1 //===--------------------- InterleavedAccessPass.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Interleaved Access pass, which identifies 11 // interleaved memory accesses and transforms them into target specific 12 // intrinsics. 13 // 14 // An interleaved load reads data from memory into several vectors, with 15 // DE-interleaving the data on a factor. An interleaved store writes several 16 // vectors to memory with RE-interleaving the data on a factor. 17 // 18 // As interleaved accesses are difficult to identified in CodeGen (mainly 19 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector 20 // IR), we identify and transform them to intrinsics in this pass so the 21 // intrinsics can be easily matched into target specific instructions later in 22 // CodeGen. 23 // 24 // E.g. An interleaved load (Factor = 2): 25 // %wide.vec = load <8 x i32>, <8 x i32>* %ptr 26 // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6> 27 // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7> 28 // 29 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2 30 // intrinsic in ARM backend. 31 // 32 // In X86, this can be further optimized into a set of target 33 // specific loads followed by an optimized sequence of shuffles. 34 // 35 // E.g. An interleaved store (Factor = 3): 36 // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, 37 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> 38 // store <12 x i32> %i.vec, <12 x i32>* %ptr 39 // 40 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3 41 // intrinsic in ARM backend. 42 // 43 // Similarly, a set of interleaved stores can be transformed into an optimized 44 // sequence of shuffles followed by a set of target specific stores for X86. 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/CodeGen/Passes.h" 48 #include "llvm/CodeGen/TargetPassConfig.h" 49 #include "llvm/IR/Dominators.h" 50 #include "llvm/IR/InstIterator.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetLowering.h" 55 #include "llvm/Target/TargetSubtargetInfo.h" 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "interleaved-access" 60 61 static cl::opt<bool> LowerInterleavedAccesses( 62 "lower-interleaved-accesses", 63 cl::desc("Enable lowering interleaved accesses to intrinsics"), 64 cl::init(true), cl::Hidden); 65 66 namespace { 67 68 class InterleavedAccess : public FunctionPass { 69 70 public: 71 static char ID; 72 InterleavedAccess() : FunctionPass(ID), DT(nullptr), TLI(nullptr) { 73 initializeInterleavedAccessPass(*PassRegistry::getPassRegistry()); 74 } 75 76 StringRef getPassName() const override { return "Interleaved Access Pass"; } 77 78 bool runOnFunction(Function &F) override; 79 80 void getAnalysisUsage(AnalysisUsage &AU) const override { 81 AU.addRequired<DominatorTreeWrapperPass>(); 82 AU.addPreserved<DominatorTreeWrapperPass>(); 83 } 84 85 private: 86 DominatorTree *DT; 87 const TargetLowering *TLI; 88 89 /// The maximum supported interleave factor. 90 unsigned MaxFactor; 91 92 /// \brief Transform an interleaved load into target specific intrinsics. 93 bool lowerInterleavedLoad(LoadInst *LI, 94 SmallVector<Instruction *, 32> &DeadInsts); 95 96 /// \brief Transform an interleaved store into target specific intrinsics. 97 bool lowerInterleavedStore(StoreInst *SI, 98 SmallVector<Instruction *, 32> &DeadInsts); 99 100 /// \brief Returns true if the uses of an interleaved load by the 101 /// extractelement instructions in \p Extracts can be replaced by uses of the 102 /// shufflevector instructions in \p Shuffles instead. If so, the necessary 103 /// replacements are also performed. 104 bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts, 105 ArrayRef<ShuffleVectorInst *> Shuffles); 106 }; 107 } // end anonymous namespace. 108 109 char InterleavedAccess::ID = 0; 110 INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE, 111 "Lower interleaved memory accesses to target specific intrinsics", false, 112 false) 113 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 114 INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE, 115 "Lower interleaved memory accesses to target specific intrinsics", false, 116 false) 117 118 FunctionPass *llvm::createInterleavedAccessPass() { 119 return new InterleavedAccess(); 120 } 121 122 /// \brief Check if the mask is a DE-interleave mask of the given factor 123 /// \p Factor like: 124 /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor> 125 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor, 126 unsigned &Index) { 127 // Check all potential start indices from 0 to (Factor - 1). 128 for (Index = 0; Index < Factor; Index++) { 129 unsigned i = 0; 130 131 // Check that elements are in ascending order by Factor. Ignore undef 132 // elements. 133 for (; i < Mask.size(); i++) 134 if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor) 135 break; 136 137 if (i == Mask.size()) 138 return true; 139 } 140 141 return false; 142 } 143 144 /// \brief Check if the mask is a DE-interleave mask for an interleaved load. 145 /// 146 /// E.g. DE-interleave masks (Factor = 2) could be: 147 /// <0, 2, 4, 6> (mask of index 0 to extract even elements) 148 /// <1, 3, 5, 7> (mask of index 1 to extract odd elements) 149 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, 150 unsigned &Index, unsigned MaxFactor) { 151 if (Mask.size() < 2) 152 return false; 153 154 // Check potential Factors. 