1 //===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file VarLocBasedImpl.cpp 10 /// 11 /// LiveDebugValues is an optimistic "available expressions" dataflow 12 /// algorithm. The set of expressions is the set of machine locations 13 /// (registers, spill slots, constants) that a variable fragment might be 14 /// located, qualified by a DIExpression and indirect-ness flag, while each 15 /// variable is identified by a DebugVariable object. The availability of an 16 /// expression begins when a DBG_VALUE instruction specifies the location of a 17 /// DebugVariable, and continues until that location is clobbered or 18 /// re-specified by a different DBG_VALUE for the same DebugVariable. 19 /// 20 /// The output of LiveDebugValues is additional DBG_VALUE instructions, 21 /// placed to extend variable locations as far they're available. This file 22 /// and the VarLocBasedLDV class is an implementation that explicitly tracks 23 /// locations, using the VarLoc class. 24 /// 25 /// The canonical "available expressions" problem doesn't have expression 26 /// clobbering, instead when a variable is re-assigned, any expressions using 27 /// that variable get invalidated. LiveDebugValues can map onto "available 28 /// expressions" by having every register represented by a variable, which is 29 /// used in an expression that becomes available at a DBG_VALUE instruction. 30 /// When the register is clobbered, its variable is effectively reassigned, and 31 /// expressions computed from it become unavailable. A similar construct is 32 /// needed when a DebugVariable has its location re-specified, to invalidate 33 /// all other locations for that DebugVariable. 34 /// 35 /// Using the dataflow analysis to compute the available expressions, we create 36 /// a DBG_VALUE at the beginning of each block where the expression is 37 /// live-in. This propagates variable locations into every basic block where 38 /// the location can be determined, rather than only having DBG_VALUEs in blocks 39 /// where locations are specified due to an assignment or some optimization. 40 /// Movements of values between registers and spill slots are annotated with 41 /// DBG_VALUEs too to track variable values bewteen locations. All this allows 42 /// DbgEntityHistoryCalculator to focus on only the locations within individual 43 /// blocks, facilitating testing and improving modularity. 44 /// 45 /// We follow an optimisic dataflow approach, with this lattice: 46 /// 47 /// \verbatim 48 /// ┬ "Unknown" 49 /// | 50 /// v 51 /// True 52 /// | 53 /// v 54 /// ⊥ False 55 /// \endverbatim With "True" signifying that the expression is available (and 56 /// thus a DebugVariable's location is the corresponding register), while 57 /// "False" signifies that the expression is unavailable. "Unknown"s never 58 /// survive to the end of the analysis (see below). 59 /// 60 /// Formally, all DebugVariable locations that are live-out of a block are 61 /// initialized to \top. A blocks live-in values take the meet of the lattice 62 /// value for every predecessors live-outs, except for the entry block, where 63 /// all live-ins are \bot. The usual dataflow propagation occurs: the transfer 64 /// function for a block assigns an expression for a DebugVariable to be "True" 65 /// if a DBG_VALUE in the block specifies it; "False" if the location is 66 /// clobbered; or the live-in value if it is unaffected by the block. We 67 /// visit each block in reverse post order until a fixedpoint is reached. The 68 /// solution produced is maximal. 69 /// 70 /// Intuitively, we start by assuming that every expression / variable location 71 /// is at least "True", and then propagate "False" from the entry block and any 72 /// clobbers until there are no more changes to make. This gives us an accurate 73 /// solution because all incorrect locations will have a "False" propagated into 74 /// them. It also gives us a solution that copes well with loops by assuming 75 /// that variable locations are live-through every loop, and then removing those 76 /// that are not through dataflow. 77 /// 78 /// Within LiveDebugValues: each variable location is represented by a 79 /// VarLoc object that identifies the source variable, the set of 80 /// machine-locations that currently describe it (a single location for 81 /// DBG_VALUE or multiple for DBG_VALUE_LIST), and the DBG_VALUE inst that 82 /// specifies the location. Each VarLoc is indexed in the (function-scope) \p 83 /// VarLocMap, giving each VarLoc a set of unique indexes, each of which 84 /// corresponds to one of the VarLoc's machine-locations and can be used to 85 /// lookup the VarLoc in the VarLocMap. Rather than operate directly on machine 86 /// locations, the dataflow analysis in this pass identifies locations by their 87 /// indices in the VarLocMap, meaning all the variable locations in a block can 88 /// be described by a sparse vector of VarLocMap indicies. 89 /// 90 /// All the storage for the dataflow analysis is local to the ExtendRanges 91 /// method and passed down to helper methods. "OutLocs" and "InLocs" record the 92 /// in and out lattice values for each block. "OpenRanges" maintains a list of 93 /// variable locations and, with the "process" method, evaluates the transfer 94 /// function of each block. "flushPendingLocs" installs debug value instructions 95 /// for each live-in location at the start of blocks, while "Transfers" records 96 /// transfers of values between machine-locations. 97 /// 98 /// We avoid explicitly representing the "Unknown" (\top) lattice value in the 99 /// implementation. Instead, unvisited blocks implicitly have all lattice 100 /// values set as "Unknown". After being visited, there will be path back to 101 /// the entry block where the lattice value is "False", and as the transfer 102 /// function cannot make new "Unknown" locations, there are no scenarios where 103 /// a block can have an "Unknown" location after being visited. Similarly, we 104 /// don't enumerate all possible variable locations before exploring the 105 /// function: when a new location is discovered, all blocks previously explored 106 /// were implicitly "False" but unrecorded, and become explicitly "False" when 107 /// a new VarLoc is created with its bit not set in predecessor InLocs or 108 /// OutLocs. 109 /// 110 //===----------------------------------------------------------------------===// 111 112 #include "LiveDebugValues.h" 113 114 #include "llvm/ADT/CoalescingBitVector.h" 115 #include "llvm/ADT/DenseMap.h" 116 #include "llvm/ADT/PostOrderIterator.h" 117 #include "llvm/ADT/SmallPtrSet.h" 118 #include "llvm/ADT/SmallSet.h" 119 #include "llvm/ADT/SmallVector.h" 120 #include "llvm/ADT/Statistic.h" 121 #include "llvm/ADT/UniqueVector.h" 122 #include "llvm/CodeGen/LexicalScopes.h" 123 #include "llvm/CodeGen/MachineBasicBlock.h" 124 #include "llvm/CodeGen/MachineFrameInfo.h" 125 #include "llvm/CodeGen/MachineFunction.h" 126 #include "llvm/CodeGen/MachineFunctionPass.h" 127 #include "llvm/CodeGen/MachineInstr.h" 128 #include "llvm/CodeGen/MachineInstrBuilder.h" 129 #include "llvm/CodeGen/MachineMemOperand.h" 130 #include "llvm/CodeGen/MachineOperand.h" 131 #include "llvm/CodeGen/PseudoSourceValue.h" 132 #include "llvm/CodeGen/RegisterScavenging.h" 133 #include "llvm/CodeGen/TargetFrameLowering.h" 134 #include "llvm/CodeGen/TargetInstrInfo.h" 135 #include "llvm/CodeGen/TargetLowering.h" 136 #include "llvm/CodeGen/TargetPassConfig.h" 137 #include "llvm/CodeGen/TargetRegisterInfo.h" 138 #include "llvm/CodeGen/TargetSubtargetInfo.h" 139 #include "llvm/Config/llvm-config.h" 140 #include "llvm/IR/DIBuilder.h" 141 #include "llvm/IR/DebugInfoMetadata.h" 142 #include "llvm/IR/DebugLoc.h" 143 #include "llvm/IR/Function.h" 144 #include "llvm/IR/Module.h" 145 #include "llvm/InitializePasses.h" 146 #include "llvm/MC/MCRegisterInfo.h" 147 #include "llvm/Pass.h" 148 #include "llvm/Support/Casting.h" 149 #include "llvm/Support/Compiler.h" 150 #include "llvm/Support/Debug.h" 151 #include "llvm/Support/TypeSize.h" 152 #include "llvm/Support/raw_ostream.h" 153 #include "llvm/Target/TargetMachine.h" 154 #include <algorithm> 155 #include <cassert> 156 #include <cstdint> 157 #include <functional> 158 #include <map> 159 #include <queue> 160 #include <tuple> 161 #include <utility> 162 #include <vector> 163 164 using namespace llvm; 165 166 #define DEBUG_TYPE "livedebugvalues" 167 168 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); 169 170 /// If \p Op is a stack or frame register return true, otherwise return false. 171 /// This is used to avoid basing the debug entry values on the registers, since 172 /// we do not support it at the moment. 173 static bool isRegOtherThanSPAndFP(const MachineOperand &Op, 174 const MachineInstr &MI, 175 const TargetRegisterInfo *TRI) { 176 if (!Op.isReg()) 177 return false; 178 179 const MachineFunction *MF = MI.getParent()->getParent(); 180 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 181 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 182 Register FP = TRI->getFrameRegister(*MF); 183 Register Reg = Op.getReg(); 184 185 return Reg && Reg != SP && Reg != FP; 186 } 187 188 namespace { 189 190 // Max out the number of statically allocated elements in DefinedRegsSet, as 191 // this prevents fallback to std::set::count() operations. 192 using DefinedRegsSet = SmallSet<Register, 32>; 193 194 // The IDs in this set correspond to MachineLocs in VarLocs, as well as VarLocs 195 // that represent Entry Values; every VarLoc in the set will also appear 196 // exactly once at Location=0. 197 // As a result, each VarLoc may appear more than once in this "set", but each 198 // range corresponding to a Reg, SpillLoc, or EntryValue type will still be a 199 // "true" set (i.e. each VarLoc may appear only once), and the range Location=0 200 // is the set of all VarLocs. 201 using VarLocSet = CoalescingBitVector<uint64_t>; 202 203 /// A type-checked pair of {Register Location (or 0), Index}, used to index 204 /// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int 205 /// for insertion into a \ref VarLocSet, and efficiently converted back. The 206 /// type-checker helps ensure that the conversions aren't lossy. 207 /// 208 /// Why encode a location /into/ the VarLocMap index? This makes it possible 209 /// to find the open VarLocs killed by a register def very quickly. This is a 210 /// performance-critical operation for LiveDebugValues. 211 struct LocIndex { 212 using u32_location_t = uint32_t; 213 using u32_index_t = uint32_t; 214 215 u32_location_t Location; // Physical registers live in the range [1;2^30) (see 216 // \ref MCRegister), so we have plenty of range left 217 // here to encode non-register locations. 218 u32_index_t Index; 219 220 /// The location that has an entry for every VarLoc in the map. 221 static constexpr u32_location_t kUniversalLocation = 0; 222 223 /// The first location that is reserved for VarLocs with locations of kind 224 /// RegisterKind. 225 static constexpr u32_location_t kFirstRegLocation = 1; 226 227 /// The first location greater than 0 that is not reserved for VarLocs with 228 /// locations of kind RegisterKind. 229 static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30; 230 231 /// A special location reserved for VarLocs with locations of kind 232 /// SpillLocKind. 233 static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation; 234 235 /// A special location reserved for VarLocs of kind EntryValueBackupKind and 236 /// EntryValueCopyBackupKind. 