1 //===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file VarLocBasedImpl.cpp 10 /// 11 /// LiveDebugValues is an optimistic "available expressions" dataflow 12 /// algorithm. The set of expressions is the set of machine locations 13 /// (registers, spill slots, constants) that a variable fragment might be 14 /// located, qualified by a DIExpression and indirect-ness flag, while each 15 /// variable is identified by a DebugVariable object. The availability of an 16 /// expression begins when a DBG_VALUE instruction specifies the location of a 17 /// DebugVariable, and continues until that location is clobbered or 18 /// re-specified by a different DBG_VALUE for the same DebugVariable. 19 /// 20 /// The output of LiveDebugValues is additional DBG_VALUE instructions, 21 /// placed to extend variable locations as far they're available. This file 22 /// and the VarLocBasedLDV class is an implementation that explicitly tracks 23 /// locations, using the VarLoc class. 24 /// 25 /// The canonical "available expressions" problem doesn't have expression 26 /// clobbering, instead when a variable is re-assigned, any expressions using 27 /// that variable get invalidated. LiveDebugValues can map onto "available 28 /// expressions" by having every register represented by a variable, which is 29 /// used in an expression that becomes available at a DBG_VALUE instruction. 30 /// When the register is clobbered, its variable is effectively reassigned, and 31 /// expressions computed from it become unavailable. A similar construct is 32 /// needed when a DebugVariable has its location re-specified, to invalidate 33 /// all other locations for that DebugVariable. 34 /// 35 /// Using the dataflow analysis to compute the available expressions, we create 36 /// a DBG_VALUE at the beginning of each block where the expression is 37 /// live-in. This propagates variable locations into every basic block where 38 /// the location can be determined, rather than only having DBG_VALUEs in blocks 39 /// where locations are specified due to an assignment or some optimization. 40 /// Movements of values between registers and spill slots are annotated with 41 /// DBG_VALUEs too to track variable values bewteen locations. All this allows 42 /// DbgEntityHistoryCalculator to focus on only the locations within individual 43 /// blocks, facilitating testing and improving modularity. 44 /// 45 /// We follow an optimisic dataflow approach, with this lattice: 46 /// 47 /// \verbatim 48 /// ┬ "Unknown" 49 /// | 50 /// v 51 /// True 52 /// | 53 /// v 54 /// ⊥ False 55 /// \endverbatim With "True" signifying that the expression is available (and 56 /// thus a DebugVariable's location is the corresponding register), while 57 /// "False" signifies that the expression is unavailable. "Unknown"s never 58 /// survive to the end of the analysis (see below). 59 /// 60 /// Formally, all DebugVariable locations that are live-out of a block are 61 /// initialized to \top. A blocks live-in values take the meet of the lattice 62 /// value for every predecessors live-outs, except for the entry block, where 63 /// all live-ins are \bot. The usual dataflow propagation occurs: the transfer 64 /// function for a block assigns an expression for a DebugVariable to be "True" 65 /// if a DBG_VALUE in the block specifies it; "False" if the location is 66 /// clobbered; or the live-in value if it is unaffected by the block. We 67 /// visit each block in reverse post order until a fixedpoint is reached. The 68 /// solution produced is maximal. 69 /// 70 /// Intuitively, we start by assuming that every expression / variable location 71 /// is at least "True", and then propagate "False" from the entry block and any 72 /// clobbers until there are no more changes to make. This gives us an accurate 73 /// solution because all incorrect locations will have a "False" propagated into 74 /// them. It also gives us a solution that copes well with loops by assuming 75 /// that variable locations are live-through every loop, and then removing those 76 /// that are not through dataflow. 77 /// 78 /// Within LiveDebugValues: each variable location is represented by a 79 /// VarLoc object that identifies the source variable, its current 80 /// machine-location, and the DBG_VALUE inst that specifies the location. Each 81 /// VarLoc is indexed in the (function-scope) \p VarLocMap, giving each VarLoc a 82 /// unique index. Rather than operate directly on machine locations, the 83 /// dataflow analysis in this pass identifies locations by their index in the 84 /// VarLocMap, meaning all the variable locations in a block can be described 85 /// by a sparse vector of VarLocMap indicies. 86 /// 87 /// All the storage for the dataflow analysis is local to the ExtendRanges 88 /// method and passed down to helper methods. "OutLocs" and "InLocs" record the 89 /// in and out lattice values for each block. "OpenRanges" maintains a list of 90 /// variable locations and, with the "process" method, evaluates the transfer 91 /// function of each block. "flushPendingLocs" installs DBG_VALUEs for each 92 /// live-in location at the start of blocks, while "Transfers" records 93 /// transfers of values between machine-locations. 94 /// 95 /// We avoid explicitly representing the "Unknown" (\top) lattice value in the 96 /// implementation. Instead, unvisited blocks implicitly have all lattice 97 /// values set as "Unknown". After being visited, there will be path back to 98 /// the entry block where the lattice value is "False", and as the transfer 99 /// function cannot make new "Unknown" locations, there are no scenarios where 100 /// a block can have an "Unknown" location after being visited. Similarly, we 101 /// don't enumerate all possible variable locations before exploring the 102 /// function: when a new location is discovered, all blocks previously explored 103 /// were implicitly "False" but unrecorded, and become explicitly "False" when 104 /// a new VarLoc is created with its bit not set in predecessor InLocs or 105 /// OutLocs. 106 /// 107 //===----------------------------------------------------------------------===// 108 109 #include "LiveDebugValues.h" 110 111 #include "llvm/ADT/CoalescingBitVector.h" 112 #include "llvm/ADT/DenseMap.h" 113 #include "llvm/ADT/PostOrderIterator.h" 114 #include "llvm/ADT/SmallPtrSet.h" 115 #include "llvm/ADT/SmallSet.h" 116 #include "llvm/ADT/SmallVector.h" 117 #include "llvm/ADT/Statistic.h" 118 #include "llvm/ADT/UniqueVector.h" 119 #include "llvm/CodeGen/LexicalScopes.h" 120 #include "llvm/CodeGen/MachineBasicBlock.h" 121 #include "llvm/CodeGen/MachineFrameInfo.h" 122 #include "llvm/CodeGen/MachineFunction.h" 123 #include "llvm/CodeGen/MachineFunctionPass.h" 124 #include "llvm/CodeGen/MachineInstr.h" 125 #include "llvm/CodeGen/MachineInstrBuilder.h" 126 #include "llvm/CodeGen/MachineMemOperand.h" 127 #include "llvm/CodeGen/MachineOperand.h" 128 #include "llvm/CodeGen/PseudoSourceValue.h" 129 #include "llvm/CodeGen/RegisterScavenging.h" 130 #include "llvm/CodeGen/TargetFrameLowering.h" 131 #include "llvm/CodeGen/TargetInstrInfo.h" 132 #include "llvm/CodeGen/TargetLowering.h" 133 #include "llvm/CodeGen/TargetPassConfig.h" 134 #include "llvm/CodeGen/TargetRegisterInfo.h" 135 #include "llvm/CodeGen/TargetSubtargetInfo.h" 136 #include "llvm/Config/llvm-config.h" 137 #include "llvm/IR/DIBuilder.h" 138 #include "llvm/IR/DebugInfoMetadata.h" 139 #include "llvm/IR/DebugLoc.h" 140 #include "llvm/IR/Function.h" 141 #include "llvm/IR/Module.h" 142 #include "llvm/InitializePasses.h" 143 #include "llvm/MC/MCRegisterInfo.h" 144 #include "llvm/Pass.h" 145 #include "llvm/Support/Casting.h" 146 #include "llvm/Support/Compiler.h" 147 #include "llvm/Support/Debug.h" 148 #include "llvm/Support/raw_ostream.h" 149 #include "llvm/Target/TargetMachine.h" 150 #include <algorithm> 151 #include <cassert> 152 #include <cstdint> 153 #include <functional> 154 #include <queue> 155 #include <tuple> 156 #include <utility> 157 #include <vector> 158 159 using namespace llvm; 160 161 #define DEBUG_TYPE "livedebugvalues" 162 163 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); 164 165 // Options to prevent pathological compile-time behavior. If InputBBLimit and 166 // InputDbgValueLimit are both exceeded, range extension is disabled. 167 static cl::opt<unsigned> InputBBLimit( 168 "livedebugvalues-input-bb-limit", 169 cl::desc("Maximum input basic blocks before DBG_VALUE limit applies"), 170 cl::init(10000), cl::Hidden); 171 static cl::opt<unsigned> InputDbgValueLimit( 172 "livedebugvalues-input-dbg-value-limit", 173 cl::desc( 174 "Maximum input DBG_VALUE insts supported by debug range extension"), 175 cl::init(50000), cl::Hidden); 176 177 // If @MI is a DBG_VALUE with debug value described by a defined 178 // register, returns the number of this register. In the other case, returns 0. 179 static Register isDbgValueDescribedByReg(const MachineInstr &MI) { 180 assert(MI.isDebugValue() && "expected a DBG_VALUE"); 181 assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE"); 182 // If location of variable is described using a register (directly 183 // or indirectly), this register is always a first operand. 184 return MI.getDebugOperand(0).isReg() ? MI.getDebugOperand(0).getReg() 185 : Register(); 186 } 187 188 /// If \p Op is a stack or frame register return true, otherwise return false. 189 /// This is used to avoid basing the debug entry values on the registers, since 190 /// we do not support it at the moment. 