155 for (Factor = 2; Factor <= MaxFactor; Factor++) 156 if (isDeInterleaveMaskOfFactor(Mask, Factor, Index)) 157 return true; 158 159 return false; 160 } 161 162 /// \brief Check if the mask can be used in an interleaved store. 163 // 164 /// It checks for a more general pattern than the RE-interleave mask. 165 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...> 166 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35> 167 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> 168 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5> 169 /// 170 /// The particular case of an RE-interleave mask is: 171 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...> 172 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7> 173 static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, 174 unsigned MaxFactor, unsigned OpNumElts) { 175 unsigned NumElts = Mask.size(); 176 if (NumElts < 4) 177 return false; 178 179 // Check potential Factors. 180 for (Factor = 2; Factor <= MaxFactor; Factor++) { 181 if (NumElts % Factor) 182 continue; 183 184 unsigned LaneLen = NumElts / Factor; 185 if (!isPowerOf2_32(LaneLen)) 186 continue; 187 188 // Check whether each element matches the general interleaved rule. 189 // Ignore undef elements, as long as the defined elements match the rule. 190 // Outer loop processes all factors (x, y, z in the above example) 191 unsigned I = 0, J; 192 for (; I < Factor; I++) { 193 unsigned SavedLaneValue; 194 unsigned SavedNoUndefs = 0; 195 196 // Inner loop processes consecutive accesses (x, x+1... in the example) 197 for (J = 0; J < LaneLen - 1; J++) { 198 // Lane computes x's position in the Mask 199 unsigned Lane = J * Factor + I; 200 unsigned NextLane = Lane + Factor; 201 int LaneValue = Mask[Lane]; 202 int NextLaneValue = Mask[NextLane]; 203 204 // If both are defined, values must be sequential 205 if (LaneValue >= 0 && NextLaneValue >= 0 && 206 LaneValue + 1 != NextLaneValue) 207 break; 208 209 // If the next value is undef, save the current one as reference 210 if (LaneValue >= 0 && NextLaneValue < 0) { 211 SavedLaneValue = LaneValue; 212 SavedNoUndefs = 1; 213 } 214 215 // Undefs are allowed, but defined elements must still be consecutive: 216 // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, .... 217 // Verify this by storing the last non-undef followed by an undef 218 // Check that following non-undef masks are incremented with the 219 // corresponding distance. 220 if (SavedNoUndefs > 0 && LaneValue < 0) { 221 SavedNoUndefs++; 222 if (NextLaneValue >= 0 && 223 SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue) 224 break; 225 } 226 } 227 228 if (J < LaneLen - 1) 229 break; 230 231 int StartMask = 0; 232 if (Mask[I] >= 0) { 233 // Check that the start of the I range (J=0) is greater than 0 234 StartMask = Mask[I]; 235 } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) { 236 // StartMask defined by the last value in lane 237 StartMask = Mask[(LaneLen - 1) * Factor + I] - J; 238 } else if (SavedNoUndefs > 0) { 239 // StartMask defined by some non-zero value in the j loop 240 StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs); 241 } 242 // else StartMask remains set to 0, i.e. all elements are undefs 243 244 if (StartMask < 0) 245 break; 246 // We must stay within the vectors; This case can happen with undefs. 247 if (StartMask + LaneLen > OpNumElts*2) 248 break; 249 } 250 251 // Found an interleaved mask of current factor. 252 if (I == Factor) 253 return true; 254 } 255 256 return false; 257 } 258 259 bool InterleavedAccess::lowerInterleavedLoad( 260 LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) { 261 if (!LI->isSimple()) 262 return false; 263 264 SmallVector<ShuffleVectorInst *, 4> Shuffles; 265 SmallVector<ExtractElementInst *, 4> Extracts; 266 267 // Check if all users of this load are shufflevectors. If we encounter any 268 // users that are extractelement instructions, we save them to later check if 269 // they can be modifed to extract from one of the shufflevectors instead of 270 // the load. 271 for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) { 272 auto *Extract = dyn_cast<ExtractElementInst>(*UI); 273 if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) { 274 Extracts.push_back(Extract); 275 continue; 276 } 277 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI); 278 if (!SVI || !isa<UndefValue>(SVI->getOperand(1))) 279 return false; 280 281 Shuffles.push_back(SVI); 282 } 283 284 if (Shuffles.empty()) 285 return false; 286 287 unsigned Factor, Index; 288 289 // Check if the first shufflevector is DE-interleave shuffle. 290 if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index, 291 MaxFactor)) 292 return false; 293 294 // Holds the corresponding index for each DE-interleave shuffle. 295 SmallVector<unsigned, 4> Indices; 296 Indices.push_back(Index); 297 298 Type *VecTy = Shuffles[0]->getType(); 299 300 // Check if other shufflevectors are also DE-interleaved of the same type 301 // and factor as the first shufflevector. 