237 static constexpr u32_location_t kEntryValueBackupLocation = 238 kFirstInvalidRegLocation + 1; 239 240 LocIndex(u32_location_t Location, u32_index_t Index) 241 : Location(Location), Index(Index) {} 242 243 uint64_t getAsRawInteger() const { 244 return (static_cast<uint64_t>(Location) << 32) | Index; 245 } 246 247 template<typename IntT> static LocIndex fromRawInteger(IntT ID) { 248 static_assert(std::is_unsigned<IntT>::value && 249 sizeof(ID) == sizeof(uint64_t), 250 "Cannot convert raw integer to LocIndex"); 251 return {static_cast<u32_location_t>(ID >> 32), 252 static_cast<u32_index_t>(ID)}; 253 } 254 255 /// Get the start of the interval reserved for VarLocs of kind RegisterKind 256 /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1. 257 static uint64_t rawIndexForReg(Register Reg) { 258 return LocIndex(Reg, 0).getAsRawInteger(); 259 } 260 261 /// Return a range covering all set indices in the interval reserved for 262 /// \p Location in \p Set. 263 static auto indexRangeForLocation(const VarLocSet &Set, 264 u32_location_t Location) { 265 uint64_t Start = LocIndex(Location, 0).getAsRawInteger(); 266 uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger(); 267 return Set.half_open_range(Start, End); 268 } 269 }; 270 271 // Simple Set for storing all the VarLoc Indices at a Location bucket. 272 using VarLocsInRange = SmallSet<LocIndex::u32_index_t, 32>; 273 // Vector of all `LocIndex`s for a given VarLoc; the same Location should not 274 // appear in any two of these, as each VarLoc appears at most once in any 275 // Location bucket. 276 using LocIndices = SmallVector<LocIndex, 2>; 277 278 class VarLocBasedLDV : public LDVImpl { 279 private: 280 const TargetRegisterInfo *TRI; 281 const TargetInstrInfo *TII; 282 const TargetFrameLowering *TFI; 283 TargetPassConfig *TPC; 284 BitVector CalleeSavedRegs; 285 LexicalScopes LS; 286 VarLocSet::Allocator Alloc; 287 288 const MachineInstr *LastNonDbgMI; 289 290 enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore }; 291 292 using FragmentInfo = DIExpression::FragmentInfo; 293 using OptFragmentInfo = Optional<DIExpression::FragmentInfo>; 294 295 /// A pair of debug variable and value location. 296 struct VarLoc { 297 // The location at which a spilled variable resides. It consists of a 298 // register and an offset. 299 struct SpillLoc { 300 unsigned SpillBase; 301 StackOffset SpillOffset; 302 bool operator==(const SpillLoc &Other) const { 303 return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset; 304 } 305 bool operator!=(const SpillLoc &Other) const { 306 return !(*this == Other); 307 } 308 }; 309 310 /// Identity of the variable at this location. 311 const DebugVariable Var; 312 313 /// The expression applied to this location. 314 const DIExpression *Expr; 315 316 /// DBG_VALUE to clone var/expr information from if this location 317 /// is moved. 318 const MachineInstr &MI; 319 320 enum class MachineLocKind { 321 InvalidKind = 0, 322 RegisterKind, 323 SpillLocKind, 324 ImmediateKind 325 }; 326 327 enum class EntryValueLocKind { 328 NonEntryValueKind = 0, 329 EntryValueKind, 330 EntryValueBackupKind, 331 EntryValueCopyBackupKind 332 } EVKind; 333 334 /// The value location. Stored separately to avoid repeatedly 335 /// extracting it from MI. 336 union MachineLocValue { 337 uint64_t RegNo; 338 SpillLoc SpillLocation; 339 uint64_t Hash; 340 int64_t Immediate; 341 const ConstantFP *FPImm; 342 const ConstantInt *CImm; 343 MachineLocValue() : Hash(0) {} 344 }; 345 346 /// A single machine location; its Kind is either a register, spill 347 /// location, or immediate value. 348 /// If the VarLoc is not a NonEntryValueKind, then it will use only a 349 /// single MachineLoc of RegisterKind. 350 struct MachineLoc { 351 MachineLocKind Kind; 352 MachineLocValue Value; 353 bool operator==(const MachineLoc &Other) const { 354 if (Kind != Other.Kind) 355 return false; 356 switch (Kind) { 357 case MachineLocKind::SpillLocKind: 358 return Value.SpillLocation == Other.Value.SpillLocation; 359 case MachineLocKind::RegisterKind: 360 case MachineLocKind::ImmediateKind: 361 return Value.Hash == Other.Value.Hash; 362 default: 363 llvm_unreachable("Invalid kind"); 364 } 365 } 366 bool operator<(const MachineLoc &Other) const { 367 switch (Kind) { 368 case MachineLocKind::SpillLocKind: 369 return std::make_tuple( 370 Kind, Value.SpillLocation.SpillBase, 371 Value.SpillLocation.SpillOffset.getFixed(), 372 Value.SpillLocation.SpillOffset.getScalable()) < 373 std::make_tuple( 374 Other.Kind, Other.Value.SpillLocation.SpillBase, 375 Other.Value.SpillLocation.SpillOffset.getFixed(), 376 Other.Value.SpillLocation.SpillOffset.getScalable()); 377 case MachineLocKind::RegisterKind: 378 case MachineLocKind::ImmediateKind: 379 return std::tie(Kind, Value.Hash) < 380 std::tie(Other.Kind, Other.Value.Hash); 381 default: 382 llvm_unreachable("Invalid kind"); 383 } 384 } 385 }; 386 387 /// The set of machine locations used to determine the variable's value, in 388 /// conjunction with Expr. Initially populated with MI's debug operands, 389 /// but may be transformed independently afterwards. 390 SmallVector<MachineLoc, 8> Locs; 391 /// Used to map the index of each location in Locs back to the index of its 392 /// original debug operand in MI. Used when multiple location operands are 393 /// coalesced and the original MI's operands need to be accessed while 394 /// emitting a debug value. 395 SmallVector<unsigned, 8> OrigLocMap; 396 397 VarLoc(const MachineInstr &MI, LexicalScopes &LS) 398 : Var(MI.getDebugVariable(), MI.getDebugExpression(), 399 MI.getDebugLoc()->getInlinedAt()), 400 Expr(MI.getDebugExpression()), MI(MI), 401 EVKind(EntryValueLocKind::NonEntryValueKind) { 402 assert(MI.isDebugValue() && "not a DBG_VALUE"); 403 assert((MI.isDebugValueList() || MI.getNumOperands() == 4) && 404 "malformed DBG_VALUE"); 405 for (const MachineOperand &Op : MI.debug_operands()) { 406 MachineLoc ML = GetLocForOp(Op); 407 auto It = find(Locs, ML); 408 if (It == Locs.end()) { 409 Locs.push_back(ML); 410 OrigLocMap.push_back(MI.getDebugOperandIndex(&Op)); 411 } else { 412 // ML duplicates an element in Locs; replace references to Op 413 // with references to the duplicating element. 414 unsigned OpIdx = Locs.size(); 415 unsigned DuplicatingIdx = std::distance(Locs.begin(), It); 416 Expr = DIExpression::replaceArg(Expr, OpIdx, DuplicatingIdx); 417 } 418 } 419 420 // We create the debug entry values from the factory functions rather 421 // than from this ctor. 422 assert(EVKind != EntryValueLocKind::EntryValueKind && 423 !isEntryBackupLoc()); 424 } 425 426 static MachineLoc GetLocForOp(const MachineOperand &Op) { 427 MachineLocKind Kind; 428 MachineLocValue Loc; 429 if (Op.isReg()) { 430 Kind = MachineLocKind::RegisterKind; 431 Loc.RegNo = Op.getReg(); 432 } else if (Op.isImm()) { 433 Kind = MachineLocKind::ImmediateKind; 434 Loc.Immediate = Op.getImm(); 435 } else if (Op.isFPImm()) { 436 Kind = MachineLocKind::ImmediateKind; 437 Loc.FPImm = Op.getFPImm(); 438 } else if (Op.isCImm()) { 439 Kind = MachineLocKind::ImmediateKind; 440 Loc.CImm = Op.getCImm(); 441 } else 442 llvm_unreachable("Invalid Op kind for MachineLoc."); 443 return {Kind, Loc}; 444 } 445 446 /// Take the variable and machine-location in DBG_VALUE MI, and build an 447 /// entry location using the given expression. 448 static VarLoc CreateEntryLoc(const MachineInstr &MI, LexicalScopes &LS, 449 const DIExpression *EntryExpr, Register Reg) { 450 VarLoc VL(MI, LS); 451 assert(VL.Locs.size() == 1 && 452 VL.Locs[0].Kind == MachineLocKind::RegisterKind); 453 VL.EVKind = EntryValueLocKind::EntryValueKind; 454 VL.Expr = EntryExpr; 455 VL.Locs[0].Value.RegNo = Reg; 456 return VL; 457 } 458 459 /// Take the variable and machine-location from the DBG_VALUE (from the 460 /// function entry), and build an entry value backup location. The backup 461 /// location will turn into the normal location if the backup is valid at 462 /// the time of the primary location clobbering. 463 static VarLoc CreateEntryBackupLoc(const MachineInstr &MI, 464 LexicalScopes &LS, 465 const DIExpression *EntryExpr) { 466 VarLoc VL(MI, LS); 467 assert(VL.Locs.size() == 1 && 468 VL.Locs[0].Kind == MachineLocKind::RegisterKind); 469 VL.EVKind = EntryValueLocKind::EntryValueBackupKind; 470 VL.Expr = EntryExpr; 471 return VL; 472 } 473 474 /// Take the variable and machine-location from the DBG_VALUE (from the 475 /// function entry), and build a copy of an entry value backup location by 476 /// setting the register location to NewReg. 477 static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI, 478 LexicalScopes &LS, 479 const DIExpression *EntryExpr, 480 Register NewReg) { 481 VarLoc VL(MI, LS); 482 assert(VL.Locs.size() == 1 && 483 VL.Locs[0].Kind == MachineLocKind::RegisterKind); 484 VL.EVKind = EntryValueLocKind::EntryValueCopyBackupKind; 485 VL.Expr = EntryExpr; 486 VL.Locs[0].Value.RegNo = NewReg; 487 return VL; 488 } 489 490 /// Copy the register location in DBG_VALUE MI, updating the register to 491 /// be NewReg. 492 static VarLoc CreateCopyLoc(const VarLoc &OldVL, const MachineLoc &OldML, 493 Register NewReg) { 494 VarLoc VL = OldVL; 495 for (size_t I = 0, E = VL.Locs.size(); I < E; ++I) 496 if (VL.Locs[I] == OldML) { 497 VL.Locs[I].Kind = MachineLocKind::RegisterKind; 498 VL.Locs[I].Value.RegNo = NewReg; 499 return VL; 500 } 501 llvm_unreachable("Should have found OldML in new VarLoc."); 502 } 503 504 /// Take the variable described by DBG_VALUE* MI, and create a VarLoc 505 /// locating it in the specified spill location. 506 static VarLoc CreateSpillLoc(const VarLoc &OldVL, const MachineLoc &OldML, 507 unsigned SpillBase, StackOffset SpillOffset) { 508 VarLoc VL = OldVL; 509 for (int I = 0, E = VL.Locs.size(); I < E; ++I) 510 if (VL.Locs[I] == OldML) { 511 VL.Locs[I].Kind = MachineLocKind::SpillLocKind; 512 VL.Locs[I].Value.SpillLocation = {SpillBase, SpillOffset}; 513 return VL; 514 } 515 llvm_unreachable("Should have found OldML in new VarLoc."); 516 } 517 518 /// Create a DBG_VALUE representing this VarLoc in the given function. 519 /// Copies variable-specific information such as DILocalVariable and 520 /// inlining information from the original DBG_VALUE instruction, which may 521 /// have been several transfers ago. 522 MachineInstr *BuildDbgValue(MachineFunction &MF) const { 523 assert(!isEntryBackupLoc() && 524 "Tried to produce DBG_VALUE for backup VarLoc"); 525 const DebugLoc &DbgLoc = MI.getDebugLoc(); 526 bool Indirect = MI.isIndirectDebugValue(); 527 const auto &IID = MI.getDesc(); 528 const DILocalVariable *Var = MI.getDebugVariable(); 529 NumInserted++; 530 531 const DIExpression *DIExpr = Expr; 532 SmallVector<MachineOperand, 8> MOs; 533 for (unsigned I = 0, E = Locs.size(); I < E; ++I) { 534 MachineLocKind LocKind = Locs[I].Kind; 535 MachineLocValue Loc = Locs[I].Value; 536 const MachineOperand &Orig = MI.getDebugOperand(OrigLocMap[I]); 537 switch (LocKind) { 538 case MachineLocKind::RegisterKind: 539 // An entry value is a register location -- but with an updated 540 // expression. The register location of such DBG_VALUE is always the 541 // one from the entry DBG_VALUE, it does not matter if the entry value 542 // was copied in to another register due to some optimizations. 543 // Non-entry value register locations are like the source 544 // DBG_VALUE, but with the register number from this VarLoc. 545 MOs.push_back(MachineOperand::CreateReg( 546 EVKind == EntryValueLocKind::EntryValueKind ? Orig.getReg() 547 : Register(Loc.RegNo), 548 false)); 549 break; 550 case MachineLocKind::SpillLocKind: { 551 // Spills are indirect DBG_VALUEs, with a base register and offset. 