1 //===--------------------- InterleavedAccessPass.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Interleaved Access pass, which identifies 11 // interleaved memory accesses and transforms them into target specific 12 // intrinsics. 13 // 14 // An interleaved load reads data from memory into several vectors, with 15 // DE-interleaving the data on a factor. An interleaved store writes several 16 // vectors to memory with RE-interleaving the data on a factor. 17 // 18 // As interleaved accesses are difficult to identified in CodeGen (mainly 19 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector 20 // IR), we identify and transform them to intrinsics in this pass so the 21 // intrinsics can be easily matched into target specific instructions later in 22 // CodeGen. 23 // 24 // E.g. An interleaved load (Factor = 2): 25 // %wide.vec = load <8 x i32>, <8 x i32>* %ptr 26 // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6> 27 // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7> 28 // 29 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2 30 // intrinsic in ARM backend. 31 // 32 // In X86, this can be further optimized into a set of target 33 // specific loads followed by an optimized sequence of shuffles. 34 // 35 // E.g. An interleaved store (Factor = 3): 36 // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, 37 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> 38 // store <12 x i32> %i.vec, <12 x i32>* %ptr 39 // 40 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3 41 // intrinsic in ARM backend. 42 // 43 // Similarly, a set of interleaved stores can be transformed into an optimized 44 // sequence of shuffles followed by a set of target specific stores for X86. 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/CodeGen/Passes.h" 48 #include "llvm/IR/Dominators.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetLowering.h" 54 #include "llvm/Target/TargetSubtargetInfo.h" 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "interleaved-access" 59 60 static cl::opt<bool> LowerInterleavedAccesses( 61 "lower-interleaved-accesses", 62 cl::desc("Enable lowering interleaved accesses to intrinsics"), 63 cl::init(true), cl::Hidden); 64 65 namespace { 66 67 class InterleavedAccess : public FunctionPass { 68 69 public: 70 static char ID; 71 InterleavedAccess(const TargetMachine *TM = nullptr) 72 : FunctionPass(ID), DT(nullptr), TM(TM), TLI(nullptr) { 73 initializeInterleavedAccessPass(*PassRegistry::getPassRegistry()); 74 } 75 76 StringRef getPassName() const override { return "Interleaved Access Pass"; } 77 78 bool runOnFunction(Function &F) override; 79 80 void getAnalysisUsage(AnalysisUsage &AU) const override { 81 AU.addRequired<DominatorTreeWrapperPass>(); 82 AU.addPreserved<DominatorTreeWrapperPass>(); 83 } 84 85 private: 86 DominatorTree *DT; 87 const TargetMachine *TM; 88 const TargetLowering *TLI; 89 90 /// The maximum supported interleave factor. 91 unsigned MaxFactor; 92 93 /// \brief Transform an interleaved load into target specific intrinsics. 94 bool lowerInterleavedLoad(LoadInst *LI, 95 SmallVector<Instruction *, 32> &DeadInsts); 96 97 /// \brief Transform an interleaved store into target specific intrinsics. 98 bool lowerInterleavedStore(StoreInst *SI, 99 SmallVector<Instruction *, 32> &DeadInsts); 100 101 /// \brief Returns true if the uses of an interleaved load by the 102 /// extractelement instructions in \p Extracts can be replaced by uses of the 103 /// shufflevector instructions in \p Shuffles instead. If so, the necessary 104 /// replacements are also performed. 105 bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts, 106 ArrayRef<ShuffleVectorInst *> Shuffles); 107 }; 108 } // end anonymous namespace. 109 110 char InterleavedAccess::ID = 0; 111 INITIALIZE_TM_PASS_BEGIN( 112 InterleavedAccess, "interleaved-access", 113 "Lower interleaved memory accesses to target specific intrinsics", false, 114 false) 115 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 116 INITIALIZE_TM_PASS_END( 117 InterleavedAccess, "interleaved-access", 118 "Lower interleaved memory accesses to target specific intrinsics", false, 119 false) 120 121 FunctionPass *llvm::createInterleavedAccessPass(const TargetMachine *TM) { 122 return new InterleavedAccess(TM); 123 } 124 125 /// \brief Check if the mask is a DE-interleave mask of the given factor 126 /// \p Factor like: 127 /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor> 128 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor, 129 unsigned &Index) { 130 // Check all potential start indices from 0 to (Factor - 1). 131 for (Index = 0; Index < Factor; Index++) { 132 unsigned i = 0; 133 134 // Check that elements are in ascending order by Factor. Ignore undef 135 // elements. 