1 //===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file VarLocBasedImpl.cpp
10 ///
11 /// LiveDebugValues is an optimistic "available expressions" dataflow
12 /// algorithm. The set of expressions is the set of machine locations
13 /// (registers, spill slots, constants) that a variable fragment might be
14 /// located, qualified by a DIExpression and indirect-ness flag, while each
15 /// variable is identified by a DebugVariable object. The availability of an
16 /// expression begins when a DBG_VALUE instruction specifies the location of a
17 /// DebugVariable, and continues until that location is clobbered or
18 /// re-specified by a different DBG_VALUE for the same DebugVariable.
19 ///
20 /// The output of LiveDebugValues is additional DBG_VALUE instructions,
21 /// placed to extend variable locations as far they're available. This file
22 /// and the VarLocBasedLDV class is an implementation that explicitly tracks
23 /// locations, using the VarLoc class.
24 ///
25 /// The canonical "available expressions" problem doesn't have expression
26 /// clobbering, instead when a variable is re-assigned, any expressions using
27 /// that variable get invalidated. LiveDebugValues can map onto "available
28 /// expressions" by having every register represented by a variable, which is
29 /// used in an expression that becomes available at a DBG_VALUE instruction.
30 /// When the register is clobbered, its variable is effectively reassigned, and
31 /// expressions computed from it become unavailable. A similar construct is
32 /// needed when a DebugVariable has its location re-specified, to invalidate
33 /// all other locations for that DebugVariable.
34 ///
35 /// Using the dataflow analysis to compute the available expressions, we create
36 /// a DBG_VALUE at the beginning of each block where the expression is
37 /// live-in. This propagates variable locations into every basic block where
38 /// the location can be determined, rather than only having DBG_VALUEs in blocks
39 /// where locations are specified due to an assignment or some optimization.
40 /// Movements of values between registers and spill slots are annotated with
41 /// DBG_VALUEs too to track variable values bewteen locations. All this allows
42 /// DbgEntityHistoryCalculator to focus on only the locations within individual
43 /// blocks, facilitating testing and improving modularity.
44 ///
45 /// We follow an optimisic dataflow approach, with this lattice:
46 ///
47 /// \verbatim
48 ///                    ┬ "Unknown"
49 ///                          |
50 ///                          v
51 ///                         True
52 ///                          |
53 ///                          v
54 ///                      ⊥ False
55 /// \endverbatim With "True" signifying that the expression is available (and
56 /// thus a DebugVariable's location is the corresponding register), while
57 /// "False" signifies that the expression is unavailable. "Unknown"s never
58 /// survive to the end of the analysis (see below).
59 ///
60 /// Formally, all DebugVariable locations that are live-out of a block are
61 /// initialized to \top.  A blocks live-in values take the meet of the lattice
62 /// value for every predecessors live-outs, except for the entry block, where
63 /// all live-ins are \bot. The usual dataflow propagation occurs: the transfer
64 /// function for a block assigns an expression for a DebugVariable to be "True"
65 /// if a DBG_VALUE in the block specifies it; "False" if the location is
66 /// clobbered; or the live-in value if it is unaffected by the block. We
67 /// visit each block in reverse post order until a fixedpoint is reached. The
68 /// solution produced is maximal.
69 ///
70 /// Intuitively, we start by assuming that every expression / variable location
71 /// is at least "True", and then propagate "False" from the entry block and any
72 /// clobbers until there are no more changes to make. This gives us an accurate
73 /// solution because all incorrect locations will have a "False" propagated into
74 /// them. It also gives us a solution that copes well with loops by assuming
75 /// that variable locations are live-through every loop, and then removing those
76 /// that are not through dataflow.
77 ///
78 /// Within LiveDebugValues: each variable location is represented by a
79 /// VarLoc object that identifies the source variable, the set of
80 /// machine-locations that currently describe it (a single location for
81 /// DBG_VALUE or multiple for DBG_VALUE_LIST), and the DBG_VALUE inst that
82 /// specifies the location. Each VarLoc is indexed in the (function-scope) \p
83 /// VarLocMap, giving each VarLoc a set of unique indexes, each of which
84 /// corresponds to one of the VarLoc's machine-locations and can be used to
85 /// lookup the VarLoc in the VarLocMap. Rather than operate directly on machine
86 /// locations, the dataflow analysis in this pass identifies locations by their
87 /// indices in the VarLocMap, meaning all the variable locations in a block can
88 /// be described by a sparse vector of VarLocMap indicies.
89 ///
90 /// All the storage for the dataflow analysis is local to the ExtendRanges
91 /// method and passed down to helper methods. "OutLocs" and "InLocs" record the
92 /// in and out lattice values for each block. "OpenRanges" maintains a list of
93 /// variable locations and, with the "process" method, evaluates the transfer
94 /// function of each block. "flushPendingLocs" installs debug value instructions
95 /// for each live-in location at the start of blocks, while "Transfers" records
96 /// transfers of values between machine-locations.
97 ///
98 /// We avoid explicitly representing the "Unknown" (\top) lattice value in the
99 /// implementation. Instead, unvisited blocks implicitly have all lattice
100 /// values set as "Unknown". After being visited, there will be path back to
101 /// the entry block where the lattice value is "False", and as the transfer
102 /// function cannot make new "Unknown" locations, there are no scenarios where
103 /// a block can have an "Unknown" location after being visited. Similarly, we
104 /// don't enumerate all possible variable locations before exploring the
105 /// function: when a new location is discovered, all blocks previously explored
106 /// were implicitly "False" but unrecorded, and become explicitly "False" when
107 /// a new VarLoc is created with its bit not set in predecessor InLocs or
108 /// OutLocs.
109 ///
110 //===----------------------------------------------------------------------===//
111 
112 #include "LiveDebugValues.h"
113 
114 #include "llvm/ADT/CoalescingBitVector.h"
115 #include "llvm/ADT/DenseMap.h"
116 #include "llvm/ADT/PostOrderIterator.h"
117 #include "llvm/ADT/SmallPtrSet.h"
118 #include "llvm/ADT/SmallSet.h"
119 #include "llvm/ADT/SmallVector.h"
120 #include "llvm/ADT/Statistic.h"
121 #include "llvm/ADT/UniqueVector.h"
122 #include "llvm/CodeGen/LexicalScopes.h"
123 #include "llvm/CodeGen/MachineBasicBlock.h"
124 #include "llvm/CodeGen/MachineFrameInfo.h"
125 #include "llvm/CodeGen/MachineFunction.h"
126 #include "llvm/CodeGen/MachineFunctionPass.h"
127 #include "llvm/CodeGen/MachineInstr.h"
128 #include "llvm/CodeGen/MachineInstrBuilder.h"
129 #include "llvm/CodeGen/MachineMemOperand.h"
130 #include "llvm/CodeGen/MachineOperand.h"
131 #include "llvm/CodeGen/PseudoSourceValue.h"
132 #include "llvm/CodeGen/RegisterScavenging.h"
133 #include "llvm/CodeGen/TargetFrameLowering.h"
134 #include "llvm/CodeGen/TargetInstrInfo.h"
135 #include "llvm/CodeGen/TargetLowering.h"
136 #include "llvm/CodeGen/TargetPassConfig.h"
137 #include "llvm/CodeGen/TargetRegisterInfo.h"
138 #include "llvm/CodeGen/TargetSubtargetInfo.h"
139 #include "llvm/Config/llvm-config.h"
140 #include "llvm/IR/DIBuilder.h"
141 #include "llvm/IR/DebugInfoMetadata.h"
142 #include "llvm/IR/DebugLoc.h"
143 #include "llvm/IR/Function.h"
144 #include "llvm/IR/Module.h"
145 #include "llvm/InitializePasses.h"
146 #include "llvm/MC/MCRegisterInfo.h"
147 #include "llvm/Pass.h"
148 #include "llvm/Support/Casting.h"
149 #include "llvm/Support/Compiler.h"
150 #include "llvm/Support/Debug.h"
151 #include "llvm/Support/TypeSize.h"
152 #include "llvm/Support/raw_ostream.h"
153 #include "llvm/Target/TargetMachine.h"
154 #include <algorithm>
155 #include <cassert>
156 #include <cstdint>
157 #include <functional>
158 #include <queue>
159 #include <tuple>
160 #include <utility>
161 #include <vector>
162 
163 using namespace llvm;
164 
165 #define DEBUG_TYPE "livedebugvalues"
166 
167 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
168 
169 /// If \p Op is a stack or frame register return true, otherwise return false.
170 /// This is used to avoid basing the debug entry values on the registers, since
171 /// we do not support it at the moment.
172 static bool isRegOtherThanSPAndFP(const MachineOperand &Op,
173                                   const MachineInstr &MI,
174                                   const TargetRegisterInfo *TRI) {
175   if (!Op.isReg())
176     return false;
177 
178   const MachineFunction *MF = MI.getParent()->getParent();
179   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
180   Register SP = TLI->getStackPointerRegisterToSaveRestore();
181   Register FP = TRI->getFrameRegister(*MF);
182   Register Reg = Op.getReg();
183 
184   return Reg && Reg != SP && Reg != FP;
185 }
186 
187 namespace {
188 
189 // Max out the number of statically allocated elements in DefinedRegsSet, as
190 // this prevents fallback to std::set::count() operations.
191 using DefinedRegsSet = SmallSet<Register, 32>;
192 
193 // The IDs in this set correspond to MachineLocs in VarLocs, as well as VarLocs
194 // that represent Entry Values; every VarLoc in the set will also appear
195 // exactly once at Location=0.
196 // As a result, each VarLoc may appear more than once in this "set", but each
197 // range corresponding to a Reg, SpillLoc, or EntryValue type will still be a
198 // "true" set (i.e. each VarLoc may appear only once), and the range Location=0
199 // is the set of all VarLocs.
200 using VarLocSet = CoalescingBitVector<uint64_t>;
201 
202 /// A type-checked pair of {Register Location (or 0), Index}, used to index
203 /// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int
204 /// for insertion into a \ref VarLocSet, and efficiently converted back. The
205 /// type-checker helps ensure that the conversions aren't lossy.
206 ///
207 /// Why encode a location /into/ the VarLocMap index? This makes it possible
208 /// to find the open VarLocs killed by a register def very quickly. This is a
209 /// performance-critical operation for LiveDebugValues.
210 struct LocIndex {
211   using u32_location_t = uint32_t;
212   using u32_index_t = uint32_t;
213 
214   u32_location_t Location; // Physical registers live in the range [1;2^30) (see
215                            // \ref MCRegister), so we have plenty of range left
216                            // here to encode non-register locations.
217   u32_index_t Index;
218 
219   /// The location that has an entry for every VarLoc in the map.
220   static constexpr u32_location_t kUniversalLocation = 0;
221 
222   /// The first location that is reserved for VarLocs with locations of kind
223   /// RegisterKind.
224   static constexpr u32_location_t kFirstRegLocation = 1;
225 
226   /// The first location greater than 0 that is not reserved for VarLocs with
227   /// locations of kind RegisterKind.
228   static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30;
229 
230   /// A special location reserved for VarLocs with locations of kind
231   /// SpillLocKind.
232   static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation;
233 
234   /// A special location reserved for VarLocs of kind EntryValueBackupKind and
235   /// EntryValueCopyBackupKind.
