1 //===- InterleavedAccessPass.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Interleaved Access pass, which identifies
10 // interleaved memory accesses and transforms them into target specific
11 // intrinsics.
12 //
13 // An interleaved load reads data from memory into several vectors, with
14 // DE-interleaving the data on a factor. An interleaved store writes several
15 // vectors to memory with RE-interleaving the data on a factor.
16 //
17 // As interleaved accesses are difficult to identified in CodeGen (mainly
18 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
19 // IR), we identify and transform them to intrinsics in this pass so the
20 // intrinsics can be easily matched into target specific instructions later in
21 // CodeGen.
22 //
23 // E.g. An interleaved load (Factor = 2):
24 //        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
25 //        %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6>
26 //        %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7>
27 //
28 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
29 // intrinsic in ARM backend.
30 //
31 // In X86, this can be further optimized into a set of target
32 // specific loads followed by an optimized sequence of shuffles.
33 //
34 // E.g. An interleaved store (Factor = 3):
35 //        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
36 //                                    <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
37 //        store <12 x i32> %i.vec, <12 x i32>* %ptr
38 //
39 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
40 // intrinsic in ARM backend.
41 //
42 // Similarly, a set of interleaved stores can be transformed into an optimized
43 // sequence of shuffles followed by a set of target specific stores for X86.
44 //
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/SetVector.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/CodeGen/TargetLowering.h"
52 #include "llvm/CodeGen/TargetPassConfig.h"
53 #include "llvm/CodeGen/TargetSubtargetInfo.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/Dominators.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InstIterator.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/InitializePasses.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Transforms/Utils/Local.h"
71 #include <cassert>
72 #include <utility>
73 
74 using namespace llvm;
75 
76 #define DEBUG_TYPE "interleaved-access"
77 
78 static cl::opt<bool> LowerInterleavedAccesses(
79     "lower-interleaved-accesses",
80     cl::desc("Enable lowering interleaved accesses to intrinsics"),
81     cl::init(true), cl::Hidden);
82 
83 namespace {
84 
85 class InterleavedAccess : public FunctionPass {
86 public:
87   static char ID;
88 
89   InterleavedAccess() : FunctionPass(ID) {
90     initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
91   }
92 
93   StringRef getPassName() const override { return "Interleaved Access Pass"; }
94 
95   bool runOnFunction(Function &F) override;
96 
97   void getAnalysisUsage(AnalysisUsage &AU) const override {
98     AU.addRequired<DominatorTreeWrapperPass>();
99     AU.setPreservesCFG();
100   }
101 
102 private:
103   DominatorTree *DT = nullptr;
104   const TargetLowering *TLI = nullptr;
105 
106   /// The maximum supported interleave factor.
107   unsigned MaxFactor;
108 
109   /// Transform an interleaved load into target specific intrinsics.
110   bool lowerInterleavedLoad(LoadInst *LI,
111                             SmallVector<Instruction *, 32> &DeadInsts);
112 
113   /// Transform an interleaved store into target specific intrinsics.
114   bool lowerInterleavedStore(StoreInst *SI,
115                              SmallVector<Instruction *, 32> &DeadInsts);
116 
117   /// Returns true if the uses of an interleaved load by the
118   /// extractelement instructions in \p Extracts can be replaced by uses of the
119   /// shufflevector instructions in \p Shuffles instead. If so, the necessary
120   /// replacements are also performed.
121   bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
122                           ArrayRef<ShuffleVectorInst *> Shuffles);
123 
124   /// Given a number of shuffles of the form shuffle(binop(x,y)), convert them
125   /// to binop(shuffle(x), shuffle(y)) to allow the formation of an
126   /// interleaving load. Any newly created shuffles that operate on \p LI will
127   /// be added to \p Shuffles. Returns true, if any changes to the IR have been
128   /// made.
129   bool replaceBinOpShuffles(ArrayRef<ShuffleVectorInst *> BinOpShuffles,
130                             SmallVectorImpl<ShuffleVectorInst *> &Shuffles,
131                             LoadInst *LI);
132 };
133 
134 } // end anonymous namespace.
135 
136 char InterleavedAccess::ID = 0;
137 
138 INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE,
139     "Lower interleaved memory accesses to target specific intrinsics", false,
140     false)
141 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
142 INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE,
143     "Lower interleaved memory accesses to target specific intrinsics", false,
144     false)
145 
146 FunctionPass *llvm::createInterleavedAccessPass() {
147   return new InterleavedAccess();
148 }
149 
150 /// Check if the mask is a DE-interleave mask of the given factor
151 /// \p Factor like:
152 ///     <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
153 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
154                                        unsigned &Index) {
155   // Check all potential start indices from 0 to (Factor - 1).
