1 //===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file VarLocBasedImpl.cpp 10 /// 11 /// LiveDebugValues is an optimistic "available expressions" dataflow 12 /// algorithm. The set of expressions is the set of machine locations 13 /// (registers, spill slots, constants) that a variable fragment might be 14 /// located, qualified by a DIExpression and indirect-ness flag, while each 15 /// variable is identified by a DebugVariable object. The availability of an 16 /// expression begins when a DBG_VALUE instruction specifies the location of a 17 /// DebugVariable, and continues until that location is clobbered or 18 /// re-specified by a different DBG_VALUE for the same DebugVariable. 19 /// 20 /// The output of LiveDebugValues is additional DBG_VALUE instructions, 21 /// placed to extend variable locations as far they're available. This file 22 /// and the VarLocBasedLDV class is an implementation that explicitly tracks 23 /// locations, using the VarLoc class. 24 /// 25 /// The canonical "available expressions" problem doesn't have expression 26 /// clobbering, instead when a variable is re-assigned, any expressions using 27 /// that variable get invalidated. LiveDebugValues can map onto "available 28 /// expressions" by having every register represented by a variable, which is 29 /// used in an expression that becomes available at a DBG_VALUE instruction. 30 /// When the register is clobbered, its variable is effectively reassigned, and 31 /// expressions computed from it become unavailable. A similar construct is 32 /// needed when a DebugVariable has its location re-specified, to invalidate 33 /// all other locations for that DebugVariable. 34 /// 35 /// Using the dataflow analysis to compute the available expressions, we create 36 /// a DBG_VALUE at the beginning of each block where the expression is 37 /// live-in. This propagates variable locations into every basic block where 38 /// the location can be determined, rather than only having DBG_VALUEs in blocks 39 /// where locations are specified due to an assignment or some optimization. 40 /// Movements of values between registers and spill slots are annotated with 41 /// DBG_VALUEs too to track variable values bewteen locations. All this allows 42 /// DbgEntityHistoryCalculator to focus on only the locations within individual 43 /// blocks, facilitating testing and improving modularity. 44 /// 45 /// We follow an optimisic dataflow approach, with this lattice: 46 /// 47 /// \verbatim 48 /// ┬ "Unknown" 49 /// | 50 /// v 51 /// True 52 /// | 53 /// v 54 /// ⊥ False 55 /// \endverbatim With "True" signifying that the expression is available (and 56 /// thus a DebugVariable's location is the corresponding register), while 57 /// "False" signifies that the expression is unavailable. "Unknown"s never 58 /// survive to the end of the analysis (see below). 59 /// 60 /// Formally, all DebugVariable locations that are live-out of a block are 61 /// initialized to \top. A blocks live-in values take the meet of the lattice 62 /// value for every predecessors live-outs, except for the entry block, where 63 /// all live-ins are \bot. The usual dataflow propagation occurs: the transfer 64 /// function for a block assigns an expression for a DebugVariable to be "True" 65 /// if a DBG_VALUE in the block specifies it; "False" if the location is 66 /// clobbered; or the live-in value if it is unaffected by the block. We 67 /// visit each block in reverse post order until a fixedpoint is reached. The 68 /// solution produced is maximal. 69 /// 70 /// Intuitively, we start by assuming that every expression / variable location 71 /// is at least "True", and then propagate "False" from the entry block and any 72 /// clobbers until there are no more changes to make. This gives us an accurate 73 /// solution because all incorrect locations will have a "False" propagated into 74 /// them. It also gives us a solution that copes well with loops by assuming 75 /// that variable locations are live-through every loop, and then removing those 76 /// that are not through dataflow. 77 /// 78 /// Within LiveDebugValues: each variable location is represented by a 79 /// VarLoc object that identifies the source variable, its current 80 /// machine-location, and the DBG_VALUE inst that specifies the location. Each 81 /// VarLoc is indexed in the (function-scope) \p VarLocMap, giving each VarLoc a 82 /// unique index. Rather than operate directly on machine locations, the 83 /// dataflow analysis in this pass identifies locations by their index in the 84 /// VarLocMap, meaning all the variable locations in a block can be described 85 /// by a sparse vector of VarLocMap indicies. 86 /// 87 /// All the storage for the dataflow analysis is local to the ExtendRanges 88 /// method and passed down to helper methods. "OutLocs" and "InLocs" record the 89 /// in and out lattice values for each block. "OpenRanges" maintains a list of 90 /// variable locations and, with the "process" method, evaluates the transfer 91 /// function of each block. "flushPendingLocs" installs DBG_VALUEs for each 92 /// live-in location at the start of blocks, while "Transfers" records 93 /// transfers of values between machine-locations. 94 /// 95 /// We avoid explicitly representing the "Unknown" (\top) lattice value in the 96 /// implementation. Instead, unvisited blocks implicitly have all lattice 97 /// values set as "Unknown". After being visited, there will be path back to 98 /// the entry block where the lattice value is "False", and as the transfer 99 /// function cannot make new "Unknown" locations, there are no scenarios where 100 /// a block can have an "Unknown" location after being visited. Similarly, we 101 /// don't enumerate all possible variable locations before exploring the 102 /// function: when a new location is discovered, all blocks previously explored 103 /// were implicitly "False" but unrecorded, and become explicitly "False" when 104 /// a new VarLoc is created with its bit not set in predecessor InLocs or 105 /// OutLocs. 106 /// 107 //===----------------------------------------------------------------------===// 108 109 #include "LiveDebugValues.h" 110 111 #include "llvm/ADT/CoalescingBitVector.h" 112 #include "llvm/ADT/DenseMap.h" 113 #include "llvm/ADT/PostOrderIterator.h" 114 #include "llvm/ADT/SmallPtrSet.h" 115 #include "llvm/ADT/SmallSet.h" 116 #include "llvm/ADT/SmallVector.h" 117 #include "llvm/ADT/Statistic.h" 118 #include "llvm/ADT/UniqueVector.h" 119 #include "llvm/CodeGen/LexicalScopes.h" 120 #include "llvm/CodeGen/MachineBasicBlock.h" 121 #include "llvm/CodeGen/MachineFrameInfo.h" 122 #include "llvm/CodeGen/MachineFunction.h" 123 #include "llvm/CodeGen/MachineFunctionPass.h" 124 #include "llvm/CodeGen/MachineInstr.h" 125 #include "llvm/CodeGen/MachineInstrBuilder.h" 126 #include "llvm/CodeGen/MachineMemOperand.h" 127 #include "llvm/CodeGen/MachineOperand.h" 128 #include "llvm/CodeGen/PseudoSourceValue.h" 129 #include "llvm/CodeGen/RegisterScavenging.h" 130 #include "llvm/CodeGen/TargetFrameLowering.h" 131 #include "llvm/CodeGen/TargetInstrInfo.h" 132 #include "llvm/CodeGen/TargetLowering.h" 133 #include "llvm/CodeGen/TargetPassConfig.h" 134 #include "llvm/CodeGen/TargetRegisterInfo.h" 135 #include "llvm/CodeGen/TargetSubtargetInfo.h" 136 #include "llvm/Config/llvm-config.h" 137 #include "llvm/IR/DIBuilder.h" 138 #include "llvm/IR/DebugInfoMetadata.h" 139 #include "llvm/IR/DebugLoc.h" 140 #include "llvm/IR/Function.h" 141 #include "llvm/IR/Module.h" 142 #include "llvm/InitializePasses.h" 143 #include "llvm/MC/MCRegisterInfo.h" 144 #include "llvm/Pass.h" 145 #include "llvm/Support/Casting.h" 146 #include "llvm/Support/Compiler.h" 147 #include "llvm/Support/Debug.h" 148 #include "llvm/Support/TypeSize.h" 149 #include "llvm/Support/raw_ostream.h" 150 #include "llvm/Target/TargetMachine.h" 151 #include <algorithm> 152 #include <cassert> 153 #include <cstdint> 154 #include <functional> 155 #include <queue> 156 #include <tuple> 157 #include <utility> 158 #include <vector> 159 160 using namespace llvm; 161 162 #define DEBUG_TYPE "livedebugvalues" 163 164 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); 165 166 // Options to prevent pathological compile-time behavior. If InputBBLimit and 167 // InputDbgValueLimit are both exceeded, range extension is disabled. 168 static cl::opt<unsigned> InputBBLimit( 169 "livedebugvalues-input-bb-limit", 170 cl::desc("Maximum input basic blocks before DBG_VALUE limit applies"), 171 cl::init(10000), cl::Hidden); 172 static cl::opt<unsigned> InputDbgValueLimit( 173 "livedebugvalues-input-dbg-value-limit", 174 cl::desc( 175 "Maximum input DBG_VALUE insts supported by debug range extension"), 176 cl::init(50000), cl::Hidden); 177 178 // If @MI is a DBG_VALUE with debug value described by a defined 179 // register, returns the number of this register. In the other case, returns 0. 180 static Register isDbgValueDescribedByReg(const MachineInstr &MI) { 181 assert(MI.isDebugValue() && "expected a DBG_VALUE"); 182 assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE"); 183 // If location of variable is described using a register (directly 184 // or indirectly), this register is always a first operand. 185 return MI.getDebugOperand(0).isReg() ? MI.getDebugOperand(0).getReg() 186 : Register(); 187 } 188 189 /// If \p Op is a stack or frame register return true, otherwise return false. 190 /// This is used to avoid basing the debug entry values on the registers, since 191 /// we do not support it at the moment. 