1 //===--------------------- InterleavedAccessPass.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Interleaved Access pass, which identifies 11 // interleaved memory accesses and transforms them into target specific 12 // intrinsics. 13 // 14 // An interleaved load reads data from memory into several vectors, with 15 // DE-interleaving the data on a factor. An interleaved store writes several 16 // vectors to memory with RE-interleaving the data on a factor. 17 // 18 // As interleaved accesses are difficult to identified in CodeGen (mainly 19 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector 20 // IR), we identify and transform them to intrinsics in this pass so the 21 // intrinsics can be easily matched into target specific instructions later in 22 // CodeGen. 23 // 24 // E.g. An interleaved load (Factor = 2): 25 // %wide.vec = load <8 x i32>, <8 x i32>* %ptr 26 // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6> 27 // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7> 28 // 29 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2 30 // intrinsic in ARM backend. 31 // 32 // In X86, this can be further optimized into a set of target 33 // specific loads followed by an optimized sequence of shuffles. 34 // 35 // E.g. An interleaved store (Factor = 3): 36 // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, 37 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> 38 // store <12 x i32> %i.vec, <12 x i32>* %ptr 39 // 40 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3 41 // intrinsic in ARM backend. 42 // 43 // Similarly, a set of interleaved stores can be transformed into an optimized 44 // sequence of shuffles followed by a set of target specific stores for X86. 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/CodeGen/Passes.h" 48 #include "llvm/IR/Dominators.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetLowering.h" 54 #include "llvm/Target/TargetSubtargetInfo.h" 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "interleaved-access" 59 60 static cl::opt<bool> LowerInterleavedAccesses( 61 "lower-interleaved-accesses", 62 cl::desc("Enable lowering interleaved accesses to intrinsics"), 63 cl::init(true), cl::Hidden); 64 65 namespace { 66 67 class InterleavedAccess : public FunctionPass { 68 69 public: 70 static char ID; 71 InterleavedAccess(const TargetMachine *TM = nullptr) 72 : FunctionPass(ID), DT(nullptr), TM(TM), TLI(nullptr) { 73 initializeInterleavedAccessPass(*PassRegistry::getPassRegistry()); 74 } 75 76 StringRef getPassName() const override { return "Interleaved Access Pass"; } 77 78 bool runOnFunction(Function &F) override; 79 80 void getAnalysisUsage(AnalysisUsage &AU) const override { 81 AU.addRequired<DominatorTreeWrapperPass>(); 82 AU.addPreserved<DominatorTreeWrapperPass>(); 83 } 84 85 private: 86 DominatorTree *DT; 87 const TargetMachine *TM; 88 const TargetLowering *TLI; 89 90 /// The maximum supported interleave factor. 91 unsigned MaxFactor; 92 93 /// \brief Transform an interleaved load into target specific intrinsics. 94 bool lowerInterleavedLoad(LoadInst *LI, 95 SmallVector<Instruction *, 32> &DeadInsts); 96 97 /// \brief Transform an interleaved store into target specific intrinsics. 98 bool lowerInterleavedStore(StoreInst *SI, 99 SmallVector<Instruction *, 32> &DeadInsts); 100 101 /// \brief Returns true if the uses of an interleaved load by the 102 /// extractelement instructions in \p Extracts can be replaced by uses of the 103 /// shufflevector instructions in \p Shuffles instead. If so, the necessary 104 /// replacements are also performed. 105 bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts, 106 ArrayRef<ShuffleVectorInst *> Shuffles); 107 }; 108 } // end anonymous namespace. 109 110 char InterleavedAccess::ID = 0; 111 INITIALIZE_TM_PASS_BEGIN( 112 InterleavedAccess, "interleaved-access", 113 "Lower interleaved memory accesses to target specific intrinsics", false, 114 false) 115 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 116 INITIALIZE_TM_PASS_END( 117 InterleavedAccess, "interleaved-access", 118 "Lower interleaved memory accesses to target specific intrinsics", false, 119 false) 120 121 FunctionPass *llvm::createInterleavedAccessPass(const TargetMachine *TM) { 122 return new InterleavedAccess(TM); 123 } 124 125 /// \brief Check if the mask is a DE-interleave mask of the given factor 126 /// \p Factor like: 127 /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor> 128 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor, 129 unsigned &Index) { 130 // Check all potential start indices from 0 to (Factor - 1). 