136 for (; i < Mask.size(); i++) 137 if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor) 138 break; 139 140 if (i == Mask.size()) 141 return true; 142 } 143 144 return false; 145 } 146 147 /// \brief Check if the mask is a DE-interleave mask for an interleaved load. 148 /// 149 /// E.g. DE-interleave masks (Factor = 2) could be: 150 /// <0, 2, 4, 6> (mask of index 0 to extract even elements) 151 /// <1, 3, 5, 7> (mask of index 1 to extract odd elements) 152 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, 153 unsigned &Index, unsigned MaxFactor) { 154 if (Mask.size() < 2) 155 return false; 156 157 // Check potential Factors. 158 for (Factor = 2; Factor <= MaxFactor; Factor++) 159 if (isDeInterleaveMaskOfFactor(Mask, Factor, Index)) 160 return true; 161 162 return false; 163 } 164 165 /// \brief Check if the mask can be used in an interleaved store. 166 // 167 /// It checks for a more general pattern than the RE-interleave mask. 168 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...> 169 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35> 170 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> 171 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5> 172 /// 173 /// The particular case of an RE-interleave mask is: 174 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...> 175 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7> 176 static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, 177 unsigned MaxFactor) { 178 unsigned NumElts = Mask.size(); 179 if (NumElts < 4) 180 return false; 181 182 // Check potential Factors. 183 for (Factor = 2; Factor <= MaxFactor; Factor++) { 184 if (NumElts % Factor) 185 continue; 186 187 unsigned LaneLen = NumElts / Factor; 188 if (!isPowerOf2_32(LaneLen)) 189 continue; 190 191 // Check whether each element matches the general interleaved rule. 192 // Ignore undef elements, as long as the defined elements match the rule. 193 // Outer loop processes all factors (x, y, z in the above example) 194 unsigned I = 0, J; 195 for (; I < Factor; I++) { 196 unsigned SavedLaneValue; 197 unsigned SavedNoUndefs = 0; 198 199 // Inner loop processes consecutive accesses (x, x+1... in the example) 200 for (J = 0; J < LaneLen - 1; J++) { 201 // Lane computes x's position in the Mask 202 unsigned Lane = J * Factor + I; 203 unsigned NextLane = Lane + Factor; 204 int LaneValue = Mask[Lane]; 205 int NextLaneValue = Mask[NextLane]; 206 207 // If both are defined, values must be sequential 208 if (LaneValue >= 0 && NextLaneValue >= 0 && 209 LaneValue + 1 != NextLaneValue) 210 break; 211 212 // If the next value is undef, save the current one as reference 213 if (LaneValue >= 0 && NextLaneValue < 0) { 214 SavedLaneValue = LaneValue; 215 SavedNoUndefs = 1; 216 } 217 218 // Undefs are allowed, but defined elements must still be consecutive: 219 // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, .... 220 // Verify this by storing the last non-undef followed by an undef 221 // Check that following non-undef masks are incremented with the 222 // corresponding distance. 223 if (SavedNoUndefs > 0 && LaneValue < 0) { 224 SavedNoUndefs++; 225 if (NextLaneValue >= 0 && 226 SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue) 227 break; 228 } 229 } 230 231 if (J < LaneLen - 1) 232 break; 233 234 int StartMask = 0; 235 if (Mask[I] >= 0) { 236 // Check that the start of the I range (J=0) is greater than 0 237 StartMask = Mask[I]; 238 } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) { 239 // StartMask defined by the last value in lane 240 StartMask = Mask[(LaneLen - 1) * Factor + I] - J; 241 } else if (SavedNoUndefs > 0) { 242 // StartMask defined by some non-zero value in the j loop 243 StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs); 244 } 245 // else StartMask remains set to 0, i.e. all elements are undefs 246 247 if (StartMask < 0) 248 break; 249 } 250 251 // Found an interleaved mask of current factor. 252 if (I == Factor) 253 return true; 254 } 255 256 return false; 257 } 258 259 bool InterleavedAccess::lowerInterleavedLoad( 260 LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) { 261 if (!LI->isSimple()) 262 return false; 263 264 SmallVector<ShuffleVectorInst *, 4> Shuffles; 265 SmallVector<ExtractElementInst *, 4> Extracts; 266 267 // Check if all users of this load are shufflevectors. If we encounter any 268 // users that are extractelement instructions, we save them to later check if 269 // they can be modifed to extract from one of the shufflevectors instead of 270 // the load. 271 for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) { 272 auto *Extract = dyn_cast<ExtractElementInst>(*UI); 273 if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) { 274 Extracts.push_back(Extract); 275 continue; 276 } 277 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI); 278 if (!SVI || !isa<UndefValue>(SVI->getOperand(1))) 279 return false; 280 281 Shuffles.push_back(SVI); 282 } 283 284 if (Shuffles.empty()) 285 return false; 286 287 unsigned Factor, Index; 288 289 // Check if the first shufflevector is DE-interleave shuffle. 290 if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index, 291 MaxFactor)) 292 return false; 293 294 // Holds the corresponding index for each DE-interleave shuffle. 295 SmallVector<unsigned, 4> Indices; 296 Indices.push_back(Index); 297 298 Type *VecTy = Shuffles[0]->getType(); 299 300 // Check if other shufflevectors are also DE-interleaved of the same type 301 // and factor as the first shufflevector. 