236   static constexpr u32_location_t kEntryValueBackupLocation =
237       kFirstInvalidRegLocation + 1;
238 
239   LocIndex(u32_location_t Location, u32_index_t Index)
240       : Location(Location), Index(Index) {}
241 
242   uint64_t getAsRawInteger() const {
243     return (static_cast<uint64_t>(Location) << 32) | Index;
244   }
245 
246   template<typename IntT> static LocIndex fromRawInteger(IntT ID) {
247     static_assert(std::is_unsigned<IntT>::value &&
248                       sizeof(ID) == sizeof(uint64_t),
249                   "Cannot convert raw integer to LocIndex");
250     return {static_cast<u32_location_t>(ID >> 32),
251             static_cast<u32_index_t>(ID)};
252   }
253 
254   /// Get the start of the interval reserved for VarLocs of kind RegisterKind
255   /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1.
256   static uint64_t rawIndexForReg(Register Reg) {
257     return LocIndex(Reg, 0).getAsRawInteger();
258   }
259 
260   /// Return a range covering all set indices in the interval reserved for
261   /// \p Location in \p Set.
262   static auto indexRangeForLocation(const VarLocSet &Set,
263                                     u32_location_t Location) {
264     uint64_t Start = LocIndex(Location, 0).getAsRawInteger();
265     uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger();
266     return Set.half_open_range(Start, End);
267   }
268 };
269 
270 // Simple Set for storing all the VarLoc Indices at a Location bucket.
271 using VarLocsInRange = SmallSet<LocIndex::u32_index_t, 32>;
272 // Vector of all `LocIndex`s for a given VarLoc; the same Location should not
273 // appear in any two of these, as each VarLoc appears at most once in any
274 // Location bucket.
275 using LocIndices = SmallVector<LocIndex, 2>;
276 
277 class VarLocBasedLDV : public LDVImpl {
278 private:
279   const TargetRegisterInfo *TRI;
280   const TargetInstrInfo *TII;
281   const TargetFrameLowering *TFI;
282   TargetPassConfig *TPC;
283   BitVector CalleeSavedRegs;
284   LexicalScopes LS;
285   VarLocSet::Allocator Alloc;
286 
287   enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore };
288 
289   using FragmentInfo = DIExpression::FragmentInfo;
290   using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
291 
292   /// A pair of debug variable and value location.
293   struct VarLoc {
294     // The location at which a spilled variable resides. It consists of a
295     // register and an offset.
296     struct SpillLoc {
297       unsigned SpillBase;
298       StackOffset SpillOffset;
299       bool operator==(const SpillLoc &Other) const {
300         return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset;
301       }
302       bool operator!=(const SpillLoc &Other) const {
303         return !(*this == Other);
304       }
305     };
306 
307     /// Identity of the variable at this location.
308     const DebugVariable Var;
309 
310     /// The expression applied to this location.
311     const DIExpression *Expr;
312 
313     /// DBG_VALUE to clone var/expr information from if this location
314     /// is moved.
315     const MachineInstr &MI;
316 
317     enum class MachineLocKind {
318       InvalidKind = 0,
319       RegisterKind,
320       SpillLocKind,
321       ImmediateKind
322     };
323 
324     enum class EntryValueLocKind {
325       NonEntryValueKind = 0,
326       EntryValueKind,
327       EntryValueBackupKind,
328       EntryValueCopyBackupKind
329     } EVKind;
330 
331     /// The value location. Stored separately to avoid repeatedly
332     /// extracting it from MI.
333     union MachineLocValue {
334       uint64_t RegNo;
335       SpillLoc SpillLocation;
336       uint64_t Hash;
337       int64_t Immediate;
338       const ConstantFP *FPImm;
339       const ConstantInt *CImm;
340       MachineLocValue() : Hash(0) {}
341     };
342 
343     /// A single machine location; its Kind is either a register, spill
344     /// location, or immediate value.
345     /// If the VarLoc is not a NonEntryValueKind, then it will use only a
346     /// single MachineLoc of RegisterKind.
347     struct MachineLoc {
348       MachineLocKind Kind;
349       MachineLocValue Value;
350       bool operator==(const MachineLoc &Other) const {
351         if (Kind != Other.Kind)
352           return false;
353         switch (Kind) {
354         case MachineLocKind::SpillLocKind:
355           return Value.SpillLocation == Other.Value.SpillLocation;
356         case MachineLocKind::RegisterKind:
357         case MachineLocKind::ImmediateKind:
358           return Value.Hash == Other.Value.Hash;
359         default:
360           llvm_unreachable("Invalid kind");
361         }
362       }
363       bool operator<(const MachineLoc &Other) const {
364         switch (Kind) {
365         case MachineLocKind::SpillLocKind:
366           return std::make_tuple(
367                      Kind, Value.SpillLocation.SpillBase,
368                      Value.SpillLocation.SpillOffset.getFixed(),
369                      Value.SpillLocation.SpillOffset.getScalable()) <
370                  std::make_tuple(
371                      Other.Kind, Other.Value.SpillLocation.SpillBase,
372                      Other.Value.SpillLocation.SpillOffset.getFixed(),
373                      Other.Value.SpillLocation.SpillOffset.getScalable());
374         case MachineLocKind::RegisterKind:
375         case MachineLocKind::ImmediateKind:
376           return std::tie(Kind, Value.Hash) <
377                  std::tie(Other.Kind, Other.Value.Hash);
378         default:
379           llvm_unreachable("Invalid kind");
380         }
381       }
382     };
383 
384     /// The set of machine locations used to determine the variable's value, in
385     /// conjunction with Expr. Initially populated with MI's debug operands,
386     /// but may be transformed independently afterwards.
387     SmallVector<MachineLoc, 8> Locs;
388     /// Used to map the index of each location in Locs back to the index of its
389     /// original debug operand in MI. Used when multiple location operands are
390     /// coalesced and the original MI's operands need to be accessed while
391     /// emitting a debug value.
392     SmallVector<unsigned, 8> OrigLocMap;
393 
394     VarLoc(const MachineInstr &MI, LexicalScopes &LS)
395         : Var(MI.getDebugVariable(), MI.getDebugExpression(),
396               MI.getDebugLoc()->getInlinedAt()),
397           Expr(MI.getDebugExpression()), MI(MI),
398           EVKind(EntryValueLocKind::NonEntryValueKind) {
399       assert(MI.isDebugValue() && "not a DBG_VALUE");
400       assert((MI.isDebugValueList() || MI.getNumOperands() == 4) &&
401              "malformed DBG_VALUE");
402       for (const MachineOperand &Op : MI.debug_operands()) {
403         MachineLoc ML = GetLocForOp(Op);
404         auto It = find(Locs, ML);
405         if (It == Locs.end()) {
406           Locs.push_back(ML);
407           OrigLocMap.push_back(MI.getDebugOperandIndex(&Op));
408         } else {
409           // ML duplicates an element in Locs; replace references to Op
410           // with references to the duplicating element.
411           unsigned OpIdx = Locs.size();
412           unsigned DuplicatingIdx = std::distance(Locs.begin(), It);
413           Expr = DIExpression::replaceArg(Expr, OpIdx, DuplicatingIdx);
414         }
415       }
416 
417       // We create the debug entry values from the factory functions rather
418       // than from this ctor.
419       assert(EVKind != EntryValueLocKind::EntryValueKind &&
420              !isEntryBackupLoc());
421     }
422 
423     static MachineLoc GetLocForOp(const MachineOperand &Op) {
424       MachineLocKind Kind;
425       MachineLocValue Loc;
426       if (Op.isReg()) {
427         Kind = MachineLocKind::RegisterKind;
428         Loc.RegNo = Op.getReg();
429       } else if (Op.isImm()) {
430         Kind = MachineLocKind::ImmediateKind;
431         Loc.Immediate = Op.getImm();
432       } else if (Op.isFPImm()) {
433         Kind = MachineLocKind::ImmediateKind;
434         Loc.FPImm = Op.getFPImm();
435       } else if (Op.isCImm()) {
436         Kind = MachineLocKind::ImmediateKind;
437         Loc.CImm = Op.getCImm();
438       } else
439         llvm_unreachable("Invalid Op kind for MachineLoc.");
440       return {Kind, Loc};
441     }
442 
443     /// Take the variable and machine-location in DBG_VALUE MI, and build an
444     /// entry location using the given expression.
445     static VarLoc CreateEntryLoc(const MachineInstr &MI, LexicalScopes &LS,
446                                  const DIExpression *EntryExpr, Register Reg) {
447       VarLoc VL(MI, LS);
448       assert(VL.Locs.size() == 1 &&
449              VL.Locs[0].Kind == MachineLocKind::RegisterKind);
450       VL.EVKind = EntryValueLocKind::EntryValueKind;
451       VL.Expr = EntryExpr;
452       VL.Locs[0].Value.RegNo = Reg;
453       return VL;
454     }
455 
456     /// Take the variable and machine-location from the DBG_VALUE (from the
457     /// function entry), and build an entry value backup location. The backup
458     /// location will turn into the normal location if the backup is valid at
459     /// the time of the primary location clobbering.
460     static VarLoc CreateEntryBackupLoc(const MachineInstr &MI,
461                                        LexicalScopes &LS,
462                                        const DIExpression *EntryExpr) {
463       VarLoc VL(MI, LS);
464       assert(VL.Locs.size() == 1 &&
465              VL.Locs[0].Kind == MachineLocKind::RegisterKind);
466       VL.EVKind = EntryValueLocKind::EntryValueBackupKind;
467       VL.Expr = EntryExpr;
468       return VL;
469     }
470 
471     /// Take the variable and machine-location from the DBG_VALUE (from the
472     /// function entry), and build a copy of an entry value backup location by
473     /// setting the register location to NewReg.
474     static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI,
475                                            LexicalScopes &LS,
476                                            const DIExpression *EntryExpr,
477                                            Register NewReg) {
478       VarLoc VL(MI, LS);
479       assert(VL.Locs.size() == 1 &&
480              VL.Locs[0].Kind == MachineLocKind::RegisterKind);
481       VL.EVKind = EntryValueLocKind::EntryValueCopyBackupKind;
482       VL.Expr = EntryExpr;
483       VL.Locs[0].Value.RegNo = NewReg;
484       return VL;
485     }
486 
487     /// Copy the register location in DBG_VALUE MI, updating the register to
488     /// be NewReg.
489     static VarLoc CreateCopyLoc(const VarLoc &OldVL, const MachineLoc &OldML,
490                                 Register NewReg) {
491       VarLoc VL = OldVL;
492       for (size_t I = 0, E = VL.Locs.size(); I < E; ++I)
493         if (VL.Locs[I] == OldML) {
494           VL.Locs[I].Kind = MachineLocKind::RegisterKind;
495           VL.Locs[I].Value.RegNo = NewReg;
496           return VL;
497         }
498       llvm_unreachable("Should have found OldML in new VarLoc.");
499     }
500 
501     /// Take the variable described by DBG_VALUE* MI, and create a VarLoc
502     /// locating it in the specified spill location.
503     static VarLoc CreateSpillLoc(const VarLoc &OldVL, const MachineLoc &OldML,
504                                  unsigned SpillBase, StackOffset SpillOffset) {
505       VarLoc VL = OldVL;
506       for (int I = 0, E = VL.Locs.size(); I < E; ++I)
507         if (VL.Locs[I] == OldML) {
508           VL.Locs[I].Kind = MachineLocKind::SpillLocKind;
509           VL.Locs[I].Value.SpillLocation = {SpillBase, SpillOffset};
510           return VL;
511         }
512       llvm_unreachable("Should have found OldML in new VarLoc.");
513     }
514 
515     /// Create a DBG_VALUE representing this VarLoc in the given function.
516     /// Copies variable-specific information such as DILocalVariable and
517     /// inlining information from the original DBG_VALUE instruction, which may
518     /// have been several transfers ago.