191 static bool isRegOtherThanSPAndFP(const MachineOperand &Op, 192 const MachineInstr &MI, 193 const TargetRegisterInfo *TRI) { 194 if (!Op.isReg()) 195 return false; 196 197 const MachineFunction *MF = MI.getParent()->getParent(); 198 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 199 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 200 Register FP = TRI->getFrameRegister(*MF); 201 Register Reg = Op.getReg(); 202 203 return Reg && Reg != SP && Reg != FP; 204 } 205 206 namespace { 207 208 // Max out the number of statically allocated elements in DefinedRegsSet, as 209 // this prevents fallback to std::set::count() operations. 210 using DefinedRegsSet = SmallSet<Register, 32>; 211 212 using VarLocSet = CoalescingBitVector<uint64_t>; 213 214 /// A type-checked pair of {Register Location (or 0), Index}, used to index 215 /// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int 216 /// for insertion into a \ref VarLocSet, and efficiently converted back. The 217 /// type-checker helps ensure that the conversions aren't lossy. 218 /// 219 /// Why encode a location /into/ the VarLocMap index? This makes it possible 220 /// to find the open VarLocs killed by a register def very quickly. This is a 221 /// performance-critical operation for LiveDebugValues. 222 struct LocIndex { 223 using u32_location_t = uint32_t; 224 using u32_index_t = uint32_t; 225 226 u32_location_t Location; // Physical registers live in the range [1;2^30) (see 227 // \ref MCRegister), so we have plenty of range left 228 // here to encode non-register locations. 229 u32_index_t Index; 230 231 /// The first location greater than 0 that is not reserved for VarLocs of 232 /// kind RegisterKind. 233 static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30; 234 235 /// A special location reserved for VarLocs of kind SpillLocKind. 236 static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation; 237 238 /// A special location reserved for VarLocs of kind EntryValueBackupKind and 239 /// EntryValueCopyBackupKind. 240 static constexpr u32_location_t kEntryValueBackupLocation = 241 kFirstInvalidRegLocation + 1; 242 243 LocIndex(u32_location_t Location, u32_index_t Index) 244 : Location(Location), Index(Index) {} 245 246 uint64_t getAsRawInteger() const { 247 return (static_cast<uint64_t>(Location) << 32) | Index; 248 } 249 250 template<typename IntT> static LocIndex fromRawInteger(IntT ID) { 251 static_assert(std::is_unsigned<IntT>::value && 252 sizeof(ID) == sizeof(uint64_t), 253 "Cannot convert raw integer to LocIndex"); 254 return {static_cast<u32_location_t>(ID >> 32), 255 static_cast<u32_index_t>(ID)}; 256 } 257 258 /// Get the start of the interval reserved for VarLocs of kind RegisterKind 259 /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1. 260 static uint64_t rawIndexForReg(uint32_t Reg) { 261 return LocIndex(Reg, 0).getAsRawInteger(); 262 } 263 264 /// Return a range covering all set indices in the interval reserved for 265 /// \p Location in \p Set. 266 static auto indexRangeForLocation(const VarLocSet &Set, 267 u32_location_t Location) { 268 uint64_t Start = LocIndex(Location, 0).getAsRawInteger(); 269 uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger(); 270 return Set.half_open_range(Start, End); 271 } 272 }; 273 274 class VarLocBasedLDV : public LDVImpl { 275 private: 276 const TargetRegisterInfo *TRI; 277 const TargetInstrInfo *TII; 278 const TargetFrameLowering *TFI; 279 TargetPassConfig *TPC; 280 BitVector CalleeSavedRegs; 281 LexicalScopes LS; 282 VarLocSet::Allocator Alloc; 283 284 enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore }; 285 286 using FragmentInfo = DIExpression::FragmentInfo; 287 using OptFragmentInfo = Optional<DIExpression::FragmentInfo>; 288 289 /// A pair of debug variable and value location. 290 struct VarLoc { 291 // The location at which a spilled variable resides. It consists of a 292 // register and an offset. 293 struct SpillLoc { 294 unsigned SpillBase; 295 int SpillOffset; 296 bool operator==(const SpillLoc &Other) const { 297 return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset; 298 } 299 bool operator!=(const SpillLoc &Other) const { 300 return !(*this == Other); 301 } 302 }; 303 304 /// Identity of the variable at this location. 305 const DebugVariable Var; 306 307 /// The expression applied to this location. 308 const DIExpression *Expr; 309 310 /// DBG_VALUE to clone var/expr information from if this location 311 /// is moved. 312 const MachineInstr &MI; 313 314 enum VarLocKind { 315 InvalidKind = 0, 316 RegisterKind, 317 SpillLocKind, 318 ImmediateKind, 319 EntryValueKind, 320 EntryValueBackupKind, 321 EntryValueCopyBackupKind 322 } Kind = InvalidKind; 323 324 /// The value location. Stored separately to avoid repeatedly 325 /// extracting it from MI. 326 union { 327 uint64_t RegNo; 328 SpillLoc SpillLocation; 329 uint64_t Hash; 330 int64_t Immediate; 331 const ConstantFP *FPImm; 332 const ConstantInt *CImm; 333 } Loc; 334 335 VarLoc(const MachineInstr &MI, LexicalScopes &LS) 336 : Var(MI.getDebugVariable(), MI.getDebugExpression(), 337 MI.getDebugLoc()->getInlinedAt()), 338 Expr(MI.getDebugExpression()), MI(MI) { 339 static_assert((sizeof(Loc) == sizeof(uint64_t)), 340 "hash does not cover all members of Loc"); 341 assert(MI.isDebugValue() && "not a DBG_VALUE"); 342 assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE"); 343 if (int RegNo = isDbgValueDescribedByReg(MI)) { 344 Kind = RegisterKind; 345 Loc.RegNo = RegNo; 346 } else if (MI.getDebugOperand(0).isImm()) { 347 Kind = ImmediateKind; 348 Loc.Immediate = MI.getDebugOperand(0).getImm(); 349 } else if (MI.getDebugOperand(0).isFPImm()) { 350 Kind = ImmediateKind; 351 Loc.FPImm = MI.getDebugOperand(0).getFPImm(); 352 } else if (MI.getDebugOperand(0).isCImm()) { 353 Kind = ImmediateKind; 354 Loc.CImm = MI.getDebugOperand(0).getCImm(); 355 } 356 357 // We create the debug entry values from the factory functions rather than 358 // from this ctor. 359 assert(Kind != EntryValueKind && !isEntryBackupLoc()); 360 } 361 362 /// Take the variable and machine-location in DBG_VALUE MI, and build an 363 /// entry location using the given expression. 364 static VarLoc CreateEntryLoc(const MachineInstr &MI, LexicalScopes &LS, 365 const DIExpression *EntryExpr, Register Reg) { 366 VarLoc VL(MI, LS); 367 assert(VL.Kind == RegisterKind); 368 VL.Kind = EntryValueKind; 369 VL.Expr = EntryExpr; 370 VL.Loc.RegNo = Reg; 371 return VL; 372 } 373 374 /// Take the variable and machine-location from the DBG_VALUE (from the 375 /// function entry), and build an entry value backup location. The backup 376 /// location will turn into the normal location if the backup is valid at 377 /// the time of the primary location clobbering. 378 static VarLoc CreateEntryBackupLoc(const MachineInstr &MI, 379 LexicalScopes &LS, 380 const DIExpression *EntryExpr) { 381 VarLoc VL(MI, LS); 382 assert(VL.Kind == RegisterKind); 383 VL.Kind = EntryValueBackupKind; 384 VL.Expr = EntryExpr; 385 return VL; 386 } 387 388 /// Take the variable and machine-location from the DBG_VALUE (from the 389 /// function entry), and build a copy of an entry value backup location by 390 /// setting the register location to NewReg. 391 static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI, 392 LexicalScopes &LS, 393 const DIExpression *EntryExpr, 394 Register NewReg) { 395 VarLoc VL(MI, LS); 396 assert(VL.Kind == RegisterKind); 397 VL.Kind = EntryValueCopyBackupKind; 398 VL.Expr = EntryExpr; 399 VL.Loc.RegNo = NewReg; 400 return VL; 401 } 402 403 /// Copy the register location in DBG_VALUE MI, updating the register to 404 /// be NewReg. 405 static VarLoc CreateCopyLoc(const MachineInstr &MI, LexicalScopes &LS, 406 Register NewReg) { 407 VarLoc VL(MI, LS); 408 assert(VL.Kind == RegisterKind); 409 VL.Loc.RegNo = NewReg; 410 return VL; 411 } 412 413 /// Take the variable described by DBG_VALUE MI, and create a VarLoc 414 /// locating it in the specified spill location. 415 static VarLoc CreateSpillLoc(const MachineInstr &MI, unsigned SpillBase, 416 int SpillOffset, LexicalScopes &LS) { 417 VarLoc VL(MI, LS); 418 assert(VL.Kind == RegisterKind); 419 VL.Kind = SpillLocKind; 420 VL.Loc.SpillLocation = {SpillBase, SpillOffset}; 421 return VL; 422 } 423 424 /// Create a DBG_VALUE representing this VarLoc in the given function. 425 /// Copies variable-specific information such as DILocalVariable and 426 /// inlining information from the original DBG_VALUE instruction, which may 427 /// have been several transfers ago. 428 MachineInstr *BuildDbgValue(MachineFunction &MF) const { 429 const DebugLoc &DbgLoc = MI.getDebugLoc(); 430 bool Indirect = MI.isIndirectDebugValue(); 431 const auto &IID = MI.getDesc(); 432 const DILocalVariable *Var = MI.getDebugVariable(); 433 const DIExpression *DIExpr = MI.getDebugExpression(); 434 NumInserted++; 435 436 switch (Kind) { 437 case EntryValueKind: 438 // An entry value is a register location -- but with an updated 439 // expression. The register location of such DBG_VALUE is always the one 440 // from the entry DBG_VALUE, it does not matter if the entry value was 441 // copied in to another register due to some optimizations. 442 return BuildMI(MF, DbgLoc, IID, Indirect, 443 MI.getDebugOperand(0).getReg(), Var, Expr); 444 case RegisterKind: 445 // Register locations are like the source DBG_VALUE, but with the 446 // register number from this VarLoc. 447 return BuildMI(MF, DbgLoc, IID, Indirect, Loc.RegNo, Var, DIExpr); 448 case SpillLocKind: { 449 // Spills are indirect DBG_VALUEs, with a base register and offset. 