552 // Use the original DBG_VALUEs expression to build the spilt location 553 // on top of. FIXME: spill locations created before this pass runs 554 // are not recognized, and not handled here. 555 unsigned Base = Loc.SpillLocation.SpillBase; 556 auto *TRI = MF.getSubtarget().getRegisterInfo(); 557 if (MI.isNonListDebugValue()) { 558 auto Deref = Indirect ? DIExpression::DerefAfter : 0; 559 DIExpr = TRI->prependOffsetExpression( 560 DIExpr, DIExpression::ApplyOffset | Deref, 561 Loc.SpillLocation.SpillOffset); 562 Indirect = true; 563 } else { 564 SmallVector<uint64_t, 4> Ops; 565 TRI->getOffsetOpcodes(Loc.SpillLocation.SpillOffset, Ops); 566 Ops.push_back(dwarf::DW_OP_deref); 567 DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, I); 568 } 569 MOs.push_back(MachineOperand::CreateReg(Base, false)); 570 break; 571 } 572 case MachineLocKind::ImmediateKind: { 573 MOs.push_back(Orig); 574 break; 575 } 576 case MachineLocKind::InvalidKind: 577 llvm_unreachable("Tried to produce DBG_VALUE for invalid VarLoc"); 578 } 579 } 580 return BuildMI(MF, DbgLoc, IID, Indirect, MOs, Var, DIExpr); 581 } 582 583 /// Is the Loc field a constant or constant object? 584 bool isConstant(MachineLocKind Kind) const { 585 return Kind == MachineLocKind::ImmediateKind; 586 } 587 588 /// Check if the Loc field is an entry backup location. 589 bool isEntryBackupLoc() const { 590 return EVKind == EntryValueLocKind::EntryValueBackupKind || 591 EVKind == EntryValueLocKind::EntryValueCopyBackupKind; 592 } 593 594 /// If this variable is described by register \p Reg holding the entry 595 /// value, return true. 596 bool isEntryValueBackupReg(Register Reg) const { 597 return EVKind == EntryValueLocKind::EntryValueBackupKind && usesReg(Reg); 598 } 599 600 /// If this variable is described by register \p Reg holding a copy of the 601 /// entry value, return true. 602 bool isEntryValueCopyBackupReg(Register Reg) const { 603 return EVKind == EntryValueLocKind::EntryValueCopyBackupKind && 604 usesReg(Reg); 605 } 606 607 /// If this variable is described in whole or part by \p Reg, return true. 608 bool usesReg(Register Reg) const { 609 MachineLoc RegML; 610 RegML.Kind = MachineLocKind::RegisterKind; 611 RegML.Value.RegNo = Reg; 612 return is_contained(Locs, RegML); 613 } 614 615 /// If this variable is described in whole or part by \p Reg, return true. 616 unsigned getRegIdx(Register Reg) const { 617 for (unsigned Idx = 0; Idx < Locs.size(); ++Idx) 618 if (Locs[Idx].Kind == MachineLocKind::RegisterKind && 619 Register{static_cast<unsigned>(Locs[Idx].Value.RegNo)} == Reg) 620 return Idx; 621 llvm_unreachable("Could not find given Reg in Locs"); 622 } 623 624 /// If this variable is described in whole or part by 1 or more registers, 625 /// add each of them to \p Regs and return true. 626 bool getDescribingRegs(SmallVectorImpl<uint32_t> &Regs) const { 627 bool AnyRegs = false; 628 for (const auto &Loc : Locs) 629 if (Loc.Kind == MachineLocKind::RegisterKind) { 630 Regs.push_back(Loc.Value.RegNo); 631 AnyRegs = true; 632 } 633 return AnyRegs; 634 } 635 636 bool containsSpillLocs() const { 637 return any_of(Locs, [](VarLoc::MachineLoc ML) { 638 return ML.Kind == VarLoc::MachineLocKind::SpillLocKind; 639 }); 640 } 641 642 /// If this variable is described in whole or part by \p SpillLocation, 643 /// return true. 644 bool usesSpillLoc(SpillLoc SpillLocation) const { 645 MachineLoc SpillML; 646 SpillML.Kind = MachineLocKind::SpillLocKind; 647 SpillML.Value.SpillLocation = SpillLocation; 648 return is_contained(Locs, SpillML); 649 } 650 651 /// If this variable is described in whole or part by \p SpillLocation, 652 /// return the index . 653 unsigned getSpillLocIdx(SpillLoc SpillLocation) const { 654 for (unsigned Idx = 0; Idx < Locs.size(); ++Idx) 655 if (Locs[Idx].Kind == MachineLocKind::SpillLocKind && 656 Locs[Idx].Value.SpillLocation == SpillLocation) 657 return Idx; 658 llvm_unreachable("Could not find given SpillLoc in Locs"); 659 } 660 661 /// Determine whether the lexical scope of this value's debug location 662 /// dominates MBB. 663 bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const { 664 return LS.dominates(MI.getDebugLoc().get(), &MBB); 665 } 666 667 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 668 // TRI can be null. 669 void dump(const TargetRegisterInfo *TRI, raw_ostream &Out = dbgs()) const { 670 Out << "VarLoc("; 671 for (const MachineLoc &MLoc : Locs) { 672 if (Locs.begin() != &MLoc) 673 Out << ", "; 674 switch (MLoc.Kind) { 675 case MachineLocKind::RegisterKind: 676 Out << printReg(MLoc.Value.RegNo, TRI); 677 break; 678 case MachineLocKind::SpillLocKind: 679 Out << printReg(MLoc.Value.SpillLocation.SpillBase, TRI); 680 Out << "[" << MLoc.Value.SpillLocation.SpillOffset.getFixed() << " + " 681 << MLoc.Value.SpillLocation.SpillOffset.getScalable() 682 << "x vscale" 683 << "]"; 684 break; 685 case MachineLocKind::ImmediateKind: 686 Out << MLoc.Value.Immediate; 687 break; 688 case MachineLocKind::InvalidKind: 689 llvm_unreachable("Invalid VarLoc in dump method"); 690 } 691 } 692 693 Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", "; 694 if (Var.getInlinedAt()) 695 Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n"; 696 else 697 Out << "(null))"; 698 699 if (isEntryBackupLoc()) 700 Out << " (backup loc)\n"; 701 else 702 Out << "\n"; 703 } 704 #endif 705 706 bool operator==(const VarLoc &Other) const { 707 return std::tie(EVKind, Var, Expr, Locs) == 708 std::tie(Other.EVKind, Other.Var, Other.Expr, Other.Locs); 709 } 710 711 /// This operator guarantees that VarLocs are sorted by Variable first. 712 bool operator<(const VarLoc &Other) const { 713 return std::tie(Var, EVKind, Locs, Expr) < 714 std::tie(Other.Var, Other.EVKind, Other.Locs, Other.Expr); 715 } 716 }; 717 718 #ifndef NDEBUG 719 using VarVec = SmallVector<VarLoc, 32>; 720 #endif 721 722 /// VarLocMap is used for two things: 723 /// 1) Assigning LocIndices to a VarLoc. The LocIndices can be used to 724 /// virtually insert a VarLoc into a VarLocSet. 725 /// 2) Given a LocIndex, look up the unique associated VarLoc. 726 class VarLocMap { 727 /// Map a VarLoc to an index within the vector reserved for its location 728 /// within Loc2Vars. 729 std::map<VarLoc, LocIndices> Var2Indices; 730 731 /// Map a location to a vector which holds VarLocs which live in that 732 /// location. 733 SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars; 734 735 public: 736 /// Retrieve LocIndices for \p VL. 737 LocIndices insert(const VarLoc &VL) { 738 LocIndices &Indices = Var2Indices[VL]; 739 // If Indices is not empty, VL is already in the map. 740 if (!Indices.empty()) 741 return Indices; 742 SmallVector<LocIndex::u32_location_t, 4> Locations; 743 // LocIndices are determined by EVKind and MLs; each Register has a 744 // unique location, while all SpillLocs use a single bucket, and any EV 745 // VarLocs use only the Backup bucket or none at all (except the 746 // compulsory entry at the universal location index). LocIndices will 747 // always have an index at the universal location index as the last index. 748 if (VL.EVKind == VarLoc::EntryValueLocKind::NonEntryValueKind) { 749 VL.getDescribingRegs(Locations); 750 assert(all_of(Locations, 751 [](auto RegNo) { 752 return RegNo < LocIndex::kFirstInvalidRegLocation; 753 }) && 754 "Physreg out of range?"); 755 if (VL.containsSpillLocs()) { 756 LocIndex::u32_location_t Loc = LocIndex::kSpillLocation; 757 Locations.push_back(Loc); 758 } 759 } else if (VL.EVKind != VarLoc::EntryValueLocKind::EntryValueKind) { 760 LocIndex::u32_location_t Loc = LocIndex::kEntryValueBackupLocation; 761 Locations.push_back(Loc); 762 } 763 Locations.push_back(LocIndex::kUniversalLocation); 764 for (LocIndex::u32_location_t Location : Locations) { 765 auto &Vars = Loc2Vars[Location]; 766 Indices.push_back( 767 {Location, static_cast<LocIndex::u32_index_t>(Vars.size())}); 768 Vars.push_back(VL); 769 } 770 return Indices; 771 } 772 773 LocIndices getAllIndices(const VarLoc &VL) const { 774 auto IndIt = Var2Indices.find(VL); 775 assert(IndIt != Var2Indices.end() && "VarLoc not tracked"); 776 return IndIt->second; 777 } 778 779 /// Retrieve the unique VarLoc associated with \p ID. 780 const VarLoc &operator[](LocIndex ID) const { 781 auto LocIt = Loc2Vars.find(ID.Location); 782 assert(LocIt != Loc2Vars.end() && "Location not tracked"); 783 return LocIt->second[ID.Index]; 784 } 785 }; 786 787 using VarLocInMBB = 788 SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>; 789 struct TransferDebugPair { 790 MachineInstr *TransferInst; ///< Instruction where this transfer occurs. 791 LocIndex LocationID; ///< Location number for the transfer dest. 792 }; 793 using TransferMap = SmallVector<TransferDebugPair, 4>; 794 // Types for recording Entry Var Locations emitted by a single MachineInstr, 795 // as well as recording MachineInstr which last defined a register. 796 using InstToEntryLocMap = std::multimap<const MachineInstr *, LocIndex>; 797 using RegDefToInstMap = DenseMap<Register, MachineInstr *>; 798 799 // Types for recording sets of variable fragments that overlap. For a given 800 // local variable, we record all other fragments of that variable that could 801 // overlap it, to reduce search time. 802 using FragmentOfVar = 803 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; 804 using OverlapMap = 805 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; 806 807 // Helper while building OverlapMap, a map of all fragments seen for a given 808 // DILocalVariable. 809 using VarToFragments = 810 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; 811 812 /// Collects all VarLocs from \p CollectFrom. Each unique VarLoc is added 813 /// to \p Collected once, in order of insertion into \p VarLocIDs. 814 static void collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected, 815 const VarLocSet &CollectFrom, 816 const VarLocMap &VarLocIDs); 817 818 /// Get the registers which are used by VarLocs of kind RegisterKind tracked 819 /// by \p CollectFrom. 820 void getUsedRegs(const VarLocSet &CollectFrom, 821 SmallVectorImpl<Register> &UsedRegs) const; 822 823 /// This holds the working set of currently open ranges. For fast 824 /// access, this is done both as a set of VarLocIDs, and a map of 825 /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all 826 /// previous open ranges for the same variable. In addition, we keep 827 /// two different maps (Vars/EntryValuesBackupVars), so erase/insert 828 /// methods act differently depending on whether a VarLoc is primary 829 /// location or backup one. In the case the VarLoc is backup location 830 /// we will erase/insert from the EntryValuesBackupVars map, otherwise 831 /// we perform the operation on the Vars. 832 class OpenRangesSet { 833 VarLocSet::Allocator &Alloc; 834 VarLocSet VarLocs; 835 // Map the DebugVariable to recent primary location ID. 836 SmallDenseMap<DebugVariable, LocIndices, 8> Vars; 837 // Map the DebugVariable to recent backup location ID. 838 SmallDenseMap<DebugVariable, LocIndices, 8> EntryValuesBackupVars; 839 OverlapMap &OverlappingFragments; 840 841 public: 842 OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap) 843 : Alloc(Alloc), VarLocs(Alloc), OverlappingFragments(_OLapMap) {} 844 845 const VarLocSet &getVarLocs() const { return VarLocs; } 846 847 // Fetches all VarLocs in \p VarLocIDs and inserts them into \p Collected. 848 // This method is needed to get every VarLoc once, as each VarLoc may have 849 // multiple indices in a VarLocMap (corresponding to each applicable 850 // location), but all VarLocs appear exactly once at the universal location 851 // index. 