519     MachineInstr *BuildDbgValue(MachineFunction &MF) const {
520       assert(!isEntryBackupLoc() &&
521              "Tried to produce DBG_VALUE for backup VarLoc");
522       const DebugLoc &DbgLoc = MI.getDebugLoc();
523       bool Indirect = MI.isIndirectDebugValue();
524       const auto &IID = MI.getDesc();
525       const DILocalVariable *Var = MI.getDebugVariable();
526       NumInserted++;
527 
528       const DIExpression *DIExpr = Expr;
529       SmallVector<MachineOperand, 8> MOs;
530       for (unsigned I = 0, E = Locs.size(); I < E; ++I) {
531         MachineLocKind LocKind = Locs[I].Kind;
532         MachineLocValue Loc = Locs[I].Value;
533         const MachineOperand &Orig = MI.getDebugOperand(OrigLocMap[I]);
534         switch (LocKind) {
535         case MachineLocKind::RegisterKind:
536           // An entry value is a register location -- but with an updated
537           // expression. The register location of such DBG_VALUE is always the
538           // one from the entry DBG_VALUE, it does not matter if the entry value
539           // was copied in to another register due to some optimizations.
540           // Non-entry value register locations are like the source
541           // DBG_VALUE, but with the register number from this VarLoc.
542           MOs.push_back(MachineOperand::CreateReg(
543               EVKind == EntryValueLocKind::EntryValueKind ? Orig.getReg()
544                                                           : Register(Loc.RegNo),
545               false));
546           MOs.back().setIsDebug();
547           break;
548         case MachineLocKind::SpillLocKind: {
549           // Spills are indirect DBG_VALUEs, with a base register and offset.
550           // Use the original DBG_VALUEs expression to build the spilt location
551           // on top of. FIXME: spill locations created before this pass runs
552           // are not recognized, and not handled here.
553           unsigned Base = Loc.SpillLocation.SpillBase;
554           auto *TRI = MF.getSubtarget().getRegisterInfo();
555           if (MI.isNonListDebugValue()) {
556             DIExpr =
557                 TRI->prependOffsetExpression(DIExpr, DIExpression::ApplyOffset,
558                                              Loc.SpillLocation.SpillOffset);
559             Indirect = true;
560           } else {
561             SmallVector<uint64_t, 4> Ops;
562             TRI->getOffsetOpcodes(Loc.SpillLocation.SpillOffset, Ops);
563             Ops.push_back(dwarf::DW_OP_deref);
564             DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, I);
565           }
566           MOs.push_back(MachineOperand::CreateReg(Base, false));
567           MOs.back().setIsDebug();
568           break;
569         }
570         case MachineLocKind::ImmediateKind: {
571           MOs.push_back(Orig);
572           break;
573         }
574         case MachineLocKind::InvalidKind:
575           llvm_unreachable("Tried to produce DBG_VALUE for invalid VarLoc");
576         }
577       }
578       return BuildMI(MF, DbgLoc, IID, Indirect, MOs, Var, DIExpr);
579     }
580 
581     /// Is the Loc field a constant or constant object?
582     bool isConstant(MachineLocKind Kind) const {
583       return Kind == MachineLocKind::ImmediateKind;
584     }
585 
586     /// Check if the Loc field is an entry backup location.
587     bool isEntryBackupLoc() const {
588       return EVKind == EntryValueLocKind::EntryValueBackupKind ||
589              EVKind == EntryValueLocKind::EntryValueCopyBackupKind;
590     }
591 
592     /// If this variable is described by register \p Reg holding the entry
593     /// value, return true.
594     bool isEntryValueBackupReg(Register Reg) const {
595       return EVKind == EntryValueLocKind::EntryValueBackupKind && usesReg(Reg);
596     }
597 
598     /// If this variable is described by register \p Reg holding a copy of the
599     /// entry value, return true.
600     bool isEntryValueCopyBackupReg(Register Reg) const {
601       return EVKind == EntryValueLocKind::EntryValueCopyBackupKind &&
602              usesReg(Reg);
603     }
604 
605     /// If this variable is described in whole or part by \p Reg, return true.
606     bool usesReg(Register Reg) const {
607       MachineLoc RegML;
608       RegML.Kind = MachineLocKind::RegisterKind;
609       RegML.Value.RegNo = Reg;
610       return is_contained(Locs, RegML);
611     }
612 
613     /// If this variable is described in whole or part by \p Reg, return true.
614     unsigned getRegIdx(Register Reg) const {
615       for (unsigned Idx = 0; Idx < Locs.size(); ++Idx)
616         if (Locs[Idx].Kind == MachineLocKind::RegisterKind &&
617             Locs[Idx].Value.RegNo == Reg)
618           return Idx;
619       llvm_unreachable("Could not find given Reg in Locs");
620     }
621 
622     /// If this variable is described in whole or part by 1 or more registers,
623     /// add each of them to \p Regs and return true.
624     bool getDescribingRegs(SmallVectorImpl<uint32_t> &Regs) const {
625       bool AnyRegs = false;
626       for (auto Loc : Locs)
627         if (Loc.Kind == MachineLocKind::RegisterKind) {
628           Regs.push_back(Loc.Value.RegNo);
629           AnyRegs = true;
630         }
631       return AnyRegs;
632     }
633 
634     bool containsSpillLocs() const {
635       return any_of(Locs, [](VarLoc::MachineLoc ML) {
636         return ML.Kind == VarLoc::MachineLocKind::SpillLocKind;
637       });
638     }
639 
640     /// If this variable is described in whole or part by \p SpillLocation,
641     /// return true.
642     bool usesSpillLoc(SpillLoc SpillLocation) const {
643       MachineLoc SpillML;
644       SpillML.Kind = MachineLocKind::SpillLocKind;
645       SpillML.Value.SpillLocation = SpillLocation;
646       return is_contained(Locs, SpillML);
647     }
648 
649     /// If this variable is described in whole or part by \p SpillLocation,
650     /// return the index .
651     unsigned getSpillLocIdx(SpillLoc SpillLocation) const {
652       for (unsigned Idx = 0; Idx < Locs.size(); ++Idx)
653         if (Locs[Idx].Kind == MachineLocKind::SpillLocKind &&
654             Locs[Idx].Value.SpillLocation == SpillLocation)
655           return Idx;
656       llvm_unreachable("Could not find given SpillLoc in Locs");
657     }
658 
659     /// Determine whether the lexical scope of this value's debug location
660     /// dominates MBB.
661     bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const {
662       return LS.dominates(MI.getDebugLoc().get(), &MBB);
663     }
664 
665 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
666     // TRI can be null.
667     void dump(const TargetRegisterInfo *TRI, raw_ostream &Out = dbgs()) const {
668       Out << "VarLoc(";
669       for (const MachineLoc &MLoc : Locs) {
670         if (Locs.begin() != &MLoc)
671           Out << ", ";
672         switch (MLoc.Kind) {
673         case MachineLocKind::RegisterKind:
674           Out << printReg(MLoc.Value.RegNo, TRI);
675           break;
676         case MachineLocKind::SpillLocKind:
677           Out << printReg(MLoc.Value.SpillLocation.SpillBase, TRI);
678           Out << "[" << MLoc.Value.SpillLocation.SpillOffset.getFixed() << " + "
679               << MLoc.Value.SpillLocation.SpillOffset.getScalable()
680               << "x vscale"
681               << "]";
682           break;
683         case MachineLocKind::ImmediateKind:
684           Out << MLoc.Value.Immediate;
685           break;
686         case MachineLocKind::InvalidKind:
687           llvm_unreachable("Invalid VarLoc in dump method");
688         }
689       }
690 
691       Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", ";
692       if (Var.getInlinedAt())
693         Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n";
694       else
695         Out << "(null))";
696 
697       if (isEntryBackupLoc())
698         Out << " (backup loc)\n";
699       else
700         Out << "\n";
701     }
702 #endif
703 
704     bool operator==(const VarLoc &Other) const {
705       return std::tie(EVKind, Var, Expr, Locs) ==
706              std::tie(Other.EVKind, Other.Var, Other.Expr, Other.Locs);
707     }
708 
709     /// This operator guarantees that VarLocs are sorted by Variable first.
710     bool operator<(const VarLoc &Other) const {
711       return std::tie(Var, EVKind, Locs, Expr) <
712              std::tie(Other.Var, Other.EVKind, Other.Locs, Other.Expr);
713     }
714   };
715 
716 #ifndef NDEBUG
717   using VarVec = SmallVector<VarLoc, 32>;
718 #endif
719 
720   /// VarLocMap is used for two things:
721   /// 1) Assigning LocIndices to a VarLoc. The LocIndices can be used to
722   ///    virtually insert a VarLoc into a VarLocSet.
723   /// 2) Given a LocIndex, look up the unique associated VarLoc.
724   class VarLocMap {
725     /// Map a VarLoc to an index within the vector reserved for its location
726     /// within Loc2Vars.
727     std::map<VarLoc, LocIndices> Var2Indices;
728 
729     /// Map a location to a vector which holds VarLocs which live in that
730     /// location.
731     SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars;
732 
733   public:
734     /// Retrieve LocIndices for \p VL.
735     LocIndices insert(const VarLoc &VL) {
736       LocIndices &Indices = Var2Indices[VL];
737       // If Indices is not empty, VL is already in the map.
738       if (!Indices.empty())
739         return Indices;
740       SmallVector<LocIndex::u32_location_t, 4> Locations;
741       // LocIndices are determined by EVKind and MLs; each Register has a
742       // unique location, while all SpillLocs use a single bucket, and any EV
743       // VarLocs use only the Backup bucket or none at all (except the
744       // compulsory entry at the universal location index). LocIndices will
745       // always have an index at the universal location index as the last index.
746       if (VL.EVKind == VarLoc::EntryValueLocKind::NonEntryValueKind) {
747         VL.getDescribingRegs(Locations);
748         assert(all_of(Locations,
749                       [](auto RegNo) {
750                         return RegNo < LocIndex::kFirstInvalidRegLocation;
751                       }) &&
752                "Physreg out of range?");
753         if (VL.containsSpillLocs()) {
754           LocIndex::u32_location_t Loc = LocIndex::kSpillLocation;
755           Locations.push_back(Loc);
756         }
757       } else if (VL.EVKind != VarLoc::EntryValueLocKind::EntryValueKind) {
758         LocIndex::u32_location_t Loc = LocIndex::kEntryValueBackupLocation;
759         Locations.push_back(Loc);
760       }
761       Locations.push_back(LocIndex::kUniversalLocation);
762       for (LocIndex::u32_location_t Location : Locations) {
763         auto &Vars = Loc2Vars[Location];
764         Indices.push_back(
765             {Location, static_cast<LocIndex::u32_index_t>(Vars.size())});
766         Vars.push_back(VL);
767       }
768       return Indices;
769     }
770 
771     LocIndices getAllIndices(const VarLoc &VL) const {
772       auto IndIt = Var2Indices.find(VL);
773       assert(IndIt != Var2Indices.end() && "VarLoc not tracked");
774       return IndIt->second;
775     }
776 
777     /// Retrieve the unique VarLoc associated with \p ID.
778     const VarLoc &operator[](LocIndex ID) const {
779       auto LocIt = Loc2Vars.find(ID.Location);
780       assert(LocIt != Loc2Vars.end() && "Location not tracked");
781       return LocIt->second[ID.Index];
782     }
783   };
784 
785   using VarLocInMBB =
786       SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>;
787   struct TransferDebugPair {
788     MachineInstr *TransferInst; ///< Instruction where this transfer occurs.
789     LocIndex LocationID;        ///< Location number for the transfer dest.
790   };
791   using TransferMap = SmallVector<TransferDebugPair, 4>;
792 
793   // Types for recording sets of variable fragments that overlap. For a given
794   // local variable, we record all other fragments of that variable that could
795   // overlap it, to reduce search time.