302 for (unsigned i = 1; i < Shuffles.size(); i++) { 303 if (Shuffles[i]->getType() != VecTy) 304 return false; 305 306 if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor, 307 Index)) 308 return false; 309 310 Indices.push_back(Index); 311 } 312 313 // Try and modify users of the load that are extractelement instructions to 314 // use the shufflevector instructions instead of the load. 315 if (!tryReplaceExtracts(Extracts, Shuffles)) 316 return false; 317 318 DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n"); 319 320 // Try to create target specific intrinsics to replace the load and shuffles. 321 if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) 322 return false; 323 324 for (auto SVI : Shuffles) 325 DeadInsts.push_back(SVI); 326 327 DeadInsts.push_back(LI); 328 return true; 329 } 330 331 bool InterleavedAccess::tryReplaceExtracts( 332 ArrayRef<ExtractElementInst *> Extracts, 333 ArrayRef<ShuffleVectorInst *> Shuffles) { 334 335 // If there aren't any extractelement instructions to modify, there's nothing 336 // to do. 337 if (Extracts.empty()) 338 return true; 339 340 // Maps extractelement instructions to vector-index pairs. The extractlement 341 // instructions will be modified to use the new vector and index operands. 342 DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap; 343 344 for (auto *Extract : Extracts) { 345 346 // The vector index that is extracted. 347 auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand()); 348 auto Index = IndexOperand->getSExtValue(); 349 350 // Look for a suitable shufflevector instruction. The goal is to modify the 351 // extractelement instruction (which uses an interleaved load) to use one 352 // of the shufflevector instructions instead of the load. 353 for (auto *Shuffle : Shuffles) { 354 355 // If the shufflevector instruction doesn't dominate the extract, we 356 // can't create a use of it. 357 if (!DT->dominates(Shuffle, Extract)) 358 continue; 359 360 // Inspect the indices of the shufflevector instruction. If the shuffle 361 // selects the same index that is extracted, we can modify the 362 // extractelement instruction. 363 SmallVector<int, 4> Indices; 364 Shuffle->getShuffleMask(Indices); 365 for (unsigned I = 0; I < Indices.size(); ++I) 366 if (Indices[I] == Index) { 367 assert(Extract->getOperand(0) == Shuffle->getOperand(0) && 368 "Vector operations do not match"); 369 ReplacementMap[Extract] = std::make_pair(Shuffle, I); 370 break; 371 } 372 373 // If we found a suitable shufflevector instruction, stop looking. 374 if (ReplacementMap.count(Extract)) 375 break; 376 } 377 378 // If we did not find a suitable shufflevector instruction, the 379 // extractelement instruction cannot be modified, so we must give up. 380 if (!ReplacementMap.count(Extract)) 381 return false; 382 } 383 384 // Finally, perform the replacements. 385 IRBuilder<> Builder(Extracts[0]->getContext()); 386 for (auto &Replacement : ReplacementMap) { 387 auto *Extract = Replacement.first; 388 auto *Vector = Replacement.second.first; 389 auto Index = Replacement.second.second; 390 Builder.SetInsertPoint(Extract); 391 Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index)); 392 Extract->eraseFromParent(); 393 } 394 395 return true; 396 } 397 398 bool InterleavedAccess::lowerInterleavedStore( 399 StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) { 400 if (!SI->isSimple()) 401 return false; 402 403 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand()); 404 if (!SVI || !SVI->hasOneUse()) 405 return false; 406 407 // Check if the shufflevector is RE-interleave shuffle. 408 unsigned Factor; 409 unsigned OpNumElts = SVI->getOperand(0)->getType()->getVectorNumElements(); 410 if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts)) 411 return false; 412 413 DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n"); 414 415 // Try to create target specific intrinsics to replace the store and shuffle. 416 if (!TLI->lowerInterleavedStore(SI, SVI, Factor)) 417 return false; 418 419 // Already have a new target specific interleaved store. Erase the old store. 420 DeadInsts.push_back(SI); 421 DeadInsts.push_back(SVI); 422 return true; 423 } 424 425 bool InterleavedAccess::runOnFunction(Function &F) { 426 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 427 if (!TPC || !LowerInterleavedAccesses) 428 return false; 429 430 DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n"); 431 432 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 433 auto &TM = TPC->getTM<TargetMachine>(); 434 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 435 MaxFactor = TLI->getMaxSupportedInterleaveFactor(); 436 437 // Holds dead instructions that will be erased later. 438 SmallVector<Instruction *, 32> DeadInsts; 439 bool Changed = false; 440 441 for (auto &I : instructions(F)) { 442 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) 443 Changed |= lowerInterleavedLoad(LI, DeadInsts); 444 445 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 446 Changed |= lowerInterleavedStore(SI, DeadInsts); 447 } 448 449 for (auto I : DeadInsts) 450 I->eraseFromParent(); 451 452 return Changed; 453 } 454