302 for (unsigned i = 1; i < Shuffles.size(); i++) { 303 if (Shuffles[i]->getType() != VecTy) 304 return false; 305 306 if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor, 307 Index)) 308 return false; 309 310 Indices.push_back(Index); 311 } 312 313 // Try and modify users of the load that are extractelement instructions to 314 // use the shufflevector instructions instead of the load. 315 if (!tryReplaceExtracts(Extracts, Shuffles)) 316 return false; 317 318 DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n"); 319 320 // Try to create target specific intrinsics to replace the load and shuffles. 321 if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) 322 return false; 323 324 for (auto SVI : Shuffles) 325 DeadInsts.push_back(SVI); 326 327 DeadInsts.push_back(LI); 328 return true; 329 } 330 331 bool InterleavedAccess::tryReplaceExtracts( 332 ArrayRef<ExtractElementInst *> Extracts, 333 ArrayRef<ShuffleVectorInst *> Shuffles) { 334 335 // If there aren't any extractelement instructions to modify, there's nothing 336 // to do. 337 if (Extracts.empty()) 338 return true; 339 340 // Maps extractelement instructions to vector-index pairs. The extractlement 341 // instructions will be modified to use the new vector and index operands. 342 DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap; 343 344 for (auto *Extract : Extracts) { 345 346 // The vector index that is extracted. 347 auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand()); 348 auto Index = IndexOperand->getSExtValue(); 349 350 // Look for a suitable shufflevector instruction. The goal is to modify the 351 // extractelement instruction (which uses an interleaved load) to use one 352 // of the shufflevector instructions instead of the load. 353 for (auto *Shuffle : Shuffles) { 354 355 // If the shufflevector instruction doesn't dominate the extract, we 356 // can't create a use of it. 357 if (!DT->dominates(Shuffle, Extract)) 358 continue; 359 360 // Inspect the indices of the shufflevector instruction. If the shuffle 361 // selects the same index that is extracted, we can modify the 362 // extractelement instruction. 363 SmallVector<int, 4> Indices; 364 Shuffle->getShuffleMask(Indices); 365 for (unsigned I = 0; I < Indices.size(); ++I) 366 if (Indices[I] == Index) { 367 assert(Extract->getOperand(0) == Shuffle->getOperand(0) && 368 "Vector operations do not match"); 369 ReplacementMap[Extract] = std::make_pair(Shuffle, I); 370 break; 371 } 372 373 // If we found a suitable shufflevector instruction, stop looking. 374 if (ReplacementMap.count(Extract)) 375 break; 376 } 377 378 // If we did not find a suitable shufflevector instruction, the 379 // extractelement instruction cannot be modified, so we must give up. 380 if (!ReplacementMap.count(Extract)) 381 return false; 382 } 383 384 // Finally, perform the replacements. 385 IRBuilder<> Builder(Extracts[0]->getContext()); 386 for (auto &Replacement : ReplacementMap) { 387 auto *Extract = Replacement.first; 388 auto *Vector = Replacement.second.first; 389 auto Index = Replacement.second.second; 390 Builder.SetInsertPoint(Extract); 391 Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index)); 392 Extract->eraseFromParent(); 393 } 394 395 return true; 396 } 397 398 bool InterleavedAccess::lowerInterleavedStore( 399 StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) { 400 if (!SI->isSimple()) 401 return false; 402 403 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand()); 404 if (!SVI || !SVI->hasOneUse()) 405 return false; 406 407 // Check if the shufflevector is RE-interleave shuffle. 408 unsigned Factor; 409 if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor)) 410 return false; 411 412 DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n"); 413 414 // Try to create target specific intrinsics to replace the store and shuffle. 415 if (!TLI->lowerInterleavedStore(SI, SVI, Factor)) 416 return false; 417 418 // Already have a new target specific interleaved store. Erase the old store. 419 DeadInsts.push_back(SI); 420 DeadInsts.push_back(SVI); 421 return true; 422 } 423 424 bool InterleavedAccess::runOnFunction(Function &F) { 425 if (!TM || !LowerInterleavedAccesses) 426 return false; 427 428 DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n"); 429 430 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 431 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 432 MaxFactor = TLI->getMaxSupportedInterleaveFactor(); 433 434 // Holds dead instructions that will be erased later. 435 SmallVector<Instruction *, 32> DeadInsts; 436 bool Changed = false; 437 438 for (auto &I : instructions(F)) { 439 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) 440 Changed |= lowerInterleavedLoad(LI, DeadInsts); 441 442 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 443 Changed |= lowerInterleavedStore(SI, DeadInsts); 444 } 445 446 for (auto I : DeadInsts) 447 I->eraseFromParent(); 448 449 return Changed; 450 } 451