450 // Use the original DBG_VALUEs expression to build the spilt location 451 // on top of. FIXME: spill locations created before this pass runs 452 // are not recognized, and not handled here. 453 auto *SpillExpr = DIExpression::prepend( 454 DIExpr, DIExpression::ApplyOffset, Loc.SpillLocation.SpillOffset); 455 unsigned Base = Loc.SpillLocation.SpillBase; 456 return BuildMI(MF, DbgLoc, IID, true, Base, Var, SpillExpr); 457 } 458 case ImmediateKind: { 459 MachineOperand MO = MI.getDebugOperand(0); 460 return BuildMI(MF, DbgLoc, IID, Indirect, MO, Var, DIExpr); 461 } 462 case EntryValueBackupKind: 463 case EntryValueCopyBackupKind: 464 case InvalidKind: 465 llvm_unreachable( 466 "Tried to produce DBG_VALUE for invalid or backup VarLoc"); 467 } 468 llvm_unreachable("Unrecognized VarLocBasedLDV.VarLoc.Kind enum"); 469 } 470 471 /// Is the Loc field a constant or constant object? 472 bool isConstant() const { return Kind == ImmediateKind; } 473 474 /// Check if the Loc field is an entry backup location. 475 bool isEntryBackupLoc() const { 476 return Kind == EntryValueBackupKind || Kind == EntryValueCopyBackupKind; 477 } 478 479 /// If this variable is described by a register holding the entry value, 480 /// return it, otherwise return 0. 481 unsigned getEntryValueBackupReg() const { 482 if (Kind == EntryValueBackupKind) 483 return Loc.RegNo; 484 return 0; 485 } 486 487 /// If this variable is described by a register holding the copy of the 488 /// entry value, return it, otherwise return 0. 489 unsigned getEntryValueCopyBackupReg() const { 490 if (Kind == EntryValueCopyBackupKind) 491 return Loc.RegNo; 492 return 0; 493 } 494 495 /// If this variable is described by a register, return it, 496 /// otherwise return 0. 497 unsigned isDescribedByReg() const { 498 if (Kind == RegisterKind) 499 return Loc.RegNo; 500 return 0; 501 } 502 503 /// Determine whether the lexical scope of this value's debug location 504 /// dominates MBB. 505 bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const { 506 return LS.dominates(MI.getDebugLoc().get(), &MBB); 507 } 508 509 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 510 // TRI can be null. 511 void dump(const TargetRegisterInfo *TRI, raw_ostream &Out = dbgs()) const { 512 Out << "VarLoc("; 513 switch (Kind) { 514 case RegisterKind: 515 case EntryValueKind: 516 case EntryValueBackupKind: 517 case EntryValueCopyBackupKind: 518 Out << printReg(Loc.RegNo, TRI); 519 break; 520 case SpillLocKind: 521 Out << printReg(Loc.SpillLocation.SpillBase, TRI); 522 Out << "[" << Loc.SpillLocation.SpillOffset << "]"; 523 break; 524 case ImmediateKind: 525 Out << Loc.Immediate; 526 break; 527 case InvalidKind: 528 llvm_unreachable("Invalid VarLoc in dump method"); 529 } 530 531 Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", "; 532 if (Var.getInlinedAt()) 533 Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n"; 534 else 535 Out << "(null))"; 536 537 if (isEntryBackupLoc()) 538 Out << " (backup loc)\n"; 539 else 540 Out << "\n"; 541 } 542 #endif 543 544 bool operator==(const VarLoc &Other) const { 545 return Kind == Other.Kind && Var == Other.Var && 546 Loc.Hash == Other.Loc.Hash && Expr == Other.Expr; 547 } 548 549 /// This operator guarantees that VarLocs are sorted by Variable first. 550 bool operator<(const VarLoc &Other) const { 551 return std::tie(Var, Kind, Loc.Hash, Expr) < 552 std::tie(Other.Var, Other.Kind, Other.Loc.Hash, Other.Expr); 553 } 554 }; 555 556 /// VarLocMap is used for two things: 557 /// 1) Assigning a unique LocIndex to a VarLoc. This LocIndex can be used to 558 /// virtually insert a VarLoc into a VarLocSet. 559 /// 2) Given a LocIndex, look up the unique associated VarLoc. 560 class VarLocMap { 561 /// Map a VarLoc to an index within the vector reserved for its location 562 /// within Loc2Vars. 563 std::map<VarLoc, LocIndex::u32_index_t> Var2Index; 564 565 /// Map a location to a vector which holds VarLocs which live in that 566 /// location. 567 SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars; 568 569 /// Determine the 32-bit location reserved for \p VL, based on its kind. 570 static LocIndex::u32_location_t getLocationForVar(const VarLoc &VL) { 571 switch (VL.Kind) { 572 case VarLoc::RegisterKind: 573 assert((VL.Loc.RegNo < LocIndex::kFirstInvalidRegLocation) && 574 "Physreg out of range?"); 575 return VL.Loc.RegNo; 576 case VarLoc::SpillLocKind: 577 return LocIndex::kSpillLocation; 578 case VarLoc::EntryValueBackupKind: 579 case VarLoc::EntryValueCopyBackupKind: 580 return LocIndex::kEntryValueBackupLocation; 581 default: 582 return 0; 583 } 584 } 585 586 public: 587 /// Retrieve a unique LocIndex for \p VL. 588 LocIndex insert(const VarLoc &VL) { 589 LocIndex::u32_location_t Location = getLocationForVar(VL); 590 LocIndex::u32_index_t &Index = Var2Index[VL]; 591 if (!Index) { 592 auto &Vars = Loc2Vars[Location]; 593 Vars.push_back(VL); 594 Index = Vars.size(); 595 } 596 return {Location, Index - 1}; 597 } 598 599 /// Retrieve the unique VarLoc associated with \p ID. 600 const VarLoc &operator[](LocIndex ID) const { 601 auto LocIt = Loc2Vars.find(ID.Location); 602 assert(LocIt != Loc2Vars.end() && "Location not tracked"); 603 return LocIt->second[ID.Index]; 604 } 605 }; 606 607 using VarLocInMBB = 608 SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>; 609 struct TransferDebugPair { 610 MachineInstr *TransferInst; ///< Instruction where this transfer occurs. 611 LocIndex LocationID; ///< Location number for the transfer dest. 612 }; 613 using TransferMap = SmallVector<TransferDebugPair, 4>; 614 615 // Types for recording sets of variable fragments that overlap. For a given 616 // local variable, we record all other fragments of that variable that could 617 // overlap it, to reduce search time. 618 using FragmentOfVar = 619 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; 620 using OverlapMap = 621 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; 622 623 // Helper while building OverlapMap, a map of all fragments seen for a given 624 // DILocalVariable. 625 using VarToFragments = 626 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; 627 628 /// This holds the working set of currently open ranges. For fast 629 /// access, this is done both as a set of VarLocIDs, and a map of 630 /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all 631 /// previous open ranges for the same variable. In addition, we keep 632 /// two different maps (Vars/EntryValuesBackupVars), so erase/insert 633 /// methods act differently depending on whether a VarLoc is primary 634 /// location or backup one. In the case the VarLoc is backup location 635 /// we will erase/insert from the EntryValuesBackupVars map, otherwise 636 /// we perform the operation on the Vars. 637 class OpenRangesSet { 638 VarLocSet VarLocs; 639 // Map the DebugVariable to recent primary location ID. 640 SmallDenseMap<DebugVariable, LocIndex, 8> Vars; 641 // Map the DebugVariable to recent backup location ID. 642 SmallDenseMap<DebugVariable, LocIndex, 8> EntryValuesBackupVars; 643 OverlapMap &OverlappingFragments; 644 645 public: 646 OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap) 647 : VarLocs(Alloc), OverlappingFragments(_OLapMap) {} 648 649 const VarLocSet &getVarLocs() const { return VarLocs; } 650 651 /// Terminate all open ranges for VL.Var by removing it from the set. 652 void erase(const VarLoc &VL); 653 654 /// Terminate all open ranges listed in \c KillSet by removing 655 /// them from the set. 656 void erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs); 657 658 /// Insert a new range into the set. 659 void insert(LocIndex VarLocID, const VarLoc &VL); 660 661 /// Insert a set of ranges. 662 void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map) { 663 for (uint64_t ID : ToLoad) { 664 LocIndex Idx = LocIndex::fromRawInteger(ID); 665 const VarLoc &VarL = Map[Idx]; 666 insert(Idx, VarL); 667 } 668 } 669 670 llvm::Optional<LocIndex> getEntryValueBackup(DebugVariable Var); 671 672 /// Empty the set. 673 void clear() { 674 VarLocs.clear(); 675 Vars.clear(); 676 EntryValuesBackupVars.clear(); 677 } 678 679 /// Return whether the set is empty or not. 680 bool empty() const { 681 assert(Vars.empty() == EntryValuesBackupVars.empty() && 682 Vars.empty() == VarLocs.empty() && 683 "open ranges are inconsistent"); 684 return VarLocs.empty(); 685 } 686 687 /// Get an empty range of VarLoc IDs. 688 auto getEmptyVarLocRange() const { 689 return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(), 690 getVarLocs().end()); 691 } 692 693 /// Get all set IDs for VarLocs of kind RegisterKind in \p Reg. 694 auto getRegisterVarLocs(Register Reg) const { 695 return LocIndex::indexRangeForLocation(getVarLocs(), Reg); 696 } 697 698 /// Get all set IDs for VarLocs of kind SpillLocKind. 699 auto getSpillVarLocs() const { 700 return LocIndex::indexRangeForLocation(getVarLocs(), 701 LocIndex::kSpillLocation); 702 } 703 704 /// Get all set IDs for VarLocs of kind EntryValueBackupKind or 705 /// EntryValueCopyBackupKind. 706 auto getEntryValueBackupVarLocs() const { 707 return LocIndex::indexRangeForLocation( 708 getVarLocs(), LocIndex::kEntryValueBackupLocation); 709 } 710 }; 711 712 /// Collect all VarLoc IDs from \p CollectFrom for VarLocs of kind 713 /// RegisterKind which are located in any reg in \p Regs. Insert collected IDs 714 /// into \p Collected. 715 void collectIDsForRegs(VarLocSet &Collected, const DefinedRegsSet &Regs, 716 const VarLocSet &CollectFrom) const; 717 718 /// Get the registers which are used by VarLocs of kind RegisterKind tracked 719 /// by \p CollectFrom. 720 void getUsedRegs(const VarLocSet &CollectFrom, 721 SmallVectorImpl<uint32_t> &UsedRegs) const; 722 723 VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) { 724 std::unique_ptr<VarLocSet> &VLS = Locs[MBB]; 725 if (!VLS) 726 VLS = std::make_unique<VarLocSet>(Alloc); 727 return *VLS.get(); 728 } 729 730 const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, 731 const VarLocInMBB &Locs) const { 732 auto It = Locs.find(MBB); 733 assert(It != Locs.end() && "MBB not in map"); 734 return *It->second.get(); 735 } 736 737 /// Tests whether this instruction is a spill to a stack location. 