131 for (Index = 0; Index < Factor; Index++) { 132 unsigned i = 0; 133 134 // Check that elements are in ascending order by Factor. Ignore undef 135 // elements. 136 for (; i < Mask.size(); i++) 137 if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor) 138 break; 139 140 if (i == Mask.size()) 141 return true; 142 } 143 144 return false; 145 } 146 147 /// \brief Check if the mask is a DE-interleave mask for an interleaved load. 148 /// 149 /// E.g. DE-interleave masks (Factor = 2) could be: 150 /// <0, 2, 4, 6> (mask of index 0 to extract even elements) 151 /// <1, 3, 5, 7> (mask of index 1 to extract odd elements) 152 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, 153 unsigned &Index, unsigned MaxFactor) { 154 if (Mask.size() < 2) 155 return false; 156 157 // Check potential Factors. 158 for (Factor = 2; Factor <= MaxFactor; Factor++) 159 if (isDeInterleaveMaskOfFactor(Mask, Factor, Index)) 160 return true; 161 162 return false; 163 } 164 165 /// \brief Check if the mask is RE-interleave mask for an interleaved store. 166 /// 167 /// I.e. <0, NumSubElts, ... , NumSubElts*(Factor - 1), 1, NumSubElts + 1, ...> 168 /// 169 /// E.g. The RE-interleave mask (Factor = 2) could be: 170 /// <0, 4, 1, 5, 2, 6, 3, 7> 171 static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, 172 unsigned MaxFactor) { 173 unsigned NumElts = Mask.size(); 174 if (NumElts < 4) 175 return false; 176 177 // Check potential Factors. 178 for (Factor = 2; Factor <= MaxFactor; Factor++) { 179 if (NumElts % Factor) 180 continue; 181 182 unsigned NumSubElts = NumElts / Factor; 183 if (!isPowerOf2_32(NumSubElts)) 184 continue; 185 186 // Check whether each element matchs the RE-interleaved rule. Ignore undef 187 // elements. 188 unsigned i = 0; 189 for (; i < NumElts; i++) 190 if (Mask[i] >= 0 && 191 static_cast<unsigned>(Mask[i]) != 192 (i % Factor) * NumSubElts + i / Factor) 193 break; 194 195 // Find a RE-interleaved mask of current factor. 196 if (i == NumElts) 197 return true; 198 } 199 200 return false; 201 } 202 203 bool InterleavedAccess::lowerInterleavedLoad( 204 LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) { 205 if (!LI->isSimple()) 206 return false; 207 208 SmallVector<ShuffleVectorInst *, 4> Shuffles; 209 SmallVector<ExtractElementInst *, 4> Extracts; 210 211 // Check if all users of this load are shufflevectors. If we encounter any 212 // users that are extractelement instructions, we save them to later check if 213 // they can be modifed to extract from one of the shufflevectors instead of 214 // the load. 215 for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) { 216 auto *Extract = dyn_cast<ExtractElementInst>(*UI); 217 if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) { 218 Extracts.push_back(Extract); 219 continue; 220 } 221 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI); 222 if (!SVI || !isa<UndefValue>(SVI->getOperand(1))) 223 return false; 224 225 Shuffles.push_back(SVI); 226 } 227 228 if (Shuffles.empty()) 229 return false; 230 231 unsigned Factor, Index; 232 233 // Check if the first shufflevector is DE-interleave shuffle. 234 if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index, 235 MaxFactor)) 236 return false; 237 238 // Holds the corresponding index for each DE-interleave shuffle. 239 SmallVector<unsigned, 4> Indices; 240 Indices.push_back(Index); 241 242 Type *VecTy = Shuffles[0]->getType(); 243 244 // Check if other shufflevectors are also DE-interleaved of the same type 245 // and factor as the first shufflevector. 246 for (unsigned i = 1; i < Shuffles.size(); i++) { 247 if (Shuffles[i]->getType() != VecTy) 248 return false; 249 250 if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor, 251 Index)) 252 return false; 253 254 Indices.push_back(Index); 255 } 256 257 // Try and modify users of the load that are extractelement instructions to 258 // use the shufflevector instructions instead of the load. 259 if (!tryReplaceExtracts(Extracts, Shuffles)) 260 return false; 261 262 DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n"); 263 264 // Try to create target specific intrinsics to replace the load and shuffles. 