1 //===- LiveDebugValues.cpp - Tracking Debug Value MIs ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file LiveDebugValues.cpp 10 /// 11 /// LiveDebugValues is an optimistic "available expressions" dataflow 12 /// algorithm. The set of expressions is the set of machine locations 13 /// (registers, spill slots, constants) that a variable fragment might be 14 /// located, qualified by a DIExpression and indirect-ness flag, while each 15 /// variable is identified by a DebugVariable object. The availability of an 16 /// expression begins when a DBG_VALUE instruction specifies the location of a 17 /// DebugVariable, and continues until that location is clobbered or 18 /// re-specified by a different DBG_VALUE for the same DebugVariable. 19 /// 20 /// The cannonical "available expressions" problem doesn't have expression 21 /// clobbering, instead when a variable is re-assigned, any expressions using 22 /// that variable get invalidated. LiveDebugValues can map onto "available 23 /// expressions" by having every register represented by a variable, which is 24 /// used in an expression that becomes available at a DBG_VALUE instruction. 25 /// When the register is clobbered, its variable is effectively reassigned, and 26 /// expressions computed from it become unavailable. A similar construct is 27 /// needed when a DebugVariable has its location re-specified, to invalidate 28 /// all other locations for that DebugVariable. 29 /// 30 /// Using the dataflow analysis to compute the available expressions, we create 31 /// a DBG_VALUE at the beginning of each block where the expression is 32 /// live-in. This propagates variable locations into every basic block where 33 /// the location can be determined, rather than only having DBG_VALUEs in blocks 34 /// where locations are specified due to an assignment or some optimization. 35 /// Movements of values between registers and spill slots are annotated with 36 /// DBG_VALUEs too to track variable values bewteen locations. All this allows 37 /// DbgEntityHistoryCalculator to focus on only the locations within individual 38 /// blocks, facilitating testing and improving modularity. 39 /// 40 /// We follow an optimisic dataflow approach, with this lattice: 41 /// 42 /// \verbatim 43 /// ┬ "Unknown" 44 /// | 45 /// v 46 /// True 47 /// | 48 /// v 49 /// ⊥ False 50 /// \endverbatim With "True" signifying that the expression is available (and 51 /// thus a DebugVariable's location is the corresponding register), while 52 /// "False" signifies that the expression is unavailable. "Unknown"s never 53 /// survive to the end of the analysis (see below). 54 /// 55 /// Formally, all DebugVariable locations that are live-out of a block are 56 /// initialized to \top. A blocks live-in values take the meet of the lattice 57 /// value for every predecessors live-outs, except for the entry block, where 58 /// all live-ins are \bot. The usual dataflow propagation occurs: the transfer 59 /// function for a block assigns an expression for a DebugVariable to be "True" 60 /// if a DBG_VALUE in the block specifies it; "False" if the location is 61 /// clobbered; or the live-in value if it is unaffected by the block. We 62 /// visit each block in reverse post order until a fixedpoint is reached. The 63 /// solution produced is maximal. 64 /// 65 /// Intuitively, we start by assuming that every expression / variable location 66 /// is at least "True", and then propagate "False" from the entry block and any 67 /// clobbers until there are no more changes to make. This gives us an accurate 68 /// solution because all incorrect locations will have a "False" propagated into 69 /// them. It also gives us a solution that copes well with loops by assuming 70 /// that variable locations are live-through every loop, and then removing those 71 /// that are not through dataflow. 72 /// 73 /// Within LiveDebugValues: each variable location is represented by a 74 /// VarLoc object that identifies the source variable, its current 75 /// machine-location, and the DBG_VALUE inst that specifies the location. Each 76 /// VarLoc is indexed in the (function-scope) \p VarLocMap, giving each VarLoc a 77 /// unique index. Rather than operate directly on machine locations, the 78 /// dataflow analysis in this pass identifies locations by their index in the 79 /// VarLocMap, meaning all the variable locations in a block can be described 80 /// by a sparse vector of VarLocMap indicies. 81 /// 82 /// All the storage for the dataflow analysis is local to the ExtendRanges 83 /// method and passed down to helper methods. "OutLocs" and "InLocs" record the 84 /// in and out lattice values for each block. "OpenRanges" maintains a list of 85 /// variable locations and, with the "process" method, evaluates the transfer 86 /// function of each block. "flushPendingLocs" installs DBG_VALUEs for each 87 /// live-in location at the start of blocks, while "Transfers" records 88 /// transfers of values between machine-locations. 89 /// 90 /// We avoid explicitly representing the "Unknown" (\top) lattice value in the 91 /// implementation. Instead, unvisited blocks implicitly have all lattice 92 /// values set as "Unknown". After being visited, there will be path back to 93 /// the entry block where the lattice value is "False", and as the transfer 94 /// function cannot make new "Unknown" locations, there are no scenarios where 95 /// a block can have an "Unknown" location after being visited. Similarly, we 96 /// don't enumerate all possible variable locations before exploring the 97 /// function: when a new location is discovered, all blocks previously explored 98 /// were implicitly "False" but unrecorded, and become explicitly "False" when 99 /// a new VarLoc is created with its bit not set in predecessor InLocs or 100 /// OutLocs. 101 /// 102 //===----------------------------------------------------------------------===// 103 104 #include "llvm/ADT/CoalescingBitVector.h" 105 #include "llvm/ADT/DenseMap.h" 106 #include "llvm/ADT/PostOrderIterator.h" 107 #include "llvm/ADT/SmallPtrSet.h" 108 #include "llvm/ADT/SmallSet.h" 109 #include "llvm/ADT/SmallVector.h" 110 #include "llvm/ADT/Statistic.h" 111 #include "llvm/ADT/UniqueVector.h" 112 #include "llvm/CodeGen/LexicalScopes.h" 113 #include "llvm/CodeGen/MachineBasicBlock.h" 114 #include "llvm/CodeGen/MachineFrameInfo.h" 115 #include "llvm/CodeGen/MachineFunction.h" 116 #include "llvm/CodeGen/MachineFunctionPass.h" 117 #include "llvm/CodeGen/MachineInstr.h" 118 #include "llvm/CodeGen/MachineInstrBuilder.h" 119 #include "llvm/CodeGen/MachineMemOperand.h" 120 #include "llvm/CodeGen/MachineOperand.h" 121 #include "llvm/CodeGen/PseudoSourceValue.h" 122 #include "llvm/CodeGen/RegisterScavenging.h" 123 #include "llvm/CodeGen/TargetFrameLowering.h" 124 #include "llvm/CodeGen/TargetInstrInfo.h" 125 #include "llvm/CodeGen/TargetLowering.h" 126 #include "llvm/CodeGen/TargetPassConfig.h" 127 #include "llvm/CodeGen/TargetRegisterInfo.h" 128 #include "llvm/CodeGen/TargetSubtargetInfo.h" 129 #include "llvm/Config/llvm-config.h" 130 #include "llvm/IR/DIBuilder.h" 131 #include "llvm/IR/DebugInfoMetadata.h" 132 #include "llvm/IR/DebugLoc.h" 133 #include "llvm/IR/Function.h" 134 #include "llvm/IR/Module.h" 135 #include "llvm/InitializePasses.h" 136 #include "llvm/MC/MCRegisterInfo.h" 137 #include "llvm/Pass.h" 138 #include "llvm/Support/Casting.h" 139 #include "llvm/Support/Compiler.h" 140 #include "llvm/Support/Debug.h" 141 #include "llvm/Support/raw_ostream.h" 142 #include "llvm/Target/TargetMachine.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <functional> 147 #include <queue> 148 #include <tuple> 149 #include <utility> 150 #include <vector> 151 152 using namespace llvm; 153 154 #define DEBUG_TYPE "livedebugvalues" 155 156 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); 157 158 // Options to prevent pathological compile-time behavior. If InputBBLimit and 159 // InputDbgValueLimit are both exceeded, range extension is disabled. 160 static cl::opt<unsigned> InputBBLimit( 161 "livedebugvalues-input-bb-limit", 162 cl::desc("Maximum input basic blocks before DBG_VALUE limit applies"), 163 cl::init(10000), cl::Hidden); 164 static cl::opt<unsigned> InputDbgValueLimit( 165 "livedebugvalues-input-dbg-value-limit", 166 cl::desc( 167 "Maximum input DBG_VALUE insts supported by debug range extension"), 168 cl::init(50000), cl::Hidden); 169 170 // If @MI is a DBG_VALUE with debug value described by a defined 171 // register, returns the number of this register. In the other case, returns 0. 172 static Register isDbgValueDescribedByReg(const MachineInstr &MI) { 173 assert(MI.isDebugValue() && "expected a DBG_VALUE"); 174 assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE"); 175 // If location of variable is described using a register (directly 176 // or indirectly), this register is always a first operand. 177 return MI.getDebugOperand(0).isReg() ? MI.getDebugOperand(0).getReg() 178 : Register(); 179 } 180 181 /// If \p Op is a stack or frame register return true, otherwise return false. 182 /// This is used to avoid basing the debug entry values on the registers, since 183 /// we do not support it at the moment. 184 static bool isRegOtherThanSPAndFP(const MachineOperand &Op, 185 const MachineInstr &MI, 186 const TargetRegisterInfo *TRI) { 187 if (!Op.isReg()) 188 return false; 189 190 const MachineFunction *MF = MI.getParent()->getParent(); 191 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 192 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 193 Register FP = TRI->getFrameRegister(*MF); 194 Register Reg = Op.getReg(); 195 196 return Reg && Reg != SP && Reg != FP; 197 } 198 199 namespace { 200 201 // Max out the number of statically allocated elements in DefinedRegsSet, as 202 // this prevents fallback to std::set::count() operations. 