796   using FragmentOfVar =
797       std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
798   using OverlapMap =
799       DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
800 
801   // Helper while building OverlapMap, a map of all fragments seen for a given
802   // DILocalVariable.
803   using VarToFragments =
804       DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
805 
806   /// Collects all VarLocs from \p CollectFrom. Each unique VarLoc is added
807   /// to \p Collected once, in order of insertion into \p VarLocIDs.
808   static void collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected,
809                                 const VarLocSet &CollectFrom,
810                                 const VarLocMap &VarLocIDs);
811 
812   /// Get the registers which are used by VarLocs of kind RegisterKind tracked
813   /// by \p CollectFrom.
814   void getUsedRegs(const VarLocSet &CollectFrom,
815                    SmallVectorImpl<Register> &UsedRegs) const;
816 
817   /// This holds the working set of currently open ranges. For fast
818   /// access, this is done both as a set of VarLocIDs, and a map of
819   /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
820   /// previous open ranges for the same variable. In addition, we keep
821   /// two different maps (Vars/EntryValuesBackupVars), so erase/insert
822   /// methods act differently depending on whether a VarLoc is primary
823   /// location or backup one. In the case the VarLoc is backup location
824   /// we will erase/insert from the EntryValuesBackupVars map, otherwise
825   /// we perform the operation on the Vars.
826   class OpenRangesSet {
827     VarLocSet::Allocator &Alloc;
828     VarLocSet VarLocs;
829     // Map the DebugVariable to recent primary location ID.
830     SmallDenseMap<DebugVariable, LocIndices, 8> Vars;
831     // Map the DebugVariable to recent backup location ID.
832     SmallDenseMap<DebugVariable, LocIndices, 8> EntryValuesBackupVars;
833     OverlapMap &OverlappingFragments;
834 
835   public:
836     OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap)
837         : Alloc(Alloc), VarLocs(Alloc), OverlappingFragments(_OLapMap) {}
838 
839     const VarLocSet &getVarLocs() const { return VarLocs; }
840 
841     // Fetches all VarLocs in \p VarLocIDs and inserts them into \p Collected.
842     // This method is needed to get every VarLoc once, as each VarLoc may have
843     // multiple indices in a VarLocMap (corresponding to each applicable
844     // location), but all VarLocs appear exactly once at the universal location
845     // index.
846     void getUniqueVarLocs(SmallVectorImpl<VarLoc> &Collected,
847                           const VarLocMap &VarLocIDs) const {
848       collectAllVarLocs(Collected, VarLocs, VarLocIDs);
849     }
850 
851     /// Terminate all open ranges for VL.Var by removing it from the set.
852     void erase(const VarLoc &VL);
853 
854     /// Terminate all open ranges listed as indices in \c KillSet with
855     /// \c Location by removing them from the set.
856     void erase(const VarLocsInRange &KillSet, const VarLocMap &VarLocIDs,
857                LocIndex::u32_location_t Location);
858 
859     /// Insert a new range into the set.
860     void insert(LocIndices VarLocIDs, const VarLoc &VL);
861 
862     /// Insert a set of ranges.
863     void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map);
864 
865     llvm::Optional<LocIndices> getEntryValueBackup(DebugVariable Var);
866 
867     /// Empty the set.
868     void clear() {
869       VarLocs.clear();
870       Vars.clear();
871       EntryValuesBackupVars.clear();
872     }
873 
874     /// Return whether the set is empty or not.
875     bool empty() const {
876       assert(Vars.empty() == EntryValuesBackupVars.empty() &&
877              Vars.empty() == VarLocs.empty() &&
878              "open ranges are inconsistent");
879       return VarLocs.empty();
880     }
881 
882     /// Get an empty range of VarLoc IDs.
883     auto getEmptyVarLocRange() const {
884       return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(),
885                                                        getVarLocs().end());
886     }
887 
888     /// Get all set IDs for VarLocs with MLs of kind RegisterKind in \p Reg.
889     auto getRegisterVarLocs(Register Reg) const {
890       return LocIndex::indexRangeForLocation(getVarLocs(), Reg);
891     }
892 
893     /// Get all set IDs for VarLocs with MLs of kind SpillLocKind.
894     auto getSpillVarLocs() const {
895       return LocIndex::indexRangeForLocation(getVarLocs(),
896                                              LocIndex::kSpillLocation);
897     }
898 
899     /// Get all set IDs for VarLocs of EVKind EntryValueBackupKind or
900     /// EntryValueCopyBackupKind.
901     auto getEntryValueBackupVarLocs() const {
902       return LocIndex::indexRangeForLocation(
903           getVarLocs(), LocIndex::kEntryValueBackupLocation);
904     }
905   };
906 
907   /// Collect all VarLoc IDs from \p CollectFrom for VarLocs with MLs of kind
908   /// RegisterKind which are located in any reg in \p Regs. The IDs for each
909   /// VarLoc correspond to entries in the universal location bucket, which every
910   /// VarLoc has exactly 1 entry for. Insert collected IDs into \p Collected.
911   static void collectIDsForRegs(VarLocsInRange &Collected,
912                                 const DefinedRegsSet &Regs,
913                                 const VarLocSet &CollectFrom,
914                                 const VarLocMap &VarLocIDs);
915 
916   VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) {
917     std::unique_ptr<VarLocSet> &VLS = Locs[MBB];
918     if (!VLS)
919       VLS = std::make_unique<VarLocSet>(Alloc);
920     return *VLS.get();
921   }
922 
923   const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB,
924                                    const VarLocInMBB &Locs) const {
925     auto It = Locs.find(MBB);
926     assert(It != Locs.end() && "MBB not in map");
927     return *It->second.get();
928   }
929 
930   /// Tests whether this instruction is a spill to a stack location.
931   bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
932 
933   /// Decide if @MI is a spill instruction and return true if it is. We use 2
934   /// criteria to make this decision:
935   /// - Is this instruction a store to a spill slot?
936   /// - Is there a register operand that is both used and killed?
937   /// TODO: Store optimization can fold spills into other stores (including
938   /// other spills). We do not handle this yet (more than one memory operand).
939   bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
940                        Register &Reg);
941 
942   /// Returns true if the given machine instruction is a debug value which we
943   /// can emit entry values for.
944   ///
945   /// Currently, we generate debug entry values only for parameters that are
946   /// unmodified throughout the function and located in a register.
947   bool isEntryValueCandidate(const MachineInstr &MI,
948                              const DefinedRegsSet &Regs) const;
949 
950   /// If a given instruction is identified as a spill, return the spill location
951   /// and set \p Reg to the spilled register.
952   Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI,
953                                                   MachineFunction *MF,
954                                                   Register &Reg);
955   /// Given a spill instruction, extract the register and offset used to
956   /// address the spill location in a target independent way.
957   VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
958   void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges,
959                                TransferMap &Transfers, VarLocMap &VarLocIDs,
960                                LocIndex OldVarID, TransferKind Kind,
961                                const VarLoc::MachineLoc &OldLoc,
962                                Register NewReg = Register());
963 
964   void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
965                           VarLocMap &VarLocIDs);
966   void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
967                                   VarLocMap &VarLocIDs, TransferMap &Transfers);
968   bool removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
969                         VarLocMap &VarLocIDs, const VarLoc &EntryVL);
970   void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges,
971                        VarLocMap &VarLocIDs, TransferMap &Transfers,
972                        VarLocsInRange &KillSet);
973   void recordEntryValue(const MachineInstr &MI,
974                         const DefinedRegsSet &DefinedRegs,
975                         OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs);
976   void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges,
977                             VarLocMap &VarLocIDs, TransferMap &Transfers);
978   void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
979                            VarLocMap &VarLocIDs, TransferMap &Transfers);
980   bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges,
981                           VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs);
982 
983   void process(MachineInstr &MI, OpenRangesSet &OpenRanges,
984                VarLocMap &VarLocIDs, TransferMap &Transfers);
985 
986   void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments,
987                              OverlapMap &OLapMap);
988 
989   bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
990             const VarLocMap &VarLocIDs,
991             SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
992             SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks);
993 
994   /// Create DBG_VALUE insts for inlocs that have been propagated but
995   /// had their instruction creation deferred.
996   void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs);
997 
998   bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC,
999                     unsigned InputBBLimit, unsigned InputDbgValLimit) override;
1000 
1001 public:
1002   /// Default construct and initialize the pass.
1003   VarLocBasedLDV();
1004 
1005   ~VarLocBasedLDV();
1006 
1007   /// Print to ostream with a message.
1008   void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V,
1009                         const VarLocMap &VarLocIDs, const char *msg,
1010                         raw_ostream &Out) const;
1011 };
1012 
1013 } // end anonymous namespace
1014 
1015 //===----------------------------------------------------------------------===//
1016 //            Implementation
1017 //===----------------------------------------------------------------------===//
1018 
1019 VarLocBasedLDV::VarLocBasedLDV() { }
1020 
1021 VarLocBasedLDV::~VarLocBasedLDV() { }
1022 
1023 /// Erase a variable from the set of open ranges, and additionally erase any
1024 /// fragments that may overlap it. If the VarLoc is a backup location, erase
1025 /// the variable from the EntryValuesBackupVars set, indicating we should stop
1026 /// tracking its backup entry location. Otherwise, if the VarLoc is primary
1027 /// location, erase the variable from the Vars set.
1028 void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) {
1029   // Erasure helper.
1030   auto DoErase = [VL, this](DebugVariable VarToErase) {
1031     auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
1032     auto It = EraseFrom->find(VarToErase);
1033     if (It != EraseFrom->end()) {
1034       LocIndices IDs = It->second;
1035       for (LocIndex ID : IDs)
1036         VarLocs.reset(ID.getAsRawInteger());
1037       EraseFrom->erase(It);
1038     }
1039   };
1040 
1041   DebugVariable Var = VL.Var;
1042 
1043   // Erase the variable/fragment that ends here.
1044   DoErase(Var);
1045 
1046   // Extract the fragment. Interpret an empty fragment as one that covers all
1047   // possible bits.
1048   FragmentInfo ThisFragment = Var.getFragmentOrDefault();
1049 
1050   // There may be fragments that overlap the designated fragment. Look them up
1051   // in the pre-computed overlap map, and erase them too.
1052   auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment});
1053   if (MapIt != OverlappingFragments.end()) {
1054     for (auto Fragment : MapIt->second) {
1055       VarLocBasedLDV::OptFragmentInfo FragmentHolder;
1056       if (!DebugVariable::isDefaultFragment(Fragment))
1057         FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment);
1058       DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()});
1059     }
1060   }
1061 }
1062 
1063 void VarLocBasedLDV::OpenRangesSet::erase(const VarLocsInRange &KillSet,
1064                                           const VarLocMap &VarLocIDs,
1065                                           LocIndex::u32_location_t Location) {
1066   VarLocSet RemoveSet(Alloc);
1067   for (LocIndex::u32_index_t ID : KillSet) {
1068     const VarLoc &VL = VarLocIDs[LocIndex(Location, ID)];
1069     auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
1070     EraseFrom->erase(VL.Var);
1071     LocIndices VLI = VarLocIDs.getAllIndices(VL);
1072     for (LocIndex ID : VLI)
1073       RemoveSet.set(ID.getAsRawInteger());
1074   }
1075   VarLocs.intersectWithComplement(RemoveSet);
1076 }
1077 
1078 void VarLocBasedLDV::OpenRangesSet::insertFromLocSet(const VarLocSet &ToLoad,
1079                                                      const VarLocMap &Map) {
1080   VarLocsInRange UniqueVarLocIDs;
1081   DefinedRegsSet Regs;
1082   Regs.insert(LocIndex::kUniversalLocation);
1083   collectIDsForRegs(UniqueVarLocIDs, Regs, ToLoad, Map);
1084   for (uint64_t ID : UniqueVarLocIDs) {
1085     LocIndex Idx = LocIndex::fromRawInteger(ID);
1086     const VarLoc &VarL = Map[Idx];
1087     const LocIndices Indices = Map.getAllIndices(VarL);
1088     insert(Indices, VarL);
1089   }
1090 }
1091 
1092 void VarLocBasedLDV::OpenRangesSet::insert(LocIndices VarLocIDs,
1093                                            const VarLoc &VL) {
1094   auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
1095   for (LocIndex ID : VarLocIDs)
1096     VarLocs.set(ID.getAsRawInteger());
1097   InsertInto->insert({VL.Var, VarLocIDs});
1098 }
1099 
1100 /// Return the Loc ID of an entry value backup location, if it exists for the
1101 /// variable.