192 static bool isRegOtherThanSPAndFP(const MachineOperand &Op, 193 const MachineInstr &MI, 194 const TargetRegisterInfo *TRI) { 195 if (!Op.isReg()) 196 return false; 197 198 const MachineFunction *MF = MI.getParent()->getParent(); 199 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 200 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 201 Register FP = TRI->getFrameRegister(*MF); 202 Register Reg = Op.getReg(); 203 204 return Reg && Reg != SP && Reg != FP; 205 } 206 207 namespace { 208 209 // Max out the number of statically allocated elements in DefinedRegsSet, as 210 // this prevents fallback to std::set::count() operations. 211 using DefinedRegsSet = SmallSet<Register, 32>; 212 213 using VarLocSet = CoalescingBitVector<uint64_t>; 214 215 /// A type-checked pair of {Register Location (or 0), Index}, used to index 216 /// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int 217 /// for insertion into a \ref VarLocSet, and efficiently converted back. The 218 /// type-checker helps ensure that the conversions aren't lossy. 219 /// 220 /// Why encode a location /into/ the VarLocMap index? This makes it possible 221 /// to find the open VarLocs killed by a register def very quickly. This is a 222 /// performance-critical operation for LiveDebugValues. 223 struct LocIndex { 224 using u32_location_t = uint32_t; 225 using u32_index_t = uint32_t; 226 227 u32_location_t Location; // Physical registers live in the range [1;2^30) (see 228 // \ref MCRegister), so we have plenty of range left 229 // here to encode non-register locations. 230 u32_index_t Index; 231 232 /// The first location greater than 0 that is not reserved for VarLocs of 233 /// kind RegisterKind. 234 static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30; 235 236 /// A special location reserved for VarLocs of kind SpillLocKind. 237 static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation; 238 239 /// A special location reserved for VarLocs of kind EntryValueBackupKind and 240 /// EntryValueCopyBackupKind. 241 static constexpr u32_location_t kEntryValueBackupLocation = 242 kFirstInvalidRegLocation + 1; 243 244 LocIndex(u32_location_t Location, u32_index_t Index) 245 : Location(Location), Index(Index) {} 246 247 uint64_t getAsRawInteger() const { 248 return (static_cast<uint64_t>(Location) << 32) | Index; 249 } 250 251 template<typename IntT> static LocIndex fromRawInteger(IntT ID) { 252 static_assert(std::is_unsigned<IntT>::value && 253 sizeof(ID) == sizeof(uint64_t), 254 "Cannot convert raw integer to LocIndex"); 255 return {static_cast<u32_location_t>(ID >> 32), 256 static_cast<u32_index_t>(ID)}; 257 } 258 259 /// Get the start of the interval reserved for VarLocs of kind RegisterKind 260 /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1. 261 static uint64_t rawIndexForReg(uint32_t Reg) { 262 return LocIndex(Reg, 0).getAsRawInteger(); 263 } 264 265 /// Return a range covering all set indices in the interval reserved for 266 /// \p Location in \p Set. 267 static auto indexRangeForLocation(const VarLocSet &Set, 268 u32_location_t Location) { 269 uint64_t Start = LocIndex(Location, 0).getAsRawInteger(); 270 uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger(); 271 return Set.half_open_range(Start, End); 272 } 273 }; 274 275 class VarLocBasedLDV : public LDVImpl { 276 private: 277 const TargetRegisterInfo *TRI; 278 const TargetInstrInfo *TII; 279 const TargetFrameLowering *TFI; 280 TargetPassConfig *TPC; 281 BitVector CalleeSavedRegs; 282 LexicalScopes LS; 283 VarLocSet::Allocator Alloc; 284 285 enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore }; 286 287 using FragmentInfo = DIExpression::FragmentInfo; 288 using OptFragmentInfo = Optional<DIExpression::FragmentInfo>; 289 290 /// A pair of debug variable and value location. 291 struct VarLoc { 292 // The location at which a spilled variable resides. It consists of a 293 // register and an offset. 294 struct SpillLoc { 295 unsigned SpillBase; 296 StackOffset SpillOffset; 297 bool operator==(const SpillLoc &Other) const { 298 return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset; 299 } 300 bool operator!=(const SpillLoc &Other) const { 301 return !(*this == Other); 302 } 303 }; 304 305 /// Identity of the variable at this location. 306 const DebugVariable Var; 307 308 /// The expression applied to this location. 309 const DIExpression *Expr; 310 311 /// DBG_VALUE to clone var/expr information from if this location 312 /// is moved. 313 const MachineInstr &MI; 314 315 enum VarLocKind { 316 InvalidKind = 0, 317 RegisterKind, 318 SpillLocKind, 319 ImmediateKind, 320 EntryValueKind, 321 EntryValueBackupKind, 322 EntryValueCopyBackupKind 323 } Kind = InvalidKind; 324 325 /// The value location. Stored separately to avoid repeatedly 326 /// extracting it from MI. 327 union LocUnion { 328 uint64_t RegNo; 329 SpillLoc SpillLocation; 330 uint64_t Hash; 331 int64_t Immediate; 332 const ConstantFP *FPImm; 333 const ConstantInt *CImm; 334 LocUnion() : Hash(0) {} 335 } Loc; 336 337 VarLoc(const MachineInstr &MI, LexicalScopes &LS) 338 : Var(MI.getDebugVariable(), MI.getDebugExpression(), 339 MI.getDebugLoc()->getInlinedAt()), 340 Expr(MI.getDebugExpression()), MI(MI) { 341 assert(MI.isDebugValue() && "not a DBG_VALUE"); 342 assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE"); 343 if (int RegNo = isDbgValueDescribedByReg(MI)) { 344 Kind = RegisterKind; 345 Loc.RegNo = RegNo; 346 } else if (MI.getDebugOperand(0).isImm()) { 347 Kind = ImmediateKind; 348 Loc.Immediate = MI.getDebugOperand(0).getImm(); 349 } else if (MI.getDebugOperand(0).isFPImm()) { 350 Kind = ImmediateKind; 351 Loc.FPImm = MI.getDebugOperand(0).getFPImm(); 352 } else if (MI.getDebugOperand(0).isCImm()) { 353 Kind = ImmediateKind; 354 Loc.CImm = MI.getDebugOperand(0).getCImm(); 355 } 356 357 // We create the debug entry values from the factory functions rather than 358 // from this ctor. 359 assert(Kind != EntryValueKind && !isEntryBackupLoc()); 360 } 361 362 /// Take the variable and machine-location in DBG_VALUE MI, and build an 363 /// entry location using the given expression. 364 static VarLoc CreateEntryLoc(const MachineInstr &MI, LexicalScopes &LS, 365 const DIExpression *EntryExpr, Register Reg) { 366 VarLoc VL(MI, LS); 367 assert(VL.Kind == RegisterKind); 368 VL.Kind = EntryValueKind; 369 VL.Expr = EntryExpr; 370 VL.Loc.RegNo = Reg; 371 return VL; 372 } 373 374 /// Take the variable and machine-location from the DBG_VALUE (from the 375 /// function entry), and build an entry value backup location. The backup 376 /// location will turn into the normal location if the backup is valid at 377 /// the time of the primary location clobbering. 378 static VarLoc CreateEntryBackupLoc(const MachineInstr &MI, 379 LexicalScopes &LS, 380 const DIExpression *EntryExpr) { 381 VarLoc VL(MI, LS); 382 assert(VL.Kind == RegisterKind); 383 VL.Kind = EntryValueBackupKind; 384 VL.Expr = EntryExpr; 385 return VL; 386 } 387 388 /// Take the variable and machine-location from the DBG_VALUE (from the 389 /// function entry), and build a copy of an entry value backup location by 390 /// setting the register location to NewReg. 391 static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI, 392 LexicalScopes &LS, 393 const DIExpression *EntryExpr, 394 Register NewReg) { 395 VarLoc VL(MI, LS); 396 assert(VL.Kind == RegisterKind); 397 VL.Kind = EntryValueCopyBackupKind; 398 VL.Expr = EntryExpr; 399 VL.Loc.RegNo = NewReg; 400 return VL; 401 } 402 403 /// Copy the register location in DBG_VALUE MI, updating the register to 404 /// be NewReg. 405 static VarLoc CreateCopyLoc(const MachineInstr &MI, LexicalScopes &LS, 406 Register NewReg) { 407 VarLoc VL(MI, LS); 408 assert(VL.Kind == RegisterKind); 409 VL.Loc.RegNo = NewReg; 410 return VL; 411 } 412 413 /// Take the variable described by DBG_VALUE MI, and create a VarLoc 414 /// locating it in the specified spill location. 415 static VarLoc CreateSpillLoc(const MachineInstr &MI, unsigned SpillBase, 416 StackOffset SpillOffset, LexicalScopes &LS) { 417 VarLoc VL(MI, LS); 418 assert(VL.Kind == RegisterKind); 419 VL.Kind = SpillLocKind; 420 VL.Loc.SpillLocation = {SpillBase, SpillOffset}; 421 return VL; 422 } 423 424 /// Create a DBG_VALUE representing this VarLoc in the given function. 425 /// Copies variable-specific information such as DILocalVariable and 426 /// inlining information from the original DBG_VALUE instruction, which may 427 /// have been several transfers ago. 428 MachineInstr *BuildDbgValue(MachineFunction &MF) const { 429 const DebugLoc &DbgLoc = MI.getDebugLoc(); 430 bool Indirect = MI.isIndirectDebugValue(); 431 const auto &IID = MI.getDesc(); 432 const DILocalVariable *Var = MI.getDebugVariable(); 433 const DIExpression *DIExpr = MI.getDebugExpression(); 434 NumInserted++; 435 436 switch (Kind) { 437 case EntryValueKind: 438 // An entry value is a register location -- but with an updated 439 // expression. The register location of such DBG_VALUE is always the one 440 // from the entry DBG_VALUE, it does not matter if the entry value was 441 // copied in to another register due to some optimizations. 442 return BuildMI(MF, DbgLoc, IID, Indirect, 443 MI.getDebugOperand(0).getReg(), Var, Expr); 444 case RegisterKind: 445 // Register locations are like the source DBG_VALUE, but with the 446 // register number from this VarLoc. 447 return BuildMI(MF, DbgLoc, IID, Indirect, Loc.RegNo, Var, DIExpr); 448 case SpillLocKind: { 449 // Spills are indirect DBG_VALUEs, with a base register and offset. 450 // Use the original DBG_VALUEs expression to build the spilt location 451 // on top of. FIXME: spill locations created before this pass runs 452 // are not recognized, and not handled here. 453 auto *TRI = MF.getSubtarget().getRegisterInfo(); 454 auto *SpillExpr = TRI->prependOffsetExpression( 455 DIExpr, DIExpression::ApplyOffset, Loc.SpillLocation.SpillOffset); 456 unsigned Base = Loc.SpillLocation.SpillBase; 457 return BuildMI(MF, DbgLoc, IID, true, Base, Var, SpillExpr); 458 } 459 case ImmediateKind: { 460 MachineOperand MO = MI.getDebugOperand(0); 461 return BuildMI(MF, DbgLoc, IID, Indirect, MO, Var, DIExpr); 462 } 463 case EntryValueBackupKind: 464 case EntryValueCopyBackupKind: 465 case InvalidKind: 466 llvm_unreachable( 467 "Tried to produce DBG_VALUE for invalid or backup VarLoc"); 468 } 469 llvm_unreachable("Unrecognized VarLocBasedLDV.VarLoc.Kind enum"); 470 } 471 472 /// Is the Loc field a constant or constant object? 