203 using DefinedRegsSet = SmallSet<Register, 32>; 204 205 using VarLocSet = CoalescingBitVector<uint64_t>; 206 207 /// A type-checked pair of {Register Location (or 0), Index}, used to index 208 /// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int 209 /// for insertion into a \ref VarLocSet, and efficiently converted back. The 210 /// type-checker helps ensure that the conversions aren't lossy. 211 /// 212 /// Why encode a location /into/ the VarLocMap index? This makes it possible 213 /// to find the open VarLocs killed by a register def very quickly. This is a 214 /// performance-critical operation for LiveDebugValues. 215 struct LocIndex { 216 using u32_location_t = uint32_t; 217 using u32_index_t = uint32_t; 218 219 u32_location_t Location; // Physical registers live in the range [1;2^30) (see 220 // \ref MCRegister), so we have plenty of range left 221 // here to encode non-register locations. 222 u32_index_t Index; 223 224 /// The first location greater than 0 that is not reserved for VarLocs of 225 /// kind RegisterKind. 226 static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30; 227 228 /// A special location reserved for VarLocs of kind SpillLocKind. 229 static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation; 230 231 /// A special location reserved for VarLocs of kind EntryValueBackupKind and 232 /// EntryValueCopyBackupKind. 233 static constexpr u32_location_t kEntryValueBackupLocation = 234 kFirstInvalidRegLocation + 1; 235 236 LocIndex(u32_location_t Location, u32_index_t Index) 237 : Location(Location), Index(Index) {} 238 239 uint64_t getAsRawInteger() const { 240 return (static_cast<uint64_t>(Location) << 32) | Index; 241 } 242 243 template<typename IntT> static LocIndex fromRawInteger(IntT ID) { 244 static_assert(std::is_unsigned<IntT>::value && 245 sizeof(ID) == sizeof(uint64_t), 246 "Cannot convert raw integer to LocIndex"); 247 return {static_cast<u32_location_t>(ID >> 32), 248 static_cast<u32_index_t>(ID)}; 249 } 250 251 /// Get the start of the interval reserved for VarLocs of kind RegisterKind 252 /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1. 253 static uint64_t rawIndexForReg(uint32_t Reg) { 254 return LocIndex(Reg, 0).getAsRawInteger(); 255 } 256 257 /// Return a range covering all set indices in the interval reserved for 258 /// \p Location in \p Set. 259 static auto indexRangeForLocation(const VarLocSet &Set, 260 u32_location_t Location) { 261 uint64_t Start = LocIndex(Location, 0).getAsRawInteger(); 262 uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger(); 263 return Set.half_open_range(Start, End); 264 } 265 }; 266 267 class LiveDebugValues : public MachineFunctionPass { 268 private: 269 const TargetRegisterInfo *TRI; 270 const TargetInstrInfo *TII; 271 const TargetFrameLowering *TFI; 272 BitVector CalleeSavedRegs; 273 LexicalScopes LS; 274 VarLocSet::Allocator Alloc; 275 276 enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore }; 277 278 using FragmentInfo = DIExpression::FragmentInfo; 279 using OptFragmentInfo = Optional<DIExpression::FragmentInfo>; 280 281 /// A pair of debug variable and value location. 282 struct VarLoc { 283 // The location at which a spilled variable resides. It consists of a 284 // register and an offset. 285 struct SpillLoc { 286 unsigned SpillBase; 287 int SpillOffset; 288 bool operator==(const SpillLoc &Other) const { 289 return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset; 290 } 291 bool operator!=(const SpillLoc &Other) const { 292 return !(*this == Other); 293 } 294 }; 295 296 /// Identity of the variable at this location. 297 const DebugVariable Var; 298 299 /// The expression applied to this location. 300 const DIExpression *Expr; 301 302 /// DBG_VALUE to clone var/expr information from if this location 303 /// is moved. 304 const MachineInstr &MI; 305 306 enum VarLocKind { 307 InvalidKind = 0, 308 RegisterKind, 309 SpillLocKind, 310 ImmediateKind, 311 EntryValueKind, 312 EntryValueBackupKind, 313 EntryValueCopyBackupKind 314 } Kind = InvalidKind; 315 316 /// The value location. Stored separately to avoid repeatedly 317 /// extracting it from MI. 318 union { 319 uint64_t RegNo; 320 SpillLoc SpillLocation; 321 uint64_t Hash; 322 int64_t Immediate; 323 const ConstantFP *FPImm; 324 const ConstantInt *CImm; 325 } Loc; 326 327 VarLoc(const MachineInstr &MI, LexicalScopes &LS) 328 : Var(MI.getDebugVariable(), MI.getDebugExpression(), 329 MI.getDebugLoc()->getInlinedAt()), 330 Expr(MI.getDebugExpression()), MI(MI) { 331 static_assert((sizeof(Loc) == sizeof(uint64_t)), 332 "hash does not cover all members of Loc"); 333 assert(MI.isDebugValue() && "not a DBG_VALUE"); 334 assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE"); 335 if (int RegNo = isDbgValueDescribedByReg(MI)) { 336 Kind = RegisterKind; 337 Loc.RegNo = RegNo; 338 } else if (MI.getDebugOperand(0).isImm()) { 339 Kind = ImmediateKind; 340 Loc.Immediate = MI.getDebugOperand(0).getImm(); 341 } else if (MI.getDebugOperand(0).isFPImm()) { 342 Kind = ImmediateKind; 343 Loc.FPImm = MI.getDebugOperand(0).getFPImm(); 344 } else if (MI.getDebugOperand(0).isCImm()) { 345 Kind = ImmediateKind; 346 Loc.CImm = MI.getDebugOperand(0).getCImm(); 347 } 348 349 // We create the debug entry values from the factory functions rather than 350 // from this ctor. 351 assert(Kind != EntryValueKind && !isEntryBackupLoc()); 352 } 353 354 /// Take the variable and machine-location in DBG_VALUE MI, and build an 355 /// entry location using the given expression. 356 static VarLoc CreateEntryLoc(const MachineInstr &MI, LexicalScopes &LS, 357 const DIExpression *EntryExpr, Register Reg) { 358 VarLoc VL(MI, LS); 359 assert(VL.Kind == RegisterKind); 360 VL.Kind = EntryValueKind; 361 VL.Expr = EntryExpr; 362 VL.Loc.RegNo = Reg; 363 return VL; 364 } 365 366 /// Take the variable and machine-location from the DBG_VALUE (from the 367 /// function entry), and build an entry value backup location. The backup 368 /// location will turn into the normal location if the backup is valid at 369 /// the time of the primary location clobbering. 370 static VarLoc CreateEntryBackupLoc(const MachineInstr &MI, 371 LexicalScopes &LS, 372 const DIExpression *EntryExpr) { 373 VarLoc VL(MI, LS); 374 assert(VL.Kind == RegisterKind); 375 VL.Kind = EntryValueBackupKind; 376 VL.Expr = EntryExpr; 377 return VL; 378 } 379 380 /// Take the variable and machine-location from the DBG_VALUE (from the 381 /// function entry), and build a copy of an entry value backup location by 382 /// setting the register location to NewReg. 383 static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI, 384 LexicalScopes &LS, 385 const DIExpression *EntryExpr, 386 Register NewReg) { 387 VarLoc VL(MI, LS); 388 assert(VL.Kind == RegisterKind); 389 VL.Kind = EntryValueCopyBackupKind; 390 VL.Expr = EntryExpr; 391 VL.Loc.RegNo = NewReg; 392 return VL; 393 } 394 395 /// Copy the register location in DBG_VALUE MI, updating the register to 396 /// be NewReg. 397 static VarLoc CreateCopyLoc(const MachineInstr &MI, LexicalScopes &LS, 398 Register NewReg) { 399 VarLoc VL(MI, LS); 400 assert(VL.Kind == RegisterKind); 401 VL.Loc.RegNo = NewReg; 402 return VL; 403 } 404 405 /// Take the variable described by DBG_VALUE MI, and create a VarLoc 406 /// locating it in the specified spill location. 407 static VarLoc CreateSpillLoc(const MachineInstr &MI, unsigned SpillBase, 408 int SpillOffset, LexicalScopes &LS) { 409 VarLoc VL(MI, LS); 410 assert(VL.Kind == RegisterKind); 411 VL.Kind = SpillLocKind; 412 VL.Loc.SpillLocation = {SpillBase, SpillOffset}; 413 return VL; 414 } 415 416 /// Create a DBG_VALUE representing this VarLoc in the given function. 417 /// Copies variable-specific information such as DILocalVariable and 418 /// inlining information from the original DBG_VALUE instruction, which may 419 /// have been several transfers ago. 420 MachineInstr *BuildDbgValue(MachineFunction &MF) const { 421 const DebugLoc &DbgLoc = MI.getDebugLoc(); 422 bool Indirect = MI.isIndirectDebugValue(); 423 const auto &IID = MI.getDesc(); 424 const DILocalVariable *Var = MI.getDebugVariable(); 425 const DIExpression *DIExpr = MI.getDebugExpression(); 426 NumInserted++; 427 428 switch (Kind) { 429 case EntryValueKind: 430 // An entry value is a register location -- but with an updated 431 // expression. The register location of such DBG_VALUE is always the one 432 // from the entry DBG_VALUE, it does not matter if the entry value was 433 // copied in to another register due to some optimizations. 434 return BuildMI(MF, DbgLoc, IID, Indirect, 435 MI.getDebugOperand(0).getReg(), Var, Expr); 436 case RegisterKind: 437 // Register locations are like the source DBG_VALUE, but with the 438 // register number from this VarLoc. 439 return BuildMI(MF, DbgLoc, IID, Indirect, Loc.RegNo, Var, DIExpr); 440 case SpillLocKind: { 441 // Spills are indirect DBG_VALUEs, with a base register and offset. 442 // Use the original DBG_VALUEs expression to build the spilt location 443 // on top of. FIXME: spill locations created before this pass runs 444 // are not recognized, and not handled here. 445 auto *SpillExpr = DIExpression::prepend( 446 DIExpr, DIExpression::ApplyOffset, Loc.SpillLocation.SpillOffset); 447 unsigned Base = Loc.SpillLocation.SpillBase; 448 return BuildMI(MF, DbgLoc, IID, true, Base, Var, SpillExpr); 449 } 450 case ImmediateKind: { 451 MachineOperand MO = MI.getDebugOperand(0); 452 return BuildMI(MF, DbgLoc, IID, Indirect, MO, Var, DIExpr); 453 } 454 case EntryValueBackupKind: 455 case EntryValueCopyBackupKind: 456 case InvalidKind: 457 llvm_unreachable( 458 "Tried to produce DBG_VALUE for invalid or backup VarLoc"); 459 } 460 llvm_unreachable("Unrecognized LiveDebugValues.VarLoc.Kind enum"); 461 } 462 463 /// Is the Loc field a constant or constant object? 