265 if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) 266 return false; 267 268 for (auto SVI : Shuffles) 269 DeadInsts.push_back(SVI); 270 271 DeadInsts.push_back(LI); 272 return true; 273 } 274 275 bool InterleavedAccess::tryReplaceExtracts( 276 ArrayRef<ExtractElementInst *> Extracts, 277 ArrayRef<ShuffleVectorInst *> Shuffles) { 278 279 // If there aren't any extractelement instructions to modify, there's nothing 280 // to do. 281 if (Extracts.empty()) 282 return true; 283 284 // Maps extractelement instructions to vector-index pairs. The extractlement 285 // instructions will be modified to use the new vector and index operands. 286 DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap; 287 288 for (auto *Extract : Extracts) { 289 290 // The vector index that is extracted. 291 auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand()); 292 auto Index = IndexOperand->getSExtValue(); 293 294 // Look for a suitable shufflevector instruction. The goal is to modify the 295 // extractelement instruction (which uses an interleaved load) to use one 296 // of the shufflevector instructions instead of the load. 297 for (auto *Shuffle : Shuffles) { 298 299 // If the shufflevector instruction doesn't dominate the extract, we 300 // can't create a use of it. 301 if (!DT->dominates(Shuffle, Extract)) 302 continue; 303 304 // Inspect the indices of the shufflevector instruction. If the shuffle 305 // selects the same index that is extracted, we can modify the 306 // extractelement instruction. 307 SmallVector<int, 4> Indices; 308 Shuffle->getShuffleMask(Indices); 309 for (unsigned I = 0; I < Indices.size(); ++I) 310 if (Indices[I] == Index) { 311 assert(Extract->getOperand(0) == Shuffle->getOperand(0) && 312 "Vector operations do not match"); 313 ReplacementMap[Extract] = std::make_pair(Shuffle, I); 314 break; 315 } 316 317 // If we found a suitable shufflevector instruction, stop looking. 318 if (ReplacementMap.count(Extract)) 319 break; 320 } 321 322 // If we did not find a suitable shufflevector instruction, the 323 // extractelement instruction cannot be modified, so we must give up. 324 if (!ReplacementMap.count(Extract)) 325 return false; 326 } 327 328 // Finally, perform the replacements. 329 IRBuilder<> Builder(Extracts[0]->getContext()); 330 for (auto &Replacement : ReplacementMap) { 331 auto *Extract = Replacement.first; 332 auto *Vector = Replacement.second.first; 333 auto Index = Replacement.second.second; 334 Builder.SetInsertPoint(Extract); 335 Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index)); 336 Extract->eraseFromParent(); 337 } 338 339 return true; 340 } 341 342 bool InterleavedAccess::lowerInterleavedStore( 343 StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) { 344 if (!SI->isSimple()) 345 return false; 346 347 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand()); 348 if (!SVI || !SVI->hasOneUse()) 349 return false; 350 351 // Check if the shufflevector is RE-interleave shuffle. 352 unsigned Factor; 353 if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor)) 354 return false; 355 356 DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n"); 357 358 // Try to create target specific intrinsics to replace the store and shuffle. 359 if (!TLI->lowerInterleavedStore(SI, SVI, Factor)) 360 return false; 361 362 // Already have a new target specific interleaved store. Erase the old store. 363 DeadInsts.push_back(SI); 364 DeadInsts.push_back(SVI); 365 return true; 366 } 367 368 bool InterleavedAccess::runOnFunction(Function &F) { 369 if (!TM || !LowerInterleavedAccesses) 370 return false; 371 372 DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n"); 373 374 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 375 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 376 MaxFactor = TLI->getMaxSupportedInterleaveFactor(); 377 378 // Holds dead instructions that will be erased later. 379 SmallVector<Instruction *, 32> DeadInsts; 380 bool Changed = false; 381 382 for (auto &I : instructions(F)) { 383 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) 384 Changed |= lowerInterleavedLoad(LI, DeadInsts); 385 386 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 387 Changed |= lowerInterleavedStore(SI, DeadInsts); 388 } 389 390 for (auto I : DeadInsts) 391 I->eraseFromParent(); 392 393 return Changed; 394 } 395