1 //===- InterleavedAccessPass.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Interleaved Access pass, which identifies 11 // interleaved memory accesses and transforms them into target specific 12 // intrinsics. 13 // 14 // An interleaved load reads data from memory into several vectors, with 15 // DE-interleaving the data on a factor. An interleaved store writes several 16 // vectors to memory with RE-interleaving the data on a factor. 17 // 18 // As interleaved accesses are difficult to identified in CodeGen (mainly 19 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector 20 // IR), we identify and transform them to intrinsics in this pass so the 21 // intrinsics can be easily matched into target specific instructions later in 22 // CodeGen. 23 // 24 // E.g. An interleaved load (Factor = 2): 25 // %wide.vec = load <8 x i32>, <8 x i32>* %ptr 26 // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6> 27 // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7> 28 // 29 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2 30 // intrinsic in ARM backend. 31 // 32 // In X86, this can be further optimized into a set of target 33 // specific loads followed by an optimized sequence of shuffles. 34 // 35 // E.g. An interleaved store (Factor = 3): 36 // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, 37 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> 38 // store <12 x i32> %i.vec, <12 x i32>* %ptr 39 // 40 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3 41 // intrinsic in ARM backend. 42 // 43 // Similarly, a set of interleaved stores can be transformed into an optimized 44 // sequence of shuffles followed by a set of target specific stores for X86. 45 // 46 //===----------------------------------------------------------------------===// 47 48 #include "llvm/ADT/ArrayRef.h" 49 #include "llvm/ADT/DenseMap.h" 50 #include "llvm/ADT/SmallVector.h" 51 #include "llvm/CodeGen/TargetLowering.h" 52 #include "llvm/CodeGen/TargetPassConfig.h" 53 #include "llvm/CodeGen/TargetSubtargetInfo.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InstIterator.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/Pass.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include <cassert> 70 #include <utility> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "interleaved-access" 75 76 static cl::opt<bool> LowerInterleavedAccesses( 77 "lower-interleaved-accesses", 78 cl::desc("Enable lowering interleaved accesses to intrinsics"), 79 cl::init(true), cl::Hidden); 80 81 namespace { 82 83 class InterleavedAccess : public FunctionPass { 84 public: 85 static char ID; 86 87 InterleavedAccess() : FunctionPass(ID) { 88 initializeInterleavedAccessPass(*PassRegistry::getPassRegistry()); 89 } 90 91 StringRef getPassName() const override { return "Interleaved Access Pass"; } 92 93 bool runOnFunction(Function &F) override; 94 95 void getAnalysisUsage(AnalysisUsage &AU) const override { 96 AU.addRequired<DominatorTreeWrapperPass>(); 97 AU.addPreserved<DominatorTreeWrapperPass>(); 98 } 99 100 private: 101 DominatorTree *DT = nullptr; 102 const TargetLowering *TLI = nullptr; 103 104 /// The maximum supported interleave factor. 105 unsigned MaxFactor; 106 107 /// Transform an interleaved load into target specific intrinsics. 108 bool lowerInterleavedLoad(LoadInst *LI, 109 SmallVector<Instruction *, 32> &DeadInsts); 110 111 /// Transform an interleaved store into target specific intrinsics. 112 bool lowerInterleavedStore(StoreInst *SI, 113 SmallVector<Instruction *, 32> &DeadInsts); 114 115 /// Returns true if the uses of an interleaved load by the 116 /// extractelement instructions in \p Extracts can be replaced by uses of the 117 /// shufflevector instructions in \p Shuffles instead. If so, the necessary 118 /// replacements are also performed. 119 bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts, 120 ArrayRef<ShuffleVectorInst *> Shuffles); 121 }; 122 123 } // end anonymous namespace. 124 125 char InterleavedAccess::ID = 0; 126 127 INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE, 128 "Lower interleaved memory accesses to target specific intrinsics", false, 129 false) 130 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 131 INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE, 132 "Lower interleaved memory accesses to target specific intrinsics", false, 133 false) 134 135 FunctionPass *llvm::createInterleavedAccessPass() { 136 return new InterleavedAccess(); 137 } 138 139 /// Check if the mask is a DE-interleave mask of the given factor 140 /// \p Factor like: 141 /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor> 142 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor, 143 unsigned &Index) { 144 // Check all potential start indices from 0 to (Factor - 1). 145 for (Index = 0; Index < Factor; Index++) { 146 unsigned i = 0; 147 148 // Check that elements are in ascending order by Factor. Ignore undef 149 // elements. 