1102 llvm::Optional<LocIndices>
1103 VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) {
1104   auto It = EntryValuesBackupVars.find(Var);
1105   if (It != EntryValuesBackupVars.end())
1106     return It->second;
1107 
1108   return llvm::None;
1109 }
1110 
1111 void VarLocBasedLDV::collectIDsForRegs(VarLocsInRange &Collected,
1112                                        const DefinedRegsSet &Regs,
1113                                        const VarLocSet &CollectFrom,
1114                                        const VarLocMap &VarLocIDs) {
1115   assert(!Regs.empty() && "Nothing to collect");
1116   SmallVector<Register, 32> SortedRegs;
1117   append_range(SortedRegs, Regs);
1118   array_pod_sort(SortedRegs.begin(), SortedRegs.end());
1119   auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front()));
1120   auto End = CollectFrom.end();
1121   for (Register Reg : SortedRegs) {
1122     // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains
1123     // all possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which
1124     // live in Reg.
1125     uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg);
1126     uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1);
1127     It.advanceToLowerBound(FirstIndexForReg);
1128 
1129     // Iterate through that half-open interval and collect all the set IDs.
1130     for (; It != End && *It < FirstInvalidIndex; ++It) {
1131       LocIndex ItIdx = LocIndex::fromRawInteger(*It);
1132       const VarLoc &VL = VarLocIDs[ItIdx];
1133       LocIndices LI = VarLocIDs.getAllIndices(VL);
1134       // For now, the back index is always the universal location index.
1135       assert(LI.back().Location == LocIndex::kUniversalLocation &&
1136              "Unexpected order of LocIndices for VarLoc; was it inserted into "
1137              "the VarLocMap correctly?");
1138       Collected.insert(LI.back().Index);
1139     }
1140 
1141     if (It == End)
1142       return;
1143   }
1144 }
1145 
1146 void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom,
1147                                  SmallVectorImpl<Register> &UsedRegs) const {
1148   // All register-based VarLocs are assigned indices greater than or equal to
1149   // FirstRegIndex.
1150   uint64_t FirstRegIndex =
1151       LocIndex::rawIndexForReg(LocIndex::kFirstRegLocation);
1152   uint64_t FirstInvalidIndex =
1153       LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation);
1154   for (auto It = CollectFrom.find(FirstRegIndex),
1155             End = CollectFrom.find(FirstInvalidIndex);
1156        It != End;) {
1157     // We found a VarLoc ID for a VarLoc that lives in a register. Figure out
1158     // which register and add it to UsedRegs.
1159     uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location;
1160     assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) &&
1161            "Duplicate used reg");
1162     UsedRegs.push_back(FoundReg);
1163 
1164     // Skip to the next /set/ register. Note that this finds a lower bound, so
1165     // even if there aren't any VarLocs living in `FoundReg+1`, we're still
1166     // guaranteed to move on to the next register (or to end()).
1167     uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1);
1168     It.advanceToLowerBound(NextRegIndex);
1169   }
1170 }
1171 
1172 //===----------------------------------------------------------------------===//
1173 //            Debug Range Extension Implementation
1174 //===----------------------------------------------------------------------===//
1175 
1176 #ifndef NDEBUG
1177 void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF,
1178                                        const VarLocInMBB &V,
1179                                        const VarLocMap &VarLocIDs,
1180                                        const char *msg,
1181                                        raw_ostream &Out) const {
1182   Out << '\n' << msg << '\n';
1183   for (const MachineBasicBlock &BB : MF) {
1184     if (!V.count(&BB))
1185       continue;
1186     const VarLocSet &L = getVarLocsInMBB(&BB, V);
1187     if (L.empty())
1188       continue;
1189     SmallVector<VarLoc, 32> VarLocs;
1190     collectAllVarLocs(VarLocs, L, VarLocIDs);
1191     Out << "MBB: " << BB.getNumber() << ":\n";
1192     for (const VarLoc &VL : VarLocs) {
1193       Out << " Var: " << VL.Var.getVariable()->getName();
1194       Out << " MI: ";
1195       VL.dump(TRI, Out);
1196     }
1197   }
1198   Out << "\n";
1199 }
1200 #endif
1201 
1202 VarLocBasedLDV::VarLoc::SpillLoc
1203 VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
1204   assert(MI.hasOneMemOperand() &&
1205          "Spill instruction does not have exactly one memory operand?");
1206   auto MMOI = MI.memoperands_begin();
1207   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1208   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
1209          "Inconsistent memory operand in spill instruction");
1210   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
1211   const MachineBasicBlock *MBB = MI.getParent();
1212   Register Reg;
1213   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
1214   return {Reg, Offset};
1215 }
1216 
1217 /// Try to salvage the debug entry value if we encounter a new debug value
1218 /// describing the same parameter, otherwise stop tracking the value. Return
1219 /// true if we should stop tracking the entry value, otherwise return false.
1220 bool VarLocBasedLDV::removeEntryValue(const MachineInstr &MI,
1221                                        OpenRangesSet &OpenRanges,
1222                                        VarLocMap &VarLocIDs,
1223                                        const VarLoc &EntryVL) {
1224   // Skip the DBG_VALUE which is the debug entry value itself.
1225   if (MI.isIdenticalTo(EntryVL.MI))
1226     return false;
1227 
1228   // If the parameter's location is not register location, we can not track
1229   // the entry value any more. In addition, if the debug expression from the
1230   // DBG_VALUE is not empty, we can assume the parameter's value has changed
1231   // indicating that we should stop tracking its entry value as well.
1232   if (!MI.getDebugOperand(0).isReg() ||
1233       MI.getDebugExpression()->getNumElements() != 0)
1234     return true;
1235 
1236   // If the DBG_VALUE comes from a copy instruction that copies the entry value,
1237   // it means the parameter's value has not changed and we should be able to use
1238   // its entry value.
1239   Register Reg = MI.getDebugOperand(0).getReg();
1240   auto I = std::next(MI.getReverseIterator());
1241   const MachineOperand *SrcRegOp, *DestRegOp;
1242   if (I != MI.getParent()->rend()) {
1243 
1244     // TODO: Try to keep tracking of an entry value if we encounter a propagated
1245     // DBG_VALUE describing the copy of the entry value. (Propagated entry value
1246     // does not indicate the parameter modification.)
1247     auto DestSrc = TII->isCopyInstr(*I);
1248     if (!DestSrc)
1249       return true;
1250 
1251     SrcRegOp = DestSrc->Source;
1252     DestRegOp = DestSrc->Destination;
1253     if (Reg != DestRegOp->getReg())
1254       return true;
1255 
1256     for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
1257       const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)];
1258       if (VL.isEntryValueCopyBackupReg(Reg) &&
1259           // Entry Values should not be variadic.
1260           VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg())
1261         return false;
1262     }
1263   }
1264 
1265   return true;
1266 }
1267 
1268 /// End all previous ranges related to @MI and start a new range from @MI
1269 /// if it is a DBG_VALUE instr.
1270 void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI,
1271                                          OpenRangesSet &OpenRanges,
1272                                          VarLocMap &VarLocIDs) {
1273   if (!MI.isDebugValue())
1274     return;
1275   const DILocalVariable *Var = MI.getDebugVariable();
1276   const DIExpression *Expr = MI.getDebugExpression();
1277   const DILocation *DebugLoc = MI.getDebugLoc();
1278   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1279   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1280          "Expected inlined-at fields to agree");
1281 
1282   DebugVariable V(Var, Expr, InlinedAt);
1283 
1284   // Check if this DBG_VALUE indicates a parameter's value changing.
1285   // If that is the case, we should stop tracking its entry value.
1286   auto EntryValBackupID = OpenRanges.getEntryValueBackup(V);
1287   if (Var->isParameter() && EntryValBackupID) {
1288     const VarLoc &EntryVL = VarLocIDs[EntryValBackupID->back()];
1289     if (removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL)) {
1290       LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: ";
1291                  MI.print(dbgs(), /*IsStandalone*/ false,
1292                           /*SkipOpers*/ false, /*SkipDebugLoc*/ false,
1293                           /*AddNewLine*/ true, TII));
1294       OpenRanges.erase(EntryVL);
1295     }
1296   }
1297 
1298   if (all_of(MI.debug_operands(), [](const MachineOperand &MO) {
1299         return (MO.isReg() && MO.getReg()) || MO.isImm() || MO.isFPImm() ||
1300                MO.isCImm();
1301       })) {
1302     // Use normal VarLoc constructor for registers and immediates.
1303     VarLoc VL(MI, LS);
1304     // End all previous ranges of VL.Var.
1305     OpenRanges.erase(VL);
1306 
1307     LocIndices IDs = VarLocIDs.insert(VL);
1308     // Add the VarLoc to OpenRanges from this DBG_VALUE.
1309     OpenRanges.insert(IDs, VL);
1310   } else if (MI.memoperands().size() > 0) {
1311     llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?");
1312   } else {
1313     // This must be an undefined location. If it has an open range, erase it.
1314     assert(MI.isUndefDebugValue() &&
1315            "Unexpected non-undef DBG_VALUE encountered");
1316     VarLoc VL(MI, LS);
1317     OpenRanges.erase(VL);
1318   }
1319 }
1320 
1321 // This should be removed later, doesn't fit the new design.
1322 void VarLocBasedLDV::collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected,
1323                                        const VarLocSet &CollectFrom,
1324                                        const VarLocMap &VarLocIDs) {
1325   // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all
1326   // possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which live
1327   // in Reg.
1328   uint64_t FirstIndex = LocIndex::rawIndexForReg(LocIndex::kUniversalLocation);
1329   uint64_t FirstInvalidIndex =
1330       LocIndex::rawIndexForReg(LocIndex::kUniversalLocation + 1);
1331   // Iterate through that half-open interval and collect all the set IDs.
1332   for (auto It = CollectFrom.find(FirstIndex), End = CollectFrom.end();
1333        It != End && *It < FirstInvalidIndex; ++It) {
1334     LocIndex RegIdx = LocIndex::fromRawInteger(*It);
1335     Collected.push_back(VarLocIDs[RegIdx]);
1336   }
1337 }
1338 
1339 /// Turn the entry value backup locations into primary locations.
1340 void VarLocBasedLDV::emitEntryValues(MachineInstr &MI,
1341                                      OpenRangesSet &OpenRanges,
1342                                      VarLocMap &VarLocIDs,
1343                                      TransferMap &Transfers,
1344                                      VarLocsInRange &KillSet) {
1345   // Do not insert entry value locations after a terminator.
1346   if (MI.isTerminator())
1347     return;
1348 
1349   for (uint32_t ID : KillSet) {
1350     // The KillSet IDs are indices for the universal location bucket.
