1 //===- InterleavedAccessPass.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Interleaved Access pass, which identifies
10 // interleaved memory accesses and transforms them into target specific
11 // intrinsics.
12 //
13 // An interleaved load reads data from memory into several vectors, with
14 // DE-interleaving the data on a factor. An interleaved store writes several
15 // vectors to memory with RE-interleaving the data on a factor.
16 //
17 // As interleaved accesses are difficult to identified in CodeGen (mainly
18 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
19 // IR), we identify and transform them to intrinsics in this pass so the
20 // intrinsics can be easily matched into target specific instructions later in
21 // CodeGen.
22 //
23 // E.g. An interleaved load (Factor = 2):
24 //        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
25 //        %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
26 //        %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
27 //
28 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
29 // intrinsic in ARM backend.
30 //
31 // In X86, this can be further optimized into a set of target
32 // specific loads followed by an optimized sequence of shuffles.
33 //
34 // E.g. An interleaved store (Factor = 3):
35 //        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
36 //                                    <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
37 //        store <12 x i32> %i.vec, <12 x i32>* %ptr
38 //
39 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
40 // intrinsic in ARM backend.
41 //
42 // Similarly, a set of interleaved stores can be transformed into an optimized
43 // sequence of shuffles followed by a set of target specific stores for X86.
44 //
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/CodeGen/TargetLowering.h"
51 #include "llvm/CodeGen/TargetPassConfig.h"
52 #include "llvm/CodeGen/TargetSubtargetInfo.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstIterator.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include <cassert>
71 #include <utility>
72 
73 using namespace llvm;
74 
75 #define DEBUG_TYPE "interleaved-access"
76 
77 static cl::opt<bool> LowerInterleavedAccesses(
78     "lower-interleaved-accesses",
79     cl::desc("Enable lowering interleaved accesses to intrinsics"),
80     cl::init(true), cl::Hidden);
81 
82 namespace {
83 
84 class InterleavedAccess : public FunctionPass {
85 public:
86   static char ID;
87 
88   InterleavedAccess() : FunctionPass(ID) {
89     initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
90   }
91 
92   StringRef getPassName() const override { return "Interleaved Access Pass"; }
93 
94   bool runOnFunction(Function &F) override;
95 
96   void getAnalysisUsage(AnalysisUsage &AU) const override {
97     AU.addRequired<DominatorTreeWrapperPass>();
98     AU.addPreserved<DominatorTreeWrapperPass>();
99   }
100 
101 private:
102   DominatorTree *DT = nullptr;
103   const TargetLowering *TLI = nullptr;
104 
105   /// The maximum supported interleave factor.
106   unsigned MaxFactor;
107 
108   /// Transform an interleaved load into target specific intrinsics.
109   bool lowerInterleavedLoad(LoadInst *LI,
110                             SmallVector<Instruction *, 32> &DeadInsts);
111 
112   /// Transform an interleaved store into target specific intrinsics.
113   bool lowerInterleavedStore(StoreInst *SI,
114                              SmallVector<Instruction *, 32> &DeadInsts);
115 
116   /// Returns true if the uses of an interleaved load by the
117   /// extractelement instructions in \p Extracts can be replaced by uses of the
118   /// shufflevector instructions in \p Shuffles instead. If so, the necessary
119   /// replacements are also performed.
120   bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
121                           ArrayRef<ShuffleVectorInst *> Shuffles);
122 
123   /// Given a number of shuffles of the form shuffle(binop(x,y)), convert them
124   /// to binop(shuffle(x), shuffle(y)) to allow the formation of an
125   /// interleaving load. Any newly created shuffles that operate on \p LI will
126   /// be added to \p Shuffles.
127   bool tryReplaceBinOpShuffles(ArrayRef<ShuffleVectorInst *> BinOpShuffles,
128                                SmallVectorImpl<ShuffleVectorInst *> &Shuffles,
129                                LoadInst *LI);
130 };
131 
132 } // end anonymous namespace.
133 
134 char InterleavedAccess::ID = 0;
135 
136 INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE,
137     "Lower interleaved memory accesses to target specific intrinsics", false,
138     false)
139 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
140 INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE,
141     "Lower interleaved memory accesses to target specific intrinsics", false,
142     false)
143 
144 FunctionPass *llvm::createInterleavedAccessPass() {
145   return new InterleavedAccess();
146 }
147 
148 /// Check if the mask is a DE-interleave mask of the given factor
149 /// \p Factor like:
150 ///     <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
151 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
152                                        unsigned &Index) {
153   // Check all potential start indices from 0 to (Factor - 1).