473 bool isConstant() const { return Kind == ImmediateKind; } 474 475 /// Check if the Loc field is an entry backup location. 476 bool isEntryBackupLoc() const { 477 return Kind == EntryValueBackupKind || Kind == EntryValueCopyBackupKind; 478 } 479 480 /// If this variable is described by a register holding the entry value, 481 /// return it, otherwise return 0. 482 unsigned getEntryValueBackupReg() const { 483 if (Kind == EntryValueBackupKind) 484 return Loc.RegNo; 485 return 0; 486 } 487 488 /// If this variable is described by a register holding the copy of the 489 /// entry value, return it, otherwise return 0. 490 unsigned getEntryValueCopyBackupReg() const { 491 if (Kind == EntryValueCopyBackupKind) 492 return Loc.RegNo; 493 return 0; 494 } 495 496 /// If this variable is described by a register, return it, 497 /// otherwise return 0. 498 unsigned isDescribedByReg() const { 499 if (Kind == RegisterKind) 500 return Loc.RegNo; 501 return 0; 502 } 503 504 /// Determine whether the lexical scope of this value's debug location 505 /// dominates MBB. 506 bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const { 507 return LS.dominates(MI.getDebugLoc().get(), &MBB); 508 } 509 510 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 511 // TRI can be null. 512 void dump(const TargetRegisterInfo *TRI, raw_ostream &Out = dbgs()) const { 513 Out << "VarLoc("; 514 switch (Kind) { 515 case RegisterKind: 516 case EntryValueKind: 517 case EntryValueBackupKind: 518 case EntryValueCopyBackupKind: 519 Out << printReg(Loc.RegNo, TRI); 520 break; 521 case SpillLocKind: 522 Out << printReg(Loc.SpillLocation.SpillBase, TRI); 523 Out << "[" << Loc.SpillLocation.SpillOffset.getFixed() << " + " 524 << Loc.SpillLocation.SpillOffset.getScalable() << "x vscale" 525 << "]"; 526 break; 527 case ImmediateKind: 528 Out << Loc.Immediate; 529 break; 530 case InvalidKind: 531 llvm_unreachable("Invalid VarLoc in dump method"); 532 } 533 534 Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", "; 535 if (Var.getInlinedAt()) 536 Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n"; 537 else 538 Out << "(null))"; 539 540 if (isEntryBackupLoc()) 541 Out << " (backup loc)\n"; 542 else 543 Out << "\n"; 544 } 545 #endif 546 547 bool operator==(const VarLoc &Other) const { 548 if (Kind != Other.Kind || !(Var == Other.Var) || Expr != Other.Expr) 549 return false; 550 551 switch (Kind) { 552 case SpillLocKind: 553 return Loc.SpillLocation == Other.Loc.SpillLocation; 554 case RegisterKind: 555 case ImmediateKind: 556 case EntryValueKind: 557 case EntryValueBackupKind: 558 case EntryValueCopyBackupKind: 559 return Loc.Hash == Other.Loc.Hash; 560 default: 561 llvm_unreachable("Invalid kind"); 562 } 563 } 564 565 /// This operator guarantees that VarLocs are sorted by Variable first. 566 bool operator<(const VarLoc &Other) const { 567 switch (Kind) { 568 case SpillLocKind: 569 return std::make_tuple(Var, Kind, Loc.SpillLocation.SpillBase, 570 Loc.SpillLocation.SpillOffset.getFixed(), 571 Loc.SpillLocation.SpillOffset.getScalable(), 572 Expr) < 573 std::make_tuple( 574 Other.Var, Other.Kind, Other.Loc.SpillLocation.SpillBase, 575 Other.Loc.SpillLocation.SpillOffset.getFixed(), 576 Other.Loc.SpillLocation.SpillOffset.getScalable(), 577 Other.Expr); 578 case RegisterKind: 579 case ImmediateKind: 580 case EntryValueKind: 581 case EntryValueBackupKind: 582 case EntryValueCopyBackupKind: 583 return std::tie(Var, Kind, Loc.Hash, Expr) < 584 std::tie(Other.Var, Other.Kind, Other.Loc.Hash, Other.Expr); 585 default: 586 llvm_unreachable("Invalid kind"); 587 } 588 } 589 }; 590 591 /// VarLocMap is used for two things: 592 /// 1) Assigning a unique LocIndex to a VarLoc. This LocIndex can be used to 593 /// virtually insert a VarLoc into a VarLocSet. 594 /// 2) Given a LocIndex, look up the unique associated VarLoc. 595 class VarLocMap { 596 /// Map a VarLoc to an index within the vector reserved for its location 597 /// within Loc2Vars. 598 std::map<VarLoc, LocIndex::u32_index_t> Var2Index; 599 600 /// Map a location to a vector which holds VarLocs which live in that 601 /// location. 602 SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars; 603 604 /// Determine the 32-bit location reserved for \p VL, based on its kind. 605 static LocIndex::u32_location_t getLocationForVar(const VarLoc &VL) { 606 switch (VL.Kind) { 607 case VarLoc::RegisterKind: 608 assert((VL.Loc.RegNo < LocIndex::kFirstInvalidRegLocation) && 609 "Physreg out of range?"); 610 return VL.Loc.RegNo; 611 case VarLoc::SpillLocKind: 612 return LocIndex::kSpillLocation; 613 case VarLoc::EntryValueBackupKind: 614 case VarLoc::EntryValueCopyBackupKind: 615 return LocIndex::kEntryValueBackupLocation; 616 default: 617 return 0; 618 } 619 } 620 621 public: 622 /// Retrieve a unique LocIndex for \p VL. 623 LocIndex insert(const VarLoc &VL) { 624 LocIndex::u32_location_t Location = getLocationForVar(VL); 625 LocIndex::u32_index_t &Index = Var2Index[VL]; 626 if (!Index) { 627 auto &Vars = Loc2Vars[Location]; 628 Vars.push_back(VL); 629 Index = Vars.size(); 630 } 631 return {Location, Index - 1}; 632 } 633 634 /// Retrieve the unique VarLoc associated with \p ID. 635 const VarLoc &operator[](LocIndex ID) const { 636 auto LocIt = Loc2Vars.find(ID.Location); 637 assert(LocIt != Loc2Vars.end() && "Location not tracked"); 638 return LocIt->second[ID.Index]; 639 } 640 }; 641 642 using VarLocInMBB = 643 SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>; 644 struct TransferDebugPair { 645 MachineInstr *TransferInst; ///< Instruction where this transfer occurs. 646 LocIndex LocationID; ///< Location number for the transfer dest. 647 }; 648 using TransferMap = SmallVector<TransferDebugPair, 4>; 649 650 // Types for recording sets of variable fragments that overlap. For a given 651 // local variable, we record all other fragments of that variable that could 652 // overlap it, to reduce search time. 653 using FragmentOfVar = 654 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; 655 using OverlapMap = 656 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; 657 658 // Helper while building OverlapMap, a map of all fragments seen for a given 659 // DILocalVariable. 660 using VarToFragments = 661 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; 662 663 /// This holds the working set of currently open ranges. For fast 664 /// access, this is done both as a set of VarLocIDs, and a map of 665 /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all 666 /// previous open ranges for the same variable. In addition, we keep 667 /// two different maps (Vars/EntryValuesBackupVars), so erase/insert 668 /// methods act differently depending on whether a VarLoc is primary 669 /// location or backup one. In the case the VarLoc is backup location 670 /// we will erase/insert from the EntryValuesBackupVars map, otherwise 671 /// we perform the operation on the Vars. 672 class OpenRangesSet { 673 VarLocSet VarLocs; 674 // Map the DebugVariable to recent primary location ID. 675 SmallDenseMap<DebugVariable, LocIndex, 8> Vars; 676 // Map the DebugVariable to recent backup location ID. 677 SmallDenseMap<DebugVariable, LocIndex, 8> EntryValuesBackupVars; 678 OverlapMap &OverlappingFragments; 679 680 public: 681 OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap) 682 : VarLocs(Alloc), OverlappingFragments(_OLapMap) {} 683 684 const VarLocSet &getVarLocs() const { return VarLocs; } 685 686 /// Terminate all open ranges for VL.Var by removing it from the set. 687 void erase(const VarLoc &VL); 688 689 /// Terminate all open ranges listed in \c KillSet by removing 690 /// them from the set. 691 void erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs); 692 693 /// Insert a new range into the set. 694 void insert(LocIndex VarLocID, const VarLoc &VL); 695 696 /// Insert a set of ranges. 697 void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map) { 698 for (uint64_t ID : ToLoad) { 699 LocIndex Idx = LocIndex::fromRawInteger(ID); 700 const VarLoc &VarL = Map[Idx]; 701 insert(Idx, VarL); 702 } 703 } 704 705 llvm::Optional<LocIndex> getEntryValueBackup(DebugVariable Var); 706 707 /// Empty the set. 708 void clear() { 709 VarLocs.clear(); 710 Vars.clear(); 711 EntryValuesBackupVars.clear(); 712 } 713 714 /// Return whether the set is empty or not. 715 bool empty() const { 716 assert(Vars.empty() == EntryValuesBackupVars.empty() && 717 Vars.empty() == VarLocs.empty() && 718 "open ranges are inconsistent"); 719 return VarLocs.empty(); 720 } 721 722 /// Get an empty range of VarLoc IDs. 723 auto getEmptyVarLocRange() const { 724 return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(), 725 getVarLocs().end()); 726 } 727 728 /// Get all set IDs for VarLocs of kind RegisterKind in \p Reg. 729 auto getRegisterVarLocs(Register Reg) const { 730 return LocIndex::indexRangeForLocation(getVarLocs(), Reg); 731 } 732 733 /// Get all set IDs for VarLocs of kind SpillLocKind. 734 auto getSpillVarLocs() const { 735 return LocIndex::indexRangeForLocation(getVarLocs(), 736 LocIndex::kSpillLocation); 737 } 738 739 /// Get all set IDs for VarLocs of kind EntryValueBackupKind or 740 /// EntryValueCopyBackupKind. 741 auto getEntryValueBackupVarLocs() const { 742 return LocIndex::indexRangeForLocation( 743 getVarLocs(), LocIndex::kEntryValueBackupLocation); 744 } 745 }; 746 747 /// Collect all VarLoc IDs from \p CollectFrom for VarLocs of kind 748 /// RegisterKind which are located in any reg in \p Regs. Insert collected IDs 749 /// into \p Collected. 