1351     LocIndex Idx = LocIndex(LocIndex::kUniversalLocation, ID);
1352     const VarLoc &VL = VarLocIDs[Idx];
1353     if (!VL.Var.getVariable()->isParameter())
1354       continue;
1355 
1356     auto DebugVar = VL.Var;
1357     Optional<LocIndices> EntryValBackupIDs =
1358         OpenRanges.getEntryValueBackup(DebugVar);
1359 
1360     // If the parameter has the entry value backup, it means we should
1361     // be able to use its entry value.
1362     if (!EntryValBackupIDs)
1363       continue;
1364 
1365     const VarLoc &EntryVL = VarLocIDs[EntryValBackupIDs->back()];
1366     VarLoc EntryLoc = VarLoc::CreateEntryLoc(EntryVL.MI, LS, EntryVL.Expr,
1367                                              EntryVL.Locs[0].Value.RegNo);
1368     LocIndices EntryValueIDs = VarLocIDs.insert(EntryLoc);
1369     Transfers.push_back({&MI, EntryValueIDs.back()});
1370     OpenRanges.insert(EntryValueIDs, EntryLoc);
1371   }
1372 }
1373 
1374 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
1375 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with
1376 /// new VarLoc. If \p NewReg is different than default zero value then the
1377 /// new location will be register location created by the copy like instruction,
1378 /// otherwise it is variable's location on the stack.
1379 void VarLocBasedLDV::insertTransferDebugPair(
1380     MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers,
1381     VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind,
1382     const VarLoc::MachineLoc &OldLoc, Register NewReg) {
1383   const VarLoc &OldVarLoc = VarLocIDs[OldVarID];
1384 
1385   auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) {
1386     LocIndices LocIds = VarLocIDs.insert(VL);
1387 
1388     // Close this variable's previous location range.
1389     OpenRanges.erase(VL);
1390 
1391     // Record the new location as an open range, and a postponed transfer
1392     // inserting a DBG_VALUE for this location.
1393     OpenRanges.insert(LocIds, VL);
1394     assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator");
1395     TransferDebugPair MIP = {&MI, LocIds.back()};
1396     Transfers.push_back(MIP);
1397   };
1398 
1399   // End all previous ranges of VL.Var.
1400   OpenRanges.erase(VarLocIDs[OldVarID]);
1401   switch (Kind) {
1402   case TransferKind::TransferCopy: {
1403     assert(NewReg &&
1404            "No register supplied when handling a copy of a debug value");
1405     // Create a DBG_VALUE instruction to describe the Var in its new
1406     // register location.
1407     VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg);
1408     ProcessVarLoc(VL);
1409     LLVM_DEBUG({
1410       dbgs() << "Creating VarLoc for register copy:";
1411       VL.dump(TRI);
1412     });
1413     return;
1414   }
1415   case TransferKind::TransferSpill: {
1416     // Create a DBG_VALUE instruction to describe the Var in its spilled
1417     // location.
1418     VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI);
1419     VarLoc VL = VarLoc::CreateSpillLoc(
1420         OldVarLoc, OldLoc, SpillLocation.SpillBase, SpillLocation.SpillOffset);
1421     ProcessVarLoc(VL);
1422     LLVM_DEBUG({
1423       dbgs() << "Creating VarLoc for spill:";
1424       VL.dump(TRI);
1425     });
1426     return;
1427   }
1428   case TransferKind::TransferRestore: {
1429     assert(NewReg &&
1430            "No register supplied when handling a restore of a debug value");
1431     // DebugInstr refers to the pre-spill location, therefore we can reuse
1432     // its expression.
1433     VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg);
1434     ProcessVarLoc(VL);
1435     LLVM_DEBUG({
1436       dbgs() << "Creating VarLoc for restore:";
1437       VL.dump(TRI);
1438     });
1439     return;
1440   }
1441   }
1442   llvm_unreachable("Invalid transfer kind");
1443 }
1444 
1445 /// A definition of a register may mark the end of a range.
1446 void VarLocBasedLDV::transferRegisterDef(
1447     MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs,
1448     TransferMap &Transfers) {
1449 
1450   // Meta Instructions do not affect the debug liveness of any register they
1451   // define.
1452   if (MI.isMetaInstruction())
1453     return;
1454 
1455   MachineFunction *MF = MI.getMF();
1456   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1457   Register SP = TLI->getStackPointerRegisterToSaveRestore();
1458 
1459   // Find the regs killed by MI, and find regmasks of preserved regs.
1460   DefinedRegsSet DeadRegs;
1461   SmallVector<const uint32_t *, 4> RegMasks;
1462   for (const MachineOperand &MO : MI.operands()) {
1463     // Determine whether the operand is a register def.
1464     if (MO.isReg() && MO.isDef() && MO.getReg() &&
1465         Register::isPhysicalRegister(MO.getReg()) &&
1466         !(MI.isCall() && MO.getReg() == SP)) {
1467       // Remove ranges of all aliased registers.
1468       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1469         // FIXME: Can we break out of this loop early if no insertion occurs?
1470         DeadRegs.insert(*RAI);
1471     } else if (MO.isRegMask()) {
1472       RegMasks.push_back(MO.getRegMask());
1473     }
1474   }
1475 
1476   // Erase VarLocs which reside in one of the dead registers. For performance
1477   // reasons, it's critical to not iterate over the full set of open VarLocs.
1478   // Iterate over the set of dying/used regs instead.
1479   if (!RegMasks.empty()) {
1480     SmallVector<Register, 32> UsedRegs;
1481     getUsedRegs(OpenRanges.getVarLocs(), UsedRegs);
1482     for (Register Reg : UsedRegs) {
1483       // Remove ranges of all clobbered registers. Register masks don't usually
1484       // list SP as preserved. Assume that call instructions never clobber SP,
1485       // because some backends (e.g., AArch64) never list SP in the regmask.
1486       // While the debug info may be off for an instruction or two around
1487       // callee-cleanup calls, transferring the DEBUG_VALUE across the call is
1488       // still a better user experience.
1489       if (Reg == SP)
1490         continue;
1491       bool AnyRegMaskKillsReg =
1492           any_of(RegMasks, [Reg](const uint32_t *RegMask) {
1493             return MachineOperand::clobbersPhysReg(RegMask, Reg);
1494           });
1495       if (AnyRegMaskKillsReg)
1496         DeadRegs.insert(Reg);
1497     }
1498   }
1499 
1500   if (DeadRegs.empty())
1501     return;
1502 
1503   VarLocsInRange KillSet;
1504   collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs(), VarLocIDs);
1505   OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kUniversalLocation);
1506 
1507   if (TPC) {
1508     auto &TM = TPC->getTM<TargetMachine>();
1509     if (TM.Options.ShouldEmitDebugEntryValues())
1510       emitEntryValues(MI, OpenRanges, VarLocIDs, Transfers, KillSet);
1511   }
1512 }
1513 
1514 bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI,
1515                                          MachineFunction *MF) {
1516   // TODO: Handle multiple stores folded into one.
1517   if (!MI.hasOneMemOperand())
1518     return false;
1519 
1520   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1521     return false; // This is not a spill instruction, since no valid size was
1522                   // returned from either function.
1523 
1524   return true;
1525 }
1526 
1527 bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI,
1528                                       MachineFunction *MF, Register &Reg) {
1529   if (!isSpillInstruction(MI, MF))
1530     return false;
1531 
1532   auto isKilledReg = [&](const MachineOperand MO, Register &Reg) {
1533     if (!MO.isReg() || !MO.isUse()) {
1534       Reg = 0;
1535       return false;
1536     }
1537     Reg = MO.getReg();
1538     return MO.isKill();
1539   };
1540 
1541   for (const MachineOperand &MO : MI.operands()) {
1542     // In a spill instruction generated by the InlineSpiller the spilled
1543     // register has its kill flag set.
1544     if (isKilledReg(MO, Reg))
1545       return true;
1546     if (Reg != 0) {
1547       // Check whether next instruction kills the spilled register.
1548       // FIXME: Current solution does not cover search for killed register in
1549       // bundles and instructions further down the chain.
1550       auto NextI = std::next(MI.getIterator());
1551       // Skip next instruction that points to basic block end iterator.
1552       if (MI.getParent()->end() == NextI)
1553         continue;
1554       Register RegNext;
1555       for (const MachineOperand &MONext : NextI->operands()) {
1556         // Return true if we came across the register from the
1557         // previous spill instruction that is killed in NextI.
1558         if (isKilledReg(MONext, RegNext) && RegNext == Reg)
1559           return true;
1560       }
1561     }
1562   }
1563   // Return false if we didn't find spilled register.
1564   return false;
1565 }
1566 
1567 Optional<VarLocBasedLDV::VarLoc::SpillLoc>
1568 VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1569                                       MachineFunction *MF, Register &Reg) {
1570   if (!MI.hasOneMemOperand())
1571     return None;
1572 
1573   // FIXME: Handle folded restore instructions with more than one memory
1574   // operand.
1575   if (MI.getRestoreSize(TII)) {
1576     Reg = MI.getOperand(0).getReg();
1577     return extractSpillBaseRegAndOffset(MI);
1578   }
1579   return None;
1580 }
1581 
1582 /// A spilled register may indicate that we have to end the current range of
1583 /// a variable and create a new one for the spill location.
1584 /// A restored register may indicate the reverse situation.
1585 /// We don't want to insert any instructions in process(), so we just create
1586 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
1587 /// It will be inserted into the BB when we're done iterating over the
1588 /// instructions.
1589 void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI,
1590                                                  OpenRangesSet &OpenRanges,
1591                                                  VarLocMap &VarLocIDs,
1592                                                  TransferMap &Transfers) {
1593   MachineFunction *MF = MI.getMF();
1594   TransferKind TKind;
1595   Register Reg;
1596   Optional<VarLoc::SpillLoc> Loc;
1597 
1598   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
1599 
1600   // First, if there are any DBG_VALUEs pointing at a spill slot that is
1601   // written to, then close the variable location. The value in memory
1602   // will have changed.
1603   VarLocsInRange KillSet;
1604   if (isSpillInstruction(MI, MF)) {
1605     Loc = extractSpillBaseRegAndOffset(MI);
1606     for (uint64_t ID : OpenRanges.getSpillVarLocs()) {
1607       LocIndex Idx = LocIndex::fromRawInteger(ID);
1608       const VarLoc &VL = VarLocIDs[Idx];
1609       assert(VL.containsSpillLocs() && "Broken VarLocSet?");
1610       if (VL.usesSpillLoc(*Loc)) {
1611         // This location is overwritten by the current instruction -- terminate
1612         // the open range, and insert an explicit DBG_VALUE $noreg.
1613         //
1614         // Doing this at a later stage would require re-interpreting all
1615         // DBG_VALUes and DIExpressions to identify whether they point at
1616         // memory, and then analysing all memory writes to see if they
1617         // overwrite that memory, which is expensive.
1618         //
1619         // At this stage, we already know which DBG_VALUEs are for spills and
1620         // where they are located; it's best to fix handle overwrites now.
1621         KillSet.insert(ID);
1622         unsigned SpillLocIdx = VL.getSpillLocIdx(*Loc);
1623         VarLoc::MachineLoc OldLoc = VL.Locs[SpillLocIdx];
1624         VarLoc UndefVL = VarLoc::CreateCopyLoc(VL, OldLoc, 0);
1625         LocIndices UndefLocIDs = VarLocIDs.insert(UndefVL);
1626         Transfers.push_back({&MI, UndefLocIDs.back()});
1627       }
1628     }
1629     OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kSpillLocation);
1630   }
1631 
1632   // Try to recognise spill and restore instructions that may create a new
1633   // variable location.