154   for (Index = 0; Index < Factor; Index++) {
155     unsigned i = 0;
156 
157     // Check that elements are in ascending order by Factor. Ignore undef
158     // elements.
159     for (; i < Mask.size(); i++)
160       if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
161         break;
162 
163     if (i == Mask.size())
164       return true;
165   }
166 
167   return false;
168 }
169 
170 /// Check if the mask is a DE-interleave mask for an interleaved load.
171 ///
172 /// E.g. DE-interleave masks (Factor = 2) could be:
173 ///     <0, 2, 4, 6>    (mask of index 0 to extract even elements)
174 ///     <1, 3, 5, 7>    (mask of index 1 to extract odd elements)
175 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
176                                unsigned &Index, unsigned MaxFactor,
177                                unsigned NumLoadElements) {
178   if (Mask.size() < 2)
179     return false;
180 
181   // Check potential Factors.
182   for (Factor = 2; Factor <= MaxFactor; Factor++) {
183     // Make sure we don't produce a load wider than the input load.
184     if (Mask.size() * Factor > NumLoadElements)
185       return false;
186     if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
187       return true;
188   }
189 
190   return false;
191 }
192 
193 /// Check if the mask can be used in an interleaved store.
194 //
195 /// It checks for a more general pattern than the RE-interleave mask.
196 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
197 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
198 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
199 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
200 ///
201 /// The particular case of an RE-interleave mask is:
202 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
203 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
204 static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
205                                unsigned MaxFactor, unsigned OpNumElts) {
206   unsigned NumElts = Mask.size();
207   if (NumElts < 4)
208     return false;
209 
210   // Check potential Factors.
211   for (Factor = 2; Factor <= MaxFactor; Factor++) {
212     if (NumElts % Factor)
213       continue;
214 
215     unsigned LaneLen = NumElts / Factor;
216     if (!isPowerOf2_32(LaneLen))
217       continue;
218 
219     // Check whether each element matches the general interleaved rule.
220     // Ignore undef elements, as long as the defined elements match the rule.
221     // Outer loop processes all factors (x, y, z in the above example)
222     unsigned I = 0, J;
223     for (; I < Factor; I++) {
224       unsigned SavedLaneValue;
225       unsigned SavedNoUndefs = 0;
226 
227       // Inner loop processes consecutive accesses (x, x+1... in the example)
228       for (J = 0; J < LaneLen - 1; J++) {
229         // Lane computes x's position in the Mask
230         unsigned Lane = J * Factor + I;
231         unsigned NextLane = Lane + Factor;
232         int LaneValue = Mask[Lane];
233         int NextLaneValue = Mask[NextLane];
234 
235         // If both are defined, values must be sequential
236         if (LaneValue >= 0 && NextLaneValue >= 0 &&
237             LaneValue + 1 != NextLaneValue)
238           break;
239 
240         // If the next value is undef, save the current one as reference
241         if (LaneValue >= 0 && NextLaneValue < 0) {
242           SavedLaneValue = LaneValue;
243           SavedNoUndefs = 1;
244         }
245 
246         // Undefs are allowed, but defined elements must still be consecutive:
247         // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
248         // Verify this by storing the last non-undef followed by an undef
249         // Check that following non-undef masks are incremented with the
250         // corresponding distance.
251         if (SavedNoUndefs > 0 && LaneValue < 0) {
252           SavedNoUndefs++;
253           if (NextLaneValue >= 0 &&
254               SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
255             break;
256         }
257       }
258 
259       if (J < LaneLen - 1)
260         break;
261 
262       int StartMask = 0;
263       if (Mask[I] >= 0) {
264         // Check that the start of the I range (J=0) is greater than 0
265         StartMask = Mask[I];
266       } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
267         // StartMask defined by the last value in lane
268         StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
269       } else if (SavedNoUndefs > 0) {
270         // StartMask defined by some non-zero value in the j loop
271         StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
272       }
273       // else StartMask remains set to 0, i.e. all elements are undefs
274 
275       if (StartMask < 0)
276         break;
277       // We must stay within the vectors; This case can happen with undefs.
278       if (StartMask + LaneLen > OpNumElts*2)
279         break;
280     }
281 
282     // Found an interleaved mask of current factor.
283     if (I == Factor)
284       return true;
285   }
286 
287   return false;
288 }
289 
290 bool InterleavedAccess::lowerInterleavedLoad(
291     LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
292   if (!LI->isSimple() || isa<ScalableVectorType>(LI->getType()))
293     return false;
294 
295   // Check if all users of this load are shufflevectors. If we encounter any
296   // users that are extractelement instructions or binary operators, we save
297   // them to later check if they can be modified to extract from one of the
298   // shufflevectors instead of the load.