464 bool isConstant() const { return Kind == ImmediateKind; } 465 466 /// Check if the Loc field is an entry backup location. 467 bool isEntryBackupLoc() const { 468 return Kind == EntryValueBackupKind || Kind == EntryValueCopyBackupKind; 469 } 470 471 /// If this variable is described by a register holding the entry value, 472 /// return it, otherwise return 0. 473 unsigned getEntryValueBackupReg() const { 474 if (Kind == EntryValueBackupKind) 475 return Loc.RegNo; 476 return 0; 477 } 478 479 /// If this variable is described by a register holding the copy of the 480 /// entry value, return it, otherwise return 0. 481 unsigned getEntryValueCopyBackupReg() const { 482 if (Kind == EntryValueCopyBackupKind) 483 return Loc.RegNo; 484 return 0; 485 } 486 487 /// If this variable is described by a register, return it, 488 /// otherwise return 0. 489 unsigned isDescribedByReg() const { 490 if (Kind == RegisterKind) 491 return Loc.RegNo; 492 return 0; 493 } 494 495 /// Determine whether the lexical scope of this value's debug location 496 /// dominates MBB. 497 bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const { 498 return LS.dominates(MI.getDebugLoc().get(), &MBB); 499 } 500 501 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 502 // TRI can be null. 503 void dump(const TargetRegisterInfo *TRI, raw_ostream &Out = dbgs()) const { 504 Out << "VarLoc("; 505 switch (Kind) { 506 case RegisterKind: 507 case EntryValueKind: 508 case EntryValueBackupKind: 509 case EntryValueCopyBackupKind: 510 Out << printReg(Loc.RegNo, TRI); 511 break; 512 case SpillLocKind: 513 Out << printReg(Loc.SpillLocation.SpillBase, TRI); 514 Out << "[" << Loc.SpillLocation.SpillOffset << "]"; 515 break; 516 case ImmediateKind: 517 Out << Loc.Immediate; 518 break; 519 case InvalidKind: 520 llvm_unreachable("Invalid VarLoc in dump method"); 521 } 522 523 Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", "; 524 if (Var.getInlinedAt()) 525 Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n"; 526 else 527 Out << "(null))"; 528 529 if (isEntryBackupLoc()) 530 Out << " (backup loc)\n"; 531 else 532 Out << "\n"; 533 } 534 #endif 535 536 bool operator==(const VarLoc &Other) const { 537 return Kind == Other.Kind && Var == Other.Var && 538 Loc.Hash == Other.Loc.Hash && Expr == Other.Expr; 539 } 540 541 /// This operator guarantees that VarLocs are sorted by Variable first. 542 bool operator<(const VarLoc &Other) const { 543 return std::tie(Var, Kind, Loc.Hash, Expr) < 544 std::tie(Other.Var, Other.Kind, Other.Loc.Hash, Other.Expr); 545 } 546 }; 547 548 /// VarLocMap is used for two things: 549 /// 1) Assigning a unique LocIndex to a VarLoc. This LocIndex can be used to 550 /// virtually insert a VarLoc into a VarLocSet. 551 /// 2) Given a LocIndex, look up the unique associated VarLoc. 552 class VarLocMap { 553 /// Map a VarLoc to an index within the vector reserved for its location 554 /// within Loc2Vars. 555 std::map<VarLoc, LocIndex::u32_index_t> Var2Index; 556 557 /// Map a location to a vector which holds VarLocs which live in that 558 /// location. 559 SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars; 560 561 /// Determine the 32-bit location reserved for \p VL, based on its kind. 562 static LocIndex::u32_location_t getLocationForVar(const VarLoc &VL) { 563 switch (VL.Kind) { 564 case VarLoc::RegisterKind: 565 assert((VL.Loc.RegNo < LocIndex::kFirstInvalidRegLocation) && 566 "Physreg out of range?"); 567 return VL.Loc.RegNo; 568 case VarLoc::SpillLocKind: 569 return LocIndex::kSpillLocation; 570 case VarLoc::EntryValueBackupKind: 571 case VarLoc::EntryValueCopyBackupKind: 572 return LocIndex::kEntryValueBackupLocation; 573 default: 574 return 0; 575 } 576 } 577 578 public: 579 /// Retrieve a unique LocIndex for \p VL. 580 LocIndex insert(const VarLoc &VL) { 581 LocIndex::u32_location_t Location = getLocationForVar(VL); 582 LocIndex::u32_index_t &Index = Var2Index[VL]; 583 if (!Index) { 584 auto &Vars = Loc2Vars[Location]; 585 Vars.push_back(VL); 586 Index = Vars.size(); 587 } 588 return {Location, Index - 1}; 589 } 590 591 /// Retrieve the unique VarLoc associated with \p ID. 592 const VarLoc &operator[](LocIndex ID) const { 593 auto LocIt = Loc2Vars.find(ID.Location); 594 assert(LocIt != Loc2Vars.end() && "Location not tracked"); 595 return LocIt->second[ID.Index]; 596 } 597 }; 598 599 using VarLocInMBB = 600 SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>; 601 struct TransferDebugPair { 602 MachineInstr *TransferInst; ///< Instruction where this transfer occurs. 603 LocIndex LocationID; ///< Location number for the transfer dest. 604 }; 605 using TransferMap = SmallVector<TransferDebugPair, 4>; 606 607 // Types for recording sets of variable fragments that overlap. For a given 608 // local variable, we record all other fragments of that variable that could 609 // overlap it, to reduce search time. 610 using FragmentOfVar = 611 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; 612 using OverlapMap = 613 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; 614 615 // Helper while building OverlapMap, a map of all fragments seen for a given 616 // DILocalVariable. 617 using VarToFragments = 618 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; 619 620 /// This holds the working set of currently open ranges. For fast 621 /// access, this is done both as a set of VarLocIDs, and a map of 622 /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all 623 /// previous open ranges for the same variable. In addition, we keep 624 /// two different maps (Vars/EntryValuesBackupVars), so erase/insert 625 /// methods act differently depending on whether a VarLoc is primary 626 /// location or backup one. In the case the VarLoc is backup location 627 /// we will erase/insert from the EntryValuesBackupVars map, otherwise 628 /// we perform the operation on the Vars. 629 class OpenRangesSet { 630 VarLocSet VarLocs; 631 // Map the DebugVariable to recent primary location ID. 632 SmallDenseMap<DebugVariable, LocIndex, 8> Vars; 633 // Map the DebugVariable to recent backup location ID. 634 SmallDenseMap<DebugVariable, LocIndex, 8> EntryValuesBackupVars; 635 OverlapMap &OverlappingFragments; 636 637 public: 638 OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap) 639 : VarLocs(Alloc), OverlappingFragments(_OLapMap) {} 640 641 const VarLocSet &getVarLocs() const { return VarLocs; } 642 643 /// Terminate all open ranges for VL.Var by removing it from the set. 644 void erase(const VarLoc &VL); 645 646 /// Terminate all open ranges listed in \c KillSet by removing 647 /// them from the set. 648 void erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs); 649 650 /// Insert a new range into the set. 651 void insert(LocIndex VarLocID, const VarLoc &VL); 652 653 /// Insert a set of ranges. 654 void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map) { 655 for (uint64_t ID : ToLoad) { 656 LocIndex Idx = LocIndex::fromRawInteger(ID); 657 const VarLoc &VarL = Map[Idx]; 658 insert(Idx, VarL); 659 } 660 } 661 662 llvm::Optional<LocIndex> getEntryValueBackup(DebugVariable Var); 663 664 /// Empty the set. 665 void clear() { 666 VarLocs.clear(); 667 Vars.clear(); 668 EntryValuesBackupVars.clear(); 669 } 670 671 /// Return whether the set is empty or not. 672 bool empty() const { 673 assert(Vars.empty() == EntryValuesBackupVars.empty() && 674 Vars.empty() == VarLocs.empty() && 675 "open ranges are inconsistent"); 676 return VarLocs.empty(); 677 } 678 679 /// Get an empty range of VarLoc IDs. 680 auto getEmptyVarLocRange() const { 681 return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(), 682 getVarLocs().end()); 683 } 684 685 /// Get all set IDs for VarLocs of kind RegisterKind in \p Reg. 686 auto getRegisterVarLocs(Register Reg) const { 687 return LocIndex::indexRangeForLocation(getVarLocs(), Reg); 688 } 689 690 /// Get all set IDs for VarLocs of kind SpillLocKind. 691 auto getSpillVarLocs() const { 692 return LocIndex::indexRangeForLocation(getVarLocs(), 693 LocIndex::kSpillLocation); 694 } 695 696 /// Get all set IDs for VarLocs of kind EntryValueBackupKind or 697 /// EntryValueCopyBackupKind. 698 auto getEntryValueBackupVarLocs() const { 699 return LocIndex::indexRangeForLocation( 700 getVarLocs(), LocIndex::kEntryValueBackupLocation); 701 } 702 }; 703 704 /// Collect all VarLoc IDs from \p CollectFrom for VarLocs of kind 705 /// RegisterKind which are located in any reg in \p Regs. Insert collected IDs 706 /// into \p Collected. 707 void collectIDsForRegs(VarLocSet &Collected, const DefinedRegsSet &Regs, 708 const VarLocSet &CollectFrom) const; 709 710 /// Get the registers which are used by VarLocs of kind RegisterKind tracked 711 /// by \p CollectFrom. 712 void getUsedRegs(const VarLocSet &CollectFrom, 713 SmallVectorImpl<uint32_t> &UsedRegs) const; 714 715 VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) { 716 std::unique_ptr<VarLocSet> &VLS = Locs[MBB]; 717 if (!VLS) 718 VLS = std::make_unique<VarLocSet>(Alloc); 719 return *VLS.get(); 720 } 721 722 const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, 723 const VarLocInMBB &Locs) const { 724 auto It = Locs.find(MBB); 725 assert(It != Locs.end() && "MBB not in map"); 726 return *It->second.get(); 727 } 728 729 /// Tests whether this instruction is a spill to a stack location. 730 bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); 731 732 /// Decide if @MI is a spill instruction and return true if it is. We use 2 733 /// criteria to make this decision: 734 /// - Is this instruction a store to a spill slot? 735 /// - Is there a register operand that is both used and killed? 736 /// TODO: Store optimization can fold spills into other stores (including 737 /// other spills). We do not handle this yet (more than one memory operand). 