852 void getUniqueVarLocs(SmallVectorImpl<VarLoc> &Collected, 853 const VarLocMap &VarLocIDs) const { 854 collectAllVarLocs(Collected, VarLocs, VarLocIDs); 855 } 856 857 /// Terminate all open ranges for VL.Var by removing it from the set. 858 void erase(const VarLoc &VL); 859 860 /// Terminate all open ranges listed as indices in \c KillSet with 861 /// \c Location by removing them from the set. 862 void erase(const VarLocsInRange &KillSet, const VarLocMap &VarLocIDs, 863 LocIndex::u32_location_t Location); 864 865 /// Insert a new range into the set. 866 void insert(LocIndices VarLocIDs, const VarLoc &VL); 867 868 /// Insert a set of ranges. 869 void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map); 870 871 llvm::Optional<LocIndices> getEntryValueBackup(DebugVariable Var); 872 873 /// Empty the set. 874 void clear() { 875 VarLocs.clear(); 876 Vars.clear(); 877 EntryValuesBackupVars.clear(); 878 } 879 880 /// Return whether the set is empty or not. 881 bool empty() const { 882 assert(Vars.empty() == EntryValuesBackupVars.empty() && 883 Vars.empty() == VarLocs.empty() && 884 "open ranges are inconsistent"); 885 return VarLocs.empty(); 886 } 887 888 /// Get an empty range of VarLoc IDs. 889 auto getEmptyVarLocRange() const { 890 return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(), 891 getVarLocs().end()); 892 } 893 894 /// Get all set IDs for VarLocs with MLs of kind RegisterKind in \p Reg. 895 auto getRegisterVarLocs(Register Reg) const { 896 return LocIndex::indexRangeForLocation(getVarLocs(), Reg); 897 } 898 899 /// Get all set IDs for VarLocs with MLs of kind SpillLocKind. 900 auto getSpillVarLocs() const { 901 return LocIndex::indexRangeForLocation(getVarLocs(), 902 LocIndex::kSpillLocation); 903 } 904 905 /// Get all set IDs for VarLocs of EVKind EntryValueBackupKind or 906 /// EntryValueCopyBackupKind. 907 auto getEntryValueBackupVarLocs() const { 908 return LocIndex::indexRangeForLocation( 909 getVarLocs(), LocIndex::kEntryValueBackupLocation); 910 } 911 }; 912 913 /// Collect all VarLoc IDs from \p CollectFrom for VarLocs with MLs of kind 914 /// RegisterKind which are located in any reg in \p Regs. The IDs for each 915 /// VarLoc correspond to entries in the universal location bucket, which every 916 /// VarLoc has exactly 1 entry for. Insert collected IDs into \p Collected. 917 static void collectIDsForRegs(VarLocsInRange &Collected, 918 const DefinedRegsSet &Regs, 919 const VarLocSet &CollectFrom, 920 const VarLocMap &VarLocIDs); 921 922 VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) { 923 std::unique_ptr<VarLocSet> &VLS = Locs[MBB]; 924 if (!VLS) 925 VLS = std::make_unique<VarLocSet>(Alloc); 926 return *VLS.get(); 927 } 928 929 const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, 930 const VarLocInMBB &Locs) const { 931 auto It = Locs.find(MBB); 932 assert(It != Locs.end() && "MBB not in map"); 933 return *It->second.get(); 934 } 935 936 /// Tests whether this instruction is a spill to a stack location. 937 bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); 938 939 /// Decide if @MI is a spill instruction and return true if it is. We use 2 940 /// criteria to make this decision: 941 /// - Is this instruction a store to a spill slot? 942 /// - Is there a register operand that is both used and killed? 943 /// TODO: Store optimization can fold spills into other stores (including 944 /// other spills). We do not handle this yet (more than one memory operand). 945 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, 946 Register &Reg); 947 948 /// Returns true if the given machine instruction is a debug value which we 949 /// can emit entry values for. 950 /// 951 /// Currently, we generate debug entry values only for parameters that are 952 /// unmodified throughout the function and located in a register. 953 bool isEntryValueCandidate(const MachineInstr &MI, 954 const DefinedRegsSet &Regs) const; 955 956 /// If a given instruction is identified as a spill, return the spill location 957 /// and set \p Reg to the spilled register. 958 Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI, 959 MachineFunction *MF, 960 Register &Reg); 961 /// Given a spill instruction, extract the register and offset used to 962 /// address the spill location in a target independent way. 963 VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); 964 void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges, 965 TransferMap &Transfers, VarLocMap &VarLocIDs, 966 LocIndex OldVarID, TransferKind Kind, 967 const VarLoc::MachineLoc &OldLoc, 968 Register NewReg = Register()); 969 970 void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, 971 VarLocMap &VarLocIDs, 972 InstToEntryLocMap &EntryValTransfers, 973 RegDefToInstMap &RegSetInstrs); 974 void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges, 975 VarLocMap &VarLocIDs, TransferMap &Transfers); 976 void cleanupEntryValueTransfers(const MachineInstr *MI, 977 OpenRangesSet &OpenRanges, 978 VarLocMap &VarLocIDs, const VarLoc &EntryVL, 979 InstToEntryLocMap &EntryValTransfers); 980 void removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, 981 VarLocMap &VarLocIDs, const VarLoc &EntryVL, 982 InstToEntryLocMap &EntryValTransfers, 983 RegDefToInstMap &RegSetInstrs); 984 void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges, 985 VarLocMap &VarLocIDs, 986 InstToEntryLocMap &EntryValTransfers, 987 VarLocsInRange &KillSet); 988 void recordEntryValue(const MachineInstr &MI, 989 const DefinedRegsSet &DefinedRegs, 990 OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs); 991 void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges, 992 VarLocMap &VarLocIDs, TransferMap &Transfers); 993 void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges, 994 VarLocMap &VarLocIDs, 995 InstToEntryLocMap &EntryValTransfers, 996 RegDefToInstMap &RegSetInstrs); 997 bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges, 998 VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs); 999 1000 void process(MachineInstr &MI, OpenRangesSet &OpenRanges, 1001 VarLocMap &VarLocIDs, TransferMap &Transfers, 1002 InstToEntryLocMap &EntryValTransfers, 1003 RegDefToInstMap &RegSetInstrs); 1004 1005 void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments, 1006 OverlapMap &OLapMap); 1007 1008 bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, 1009 const VarLocMap &VarLocIDs, 1010 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1011 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks); 1012 1013 /// Create DBG_VALUE insts for inlocs that have been propagated but 1014 /// had their instruction creation deferred. 1015 void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs); 1016 1017 bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC, 1018 unsigned InputBBLimit, unsigned InputDbgValLimit) override; 1019 1020 public: 1021 /// Default construct and initialize the pass. 1022 VarLocBasedLDV(); 1023 1024 ~VarLocBasedLDV(); 1025 1026 /// Print to ostream with a message. 1027 void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V, 1028 const VarLocMap &VarLocIDs, const char *msg, 1029 raw_ostream &Out) const; 1030 }; 1031 1032 } // end anonymous namespace 1033 1034 //===----------------------------------------------------------------------===// 1035 // Implementation 1036 //===----------------------------------------------------------------------===// 1037 1038 VarLocBasedLDV::VarLocBasedLDV() { } 1039 1040 VarLocBasedLDV::~VarLocBasedLDV() { } 1041 1042 /// Erase a variable from the set of open ranges, and additionally erase any 1043 /// fragments that may overlap it. If the VarLoc is a backup location, erase 1044 /// the variable from the EntryValuesBackupVars set, indicating we should stop 1045 /// tracking its backup entry location. Otherwise, if the VarLoc is primary 1046 /// location, erase the variable from the Vars set. 1047 void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) { 1048 // Erasure helper. 1049 auto DoErase = [VL, this](DebugVariable VarToErase) { 1050 auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 1051 auto It = EraseFrom->find(VarToErase); 1052 if (It != EraseFrom->end()) { 1053 LocIndices IDs = It->second; 1054 for (LocIndex ID : IDs) 1055 VarLocs.reset(ID.getAsRawInteger()); 1056 EraseFrom->erase(It); 1057 } 1058 }; 1059 1060 DebugVariable Var = VL.Var; 1061 1062 // Erase the variable/fragment that ends here. 1063 DoErase(Var); 1064 1065 // Extract the fragment. Interpret an empty fragment as one that covers all 1066 // possible bits. 1067 FragmentInfo ThisFragment = Var.getFragmentOrDefault(); 1068 1069 // There may be fragments that overlap the designated fragment. Look them up 1070 // in the pre-computed overlap map, and erase them too. 1071 auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment}); 1072 if (MapIt != OverlappingFragments.end()) { 1073 for (auto Fragment : MapIt->second) { 1074 VarLocBasedLDV::OptFragmentInfo FragmentHolder; 1075 if (!DebugVariable::isDefaultFragment(Fragment)) 1076 FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment); 1077 DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()}); 1078 } 1079 } 1080 } 1081 1082 void VarLocBasedLDV::OpenRangesSet::erase(const VarLocsInRange &KillSet, 1083 const VarLocMap &VarLocIDs, 1084 LocIndex::u32_location_t Location) { 1085 VarLocSet RemoveSet(Alloc); 1086 for (LocIndex::u32_index_t ID : KillSet) { 1087 const VarLoc &VL = VarLocIDs[LocIndex(Location, ID)]; 1088 auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 1089 EraseFrom->erase(VL.Var); 1090 LocIndices VLI = VarLocIDs.getAllIndices(VL); 1091 for (LocIndex ID : VLI) 1092 RemoveSet.set(ID.getAsRawInteger()); 1093 } 1094 VarLocs.intersectWithComplement(RemoveSet); 1095 } 1096 1097 void VarLocBasedLDV::OpenRangesSet::insertFromLocSet(const VarLocSet &ToLoad, 1098 const VarLocMap &Map) { 1099 VarLocsInRange UniqueVarLocIDs; 1100 DefinedRegsSet Regs; 1101 Regs.insert(LocIndex::kUniversalLocation); 1102 collectIDsForRegs(UniqueVarLocIDs, Regs, ToLoad, Map); 1103 for (uint64_t ID : UniqueVarLocIDs) { 1104 LocIndex Idx = LocIndex::fromRawInteger(ID); 1105 const VarLoc &VarL = Map[Idx]; 1106 const LocIndices Indices = Map.getAllIndices(VarL); 1107 insert(Indices, VarL); 1108 } 1109 } 1110 1111 void VarLocBasedLDV::OpenRangesSet::insert(LocIndices VarLocIDs, 1112 const VarLoc &VL) { 1113 auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 1114 for (LocIndex ID : VarLocIDs) 1115 VarLocs.set(ID.getAsRawInteger()); 1116 InsertInto->insert({VL.Var, VarLocIDs}); 1117 } 1118 1119 /// Return the Loc ID of an entry value backup location, if it exists for the 1120 /// variable. 1121 llvm::Optional<LocIndices> 1122 VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) { 1123 auto It = EntryValuesBackupVars.find(Var); 1124 if (It != EntryValuesBackupVars.end()) 1125 return It->second; 1126 1127 return llvm::None; 1128 } 1129 1130 void VarLocBasedLDV::collectIDsForRegs(VarLocsInRange &Collected, 1131 const DefinedRegsSet &Regs, 1132 const VarLocSet &CollectFrom, 1133 const VarLocMap &VarLocIDs) { 1134 assert(!Regs.empty() && "Nothing to collect"); 1135 SmallVector<Register, 32> SortedRegs; 1136 append_range(SortedRegs, Regs); 1137 array_pod_sort(SortedRegs.begin(), SortedRegs.end()); 1138 auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front())); 1139 auto End = CollectFrom.end(); 1140 for (Register Reg : SortedRegs) { 1141 // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains 1142 // all possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which 1143 // live in Reg. 1144 uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg); 1145 uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1); 1146 It.advanceToLowerBound(FirstIndexForReg); 1147 1148 // Iterate through that half-open interval and collect all the set IDs. 1149 for (; It != End && *It < FirstInvalidIndex; ++It) { 1150 LocIndex ItIdx = LocIndex::fromRawInteger(*It); 1151 const VarLoc &VL = VarLocIDs[ItIdx]; 1152 LocIndices LI = VarLocIDs.getAllIndices(VL); 1153 // For now, the back index is always the universal location index. 