750 void collectIDsForRegs(VarLocSet &Collected, const DefinedRegsSet &Regs, 751 const VarLocSet &CollectFrom) const; 752 753 /// Get the registers which are used by VarLocs of kind RegisterKind tracked 754 /// by \p CollectFrom. 755 void getUsedRegs(const VarLocSet &CollectFrom, 756 SmallVectorImpl<uint32_t> &UsedRegs) const; 757 758 VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) { 759 std::unique_ptr<VarLocSet> &VLS = Locs[MBB]; 760 if (!VLS) 761 VLS = std::make_unique<VarLocSet>(Alloc); 762 return *VLS.get(); 763 } 764 765 const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, 766 const VarLocInMBB &Locs) const { 767 auto It = Locs.find(MBB); 768 assert(It != Locs.end() && "MBB not in map"); 769 return *It->second.get(); 770 } 771 772 /// Tests whether this instruction is a spill to a stack location. 773 bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); 774 775 /// Decide if @MI is a spill instruction and return true if it is. We use 2 776 /// criteria to make this decision: 777 /// - Is this instruction a store to a spill slot? 778 /// - Is there a register operand that is both used and killed? 779 /// TODO: Store optimization can fold spills into other stores (including 780 /// other spills). We do not handle this yet (more than one memory operand). 781 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, 782 Register &Reg); 783 784 /// Returns true if the given machine instruction is a debug value which we 785 /// can emit entry values for. 786 /// 787 /// Currently, we generate debug entry values only for parameters that are 788 /// unmodified throughout the function and located in a register. 789 bool isEntryValueCandidate(const MachineInstr &MI, 790 const DefinedRegsSet &Regs) const; 791 792 /// If a given instruction is identified as a spill, return the spill location 793 /// and set \p Reg to the spilled register. 794 Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI, 795 MachineFunction *MF, 796 Register &Reg); 797 /// Given a spill instruction, extract the register and offset used to 798 /// address the spill location in a target independent way. 799 VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); 800 void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges, 801 TransferMap &Transfers, VarLocMap &VarLocIDs, 802 LocIndex OldVarID, TransferKind Kind, 803 Register NewReg = Register()); 804 805 void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, 806 VarLocMap &VarLocIDs); 807 void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges, 808 VarLocMap &VarLocIDs, TransferMap &Transfers); 809 bool removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, 810 VarLocMap &VarLocIDs, const VarLoc &EntryVL); 811 void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges, 812 VarLocMap &VarLocIDs, TransferMap &Transfers, 813 VarLocSet &KillSet); 814 void recordEntryValue(const MachineInstr &MI, 815 const DefinedRegsSet &DefinedRegs, 816 OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs); 817 void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges, 818 VarLocMap &VarLocIDs, TransferMap &Transfers); 819 void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges, 820 VarLocMap &VarLocIDs, TransferMap &Transfers); 821 bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges, 822 VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs); 823 824 void process(MachineInstr &MI, OpenRangesSet &OpenRanges, 825 VarLocMap &VarLocIDs, TransferMap &Transfers); 826 827 void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments, 828 OverlapMap &OLapMap); 829 830 bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, 831 const VarLocMap &VarLocIDs, 832 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 833 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks); 834 835 /// Create DBG_VALUE insts for inlocs that have been propagated but 836 /// had their instruction creation deferred. 837 void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs); 838 839 bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override; 840 841 public: 842 /// Default construct and initialize the pass. 843 VarLocBasedLDV(); 844 845 ~VarLocBasedLDV(); 846 847 /// Print to ostream with a message. 848 void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V, 849 const VarLocMap &VarLocIDs, const char *msg, 850 raw_ostream &Out) const; 851 }; 852 853 } // end anonymous namespace 854 855 //===----------------------------------------------------------------------===// 856 // Implementation 857 //===----------------------------------------------------------------------===// 858 859 VarLocBasedLDV::VarLocBasedLDV() { } 860 861 VarLocBasedLDV::~VarLocBasedLDV() { } 862 863 /// Erase a variable from the set of open ranges, and additionally erase any 864 /// fragments that may overlap it. If the VarLoc is a backup location, erase 865 /// the variable from the EntryValuesBackupVars set, indicating we should stop 866 /// tracking its backup entry location. Otherwise, if the VarLoc is primary 867 /// location, erase the variable from the Vars set. 868 void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) { 869 // Erasure helper. 870 auto DoErase = [VL, this](DebugVariable VarToErase) { 871 auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 872 auto It = EraseFrom->find(VarToErase); 873 if (It != EraseFrom->end()) { 874 LocIndex ID = It->second; 875 VarLocs.reset(ID.getAsRawInteger()); 876 EraseFrom->erase(It); 877 } 878 }; 879 880 DebugVariable Var = VL.Var; 881 882 // Erase the variable/fragment that ends here. 883 DoErase(Var); 884 885 // Extract the fragment. Interpret an empty fragment as one that covers all 886 // possible bits. 887 FragmentInfo ThisFragment = Var.getFragmentOrDefault(); 888 889 // There may be fragments that overlap the designated fragment. Look them up 890 // in the pre-computed overlap map, and erase them too. 891 auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment}); 892 if (MapIt != OverlappingFragments.end()) { 893 for (auto Fragment : MapIt->second) { 894 VarLocBasedLDV::OptFragmentInfo FragmentHolder; 895 if (!DebugVariable::isDefaultFragment(Fragment)) 896 FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment); 897 DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()}); 898 } 899 } 900 } 901 902 void VarLocBasedLDV::OpenRangesSet::erase(const VarLocSet &KillSet, 903 const VarLocMap &VarLocIDs) { 904 VarLocs.intersectWithComplement(KillSet); 905 for (uint64_t ID : KillSet) { 906 const VarLoc *VL = &VarLocIDs[LocIndex::fromRawInteger(ID)]; 907 auto *EraseFrom = VL->isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 908 EraseFrom->erase(VL->Var); 909 } 910 } 911 912 void VarLocBasedLDV::OpenRangesSet::insert(LocIndex VarLocID, 913 const VarLoc &VL) { 914 auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 915 VarLocs.set(VarLocID.getAsRawInteger()); 916 InsertInto->insert({VL.Var, VarLocID}); 917 } 918 919 /// Return the Loc ID of an entry value backup location, if it exists for the 920 /// variable. 921 llvm::Optional<LocIndex> 922 VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) { 923 auto It = EntryValuesBackupVars.find(Var); 924 if (It != EntryValuesBackupVars.end()) 925 return It->second; 926 927 return llvm::None; 928 } 929 930 void VarLocBasedLDV::collectIDsForRegs(VarLocSet &Collected, 931 const DefinedRegsSet &Regs, 932 const VarLocSet &CollectFrom) const { 933 assert(!Regs.empty() && "Nothing to collect"); 934 SmallVector<uint32_t, 32> SortedRegs; 935 append_range(SortedRegs, Regs); 936 array_pod_sort(SortedRegs.begin(), SortedRegs.end()); 937 auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front())); 938 auto End = CollectFrom.end(); 939 for (uint32_t Reg : SortedRegs) { 940 // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all 941 // possible VarLoc IDs for VarLocs of kind RegisterKind which live in Reg. 942 uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg); 943 uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1); 944 It.advanceToLowerBound(FirstIndexForReg); 945 946 // Iterate through that half-open interval and collect all the set IDs. 947 for (; It != End && *It < FirstInvalidIndex; ++It) 948 Collected.set(*It); 949 950 if (It == End) 951 return; 952 } 953 } 954 955 void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom, 956 SmallVectorImpl<uint32_t> &UsedRegs) const { 957 // All register-based VarLocs are assigned indices greater than or equal to 958 // FirstRegIndex. 959 uint64_t FirstRegIndex = LocIndex::rawIndexForReg(1); 960 uint64_t FirstInvalidIndex = 961 LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation); 962 for (auto It = CollectFrom.find(FirstRegIndex), 963 End = CollectFrom.find(FirstInvalidIndex); 964 It != End;) { 965 // We found a VarLoc ID for a VarLoc that lives in a register. Figure out 966 // which register and add it to UsedRegs. 967 uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location; 968 assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) && 969 "Duplicate used reg"); 970 UsedRegs.push_back(FoundReg); 971 972 // Skip to the next /set/ register. Note that this finds a lower bound, so 973 // even if there aren't any VarLocs living in `FoundReg+1`, we're still 974 // guaranteed to move on to the next register (or to end()). 