1 //===- InterleavedAccessPass.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Interleaved Access pass, which identifies
10 // interleaved memory accesses and transforms them into target specific
11 // intrinsics.
12 //
13 // An interleaved load reads data from memory into several vectors, with
14 // DE-interleaving the data on a factor. An interleaved store writes several
15 // vectors to memory with RE-interleaving the data on a factor.
16 //
17 // As interleaved accesses are difficult to identified in CodeGen (mainly
18 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
19 // IR), we identify and transform them to intrinsics in this pass so the
20 // intrinsics can be easily matched into target specific instructions later in
21 // CodeGen.
22 //
23 // E.g. An interleaved load (Factor = 2):
24 //        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
25 //        %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
26 //        %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
27 //
28 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
29 // intrinsic in ARM backend.
30 //
31 // In X86, this can be further optimized into a set of target
32 // specific loads followed by an optimized sequence of shuffles.
33 //
34 // E.g. An interleaved store (Factor = 3):
35 //        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
36 //                                    <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
37 //        store <12 x i32> %i.vec, <12 x i32>* %ptr
38 //
39 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
40 // intrinsic in ARM backend.
41 //
42 // Similarly, a set of interleaved stores can be transformed into an optimized
43 // sequence of shuffles followed by a set of target specific stores for X86.
44 //
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/CodeGen/TargetLowering.h"
51 #include "llvm/CodeGen/TargetPassConfig.h"
52 #include "llvm/CodeGen/TargetSubtargetInfo.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstIterator.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include <cassert>
71 #include <utility>
72 
73 using namespace llvm;
74 
75 #define DEBUG_TYPE "interleaved-access"
76 
77 static cl::opt<bool> LowerInterleavedAccesses(
78     "lower-interleaved-accesses",
79     cl::desc("Enable lowering interleaved accesses to intrinsics"),
80     cl::init(true), cl::Hidden);
81 
82 namespace {
83 
84 class InterleavedAccess : public FunctionPass {
85 public:
86   static char ID;
87 
88   InterleavedAccess() : FunctionPass(ID) {
89     initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
90   }
91 
92   StringRef getPassName() const override { return "Interleaved Access Pass"; }
93 
94   bool runOnFunction(Function &F) override;
95 
96   void getAnalysisUsage(AnalysisUsage &AU) const override {
97     AU.addRequired<DominatorTreeWrapperPass>();
98     AU.addPreserved<DominatorTreeWrapperPass>();
99   }
100 
101 private:
102   DominatorTree *DT = nullptr;
103   const TargetLowering *TLI = nullptr;
104 
105   /// The maximum supported interleave factor.
106   unsigned MaxFactor;
107 
108   /// Transform an interleaved load into target specific intrinsics.
109   bool lowerInterleavedLoad(LoadInst *LI,
110                             SmallVector<Instruction *, 32> &DeadInsts);
111 
112   /// Transform an interleaved store into target specific intrinsics.
113   bool lowerInterleavedStore(StoreInst *SI,
114                              SmallVector<Instruction *, 32> &DeadInsts);
115 
116   /// Returns true if the uses of an interleaved load by the
117   /// extractelement instructions in \p Extracts can be replaced by uses of the
118   /// shufflevector instructions in \p Shuffles instead. If so, the necessary
119   /// replacements are also performed.
120   bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
121                           ArrayRef<ShuffleVectorInst *> Shuffles);
122 
123   /// Given a number of shuffles of the form shuffle(binop(x,y)), convert them
124   /// to binop(shuffle(x), shuffle(y)) to allow the formation of an
125   /// interleaving load. Any newly created shuffles that operate on \p LI will
126   /// be added to \p Shuffles. Returns true, if any changes to the IR have been
127   /// made.
128   bool replaceBinOpShuffles(ArrayRef<ShuffleVectorInst *> BinOpShuffles,
129                             SmallVectorImpl<ShuffleVectorInst *> &Shuffles,
130                             LoadInst *LI);
131 };
132 
133 } // end anonymous namespace.
134 
135 char InterleavedAccess::ID = 0;
136 
137 INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE,
138     "Lower interleaved memory accesses to target specific intrinsics", false,
139     false)
140 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
141 INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE,
142     "Lower interleaved memory accesses to target specific intrinsics", false,
143     false)
144 
145 FunctionPass *llvm::createInterleavedAccessPass() {
146   return new InterleavedAccess();
147 }
148 
149 /// Check if the mask is a DE-interleave mask of the given factor
150 /// \p Factor like:
151 ///     <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
152 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
153                                        unsigned &Index) {
154   // Check all potential start indices from 0 to (Factor - 1).