299 
300   SmallVector<ShuffleVectorInst *, 4> Shuffles;
301   SmallVector<ExtractElementInst *, 4> Extracts;
302   // BinOpShuffles need to be handled a single time in case both operands of the
303   // binop are the same load.
304   SmallSetVector<ShuffleVectorInst *, 4> BinOpShuffles;
305 
306   for (auto *User : LI->users()) {
307     auto *Extract = dyn_cast<ExtractElementInst>(User);
308     if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
309       Extracts.push_back(Extract);
310       continue;
311     }
312     auto *BI = dyn_cast<BinaryOperator>(User);
313     if (BI && BI->hasOneUse()) {
314       if (auto *SVI = dyn_cast<ShuffleVectorInst>(*BI->user_begin())) {
315         BinOpShuffles.insert(SVI);
316         continue;
317       }
318     }
319     auto *SVI = dyn_cast<ShuffleVectorInst>(User);
320     if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
321       return false;
322 
323     Shuffles.push_back(SVI);
324   }
325 
326   if (Shuffles.empty() && BinOpShuffles.empty())
327     return false;
328 
329   unsigned Factor, Index;
330 
331   unsigned NumLoadElements =
332       cast<FixedVectorType>(LI->getType())->getNumElements();
333   auto *FirstSVI = Shuffles.size() > 0 ? Shuffles[0] : BinOpShuffles[0];
334   // Check if the first shufflevector is DE-interleave shuffle.
335   if (!isDeInterleaveMask(FirstSVI->getShuffleMask(), Factor, Index, MaxFactor,
336                           NumLoadElements))
337     return false;
338 
339   // Holds the corresponding index for each DE-interleave shuffle.
340   SmallVector<unsigned, 4> Indices;
341 
342   Type *VecTy = FirstSVI->getType();
343 
344   // Check if other shufflevectors are also DE-interleaved of the same type
345   // and factor as the first shufflevector.
346   for (auto *Shuffle : Shuffles) {
347     if (Shuffle->getType() != VecTy)
348       return false;
349     if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor,
350                                     Index))
351       return false;
352 
353     Indices.push_back(Index);
354   }
355   for (auto *Shuffle : BinOpShuffles) {
356     if (Shuffle->getType() != VecTy)
357       return false;
358     if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor,
359                                     Index))
360       return false;
361 
362     if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(0) == LI)
363       Indices.push_back(Index);
364     if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(1) == LI)
365       Indices.push_back(Index);
366   }
367 
368   // Try and modify users of the load that are extractelement instructions to
369   // use the shufflevector instructions instead of the load.
370   if (!tryReplaceExtracts(Extracts, Shuffles))
371     return false;
372   if (!tryReplaceBinOpShuffles(BinOpShuffles.getArrayRef(), Shuffles, LI))
373     return false;
374 
375   LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
376 
377   // Try to create target specific intrinsics to replace the load and shuffles.
378   if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor))
379     return false;
380 
381   for (auto SVI : Shuffles)
382     DeadInsts.push_back(SVI);
383 
384   DeadInsts.push_back(LI);
385   return true;
386 }
387 
388 bool InterleavedAccess::tryReplaceBinOpShuffles(
389     ArrayRef<ShuffleVectorInst *> BinOpShuffles,
390     SmallVectorImpl<ShuffleVectorInst *> &Shuffles, LoadInst *LI) {
391   for (auto *SVI : BinOpShuffles) {
392     BinaryOperator *BI = cast<BinaryOperator>(SVI->getOperand(0));
393     ArrayRef<int> Mask = SVI->getShuffleMask();
394 
395     auto *NewSVI1 = new ShuffleVectorInst(
396         BI->getOperand(0), UndefValue::get(BI->getOperand(0)->getType()), Mask,
397         SVI->getName(), SVI);
398     auto *NewSVI2 = new ShuffleVectorInst(
399         BI->getOperand(1), UndefValue::get(BI->getOperand(1)->getType()), Mask,
400         SVI->getName(), SVI);
401     Value *NewBI = BinaryOperator::Create(BI->getOpcode(), NewSVI1, NewSVI2,
402                                           BI->getName(), SVI);
403     SVI->replaceAllUsesWith(NewBI);
404     LLVM_DEBUG(dbgs() << "  Replaced: " << *BI << "\n    And   : " << *SVI
405                       << "\n  With    : " << *NewSVI1 << "\n    And   : "
406                       << *NewSVI2 << "\n    And   : " << *NewBI << "\n");
407     RecursivelyDeleteTriviallyDeadInstructions(SVI);
408     if (NewSVI1->getOperand(0) == LI)
409       Shuffles.push_back(NewSVI1);
410     if (NewSVI2->getOperand(0) == LI)
411       Shuffles.push_back(NewSVI2);
412   }
413   return true;
414 }
415 
416 bool InterleavedAccess::tryReplaceExtracts(
417     ArrayRef<ExtractElementInst *> Extracts,
418     ArrayRef<ShuffleVectorInst *> Shuffles) {
419   // If there aren't any extractelement instructions to modify, there's nothing
420   // to do.