738 bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); 739 740 /// Decide if @MI is a spill instruction and return true if it is. We use 2 741 /// criteria to make this decision: 742 /// - Is this instruction a store to a spill slot? 743 /// - Is there a register operand that is both used and killed? 744 /// TODO: Store optimization can fold spills into other stores (including 745 /// other spills). We do not handle this yet (more than one memory operand). 746 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, 747 Register &Reg); 748 749 /// Returns true if the given machine instruction is a debug value which we 750 /// can emit entry values for. 751 /// 752 /// Currently, we generate debug entry values only for parameters that are 753 /// unmodified throughout the function and located in a register. 754 bool isEntryValueCandidate(const MachineInstr &MI, 755 const DefinedRegsSet &Regs) const; 756 757 /// If a given instruction is identified as a spill, return the spill location 758 /// and set \p Reg to the spilled register. 759 Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI, 760 MachineFunction *MF, 761 Register &Reg); 762 /// Given a spill instruction, extract the register and offset used to 763 /// address the spill location in a target independent way. 764 VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); 765 void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges, 766 TransferMap &Transfers, VarLocMap &VarLocIDs, 767 LocIndex OldVarID, TransferKind Kind, 768 Register NewReg = Register()); 769 770 void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, 771 VarLocMap &VarLocIDs); 772 void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges, 773 VarLocMap &VarLocIDs, TransferMap &Transfers); 774 bool removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, 775 VarLocMap &VarLocIDs, const VarLoc &EntryVL); 776 void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges, 777 VarLocMap &VarLocIDs, TransferMap &Transfers, 778 VarLocSet &KillSet); 779 void recordEntryValue(const MachineInstr &MI, 780 const DefinedRegsSet &DefinedRegs, 781 OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs); 782 void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges, 783 VarLocMap &VarLocIDs, TransferMap &Transfers); 784 void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges, 785 VarLocMap &VarLocIDs, TransferMap &Transfers); 786 bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges, 787 VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs); 788 789 void process(MachineInstr &MI, OpenRangesSet &OpenRanges, 790 VarLocMap &VarLocIDs, TransferMap &Transfers); 791 792 void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments, 793 OverlapMap &OLapMap); 794 795 bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, 796 const VarLocMap &VarLocIDs, 797 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 798 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks); 799 800 /// Create DBG_VALUE insts for inlocs that have been propagated but 801 /// had their instruction creation deferred. 802 void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs); 803 804 bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override; 805 806 public: 807 /// Default construct and initialize the pass. 808 VarLocBasedLDV(); 809 810 ~VarLocBasedLDV(); 811 812 /// Print to ostream with a message. 813 void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V, 814 const VarLocMap &VarLocIDs, const char *msg, 815 raw_ostream &Out) const; 816 }; 817 818 } // end anonymous namespace 819 820 //===----------------------------------------------------------------------===// 821 // Implementation 822 //===----------------------------------------------------------------------===// 823 824 VarLocBasedLDV::VarLocBasedLDV() { } 825 826 VarLocBasedLDV::~VarLocBasedLDV() { } 827 828 /// Erase a variable from the set of open ranges, and additionally erase any 829 /// fragments that may overlap it. If the VarLoc is a backup location, erase 830 /// the variable from the EntryValuesBackupVars set, indicating we should stop 831 /// tracking its backup entry location. Otherwise, if the VarLoc is primary 832 /// location, erase the variable from the Vars set. 833 void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) { 834 // Erasure helper. 835 auto DoErase = [VL, this](DebugVariable VarToErase) { 836 auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 837 auto It = EraseFrom->find(VarToErase); 838 if (It != EraseFrom->end()) { 839 LocIndex ID = It->second; 840 VarLocs.reset(ID.getAsRawInteger()); 841 EraseFrom->erase(It); 842 } 843 }; 844 845 DebugVariable Var = VL.Var; 846 847 // Erase the variable/fragment that ends here. 848 DoErase(Var); 849 850 // Extract the fragment. Interpret an empty fragment as one that covers all 851 // possible bits. 852 FragmentInfo ThisFragment = Var.getFragmentOrDefault(); 853 854 // There may be fragments that overlap the designated fragment. Look them up 855 // in the pre-computed overlap map, and erase them too. 856 auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment}); 857 if (MapIt != OverlappingFragments.end()) { 858 for (auto Fragment : MapIt->second) { 859 VarLocBasedLDV::OptFragmentInfo FragmentHolder; 860 if (!DebugVariable::isDefaultFragment(Fragment)) 861 FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment); 862 DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()}); 863 } 864 } 865 } 866 867 void VarLocBasedLDV::OpenRangesSet::erase(const VarLocSet &KillSet, 868 const VarLocMap &VarLocIDs) { 869 VarLocs.intersectWithComplement(KillSet); 870 for (uint64_t ID : KillSet) { 871 const VarLoc *VL = &VarLocIDs[LocIndex::fromRawInteger(ID)]; 872 auto *EraseFrom = VL->isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 873 EraseFrom->erase(VL->Var); 874 } 875 } 876 877 void VarLocBasedLDV::OpenRangesSet::insert(LocIndex VarLocID, 878 const VarLoc &VL) { 879 auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 880 VarLocs.set(VarLocID.getAsRawInteger()); 881 InsertInto->insert({VL.Var, VarLocID}); 882 } 883 884 /// Return the Loc ID of an entry value backup location, if it exists for the 885 /// variable. 886 llvm::Optional<LocIndex> 887 VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) { 888 auto It = EntryValuesBackupVars.find(Var); 889 if (It != EntryValuesBackupVars.end()) 890 return It->second; 891 892 return llvm::None; 893 } 894 895 void VarLocBasedLDV::collectIDsForRegs(VarLocSet &Collected, 896 const DefinedRegsSet &Regs, 897 const VarLocSet &CollectFrom) const { 898 assert(!Regs.empty() && "Nothing to collect"); 899 SmallVector<uint32_t, 32> SortedRegs; 900 for (Register Reg : Regs) 901 SortedRegs.push_back(Reg); 902 array_pod_sort(SortedRegs.begin(), SortedRegs.end()); 903 auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front())); 904 auto End = CollectFrom.end(); 905 for (uint32_t Reg : SortedRegs) { 906 // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all 907 // possible VarLoc IDs for VarLocs of kind RegisterKind which live in Reg. 908 uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg); 909 uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1); 910 It.advanceToLowerBound(FirstIndexForReg); 911 912 // Iterate through that half-open interval and collect all the set IDs. 913 for (; It != End && *It < FirstInvalidIndex; ++It) 914 Collected.set(*It); 915 916 if (It == End) 917 return; 918 } 919 } 920 921 void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom, 922 SmallVectorImpl<uint32_t> &UsedRegs) const { 923 // All register-based VarLocs are assigned indices greater than or equal to 924 // FirstRegIndex. 925 uint64_t FirstRegIndex = LocIndex::rawIndexForReg(1); 926 uint64_t FirstInvalidIndex = 927 LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation); 928 for (auto It = CollectFrom.find(FirstRegIndex), 929 End = CollectFrom.find(FirstInvalidIndex); 930 It != End;) { 931 // We found a VarLoc ID for a VarLoc that lives in a register. Figure out 932 // which register and add it to UsedRegs. 933 uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location; 934 assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) && 935 "Duplicate used reg"); 936 UsedRegs.push_back(FoundReg); 937 938 // Skip to the next /set/ register. Note that this finds a lower bound, so 939 // even if there aren't any VarLocs living in `FoundReg+1`, we're still 940 // guaranteed to move on to the next register (or to end()). 941 uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1); 942 It.advanceToLowerBound(NextRegIndex); 943 } 944 } 945 946 //===----------------------------------------------------------------------===// 947 // Debug Range Extension Implementation 948 //===----------------------------------------------------------------------===// 949 950 #ifndef NDEBUG 951 void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF, 952 const VarLocInMBB &V, 953 const VarLocMap &VarLocIDs, 954 const char *msg, 955 raw_ostream &Out) const { 956 Out << '\n' << msg << '\n'; 957 for (const MachineBasicBlock &BB : MF) { 958 if (!V.count(&BB)) 959 continue; 960 const VarLocSet &L = getVarLocsInMBB(&BB, V); 961 if (L.empty()) 962 continue; 963 Out << "MBB: " << BB.getNumber() << ":\n"; 964 for (uint64_t VLL : L) { 965 const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(VLL)]; 966 Out << " Var: " << VL.Var.getVariable()->getName(); 967 Out << " MI: "; 968 VL.dump(TRI, Out); 969 } 970 } 971 Out << "\n"; 972 } 973 #endif 974 975 VarLocBasedLDV::VarLoc::SpillLoc 976 VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { 977 assert(MI.hasOneMemOperand() && 978 "Spill instruction does not have exactly one memory operand?"); 979 auto MMOI = MI.memoperands_begin(); 980 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 981 assert(PVal->kind() == PseudoSourceValue::FixedStack && 982 "Inconsistent memory operand in spill instruction"); 983 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); 984 const MachineBasicBlock *MBB = MI.getParent(); 985 Register Reg; 986 int Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); 987 return {Reg, Offset}; 988 } 989 990 /// Try to salvage the debug entry value if we encounter a new debug value 991 /// describing the same parameter, otherwise stop tracking the value. Return 992 /// true if we should stop tracking the entry value, otherwise return false. 