975 uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1); 976 It.advanceToLowerBound(NextRegIndex); 977 } 978 } 979 980 //===----------------------------------------------------------------------===// 981 // Debug Range Extension Implementation 982 //===----------------------------------------------------------------------===// 983 984 #ifndef NDEBUG 985 void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF, 986 const VarLocInMBB &V, 987 const VarLocMap &VarLocIDs, 988 const char *msg, 989 raw_ostream &Out) const { 990 Out << '\n' << msg << '\n'; 991 for (const MachineBasicBlock &BB : MF) { 992 if (!V.count(&BB)) 993 continue; 994 const VarLocSet &L = getVarLocsInMBB(&BB, V); 995 if (L.empty()) 996 continue; 997 Out << "MBB: " << BB.getNumber() << ":\n"; 998 for (uint64_t VLL : L) { 999 const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(VLL)]; 1000 Out << " Var: " << VL.Var.getVariable()->getName(); 1001 Out << " MI: "; 1002 VL.dump(TRI, Out); 1003 } 1004 } 1005 Out << "\n"; 1006 } 1007 #endif 1008 1009 VarLocBasedLDV::VarLoc::SpillLoc 1010 VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { 1011 assert(MI.hasOneMemOperand() && 1012 "Spill instruction does not have exactly one memory operand?"); 1013 auto MMOI = MI.memoperands_begin(); 1014 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 1015 assert(PVal->kind() == PseudoSourceValue::FixedStack && 1016 "Inconsistent memory operand in spill instruction"); 1017 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); 1018 const MachineBasicBlock *MBB = MI.getParent(); 1019 Register Reg; 1020 StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); 1021 return {Reg, Offset}; 1022 } 1023 1024 /// Try to salvage the debug entry value if we encounter a new debug value 1025 /// describing the same parameter, otherwise stop tracking the value. Return 1026 /// true if we should stop tracking the entry value, otherwise return false. 1027 bool VarLocBasedLDV::removeEntryValue(const MachineInstr &MI, 1028 OpenRangesSet &OpenRanges, 1029 VarLocMap &VarLocIDs, 1030 const VarLoc &EntryVL) { 1031 // Skip the DBG_VALUE which is the debug entry value itself. 1032 if (MI.isIdenticalTo(EntryVL.MI)) 1033 return false; 1034 1035 // If the parameter's location is not register location, we can not track 1036 // the entry value any more. In addition, if the debug expression from the 1037 // DBG_VALUE is not empty, we can assume the parameter's value has changed 1038 // indicating that we should stop tracking its entry value as well. 1039 if (!MI.getDebugOperand(0).isReg() || 1040 MI.getDebugExpression()->getNumElements() != 0) 1041 return true; 1042 1043 // If the DBG_VALUE comes from a copy instruction that copies the entry value, 1044 // it means the parameter's value has not changed and we should be able to use 1045 // its entry value. 1046 bool TrySalvageEntryValue = false; 1047 Register Reg = MI.getDebugOperand(0).getReg(); 1048 auto I = std::next(MI.getReverseIterator()); 1049 const MachineOperand *SrcRegOp, *DestRegOp; 1050 if (I != MI.getParent()->rend()) { 1051 // TODO: Try to keep tracking of an entry value if we encounter a propagated 1052 // DBG_VALUE describing the copy of the entry value. (Propagated entry value 1053 // does not indicate the parameter modification.) 1054 auto DestSrc = TII->isCopyInstr(*I); 1055 if (!DestSrc) 1056 return true; 1057 1058 SrcRegOp = DestSrc->Source; 1059 DestRegOp = DestSrc->Destination; 1060 if (Reg != DestRegOp->getReg()) 1061 return true; 1062 TrySalvageEntryValue = true; 1063 } 1064 1065 if (TrySalvageEntryValue) { 1066 for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { 1067 const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)]; 1068 if (VL.getEntryValueCopyBackupReg() == Reg && 1069 VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg()) 1070 return false; 1071 } 1072 } 1073 1074 return true; 1075 } 1076 1077 /// End all previous ranges related to @MI and start a new range from @MI 1078 /// if it is a DBG_VALUE instr. 1079 void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI, 1080 OpenRangesSet &OpenRanges, 1081 VarLocMap &VarLocIDs) { 1082 if (!MI.isDebugValue()) 1083 return; 1084 const DILocalVariable *Var = MI.getDebugVariable(); 1085 const DIExpression *Expr = MI.getDebugExpression(); 1086 const DILocation *DebugLoc = MI.getDebugLoc(); 1087 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 1088 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 1089 "Expected inlined-at fields to agree"); 1090 1091 DebugVariable V(Var, Expr, InlinedAt); 1092 1093 // Check if this DBG_VALUE indicates a parameter's value changing. 1094 // If that is the case, we should stop tracking its entry value. 1095 auto EntryValBackupID = OpenRanges.getEntryValueBackup(V); 1096 if (Var->isParameter() && EntryValBackupID) { 1097 const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID]; 1098 if (removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL)) { 1099 LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: "; 1100 MI.print(dbgs(), /*IsStandalone*/ false, 1101 /*SkipOpers*/ false, /*SkipDebugLoc*/ false, 1102 /*AddNewLine*/ true, TII)); 1103 OpenRanges.erase(EntryVL); 1104 } 1105 } 1106 1107 if (isDbgValueDescribedByReg(MI) || MI.getDebugOperand(0).isImm() || 1108 MI.getDebugOperand(0).isFPImm() || MI.getDebugOperand(0).isCImm()) { 1109 // Use normal VarLoc constructor for registers and immediates. 1110 VarLoc VL(MI, LS); 1111 // End all previous ranges of VL.Var. 1112 OpenRanges.erase(VL); 1113 1114 LocIndex ID = VarLocIDs.insert(VL); 1115 // Add the VarLoc to OpenRanges from this DBG_VALUE. 1116 OpenRanges.insert(ID, VL); 1117 } else if (MI.hasOneMemOperand()) { 1118 llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?"); 1119 } else { 1120 // This must be an undefined location. If it has an open range, erase it. 1121 assert(MI.getDebugOperand(0).isReg() && 1122 MI.getDebugOperand(0).getReg() == 0 && 1123 "Unexpected non-undef DBG_VALUE encountered"); 1124 VarLoc VL(MI, LS); 1125 OpenRanges.erase(VL); 1126 } 1127 } 1128 1129 /// Turn the entry value backup locations into primary locations. 1130 void VarLocBasedLDV::emitEntryValues(MachineInstr &MI, 1131 OpenRangesSet &OpenRanges, 1132 VarLocMap &VarLocIDs, 1133 TransferMap &Transfers, 1134 VarLocSet &KillSet) { 1135 // Do not insert entry value locations after a terminator. 1136 if (MI.isTerminator()) 1137 return; 1138 1139 for (uint64_t ID : KillSet) { 1140 LocIndex Idx = LocIndex::fromRawInteger(ID); 1141 const VarLoc &VL = VarLocIDs[Idx]; 1142 if (!VL.Var.getVariable()->isParameter()) 1143 continue; 1144 1145 auto DebugVar = VL.Var; 1146 Optional<LocIndex> EntryValBackupID = 1147 OpenRanges.getEntryValueBackup(DebugVar); 1148 1149 // If the parameter has the entry value backup, it means we should 1150 // be able to use its entry value. 1151 if (!EntryValBackupID) 1152 continue; 1153 1154 const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID]; 1155 VarLoc EntryLoc = 1156 VarLoc::CreateEntryLoc(EntryVL.MI, LS, EntryVL.Expr, EntryVL.Loc.RegNo); 1157 LocIndex EntryValueID = VarLocIDs.insert(EntryLoc); 1158 Transfers.push_back({&MI, EntryValueID}); 1159 OpenRanges.insert(EntryValueID, EntryLoc); 1160 } 1161 } 1162 1163 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc 1164 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with 1165 /// new VarLoc. If \p NewReg is different than default zero value then the 1166 /// new location will be register location created by the copy like instruction, 1167 /// otherwise it is variable's location on the stack. 1168 void VarLocBasedLDV::insertTransferDebugPair( 1169 MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers, 1170 VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind, 1171 Register NewReg) { 1172 const MachineInstr *DebugInstr = &VarLocIDs[OldVarID].MI; 1173 1174 auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) { 1175 LocIndex LocId = VarLocIDs.insert(VL); 1176 1177 // Close this variable's previous location range. 1178 OpenRanges.erase(VL); 1179 1180 // Record the new location as an open range, and a postponed transfer 1181 // inserting a DBG_VALUE for this location. 1182 OpenRanges.insert(LocId, VL); 1183 assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator"); 1184 TransferDebugPair MIP = {&MI, LocId}; 1185 Transfers.push_back(MIP); 1186 }; 1187 1188 // End all previous ranges of VL.Var. 1189 OpenRanges.erase(VarLocIDs[OldVarID]); 1190 switch (Kind) { 1191 case TransferKind::TransferCopy: { 1192 assert(NewReg && 1193 "No register supplied when handling a copy of a debug value"); 1194 // Create a DBG_VALUE instruction to describe the Var in its new 1195 // register location. 1196 VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg); 1197 ProcessVarLoc(VL); 1198 LLVM_DEBUG({ 1199 dbgs() << "Creating VarLoc for register copy:"; 1200 VL.dump(TRI); 1201 }); 1202 return; 1203 } 1204 case TransferKind::TransferSpill: { 1205 // Create a DBG_VALUE instruction to describe the Var in its spilled 1206 // location. 1207 VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI); 1208 VarLoc VL = VarLoc::CreateSpillLoc(*DebugInstr, SpillLocation.SpillBase, 1209 SpillLocation.SpillOffset, LS); 1210 ProcessVarLoc(VL); 1211 LLVM_DEBUG({ 1212 dbgs() << "Creating VarLoc for spill:"; 1213 VL.dump(TRI); 1214 }); 1215 return; 1216 } 1217 case TransferKind::TransferRestore: { 1218 assert(NewReg && 1219 "No register supplied when handling a restore of a debug value"); 1220 // DebugInstr refers to the pre-spill location, therefore we can reuse 1221 // its expression. 1222 VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg); 1223 ProcessVarLoc(VL); 1224 LLVM_DEBUG({ 1225 dbgs() << "Creating VarLoc for restore:"; 1226 VL.dump(TRI); 1227 }); 1228 return; 1229 } 1230 } 1231 llvm_unreachable("Invalid transfer kind"); 1232 } 1233 1234 /// A definition of a register may mark the end of a range. 1235 void VarLocBasedLDV::transferRegisterDef( 1236 MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, 1237 TransferMap &Transfers) { 1238 1239 // Meta Instructions do not affect the debug liveness of any register they 1240 // define. 