1154 assert(LI.back().Location == LocIndex::kUniversalLocation && 1155 "Unexpected order of LocIndices for VarLoc; was it inserted into " 1156 "the VarLocMap correctly?"); 1157 Collected.insert(LI.back().Index); 1158 } 1159 1160 if (It == End) 1161 return; 1162 } 1163 } 1164 1165 void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom, 1166 SmallVectorImpl<Register> &UsedRegs) const { 1167 // All register-based VarLocs are assigned indices greater than or equal to 1168 // FirstRegIndex. 1169 uint64_t FirstRegIndex = 1170 LocIndex::rawIndexForReg(LocIndex::kFirstRegLocation); 1171 uint64_t FirstInvalidIndex = 1172 LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation); 1173 for (auto It = CollectFrom.find(FirstRegIndex), 1174 End = CollectFrom.find(FirstInvalidIndex); 1175 It != End;) { 1176 // We found a VarLoc ID for a VarLoc that lives in a register. Figure out 1177 // which register and add it to UsedRegs. 1178 uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location; 1179 assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) && 1180 "Duplicate used reg"); 1181 UsedRegs.push_back(FoundReg); 1182 1183 // Skip to the next /set/ register. Note that this finds a lower bound, so 1184 // even if there aren't any VarLocs living in `FoundReg+1`, we're still 1185 // guaranteed to move on to the next register (or to end()). 1186 uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1); 1187 It.advanceToLowerBound(NextRegIndex); 1188 } 1189 } 1190 1191 //===----------------------------------------------------------------------===// 1192 // Debug Range Extension Implementation 1193 //===----------------------------------------------------------------------===// 1194 1195 #ifndef NDEBUG 1196 void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF, 1197 const VarLocInMBB &V, 1198 const VarLocMap &VarLocIDs, 1199 const char *msg, 1200 raw_ostream &Out) const { 1201 Out << '\n' << msg << '\n'; 1202 for (const MachineBasicBlock &BB : MF) { 1203 if (!V.count(&BB)) 1204 continue; 1205 const VarLocSet &L = getVarLocsInMBB(&BB, V); 1206 if (L.empty()) 1207 continue; 1208 SmallVector<VarLoc, 32> VarLocs; 1209 collectAllVarLocs(VarLocs, L, VarLocIDs); 1210 Out << "MBB: " << BB.getNumber() << ":\n"; 1211 for (const VarLoc &VL : VarLocs) { 1212 Out << " Var: " << VL.Var.getVariable()->getName(); 1213 Out << " MI: "; 1214 VL.dump(TRI, Out); 1215 } 1216 } 1217 Out << "\n"; 1218 } 1219 #endif 1220 1221 VarLocBasedLDV::VarLoc::SpillLoc 1222 VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { 1223 assert(MI.hasOneMemOperand() && 1224 "Spill instruction does not have exactly one memory operand?"); 1225 auto MMOI = MI.memoperands_begin(); 1226 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 1227 assert(PVal->kind() == PseudoSourceValue::FixedStack && 1228 "Inconsistent memory operand in spill instruction"); 1229 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); 1230 const MachineBasicBlock *MBB = MI.getParent(); 1231 Register Reg; 1232 StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); 1233 return {Reg, Offset}; 1234 } 1235 1236 /// Do cleanup of \p EntryValTransfers created by \p TRInst, by removing the 1237 /// Transfer, which uses the to-be-deleted \p EntryVL. 1238 void VarLocBasedLDV::cleanupEntryValueTransfers( 1239 const MachineInstr *TRInst, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, 1240 const VarLoc &EntryVL, InstToEntryLocMap &EntryValTransfers) { 1241 if (EntryValTransfers.empty() || TRInst == nullptr) 1242 return; 1243 1244 auto TransRange = EntryValTransfers.equal_range(TRInst); 1245 for (auto TDPair : llvm::make_range(TransRange.first, TransRange.second)) { 1246 const VarLoc &EmittedEV = VarLocIDs[TDPair.second]; 1247 if (std::tie(EntryVL.Var, EntryVL.Locs[0].Value.RegNo, EntryVL.Expr) == 1248 std::tie(EmittedEV.Var, EmittedEV.Locs[0].Value.RegNo, 1249 EmittedEV.Expr)) { 1250 OpenRanges.erase(EmittedEV); 1251 EntryValTransfers.erase(TRInst); 1252 break; 1253 } 1254 } 1255 } 1256 1257 /// Try to salvage the debug entry value if we encounter a new debug value 1258 /// describing the same parameter, otherwise stop tracking the value. Return 1259 /// true if we should stop tracking the entry value and do the cleanup of 1260 /// emitted Entry Value Transfers, otherwise return false. 1261 void VarLocBasedLDV::removeEntryValue(const MachineInstr &MI, 1262 OpenRangesSet &OpenRanges, 1263 VarLocMap &VarLocIDs, 1264 const VarLoc &EntryVL, 1265 InstToEntryLocMap &EntryValTransfers, 1266 RegDefToInstMap &RegSetInstrs) { 1267 // Skip the DBG_VALUE which is the debug entry value itself. 1268 if (&MI == &EntryVL.MI) 1269 return; 1270 1271 // If the parameter's location is not register location, we can not track 1272 // the entry value any more. It doesn't have the TransferInst which defines 1273 // register, so no Entry Value Transfers have been emitted already. 1274 if (!MI.getDebugOperand(0).isReg()) 1275 return; 1276 1277 // Try to get non-debug instruction responsible for the DBG_VALUE. 1278 const MachineInstr *TransferInst = nullptr; 1279 Register Reg = MI.getDebugOperand(0).getReg(); 1280 if (Reg.isValid() && RegSetInstrs.find(Reg) != RegSetInstrs.end()) 1281 TransferInst = RegSetInstrs.find(Reg)->second; 1282 1283 // Case of the parameter's DBG_VALUE at the start of entry MBB. 1284 if (!TransferInst && !LastNonDbgMI && MI.getParent()->isEntryBlock()) 1285 return; 1286 1287 // If the debug expression from the DBG_VALUE is not empty, we can assume the 1288 // parameter's value has changed indicating that we should stop tracking its 1289 // entry value as well. 1290 if (MI.getDebugExpression()->getNumElements() == 0 && TransferInst) { 1291 // If the DBG_VALUE comes from a copy instruction that copies the entry 1292 // value, it means the parameter's value has not changed and we should be 1293 // able to use its entry value. 1294 // TODO: Try to keep tracking of an entry value if we encounter a propagated 1295 // DBG_VALUE describing the copy of the entry value. (Propagated entry value 1296 // does not indicate the parameter modification.) 1297 auto DestSrc = TII->isCopyInstr(*TransferInst); 1298 if (DestSrc) { 1299 const MachineOperand *SrcRegOp, *DestRegOp; 1300 SrcRegOp = DestSrc->Source; 1301 DestRegOp = DestSrc->Destination; 1302 if (Reg == DestRegOp->getReg()) { 1303 for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { 1304 const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)]; 1305 if (VL.isEntryValueCopyBackupReg(Reg) && 1306 // Entry Values should not be variadic. 1307 VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg()) 1308 return; 1309 } 1310 } 1311 } 1312 } 1313 1314 LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: "; 1315 MI.print(dbgs(), /*IsStandalone*/ false, 1316 /*SkipOpers*/ false, /*SkipDebugLoc*/ false, 1317 /*AddNewLine*/ true, TII)); 1318 cleanupEntryValueTransfers(TransferInst, OpenRanges, VarLocIDs, EntryVL, 1319 EntryValTransfers); 1320 OpenRanges.erase(EntryVL); 1321 } 1322 1323 /// End all previous ranges related to @MI and start a new range from @MI 1324 /// if it is a DBG_VALUE instr. 1325 void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI, 1326 OpenRangesSet &OpenRanges, 1327 VarLocMap &VarLocIDs, 1328 InstToEntryLocMap &EntryValTransfers, 1329 RegDefToInstMap &RegSetInstrs) { 1330 if (!MI.isDebugValue()) 1331 return; 1332 const DILocalVariable *Var = MI.getDebugVariable(); 1333 const DIExpression *Expr = MI.getDebugExpression(); 1334 const DILocation *DebugLoc = MI.getDebugLoc(); 1335 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 1336 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 1337 "Expected inlined-at fields to agree"); 1338 1339 DebugVariable V(Var, Expr, InlinedAt); 1340 1341 // Check if this DBG_VALUE indicates a parameter's value changing. 1342 // If that is the case, we should stop tracking its entry value. 1343 auto EntryValBackupID = OpenRanges.getEntryValueBackup(V); 1344 if (Var->isParameter() && EntryValBackupID) { 1345 const VarLoc &EntryVL = VarLocIDs[EntryValBackupID->back()]; 1346 removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL, EntryValTransfers, 1347 RegSetInstrs); 1348 } 1349 1350 if (all_of(MI.debug_operands(), [](const MachineOperand &MO) { 1351 return (MO.isReg() && MO.getReg()) || MO.isImm() || MO.isFPImm() || 1352 MO.isCImm(); 1353 })) { 1354 // Use normal VarLoc constructor for registers and immediates. 1355 VarLoc VL(MI, LS); 1356 // End all previous ranges of VL.Var. 1357 OpenRanges.erase(VL); 1358 1359 LocIndices IDs = VarLocIDs.insert(VL); 1360 // Add the VarLoc to OpenRanges from this DBG_VALUE. 1361 OpenRanges.insert(IDs, VL); 1362 } else if (MI.memoperands().size() > 0) { 1363 llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?"); 1364 } else { 1365 // This must be an undefined location. If it has an open range, erase it. 1366 assert(MI.isUndefDebugValue() && 1367 "Unexpected non-undef DBG_VALUE encountered"); 1368 VarLoc VL(MI, LS); 1369 OpenRanges.erase(VL); 1370 } 1371 } 1372 1373 // This should be removed later, doesn't fit the new design. 1374 void VarLocBasedLDV::collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected, 1375 const VarLocSet &CollectFrom, 1376 const VarLocMap &VarLocIDs) { 1377 // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all 1378 // possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which live 1379 // in Reg. 1380 uint64_t FirstIndex = LocIndex::rawIndexForReg(LocIndex::kUniversalLocation); 1381 uint64_t FirstInvalidIndex = 1382 LocIndex::rawIndexForReg(LocIndex::kUniversalLocation + 1); 1383 // Iterate through that half-open interval and collect all the set IDs. 1384 for (auto It = CollectFrom.find(FirstIndex), End = CollectFrom.end(); 1385 It != End && *It < FirstInvalidIndex; ++It) { 1386 LocIndex RegIdx = LocIndex::fromRawInteger(*It); 1387 Collected.push_back(VarLocIDs[RegIdx]); 1388 } 1389 } 1390 1391 /// Turn the entry value backup locations into primary locations. 1392 void VarLocBasedLDV::emitEntryValues(MachineInstr &MI, 1393 OpenRangesSet &OpenRanges, 1394 VarLocMap &VarLocIDs, 1395 InstToEntryLocMap &EntryValTransfers, 1396 VarLocsInRange &KillSet) { 1397 // Do not insert entry value locations after a terminator. 1398 if (MI.isTerminator()) 1399 return; 1400 1401 for (uint32_t ID : KillSet) { 1402 // The KillSet IDs are indices for the universal location bucket. 1403 LocIndex Idx = LocIndex(LocIndex::kUniversalLocation, ID); 1404 const VarLoc &VL = VarLocIDs[Idx]; 1405 if (!VL.Var.getVariable()->isParameter()) 1406 continue; 1407 1408 auto DebugVar = VL.Var; 1409 Optional<LocIndices> EntryValBackupIDs = 1410 OpenRanges.getEntryValueBackup(DebugVar); 1411 1412 // If the parameter has the entry value backup, it means we should 1413 // be able to use its entry value. 