738 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, 739 Register &Reg); 740 741 /// Returns true if the given machine instruction is a debug value which we 742 /// can emit entry values for. 743 /// 744 /// Currently, we generate debug entry values only for parameters that are 745 /// unmodified throughout the function and located in a register. 746 bool isEntryValueCandidate(const MachineInstr &MI, 747 const DefinedRegsSet &Regs) const; 748 749 /// If a given instruction is identified as a spill, return the spill location 750 /// and set \p Reg to the spilled register. 751 Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI, 752 MachineFunction *MF, 753 Register &Reg); 754 /// Given a spill instruction, extract the register and offset used to 755 /// address the spill location in a target independent way. 756 VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); 757 void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges, 758 TransferMap &Transfers, VarLocMap &VarLocIDs, 759 LocIndex OldVarID, TransferKind Kind, 760 Register NewReg = Register()); 761 762 void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, 763 VarLocMap &VarLocIDs); 764 void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges, 765 VarLocMap &VarLocIDs, TransferMap &Transfers); 766 bool removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, 767 VarLocMap &VarLocIDs, const VarLoc &EntryVL); 768 void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges, 769 VarLocMap &VarLocIDs, TransferMap &Transfers, 770 VarLocSet &KillSet); 771 void recordEntryValue(const MachineInstr &MI, 772 const DefinedRegsSet &DefinedRegs, 773 OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs); 774 void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges, 775 VarLocMap &VarLocIDs, TransferMap &Transfers); 776 void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges, 777 VarLocMap &VarLocIDs, TransferMap &Transfers); 778 bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges, 779 VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs); 780 781 void process(MachineInstr &MI, OpenRangesSet &OpenRanges, 782 VarLocMap &VarLocIDs, TransferMap &Transfers); 783 784 void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments, 785 OverlapMap &OLapMap); 786 787 bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, 788 const VarLocMap &VarLocIDs, 789 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 790 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks); 791 792 /// Create DBG_VALUE insts for inlocs that have been propagated but 793 /// had their instruction creation deferred. 794 void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs); 795 796 bool ExtendRanges(MachineFunction &MF); 797 798 public: 799 static char ID; 800 801 /// Default construct and initialize the pass. 802 LiveDebugValues(); 803 804 /// Tell the pass manager which passes we depend on and what 805 /// information we preserve. 806 void getAnalysisUsage(AnalysisUsage &AU) const override; 807 808 MachineFunctionProperties getRequiredProperties() const override { 809 return MachineFunctionProperties().set( 810 MachineFunctionProperties::Property::NoVRegs); 811 } 812 813 /// Print to ostream with a message. 814 void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V, 815 const VarLocMap &VarLocIDs, const char *msg, 816 raw_ostream &Out) const; 817 818 /// Calculate the liveness information for the given machine function. 819 bool runOnMachineFunction(MachineFunction &MF) override; 820 }; 821 822 } // end anonymous namespace 823 824 //===----------------------------------------------------------------------===// 825 // Implementation 826 //===----------------------------------------------------------------------===// 827 828 char LiveDebugValues::ID = 0; 829 830 char &llvm::LiveDebugValuesID = LiveDebugValues::ID; 831 832 INITIALIZE_PASS(LiveDebugValues, DEBUG_TYPE, "Live DEBUG_VALUE analysis", 833 false, false) 834 835 /// Default construct and initialize the pass. 836 LiveDebugValues::LiveDebugValues() : MachineFunctionPass(ID) { 837 initializeLiveDebugValuesPass(*PassRegistry::getPassRegistry()); 838 } 839 840 /// Tell the pass manager which passes we depend on and what information we 841 /// preserve. 842 void LiveDebugValues::getAnalysisUsage(AnalysisUsage &AU) const { 843 AU.setPreservesCFG(); 844 MachineFunctionPass::getAnalysisUsage(AU); 845 } 846 847 /// Erase a variable from the set of open ranges, and additionally erase any 848 /// fragments that may overlap it. If the VarLoc is a buckup location, erase 849 /// the variable from the EntryValuesBackupVars set, indicating we should stop 850 /// tracking its backup entry location. Otherwise, if the VarLoc is primary 851 /// location, erase the variable from the Vars set. 852 void LiveDebugValues::OpenRangesSet::erase(const VarLoc &VL) { 853 // Erasure helper. 854 auto DoErase = [VL, this](DebugVariable VarToErase) { 855 auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 856 auto It = EraseFrom->find(VarToErase); 857 if (It != EraseFrom->end()) { 858 LocIndex ID = It->second; 859 VarLocs.reset(ID.getAsRawInteger()); 860 EraseFrom->erase(It); 861 } 862 }; 863 864 DebugVariable Var = VL.Var; 865 866 // Erase the variable/fragment that ends here. 867 DoErase(Var); 868 869 // Extract the fragment. Interpret an empty fragment as one that covers all 870 // possible bits. 871 FragmentInfo ThisFragment = Var.getFragmentOrDefault(); 872 873 // There may be fragments that overlap the designated fragment. Look them up 874 // in the pre-computed overlap map, and erase them too. 875 auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment}); 876 if (MapIt != OverlappingFragments.end()) { 877 for (auto Fragment : MapIt->second) { 878 LiveDebugValues::OptFragmentInfo FragmentHolder; 879 if (!DebugVariable::isDefaultFragment(Fragment)) 880 FragmentHolder = LiveDebugValues::OptFragmentInfo(Fragment); 881 DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()}); 882 } 883 } 884 } 885 886 void LiveDebugValues::OpenRangesSet::erase(const VarLocSet &KillSet, 887 const VarLocMap &VarLocIDs) { 888 VarLocs.intersectWithComplement(KillSet); 889 for (uint64_t ID : KillSet) { 890 const VarLoc *VL = &VarLocIDs[LocIndex::fromRawInteger(ID)]; 891 auto *EraseFrom = VL->isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 892 EraseFrom->erase(VL->Var); 893 } 894 } 895 896 void LiveDebugValues::OpenRangesSet::insert(LocIndex VarLocID, 897 const VarLoc &VL) { 898 auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 899 VarLocs.set(VarLocID.getAsRawInteger()); 900 InsertInto->insert({VL.Var, VarLocID}); 901 } 902 903 /// Return the Loc ID of an entry value backup location, if it exists for the 904 /// variable. 905 llvm::Optional<LocIndex> 906 LiveDebugValues::OpenRangesSet::getEntryValueBackup(DebugVariable Var) { 907 auto It = EntryValuesBackupVars.find(Var); 908 if (It != EntryValuesBackupVars.end()) 909 return It->second; 910 911 return llvm::None; 912 } 913 914 void LiveDebugValues::collectIDsForRegs(VarLocSet &Collected, 915 const DefinedRegsSet &Regs, 916 const VarLocSet &CollectFrom) const { 917 assert(!Regs.empty() && "Nothing to collect"); 918 SmallVector<uint32_t, 32> SortedRegs; 919 for (Register Reg : Regs) 920 SortedRegs.push_back(Reg); 921 array_pod_sort(SortedRegs.begin(), SortedRegs.end()); 922 auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front())); 923 auto End = CollectFrom.end(); 924 for (uint32_t Reg : SortedRegs) { 925 // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all 926 // possible VarLoc IDs for VarLocs of kind RegisterKind which live in Reg. 927 uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg); 928 uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1); 929 It.advanceToLowerBound(FirstIndexForReg); 930 931 // Iterate through that half-open interval and collect all the set IDs. 932 for (; It != End && *It < FirstInvalidIndex; ++It) 933 Collected.set(*It); 934 935 if (It == End) 936 return; 937 } 938 } 939 940 void LiveDebugValues::getUsedRegs(const VarLocSet &CollectFrom, 941 SmallVectorImpl<uint32_t> &UsedRegs) const { 942 // All register-based VarLocs are assigned indices greater than or equal to 943 // FirstRegIndex. 944 uint64_t FirstRegIndex = LocIndex::rawIndexForReg(1); 945 uint64_t FirstInvalidIndex = 946 LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation); 947 for (auto It = CollectFrom.find(FirstRegIndex), 948 End = CollectFrom.find(FirstInvalidIndex); 949 It != End;) { 950 // We found a VarLoc ID for a VarLoc that lives in a register. Figure out 951 // which register and add it to UsedRegs. 952 uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location; 953 assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) && 954 "Duplicate used reg"); 955 UsedRegs.push_back(FoundReg); 956 957 // Skip to the next /set/ register. Note that this finds a lower bound, so 958 // even if there aren't any VarLocs living in `FoundReg+1`, we're still 959 // guaranteed to move on to the next register (or to end()). 