1634   if (isLocationSpill(MI, MF, Reg)) {
1635     TKind = TransferKind::TransferSpill;
1636     LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump(););
1637     LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
1638                       << "\n");
1639   } else {
1640     if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
1641       return;
1642     TKind = TransferKind::TransferRestore;
1643     LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump(););
1644     LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
1645                       << "\n");
1646   }
1647   // Check if the register or spill location is the location of a debug value.
1648   auto TransferCandidates = OpenRanges.getEmptyVarLocRange();
1649   if (TKind == TransferKind::TransferSpill)
1650     TransferCandidates = OpenRanges.getRegisterVarLocs(Reg);
1651   else if (TKind == TransferKind::TransferRestore)
1652     TransferCandidates = OpenRanges.getSpillVarLocs();
1653   for (uint64_t ID : TransferCandidates) {
1654     LocIndex Idx = LocIndex::fromRawInteger(ID);
1655     const VarLoc &VL = VarLocIDs[Idx];
1656     unsigned LocIdx;
1657     if (TKind == TransferKind::TransferSpill) {
1658       assert(VL.usesReg(Reg) && "Broken VarLocSet?");
1659       LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '('
1660                         << VL.Var.getVariable()->getName() << ")\n");
1661       LocIdx = VL.getRegIdx(Reg);
1662     } else {
1663       assert(TKind == TransferKind::TransferRestore && VL.containsSpillLocs() &&
1664              "Broken VarLocSet?");
1665       if (!VL.usesSpillLoc(*Loc))
1666         // The spill location is not the location of a debug value.
1667         continue;
1668       LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '('
1669                         << VL.Var.getVariable()->getName() << ")\n");
1670       LocIdx = VL.getSpillLocIdx(*Loc);
1671     }
1672     VarLoc::MachineLoc MLoc = VL.Locs[LocIdx];
1673     insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind,
1674                             MLoc, Reg);
1675     // FIXME: A comment should explain why it's correct to return early here,
1676     // if that is in fact correct.
1677     return;
1678   }
1679 }
1680 
1681 /// If \p MI is a register copy instruction, that copies a previously tracked
1682 /// value from one register to another register that is callee saved, we
1683 /// create new DBG_VALUE instruction  described with copy destination register.
1684 void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI,
1685                                            OpenRangesSet &OpenRanges,
1686                                            VarLocMap &VarLocIDs,
1687                                            TransferMap &Transfers) {
1688   auto DestSrc = TII->isCopyInstr(MI);
1689   if (!DestSrc)
1690     return;
1691 
1692   const MachineOperand *DestRegOp = DestSrc->Destination;
1693   const MachineOperand *SrcRegOp = DestSrc->Source;
1694 
1695   if (!DestRegOp->isDef())
1696     return;
1697 
1698   auto isCalleeSavedReg = [&](Register Reg) {
1699     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1700       if (CalleeSavedRegs.test(*RAI))
1701         return true;
1702     return false;
1703   };
1704 
1705   Register SrcReg = SrcRegOp->getReg();
1706   Register DestReg = DestRegOp->getReg();
1707 
1708   // We want to recognize instructions where destination register is callee
1709   // saved register. If register that could be clobbered by the call is
1710   // included, there would be a great chance that it is going to be clobbered
1711   // soon. It is more likely that previous register location, which is callee
1712   // saved, is going to stay unclobbered longer, even if it is killed.
1713   if (!isCalleeSavedReg(DestReg))
1714     return;
1715 
1716   // Remember an entry value movement. If we encounter a new debug value of
1717   // a parameter describing only a moving of the value around, rather then
1718   // modifying it, we are still able to use the entry value if needed.
1719   if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) {
1720     for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
1721       LocIndex Idx = LocIndex::fromRawInteger(ID);
1722       const VarLoc &VL = VarLocIDs[Idx];
1723       if (VL.isEntryValueBackupReg(SrcReg)) {
1724         LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump(););
1725         VarLoc EntryValLocCopyBackup =
1726             VarLoc::CreateEntryCopyBackupLoc(VL.MI, LS, VL.Expr, DestReg);
1727         // Stop tracking the original entry value.
1728         OpenRanges.erase(VL);
1729 
1730         // Start tracking the entry value copy.
1731         LocIndices EntryValCopyLocIDs = VarLocIDs.insert(EntryValLocCopyBackup);
1732         OpenRanges.insert(EntryValCopyLocIDs, EntryValLocCopyBackup);
1733         break;
1734       }
1735     }
1736   }
1737 
1738   if (!SrcRegOp->isKill())
1739     return;
1740 
1741   for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) {
1742     LocIndex Idx = LocIndex::fromRawInteger(ID);
1743     assert(VarLocIDs[Idx].usesReg(SrcReg) && "Broken VarLocSet?");
1744     VarLoc::MachineLocValue Loc;
1745     Loc.RegNo = SrcReg;
1746     VarLoc::MachineLoc MLoc{VarLoc::MachineLocKind::RegisterKind, Loc};
1747     insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx,
1748                             TransferKind::TransferCopy, MLoc, DestReg);
1749     // FIXME: A comment should explain why it's correct to return early here,
1750     // if that is in fact correct.
1751     return;
1752   }
1753 }
1754 
1755 /// Terminate all open ranges at the end of the current basic block.
1756 bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB,
1757                                          OpenRangesSet &OpenRanges,
1758                                          VarLocInMBB &OutLocs,
1759                                          const VarLocMap &VarLocIDs) {
1760   bool Changed = false;
1761   LLVM_DEBUG({
1762     VarVec VarLocs;
1763     OpenRanges.getUniqueVarLocs(VarLocs, VarLocIDs);
1764     for (VarLoc &VL : VarLocs) {
1765       // Copy OpenRanges to OutLocs, if not already present.
1766       dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ":  ";
1767       VL.dump(TRI);
1768     }
1769   });
1770   VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs);
1771   Changed = VLS != OpenRanges.getVarLocs();
1772   // New OutLocs set may be different due to spill, restore or register
1773   // copy instruction processing.
1774   if (Changed)
1775     VLS = OpenRanges.getVarLocs();
1776   OpenRanges.clear();
1777   return Changed;
1778 }
1779 
1780 /// Accumulate a mapping between each DILocalVariable fragment and other
1781 /// fragments of that DILocalVariable which overlap. This reduces work during
1782 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1783 /// known-to-overlap fragments are present".
1784 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
1785 ///           fragment usage.
1786 /// \param SeenFragments Map from DILocalVariable to all fragments of that
1787 ///           Variable which are known to exist.
1788 /// \param OverlappingFragments The overlap map being constructed, from one
1789 ///           Var/Fragment pair to a vector of fragments known to overlap.
1790 void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI,
1791                                             VarToFragments &SeenFragments,
1792                                             OverlapMap &OverlappingFragments) {
1793   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
1794                       MI.getDebugLoc()->getInlinedAt());
1795   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
1796 
1797   // If this is the first sighting of this variable, then we are guaranteed
1798   // there are currently no overlapping fragments either. Initialize the set
1799   // of seen fragments, record no overlaps for the current one, and return.
1800   auto SeenIt = SeenFragments.find(MIVar.getVariable());
1801   if (SeenIt == SeenFragments.end()) {
1802     SmallSet<FragmentInfo, 4> OneFragment;
1803     OneFragment.insert(ThisFragment);
1804     SeenFragments.insert({MIVar.getVariable(), OneFragment});
1805 
1806     OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1807     return;
1808   }
1809 
1810   // If this particular Variable/Fragment pair already exists in the overlap
1811   // map, it has already been accounted for.
1812   auto IsInOLapMap =
1813       OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1814   if (!IsInOLapMap.second)
1815     return;
1816 
1817   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
1818   auto &AllSeenFragments = SeenIt->second;
1819 
1820   // Otherwise, examine all other seen fragments for this variable, with "this"
1821   // fragment being a previously unseen fragment. Record any pair of
1822   // overlapping fragments.
1823   for (auto &ASeenFragment : AllSeenFragments) {
1824     // Does this previously seen fragment overlap?
1825     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
1826       // Yes: Mark the current fragment as being overlapped.
1827       ThisFragmentsOverlaps.push_back(ASeenFragment);
1828       // Mark the previously seen fragment as being overlapped by the current
1829       // one.
1830       auto ASeenFragmentsOverlaps =
1831           OverlappingFragments.find({MIVar.getVariable(), ASeenFragment});
1832       assert(ASeenFragmentsOverlaps != OverlappingFragments.end() &&
1833              "Previously seen var fragment has no vector of overlaps");
1834       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
1835     }
1836   }
1837 
1838   AllSeenFragments.insert(ThisFragment);
1839 }
1840 
1841 /// This routine creates OpenRanges.
1842 void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges,
1843                               VarLocMap &VarLocIDs, TransferMap &Transfers) {
1844   transferDebugValue(MI, OpenRanges, VarLocIDs);
1845   transferRegisterDef(MI, OpenRanges, VarLocIDs, Transfers);
1846   transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers);
1847   transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers);
1848 }
1849 
1850 /// This routine joins the analysis results of all incoming edges in @MBB by
1851 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
1852 /// source variable in all the predecessors of @MBB reside in the same location.
1853 bool VarLocBasedLDV::join(
1854     MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
1855     const VarLocMap &VarLocIDs,
1856     SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1857     SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) {
1858   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
1859 
1860   VarLocSet InLocsT(Alloc); // Temporary incoming locations.
1861 
1862   // For all predecessors of this MBB, find the set of VarLocs that
1863   // can be joined.
1864   int NumVisited = 0;
1865   for (auto p : MBB.predecessors()) {
1866     // Ignore backedges if we have not visited the predecessor yet. As the
1867     // predecessor hasn't yet had locations propagated into it, most locations
1868     // will not yet be valid, so treat them as all being uninitialized and
1869     // potentially valid. If a location guessed to be correct here is
1870     // invalidated later, we will remove it when we revisit this block.
1871     if (!Visited.count(p)) {
1872       LLVM_DEBUG(dbgs() << "  ignoring unvisited pred MBB: " << p->getNumber()
1873                         << "\n");
1874       continue;
1875     }
1876     auto OL = OutLocs.find(p);
1877     // Join is null in case of empty OutLocs from any of the pred.
1878     if (OL == OutLocs.end())
1879       return false;
1880 
1881     // Just copy over the Out locs to incoming locs for the first visited
1882     // predecessor, and for all other predecessors join the Out locs.
1883     VarLocSet &OutLocVLS = *OL->second.get();
1884     if (!NumVisited)
1885       InLocsT = OutLocVLS;
1886     else
1887       InLocsT &= OutLocVLS;
1888 
1889     LLVM_DEBUG({
1890       if (!InLocsT.empty()) {
1891         VarVec VarLocs;
1892         collectAllVarLocs(VarLocs, InLocsT, VarLocIDs);
1893         for (const VarLoc &VL : VarLocs)
1894           dbgs() << "  gathered candidate incoming var: "
1895                  << VL.Var.getVariable()->getName() << "\n";
1896       }
1897     });
1898 
1899     NumVisited++;
1900   }
1901 
1902   // Filter out DBG_VALUES that are out of scope.
1903   VarLocSet KillSet(Alloc);
1904   bool IsArtificial = ArtificialBlocks.count(&MBB);
1905   if (!IsArtificial) {
1906     for (uint64_t ID : InLocsT) {
1907       LocIndex Idx = LocIndex::fromRawInteger(ID);
1908       if (!VarLocIDs[Idx].dominates(LS, MBB)) {
1909         KillSet.set(ID);
1910         LLVM_DEBUG({
1911           auto Name = VarLocIDs[Idx].Var.getVariable()->getName();
1912           dbgs() << "  killing " << Name << ", it doesn't dominate MBB\n";
1913         });
1914       }
1915     }
1916   }
1917   InLocsT.intersectWithComplement(KillSet);
1918 
1919   // As we are processing blocks in reverse post-order we
1920   // should have processed at least one predecessor, unless it
1921   // is the entry block which has no predecessor.