156   for (Index = 0; Index < Factor; Index++) {
157     unsigned i = 0;
158 
159     // Check that elements are in ascending order by Factor. Ignore undef
160     // elements.
161     for (; i < Mask.size(); i++)
162       if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
163         break;
164 
165     if (i == Mask.size())
166       return true;
167   }
168 
169   return false;
170 }
171 
172 /// Check if the mask is a DE-interleave mask for an interleaved load.
173 ///
174 /// E.g. DE-interleave masks (Factor = 2) could be:
175 ///     <0, 2, 4, 6>    (mask of index 0 to extract even elements)
176 ///     <1, 3, 5, 7>    (mask of index 1 to extract odd elements)
177 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
178                                unsigned &Index, unsigned MaxFactor,
179                                unsigned NumLoadElements) {
180   if (Mask.size() < 2)
181     return false;
182 
183   // Check potential Factors.
184   for (Factor = 2; Factor <= MaxFactor; Factor++) {
185     // Make sure we don't produce a load wider than the input load.
186     if (Mask.size() * Factor > NumLoadElements)
187       return false;
188     if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
189       return true;
190   }
191 
192   return false;
193 }
194 
195 /// Check if the mask can be used in an interleaved store.
196 //
197 /// It checks for a more general pattern than the RE-interleave mask.
198 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
199 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
200 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
201 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
202 ///
203 /// The particular case of an RE-interleave mask is:
204 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
205 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
206 static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
207                                unsigned MaxFactor, unsigned OpNumElts) {
208   unsigned NumElts = Mask.size();
209   if (NumElts < 4)
210     return false;
211 
212   // Check potential Factors.
213   for (Factor = 2; Factor <= MaxFactor; Factor++) {
214     if (NumElts % Factor)
215       continue;
216 
217     unsigned LaneLen = NumElts / Factor;
218     if (!isPowerOf2_32(LaneLen))
219       continue;
220 
221     // Check whether each element matches the general interleaved rule.
222     // Ignore undef elements, as long as the defined elements match the rule.
223     // Outer loop processes all factors (x, y, z in the above example)
224     unsigned I = 0, J;
225     for (; I < Factor; I++) {
226       unsigned SavedLaneValue;
227       unsigned SavedNoUndefs = 0;
228 
229       // Inner loop processes consecutive accesses (x, x+1... in the example)
230       for (J = 0; J < LaneLen - 1; J++) {
231         // Lane computes x's position in the Mask
232         unsigned Lane = J * Factor + I;
233         unsigned NextLane = Lane + Factor;
234         int LaneValue = Mask[Lane];
235         int NextLaneValue = Mask[NextLane];
236 
237         // If both are defined, values must be sequential
238         if (LaneValue >= 0 && NextLaneValue >= 0 &&
239             LaneValue + 1 != NextLaneValue)
240           break;
241 
242         // If the next value is undef, save the current one as reference
243         if (LaneValue >= 0 && NextLaneValue < 0) {
244           SavedLaneValue = LaneValue;
245           SavedNoUndefs = 1;
246         }
247 
248         // Undefs are allowed, but defined elements must still be consecutive:
249         // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
250         // Verify this by storing the last non-undef followed by an undef
251         // Check that following non-undef masks are incremented with the
252         // corresponding distance.
253         if (SavedNoUndefs > 0 && LaneValue < 0) {
254           SavedNoUndefs++;
255           if (NextLaneValue >= 0 &&
256               SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
257             break;
258         }
259       }
260 
261       if (J < LaneLen - 1)
262         break;
263 
264       int StartMask = 0;
265       if (Mask[I] >= 0) {
266         // Check that the start of the I range (J=0) is greater than 0
267         StartMask = Mask[I];
268       } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
269         // StartMask defined by the last value in lane
270         StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
271       } else if (SavedNoUndefs > 0) {
272         // StartMask defined by some non-zero value in the j loop
273         StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
274       }
275       // else StartMask remains set to 0, i.e. all elements are undefs
276 
277       if (StartMask < 0)
278         break;
279       // We must stay within the vectors; This case can happen with undefs.
280       if (StartMask + LaneLen > OpNumElts*2)
281         break;
282     }
283 
284     // Found an interleaved mask of current factor.
285     if (I == Factor)
286       return true;
287   }
288 
289   return false;
290 }
291 
292 bool InterleavedAccess::lowerInterleavedLoad(
293     LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
294   if (!LI->isSimple() || isa<ScalableVectorType>(LI->getType()))
295     return false;
296 
297   // Check if all users of this load are shufflevectors. If we encounter any
298   // users that are extractelement instructions or binary operators, we save
299   // them to later check if they can be modified to extract from one of the
300   // shufflevectors instead of the load.