1414 if (!EntryValBackupIDs) 1415 continue; 1416 1417 const VarLoc &EntryVL = VarLocIDs[EntryValBackupIDs->back()]; 1418 VarLoc EntryLoc = VarLoc::CreateEntryLoc(EntryVL.MI, LS, EntryVL.Expr, 1419 EntryVL.Locs[0].Value.RegNo); 1420 LocIndices EntryValueIDs = VarLocIDs.insert(EntryLoc); 1421 assert(EntryValueIDs.size() == 1 && 1422 "EntryValue loc should not be variadic"); 1423 EntryValTransfers.insert({&MI, EntryValueIDs.back()}); 1424 OpenRanges.insert(EntryValueIDs, EntryLoc); 1425 } 1426 } 1427 1428 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc 1429 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with 1430 /// new VarLoc. If \p NewReg is different than default zero value then the 1431 /// new location will be register location created by the copy like instruction, 1432 /// otherwise it is variable's location on the stack. 1433 void VarLocBasedLDV::insertTransferDebugPair( 1434 MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers, 1435 VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind, 1436 const VarLoc::MachineLoc &OldLoc, Register NewReg) { 1437 const VarLoc &OldVarLoc = VarLocIDs[OldVarID]; 1438 1439 auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) { 1440 LocIndices LocIds = VarLocIDs.insert(VL); 1441 1442 // Close this variable's previous location range. 1443 OpenRanges.erase(VL); 1444 1445 // Record the new location as an open range, and a postponed transfer 1446 // inserting a DBG_VALUE for this location. 1447 OpenRanges.insert(LocIds, VL); 1448 assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator"); 1449 TransferDebugPair MIP = {&MI, LocIds.back()}; 1450 Transfers.push_back(MIP); 1451 }; 1452 1453 // End all previous ranges of VL.Var. 1454 OpenRanges.erase(VarLocIDs[OldVarID]); 1455 switch (Kind) { 1456 case TransferKind::TransferCopy: { 1457 assert(NewReg && 1458 "No register supplied when handling a copy of a debug value"); 1459 // Create a DBG_VALUE instruction to describe the Var in its new 1460 // register location. 1461 VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg); 1462 ProcessVarLoc(VL); 1463 LLVM_DEBUG({ 1464 dbgs() << "Creating VarLoc for register copy:"; 1465 VL.dump(TRI); 1466 }); 1467 return; 1468 } 1469 case TransferKind::TransferSpill: { 1470 // Create a DBG_VALUE instruction to describe the Var in its spilled 1471 // location. 1472 VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI); 1473 VarLoc VL = VarLoc::CreateSpillLoc( 1474 OldVarLoc, OldLoc, SpillLocation.SpillBase, SpillLocation.SpillOffset); 1475 ProcessVarLoc(VL); 1476 LLVM_DEBUG({ 1477 dbgs() << "Creating VarLoc for spill:"; 1478 VL.dump(TRI); 1479 }); 1480 return; 1481 } 1482 case TransferKind::TransferRestore: { 1483 assert(NewReg && 1484 "No register supplied when handling a restore of a debug value"); 1485 // DebugInstr refers to the pre-spill location, therefore we can reuse 1486 // its expression. 1487 VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg); 1488 ProcessVarLoc(VL); 1489 LLVM_DEBUG({ 1490 dbgs() << "Creating VarLoc for restore:"; 1491 VL.dump(TRI); 1492 }); 1493 return; 1494 } 1495 } 1496 llvm_unreachable("Invalid transfer kind"); 1497 } 1498 1499 /// A definition of a register may mark the end of a range. 1500 void VarLocBasedLDV::transferRegisterDef(MachineInstr &MI, 1501 OpenRangesSet &OpenRanges, 1502 VarLocMap &VarLocIDs, 1503 InstToEntryLocMap &EntryValTransfers, 1504 RegDefToInstMap &RegSetInstrs) { 1505 1506 // Meta Instructions do not affect the debug liveness of any register they 1507 // define. 1508 if (MI.isMetaInstruction()) 1509 return; 1510 1511 MachineFunction *MF = MI.getMF(); 1512 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1513 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 1514 1515 // Find the regs killed by MI, and find regmasks of preserved regs. 1516 DefinedRegsSet DeadRegs; 1517 SmallVector<const uint32_t *, 4> RegMasks; 1518 for (const MachineOperand &MO : MI.operands()) { 1519 // Determine whether the operand is a register def. 1520 if (MO.isReg() && MO.isDef() && MO.getReg() && 1521 Register::isPhysicalRegister(MO.getReg()) && 1522 !(MI.isCall() && MO.getReg() == SP)) { 1523 // Remove ranges of all aliased registers. 1524 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1525 // FIXME: Can we break out of this loop early if no insertion occurs? 1526 DeadRegs.insert(*RAI); 1527 if (RegSetInstrs.find(MO.getReg()) != RegSetInstrs.end()) 1528 RegSetInstrs.erase(MO.getReg()); 1529 RegSetInstrs.insert({MO.getReg(), &MI}); 1530 } else if (MO.isRegMask()) { 1531 RegMasks.push_back(MO.getRegMask()); 1532 } 1533 } 1534 1535 // Erase VarLocs which reside in one of the dead registers. For performance 1536 // reasons, it's critical to not iterate over the full set of open VarLocs. 1537 // Iterate over the set of dying/used regs instead. 1538 if (!RegMasks.empty()) { 1539 SmallVector<Register, 32> UsedRegs; 1540 getUsedRegs(OpenRanges.getVarLocs(), UsedRegs); 1541 for (Register Reg : UsedRegs) { 1542 // Remove ranges of all clobbered registers. Register masks don't usually 1543 // list SP as preserved. Assume that call instructions never clobber SP, 1544 // because some backends (e.g., AArch64) never list SP in the regmask. 1545 // While the debug info may be off for an instruction or two around 1546 // callee-cleanup calls, transferring the DEBUG_VALUE across the call is 1547 // still a better user experience. 1548 if (Reg == SP) 1549 continue; 1550 bool AnyRegMaskKillsReg = 1551 any_of(RegMasks, [Reg](const uint32_t *RegMask) { 1552 return MachineOperand::clobbersPhysReg(RegMask, Reg); 1553 }); 1554 if (AnyRegMaskKillsReg) 1555 DeadRegs.insert(Reg); 1556 if (AnyRegMaskKillsReg) { 1557 if (RegSetInstrs.find(Reg) != RegSetInstrs.end()) 1558 RegSetInstrs.erase(Reg); 1559 RegSetInstrs.insert({Reg, &MI}); 1560 } 1561 } 1562 } 1563 1564 if (DeadRegs.empty()) 1565 return; 1566 1567 VarLocsInRange KillSet; 1568 collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs(), VarLocIDs); 1569 OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kUniversalLocation); 1570 1571 if (TPC) { 1572 auto &TM = TPC->getTM<TargetMachine>(); 1573 if (TM.Options.ShouldEmitDebugEntryValues()) 1574 emitEntryValues(MI, OpenRanges, VarLocIDs, EntryValTransfers, KillSet); 1575 } 1576 } 1577 1578 bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI, 1579 MachineFunction *MF) { 1580 // TODO: Handle multiple stores folded into one. 1581 if (!MI.hasOneMemOperand()) 1582 return false; 1583 1584 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) 1585 return false; // This is not a spill instruction, since no valid size was 1586 // returned from either function. 1587 1588 return true; 1589 } 1590 1591 bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI, 1592 MachineFunction *MF, Register &Reg) { 1593 if (!isSpillInstruction(MI, MF)) 1594 return false; 1595 1596 auto isKilledReg = [&](const MachineOperand MO, Register &Reg) { 1597 if (!MO.isReg() || !MO.isUse()) { 1598 Reg = 0; 1599 return false; 1600 } 1601 Reg = MO.getReg(); 1602 return MO.isKill(); 1603 }; 1604 1605 for (const MachineOperand &MO : MI.operands()) { 1606 // In a spill instruction generated by the InlineSpiller the spilled 1607 // register has its kill flag set. 1608 if (isKilledReg(MO, Reg)) 1609 return true; 1610 if (Reg != 0) { 1611 // Check whether next instruction kills the spilled register. 1612 // FIXME: Current solution does not cover search for killed register in 1613 // bundles and instructions further down the chain. 1614 auto NextI = std::next(MI.getIterator()); 1615 // Skip next instruction that points to basic block end iterator. 1616 if (MI.getParent()->end() == NextI) 1617 continue; 1618 Register RegNext; 1619 for (const MachineOperand &MONext : NextI->operands()) { 1620 // Return true if we came across the register from the 1621 // previous spill instruction that is killed in NextI. 1622 if (isKilledReg(MONext, RegNext) && RegNext == Reg) 1623 return true; 1624 } 1625 } 1626 } 1627 // Return false if we didn't find spilled register. 1628 return false; 1629 } 1630 1631 Optional<VarLocBasedLDV::VarLoc::SpillLoc> 1632 VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI, 1633 MachineFunction *MF, Register &Reg) { 1634 if (!MI.hasOneMemOperand()) 1635 return None; 1636 1637 // FIXME: Handle folded restore instructions with more than one memory 1638 // operand. 1639 if (MI.getRestoreSize(TII)) { 1640 Reg = MI.getOperand(0).getReg(); 1641 return extractSpillBaseRegAndOffset(MI); 1642 } 1643 return None; 1644 } 1645 1646 /// A spilled register may indicate that we have to end the current range of 1647 /// a variable and create a new one for the spill location. 1648 /// A restored register may indicate the reverse situation. 1649 /// We don't want to insert any instructions in process(), so we just create 1650 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers. 1651 /// It will be inserted into the BB when we're done iterating over the 1652 /// instructions. 1653 void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI, 1654 OpenRangesSet &OpenRanges, 1655 VarLocMap &VarLocIDs, 1656 TransferMap &Transfers) { 1657 MachineFunction *MF = MI.getMF(); 1658 TransferKind TKind; 1659 Register Reg; 1660 Optional<VarLoc::SpillLoc> Loc; 1661 1662 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); 1663 1664 // First, if there are any DBG_VALUEs pointing at a spill slot that is 1665 // written to, then close the variable location. The value in memory 1666 // will have changed. 1667 VarLocsInRange KillSet; 1668 if (isSpillInstruction(MI, MF)) { 1669 Loc = extractSpillBaseRegAndOffset(MI); 1670 for (uint64_t ID : OpenRanges.getSpillVarLocs()) { 1671 LocIndex Idx = LocIndex::fromRawInteger(ID); 1672 const VarLoc &VL = VarLocIDs[Idx]; 1673 assert(VL.containsSpillLocs() && "Broken VarLocSet?"); 1674 if (VL.usesSpillLoc(*Loc)) { 1675 // This location is overwritten by the current instruction -- terminate 1676 // the open range, and insert an explicit DBG_VALUE $noreg. 1677 // 1678 // Doing this at a later stage would require re-interpreting all 1679 // DBG_VALUes and DIExpressions to identify whether they point at 1680 // memory, and then analysing all memory writes to see if they 1681 // overwrite that memory, which is expensive. 1682 // 1683 // At this stage, we already know which DBG_VALUEs are for spills and 1684 // where they are located; it's best to fix handle overwrites now. 1685 KillSet.insert(ID); 1686 unsigned SpillLocIdx = VL.getSpillLocIdx(*Loc); 1687 VarLoc::MachineLoc OldLoc = VL.Locs[SpillLocIdx]; 1688 VarLoc UndefVL = VarLoc::CreateCopyLoc(VL, OldLoc, 0); 1689 LocIndices UndefLocIDs = VarLocIDs.insert(UndefVL); 1690 Transfers.push_back({&MI, UndefLocIDs.back()}); 1691 } 1692 } 1693 OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kSpillLocation); 1694 } 1695 1696 // Try to recognise spill and restore instructions that may create a new 1697 // variable location. 1698 if (isLocationSpill(MI, MF, Reg)) { 1699 TKind = TransferKind::TransferSpill; 1700 LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump();); 1701 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) 1702 << "\n"); 1703 } else { 1704 if (!(Loc = isRestoreInstruction(MI, MF, Reg))) 1705 return; 1706 TKind = TransferKind::TransferRestore; 1707 LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump();); 1708 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) 1709 << "\n"); 1710 } 1711 // Check if the register or spill location is the location of a debug value. 