mf); 820 return false; 821 } 822 if (!pImpl) 823 pImpl = new LDVImpl(this); 824 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 825 } 826 827 void LiveDebugVariables::releaseMemory() { 828 if (pImpl) 829 static_cast<LDVImpl*>(pImpl)->clear(); 830 } 831 832 LiveDebugVariables::~LiveDebugVariables() { 833 if (pImpl) 834 delete static_cast<LDVImpl*>(pImpl); 835 } 836 837 //===----------------------------------------------------------------------===// 838 // Live Range Splitting 839 //===----------------------------------------------------------------------===// 840 841 bool 842 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 843 LiveIntervals& LIS) { 844 DEBUG({ 845 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 846 print(dbgs(), nullptr); 847 }); 848 bool DidChange = false; 849 LocMap::iterator LocMapI; 850 LocMapI.setMap(locInts); 851 for (unsigned i = 0; i != NewRegs.size(); ++i) { 852 LiveInterval *LI = &LIS.getInterval(NewRegs[i]); 853 if (LI->empty()) 854 continue; 855 856 // Don't allocate the new LocNo until it is needed. 857 unsigned NewLocNo = UndefLocNo; 858 859 // Iterate over the overlaps between locInts and LI. 860 LocMapI.find(LI->beginIndex()); 861 if (!LocMapI.valid()) 862 continue; 863 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 864 LiveInterval::iterator LIE = LI->end(); 865 while (LocMapI.valid() && LII != LIE) { 866 // At this point, we know that LocMapI.stop() > LII->start. 867 LII = LI->advanceTo(LII, LocMapI.start()); 868 if (LII == LIE) 869 break; 870 871 // Now LII->end > LocMapI.start(). Do we have an overlap? 872 if (LocMapI.value() == OldLocNo && LII->start < LocMapI.stop()) { 873 // Overlapping correct location. Allocate NewLocNo now. 874 if (NewLocNo == UndefLocNo) { 875 MachineOperand MO = MachineOperand::CreateReg(LI->reg, false); 876 MO.setSubReg(locations[OldLocNo].getSubReg()); 877 NewLocNo = getLocationNo(MO); 878 DidChange = true; 879 } 880 881 SlotIndex LStart = LocMapI.start(); 882 SlotIndex LStop = LocMapI.stop(); 883 884 // Trim LocMapI down to the LII overlap. 885 if (LStart < LII->start) 886 LocMapI.setStartUnchecked(LII->start); 887 if (LStop > LII->end) 888 LocMapI.setStopUnchecked(LII->end); 889 890 // Change the value in the overlap. This may trigger coalescing. 891 LocMapI.setValue(NewLocNo); 892 893 // Re-insert any removed OldLocNo ranges. 894 if (LStart < LocMapI.start()) { 895 LocMapI.insert(LStart, LocMapI.start(), OldLocNo); 896 ++LocMapI; 897 assert(LocMapI.valid() && "Unexpected coalescing"); 898 } 899 if (LStop > LocMapI.stop()) { 900 ++LocMapI; 901 LocMapI.insert(LII->end, LStop, OldLocNo); 902 --LocMapI; 903 } 904 } 905 906 // Advance to the next overlap. 907 if (LII->end < LocMapI.stop()) { 908 if (++LII == LIE) 909 break; 910 LocMapI.advanceTo(LII->start); 911 } else { 912 ++LocMapI; 913 if (!LocMapI.valid()) 914 break; 915 LII = LI->advanceTo(LII, LocMapI.start()); 916 } 917 } 918 } 919 920 // Finally, remove any remaining OldLocNo intervals and OldLocNo itself. 921 locations.erase(locations.begin() + OldLocNo); 922 LocMapI.goToBegin(); 923 while (LocMapI.valid()) { 924 unsigned v = LocMapI.value(); 925 if (v == OldLocNo) { 926 DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';' 927 << LocMapI.stop() << ")\n"); 928 LocMapI.erase(); 929 } else { 930 if (v > OldLocNo) 931 LocMapI.setValueUnchecked(v-1); 932 ++LocMapI; 933 } 934 } 935 936 DEBUG({dbgs() << "Split result: \t"; print(dbgs(), nullptr);}); 937 return DidChange; 938 } 939 940 bool 941 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, 942 LiveIntervals &LIS) { 943 bool DidChange = false; 944 // Split locations referring to OldReg. Iterate backwards so splitLocation can 945 // safely erase unused locations. 946 for (unsigned i = locations.size(); i ; --i) { 947 unsigned LocNo = i-1; 948 const MachineOperand *Loc = &locations[LocNo]; 949 if (!Loc->isReg() || Loc->getReg() != OldReg) 950 continue; 951 DidChange |= splitLocation(LocNo, NewRegs, LIS); 952 } 953 return DidChange; 954 } 955 956 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) { 957 bool DidChange = false; 958 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 959 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 960 961 if (!DidChange) 962 return; 963 964 // Map all of the new virtual registers. 965 UserValue *UV = lookupVirtReg(OldReg); 966 for (unsigned i = 0; i != NewRegs.size(); ++i) 967 mapVirtReg(NewRegs[i], UV); 968 } 969 970 void LiveDebugVariables:: 971 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) { 972 if (pImpl) 973 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 974 } 975 976 void 977 UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI) { 978 // Iterate over locations in reverse makes it easier to handle coalescing. 