960 uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1); 961 It.advanceToLowerBound(NextRegIndex); 962 } 963 } 964 965 //===----------------------------------------------------------------------===// 966 // Debug Range Extension Implementation 967 //===----------------------------------------------------------------------===// 968 969 #ifndef NDEBUG 970 void LiveDebugValues::printVarLocInMBB(const MachineFunction &MF, 971 const VarLocInMBB &V, 972 const VarLocMap &VarLocIDs, 973 const char *msg, 974 raw_ostream &Out) const { 975 Out << '\n' << msg << '\n'; 976 for (const MachineBasicBlock &BB : MF) { 977 if (!V.count(&BB)) 978 continue; 979 const VarLocSet &L = getVarLocsInMBB(&BB, V); 980 if (L.empty()) 981 continue; 982 Out << "MBB: " << BB.getNumber() << ":\n"; 983 for (uint64_t VLL : L) { 984 const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(VLL)]; 985 Out << " Var: " << VL.Var.getVariable()->getName(); 986 Out << " MI: "; 987 VL.dump(TRI, Out); 988 } 989 } 990 Out << "\n"; 991 } 992 #endif 993 994 LiveDebugValues::VarLoc::SpillLoc 995 LiveDebugValues::extractSpillBaseRegAndOffset(const MachineInstr &MI) { 996 assert(MI.hasOneMemOperand() && 997 "Spill instruction does not have exactly one memory operand?"); 998 auto MMOI = MI.memoperands_begin(); 999 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 1000 assert(PVal->kind() == PseudoSourceValue::FixedStack && 1001 "Inconsistent memory operand in spill instruction"); 1002 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); 1003 const MachineBasicBlock *MBB = MI.getParent(); 1004 Register Reg; 1005 int Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); 1006 return {Reg, Offset}; 1007 } 1008 1009 /// Try to salvage the debug entry value if we encounter a new debug value 1010 /// describing the same parameter, otherwise stop tracking the value. Return 1011 /// true if we should stop tracking the entry value, otherwise return false. 1012 bool LiveDebugValues::removeEntryValue(const MachineInstr &MI, 1013 OpenRangesSet &OpenRanges, 1014 VarLocMap &VarLocIDs, 1015 const VarLoc &EntryVL) { 1016 // Skip the DBG_VALUE which is the debug entry value itself. 1017 if (MI.isIdenticalTo(EntryVL.MI)) 1018 return false; 1019 1020 // If the parameter's location is not register location, we can not track 1021 // the entry value any more. In addition, if the debug expression from the 1022 // DBG_VALUE is not empty, we can assume the parameter's value has changed 1023 // indicating that we should stop tracking its entry value as well. 1024 if (!MI.getDebugOperand(0).isReg() || 1025 MI.getDebugExpression()->getNumElements() != 0) 1026 return true; 1027 1028 // If the DBG_VALUE comes from a copy instruction that copies the entry value, 1029 // it means the parameter's value has not changed and we should be able to use 1030 // its entry value. 1031 bool TrySalvageEntryValue = false; 1032 Register Reg = MI.getDebugOperand(0).getReg(); 1033 auto I = std::next(MI.getReverseIterator()); 1034 const MachineOperand *SrcRegOp, *DestRegOp; 1035 if (I != MI.getParent()->rend()) { 1036 // TODO: Try to keep tracking of an entry value if we encounter a propagated 1037 // DBG_VALUE describing the copy of the entry value. (Propagated entry value 1038 // does not indicate the parameter modification.) 1039 auto DestSrc = TII->isCopyInstr(*I); 1040 if (!DestSrc) 1041 return true; 1042 1043 SrcRegOp = DestSrc->Source; 1044 DestRegOp = DestSrc->Destination; 1045 if (Reg != DestRegOp->getReg()) 1046 return true; 1047 TrySalvageEntryValue = true; 1048 } 1049 1050 if (TrySalvageEntryValue) { 1051 for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { 1052 const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)]; 1053 if (VL.getEntryValueCopyBackupReg() == Reg && 1054 VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg()) 1055 return false; 1056 } 1057 } 1058 1059 return true; 1060 } 1061 1062 /// End all previous ranges related to @MI and start a new range from @MI 1063 /// if it is a DBG_VALUE instr. 1064 void LiveDebugValues::transferDebugValue(const MachineInstr &MI, 1065 OpenRangesSet &OpenRanges, 1066 VarLocMap &VarLocIDs) { 1067 if (!MI.isDebugValue()) 1068 return; 1069 const DILocalVariable *Var = MI.getDebugVariable(); 1070 const DIExpression *Expr = MI.getDebugExpression(); 1071 const DILocation *DebugLoc = MI.getDebugLoc(); 1072 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 1073 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 1074 "Expected inlined-at fields to agree"); 1075 1076 DebugVariable V(Var, Expr, InlinedAt); 1077 1078 // Check if this DBG_VALUE indicates a parameter's value changing. 1079 // If that is the case, we should stop tracking its entry value. 1080 auto EntryValBackupID = OpenRanges.getEntryValueBackup(V); 1081 if (Var->isParameter() && EntryValBackupID) { 1082 const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID]; 1083 if (removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL)) { 1084 LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: "; 1085 MI.print(dbgs(), /*IsStandalone*/ false, 1086 /*SkipOpers*/ false, /*SkipDebugLoc*/ false, 1087 /*AddNewLine*/ true, TII)); 1088 OpenRanges.erase(EntryVL); 1089 } 1090 } 1091 1092 if (isDbgValueDescribedByReg(MI) || MI.getDebugOperand(0).isImm() || 1093 MI.getDebugOperand(0).isFPImm() || MI.getDebugOperand(0).isCImm()) { 1094 // Use normal VarLoc constructor for registers and immediates. 1095 VarLoc VL(MI, LS); 1096 // End all previous ranges of VL.Var. 1097 OpenRanges.erase(VL); 1098 1099 LocIndex ID = VarLocIDs.insert(VL); 1100 // Add the VarLoc to OpenRanges from this DBG_VALUE. 1101 OpenRanges.insert(ID, VL); 1102 } else if (MI.hasOneMemOperand()) { 1103 llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?"); 1104 } else { 1105 // This must be an undefined location. If it has an open range, erase it. 1106 assert(MI.getDebugOperand(0).isReg() && 1107 MI.getDebugOperand(0).getReg() == 0 && 1108 "Unexpected non-undef DBG_VALUE encountered"); 1109 VarLoc VL(MI, LS); 1110 OpenRanges.erase(VL); 1111 } 1112 } 1113 1114 /// Turn the entry value backup locations into primary locations. 1115 void LiveDebugValues::emitEntryValues(MachineInstr &MI, 1116 OpenRangesSet &OpenRanges, 1117 VarLocMap &VarLocIDs, 1118 TransferMap &Transfers, 1119 VarLocSet &KillSet) { 1120 // Do not insert entry value locations after a terminator. 1121 if (MI.isTerminator()) 1122 return; 1123 1124 for (uint64_t ID : KillSet) { 1125 LocIndex Idx = LocIndex::fromRawInteger(ID); 1126 const VarLoc &VL = VarLocIDs[Idx]; 1127 if (!VL.Var.getVariable()->isParameter()) 1128 continue; 1129 1130 auto DebugVar = VL.Var; 1131 Optional<LocIndex> EntryValBackupID = 1132 OpenRanges.getEntryValueBackup(DebugVar); 1133 1134 // If the parameter has the entry value backup, it means we should 1135 // be able to use its entry value. 1136 if (!EntryValBackupID) 1137 continue; 1138 1139 const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID]; 1140 VarLoc EntryLoc = 1141 VarLoc::CreateEntryLoc(EntryVL.MI, LS, EntryVL.Expr, EntryVL.Loc.RegNo); 1142 LocIndex EntryValueID = VarLocIDs.insert(EntryLoc); 1143 Transfers.push_back({&MI, EntryValueID}); 1144 OpenRanges.insert(EntryValueID, EntryLoc); 1145 } 1146 } 1147 1148 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc 1149 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with 1150 /// new VarLoc. If \p NewReg is different than default zero value then the 1151 /// new location will be register location created by the copy like instruction, 1152 /// otherwise it is variable's location on the stack. 1153 void LiveDebugValues::insertTransferDebugPair( 1154 MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers, 1155 VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind, 1156 Register NewReg) { 1157 const MachineInstr *DebugInstr = &VarLocIDs[OldVarID].MI; 1158 1159 auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) { 1160 LocIndex LocId = VarLocIDs.insert(VL); 1161 1162 // Close this variable's previous location range. 1163 OpenRanges.erase(VL); 1164 1165 // Record the new location as an open range, and a postponed transfer 1166 // inserting a DBG_VALUE for this location. 1167 OpenRanges.insert(LocId, VL); 1168 assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator"); 1169 TransferDebugPair MIP = {&MI, LocId}; 1170 Transfers.push_back(MIP); 1171 }; 1172 1173 // End all previous ranges of VL.Var. 1174 OpenRanges.erase(VarLocIDs[OldVarID]); 1175 switch (Kind) { 1176 case TransferKind::TransferCopy: { 1177 assert(NewReg && 1178 "No register supplied when handling a copy of a debug value"); 1179 // Create a DBG_VALUE instruction to describe the Var in its new 1180 // register location. 1181 VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg); 1182 ProcessVarLoc(VL); 1183 LLVM_DEBUG({ 1184 dbgs() << "Creating VarLoc for register copy:"; 1185 VL.dump(TRI); 1186 }); 1187 return; 1188 } 1189 case TransferKind::TransferSpill: { 1190 // Create a DBG_VALUE instruction to describe the Var in its spilled 1191 // location. 1192 VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI); 1193 VarLoc VL = VarLoc::CreateSpillLoc(*DebugInstr, SpillLocation.SpillBase, 1194 SpillLocation.SpillOffset, LS); 1195 ProcessVarLoc(VL); 1196 LLVM_DEBUG({ 1197 dbgs() << "Creating VarLoc for spill:"; 1198 VL.dump(TRI); 1199 }); 1200 return; 1201 } 1202 case TransferKind::TransferRestore: { 1203 assert(NewReg && 1204 "No register supplied when handling a restore of a debug value"); 1205 // DebugInstr refers to the pre-spill location, therefore we can reuse 1206 // its expression. 1207 VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg); 1208 ProcessVarLoc(VL); 1209 LLVM_DEBUG({ 1210 dbgs() << "Creating VarLoc for restore:"; 1211 VL.dump(TRI); 1212 }); 1213 return; 1214 } 1215 } 1216 llvm_unreachable("Invalid transfer kind"); 1217 } 1218 1219 /// A definition of a register may mark the end of a range. 1220 void LiveDebugValues::transferRegisterDef( 1221 MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, 1222 TransferMap &Transfers) { 1223 1224 // Meta Instructions do not affect the debug liveness of any register they 1225 // define. 1226 if (MI.isMetaInstruction()) 1227 return; 1228 1229 MachineFunction *MF = MI.getMF(); 1230 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1231 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 1232 1233 // Find the regs killed by MI, and find regmasks of preserved regs. 1234 DefinedRegsSet DeadRegs; 1235 SmallVector<const uint32_t *, 4> RegMasks; 1236 for (const MachineOperand &MO : MI.operands()) { 1237 // Determine whether the operand is a register def. 1238 if (MO.isReg() && MO.isDef() && MO.getReg() && 1239 Register::isPhysicalRegister(MO.getReg()) && 1240 !