993 bool VarLocBasedLDV::removeEntryValue(const MachineInstr &MI, 994 OpenRangesSet &OpenRanges, 995 VarLocMap &VarLocIDs, 996 const VarLoc &EntryVL) { 997 // Skip the DBG_VALUE which is the debug entry value itself. 998 if (MI.isIdenticalTo(EntryVL.MI)) 999 return false; 1000 1001 // If the parameter's location is not register location, we can not track 1002 // the entry value any more. In addition, if the debug expression from the 1003 // DBG_VALUE is not empty, we can assume the parameter's value has changed 1004 // indicating that we should stop tracking its entry value as well. 1005 if (!MI.getDebugOperand(0).isReg() || 1006 MI.getDebugExpression()->getNumElements() != 0) 1007 return true; 1008 1009 // If the DBG_VALUE comes from a copy instruction that copies the entry value, 1010 // it means the parameter's value has not changed and we should be able to use 1011 // its entry value. 1012 bool TrySalvageEntryValue = false; 1013 Register Reg = MI.getDebugOperand(0).getReg(); 1014 auto I = std::next(MI.getReverseIterator()); 1015 const MachineOperand *SrcRegOp, *DestRegOp; 1016 if (I != MI.getParent()->rend()) { 1017 // TODO: Try to keep tracking of an entry value if we encounter a propagated 1018 // DBG_VALUE describing the copy of the entry value. (Propagated entry value 1019 // does not indicate the parameter modification.) 1020 auto DestSrc = TII->isCopyInstr(*I); 1021 if (!DestSrc) 1022 return true; 1023 1024 SrcRegOp = DestSrc->Source; 1025 DestRegOp = DestSrc->Destination; 1026 if (Reg != DestRegOp->getReg()) 1027 return true; 1028 TrySalvageEntryValue = true; 1029 } 1030 1031 if (TrySalvageEntryValue) { 1032 for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { 1033 const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)]; 1034 if (VL.getEntryValueCopyBackupReg() == Reg && 1035 VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg()) 1036 return false; 1037 } 1038 } 1039 1040 return true; 1041 } 1042 1043 /// End all previous ranges related to @MI and start a new range from @MI 1044 /// if it is a DBG_VALUE instr. 1045 void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI, 1046 OpenRangesSet &OpenRanges, 1047 VarLocMap &VarLocIDs) { 1048 if (!MI.isDebugValue()) 1049 return; 1050 const DILocalVariable *Var = MI.getDebugVariable(); 1051 const DIExpression *Expr = MI.getDebugExpression(); 1052 const DILocation *DebugLoc = MI.getDebugLoc(); 1053 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 1054 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 1055 "Expected inlined-at fields to agree"); 1056 1057 DebugVariable V(Var, Expr, InlinedAt); 1058 1059 // Check if this DBG_VALUE indicates a parameter's value changing. 1060 // If that is the case, we should stop tracking its entry value. 1061 auto EntryValBackupID = OpenRanges.getEntryValueBackup(V); 1062 if (Var->isParameter() && EntryValBackupID) { 1063 const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID]; 1064 if (removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL)) { 1065 LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: "; 1066 MI.print(dbgs(), /*IsStandalone*/ false, 1067 /*SkipOpers*/ false, /*SkipDebugLoc*/ false, 1068 /*AddNewLine*/ true, TII)); 1069 OpenRanges.erase(EntryVL); 1070 } 1071 } 1072 1073 if (isDbgValueDescribedByReg(MI) || MI.getDebugOperand(0).isImm() || 1074 MI.getDebugOperand(0).isFPImm() || MI.getDebugOperand(0).isCImm()) { 1075 // Use normal VarLoc constructor for registers and immediates. 1076 VarLoc VL(MI, LS); 1077 // End all previous ranges of VL.Var. 1078 OpenRanges.erase(VL); 1079 1080 LocIndex ID = VarLocIDs.insert(VL); 1081 // Add the VarLoc to OpenRanges from this DBG_VALUE. 1082 OpenRanges.insert(ID, VL); 1083 } else if (MI.hasOneMemOperand()) { 1084 llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?"); 1085 } else { 1086 // This must be an undefined location. If it has an open range, erase it. 1087 assert(MI.getDebugOperand(0).isReg() && 1088 MI.getDebugOperand(0).getReg() == 0 && 1089 "Unexpected non-undef DBG_VALUE encountered"); 1090 VarLoc VL(MI, LS); 1091 OpenRanges.erase(VL); 1092 } 1093 } 1094 1095 /// Turn the entry value backup locations into primary locations. 1096 void VarLocBasedLDV::emitEntryValues(MachineInstr &MI, 1097 OpenRangesSet &OpenRanges, 1098 VarLocMap &VarLocIDs, 1099 TransferMap &Transfers, 1100 VarLocSet &KillSet) { 1101 // Do not insert entry value locations after a terminator. 1102 if (MI.isTerminator()) 1103 return; 1104 1105 for (uint64_t ID : KillSet) { 1106 LocIndex Idx = LocIndex::fromRawInteger(ID); 1107 const VarLoc &VL = VarLocIDs[Idx]; 1108 if (!VL.Var.getVariable()->isParameter()) 1109 continue; 1110 1111 auto DebugVar = VL.Var; 1112 Optional<LocIndex> EntryValBackupID = 1113 OpenRanges.getEntryValueBackup(DebugVar); 1114 1115 // If the parameter has the entry value backup, it means we should 1116 // be able to use its entry value. 1117 if (!EntryValBackupID) 1118 continue; 1119 1120 const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID]; 1121 VarLoc EntryLoc = 1122 VarLoc::CreateEntryLoc(EntryVL.MI, LS, EntryVL.Expr, EntryVL.Loc.RegNo); 1123 LocIndex EntryValueID = VarLocIDs.insert(EntryLoc); 1124 Transfers.push_back({&MI, EntryValueID}); 1125 OpenRanges.insert(EntryValueID, EntryLoc); 1126 } 1127 } 1128 1129 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc 1130 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with 1131 /// new VarLoc. If \p NewReg is different than default zero value then the 1132 /// new location will be register location created by the copy like instruction, 1133 /// otherwise it is variable's location on the stack. 1134 void VarLocBasedLDV::insertTransferDebugPair( 1135 MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers, 1136 VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind, 1137 Register NewReg) { 1138 const MachineInstr *DebugInstr = &VarLocIDs[OldVarID].MI; 1139 1140 auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) { 1141 LocIndex LocId = VarLocIDs.insert(VL); 1142 1143 // Close this variable's previous location range. 1144 OpenRanges.erase(VL); 1145 1146 // Record the new location as an open range, and a postponed transfer 1147 // inserting a DBG_VALUE for this location. 1148 OpenRanges.insert(LocId, VL); 1149 assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator"); 1150 TransferDebugPair MIP = {&MI, LocId}; 1151 Transfers.push_back(MIP); 1152 }; 1153 1154 // End all previous ranges of VL.Var. 1155 OpenRanges.erase(VarLocIDs[OldVarID]); 1156 switch (Kind) { 1157 case TransferKind::TransferCopy: { 1158 assert(NewReg && 1159 "No register supplied when handling a copy of a debug value"); 1160 // Create a DBG_VALUE instruction to describe the Var in its new 1161 // register location. 1162 VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg); 1163 ProcessVarLoc(VL); 1164 LLVM_DEBUG({ 1165 dbgs() << "Creating VarLoc for register copy:"; 1166 VL.dump(TRI); 1167 }); 1168 return; 1169 } 1170 case TransferKind::TransferSpill: { 1171 // Create a DBG_VALUE instruction to describe the Var in its spilled 1172 // location. 1173 VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI); 1174 VarLoc VL = VarLoc::CreateSpillLoc(*DebugInstr, SpillLocation.SpillBase, 1175 SpillLocation.SpillOffset, LS); 1176 ProcessVarLoc(VL); 1177 LLVM_DEBUG({ 1178 dbgs() << "Creating VarLoc for spill:"; 1179 VL.dump(TRI); 1180 }); 1181 return; 1182 } 1183 case TransferKind::TransferRestore: { 1184 assert(NewReg && 1185 "No register supplied when handling a restore of a debug value"); 1186 // DebugInstr refers to the pre-spill location, therefore we can reuse 1187 // its expression. 1188 VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg); 1189 ProcessVarLoc(VL); 1190 LLVM_DEBUG({ 1191 dbgs() << "Creating VarLoc for restore:"; 1192 VL.dump(TRI); 1193 }); 1194 return; 1195 } 1196 } 1197 llvm_unreachable("Invalid transfer kind"); 1198 } 1199 1200 /// A definition of a register may mark the end of a range. 1201 void VarLocBasedLDV::transferRegisterDef( 1202 MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, 1203 TransferMap &Transfers) { 1204 1205 // Meta Instructions do not affect the debug liveness of any register they 1206 // define. 1207 if (MI.isMetaInstruction()) 1208 return; 1209 1210 MachineFunction *MF = MI.getMF(); 1211 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1212 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 1213 1214 // Find the regs killed by MI, and find regmasks of preserved regs. 1215 DefinedRegsSet DeadRegs; 1216 SmallVector<const uint32_t *, 4> RegMasks; 1217 for (const MachineOperand &MO : MI.operands()) { 1218 // Determine whether the operand is a register def. 1219 if (MO.isReg() && MO.isDef() && MO.getReg() && 1220 Register::isPhysicalRegister(MO.getReg()) && 1221 !