301 
302   SmallVector<ShuffleVectorInst *, 4> Shuffles;
303   SmallVector<ExtractElementInst *, 4> Extracts;
304   // BinOpShuffles need to be handled a single time in case both operands of the
305   // binop are the same load.
306   SmallSetVector<ShuffleVectorInst *, 4> BinOpShuffles;
307 
308   for (auto *User : LI->users()) {
309     auto *Extract = dyn_cast<ExtractElementInst>(User);
310     if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
311       Extracts.push_back(Extract);
312       continue;
313     }
314     auto *BI = dyn_cast<BinaryOperator>(User);
315     if (BI && BI->hasOneUse()) {
316       if (auto *SVI = dyn_cast<ShuffleVectorInst>(*BI->user_begin())) {
317         BinOpShuffles.insert(SVI);
318         continue;
319       }
320     }
321     auto *SVI = dyn_cast<ShuffleVectorInst>(User);
322     if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
323       return false;
324 
325     Shuffles.push_back(SVI);
326   }
327 
328   if (Shuffles.empty() && BinOpShuffles.empty())
329     return false;
330 
331   unsigned Factor, Index;
332 
333   unsigned NumLoadElements =
334       cast<FixedVectorType>(LI->getType())->getNumElements();
335   auto *FirstSVI = Shuffles.size() > 0 ? Shuffles[0] : BinOpShuffles[0];
336   // Check if the first shufflevector is DE-interleave shuffle.
337   if (!isDeInterleaveMask(FirstSVI->getShuffleMask(), Factor, Index, MaxFactor,
338                           NumLoadElements))
339     return false;
340 
341   // Holds the corresponding index for each DE-interleave shuffle.
342   SmallVector<unsigned, 4> Indices;
343 
344   Type *VecTy = FirstSVI->getType();
345 
346   // Check if other shufflevectors are also DE-interleaved of the same type
347   // and factor as the first shufflevector.
348   for (auto *Shuffle : Shuffles) {
349     if (Shuffle->getType() != VecTy)
350       return false;
351     if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor,
352                                     Index))
353       return false;
354 
355     assert(Shuffle->getShuffleMask().size() <= NumLoadElements);
356     Indices.push_back(Index);
357   }
358   for (auto *Shuffle : BinOpShuffles) {
359     if (Shuffle->getType() != VecTy)
360       return false;
361     if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor,
362                                     Index))
363       return false;
364 
365     assert(Shuffle->getShuffleMask().size() <= NumLoadElements);
366 
367     if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(0) == LI)
368       Indices.push_back(Index);
369     if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(1) == LI)
370       Indices.push_back(Index);
371   }
372 
373   // Try and modify users of the load that are extractelement instructions to
374   // use the shufflevector instructions instead of the load.
375   if (!tryReplaceExtracts(Extracts, Shuffles))
376     return false;
377 
378   bool BinOpShuffleChanged =
379       replaceBinOpShuffles(BinOpShuffles.getArrayRef(), Shuffles, LI);
380 
381   LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
382 
383   // Try to create target specific intrinsics to replace the load and shuffles.
384   if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) {
385     // If Extracts is not empty, tryReplaceExtracts made changes earlier.
386     return !Extracts.empty() || BinOpShuffleChanged;
387   }
388 
389   append_range(DeadInsts, Shuffles);
390 
391   DeadInsts.push_back(LI);
392   return true;
393 }
394 
395 bool InterleavedAccess::replaceBinOpShuffles(
396     ArrayRef<ShuffleVectorInst *> BinOpShuffles,
397     SmallVectorImpl<ShuffleVectorInst *> &Shuffles, LoadInst *LI) {
398   for (auto *SVI : BinOpShuffles) {
399     BinaryOperator *BI = cast<BinaryOperator>(SVI->getOperand(0));
400     Type *BIOp0Ty = BI->getOperand(0)->getType();
401     ArrayRef<int> Mask = SVI->getShuffleMask();
402     assert(all_of(Mask, [&](int Idx) {
403       return Idx < (int)cast<FixedVectorType>(BIOp0Ty)->getNumElements();
404     }));
405 
406     auto *NewSVI1 =
407         new ShuffleVectorInst(BI->getOperand(0), PoisonValue::get(BIOp0Ty),
408                               Mask, SVI->getName(), SVI);
409     auto *NewSVI2 = new ShuffleVectorInst(
410         BI->getOperand(1), PoisonValue::get(BI->getOperand(1)->getType()), Mask,
411         SVI->getName(), SVI);
412     BinaryOperator *NewBI = BinaryOperator::CreateWithCopiedFlags(
413         BI->getOpcode(), NewSVI1, NewSVI2, BI, BI->getName(), SVI);
414     SVI->replaceAllUsesWith(NewBI);
415     LLVM_DEBUG(dbgs() << "  Replaced: " << *BI << "\n    And   : " << *SVI
416                       << "\n  With    : " << *NewSVI1 << "\n    And   : "
417                       << *NewSVI2 << "\n    And   : " << *NewBI << "\n");
418     RecursivelyDeleteTriviallyDeadInstructions(SVI);
419     if (NewSVI1->getOperand(0) == LI)
420       Shuffles.push_back(NewSVI1);
421     if (NewSVI2->getOperand(0) == LI)
422       Shuffles.push_back(NewSVI2);
423   }
424 
425   return !BinOpShuffles.empty();
426 }
427 
428 bool InterleavedAccess::tryReplaceExtracts(
429     ArrayRef<ExtractElementInst *> Extracts,
430     ArrayRef<ShuffleVectorInst *> Shuffles) {
431   // If there aren't any extractelement instructions to modify, there's nothing
432   // to do.