(MI.isCall() && MO.getReg() == SP)) { 1241 // Remove ranges of all aliased registers. 1242 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1243 // FIXME: Can we break out of this loop early if no insertion occurs? 1244 DeadRegs.insert(*RAI); 1245 } else if (MO.isRegMask()) { 1246 RegMasks.push_back(MO.getRegMask()); 1247 } 1248 } 1249 1250 // Erase VarLocs which reside in one of the dead registers. For performance 1251 // reasons, it's critical to not iterate over the full set of open VarLocs. 1252 // Iterate over the set of dying/used regs instead. 1253 if (!RegMasks.empty()) { 1254 SmallVector<uint32_t, 32> UsedRegs; 1255 getUsedRegs(OpenRanges.getVarLocs(), UsedRegs); 1256 for (uint32_t Reg : UsedRegs) { 1257 // Remove ranges of all clobbered registers. Register masks don't usually 1258 // list SP as preserved. Assume that call instructions never clobber SP, 1259 // because some backends (e.g., AArch64) never list SP in the regmask. 1260 // While the debug info may be off for an instruction or two around 1261 // callee-cleanup calls, transferring the DEBUG_VALUE across the call is 1262 // still a better user experience. 1263 if (Reg == SP) 1264 continue; 1265 bool AnyRegMaskKillsReg = 1266 any_of(RegMasks, [Reg](const uint32_t *RegMask) { 1267 return MachineOperand::clobbersPhysReg(RegMask, Reg); 1268 }); 1269 if (AnyRegMaskKillsReg) 1270 DeadRegs.insert(Reg); 1271 } 1272 } 1273 1274 if (DeadRegs.empty()) 1275 return; 1276 1277 VarLocSet KillSet(Alloc); 1278 collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs()); 1279 OpenRanges.erase(KillSet, VarLocIDs); 1280 1281 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 1282 auto &TM = TPC->getTM<TargetMachine>(); 1283 if (TM.Options.ShouldEmitDebugEntryValues()) 1284 emitEntryValues(MI, OpenRanges, VarLocIDs, Transfers, KillSet); 1285 } 1286 } 1287 1288 bool LiveDebugValues::isSpillInstruction(const MachineInstr &MI, 1289 MachineFunction *MF) { 1290 // TODO: Handle multiple stores folded into one. 1291 if (!MI.hasOneMemOperand()) 1292 return false; 1293 1294 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) 1295 return false; // This is not a spill instruction, since no valid size was 1296 // returned from either function. 1297 1298 return true; 1299 } 1300 1301 bool LiveDebugValues::isLocationSpill(const MachineInstr &MI, 1302 MachineFunction *MF, Register &Reg) { 1303 if (!isSpillInstruction(MI, MF)) 1304 return false; 1305 1306 auto isKilledReg = [&](const MachineOperand MO, Register &Reg) { 1307 if (!MO.isReg() || !MO.isUse()) { 1308 Reg = 0; 1309 return false; 1310 } 1311 Reg = MO.getReg(); 1312 return MO.isKill(); 1313 }; 1314 1315 for (const MachineOperand &MO : MI.operands()) { 1316 // In a spill instruction generated by the InlineSpiller the spilled 1317 // register has its kill flag set. 1318 if (isKilledReg(MO, Reg)) 1319 return true; 1320 if (Reg != 0) { 1321 // Check whether next instruction kills the spilled register. 1322 // FIXME: Current solution does not cover search for killed register in 1323 // bundles and instructions further down the chain. 1324 auto NextI = std::next(MI.getIterator()); 1325 // Skip next instruction that points to basic block end iterator. 1326 if (MI.getParent()->end() == NextI) 1327 continue; 1328 Register RegNext; 1329 for (const MachineOperand &MONext : NextI->operands()) { 1330 // Return true if we came across the register from the 1331 // previous spill instruction that is killed in NextI. 1332 if (isKilledReg(MONext, RegNext) && RegNext == Reg) 1333 return true; 1334 } 1335 } 1336 } 1337 // Return false if we didn't find spilled register. 1338 return false; 1339 } 1340 1341 Optional<LiveDebugValues::VarLoc::SpillLoc> 1342 LiveDebugValues::isRestoreInstruction(const MachineInstr &MI, 1343 MachineFunction *MF, Register &Reg) { 1344 if (!MI.hasOneMemOperand()) 1345 return None; 1346 1347 // FIXME: Handle folded restore instructions with more than one memory 1348 // operand. 1349 if (MI.getRestoreSize(TII)) { 1350 Reg = MI.getOperand(0).getReg(); 1351 return extractSpillBaseRegAndOffset(MI); 1352 } 1353 return None; 1354 } 1355 1356 /// A spilled register may indicate that we have to end the current range of 1357 /// a variable and create a new one for the spill location. 1358 /// A restored register may indicate the reverse situation. 1359 /// We don't want to insert any instructions in process(), so we just create 1360 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers. 1361 /// It will be inserted into the BB when we're done iterating over the 1362 /// instructions. 1363 void LiveDebugValues::transferSpillOrRestoreInst(MachineInstr &MI, 1364 OpenRangesSet &OpenRanges, 1365 VarLocMap &VarLocIDs, 1366 TransferMap &Transfers) { 1367 MachineFunction *MF = MI.getMF(); 1368 TransferKind TKind; 1369 Register Reg; 1370 Optional<VarLoc::SpillLoc> Loc; 1371 1372 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); 1373 1374 // First, if there are any DBG_VALUEs pointing at a spill slot that is 1375 // written to, then close the variable location. The value in memory 1376 // will have changed. 1377 VarLocSet KillSet(Alloc); 1378 if (isSpillInstruction(MI, MF)) { 1379 Loc = extractSpillBaseRegAndOffset(MI); 1380 for (uint64_t ID : OpenRanges.getSpillVarLocs()) { 1381 LocIndex Idx = LocIndex::fromRawInteger(ID); 1382 const VarLoc &VL = VarLocIDs[Idx]; 1383 assert(VL.Kind == VarLoc::SpillLocKind && "Broken VarLocSet?"); 1384 if (VL.Loc.SpillLocation == *Loc) { 1385 // This location is overwritten by the current instruction -- terminate 1386 // the open range, and insert an explicit DBG_VALUE $noreg. 1387 // 1388 // Doing this at a later stage would require re-interpreting all 1389 // DBG_VALUes and DIExpressions to identify whether they point at 1390 // memory, and then analysing all memory writes to see if they 1391 // overwrite that memory, which is expensive. 1392 // 1393 // At this stage, we already know which DBG_VALUEs are for spills and 1394 // where they are located; it's best to fix handle overwrites now. 1395 KillSet.set(ID); 1396 VarLoc UndefVL = VarLoc::CreateCopyLoc(VL.MI, LS, 0); 1397 LocIndex UndefLocID = VarLocIDs.insert(UndefVL); 1398 Transfers.push_back({&MI, UndefLocID}); 1399 } 1400 } 1401 OpenRanges.erase(KillSet, VarLocIDs); 1402 } 1403 1404 // Try to recognise spill and restore instructions that may create a new 1405 // variable location. 1406 if (isLocationSpill(MI, MF, Reg)) { 1407 TKind = TransferKind::TransferSpill; 1408 LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump();); 1409 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) 1410 << "\n"); 1411 } else { 1412 if (!(Loc = isRestoreInstruction(MI, MF, Reg))) 1413 return; 1414 TKind = TransferKind::TransferRestore; 1415 LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump();); 1416 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) 1417 << "\n"); 1418 } 1419 // Check if the register or spill location is the location of a debug value. 1420 auto TransferCandidates = OpenRanges.getEmptyVarLocRange(); 1421 if (TKind == TransferKind::TransferSpill) 1422 TransferCandidates = OpenRanges.getRegisterVarLocs(Reg); 1423 else if (TKind == TransferKind::TransferRestore) 1424 TransferCandidates = OpenRanges.getSpillVarLocs(); 1425 for (uint64_t ID : TransferCandidates) { 1426 LocIndex Idx = LocIndex::fromRawInteger(ID); 1427 const VarLoc &VL = VarLocIDs[Idx]; 1428 if (TKind == TransferKind::TransferSpill) { 1429 assert(VL.isDescribedByReg() == Reg && "Broken VarLocSet?"); 1430 LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '(' 1431 << VL.Var.getVariable()->getName() << ")\n"); 1432 } else { 1433 assert(TKind == TransferKind::TransferRestore && 1434 VL.Kind == VarLoc::SpillLocKind && "Broken VarLocSet?"); 1435 if (VL.Loc.SpillLocation != *Loc) 1436 // The spill location is not the location of a debug value. 1437 continue; 1438 LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '(' 1439 << VL.Var.getVariable()->getName() << ")\n"); 1440 } 1441 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind, 1442 Reg); 1443 // FIXME: A comment should explain why it's correct to return early here, 1444 // if that is in fact correct. 1445 return; 1446 } 1447 } 1448 1449 /// If \p MI is a register copy instruction, that copies a previously tracked 1450 /// value from one register to another register that is callee saved, we 1451 /// create new DBG_VALUE instruction described with copy destination register. 1452 void LiveDebugValues::transferRegisterCopy(MachineInstr &MI, 1453 OpenRangesSet &OpenRanges, 1454 VarLocMap &VarLocIDs, 1455 TransferMap &Transfers) { 1456 auto DestSrc = TII->isCopyInstr(MI); 1457 if (!DestSrc) 1458 return; 1459 1460 const MachineOperand *DestRegOp = DestSrc->Destination; 1461 const MachineOperand *SrcRegOp = DestSrc->Source; 1462 1463 if (!DestRegOp->isDef()) 1464 return; 1465 1466 auto isCalleeSavedReg = [&](Register Reg) { 1467 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1468 if (CalleeSavedRegs.test(*RAI)) 1469 return true; 1470 return false; 1471 }; 1472 1473 Register SrcReg = SrcRegOp->getReg(); 1474 Register DestReg = DestRegOp->getReg(); 1475 1476 // We want to recognize instructions where destination register is callee 1477 // saved register. If register that could be clobbered by the call is 1478 // included, there would be a great chance that it is going to be clobbered 1479 // soon. It is more likely that previous register location, which is callee 1480 // saved, is going to stay unclobbered longer, even if it is killed. 