155   for (Index = 0; Index < Factor; Index++) {
156     unsigned i = 0;
157 
158     // Check that elements are in ascending order by Factor. Ignore undef
159     // elements.
160     for (; i < Mask.size(); i++)
161       if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
162         break;
163 
164     if (i == Mask.size())
165       return true;
166   }
167 
168   return false;
169 }
170 
171 /// Check if the mask is a DE-interleave mask for an interleaved load.
172 ///
173 /// E.g. DE-interleave masks (Factor = 2) could be:
174 ///     <0, 2, 4, 6>    (mask of index 0 to extract even elements)
175 ///     <1, 3, 5, 7>    (mask of index 1 to extract odd elements)
176 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
177                                unsigned &Index, unsigned MaxFactor,
178                                unsigned NumLoadElements) {
179   if (Mask.size() < 2)
180     return false;
181 
182   // Check potential Factors.
183   for (Factor = 2; Factor <= MaxFactor; Factor++) {
184     // Make sure we don't produce a load wider than the input load.
185     if (Mask.size() * Factor > NumLoadElements)
186       return false;
187     if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
188       return true;
189   }
190 
191   return false;
192 }
193 
194 /// Check if the mask can be used in an interleaved store.
195 //
196 /// It checks for a more general pattern than the RE-interleave mask.
197 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
198 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
199 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
200 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
201 ///
202 /// The particular case of an RE-interleave mask is:
203 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
204 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
205 static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
206                                unsigned MaxFactor, unsigned OpNumElts) {
207   unsigned NumElts = Mask.size();
208   if (NumElts < 4)
209     return false;
210 
211   // Check potential Factors.
212   for (Factor = 2; Factor <= MaxFactor; Factor++) {
213     if (NumElts % Factor)
214       continue;
215 
216     unsigned LaneLen = NumElts / Factor;
217     if (!isPowerOf2_32(LaneLen))
218       continue;
219 
220     // Check whether each element matches the general interleaved rule.
221     // Ignore undef elements, as long as the defined elements match the rule.
222     // Outer loop processes all factors (x, y, z in the above example)
223     unsigned I = 0, J;
224     for (; I < Factor; I++) {
225       unsigned SavedLaneValue;
226       unsigned SavedNoUndefs = 0;
227 
228       // Inner loop processes consecutive accesses (x, x+1... in the example)
229       for (J = 0; J < LaneLen - 1; J++) {
230         // Lane computes x's position in the Mask
231         unsigned Lane = J * Factor + I;
232         unsigned NextLane = Lane + Factor;
233         int LaneValue = Mask[Lane];
234         int NextLaneValue = Mask[NextLane];
235 
236         // If both are defined, values must be sequential
237         if (LaneValue >= 0 && NextLaneValue >= 0 &&
238             LaneValue + 1 != NextLaneValue)
239           break;
240 
241         // If the next value is undef, save the current one as reference
242         if (LaneValue >= 0 && NextLaneValue < 0) {
243           SavedLaneValue = LaneValue;
244           SavedNoUndefs = 1;
245         }
246 
247         // Undefs are allowed, but defined elements must still be consecutive:
248         // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
249         // Verify this by storing the last non-undef followed by an undef
250         // Check that following non-undef masks are incremented with the
251         // corresponding distance.
252         if (SavedNoUndefs > 0 && LaneValue < 0) {
253           SavedNoUndefs++;
254           if (NextLaneValue >= 0 &&
255               SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
256             break;
257         }
258       }
259 
260       if (J < LaneLen - 1)
261         break;
262 
263       int StartMask = 0;
264       if (Mask[I] >= 0) {
265         // Check that the start of the I range (J=0) is greater than 0
266         StartMask = Mask[I];
267       } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
268         // StartMask defined by the last value in lane
269         StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
270       } else if (SavedNoUndefs > 0) {
271         // StartMask defined by some non-zero value in the j loop
272         StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
273       }
274       // else StartMask remains set to 0, i.e. all elements are undefs
275 
276       if (StartMask < 0)
277         break;
278       // We must stay within the vectors; This case can happen with undefs.
279       if (StartMask + LaneLen > OpNumElts*2)
280         break;
281     }
282 
283     // Found an interleaved mask of current factor.
284     if (I == Factor)
285       return true;
286   }
287 
288   return false;
289 }
290 
291 bool InterleavedAccess::lowerInterleavedLoad(
292     LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
293   if (!LI->isSimple() || isa<ScalableVectorType>(LI->getType()))
294     return false;
295 
296   // Check if all users of this load are shufflevectors. If we encounter any
297   // users that are extractelement instructions or binary operators, we save
298   // them to later check if they can be modified to extract from one of the
299   // shufflevectors instead of the load.