1712 auto TransferCandidates = OpenRanges.getEmptyVarLocRange(); 1713 if (TKind == TransferKind::TransferSpill) 1714 TransferCandidates = OpenRanges.getRegisterVarLocs(Reg); 1715 else if (TKind == TransferKind::TransferRestore) 1716 TransferCandidates = OpenRanges.getSpillVarLocs(); 1717 for (uint64_t ID : TransferCandidates) { 1718 LocIndex Idx = LocIndex::fromRawInteger(ID); 1719 const VarLoc &VL = VarLocIDs[Idx]; 1720 unsigned LocIdx; 1721 if (TKind == TransferKind::TransferSpill) { 1722 assert(VL.usesReg(Reg) && "Broken VarLocSet?"); 1723 LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '(' 1724 << VL.Var.getVariable()->getName() << ")\n"); 1725 LocIdx = VL.getRegIdx(Reg); 1726 } else { 1727 assert(TKind == TransferKind::TransferRestore && VL.containsSpillLocs() && 1728 "Broken VarLocSet?"); 1729 if (!VL.usesSpillLoc(*Loc)) 1730 // The spill location is not the location of a debug value. 1731 continue; 1732 LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '(' 1733 << VL.Var.getVariable()->getName() << ")\n"); 1734 LocIdx = VL.getSpillLocIdx(*Loc); 1735 } 1736 VarLoc::MachineLoc MLoc = VL.Locs[LocIdx]; 1737 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind, 1738 MLoc, Reg); 1739 // FIXME: A comment should explain why it's correct to return early here, 1740 // if that is in fact correct. 1741 return; 1742 } 1743 } 1744 1745 /// If \p MI is a register copy instruction, that copies a previously tracked 1746 /// value from one register to another register that is callee saved, we 1747 /// create new DBG_VALUE instruction described with copy destination register. 1748 void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI, 1749 OpenRangesSet &OpenRanges, 1750 VarLocMap &VarLocIDs, 1751 TransferMap &Transfers) { 1752 auto DestSrc = TII->isCopyInstr(MI); 1753 if (!DestSrc) 1754 return; 1755 1756 const MachineOperand *DestRegOp = DestSrc->Destination; 1757 const MachineOperand *SrcRegOp = DestSrc->Source; 1758 1759 if (!DestRegOp->isDef()) 1760 return; 1761 1762 auto isCalleeSavedReg = [&](Register Reg) { 1763 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1764 if (CalleeSavedRegs.test(*RAI)) 1765 return true; 1766 return false; 1767 }; 1768 1769 Register SrcReg = SrcRegOp->getReg(); 1770 Register DestReg = DestRegOp->getReg(); 1771 1772 // We want to recognize instructions where destination register is callee 1773 // saved register. If register that could be clobbered by the call is 1774 // included, there would be a great chance that it is going to be clobbered 1775 // soon. It is more likely that previous register location, which is callee 1776 // saved, is going to stay unclobbered longer, even if it is killed. 1777 if (!isCalleeSavedReg(DestReg)) 1778 return; 1779 1780 // Remember an entry value movement. If we encounter a new debug value of 1781 // a parameter describing only a moving of the value around, rather then 1782 // modifying it, we are still able to use the entry value if needed. 1783 if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) { 1784 for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { 1785 LocIndex Idx = LocIndex::fromRawInteger(ID); 1786 const VarLoc &VL = VarLocIDs[Idx]; 1787 if (VL.isEntryValueBackupReg(SrcReg)) { 1788 LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump();); 1789 VarLoc EntryValLocCopyBackup = 1790 VarLoc::CreateEntryCopyBackupLoc(VL.MI, LS, VL.Expr, DestReg); 1791 // Stop tracking the original entry value. 1792 OpenRanges.erase(VL); 1793 1794 // Start tracking the entry value copy. 1795 LocIndices EntryValCopyLocIDs = VarLocIDs.insert(EntryValLocCopyBackup); 1796 OpenRanges.insert(EntryValCopyLocIDs, EntryValLocCopyBackup); 1797 break; 1798 } 1799 } 1800 } 1801 1802 if (!SrcRegOp->isKill()) 1803 return; 1804 1805 for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) { 1806 LocIndex Idx = LocIndex::fromRawInteger(ID); 1807 assert(VarLocIDs[Idx].usesReg(SrcReg) && "Broken VarLocSet?"); 1808 VarLoc::MachineLocValue Loc; 1809 Loc.RegNo = SrcReg; 1810 VarLoc::MachineLoc MLoc{VarLoc::MachineLocKind::RegisterKind, Loc}; 1811 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, 1812 TransferKind::TransferCopy, MLoc, DestReg); 1813 // FIXME: A comment should explain why it's correct to return early here, 1814 // if that is in fact correct. 1815 return; 1816 } 1817 } 1818 1819 /// Terminate all open ranges at the end of the current basic block. 1820 bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB, 1821 OpenRangesSet &OpenRanges, 1822 VarLocInMBB &OutLocs, 1823 const VarLocMap &VarLocIDs) { 1824 bool Changed = false; 1825 LLVM_DEBUG({ 1826 VarVec VarLocs; 1827 OpenRanges.getUniqueVarLocs(VarLocs, VarLocIDs); 1828 for (VarLoc &VL : VarLocs) { 1829 // Copy OpenRanges to OutLocs, if not already present. 1830 dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": "; 1831 VL.dump(TRI); 1832 } 1833 }); 1834 VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs); 1835 Changed = VLS != OpenRanges.getVarLocs(); 1836 // New OutLocs set may be different due to spill, restore or register 1837 // copy instruction processing. 1838 if (Changed) 1839 VLS = OpenRanges.getVarLocs(); 1840 OpenRanges.clear(); 1841 return Changed; 1842 } 1843 1844 /// Accumulate a mapping between each DILocalVariable fragment and other 1845 /// fragments of that DILocalVariable which overlap. This reduces work during 1846 /// the data-flow stage from "Find any overlapping fragments" to "Check if the 1847 /// known-to-overlap fragments are present". 1848 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for 1849 /// fragment usage. 1850 /// \param SeenFragments Map from DILocalVariable to all fragments of that 1851 /// Variable which are known to exist. 1852 /// \param OverlappingFragments The overlap map being constructed, from one 1853 /// Var/Fragment pair to a vector of fragments known to overlap. 1854 void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI, 1855 VarToFragments &SeenFragments, 1856 OverlapMap &OverlappingFragments) { 1857 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), 1858 MI.getDebugLoc()->getInlinedAt()); 1859 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); 1860 1861 // If this is the first sighting of this variable, then we are guaranteed 1862 // there are currently no overlapping fragments either. Initialize the set 1863 // of seen fragments, record no overlaps for the current one, and return. 1864 auto SeenIt = SeenFragments.find(MIVar.getVariable()); 1865 if (SeenIt == SeenFragments.end()) { 1866 SmallSet<FragmentInfo, 4> OneFragment; 1867 OneFragment.insert(ThisFragment); 1868 SeenFragments.insert({MIVar.getVariable(), OneFragment}); 1869 1870 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1871 return; 1872 } 1873 1874 // If this particular Variable/Fragment pair already exists in the overlap 1875 // map, it has already been accounted for. 1876 auto IsInOLapMap = 1877 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1878 if (!IsInOLapMap.second) 1879 return; 1880 1881 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; 1882 auto &AllSeenFragments = SeenIt->second; 1883 1884 // Otherwise, examine all other seen fragments for this variable, with "this" 1885 // fragment being a previously unseen fragment. Record any pair of 1886 // overlapping fragments. 1887 for (auto &ASeenFragment : AllSeenFragments) { 1888 // Does this previously seen fragment overlap? 1889 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { 1890 // Yes: Mark the current fragment as being overlapped. 1891 ThisFragmentsOverlaps.push_back(ASeenFragment); 1892 // Mark the previously seen fragment as being overlapped by the current 1893 // one. 1894 auto ASeenFragmentsOverlaps = 1895 OverlappingFragments.find({MIVar.getVariable(), ASeenFragment}); 1896 assert(ASeenFragmentsOverlaps != OverlappingFragments.end() && 1897 "Previously seen var fragment has no vector of overlaps"); 1898 ASeenFragmentsOverlaps->second.push_back(ThisFragment); 1899 } 1900 } 1901 1902 AllSeenFragments.insert(ThisFragment); 1903 } 1904 1905 /// This routine creates OpenRanges. 1906 void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges, 1907 VarLocMap &VarLocIDs, TransferMap &Transfers, 1908 InstToEntryLocMap &EntryValTransfers, 1909 RegDefToInstMap &RegSetInstrs) { 1910 if (!MI.isDebugInstr()) 1911 LastNonDbgMI = &MI; 1912 transferDebugValue(MI, OpenRanges, VarLocIDs, EntryValTransfers, 1913 RegSetInstrs); 1914 transferRegisterDef(MI, OpenRanges, VarLocIDs, EntryValTransfers, 1915 RegSetInstrs); 1916 transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers); 1917 transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers); 1918 } 1919 1920 /// This routine joins the analysis results of all incoming edges in @MBB by 1921 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same 1922 /// source variable in all the predecessors of @MBB reside in the same location. 1923 bool VarLocBasedLDV::join( 1924 MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, 1925 const VarLocMap &VarLocIDs, 1926 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1927 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) { 1928 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 1929 1930 VarLocSet InLocsT(Alloc); // Temporary incoming locations. 1931 1932 // For all predecessors of this MBB, find the set of VarLocs that 1933 // can be joined. 1934 int NumVisited = 0; 1935 for (auto p : MBB.predecessors()) { 1936 // Ignore backedges if we have not visited the predecessor yet. As the 1937 // predecessor hasn't yet had locations propagated into it, most locations 1938 // will not yet be valid, so treat them as all being uninitialized and 1939 // potentially valid. If a location guessed to be correct here is 1940 // invalidated later, we will remove it when we revisit this block. 1941 if (!Visited.count(p)) { 1942 LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber() 1943 << "\n"); 1944 continue; 1945 } 1946 auto OL = OutLocs.find(p); 1947 // Join is null in case of empty OutLocs from any of the pred. 1948 if (OL == OutLocs.end()) 1949 return false; 1950 1951 // Just copy over the Out locs to incoming locs for the first visited 1952 // predecessor, and for all other predecessors join the Out locs. 1953 VarLocSet &OutLocVLS = *OL->second.get(); 1954 if (!NumVisited) 1955 InLocsT = OutLocVLS; 1956 else 1957 InLocsT &= OutLocVLS; 1958 1959 LLVM_DEBUG({ 1960 if (!InLocsT.empty()) { 1961 VarVec VarLocs; 1962 collectAllVarLocs(VarLocs, InLocsT, VarLocIDs); 1963 for (const VarLoc &VL : VarLocs) 1964 dbgs() << " gathered candidate incoming var: " 1965 << VL.Var.getVariable()->getName() << "\n"; 1966 } 1967 }); 1968 1969 NumVisited++; 1970 } 1971 1972 // Filter out DBG_VALUES that are out of scope. 1973 VarLocSet KillSet(Alloc); 1974 bool IsArtificial = ArtificialBlocks.count(&MBB); 1975 if (!IsArtificial) { 1976 for (uint64_t ID : InLocsT) { 1977 LocIndex Idx = LocIndex::fromRawInteger(ID); 1978 if (!VarLocIDs[Idx].dominates(LS, MBB)) { 1979 KillSet.set(ID); 1980 LLVM_DEBUG({ 1981 auto Name = VarLocIDs[Idx].Var.getVariable()->getName(); 1982 dbgs() << " killing " << Name << ", it doesn't dominate MBB\n"; 1983 }); 1984 } 1985 } 1986 } 1987 InLocsT.intersectWithComplement(KillSet); 1988 1989 // As we are processing blocks in reverse post-order we 1990 // should have processed at least one predecessor, unless it 1991 // is the entry block which has no predecessor. 1992 assert((NumVisited || MBB.pred_empty()) && 1993 "Should have processed at least one predecessor"); 1994 1995 VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs); 1996 bool Changed = false; 1997 if (ILS != InLocsT) { 1998 ILS = InLocsT; 1999 Changed = true; 2000 } 2001 2002 return Changed; 2003 } 2004 2005 void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs, 2006 VarLocMap &VarLocIDs) { 2007 // PendingInLocs records all locations propagated into blocks, which have 2008 // not had DBG_VALUE insts created. Go through and create those insts now. 2009 for (auto &Iter : PendingInLocs) { 2010 // Map is keyed on a constant pointer, unwrap it so we can insert insts. 