1481 if (!isCalleeSavedReg(DestReg)) 1482 return; 1483 1484 // Remember an entry value movement. If we encounter a new debug value of 1485 // a parameter describing only a moving of the value around, rather then 1486 // modifying it, we are still able to use the entry value if needed. 1487 if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) { 1488 for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { 1489 LocIndex Idx = LocIndex::fromRawInteger(ID); 1490 const VarLoc &VL = VarLocIDs[Idx]; 1491 if (VL.getEntryValueBackupReg() == SrcReg) { 1492 LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump();); 1493 VarLoc EntryValLocCopyBackup = 1494 VarLoc::CreateEntryCopyBackupLoc(VL.MI, LS, VL.Expr, DestReg); 1495 1496 // Stop tracking the original entry value. 1497 OpenRanges.erase(VL); 1498 1499 // Start tracking the entry value copy. 1500 LocIndex EntryValCopyLocID = VarLocIDs.insert(EntryValLocCopyBackup); 1501 OpenRanges.insert(EntryValCopyLocID, EntryValLocCopyBackup); 1502 break; 1503 } 1504 } 1505 } 1506 1507 if (!SrcRegOp->isKill()) 1508 return; 1509 1510 for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) { 1511 LocIndex Idx = LocIndex::fromRawInteger(ID); 1512 assert(VarLocIDs[Idx].isDescribedByReg() == SrcReg && "Broken VarLocSet?"); 1513 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, 1514 TransferKind::TransferCopy, DestReg); 1515 // FIXME: A comment should explain why it's correct to return early here, 1516 // if that is in fact correct. 1517 return; 1518 } 1519 } 1520 1521 /// Terminate all open ranges at the end of the current basic block. 1522 bool LiveDebugValues::transferTerminator(MachineBasicBlock *CurMBB, 1523 OpenRangesSet &OpenRanges, 1524 VarLocInMBB &OutLocs, 1525 const VarLocMap &VarLocIDs) { 1526 bool Changed = false; 1527 1528 LLVM_DEBUG(for (uint64_t ID 1529 : OpenRanges.getVarLocs()) { 1530 // Copy OpenRanges to OutLocs, if not already present. 1531 dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": "; 1532 VarLocIDs[LocIndex::fromRawInteger(ID)].dump(TRI); 1533 }); 1534 VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs); 1535 Changed = VLS != OpenRanges.getVarLocs(); 1536 // New OutLocs set may be different due to spill, restore or register 1537 // copy instruction processing. 1538 if (Changed) 1539 VLS = OpenRanges.getVarLocs(); 1540 OpenRanges.clear(); 1541 return Changed; 1542 } 1543 1544 /// Accumulate a mapping between each DILocalVariable fragment and other 1545 /// fragments of that DILocalVariable which overlap. This reduces work during 1546 /// the data-flow stage from "Find any overlapping fragments" to "Check if the 1547 /// known-to-overlap fragments are present". 1548 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for 1549 /// fragment usage. 1550 /// \param SeenFragments Map from DILocalVariable to all fragments of that 1551 /// Variable which are known to exist. 1552 /// \param OverlappingFragments The overlap map being constructed, from one 1553 /// Var/Fragment pair to a vector of fragments known to overlap. 1554 void LiveDebugValues::accumulateFragmentMap(MachineInstr &MI, 1555 VarToFragments &SeenFragments, 1556 OverlapMap &OverlappingFragments) { 1557 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), 1558 MI.getDebugLoc()->getInlinedAt()); 1559 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); 1560 1561 // If this is the first sighting of this variable, then we are guaranteed 1562 // there are currently no overlapping fragments either. Initialize the set 1563 // of seen fragments, record no overlaps for the current one, and return. 1564 auto SeenIt = SeenFragments.find(MIVar.getVariable()); 1565 if (SeenIt == SeenFragments.end()) { 1566 SmallSet<FragmentInfo, 4> OneFragment; 1567 OneFragment.insert(ThisFragment); 1568 SeenFragments.insert({MIVar.getVariable(), OneFragment}); 1569 1570 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1571 return; 1572 } 1573 1574 // If this particular Variable/Fragment pair already exists in the overlap 1575 // map, it has already been accounted for. 1576 auto IsInOLapMap = 1577 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1578 if (!IsInOLapMap.second) 1579 return; 1580 1581 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; 1582 auto &AllSeenFragments = SeenIt->second; 1583 1584 // Otherwise, examine all other seen fragments for this variable, with "this" 1585 // fragment being a previously unseen fragment. Record any pair of 1586 // overlapping fragments. 1587 for (auto &ASeenFragment : AllSeenFragments) { 1588 // Does this previously seen fragment overlap? 1589 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { 1590 // Yes: Mark the current fragment as being overlapped. 1591 ThisFragmentsOverlaps.push_back(ASeenFragment); 1592 // Mark the previously seen fragment as being overlapped by the current 1593 // one. 1594 auto ASeenFragmentsOverlaps = 1595 OverlappingFragments.find({MIVar.getVariable(), ASeenFragment}); 1596 assert(ASeenFragmentsOverlaps != OverlappingFragments.end() && 1597 "Previously seen var fragment has no vector of overlaps"); 1598 ASeenFragmentsOverlaps->second.push_back(ThisFragment); 1599 } 1600 } 1601 1602 AllSeenFragments.insert(ThisFragment); 1603 } 1604 1605 /// This routine creates OpenRanges. 1606 void LiveDebugValues::process(MachineInstr &MI, OpenRangesSet &OpenRanges, 1607 VarLocMap &VarLocIDs, TransferMap &Transfers) { 1608 transferDebugValue(MI, OpenRanges, VarLocIDs); 1609 transferRegisterDef(MI, OpenRanges, VarLocIDs, Transfers); 1610 transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers); 1611 transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers); 1612 } 1613 1614 /// This routine joins the analysis results of all incoming edges in @MBB by 1615 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same 1616 /// source variable in all the predecessors of @MBB reside in the same location. 1617 bool LiveDebugValues::join( 1618 MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, 1619 const VarLocMap &VarLocIDs, 1620 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1621 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) { 1622 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 1623 1624 VarLocSet InLocsT(Alloc); // Temporary incoming locations. 1625 1626 // For all predecessors of this MBB, find the set of VarLocs that 1627 // can be joined. 1628 int NumVisited = 0; 1629 for (auto p : MBB.predecessors()) { 1630 // Ignore backedges if we have not visited the predecessor yet. As the 1631 // predecessor hasn't yet had locations propagated into it, most locations 1632 // will not yet be valid, so treat them as all being uninitialized and 1633 // potentially valid. If a location guessed to be correct here is 1634 // invalidated later, we will remove it when we revisit this block. 1635 if (!Visited.count(p)) { 1636 LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber() 1637 << "\n"); 1638 continue; 1639 } 1640 auto OL = OutLocs.find(p); 1641 // Join is null in case of empty OutLocs from any of the pred. 1642 if (OL == OutLocs.end()) 1643 return false; 1644 1645 // Just copy over the Out locs to incoming locs for the first visited 1646 // predecessor, and for all other predecessors join the Out locs. 1647 VarLocSet &OutLocVLS = *OL->second.get(); 1648 if (!NumVisited) 1649 InLocsT = OutLocVLS; 1650 else 1651 InLocsT &= OutLocVLS; 1652 1653 LLVM_DEBUG({ 1654 if (!InLocsT.empty()) { 1655 for (uint64_t ID : InLocsT) 1656 dbgs() << " gathered candidate incoming var: " 1657 << VarLocIDs[LocIndex::fromRawInteger(ID)] 1658 .Var.getVariable() 1659 ->getName() 1660 << "\n"; 1661 } 1662 }); 1663 1664 NumVisited++; 1665 } 1666 1667 // Filter out DBG_VALUES that are out of scope. 1668 VarLocSet KillSet(Alloc); 1669 bool IsArtificial = ArtificialBlocks.count(&MBB); 1670 if (!IsArtificial) { 1671 for (uint64_t ID : InLocsT) { 1672 LocIndex Idx = LocIndex::fromRawInteger(ID); 1673 if (!VarLocIDs[Idx].dominates(LS, MBB)) { 1674 KillSet.set(ID); 1675 LLVM_DEBUG({ 1676 auto Name = VarLocIDs[Idx].Var.getVariable()->getName(); 1677 dbgs() << " killing " << Name << ", it doesn't dominate MBB\n"; 1678 }); 1679 } 1680 } 1681 } 1682 InLocsT.intersectWithComplement(KillSet); 1683 1684 // As we are processing blocks in reverse post-order we 1685 // should have processed at least one predecessor, unless it 1686 // is the entry block which has no predecessor. 1687 assert((NumVisited || MBB.pred_empty()) && 1688 "Should have processed at least one predecessor"); 1689 1690 VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs); 1691 bool Changed = false; 1692 if (ILS != InLocsT) { 1693 ILS = InLocsT; 1694 Changed = true; 1695 } 1696 1697 return Changed; 1698 } 1699 1700 void LiveDebugValues::flushPendingLocs(VarLocInMBB &PendingInLocs, 1701 VarLocMap &VarLocIDs) { 1702 // PendingInLocs records all locations propagated into blocks, which have 1703 // not had DBG_VALUE insts created. Go through and create those insts now. 1704 for (auto &Iter : PendingInLocs) { 1705 // Map is keyed on a constant pointer, unwrap it so we can insert insts. 1706 auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first); 1707 VarLocSet &Pending = *Iter.second.get(); 1708 1709 for (uint64_t ID : Pending) { 1710 // The ID location is live-in to MBB -- work out what kind of machine 1711 // location it is and create a DBG_VALUE. 1712 const VarLoc &DiffIt = VarLocIDs[LocIndex::fromRawInteger(ID)]; 1713 if (DiffIt.isEntryBackupLoc()) 1714 continue; 1715 MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent()); 1716 MBB.insert(MBB.instr_begin(), MI); 1717 1718 (void)MI; 1719 LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump();); 1720 } 1721 } 1722 } 1723 1724 bool LiveDebugValues::isEntryValueCandidate( 1725 const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const { 1726 assert(MI.isDebugValue() && "This must be DBG_VALUE."); 1727 1728 // TODO: Add support for local variables that are expressed in terms of 1729 // parameters entry values. 