1922   assert((NumVisited || MBB.pred_empty()) &&
1923          "Should have processed at least one predecessor");
1924 
1925   VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs);
1926   bool Changed = false;
1927   if (ILS != InLocsT) {
1928     ILS = InLocsT;
1929     Changed = true;
1930   }
1931 
1932   return Changed;
1933 }
1934 
1935 void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs,
1936                                        VarLocMap &VarLocIDs) {
1937   // PendingInLocs records all locations propagated into blocks, which have
1938   // not had DBG_VALUE insts created. Go through and create those insts now.
1939   for (auto &Iter : PendingInLocs) {
1940     // Map is keyed on a constant pointer, unwrap it so we can insert insts.
1941     auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first);
1942     VarLocSet &Pending = *Iter.second.get();
1943 
1944     SmallVector<VarLoc, 32> VarLocs;
1945     collectAllVarLocs(VarLocs, Pending, VarLocIDs);
1946 
1947     for (VarLoc DiffIt : VarLocs) {
1948       // The ID location is live-in to MBB -- work out what kind of machine
1949       // location it is and create a DBG_VALUE.
1950       if (DiffIt.isEntryBackupLoc())
1951         continue;
1952       MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent());
1953       MBB.insert(MBB.instr_begin(), MI);
1954 
1955       (void)MI;
1956       LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump(););
1957     }
1958   }
1959 }
1960 
1961 bool VarLocBasedLDV::isEntryValueCandidate(
1962     const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const {
1963   assert(MI.isDebugValue() && "This must be DBG_VALUE.");
1964 
1965   // TODO: Add support for local variables that are expressed in terms of
1966   // parameters entry values.
1967   // TODO: Add support for modified arguments that can be expressed
1968   // by using its entry value.
1969   auto *DIVar = MI.getDebugVariable();
1970   if (!DIVar->isParameter())
1971     return false;
1972 
1973   // Do not consider parameters that belong to an inlined function.
1974   if (MI.getDebugLoc()->getInlinedAt())
1975     return false;
1976 
1977   // Only consider parameters that are described using registers. Parameters
1978   // that are passed on the stack are not yet supported, so ignore debug
1979   // values that are described by the frame or stack pointer.
1980   if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI))
1981     return false;
1982 
1983   // If a parameter's value has been propagated from the caller, then the
1984   // parameter's DBG_VALUE may be described using a register defined by some
1985   // instruction in the entry block, in which case we shouldn't create an
1986   // entry value.
1987   if (DefinedRegs.count(MI.getDebugOperand(0).getReg()))
1988     return false;
1989 
1990   // TODO: Add support for parameters that have a pre-existing debug expressions
1991   // (e.g. fragments).
1992   if (MI.getDebugExpression()->getNumElements() > 0)
1993     return false;
1994 
1995   return true;
1996 }
1997 
1998 /// Collect all register defines (including aliases) for the given instruction.
1999 static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs,
2000                            const TargetRegisterInfo *TRI) {
2001   for (const MachineOperand &MO : MI.operands())
2002     if (MO.isReg() && MO.isDef() && MO.getReg())
2003       for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
2004         Regs.insert(*AI);
2005 }
2006 
2007 /// This routine records the entry values of function parameters. The values
2008 /// could be used as backup values. If we loose the track of some unmodified
2009 /// parameters, the backup values will be used as a primary locations.
2010 void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI,
2011                                        const DefinedRegsSet &DefinedRegs,
2012                                        OpenRangesSet &OpenRanges,
2013                                        VarLocMap &VarLocIDs) {
2014   if (TPC) {
2015     auto &TM = TPC->getTM<TargetMachine>();
2016     if (!TM.Options.ShouldEmitDebugEntryValues())
2017       return;
2018   }
2019 
2020   DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(),
2021                   MI.getDebugLoc()->getInlinedAt());
2022 
2023   if (!isEntryValueCandidate(MI, DefinedRegs) ||
2024       OpenRanges.getEntryValueBackup(V))
2025     return;
2026 
2027   LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump(););
2028 
2029   // Create the entry value and use it as a backup location until it is
2030   // valid. It is valid until a parameter is not changed.
2031   DIExpression *NewExpr =
2032       DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue);
2033   VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, LS, NewExpr);
2034   LocIndices EntryValLocIDs = VarLocIDs.insert(EntryValLocAsBackup);
2035   OpenRanges.insert(EntryValLocIDs, EntryValLocAsBackup);
2036 }
2037 
2038 /// Calculate the liveness information for the given machine function and
2039 /// extend ranges across basic blocks.
2040 bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC,
2041                                   unsigned InputBBLimit,
2042                                   unsigned InputDbgValLimit) {
2043   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
2044 
2045   if (!MF.getFunction().getSubprogram())
2046     // VarLocBaseLDV will already have removed all DBG_VALUEs.
2047     return false;
2048 
2049   // Skip functions from NoDebug compilation units.
2050   if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
2051       DICompileUnit::NoDebug)
2052     return false;
2053 
2054   TRI = MF.getSubtarget().getRegisterInfo();
2055   TII = MF.getSubtarget().getInstrInfo();
2056   TFI = MF.getSubtarget().getFrameLowering();
2057   TFI->getCalleeSaves(MF, CalleeSavedRegs);
2058   this->TPC = TPC;
2059   LS.initialize(MF);
2060 
2061   bool Changed = false;
2062   bool OLChanged = false;
2063   bool MBBJoined = false;
2064 
2065   VarLocMap VarLocIDs;         // Map VarLoc<>unique ID for use in bitvectors.
2066   OverlapMap OverlapFragments; // Map of overlapping variable fragments.
2067   OpenRangesSet OpenRanges(Alloc, OverlapFragments);
2068                               // Ranges that are open until end of bb.
2069   VarLocInMBB OutLocs;        // Ranges that exist beyond bb.
2070   VarLocInMBB InLocs;         // Ranges that are incoming after joining.
2071   TransferMap Transfers;      // DBG_VALUEs associated with transfers (such as
2072                               // spills, copies and restores).
2073 
2074   VarToFragments SeenFragments;
2075 
2076   // Blocks which are artificial, i.e. blocks which exclusively contain
2077   // instructions without locations, or with line 0 locations.
2078   SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
2079 
2080   DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
2081   DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
2082   std::priority_queue<unsigned int, std::vector<unsigned int>,
2083                       std::greater<unsigned int>>
2084       Worklist;
2085   std::priority_queue<unsigned int, std::vector<unsigned int>,
2086                       std::greater<unsigned int>>
2087       Pending;
2088 
2089   // Set of register defines that are seen when traversing the entry block
2090   // looking for debug entry value candidates.
2091   DefinedRegsSet DefinedRegs;
2092 
2093   // Only in the case of entry MBB collect DBG_VALUEs representing
2094   // function parameters in order to generate debug entry values for them.
2095   MachineBasicBlock &First_MBB = *(MF.begin());
2096   for (auto &MI : First_MBB) {
2097     collectRegDefs(MI, DefinedRegs, TRI);
2098     if (MI.isDebugValue())
2099       recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs);
2100   }
2101 
2102   // Initialize per-block structures and scan for fragment overlaps.
2103   for (auto &MBB : MF)
2104     for (auto &MI : MBB)
2105       if (MI.isDebugValue())
2106         accumulateFragmentMap(MI, SeenFragments, OverlapFragments);
2107 
2108   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
2109     if (const DebugLoc &DL = MI.getDebugLoc())
2110       return DL.getLine() != 0;
2111     return false;
2112   };
2113   for (auto &MBB : MF)
2114     if (none_of(MBB.instrs(), hasNonArtificialLocation))
2115       ArtificialBlocks.insert(&MBB);
2116 
2117   LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
2118                               "OutLocs after initialization", dbgs()));
2119 
2120   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
2121   unsigned int RPONumber = 0;
2122   for (MachineBasicBlock *MBB : RPOT) {
2123     OrderToBB[RPONumber] = MBB;
2124     BBToOrder[MBB] = RPONumber;
2125     Worklist.push(RPONumber);
2126     ++RPONumber;
2127   }
2128 
2129   if (RPONumber > InputBBLimit) {
2130     unsigned NumInputDbgValues = 0;
2131     for (auto &MBB : MF)
2132       for (auto &MI : MBB)
2133         if (MI.isDebugValue())
2134           ++NumInputDbgValues;
2135     if (NumInputDbgValues > InputDbgValLimit) {
2136       LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName()
2137                         << " has " << RPONumber << " basic blocks and "
2138                         << NumInputDbgValues
2139                         << " input DBG_VALUEs, exceeding limits.\n");
2140       return false;
2141     }
2142   }
2143 
2144   // This is a standard "union of predecessor outs" dataflow problem.
2145   // To solve it, we perform join() and process() using the two worklist method
2146   // until the ranges converge.
2147   // Ranges have converged when both worklists are empty.
2148   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2149   while (!Worklist.empty() || !Pending.empty()) {
2150     // We track what is on the pending worklist to avoid inserting the same
2151     // thing twice.  We could avoid this with a custom priority queue, but this
2152     // is probably not worth it.
2153     SmallPtrSet<MachineBasicBlock *, 16> OnPending;
2154     LLVM_DEBUG(dbgs() << "Processing Worklist\n");
2155     while (!Worklist.empty()) {
2156       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2157       Worklist.pop();
2158       MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited,
2159                        ArtificialBlocks);
2160       MBBJoined |= Visited.insert(MBB).second;
2161       if (MBBJoined) {
2162         MBBJoined = false;
2163         Changed = true;
2164         // Now that we have started to extend ranges across BBs we need to
2165         // examine spill, copy and restore instructions to see whether they
2166         // operate with registers that correspond to user variables.
2167         // First load any pending inlocs.
2168         OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs);
2169         for (auto &MI : *MBB)
2170           process(MI, OpenRanges, VarLocIDs, Transfers);
2171         OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs);
2172 
2173         LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
2174                                     "OutLocs after propagating", dbgs()));
2175         LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs,
2176                                     "InLocs after propagating", dbgs()));
2177 
2178         if (OLChanged) {
2179           OLChanged = false;
2180           for (auto s : MBB->successors())
2181             if (OnPending.insert(s).second) {
2182               Pending.push(BBToOrder[s]);
2183             }
2184         }
2185       }
2186     }
2187     Worklist.swap(Pending);
2188     // At this point, pending must be empty, since it was just the empty
2189     // worklist
2190     assert(Pending.empty() && "Pending should be empty");
2191   }
2192 
2193   // Add any DBG_VALUE instructions created by location transfers.
2194   for (auto &TR : Transfers) {
2195     assert(!TR.TransferInst->isTerminator() &&
2196            "Cannot insert DBG_VALUE after terminator");
2197     MachineBasicBlock *MBB = TR.TransferInst->getParent();
2198     const VarLoc &VL = VarLocIDs[TR.LocationID];
2199     MachineInstr *MI = VL.BuildDbgValue(MF);
2200     MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI);
2201   }
2202   Transfers.clear();
2203 
2204   // Deferred inlocs will not have had any DBG_VALUE insts created; do
2205   // that now.
2206   flushPendingLocs(InLocs, VarLocIDs);
2207 
2208   LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs()));
2209   LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs()));
2210   return Changed;
2211 }
2212 
2213 LDVImpl *
2214 llvm::makeVarLocBasedLiveDebugValues()
2215 {
2216   return new VarLocBasedLDV();
2217 }
2218