(MI.isCall() && MO.getReg() == SP)) { 1222 // Remove ranges of all aliased registers. 1223 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1224 // FIXME: Can we break out of this loop early if no insertion occurs? 1225 DeadRegs.insert(*RAI); 1226 } else if (MO.isRegMask()) { 1227 RegMasks.push_back(MO.getRegMask()); 1228 } 1229 } 1230 1231 // Erase VarLocs which reside in one of the dead registers. For performance 1232 // reasons, it's critical to not iterate over the full set of open VarLocs. 1233 // Iterate over the set of dying/used regs instead. 1234 if (!RegMasks.empty()) { 1235 SmallVector<uint32_t, 32> UsedRegs; 1236 getUsedRegs(OpenRanges.getVarLocs(), UsedRegs); 1237 for (uint32_t Reg : UsedRegs) { 1238 // Remove ranges of all clobbered registers. Register masks don't usually 1239 // list SP as preserved. Assume that call instructions never clobber SP, 1240 // because some backends (e.g., AArch64) never list SP in the regmask. 1241 // While the debug info may be off for an instruction or two around 1242 // callee-cleanup calls, transferring the DEBUG_VALUE across the call is 1243 // still a better user experience. 1244 if (Reg == SP) 1245 continue; 1246 bool AnyRegMaskKillsReg = 1247 any_of(RegMasks, [Reg](const uint32_t *RegMask) { 1248 return MachineOperand::clobbersPhysReg(RegMask, Reg); 1249 }); 1250 if (AnyRegMaskKillsReg) 1251 DeadRegs.insert(Reg); 1252 } 1253 } 1254 1255 if (DeadRegs.empty()) 1256 return; 1257 1258 VarLocSet KillSet(Alloc); 1259 collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs()); 1260 OpenRanges.erase(KillSet, VarLocIDs); 1261 1262 if (TPC) { 1263 auto &TM = TPC->getTM<TargetMachine>(); 1264 if (TM.Options.ShouldEmitDebugEntryValues()) 1265 emitEntryValues(MI, OpenRanges, VarLocIDs, Transfers, KillSet); 1266 } 1267 } 1268 1269 bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI, 1270 MachineFunction *MF) { 1271 // TODO: Handle multiple stores folded into one. 1272 if (!MI.hasOneMemOperand()) 1273 return false; 1274 1275 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) 1276 return false; // This is not a spill instruction, since no valid size was 1277 // returned from either function. 1278 1279 return true; 1280 } 1281 1282 bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI, 1283 MachineFunction *MF, Register &Reg) { 1284 if (!isSpillInstruction(MI, MF)) 1285 return false; 1286 1287 auto isKilledReg = [&](const MachineOperand MO, Register &Reg) { 1288 if (!MO.isReg() || !MO.isUse()) { 1289 Reg = 0; 1290 return false; 1291 } 1292 Reg = MO.getReg(); 1293 return MO.isKill(); 1294 }; 1295 1296 for (const MachineOperand &MO : MI.operands()) { 1297 // In a spill instruction generated by the InlineSpiller the spilled 1298 // register has its kill flag set. 1299 if (isKilledReg(MO, Reg)) 1300 return true; 1301 if (Reg != 0) { 1302 // Check whether next instruction kills the spilled register. 1303 // FIXME: Current solution does not cover search for killed register in 1304 // bundles and instructions further down the chain. 1305 auto NextI = std::next(MI.getIterator()); 1306 // Skip next instruction that points to basic block end iterator. 1307 if (MI.getParent()->end() == NextI) 1308 continue; 1309 Register RegNext; 1310 for (const MachineOperand &MONext : NextI->operands()) { 1311 // Return true if we came across the register from the 1312 // previous spill instruction that is killed in NextI. 1313 if (isKilledReg(MONext, RegNext) && RegNext == Reg) 1314 return true; 1315 } 1316 } 1317 } 1318 // Return false if we didn't find spilled register. 1319 return false; 1320 } 1321 1322 Optional<VarLocBasedLDV::VarLoc::SpillLoc> 1323 VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI, 1324 MachineFunction *MF, Register &Reg) { 1325 if (!MI.hasOneMemOperand()) 1326 return None; 1327 1328 // FIXME: Handle folded restore instructions with more than one memory 1329 // operand. 1330 if (MI.getRestoreSize(TII)) { 1331 Reg = MI.getOperand(0).getReg(); 1332 return extractSpillBaseRegAndOffset(MI); 1333 } 1334 return None; 1335 } 1336 1337 /// A spilled register may indicate that we have to end the current range of 1338 /// a variable and create a new one for the spill location. 1339 /// A restored register may indicate the reverse situation. 1340 /// We don't want to insert any instructions in process(), so we just create 1341 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers. 1342 /// It will be inserted into the BB when we're done iterating over the 1343 /// instructions. 1344 void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI, 1345 OpenRangesSet &OpenRanges, 1346 VarLocMap &VarLocIDs, 1347 TransferMap &Transfers) { 1348 MachineFunction *MF = MI.getMF(); 1349 TransferKind TKind; 1350 Register Reg; 1351 Optional<VarLoc::SpillLoc> Loc; 1352 1353 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); 1354 1355 // First, if there are any DBG_VALUEs pointing at a spill slot that is 1356 // written to, then close the variable location. The value in memory 1357 // will have changed. 1358 VarLocSet KillSet(Alloc); 1359 if (isSpillInstruction(MI, MF)) { 1360 Loc = extractSpillBaseRegAndOffset(MI); 1361 for (uint64_t ID : OpenRanges.getSpillVarLocs()) { 1362 LocIndex Idx = LocIndex::fromRawInteger(ID); 1363 const VarLoc &VL = VarLocIDs[Idx]; 1364 assert(VL.Kind == VarLoc::SpillLocKind && "Broken VarLocSet?"); 1365 if (VL.Loc.SpillLocation == *Loc) { 1366 // This location is overwritten by the current instruction -- terminate 1367 // the open range, and insert an explicit DBG_VALUE $noreg. 1368 // 1369 // Doing this at a later stage would require re-interpreting all 1370 // DBG_VALUes and DIExpressions to identify whether they point at 1371 // memory, and then analysing all memory writes to see if they 1372 // overwrite that memory, which is expensive. 1373 // 1374 // At this stage, we already know which DBG_VALUEs are for spills and 1375 // where they are located; it's best to fix handle overwrites now. 1376 KillSet.set(ID); 1377 VarLoc UndefVL = VarLoc::CreateCopyLoc(VL.MI, LS, 0); 1378 LocIndex UndefLocID = VarLocIDs.insert(UndefVL); 1379 Transfers.push_back({&MI, UndefLocID}); 1380 } 1381 } 1382 OpenRanges.erase(KillSet, VarLocIDs); 1383 } 1384 1385 // Try to recognise spill and restore instructions that may create a new 1386 // variable location. 1387 if (isLocationSpill(MI, MF, Reg)) { 1388 TKind = TransferKind::TransferSpill; 1389 LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump();); 1390 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) 1391 << "\n"); 1392 } else { 1393 if (!(Loc = isRestoreInstruction(MI, MF, Reg))) 1394 return; 1395 TKind = TransferKind::TransferRestore; 1396 LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump();); 1397 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) 1398 << "\n"); 1399 } 1400 // Check if the register or spill location is the location of a debug value. 1401 auto TransferCandidates = OpenRanges.getEmptyVarLocRange(); 1402 if (TKind == TransferKind::TransferSpill) 1403 TransferCandidates = OpenRanges.getRegisterVarLocs(Reg); 1404 else if (TKind == TransferKind::TransferRestore) 1405 TransferCandidates = OpenRanges.getSpillVarLocs(); 1406 for (uint64_t ID : TransferCandidates) { 1407 LocIndex Idx = LocIndex::fromRawInteger(ID); 1408 const VarLoc &VL = VarLocIDs[Idx]; 1409 if (TKind == TransferKind::TransferSpill) { 1410 assert(VL.isDescribedByReg() == Reg && "Broken VarLocSet?"); 1411 LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '(' 1412 << VL.Var.getVariable()->getName() << ")\n"); 1413 } else { 1414 assert(TKind == TransferKind::TransferRestore && 1415 VL.Kind == VarLoc::SpillLocKind && "Broken VarLocSet?"); 1416 if (VL.Loc.SpillLocation != *Loc) 1417 // The spill location is not the location of a debug value. 1418 continue; 1419 LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '(' 1420 << VL.Var.getVariable()->getName() << ")\n"); 1421 } 1422 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind, 1423 Reg); 1424 // FIXME: A comment should explain why it's correct to return early here, 1425 // if that is in fact correct. 1426 return; 1427 } 1428 } 1429 1430 /// If \p MI is a register copy instruction, that copies a previously tracked 1431 /// value from one register to another register that is callee saved, we 1432 /// create new DBG_VALUE instruction described with copy destination register. 1433 void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI, 1434 OpenRangesSet &OpenRanges, 1435 VarLocMap &VarLocIDs, 1436 TransferMap &Transfers) { 1437 auto DestSrc = TII->isCopyInstr(MI); 1438 if (!DestSrc) 1439 return; 1440 1441 const MachineOperand *DestRegOp = DestSrc->Destination; 1442 const MachineOperand *SrcRegOp = DestSrc->Source; 1443 1444 if (!DestRegOp->isDef()) 1445 return; 1446 1447 auto isCalleeSavedReg = [&](Register Reg) { 1448 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1449 if (CalleeSavedRegs.test(*RAI)) 1450 return true; 1451 return false; 1452 }; 1453 1454 Register SrcReg = SrcRegOp->getReg(); 1455 Register DestReg = DestRegOp->getReg(); 1456 1457 // We want to recognize instructions where destination register is callee 1458 // saved register. If register that could be clobbered by the call is 1459 // included, there would be a great chance that it is going to be clobbered 1460 // soon. It is more likely that previous register location, which is callee 1461 // saved, is going to stay unclobbered longer, even if it is killed. 1462 if (!isCalleeSavedReg(DestReg)) 1463 return; 1464 1465 // Remember an entry value movement. If we encounter a new debug value of 1466 // a parameter describing only a moving of the value around, rather then 1467 // modifying it, we are still able to use the entry value if needed. 