150 for (; i < Mask.size(); i++) 151 if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor) 152 break; 153 154 if (i == Mask.size()) 155 return true; 156 } 157 158 return false; 159 } 160 161 /// Check if the mask is a DE-interleave mask for an interleaved load. 162 /// 163 /// E.g. DE-interleave masks (Factor = 2) could be: 164 /// <0, 2, 4, 6> (mask of index 0 to extract even elements) 165 /// <1, 3, 5, 7> (mask of index 1 to extract odd elements) 166 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, 167 unsigned &Index, unsigned MaxFactor) { 168 if (Mask.size() < 2) 169 return false; 170 171 // Check potential Factors. 172 for (Factor = 2; Factor <= MaxFactor; Factor++) 173 if (isDeInterleaveMaskOfFactor(Mask, Factor, Index)) 174 return true; 175 176 return false; 177 } 178 179 /// Check if the mask can be used in an interleaved store. 180 // 181 /// It checks for a more general pattern than the RE-interleave mask. 182 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...> 183 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35> 184 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> 185 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5> 186 /// 187 /// The particular case of an RE-interleave mask is: 188 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...> 189 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7> 190 static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, 191 unsigned MaxFactor, unsigned OpNumElts) { 192 unsigned NumElts = Mask.size(); 193 if (NumElts < 4) 194 return false; 195 196 // Check potential Factors. 197 for (Factor = 2; Factor <= MaxFactor; Factor++) { 198 if (NumElts % Factor) 199 continue; 200 201 unsigned LaneLen = NumElts / Factor; 202 if (!isPowerOf2_32(LaneLen)) 203 continue; 204 205 // Check whether each element matches the general interleaved rule. 206 // Ignore undef elements, as long as the defined elements match the rule. 207 // Outer loop processes all factors (x, y, z in the above example) 208 unsigned I = 0, J; 209 for (; I < Factor; I++) { 210 unsigned SavedLaneValue; 211 unsigned SavedNoUndefs = 0; 212 213 // Inner loop processes consecutive accesses (x, x+1... in the example) 214 for (J = 0; J < LaneLen - 1; J++) { 215 // Lane computes x's position in the Mask 216 unsigned Lane = J * Factor + I; 217 unsigned NextLane = Lane + Factor; 218 int LaneValue = Mask[Lane]; 219 int NextLaneValue = Mask[NextLane]; 220 221 // If both are defined, values must be sequential 222 if (LaneValue >= 0 && NextLaneValue >= 0 && 223 LaneValue + 1 != NextLaneValue) 224 break; 225 226 // If the next value is undef, save the current one as reference 227 if (LaneValue >= 0 && NextLaneValue < 0) { 228 SavedLaneValue = LaneValue; 229 SavedNoUndefs = 1; 230 } 231 232 // Undefs are allowed, but defined elements must still be consecutive: 233 // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, .... 234 // Verify this by storing the last non-undef followed by an undef 235 // Check that following non-undef masks are incremented with the 236 // corresponding distance. 237 if (SavedNoUndefs > 0 && LaneValue < 0) { 238 SavedNoUndefs++; 239 if (NextLaneValue >= 0 && 240 SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue) 241 break; 242 } 243 } 244 245 if (J < LaneLen - 1) 246 break; 247 248 int StartMask = 0; 249 if (Mask[I] >= 0) { 250 // Check that the start of the I range (J=0) is greater than 0 251 StartMask = Mask[I]; 252 } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) { 253 // StartMask defined by the last value in lane 254 StartMask = Mask[(LaneLen - 1) * Factor + I] - J; 255 } else if (SavedNoUndefs > 0) { 256 // StartMask defined by some non-zero value in the j loop 257 StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs); 258 } 259 // else StartMask remains set to 0, i.e. all elements are undefs 260 261 if (StartMask < 0) 262 break; 263 // We must stay within the vectors; This case can happen with undefs. 264 if (StartMask + LaneLen > OpNumElts*2) 265 break; 266 } 267 268 // Found an interleaved mask of current factor. 269 if (I == Factor) 270 return true; 271 } 272 273 return false; 274 } 275 276 bool InterleavedAccess::lowerInterleavedLoad( 277 LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) { 278 if (!LI->isSimple()) 279 return false; 280 281 SmallVector<ShuffleVectorInst *, 4> Shuffles; 282 SmallVector<ExtractElementInst *, 4> Extracts; 283 284 // Check if all users of this load are shufflevectors. If we encounter any 285 // users that are extractelement instructions, we save them to later check if 286 // they can be modifed to extract from one of the shufflevectors instead of 287 // the load. 288 for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) { 289 auto *Extract = dyn_cast<ExtractElementInst>(*UI); 290 if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) { 291 Extracts.push_back(Extract); 292 continue; 293 } 294 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI); 295 if (!SVI || !isa<UndefValue>(SVI->getOperand(1))) 296 return false; 297 298 Shuffles.push_back(SVI); 299 } 300 301 if (Shuffles.empty()) 302 return false; 303 304 unsigned Factor, Index; 305 306 // Check if the first shufflevector is DE-interleave shuffle. 307 if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index, 308 MaxFactor)) 309 return false; 310 311 // Holds the corresponding index for each DE-interleave shuffle. 312 SmallVector<unsigned, 4> Indices; 313 Indices.push_back(Index); 314 315 Type *VecTy = Shuffles[0]->getType(); 316 317 // Check if other shufflevectors are also DE-interleaved of the same type 318 // and factor as the first shufflevector. 