1241 if (MI.isMetaInstruction()) 1242 return; 1243 1244 MachineFunction *MF = MI.getMF(); 1245 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1246 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 1247 1248 // Find the regs killed by MI, and find regmasks of preserved regs. 1249 DefinedRegsSet DeadRegs; 1250 SmallVector<const uint32_t *, 4> RegMasks; 1251 for (const MachineOperand &MO : MI.operands()) { 1252 // Determine whether the operand is a register def. 1253 if (MO.isReg() && MO.isDef() && MO.getReg() && 1254 Register::isPhysicalRegister(MO.getReg()) && 1255 !(MI.isCall() && MO.getReg() == SP)) { 1256 // Remove ranges of all aliased registers. 1257 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1258 // FIXME: Can we break out of this loop early if no insertion occurs? 1259 DeadRegs.insert(*RAI); 1260 } else if (MO.isRegMask()) { 1261 RegMasks.push_back(MO.getRegMask()); 1262 } 1263 } 1264 1265 // Erase VarLocs which reside in one of the dead registers. For performance 1266 // reasons, it's critical to not iterate over the full set of open VarLocs. 1267 // Iterate over the set of dying/used regs instead. 1268 if (!RegMasks.empty()) { 1269 SmallVector<uint32_t, 32> UsedRegs; 1270 getUsedRegs(OpenRanges.getVarLocs(), UsedRegs); 1271 for (uint32_t Reg : UsedRegs) { 1272 // Remove ranges of all clobbered registers. Register masks don't usually 1273 // list SP as preserved. Assume that call instructions never clobber SP, 1274 // because some backends (e.g., AArch64) never list SP in the regmask. 1275 // While the debug info may be off for an instruction or two around 1276 // callee-cleanup calls, transferring the DEBUG_VALUE across the call is 1277 // still a better user experience. 1278 if (Reg == SP) 1279 continue; 1280 bool AnyRegMaskKillsReg = 1281 any_of(RegMasks, [Reg](const uint32_t *RegMask) { 1282 return MachineOperand::clobbersPhysReg(RegMask, Reg); 1283 }); 1284 if (AnyRegMaskKillsReg) 1285 DeadRegs.insert(Reg); 1286 } 1287 } 1288 1289 if (DeadRegs.empty()) 1290 return; 1291 1292 VarLocSet KillSet(Alloc); 1293 collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs()); 1294 OpenRanges.erase(KillSet, VarLocIDs); 1295 1296 if (TPC) { 1297 auto &TM = TPC->getTM<TargetMachine>(); 1298 if (TM.Options.ShouldEmitDebugEntryValues()) 1299 emitEntryValues(MI, OpenRanges, VarLocIDs, Transfers, KillSet); 1300 } 1301 } 1302 1303 bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI, 1304 MachineFunction *MF) { 1305 // TODO: Handle multiple stores folded into one. 1306 if (!MI.hasOneMemOperand()) 1307 return false; 1308 1309 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) 1310 return false; // This is not a spill instruction, since no valid size was 1311 // returned from either function. 1312 1313 return true; 1314 } 1315 1316 bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI, 1317 MachineFunction *MF, Register &Reg) { 1318 if (!isSpillInstruction(MI, MF)) 1319 return false; 1320 1321 auto isKilledReg = [&](const MachineOperand MO, Register &Reg) { 1322 if (!MO.isReg() || !MO.isUse()) { 1323 Reg = 0; 1324 return false; 1325 } 1326 Reg = MO.getReg(); 1327 return MO.isKill(); 1328 }; 1329 1330 for (const MachineOperand &MO : MI.operands()) { 1331 // In a spill instruction generated by the InlineSpiller the spilled 1332 // register has its kill flag set. 1333 if (isKilledReg(MO, Reg)) 1334 return true; 1335 if (Reg != 0) { 1336 // Check whether next instruction kills the spilled register. 1337 // FIXME: Current solution does not cover search for killed register in 1338 // bundles and instructions further down the chain. 1339 auto NextI = std::next(MI.getIterator()); 1340 // Skip next instruction that points to basic block end iterator. 1341 if (MI.getParent()->end() == NextI) 1342 continue; 1343 Register RegNext; 1344 for (const MachineOperand &MONext : NextI->operands()) { 1345 // Return true if we came across the register from the 1346 // previous spill instruction that is killed in NextI. 1347 if (isKilledReg(MONext, RegNext) && RegNext == Reg) 1348 return true; 1349 } 1350 } 1351 } 1352 // Return false if we didn't find spilled register. 1353 return false; 1354 } 1355 1356 Optional<VarLocBasedLDV::VarLoc::SpillLoc> 1357 VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI, 1358 MachineFunction *MF, Register &Reg) { 1359 if (!MI.hasOneMemOperand()) 1360 return None; 1361 1362 // FIXME: Handle folded restore instructions with more than one memory 1363 // operand. 1364 if (MI.getRestoreSize(TII)) { 1365 Reg = MI.getOperand(0).getReg(); 1366 return extractSpillBaseRegAndOffset(MI); 1367 } 1368 return None; 1369 } 1370 1371 /// A spilled register may indicate that we have to end the current range of 1372 /// a variable and create a new one for the spill location. 1373 /// A restored register may indicate the reverse situation. 1374 /// We don't want to insert any instructions in process(), so we just create 1375 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers. 1376 /// It will be inserted into the BB when we're done iterating over the 1377 /// instructions. 1378 void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI, 1379 OpenRangesSet &OpenRanges, 1380 VarLocMap &VarLocIDs, 1381 TransferMap &Transfers) { 1382 MachineFunction *MF = MI.getMF(); 1383 TransferKind TKind; 1384 Register Reg; 1385 Optional<VarLoc::SpillLoc> Loc; 1386 1387 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); 1388 1389 // First, if there are any DBG_VALUEs pointing at a spill slot that is 1390 // written to, then close the variable location. The value in memory 1391 // will have changed. 1392 VarLocSet KillSet(Alloc); 1393 if (isSpillInstruction(MI, MF)) { 1394 Loc = extractSpillBaseRegAndOffset(MI); 1395 for (uint64_t ID : OpenRanges.getSpillVarLocs()) { 1396 LocIndex Idx = LocIndex::fromRawInteger(ID); 1397 const VarLoc &VL = VarLocIDs[Idx]; 1398 assert(VL.Kind == VarLoc::SpillLocKind && "Broken VarLocSet?"); 1399 if (VL.Loc.SpillLocation == *Loc) { 1400 // This location is overwritten by the current instruction -- terminate 1401 // the open range, and insert an explicit DBG_VALUE $noreg. 1402 // 1403 // Doing this at a later stage would require re-interpreting all 1404 // DBG_VALUes and DIExpressions to identify whether they point at 1405 // memory, and then analysing all memory writes to see if they 1406 // overwrite that memory, which is expensive. 1407 // 1408 // At this stage, we already know which DBG_VALUEs are for spills and 1409 // where they are located; it's best to fix handle overwrites now. 1410 KillSet.set(ID); 1411 VarLoc UndefVL = VarLoc::CreateCopyLoc(VL.MI, LS, 0); 1412 LocIndex UndefLocID = VarLocIDs.insert(UndefVL); 1413 Transfers.push_back({&MI, UndefLocID}); 1414 } 1415 } 1416 OpenRanges.erase(KillSet, VarLocIDs); 1417 } 1418 1419 // Try to recognise spill and restore instructions that may create a new 1420 // variable location. 1421 if (isLocationSpill(MI, MF, Reg)) { 1422 TKind = TransferKind::TransferSpill; 1423 LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump();); 1424 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) 1425 << "\n"); 1426 } else { 1427 if (!(Loc = isRestoreInstruction(MI, MF, Reg))) 1428 return; 1429 TKind = TransferKind::TransferRestore; 1430 LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump();); 1431 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) 1432 << "\n"); 1433 } 1434 // Check if the register or spill location is the location of a debug value. 1435 auto TransferCandidates = OpenRanges.getEmptyVarLocRange(); 1436 if (TKind == TransferKind::TransferSpill) 1437 TransferCandidates = OpenRanges.getRegisterVarLocs(Reg); 1438 else if (TKind == TransferKind::TransferRestore) 1439 TransferCandidates = OpenRanges.getSpillVarLocs(); 1440 for (uint64_t ID : TransferCandidates) { 1441 LocIndex Idx = LocIndex::fromRawInteger(ID); 1442 const VarLoc &VL = VarLocIDs[Idx]; 1443 if (TKind == TransferKind::TransferSpill) { 1444 assert(VL.isDescribedByReg() == Reg && "Broken VarLocSet?"); 1445 LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '(' 1446 << VL.Var.getVariable()->getName() << ")\n"); 1447 } else { 1448 assert(TKind == TransferKind::TransferRestore && 1449 VL.Kind == VarLoc::SpillLocKind && "Broken VarLocSet?"); 1450 if (VL.Loc.SpillLocation != *Loc) 1451 // The spill location is not the location of a debug value. 1452 continue; 1453 LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '(' 1454 << VL.Var.getVariable()->getName() << ")\n"); 1455 } 1456 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind, 1457 Reg); 1458 // FIXME: A comment should explain why it's correct to return early here, 1459 // if that is in fact correct. 1460 return; 1461 } 1462 } 1463 1464 /// If \p MI is a register copy instruction, that copies a previously tracked 1465 /// value from one register to another register that is callee saved, we 1466 /// create new DBG_VALUE instruction described with copy destination register. 1467 void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI, 1468 OpenRangesSet &OpenRanges, 1469 VarLocMap &VarLocIDs, 1470 TransferMap &Transfers) { 1471 auto DestSrc = TII->isCopyInstr(MI); 1472 if (!DestSrc) 1473 return; 1474 1475 const MachineOperand *DestRegOp = DestSrc->Destination; 1476 const MachineOperand *SrcRegOp = DestSrc->Source; 1477 1478 if (!DestRegOp->isDef()) 1479 return; 1480 1481 auto isCalleeSavedReg = [&](Register Reg) { 1482 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1483 if (CalleeSavedRegs.test(*RAI)) 1484 return true; 1485 return false; 1486 }; 1487 1488 Register SrcReg = SrcRegOp->getReg(); 1489 Register DestReg = DestRegOp->getReg(); 1490 1491 // We want to recognize instructions where destination register is callee 1492 // saved register. If register that could be clobbered by the call is 1493 // included, there would be a great chance that it is going to be clobbered 1494 // soon. It is more likely that previous register location, which is callee 1495 // saved, is going to stay unclobbered longer, even if it is killed. 