300 
301   SmallVector<ShuffleVectorInst *, 4> Shuffles;
302   SmallVector<ExtractElementInst *, 4> Extracts;
303   // BinOpShuffles need to be handled a single time in case both operands of the
304   // binop are the same load.
305   SmallSetVector<ShuffleVectorInst *, 4> BinOpShuffles;
306 
307   for (auto *User : LI->users()) {
308     auto *Extract = dyn_cast<ExtractElementInst>(User);
309     if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
310       Extracts.push_back(Extract);
311       continue;
312     }
313     auto *BI = dyn_cast<BinaryOperator>(User);
314     if (BI && BI->hasOneUse()) {
315       if (auto *SVI = dyn_cast<ShuffleVectorInst>(*BI->user_begin())) {
316         BinOpShuffles.insert(SVI);
317         continue;
318       }
319     }
320     auto *SVI = dyn_cast<ShuffleVectorInst>(User);
321     if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
322       return false;
323 
324     Shuffles.push_back(SVI);
325   }
326 
327   if (Shuffles.empty() && BinOpShuffles.empty())
328     return false;
329 
330   unsigned Factor, Index;
331 
332   unsigned NumLoadElements =
333       cast<FixedVectorType>(LI->getType())->getNumElements();
334   auto *FirstSVI = Shuffles.size() > 0 ? Shuffles[0] : BinOpShuffles[0];
335   // Check if the first shufflevector is DE-interleave shuffle.
336   if (!isDeInterleaveMask(FirstSVI->getShuffleMask(), Factor, Index, MaxFactor,
337                           NumLoadElements))
338     return false;
339 
340   // Holds the corresponding index for each DE-interleave shuffle.
341   SmallVector<unsigned, 4> Indices;
342 
343   Type *VecTy = FirstSVI->getType();
344 
345   // Check if other shufflevectors are also DE-interleaved of the same type
346   // and factor as the first shufflevector.
347   for (auto *Shuffle : Shuffles) {
348     if (Shuffle->getType() != VecTy)
349       return false;
350     if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor,
351                                     Index))
352       return false;
353 
354     Indices.push_back(Index);
355   }
356   for (auto *Shuffle : BinOpShuffles) {
357     if (Shuffle->getType() != VecTy)
358       return false;
359     if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor,
360                                     Index))
361       return false;
362 
363     if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(0) == LI)
364       Indices.push_back(Index);
365     if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(1) == LI)
366       Indices.push_back(Index);
367   }
368 
369   // Try and modify users of the load that are extractelement instructions to
370   // use the shufflevector instructions instead of the load.
371   if (!tryReplaceExtracts(Extracts, Shuffles))
372     return false;
373 
374   bool BinOpShuffleChanged =
375       replaceBinOpShuffles(BinOpShuffles.getArrayRef(), Shuffles, LI);
376 
377   LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
378 
379   // Try to create target specific intrinsics to replace the load and shuffles.
380   if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) {
381     // If Extracts is not empty, tryReplaceExtracts made changes earlier.
382     return !Extracts.empty() || BinOpShuffleChanged;
383   }
384 
385   for (auto SVI : Shuffles)
386     DeadInsts.push_back(SVI);
387 
388   DeadInsts.push_back(LI);
389   return true;
390 }
391 
392 bool InterleavedAccess::replaceBinOpShuffles(
393     ArrayRef<ShuffleVectorInst *> BinOpShuffles,
394     SmallVectorImpl<ShuffleVectorInst *> &Shuffles, LoadInst *LI) {
395   for (auto *SVI : BinOpShuffles) {
396     BinaryOperator *BI = cast<BinaryOperator>(SVI->getOperand(0));
397     ArrayRef<int> Mask = SVI->getShuffleMask();
398 
399     auto *NewSVI1 = new ShuffleVectorInst(
400         BI->getOperand(0), UndefValue::get(BI->getOperand(0)->getType()), Mask,
401         SVI->getName(), SVI);
402     auto *NewSVI2 = new ShuffleVectorInst(
403         BI->getOperand(1), UndefValue::get(BI->getOperand(1)->getType()), Mask,
404         SVI->getName(), SVI);
405     Value *NewBI = BinaryOperator::Create(BI->getOpcode(), NewSVI1, NewSVI2,
406                                           BI->getName(), SVI);
407     SVI->replaceAllUsesWith(NewBI);
408     LLVM_DEBUG(dbgs() << "  Replaced: " << *BI << "\n    And   : " << *SVI
409                       << "\n  With    : " << *NewSVI1 << "\n    And   : "
410                       << *NewSVI2 << "\n    And   : " << *NewBI << "\n");
411     RecursivelyDeleteTriviallyDeadInstructions(SVI);
412     if (NewSVI1->getOperand(0) == LI)
413       Shuffles.push_back(NewSVI1);
414     if (NewSVI2->getOperand(0) == LI)
415       Shuffles.push_back(NewSVI2);
416   }
417 
418   return !BinOpShuffles.empty();
419 }
420 
421 bool InterleavedAccess::tryReplaceExtracts(
422     ArrayRef<ExtractElementInst *> Extracts,
423     ArrayRef<ShuffleVectorInst *> Shuffles) {
424   // If there aren't any extractelement instructions to modify, there's nothing
425   // to do.