319 for (unsigned i = 1; i < Shuffles.size(); i++) { 320 if (Shuffles[i]->getType() != VecTy) 321 return false; 322 323 if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor, 324 Index)) 325 return false; 326 327 Indices.push_back(Index); 328 } 329 330 // Try and modify users of the load that are extractelement instructions to 331 // use the shufflevector instructions instead of the load. 332 if (!tryReplaceExtracts(Extracts, Shuffles)) 333 return false; 334 335 LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n"); 336 337 // Try to create target specific intrinsics to replace the load and shuffles. 338 if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) 339 return false; 340 341 for (auto SVI : Shuffles) 342 DeadInsts.push_back(SVI); 343 344 DeadInsts.push_back(LI); 345 return true; 346 } 347 348 bool InterleavedAccess::tryReplaceExtracts( 349 ArrayRef<ExtractElementInst *> Extracts, 350 ArrayRef<ShuffleVectorInst *> Shuffles) { 351 // If there aren't any extractelement instructions to modify, there's nothing 352 // to do. 353 if (Extracts.empty()) 354 return true; 355 356 // Maps extractelement instructions to vector-index pairs. The extractlement 357 // instructions will be modified to use the new vector and index operands. 358 DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap; 359 360 for (auto *Extract : Extracts) { 361 // The vector index that is extracted. 362 auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand()); 363 auto Index = IndexOperand->getSExtValue(); 364 365 // Look for a suitable shufflevector instruction. The goal is to modify the 366 // extractelement instruction (which uses an interleaved load) to use one 367 // of the shufflevector instructions instead of the load. 368 for (auto *Shuffle : Shuffles) { 369 // If the shufflevector instruction doesn't dominate the extract, we 370 // can't create a use of it. 371 if (!DT->dominates(Shuffle, Extract)) 372 continue; 373 374 // Inspect the indices of the shufflevector instruction. If the shuffle 375 // selects the same index that is extracted, we can modify the 376 // extractelement instruction. 377 SmallVector<int, 4> Indices; 378 Shuffle->getShuffleMask(Indices); 379 for (unsigned I = 0; I < Indices.size(); ++I) 380 if (Indices[I] == Index) { 381 assert(Extract->getOperand(0) == Shuffle->getOperand(0) && 382 "Vector operations do not match"); 383 ReplacementMap[Extract] = std::make_pair(Shuffle, I); 384 break; 385 } 386 387 // If we found a suitable shufflevector instruction, stop looking. 388 if (ReplacementMap.count(Extract)) 389 break; 390 } 391 392 // If we did not find a suitable shufflevector instruction, the 393 // extractelement instruction cannot be modified, so we must give up. 394 if (!ReplacementMap.count(Extract)) 395 return false; 396 } 397 398 // Finally, perform the replacements. 399 IRBuilder<> Builder(Extracts[0]->getContext()); 400 for (auto &Replacement : ReplacementMap) { 401 auto *Extract = Replacement.first; 402 auto *Vector = Replacement.second.first; 403 auto Index = Replacement.second.second; 404 Builder.SetInsertPoint(Extract); 405 Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index)); 406 Extract->eraseFromParent(); 407 } 408 409 return true; 410 } 411 412 bool InterleavedAccess::lowerInterleavedStore( 413 StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) { 414 if (!SI->isSimple()) 415 return false; 416 417 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand()); 418 if (!SVI || !SVI->hasOneUse()) 419 return false; 420 421 // Check if the shufflevector is RE-interleave shuffle. 422 unsigned Factor; 423 unsigned OpNumElts = SVI->getOperand(0)->getType()->getVectorNumElements(); 424 if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts)) 425 return false; 426 427 LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n"); 428 429 // Try to create target specific intrinsics to replace the store and shuffle. 430 if (!TLI->lowerInterleavedStore(SI, SVI, Factor)) 431 return false; 432 433 // Already have a new target specific interleaved store. Erase the old store. 434 DeadInsts.push_back(SI); 435 DeadInsts.push_back(SVI); 436 return true; 437 } 438 439 bool InterleavedAccess::runOnFunction(Function &F) { 440 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 441 if (!TPC || !LowerInterleavedAccesses) 442 return false; 443 444 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n"); 445 446 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 447 auto &TM = TPC->getTM<TargetMachine>(); 448 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 449 MaxFactor = TLI->getMaxSupportedInterleaveFactor(); 450 451 // Holds dead instructions that will be erased later. 452 SmallVector<Instruction *, 32> DeadInsts; 453 bool Changed = false; 454 455 for (auto &I : instructions(F)) { 456 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) 457 Changed |= lowerInterleavedLoad(LI, DeadInsts); 458 459 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 460 Changed |= lowerInterleavedStore(SI, DeadInsts); 461 } 462 463 for (auto I : DeadInsts) 464 I->eraseFromParent(); 465 466 return Changed; 467 } 468