433   if (Extracts.empty())
434     return true;
435 
436   // Maps extractelement instructions to vector-index pairs. The extractlement
437   // instructions will be modified to use the new vector and index operands.
438   DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap;
439 
440   for (auto *Extract : Extracts) {
441     // The vector index that is extracted.
442     auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
443     auto Index = IndexOperand->getSExtValue();
444 
445     // Look for a suitable shufflevector instruction. The goal is to modify the
446     // extractelement instruction (which uses an interleaved load) to use one
447     // of the shufflevector instructions instead of the load.
448     for (auto *Shuffle : Shuffles) {
449       // If the shufflevector instruction doesn't dominate the extract, we
450       // can't create a use of it.
451       if (!DT->dominates(Shuffle, Extract))
452         continue;
453 
454       // Inspect the indices of the shufflevector instruction. If the shuffle
455       // selects the same index that is extracted, we can modify the
456       // extractelement instruction.
457       SmallVector<int, 4> Indices;
458       Shuffle->getShuffleMask(Indices);
459       for (unsigned I = 0; I < Indices.size(); ++I)
460         if (Indices[I] == Index) {
461           assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
462                  "Vector operations do not match");
463           ReplacementMap[Extract] = std::make_pair(Shuffle, I);
464           break;
465         }
466 
467       // If we found a suitable shufflevector instruction, stop looking.
468       if (ReplacementMap.count(Extract))
469         break;
470     }
471 
472     // If we did not find a suitable shufflevector instruction, the
473     // extractelement instruction cannot be modified, so we must give up.
474     if (!ReplacementMap.count(Extract))
475       return false;
476   }
477 
478   // Finally, perform the replacements.
479   IRBuilder<> Builder(Extracts[0]->getContext());
480   for (auto &Replacement : ReplacementMap) {
481     auto *Extract = Replacement.first;
482     auto *Vector = Replacement.second.first;
483     auto Index = Replacement.second.second;
484     Builder.SetInsertPoint(Extract);
485     Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
486     Extract->eraseFromParent();
487   }
488 
489   return true;
490 }
491 
492 bool InterleavedAccess::lowerInterleavedStore(
493     StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
494   if (!SI->isSimple())
495     return false;
496 
497   auto *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
498   if (!SVI || !SVI->hasOneUse() || isa<ScalableVectorType>(SVI->getType()))
499     return false;
500 
501   // Check if the shufflevector is RE-interleave shuffle.
502   unsigned Factor;
503   unsigned OpNumElts =
504       cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
505   if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts))
506     return false;
507 
508   LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
509 
510   // Try to create target specific intrinsics to replace the store and shuffle.
511   if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
512     return false;
513 
514   // Already have a new target specific interleaved store. Erase the old store.
515   DeadInsts.push_back(SI);
516   DeadInsts.push_back(SVI);
517   return true;
518 }
519 
520 bool InterleavedAccess::runOnFunction(Function &F) {
521   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
522   if (!TPC || !LowerInterleavedAccesses)
523     return false;
524 
525   LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
526 
527   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
528   auto &TM = TPC->getTM<TargetMachine>();
529   TLI = TM.getSubtargetImpl(F)->getTargetLowering();
530   MaxFactor = TLI->getMaxSupportedInterleaveFactor();
531 
532   // Holds dead instructions that will be erased later.
533   SmallVector<Instruction *, 32> DeadInsts;
534   bool Changed = false;
535 
536   for (auto &I : instructions(F)) {
537     if (auto *LI = dyn_cast<LoadInst>(&I))
538       Changed |= lowerInterleavedLoad(LI, DeadInsts);
539 
540     if (auto *SI = dyn_cast<StoreInst>(&I))
541       Changed |= lowerInterleavedStore(SI, DeadInsts);
542   }
543 
544   for (auto I : DeadInsts)
545     I->eraseFromParent();
546 
547   return Changed;
548 }
549