1496 if (!isCalleeSavedReg(DestReg)) 1497 return; 1498 1499 // Remember an entry value movement. If we encounter a new debug value of 1500 // a parameter describing only a moving of the value around, rather then 1501 // modifying it, we are still able to use the entry value if needed. 1502 if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) { 1503 for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { 1504 LocIndex Idx = LocIndex::fromRawInteger(ID); 1505 const VarLoc &VL = VarLocIDs[Idx]; 1506 if (VL.getEntryValueBackupReg() == SrcReg) { 1507 LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump();); 1508 VarLoc EntryValLocCopyBackup = 1509 VarLoc::CreateEntryCopyBackupLoc(VL.MI, LS, VL.Expr, DestReg); 1510 1511 // Stop tracking the original entry value. 1512 OpenRanges.erase(VL); 1513 1514 // Start tracking the entry value copy. 1515 LocIndex EntryValCopyLocID = VarLocIDs.insert(EntryValLocCopyBackup); 1516 OpenRanges.insert(EntryValCopyLocID, EntryValLocCopyBackup); 1517 break; 1518 } 1519 } 1520 } 1521 1522 if (!SrcRegOp->isKill()) 1523 return; 1524 1525 for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) { 1526 LocIndex Idx = LocIndex::fromRawInteger(ID); 1527 assert(VarLocIDs[Idx].isDescribedByReg() == SrcReg && "Broken VarLocSet?"); 1528 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, 1529 TransferKind::TransferCopy, DestReg); 1530 // FIXME: A comment should explain why it's correct to return early here, 1531 // if that is in fact correct. 1532 return; 1533 } 1534 } 1535 1536 /// Terminate all open ranges at the end of the current basic block. 1537 bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB, 1538 OpenRangesSet &OpenRanges, 1539 VarLocInMBB &OutLocs, 1540 const VarLocMap &VarLocIDs) { 1541 bool Changed = false; 1542 1543 LLVM_DEBUG(for (uint64_t ID 1544 : OpenRanges.getVarLocs()) { 1545 // Copy OpenRanges to OutLocs, if not already present. 1546 dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": "; 1547 VarLocIDs[LocIndex::fromRawInteger(ID)].dump(TRI); 1548 }); 1549 VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs); 1550 Changed = VLS != OpenRanges.getVarLocs(); 1551 // New OutLocs set may be different due to spill, restore or register 1552 // copy instruction processing. 1553 if (Changed) 1554 VLS = OpenRanges.getVarLocs(); 1555 OpenRanges.clear(); 1556 return Changed; 1557 } 1558 1559 /// Accumulate a mapping between each DILocalVariable fragment and other 1560 /// fragments of that DILocalVariable which overlap. This reduces work during 1561 /// the data-flow stage from "Find any overlapping fragments" to "Check if the 1562 /// known-to-overlap fragments are present". 1563 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for 1564 /// fragment usage. 1565 /// \param SeenFragments Map from DILocalVariable to all fragments of that 1566 /// Variable which are known to exist. 1567 /// \param OverlappingFragments The overlap map being constructed, from one 1568 /// Var/Fragment pair to a vector of fragments known to overlap. 1569 void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI, 1570 VarToFragments &SeenFragments, 1571 OverlapMap &OverlappingFragments) { 1572 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), 1573 MI.getDebugLoc()->getInlinedAt()); 1574 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); 1575 1576 // If this is the first sighting of this variable, then we are guaranteed 1577 // there are currently no overlapping fragments either. Initialize the set 1578 // of seen fragments, record no overlaps for the current one, and return. 1579 auto SeenIt = SeenFragments.find(MIVar.getVariable()); 1580 if (SeenIt == SeenFragments.end()) { 1581 SmallSet<FragmentInfo, 4> OneFragment; 1582 OneFragment.insert(ThisFragment); 1583 SeenFragments.insert({MIVar.getVariable(), OneFragment}); 1584 1585 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1586 return; 1587 } 1588 1589 // If this particular Variable/Fragment pair already exists in the overlap 1590 // map, it has already been accounted for. 1591 auto IsInOLapMap = 1592 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1593 if (!IsInOLapMap.second) 1594 return; 1595 1596 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; 1597 auto &AllSeenFragments = SeenIt->second; 1598 1599 // Otherwise, examine all other seen fragments for this variable, with "this" 1600 // fragment being a previously unseen fragment. Record any pair of 1601 // overlapping fragments. 1602 for (auto &ASeenFragment : AllSeenFragments) { 1603 // Does this previously seen fragment overlap? 1604 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { 1605 // Yes: Mark the current fragment as being overlapped. 1606 ThisFragmentsOverlaps.push_back(ASeenFragment); 1607 // Mark the previously seen fragment as being overlapped by the current 1608 // one. 1609 auto ASeenFragmentsOverlaps = 1610 OverlappingFragments.find({MIVar.getVariable(), ASeenFragment}); 1611 assert(ASeenFragmentsOverlaps != OverlappingFragments.end() && 1612 "Previously seen var fragment has no vector of overlaps"); 1613 ASeenFragmentsOverlaps->second.push_back(ThisFragment); 1614 } 1615 } 1616 1617 AllSeenFragments.insert(ThisFragment); 1618 } 1619 1620 /// This routine creates OpenRanges. 1621 void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges, 1622 VarLocMap &VarLocIDs, TransferMap &Transfers) { 1623 transferDebugValue(MI, OpenRanges, VarLocIDs); 1624 transferRegisterDef(MI, OpenRanges, VarLocIDs, Transfers); 1625 transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers); 1626 transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers); 1627 } 1628 1629 /// This routine joins the analysis results of all incoming edges in @MBB by 1630 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same 1631 /// source variable in all the predecessors of @MBB reside in the same location. 1632 bool VarLocBasedLDV::join( 1633 MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, 1634 const VarLocMap &VarLocIDs, 1635 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1636 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) { 1637 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 1638 1639 VarLocSet InLocsT(Alloc); // Temporary incoming locations. 1640 1641 // For all predecessors of this MBB, find the set of VarLocs that 1642 // can be joined. 1643 int NumVisited = 0; 1644 for (auto p : MBB.predecessors()) { 1645 // Ignore backedges if we have not visited the predecessor yet. As the 1646 // predecessor hasn't yet had locations propagated into it, most locations 1647 // will not yet be valid, so treat them as all being uninitialized and 1648 // potentially valid. If a location guessed to be correct here is 1649 // invalidated later, we will remove it when we revisit this block. 1650 if (!Visited.count(p)) { 1651 LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber() 1652 << "\n"); 1653 continue; 1654 } 1655 auto OL = OutLocs.find(p); 1656 // Join is null in case of empty OutLocs from any of the pred. 1657 if (OL == OutLocs.end()) 1658 return false; 1659 1660 // Just copy over the Out locs to incoming locs for the first visited 1661 // predecessor, and for all other predecessors join the Out locs. 1662 VarLocSet &OutLocVLS = *OL->second.get(); 1663 if (!NumVisited) 1664 InLocsT = OutLocVLS; 1665 else 1666 InLocsT &= OutLocVLS; 1667 1668 LLVM_DEBUG({ 1669 if (!InLocsT.empty()) { 1670 for (uint64_t ID : InLocsT) 1671 dbgs() << " gathered candidate incoming var: " 1672 << VarLocIDs[LocIndex::fromRawInteger(ID)] 1673 .Var.getVariable() 1674 ->getName() 1675 << "\n"; 1676 } 1677 }); 1678 1679 NumVisited++; 1680 } 1681 1682 // Filter out DBG_VALUES that are out of scope. 1683 VarLocSet KillSet(Alloc); 1684 bool IsArtificial = ArtificialBlocks.count(&MBB); 1685 if (!IsArtificial) { 1686 for (uint64_t ID : InLocsT) { 1687 LocIndex Idx = LocIndex::fromRawInteger(ID); 1688 if (!VarLocIDs[Idx].dominates(LS, MBB)) { 1689 KillSet.set(ID); 1690 LLVM_DEBUG({ 1691 auto Name = VarLocIDs[Idx].Var.getVariable()->getName(); 1692 dbgs() << " killing " << Name << ", it doesn't dominate MBB\n"; 1693 }); 1694 } 1695 } 1696 } 1697 InLocsT.intersectWithComplement(KillSet); 1698 1699 // As we are processing blocks in reverse post-order we 1700 // should have processed at least one predecessor, unless it 1701 // is the entry block which has no predecessor. 1702 assert((NumVisited || MBB.pred_empty()) && 1703 "Should have processed at least one predecessor"); 1704 1705 VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs); 1706 bool Changed = false; 1707 if (ILS != InLocsT) { 1708 ILS = InLocsT; 1709 Changed = true; 1710 } 1711 1712 return Changed; 1713 } 1714 1715 void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs, 1716 VarLocMap &VarLocIDs) { 1717 // PendingInLocs records all locations propagated into blocks, which have 1718 // not had DBG_VALUE insts created. Go through and create those insts now. 1719 for (auto &Iter : PendingInLocs) { 1720 // Map is keyed on a constant pointer, unwrap it so we can insert insts. 1721 auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first); 1722 VarLocSet &Pending = *Iter.second.get(); 1723 1724 for (uint64_t ID : Pending) { 1725 // The ID location is live-in to MBB -- work out what kind of machine 1726 // location it is and create a DBG_VALUE. 1727 const VarLoc &DiffIt = VarLocIDs[LocIndex::fromRawInteger(ID)]; 1728 if (DiffIt.isEntryBackupLoc()) 1729 continue; 1730 MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent()); 1731 MBB.insert(MBB.instr_begin(), MI); 1732 1733 (void)MI; 1734 LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump();); 1735 } 1736 } 1737 } 1738 1739 bool VarLocBasedLDV::isEntryValueCandidate( 1740 const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const { 1741 assert(MI.isDebugValue() && "This must be DBG_VALUE."); 1742 1743 // TODO: Add support for local variables that are expressed in terms of 1744 // parameters entry values. 