979 for (unsigned i = locations.size(); i ; --i) { 980 unsigned LocNo = i-1; 981 MachineOperand &Loc = locations[LocNo]; 982 // Only virtual registers are rewritten. 983 if (!Loc.isReg() || !Loc.getReg() || 984 !TargetRegisterInfo::isVirtualRegister(Loc.getReg())) 985 continue; 986 unsigned VirtReg = Loc.getReg(); 987 if (VRM.isAssignedReg(VirtReg) && 988 TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) { 989 // This can create a %noreg operand in rare cases when the sub-register 990 // index is no longer available. That means the user value is in a 991 // non-existent sub-register, and %noreg is exactly what we want. 992 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 993 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 994 // FIXME: Translate SubIdx to a stackslot offset. 995 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 996 } else { 997 Loc.setReg(0); 998 Loc.setSubReg(0); 999 } 1000 coalesceLocation(LocNo); 1001 } 1002 } 1003 1004 /// findInsertLocation - Find an iterator for inserting a DBG_VALUE 1005 /// instruction. 1006 static MachineBasicBlock::iterator 1007 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, 1008 LiveIntervals &LIS) { 1009 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1010 Idx = Idx.getBaseIndex(); 1011 1012 // Try to find an insert location by going backwards from Idx. 1013 MachineInstr *MI; 1014 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1015 // We've reached the beginning of MBB. 1016 if (Idx == Start) { 1017 MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 1018 return I; 1019 } 1020 Idx = Idx.getPrevIndex(); 1021 } 1022 1023 // Don't insert anything after the first terminator, though. 1024 return MI->isTerminator() ? MBB->getFirstTerminator() : 1025 std::next(MachineBasicBlock::iterator(MI)); 1026 } 1027 1028 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx, 1029 unsigned LocNo, 1030 LiveIntervals &LIS, 1031 const TargetInstrInfo &TII) { 1032 MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS); 1033 MachineOperand &Loc = locations[LocNo]; 1034 ++NumInsertedDebugValues; 1035 1036 assert(cast<DILocalVariable>(Variable) 1037 ->isValidLocationForIntrinsic(getDebugLoc()) && 1038 "Expected inlined-at fields to agree"); 1039 if (Loc.isReg()) 1040 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE), 1041 IsIndirect, Loc.getReg(), Variable, Expression); 1042 else 1043 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE)) 1044 .add(Loc) 1045 .addImm(0U) 1046 .addMetadata(Variable) 1047 .addMetadata(Expression); 1048 } 1049 1050 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1051 const TargetInstrInfo &TII) { 1052 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1053 1054 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1055 SlotIndex Start = I.start(); 1056 SlotIndex Stop = I.stop(); 1057 unsigned LocNo = I.value(); 1058 1059 // If the interval start was trimmed to the lexical scope insert the 1060 // DBG_VALUE at the previous index (otherwise it appears after the 1061 // first instruction in the range). 1062 if (trimmedDefs.count(Start)) 1063 Start = Start.getPrevIndex(); 1064 1065 DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << LocNo); 1066 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1067 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1068 1069 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd); 1070 insertDebugValue(&*MBB, Start, LocNo, LIS, TII); 1071 // This interval may span multiple basic blocks. 1072 // Insert a DBG_VALUE into each one. 1073 while(Stop > MBBEnd) { 1074 // Move to the next block. 1075 Start = MBBEnd; 1076 if (++MBB == MFEnd) 1077 break; 1078 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1079 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd); 1080 insertDebugValue(&*MBB, Start, LocNo, LIS, TII); 1081 } 1082 DEBUG(dbgs() << '\n'); 1083 if (MBB == MFEnd) 1084 break; 1085 1086 ++I; 1087 } 1088 } 1089 1090 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1091 DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1092 if (!MF) 1093 return; 1094 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1095 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 1096 DEBUG(userValues[i]->print(dbgs(), TRI)); 1097 userValues[i]->rewriteLocations(*VRM, *TRI); 1098 userValues[i]->emitDebugValues(VRM, *LIS, *TII); 1099 } 1100 EmitDone = true; 1101 } 1102 1103 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1104 if (pImpl) 1105 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1106 } 1107 1108 bool LiveDebugVariables::doInitialization(Module &M) { 1109 return Pass::doInitialization(M); 1110 } 1111 1112 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1113 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { 1114 if (pImpl) 1115 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1116 } 1117 #endif 1118