426   if (Extracts.empty())
427     return true;
428 
429   // Maps extractelement instructions to vector-index pairs. The extractlement
430   // instructions will be modified to use the new vector and index operands.
431   DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap;
432 
433   for (auto *Extract : Extracts) {
434     // The vector index that is extracted.
435     auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
436     auto Index = IndexOperand->getSExtValue();
437 
438     // Look for a suitable shufflevector instruction. The goal is to modify the
439     // extractelement instruction (which uses an interleaved load) to use one
440     // of the shufflevector instructions instead of the load.
441     for (auto *Shuffle : Shuffles) {
442       // If the shufflevector instruction doesn't dominate the extract, we
443       // can't create a use of it.
444       if (!DT->dominates(Shuffle, Extract))
445         continue;
446 
447       // Inspect the indices of the shufflevector instruction. If the shuffle
448       // selects the same index that is extracted, we can modify the
449       // extractelement instruction.
450       SmallVector<int, 4> Indices;
451       Shuffle->getShuffleMask(Indices);
452       for (unsigned I = 0; I < Indices.size(); ++I)
453         if (Indices[I] == Index) {
454           assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
455                  "Vector operations do not match");
456           ReplacementMap[Extract] = std::make_pair(Shuffle, I);
457           break;
458         }
459 
460       // If we found a suitable shufflevector instruction, stop looking.
461       if (ReplacementMap.count(Extract))
462         break;
463     }
464 
465     // If we did not find a suitable shufflevector instruction, the
466     // extractelement instruction cannot be modified, so we must give up.
467     if (!ReplacementMap.count(Extract))
468       return false;
469   }
470 
471   // Finally, perform the replacements.
472   IRBuilder<> Builder(Extracts[0]->getContext());
473   for (auto &Replacement : ReplacementMap) {
474     auto *Extract = Replacement.first;
475     auto *Vector = Replacement.second.first;
476     auto Index = Replacement.second.second;
477     Builder.SetInsertPoint(Extract);
478     Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
479     Extract->eraseFromParent();
480   }
481 
482   return true;
483 }
484 
485 bool InterleavedAccess::lowerInterleavedStore(
486     StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
487   if (!SI->isSimple())
488     return false;
489 
490   auto *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
491   if (!SVI || !SVI->hasOneUse() || isa<ScalableVectorType>(SVI->getType()))
492     return false;
493 
494   // Check if the shufflevector is RE-interleave shuffle.
495   unsigned Factor;
496   unsigned OpNumElts =
497       cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
498   if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts))
499     return false;
500 
501   LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
502 
503   // Try to create target specific intrinsics to replace the store and shuffle.
504   if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
505     return false;
506 
507   // Already have a new target specific interleaved store. Erase the old store.
508   DeadInsts.push_back(SI);
509   DeadInsts.push_back(SVI);
510   return true;
511 }
512 
513 bool InterleavedAccess::runOnFunction(Function &F) {
514   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
515   if (!TPC || !LowerInterleavedAccesses)
516     return false;
517 
518   LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
519 
520   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
521   auto &TM = TPC->getTM<TargetMachine>();
522   TLI = TM.getSubtargetImpl(F)->getTargetLowering();
523   MaxFactor = TLI->getMaxSupportedInterleaveFactor();
524 
525   // Holds dead instructions that will be erased later.
526   SmallVector<Instruction *, 32> DeadInsts;
527   bool Changed = false;
528 
529   for (auto &I : instructions(F)) {
530     if (auto *LI = dyn_cast<LoadInst>(&I))
531       Changed |= lowerInterleavedLoad(LI, DeadInsts);
532 
533     if (auto *SI = dyn_cast<StoreInst>(&I))
534       Changed |= lowerInterleavedStore(SI, DeadInsts);
535   }
536 
537   for (auto I : DeadInsts)
538     I->eraseFromParent();
539 
540   return Changed;
541 }
542