421   if (Extracts.empty())
422     return true;
423 
424   // Maps extractelement instructions to vector-index pairs. The extractlement
425   // instructions will be modified to use the new vector and index operands.
426   DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap;
427 
428   for (auto *Extract : Extracts) {
429     // The vector index that is extracted.
430     auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
431     auto Index = IndexOperand->getSExtValue();
432 
433     // Look for a suitable shufflevector instruction. The goal is to modify the
434     // extractelement instruction (which uses an interleaved load) to use one
435     // of the shufflevector instructions instead of the load.
436     for (auto *Shuffle : Shuffles) {
437       // If the shufflevector instruction doesn't dominate the extract, we
438       // can't create a use of it.
439       if (!DT->dominates(Shuffle, Extract))
440         continue;
441 
442       // Inspect the indices of the shufflevector instruction. If the shuffle
443       // selects the same index that is extracted, we can modify the
444       // extractelement instruction.
445       SmallVector<int, 4> Indices;
446       Shuffle->getShuffleMask(Indices);
447       for (unsigned I = 0; I < Indices.size(); ++I)
448         if (Indices[I] == Index) {
449           assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
450                  "Vector operations do not match");
451           ReplacementMap[Extract] = std::make_pair(Shuffle, I);
452           break;
453         }
454 
455       // If we found a suitable shufflevector instruction, stop looking.
456       if (ReplacementMap.count(Extract))
457         break;
458     }
459 
460     // If we did not find a suitable shufflevector instruction, the
461     // extractelement instruction cannot be modified, so we must give up.
462     if (!ReplacementMap.count(Extract))
463       return false;
464   }
465 
466   // Finally, perform the replacements.
467   IRBuilder<> Builder(Extracts[0]->getContext());
468   for (auto &Replacement : ReplacementMap) {
469     auto *Extract = Replacement.first;
470     auto *Vector = Replacement.second.first;
471     auto Index = Replacement.second.second;
472     Builder.SetInsertPoint(Extract);
473     Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
474     Extract->eraseFromParent();
475   }
476 
477   return true;
478 }
479 
480 bool InterleavedAccess::lowerInterleavedStore(
481     StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
482   if (!SI->isSimple())
483     return false;
484 
485   auto *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
486   if (!SVI || !SVI->hasOneUse() || isa<ScalableVectorType>(SVI->getType()))
487     return false;
488 
489   // Check if the shufflevector is RE-interleave shuffle.
490   unsigned Factor;
491   unsigned OpNumElts =
492       cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
493   if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts))
494     return false;
495 
496   LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
497 
498   // Try to create target specific intrinsics to replace the store and shuffle.
499   if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
500     return false;
501 
502   // Already have a new target specific interleaved store. Erase the old store.
503   DeadInsts.push_back(SI);
504   DeadInsts.push_back(SVI);
505   return true;
506 }
507 
508 bool InterleavedAccess::runOnFunction(Function &F) {
509   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
510   if (!TPC || !LowerInterleavedAccesses)
511     return false;
512 
513   LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
514 
515   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
516   auto &TM = TPC->getTM<TargetMachine>();
517   TLI = TM.getSubtargetImpl(F)->getTargetLowering();
518   MaxFactor = TLI->getMaxSupportedInterleaveFactor();
519 
520   // Holds dead instructions that will be erased later.
521   SmallVector<Instruction *, 32> DeadInsts;
522   bool Changed = false;
523 
524   for (auto &I : instructions(F)) {
525     if (auto *LI = dyn_cast<LoadInst>(&I))
526       Changed |= lowerInterleavedLoad(LI, DeadInsts);
527 
528     if (auto *SI = dyn_cast<StoreInst>(&I))
529       Changed |= lowerInterleavedStore(SI, DeadInsts);
530   }
531 
532   for (auto I : DeadInsts)
533     I->eraseFromParent();
534 
535   return Changed;
536 }
537