2011 auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first); 2012 VarLocSet &Pending = *Iter.second.get(); 2013 2014 SmallVector<VarLoc, 32> VarLocs; 2015 collectAllVarLocs(VarLocs, Pending, VarLocIDs); 2016 2017 for (VarLoc DiffIt : VarLocs) { 2018 // The ID location is live-in to MBB -- work out what kind of machine 2019 // location it is and create a DBG_VALUE. 2020 if (DiffIt.isEntryBackupLoc()) 2021 continue; 2022 MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent()); 2023 MBB.insert(MBB.instr_begin(), MI); 2024 2025 (void)MI; 2026 LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump();); 2027 } 2028 } 2029 } 2030 2031 bool VarLocBasedLDV::isEntryValueCandidate( 2032 const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const { 2033 assert(MI.isDebugValue() && "This must be DBG_VALUE."); 2034 2035 // TODO: Add support for local variables that are expressed in terms of 2036 // parameters entry values. 2037 // TODO: Add support for modified arguments that can be expressed 2038 // by using its entry value. 2039 auto *DIVar = MI.getDebugVariable(); 2040 if (!DIVar->isParameter()) 2041 return false; 2042 2043 // Do not consider parameters that belong to an inlined function. 2044 if (MI.getDebugLoc()->getInlinedAt()) 2045 return false; 2046 2047 // Only consider parameters that are described using registers. Parameters 2048 // that are passed on the stack are not yet supported, so ignore debug 2049 // values that are described by the frame or stack pointer. 2050 if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI)) 2051 return false; 2052 2053 // If a parameter's value has been propagated from the caller, then the 2054 // parameter's DBG_VALUE may be described using a register defined by some 2055 // instruction in the entry block, in which case we shouldn't create an 2056 // entry value. 2057 if (DefinedRegs.count(MI.getDebugOperand(0).getReg())) 2058 return false; 2059 2060 // TODO: Add support for parameters that have a pre-existing debug expressions 2061 // (e.g. fragments). 2062 if (MI.getDebugExpression()->getNumElements() > 0) 2063 return false; 2064 2065 return true; 2066 } 2067 2068 /// Collect all register defines (including aliases) for the given instruction. 2069 static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs, 2070 const TargetRegisterInfo *TRI) { 2071 for (const MachineOperand &MO : MI.operands()) 2072 if (MO.isReg() && MO.isDef() && MO.getReg()) 2073 for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) 2074 Regs.insert(*AI); 2075 } 2076 2077 /// This routine records the entry values of function parameters. The values 2078 /// could be used as backup values. If we loose the track of some unmodified 2079 /// parameters, the backup values will be used as a primary locations. 2080 void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI, 2081 const DefinedRegsSet &DefinedRegs, 2082 OpenRangesSet &OpenRanges, 2083 VarLocMap &VarLocIDs) { 2084 if (TPC) { 2085 auto &TM = TPC->getTM<TargetMachine>(); 2086 if (!TM.Options.ShouldEmitDebugEntryValues()) 2087 return; 2088 } 2089 2090 DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(), 2091 MI.getDebugLoc()->getInlinedAt()); 2092 2093 if (!isEntryValueCandidate(MI, DefinedRegs) || 2094 OpenRanges.getEntryValueBackup(V)) 2095 return; 2096 2097 LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump();); 2098 2099 // Create the entry value and use it as a backup location until it is 2100 // valid. It is valid until a parameter is not changed. 2101 DIExpression *NewExpr = 2102 DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue); 2103 VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, LS, NewExpr); 2104 LocIndices EntryValLocIDs = VarLocIDs.insert(EntryValLocAsBackup); 2105 OpenRanges.insert(EntryValLocIDs, EntryValLocAsBackup); 2106 } 2107 2108 /// Calculate the liveness information for the given machine function and 2109 /// extend ranges across basic blocks. 2110 bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC, 2111 unsigned InputBBLimit, 2112 unsigned InputDbgValLimit) { 2113 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); 2114 2115 if (!MF.getFunction().getSubprogram()) 2116 // VarLocBaseLDV will already have removed all DBG_VALUEs. 2117 return false; 2118 2119 // Skip functions from NoDebug compilation units. 2120 if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() == 2121 DICompileUnit::NoDebug) 2122 return false; 2123 2124 TRI = MF.getSubtarget().getRegisterInfo(); 2125 TII = MF.getSubtarget().getInstrInfo(); 2126 TFI = MF.getSubtarget().getFrameLowering(); 2127 TFI->getCalleeSaves(MF, CalleeSavedRegs); 2128 this->TPC = TPC; 2129 LS.initialize(MF); 2130 2131 bool Changed = false; 2132 bool OLChanged = false; 2133 bool MBBJoined = false; 2134 2135 VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors. 2136 OverlapMap OverlapFragments; // Map of overlapping variable fragments. 2137 OpenRangesSet OpenRanges(Alloc, OverlapFragments); 2138 // Ranges that are open until end of bb. 2139 VarLocInMBB OutLocs; // Ranges that exist beyond bb. 2140 VarLocInMBB InLocs; // Ranges that are incoming after joining. 2141 TransferMap Transfers; // DBG_VALUEs associated with transfers (such as 2142 // spills, copies and restores). 2143 // Map responsible MI to attached Transfer emitted from Backup Entry Value. 2144 InstToEntryLocMap EntryValTransfers; 2145 // Map a Register to the last MI which clobbered it. 2146 RegDefToInstMap RegSetInstrs; 2147 2148 VarToFragments SeenFragments; 2149 2150 // Blocks which are artificial, i.e. blocks which exclusively contain 2151 // instructions without locations, or with line 0 locations. 2152 SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks; 2153 2154 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; 2155 DenseMap<MachineBasicBlock *, unsigned int> BBToOrder; 2156 std::priority_queue<unsigned int, std::vector<unsigned int>, 2157 std::greater<unsigned int>> 2158 Worklist; 2159 std::priority_queue<unsigned int, std::vector<unsigned int>, 2160 std::greater<unsigned int>> 2161 Pending; 2162 2163 // Set of register defines that are seen when traversing the entry block 2164 // looking for debug entry value candidates. 2165 DefinedRegsSet DefinedRegs; 2166 2167 // Only in the case of entry MBB collect DBG_VALUEs representing 2168 // function parameters in order to generate debug entry values for them. 2169 MachineBasicBlock &First_MBB = *(MF.begin()); 2170 for (auto &MI : First_MBB) { 2171 collectRegDefs(MI, DefinedRegs, TRI); 2172 if (MI.isDebugValue()) 2173 recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs); 2174 } 2175 2176 // Initialize per-block structures and scan for fragment overlaps. 2177 for (auto &MBB : MF) 2178 for (auto &MI : MBB) 2179 if (MI.isDebugValue()) 2180 accumulateFragmentMap(MI, SeenFragments, OverlapFragments); 2181 2182 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { 2183 if (const DebugLoc &DL = MI.getDebugLoc()) 2184 return DL.getLine() != 0; 2185 return false; 2186 }; 2187 for (auto &MBB : MF) 2188 if (none_of(MBB.instrs(), hasNonArtificialLocation)) 2189 ArtificialBlocks.insert(&MBB); 2190 2191 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, 2192 "OutLocs after initialization", dbgs())); 2193 2194 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 2195 unsigned int RPONumber = 0; 2196 for (MachineBasicBlock *MBB : RPOT) { 2197 OrderToBB[RPONumber] = MBB; 2198 BBToOrder[MBB] = RPONumber; 2199 Worklist.push(RPONumber); 2200 ++RPONumber; 2201 } 2202 2203 if (RPONumber > InputBBLimit) { 2204 unsigned NumInputDbgValues = 0; 2205 for (auto &MBB : MF) 2206 for (auto &MI : MBB) 2207 if (MI.isDebugValue()) 2208 ++NumInputDbgValues; 2209 if (NumInputDbgValues > InputDbgValLimit) { 2210 LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName() 2211 << " has " << RPONumber << " basic blocks and " 2212 << NumInputDbgValues 2213 << " input DBG_VALUEs, exceeding limits.\n"); 2214 return false; 2215 } 2216 } 2217 2218 // This is a standard "union of predecessor outs" dataflow problem. 2219 // To solve it, we perform join() and process() using the two worklist method 2220 // until the ranges converge. 2221 // Ranges have converged when both worklists are empty. 2222 SmallPtrSet<const MachineBasicBlock *, 16> Visited; 2223 while (!Worklist.empty() || !Pending.empty()) { 2224 // We track what is on the pending worklist to avoid inserting the same 2225 // thing twice. We could avoid this with a custom priority queue, but this 2226 // is probably not worth it. 2227 SmallPtrSet<MachineBasicBlock *, 16> OnPending; 2228 LLVM_DEBUG(dbgs() << "Processing Worklist\n"); 2229 while (!Worklist.empty()) { 2230 MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; 2231 Worklist.pop(); 2232 MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited, 2233 ArtificialBlocks); 2234 MBBJoined |= Visited.insert(MBB).second; 2235 if (MBBJoined) { 2236 MBBJoined = false; 2237 Changed = true; 2238 // Now that we have started to extend ranges across BBs we need to 2239 // examine spill, copy and restore instructions to see whether they 2240 // operate with registers that correspond to user variables. 2241 // First load any pending inlocs. 2242 OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs); 2243 LastNonDbgMI = nullptr; 2244 RegSetInstrs.clear(); 2245 for (auto &MI : *MBB) 2246 process(MI, OpenRanges, VarLocIDs, Transfers, EntryValTransfers, 2247 RegSetInstrs); 2248 OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs); 2249 2250 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, 2251 "OutLocs after propagating", dbgs())); 2252 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, 2253 "InLocs after propagating", dbgs())); 2254 2255 if (OLChanged) { 2256 OLChanged = false; 2257 for (auto s : MBB->successors()) 2258 if (OnPending.insert(s).second) { 2259 Pending.push(BBToOrder[s]); 2260 } 2261 } 2262 } 2263 } 2264 Worklist.swap(Pending); 2265 // At this point, pending must be empty, since it was just the empty 2266 // worklist 2267 assert(Pending.empty() && "Pending should be empty"); 2268 } 2269 2270 // Add any DBG_VALUE instructions created by location transfers. 2271 for (auto &TR : Transfers) { 2272 assert(!TR.TransferInst->isTerminator() && 2273 "Cannot insert DBG_VALUE after terminator"); 2274 MachineBasicBlock *MBB = TR.TransferInst->getParent(); 2275 const VarLoc &VL = VarLocIDs[TR.LocationID]; 2276 MachineInstr *MI = VL.BuildDbgValue(MF); 2277 MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI); 2278 } 2279 Transfers.clear(); 2280 2281 // Add DBG_VALUEs created using Backup Entry Value location. 2282 for (auto &TR : EntryValTransfers) { 2283 MachineInstr *TRInst = const_cast<MachineInstr *>(TR.first); 2284 assert(!TRInst->isTerminator() && 2285 "Cannot insert DBG_VALUE after terminator"); 2286 MachineBasicBlock *MBB = TRInst->getParent(); 2287 const VarLoc &VL = VarLocIDs[TR.second]; 2288 MachineInstr *MI = VL.BuildDbgValue(MF); 2289 MBB->insertAfterBundle(TRInst->getIterator(), MI); 2290 } 2291 EntryValTransfers.clear(); 2292 2293 // Deferred inlocs will not have had any DBG_VALUE insts created; do 2294 // that now. 2295 flushPendingLocs(InLocs, VarLocIDs); 2296 2297 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs())); 2298 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs())); 2299 return Changed; 2300 } 2301 2302 LDVImpl * 2303 llvm::makeVarLocBasedLiveDebugValues() 2304 { 2305 return new VarLocBasedLDV(); 2306 } 2307