1730 // TODO: Add support for modified arguments that can be expressed 1731 // by using its entry value. 1732 auto *DIVar = MI.getDebugVariable(); 1733 if (!DIVar->isParameter()) 1734 return false; 1735 1736 // Do not consider parameters that belong to an inlined function. 1737 if (MI.getDebugLoc()->getInlinedAt()) 1738 return false; 1739 1740 // Only consider parameters that are described using registers. Parameters 1741 // that are passed on the stack are not yet supported, so ignore debug 1742 // values that are described by the frame or stack pointer. 1743 if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI)) 1744 return false; 1745 1746 // If a parameter's value has been propagated from the caller, then the 1747 // parameter's DBG_VALUE may be described using a register defined by some 1748 // instruction in the entry block, in which case we shouldn't create an 1749 // entry value. 1750 if (DefinedRegs.count(MI.getDebugOperand(0).getReg())) 1751 return false; 1752 1753 // TODO: Add support for parameters that have a pre-existing debug expressions 1754 // (e.g. fragments). 1755 if (MI.getDebugExpression()->getNumElements() > 0) 1756 return false; 1757 1758 return true; 1759 } 1760 1761 /// Collect all register defines (including aliases) for the given instruction. 1762 static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs, 1763 const TargetRegisterInfo *TRI) { 1764 for (const MachineOperand &MO : MI.operands()) 1765 if (MO.isReg() && MO.isDef() && MO.getReg()) 1766 for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) 1767 Regs.insert(*AI); 1768 } 1769 1770 /// This routine records the entry values of function parameters. The values 1771 /// could be used as backup values. If we loose the track of some unmodified 1772 /// parameters, the backup values will be used as a primary locations. 1773 void LiveDebugValues::recordEntryValue(const MachineInstr &MI, 1774 const DefinedRegsSet &DefinedRegs, 1775 OpenRangesSet &OpenRanges, 1776 VarLocMap &VarLocIDs) { 1777 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 1778 auto &TM = TPC->getTM<TargetMachine>(); 1779 if (!TM.Options.ShouldEmitDebugEntryValues()) 1780 return; 1781 } 1782 1783 DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(), 1784 MI.getDebugLoc()->getInlinedAt()); 1785 1786 if (!isEntryValueCandidate(MI, DefinedRegs) || 1787 OpenRanges.getEntryValueBackup(V)) 1788 return; 1789 1790 LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump();); 1791 1792 // Create the entry value and use it as a backup location until it is 1793 // valid. It is valid until a parameter is not changed. 1794 DIExpression *NewExpr = 1795 DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue); 1796 VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, LS, NewExpr); 1797 LocIndex EntryValLocID = VarLocIDs.insert(EntryValLocAsBackup); 1798 OpenRanges.insert(EntryValLocID, EntryValLocAsBackup); 1799 } 1800 1801 /// Calculate the liveness information for the given machine function and 1802 /// extend ranges across basic blocks. 1803 bool LiveDebugValues::ExtendRanges(MachineFunction &MF) { 1804 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); 1805 1806 bool Changed = false; 1807 bool OLChanged = false; 1808 bool MBBJoined = false; 1809 1810 VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors. 1811 OverlapMap OverlapFragments; // Map of overlapping variable fragments. 1812 OpenRangesSet OpenRanges(Alloc, OverlapFragments); 1813 // Ranges that are open until end of bb. 1814 VarLocInMBB OutLocs; // Ranges that exist beyond bb. 1815 VarLocInMBB InLocs; // Ranges that are incoming after joining. 1816 TransferMap Transfers; // DBG_VALUEs associated with transfers (such as 1817 // spills, copies and restores). 1818 1819 VarToFragments SeenFragments; 1820 1821 // Blocks which are artificial, i.e. blocks which exclusively contain 1822 // instructions without locations, or with line 0 locations. 1823 SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks; 1824 1825 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; 1826 DenseMap<MachineBasicBlock *, unsigned int> BBToOrder; 1827 std::priority_queue<unsigned int, std::vector<unsigned int>, 1828 std::greater<unsigned int>> 1829 Worklist; 1830 std::priority_queue<unsigned int, std::vector<unsigned int>, 1831 std::greater<unsigned int>> 1832 Pending; 1833 1834 // Set of register defines that are seen when traversing the entry block 1835 // looking for debug entry value candidates. 1836 DefinedRegsSet DefinedRegs; 1837 1838 // Only in the case of entry MBB collect DBG_VALUEs representing 1839 // function parameters in order to generate debug entry values for them. 1840 MachineBasicBlock &First_MBB = *(MF.begin()); 1841 for (auto &MI : First_MBB) { 1842 collectRegDefs(MI, DefinedRegs, TRI); 1843 if (MI.isDebugValue()) 1844 recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs); 1845 } 1846 1847 // Initialize per-block structures and scan for fragment overlaps. 1848 for (auto &MBB : MF) 1849 for (auto &MI : MBB) 1850 if (MI.isDebugValue()) 1851 accumulateFragmentMap(MI, SeenFragments, OverlapFragments); 1852 1853 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { 1854 if (const DebugLoc &DL = MI.getDebugLoc()) 1855 return DL.getLine() != 0; 1856 return false; 1857 }; 1858 for (auto &MBB : MF) 1859 if (none_of(MBB.instrs(), hasNonArtificialLocation)) 1860 ArtificialBlocks.insert(&MBB); 1861 1862 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, 1863 "OutLocs after initialization", dbgs())); 1864 1865 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 1866 unsigned int RPONumber = 0; 1867 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { 1868 OrderToBB[RPONumber] = *RI; 1869 BBToOrder[*RI] = RPONumber; 1870 Worklist.push(RPONumber); 1871 ++RPONumber; 1872 } 1873 1874 if (RPONumber > InputBBLimit) { 1875 unsigned NumInputDbgValues = 0; 1876 for (auto &MBB : MF) 1877 for (auto &MI : MBB) 1878 if (MI.isDebugValue()) 1879 ++NumInputDbgValues; 1880 if (NumInputDbgValues > InputDbgValueLimit) { 1881 LLVM_DEBUG(dbgs() << "Disabling LiveDebugValues: " << MF.getName() 1882 << " has " << RPONumber << " basic blocks and " 1883 << NumInputDbgValues 1884 << " input DBG_VALUEs, exceeding limits.\n"); 1885 return false; 1886 } 1887 } 1888 1889 // This is a standard "union of predecessor outs" dataflow problem. 1890 // To solve it, we perform join() and process() using the two worklist method 1891 // until the ranges converge. 1892 // Ranges have converged when both worklists are empty. 1893 SmallPtrSet<const MachineBasicBlock *, 16> Visited; 1894 while (!Worklist.empty() || !Pending.empty()) { 1895 // We track what is on the pending worklist to avoid inserting the same 1896 // thing twice. We could avoid this with a custom priority queue, but this 1897 // is probably not worth it. 1898 SmallPtrSet<MachineBasicBlock *, 16> OnPending; 1899 LLVM_DEBUG(dbgs() << "Processing Worklist\n"); 1900 while (!Worklist.empty()) { 1901 MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; 1902 Worklist.pop(); 1903 MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited, 1904 ArtificialBlocks); 1905 MBBJoined |= Visited.insert(MBB).second; 1906 if (MBBJoined) { 1907 MBBJoined = false; 1908 Changed = true; 1909 // Now that we have started to extend ranges across BBs we need to 1910 // examine spill, copy and restore instructions to see whether they 1911 // operate with registers that correspond to user variables. 1912 // First load any pending inlocs. 1913 OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs); 1914 for (auto &MI : *MBB) 1915 process(MI, OpenRanges, VarLocIDs, Transfers); 1916 OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs); 1917 1918 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, 1919 "OutLocs after propagating", dbgs())); 1920 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, 1921 "InLocs after propagating", dbgs())); 1922 1923 if (OLChanged) { 1924 OLChanged = false; 1925 for (auto s : MBB->successors()) 1926 if (OnPending.insert(s).second) { 1927 Pending.push(BBToOrder[s]); 1928 } 1929 } 1930 } 1931 } 1932 Worklist.swap(Pending); 1933 // At this point, pending must be empty, since it was just the empty 1934 // worklist 1935 assert(Pending.empty() && "Pending should be empty"); 1936 } 1937 1938 // Add any DBG_VALUE instructions created by location transfers. 1939 for (auto &TR : Transfers) { 1940 assert(!TR.TransferInst->isTerminator() && 1941 "Cannot insert DBG_VALUE after terminator"); 1942 MachineBasicBlock *MBB = TR.TransferInst->getParent(); 1943 const VarLoc &VL = VarLocIDs[TR.LocationID]; 1944 MachineInstr *MI = VL.BuildDbgValue(MF); 1945 MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI); 1946 } 1947 Transfers.clear(); 1948 1949 // Deferred inlocs will not have had any DBG_VALUE insts created; do 1950 // that now. 1951 flushPendingLocs(InLocs, VarLocIDs); 1952 1953 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs())); 1954 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs())); 1955 return Changed; 1956 } 1957 1958 bool LiveDebugValues::runOnMachineFunction(MachineFunction &MF) { 1959 if (!MF.getFunction().getSubprogram()) 1960 // LiveDebugValues will already have removed all DBG_VALUEs. 1961 return false; 1962 1963 // Skip functions from NoDebug compilation units. 1964 if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() == 1965 DICompileUnit::NoDebug) 1966 return false; 1967 1968 TRI = MF.getSubtarget().getRegisterInfo(); 1969 TII = MF.getSubtarget().getInstrInfo(); 1970 TFI = MF.getSubtarget().getFrameLowering(); 1971 TFI->getCalleeSaves(MF, CalleeSavedRegs); 1972 LS.initialize(MF); 1973 1974 bool Changed = ExtendRanges(MF); 1975 return Changed; 1976 } 1977