1745 // TODO: Add support for modified arguments that can be expressed 1746 // by using its entry value. 1747 auto *DIVar = MI.getDebugVariable(); 1748 if (!DIVar->isParameter()) 1749 return false; 1750 1751 // Do not consider parameters that belong to an inlined function. 1752 if (MI.getDebugLoc()->getInlinedAt()) 1753 return false; 1754 1755 // Only consider parameters that are described using registers. Parameters 1756 // that are passed on the stack are not yet supported, so ignore debug 1757 // values that are described by the frame or stack pointer. 1758 if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI)) 1759 return false; 1760 1761 // If a parameter's value has been propagated from the caller, then the 1762 // parameter's DBG_VALUE may be described using a register defined by some 1763 // instruction in the entry block, in which case we shouldn't create an 1764 // entry value. 1765 if (DefinedRegs.count(MI.getDebugOperand(0).getReg())) 1766 return false; 1767 1768 // TODO: Add support for parameters that have a pre-existing debug expressions 1769 // (e.g. fragments). 1770 if (MI.getDebugExpression()->getNumElements() > 0) 1771 return false; 1772 1773 return true; 1774 } 1775 1776 /// Collect all register defines (including aliases) for the given instruction. 1777 static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs, 1778 const TargetRegisterInfo *TRI) { 1779 for (const MachineOperand &MO : MI.operands()) 1780 if (MO.isReg() && MO.isDef() && MO.getReg()) 1781 for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) 1782 Regs.insert(*AI); 1783 } 1784 1785 /// This routine records the entry values of function parameters. The values 1786 /// could be used as backup values. If we loose the track of some unmodified 1787 /// parameters, the backup values will be used as a primary locations. 1788 void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI, 1789 const DefinedRegsSet &DefinedRegs, 1790 OpenRangesSet &OpenRanges, 1791 VarLocMap &VarLocIDs) { 1792 if (TPC) { 1793 auto &TM = TPC->getTM<TargetMachine>(); 1794 if (!TM.Options.ShouldEmitDebugEntryValues()) 1795 return; 1796 } 1797 1798 DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(), 1799 MI.getDebugLoc()->getInlinedAt()); 1800 1801 if (!isEntryValueCandidate(MI, DefinedRegs) || 1802 OpenRanges.getEntryValueBackup(V)) 1803 return; 1804 1805 LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump();); 1806 1807 // Create the entry value and use it as a backup location until it is 1808 // valid. It is valid until a parameter is not changed. 1809 DIExpression *NewExpr = 1810 DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue); 1811 VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, LS, NewExpr); 1812 LocIndex EntryValLocID = VarLocIDs.insert(EntryValLocAsBackup); 1813 OpenRanges.insert(EntryValLocID, EntryValLocAsBackup); 1814 } 1815 1816 /// Calculate the liveness information for the given machine function and 1817 /// extend ranges across basic blocks. 1818 bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) { 1819 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); 1820 1821 if (!MF.getFunction().getSubprogram()) 1822 // VarLocBaseLDV will already have removed all DBG_VALUEs. 1823 return false; 1824 1825 // Skip functions from NoDebug compilation units. 1826 if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() == 1827 DICompileUnit::NoDebug) 1828 return false; 1829 1830 TRI = MF.getSubtarget().getRegisterInfo(); 1831 TII = MF.getSubtarget().getInstrInfo(); 1832 TFI = MF.getSubtarget().getFrameLowering(); 1833 TFI->getCalleeSaves(MF, CalleeSavedRegs); 1834 this->TPC = TPC; 1835 LS.initialize(MF); 1836 1837 bool Changed = false; 1838 bool OLChanged = false; 1839 bool MBBJoined = false; 1840 1841 VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors. 1842 OverlapMap OverlapFragments; // Map of overlapping variable fragments. 1843 OpenRangesSet OpenRanges(Alloc, OverlapFragments); 1844 // Ranges that are open until end of bb. 1845 VarLocInMBB OutLocs; // Ranges that exist beyond bb. 1846 VarLocInMBB InLocs; // Ranges that are incoming after joining. 1847 TransferMap Transfers; // DBG_VALUEs associated with transfers (such as 1848 // spills, copies and restores). 1849 1850 VarToFragments SeenFragments; 1851 1852 // Blocks which are artificial, i.e. blocks which exclusively contain 1853 // instructions without locations, or with line 0 locations. 1854 SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks; 1855 1856 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; 1857 DenseMap<MachineBasicBlock *, unsigned int> BBToOrder; 1858 std::priority_queue<unsigned int, std::vector<unsigned int>, 1859 std::greater<unsigned int>> 1860 Worklist; 1861 std::priority_queue<unsigned int, std::vector<unsigned int>, 1862 std::greater<unsigned int>> 1863 Pending; 1864 1865 // Set of register defines that are seen when traversing the entry block 1866 // looking for debug entry value candidates. 1867 DefinedRegsSet DefinedRegs; 1868 1869 // Only in the case of entry MBB collect DBG_VALUEs representing 1870 // function parameters in order to generate debug entry values for them. 1871 MachineBasicBlock &First_MBB = *(MF.begin()); 1872 for (auto &MI : First_MBB) { 1873 collectRegDefs(MI, DefinedRegs, TRI); 1874 if (MI.isDebugValue()) 1875 recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs); 1876 } 1877 1878 // Initialize per-block structures and scan for fragment overlaps. 1879 for (auto &MBB : MF) 1880 for (auto &MI : MBB) 1881 if (MI.isDebugValue()) 1882 accumulateFragmentMap(MI, SeenFragments, OverlapFragments); 1883 1884 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { 1885 if (const DebugLoc &DL = MI.getDebugLoc()) 1886 return DL.getLine() != 0; 1887 return false; 1888 }; 1889 for (auto &MBB : MF) 1890 if (none_of(MBB.instrs(), hasNonArtificialLocation)) 1891 ArtificialBlocks.insert(&MBB); 1892 1893 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, 1894 "OutLocs after initialization", dbgs())); 1895 1896 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 1897 unsigned int RPONumber = 0; 1898 for (MachineBasicBlock *MBB : RPOT) { 1899 OrderToBB[RPONumber] = MBB; 1900 BBToOrder[MBB] = RPONumber; 1901 Worklist.push(RPONumber); 1902 ++RPONumber; 1903 } 1904 1905 if (RPONumber > InputBBLimit) { 1906 unsigned NumInputDbgValues = 0; 1907 for (auto &MBB : MF) 1908 for (auto &MI : MBB) 1909 if (MI.isDebugValue()) 1910 ++NumInputDbgValues; 1911 if (NumInputDbgValues > InputDbgValueLimit) { 1912 LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName() 1913 << " has " << RPONumber << " basic blocks and " 1914 << NumInputDbgValues 1915 << " input DBG_VALUEs, exceeding limits.\n"); 1916 return false; 1917 } 1918 } 1919 1920 // This is a standard "union of predecessor outs" dataflow problem. 1921 // To solve it, we perform join() and process() using the two worklist method 1922 // until the ranges converge. 1923 // Ranges have converged when both worklists are empty. 1924 SmallPtrSet<const MachineBasicBlock *, 16> Visited; 1925 while (!Worklist.empty() || !Pending.empty()) { 1926 // We track what is on the pending worklist to avoid inserting the same 1927 // thing twice. We could avoid this with a custom priority queue, but this 1928 // is probably not worth it. 1929 SmallPtrSet<MachineBasicBlock *, 16> OnPending; 1930 LLVM_DEBUG(dbgs() << "Processing Worklist\n"); 1931 while (!Worklist.empty()) { 1932 MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; 1933 Worklist.pop(); 1934 MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited, 1935 ArtificialBlocks); 1936 MBBJoined |= Visited.insert(MBB).second; 1937 if (MBBJoined) { 1938 MBBJoined = false; 1939 Changed = true; 1940 // Now that we have started to extend ranges across BBs we need to 1941 // examine spill, copy and restore instructions to see whether they 1942 // operate with registers that correspond to user variables. 1943 // First load any pending inlocs. 1944 OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs); 1945 for (auto &MI : *MBB) 1946 process(MI, OpenRanges, VarLocIDs, Transfers); 1947 OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs); 1948 1949 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, 1950 "OutLocs after propagating", dbgs())); 1951 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, 1952 "InLocs after propagating", dbgs())); 1953 1954 if (OLChanged) { 1955 OLChanged = false; 1956 for (auto s : MBB->successors()) 1957 if (OnPending.insert(s).second) { 1958 Pending.push(BBToOrder[s]); 1959 } 1960 } 1961 } 1962 } 1963 Worklist.swap(Pending); 1964 // At this point, pending must be empty, since it was just the empty 1965 // worklist 1966 assert(Pending.empty() && "Pending should be empty"); 1967 } 1968 1969 // Add any DBG_VALUE instructions created by location transfers. 1970 for (auto &TR : Transfers) { 1971 assert(!TR.TransferInst->isTerminator() && 1972 "Cannot insert DBG_VALUE after terminator"); 1973 MachineBasicBlock *MBB = TR.TransferInst->getParent(); 1974 const VarLoc &VL = VarLocIDs[TR.LocationID]; 1975 MachineInstr *MI = VL.BuildDbgValue(MF); 1976 MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI); 1977 } 1978 Transfers.clear(); 1979 1980 // Deferred inlocs will not have had any DBG_VALUE insts created; do 1981 // that now. 1982 flushPendingLocs(InLocs, VarLocIDs); 1983 1984 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs())); 1985 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs())); 1986 return Changed; 1987 } 1988 1989 LDVImpl * 1990 llvm::makeVarLocBasedLiveDebugValues() 1991 { 1992 return new VarLocBasedLDV(); 1993 } 1994