1468 if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) { 1469 for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { 1470 LocIndex Idx = LocIndex::fromRawInteger(ID); 1471 const VarLoc &VL = VarLocIDs[Idx]; 1472 if (VL.getEntryValueBackupReg() == SrcReg) { 1473 LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump();); 1474 VarLoc EntryValLocCopyBackup = 1475 VarLoc::CreateEntryCopyBackupLoc(VL.MI, LS, VL.Expr, DestReg); 1476 1477 // Stop tracking the original entry value. 1478 OpenRanges.erase(VL); 1479 1480 // Start tracking the entry value copy. 1481 LocIndex EntryValCopyLocID = VarLocIDs.insert(EntryValLocCopyBackup); 1482 OpenRanges.insert(EntryValCopyLocID, EntryValLocCopyBackup); 1483 break; 1484 } 1485 } 1486 } 1487 1488 if (!SrcRegOp->isKill()) 1489 return; 1490 1491 for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) { 1492 LocIndex Idx = LocIndex::fromRawInteger(ID); 1493 assert(VarLocIDs[Idx].isDescribedByReg() == SrcReg && "Broken VarLocSet?"); 1494 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, 1495 TransferKind::TransferCopy, DestReg); 1496 // FIXME: A comment should explain why it's correct to return early here, 1497 // if that is in fact correct. 1498 return; 1499 } 1500 } 1501 1502 /// Terminate all open ranges at the end of the current basic block. 1503 bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB, 1504 OpenRangesSet &OpenRanges, 1505 VarLocInMBB &OutLocs, 1506 const VarLocMap &VarLocIDs) { 1507 bool Changed = false; 1508 1509 LLVM_DEBUG(for (uint64_t ID 1510 : OpenRanges.getVarLocs()) { 1511 // Copy OpenRanges to OutLocs, if not already present. 1512 dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": "; 1513 VarLocIDs[LocIndex::fromRawInteger(ID)].dump(TRI); 1514 }); 1515 VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs); 1516 Changed = VLS != OpenRanges.getVarLocs(); 1517 // New OutLocs set may be different due to spill, restore or register 1518 // copy instruction processing. 1519 if (Changed) 1520 VLS = OpenRanges.getVarLocs(); 1521 OpenRanges.clear(); 1522 return Changed; 1523 } 1524 1525 /// Accumulate a mapping between each DILocalVariable fragment and other 1526 /// fragments of that DILocalVariable which overlap. This reduces work during 1527 /// the data-flow stage from "Find any overlapping fragments" to "Check if the 1528 /// known-to-overlap fragments are present". 1529 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for 1530 /// fragment usage. 1531 /// \param SeenFragments Map from DILocalVariable to all fragments of that 1532 /// Variable which are known to exist. 1533 /// \param OverlappingFragments The overlap map being constructed, from one 1534 /// Var/Fragment pair to a vector of fragments known to overlap. 1535 void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI, 1536 VarToFragments &SeenFragments, 1537 OverlapMap &OverlappingFragments) { 1538 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), 1539 MI.getDebugLoc()->getInlinedAt()); 1540 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); 1541 1542 // If this is the first sighting of this variable, then we are guaranteed 1543 // there are currently no overlapping fragments either. Initialize the set 1544 // of seen fragments, record no overlaps for the current one, and return. 1545 auto SeenIt = SeenFragments.find(MIVar.getVariable()); 1546 if (SeenIt == SeenFragments.end()) { 1547 SmallSet<FragmentInfo, 4> OneFragment; 1548 OneFragment.insert(ThisFragment); 1549 SeenFragments.insert({MIVar.getVariable(), OneFragment}); 1550 1551 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1552 return; 1553 } 1554 1555 // If this particular Variable/Fragment pair already exists in the overlap 1556 // map, it has already been accounted for. 1557 auto IsInOLapMap = 1558 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1559 if (!IsInOLapMap.second) 1560 return; 1561 1562 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; 1563 auto &AllSeenFragments = SeenIt->second; 1564 1565 // Otherwise, examine all other seen fragments for this variable, with "this" 1566 // fragment being a previously unseen fragment. Record any pair of 1567 // overlapping fragments. 1568 for (auto &ASeenFragment : AllSeenFragments) { 1569 // Does this previously seen fragment overlap? 1570 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { 1571 // Yes: Mark the current fragment as being overlapped. 1572 ThisFragmentsOverlaps.push_back(ASeenFragment); 1573 // Mark the previously seen fragment as being overlapped by the current 1574 // one. 1575 auto ASeenFragmentsOverlaps = 1576 OverlappingFragments.find({MIVar.getVariable(), ASeenFragment}); 1577 assert(ASeenFragmentsOverlaps != OverlappingFragments.end() && 1578 "Previously seen var fragment has no vector of overlaps"); 1579 ASeenFragmentsOverlaps->second.push_back(ThisFragment); 1580 } 1581 } 1582 1583 AllSeenFragments.insert(ThisFragment); 1584 } 1585 1586 /// This routine creates OpenRanges. 1587 void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges, 1588 VarLocMap &VarLocIDs, TransferMap &Transfers) { 1589 transferDebugValue(MI, OpenRanges, VarLocIDs); 1590 transferRegisterDef(MI, OpenRanges, VarLocIDs, Transfers); 1591 transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers); 1592 transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers); 1593 } 1594 1595 /// This routine joins the analysis results of all incoming edges in @MBB by 1596 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same 1597 /// source variable in all the predecessors of @MBB reside in the same location. 1598 bool VarLocBasedLDV::join( 1599 MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, 1600 const VarLocMap &VarLocIDs, 1601 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1602 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) { 1603 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 1604 1605 VarLocSet InLocsT(Alloc); // Temporary incoming locations. 1606 1607 // For all predecessors of this MBB, find the set of VarLocs that 1608 // can be joined. 1609 int NumVisited = 0; 1610 for (auto p : MBB.predecessors()) { 1611 // Ignore backedges if we have not visited the predecessor yet. As the 1612 // predecessor hasn't yet had locations propagated into it, most locations 1613 // will not yet be valid, so treat them as all being uninitialized and 1614 // potentially valid. If a location guessed to be correct here is 1615 // invalidated later, we will remove it when we revisit this block. 1616 if (!Visited.count(p)) { 1617 LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber() 1618 << "\n"); 1619 continue; 1620 } 1621 auto OL = OutLocs.find(p); 1622 // Join is null in case of empty OutLocs from any of the pred. 1623 if (OL == OutLocs.end()) 1624 return false; 1625 1626 // Just copy over the Out locs to incoming locs for the first visited 1627 // predecessor, and for all other predecessors join the Out locs. 1628 VarLocSet &OutLocVLS = *OL->second.get(); 1629 if (!NumVisited) 1630 InLocsT = OutLocVLS; 1631 else 1632 InLocsT &= OutLocVLS; 1633 1634 LLVM_DEBUG({ 1635 if (!InLocsT.empty()) { 1636 for (uint64_t ID : InLocsT) 1637 dbgs() << " gathered candidate incoming var: " 1638 << VarLocIDs[LocIndex::fromRawInteger(ID)] 1639 .Var.getVariable() 1640 ->getName() 1641 << "\n"; 1642 } 1643 }); 1644 1645 NumVisited++; 1646 } 1647 1648 // Filter out DBG_VALUES that are out of scope. 1649 VarLocSet KillSet(Alloc); 1650 bool IsArtificial = ArtificialBlocks.count(&MBB); 1651 if (!IsArtificial) { 1652 for (uint64_t ID : InLocsT) { 1653 LocIndex Idx = LocIndex::fromRawInteger(ID); 1654 if (!VarLocIDs[Idx].dominates(LS, MBB)) { 1655 KillSet.set(ID); 1656 LLVM_DEBUG({ 1657 auto Name = VarLocIDs[Idx].Var.getVariable()->getName(); 1658 dbgs() << " killing " << Name << ", it doesn't dominate MBB\n"; 1659 }); 1660 } 1661 } 1662 } 1663 InLocsT.intersectWithComplement(KillSet); 1664 1665 // As we are processing blocks in reverse post-order we 1666 // should have processed at least one predecessor, unless it 1667 // is the entry block which has no predecessor. 1668 assert((NumVisited || MBB.pred_empty()) && 1669 "Should have processed at least one predecessor"); 1670 1671 VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs); 1672 bool Changed = false; 1673 if (ILS != InLocsT) { 1674 ILS = InLocsT; 1675 Changed = true; 1676 } 1677 1678 return Changed; 1679 } 1680 1681 void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs, 1682 VarLocMap &VarLocIDs) { 1683 // PendingInLocs records all locations propagated into blocks, which have 1684 // not had DBG_VALUE insts created. Go through and create those insts now. 1685 for (auto &Iter : PendingInLocs) { 1686 // Map is keyed on a constant pointer, unwrap it so we can insert insts. 1687 auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first); 1688 VarLocSet &Pending = *Iter.second.get(); 1689 1690 for (uint64_t ID : Pending) { 1691 // The ID location is live-in to MBB -- work out what kind of machine 1692 // location it is and create a DBG_VALUE. 1693 const VarLoc &DiffIt = VarLocIDs[LocIndex::fromRawInteger(ID)]; 1694 if (DiffIt.isEntryBackupLoc()) 1695 continue; 1696 MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent()); 1697 MBB.insert(MBB.instr_begin(), MI); 1698 1699 (void)MI; 1700 LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump();); 1701 } 1702 } 1703 } 1704 1705 bool VarLocBasedLDV::isEntryValueCandidate( 1706 const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const { 1707 assert(MI.isDebugValue() && "This must be DBG_VALUE."); 1708 1709 // TODO: Add support for local variables that are expressed in terms of 1710 // parameters entry values. 1711 // TODO: Add support for modified arguments that can be expressed 1712 // by using its entry value. 1713 auto *DIVar = MI.getDebugVariable(); 1714 if (!DIVar->isParameter()) 1715 return false; 1716 1717 // Do not consider parameters that belong to an inlined function. 1718 if (MI.getDebugLoc()->getInlinedAt()) 1719 return false; 1720 1721 // Only consider parameters that are described using registers. Parameters 1722 // that are passed on the stack are not yet supported, so ignore debug 1723 // values that are described by the frame or stack pointer. 1724 if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI)) 1725 return false; 1726 1727 // If a parameter's value has been propagated from the caller, then the 1728 // parameter's DBG_VALUE may be described using a register defined by some 1729 // instruction in the entry block, in which case we shouldn't create an 1730 // entry value. 1731 if (DefinedRegs.count(MI.getDebugOperand(0).getReg())) 1732 return false; 1733 1734 // TODO: Add support for parameters that have a pre-existing debug expressions 1735 // (e.g. fragments). 1736 if (MI.getDebugExpression()->getNumElements() > 0) 1737 return false; 1738 1739 return true; 1740 } 1741 1742 /// Collect all register defines (including aliases) for the given instruction. 1743 static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs, 1744 const TargetRegisterInfo *TRI) { 1745 for (const MachineOperand &MO : MI.operands()) 1746 if (MO.isReg() && MO.isDef() && MO.getReg()) 1747 for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) 1748 Regs.insert(*AI); 1749 } 1750 1751 /// This routine records the entry values of function parameters. The values 1752 /// could be used as backup values. If we loose the track of some unmodified 1753 /// parameters, the backup values will be used as a primary locations. 1754 void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI, 1755 const DefinedRegsSet &DefinedRegs, 1756 OpenRangesSet &OpenRanges, 1757 VarLocMap &VarLocIDs) { 1758 if (TPC) { 1759 auto &TM = TPC->getTM<TargetMachine>(); 1760 if (!TM.Options.ShouldEmitDebugEntryValues()) 1761 return; 1762 } 1763 1764 DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(), 1765 MI.getDebugLoc()->getInlinedAt()); 1766 1767 if (!isEntryValueCandidate(MI, DefinedRegs) || 1768 OpenRanges.getEntryValueBackup(V)) 1769 return; 1770 1771 LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump();); 1772 1773 // Create the entry value and use it as a backup location until it is 1774 // valid. It is valid until a parameter is not changed. 1775 DIExpression *NewExpr = 1776 DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue); 1777 VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, LS, NewExpr); 1778 LocIndex EntryValLocID = VarLocIDs.insert(EntryValLocAsBackup); 1779 OpenRanges.insert(EntryValLocID, EntryValLocAsBackup); 1780 } 1781 1782 /// Calculate the liveness information for the given machine function and 1783 /// extend ranges across basic blocks. 1784 bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) { 1785 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); 1786 1787 if (!MF.getFunction().getSubprogram()) 1788 // VarLocBaseLDV will already have removed all DBG_VALUEs. 1789 return false; 1790 1791 // Skip functions from NoDebug compilation units. 1792 if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() == 1793 DICompileUnit::NoDebug) 1794 return false; 1795 1796 TRI = MF.getSubtarget().getRegisterInfo(); 1797 TII = MF.getSubtarget().getInstrInfo(); 1798 TFI = MF.getSubtarget().getFrameLowering(); 1799 TFI->getCalleeSaves(MF, CalleeSavedRegs); 1800 this->TPC = TPC; 1801 LS.initialize(MF); 1802 1803 bool Changed = false; 1804 bool OLChanged = false; 1805 bool MBBJoined = false; 1806 1807 VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors. 1808 OverlapMap OverlapFragments; // Map of overlapping variable fragments. 1809 OpenRangesSet OpenRanges(Alloc, OverlapFragments); 1810 // Ranges that are open until end of bb. 1811 VarLocInMBB OutLocs; // Ranges that exist beyond bb. 1812 VarLocInMBB InLocs; // Ranges that are incoming after joining. 1813 TransferMap Transfers; // DBG_VALUEs associated with transfers (such as 1814 // spills, copies and restores). 1815 1816 VarToFragments SeenFragments; 1817 1818 // Blocks which are artificial, i.e. blocks which exclusively contain 1819 // instructions without locations, or with line 0 locations. 1820 SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks; 1821 1822 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; 1823 DenseMap<MachineBasicBlock *, unsigned int> BBToOrder; 1824 std::priority_queue<unsigned int, std::vector<unsigned int>, 1825 std::greater<unsigned int>> 1826 Worklist; 1827 std::priority_queue<unsigned int, std::vector<unsigned int>, 1828 std::greater<unsigned int>> 1829 Pending; 1830 1831 // Set of register defines that are seen when traversing the entry block 1832 // looking for debug entry value candidates. 1833 DefinedRegsSet DefinedRegs; 1834 1835 // Only in the case of entry MBB collect DBG_VALUEs representing 1836 // function parameters in order to generate debug entry values for them. 1837 MachineBasicBlock &First_MBB = *(MF.begin()); 1838 for (auto &MI : First_MBB) { 1839 collectRegDefs(MI, DefinedRegs, TRI); 1840 if (MI.isDebugValue()) 1841 recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs); 1842 } 1843 1844 // Initialize per-block structures and scan for fragment overlaps. 1845 for (auto &MBB : MF) 1846 for (auto &MI : MBB) 1847 if (MI.isDebugValue()) 1848 accumulateFragmentMap(MI, SeenFragments, OverlapFragments); 1849 1850 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { 1851 if (const DebugLoc &DL = MI.getDebugLoc()) 1852 return DL.getLine() != 0; 1853 return false; 1854 }; 1855 for (auto &MBB : MF) 1856 if (none_of(MBB.instrs(), hasNonArtificialLocation)) 1857 ArtificialBlocks.insert(&MBB); 1858 1859 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, 1860 "OutLocs after initialization", dbgs())); 1861 1862 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 1863 unsigned int RPONumber = 0; 1864 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { 1865 OrderToBB[RPONumber] = *RI; 1866 BBToOrder[*RI] = RPONumber; 1867 Worklist.push(RPONumber); 1868 ++RPONumber; 1869 } 1870 1871 if (RPONumber > InputBBLimit) { 1872 unsigned NumInputDbgValues = 0; 1873 for (auto &MBB : MF) 1874 for (auto &MI : MBB) 1875 if (MI.isDebugValue()) 1876 ++NumInputDbgValues; 1877 if (NumInputDbgValues > InputDbgValueLimit) { 1878 LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName() 1879 << " has " << RPONumber << " basic blocks and " 1880 << NumInputDbgValues 1881 << " input DBG_VALUEs, exceeding limits.\n"); 1882 return false; 1883 } 1884 } 1885 1886 // This is a standard "union of predecessor outs" dataflow problem. 1887 // To solve it, we perform join() and process() using the two worklist method 1888 // until the ranges converge. 1889 // Ranges have converged when both worklists are empty. 1890 SmallPtrSet<const MachineBasicBlock *, 16> Visited; 1891 while (!Worklist.empty() || !Pending.empty()) { 1892 // We track what is on the pending worklist to avoid inserting the same 1893 // thing twice. We could avoid this with a custom priority queue, but this 1894 // is probably not worth it. 1895 SmallPtrSet<MachineBasicBlock *, 16> OnPending; 1896 LLVM_DEBUG(dbgs() << "Processing Worklist\n"); 1897 while (!Worklist.empty()) { 1898 MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; 1899 Worklist.pop(); 1900 MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited, 1901 ArtificialBlocks); 1902 MBBJoined |= Visited.insert(MBB).second; 1903 if (MBBJoined) { 1904 MBBJoined = false; 1905 Changed = true; 1906 // Now that we have started to extend ranges across BBs we need to 1907 // examine spill, copy and restore instructions to see whether they 1908 // operate with registers that correspond to user variables. 1909 // First load any pending inlocs. 1910 OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs); 1911 for (auto &MI : *MBB) 1912 process(MI, OpenRanges, VarLocIDs, Transfers); 1913 OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs); 1914 1915 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, 1916 "OutLocs after propagating", dbgs())); 1917 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, 1918 "InLocs after propagating", dbgs())); 1919 1920 if (OLChanged) { 1921 OLChanged = false; 1922 for (auto s : MBB->successors()) 1923 if (OnPending.insert(s).second) { 1924 Pending.push(BBToOrder[s]); 1925 } 1926 } 1927 } 1928 } 1929 Worklist.swap(Pending); 1930 // At this point, pending must be empty, since it was just the empty 1931 // worklist 1932 assert(Pending.empty() && "Pending should be empty"); 1933 } 1934 1935 // Add any DBG_VALUE instructions created by location transfers. 1936 for (auto &TR : Transfers) { 1937 assert(!TR.TransferInst->isTerminator() && 1938 "Cannot insert DBG_VALUE after terminator"); 1939 MachineBasicBlock *MBB = TR.TransferInst->getParent(); 1940 const VarLoc &VL = VarLocIDs[TR.LocationID]; 1941 MachineInstr *MI = VL.BuildDbgValue(MF); 1942 MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI); 1943 } 1944 Transfers.clear(); 1945 1946 // Deferred inlocs will not have had any DBG_VALUE insts created; do 1947 // that now. 1948 flushPendingLocs(InLocs, VarLocIDs); 1949 1950 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs())); 1951 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs())); 1952 return Changed; 1953 } 1954 1955 LDVImpl * 1956 llvm::makeVarLocBasedLiveDebugValues() 1957 { 1958 return new VarLocBasedLDV(); 1959 } 1960