1 //===- InterleavedAccessPass.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Interleaved Access pass, which identifies 10 // interleaved memory accesses and transforms them into target specific 11 // intrinsics. 12 // 13 // An interleaved load reads data from memory into several vectors, with 14 // DE-interleaving the data on a factor. An interleaved store writes several 15 // vectors to memory with RE-interleaving the data on a factor. 16 // 17 // As interleaved accesses are difficult to identified in CodeGen (mainly 18 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector 19 // IR), we identify and transform them to intrinsics in this pass so the 20 // intrinsics can be easily matched into target specific instructions later in 21 // CodeGen. 22 // 23 // E.g. An interleaved load (Factor = 2): 24 // %wide.vec = load <8 x i32>, <8 x i32>* %ptr 25 // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6> 26 // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7> 27 // 28 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2 29 // intrinsic in ARM backend. 30 // 31 // In X86, this can be further optimized into a set of target 32 // specific loads followed by an optimized sequence of shuffles. 33 // 34 // E.g. An interleaved store (Factor = 3): 35 // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, 36 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> 37 // store <12 x i32> %i.vec, <12 x i32>* %ptr 38 // 39 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3 40 // intrinsic in ARM backend. 41 // 42 // Similarly, a set of interleaved stores can be transformed into an optimized 43 // sequence of shuffles followed by a set of target specific stores for X86. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/ADT/ArrayRef.h" 48 #include "llvm/ADT/DenseMap.h" 49 #include "llvm/ADT/SmallVector.h" 50 #include "llvm/CodeGen/TargetLowering.h" 51 #include "llvm/CodeGen/TargetPassConfig.h" 52 #include "llvm/CodeGen/TargetSubtargetInfo.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/Dominators.h" 55 #include "llvm/IR/Function.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstIterator.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/Pass.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include <cassert> 69 #include <utility> 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "interleaved-access" 74 75 static cl::opt<bool> LowerInterleavedAccesses( 76 "lower-interleaved-accesses", 77 cl::desc("Enable lowering interleaved accesses to intrinsics"), 78 cl::init(true), cl::Hidden); 79 80 namespace { 81 82 class InterleavedAccess : public FunctionPass { 83 public: 84 static char ID; 85 86 InterleavedAccess() : FunctionPass(ID) { 87 initializeInterleavedAccessPass(*PassRegistry::getPassRegistry()); 88 } 89 90 StringRef getPassName() const override { return "Interleaved Access Pass"; } 91 92 bool runOnFunction(Function &F) override; 93 94 void getAnalysisUsage(AnalysisUsage &AU) const override { 95 AU.addRequired<DominatorTreeWrapperPass>(); 96 AU.addPreserved<DominatorTreeWrapperPass>(); 97 } 98 99 private: 100 DominatorTree *DT = nullptr; 101 const TargetLowering *TLI = nullptr; 102 103 /// The maximum supported interleave factor. 104 unsigned MaxFactor; 105 106 /// Transform an interleaved load into target specific intrinsics. 107 bool lowerInterleavedLoad(LoadInst *LI, 108 SmallVector<Instruction *, 32> &DeadInsts); 109 110 /// Transform an interleaved store into target specific intrinsics. 111 bool lowerInterleavedStore(StoreInst *SI, 112 SmallVector<Instruction *, 32> &DeadInsts); 113 114 /// Returns true if the uses of an interleaved load by the 115 /// extractelement instructions in \p Extracts can be replaced by uses of the 116 /// shufflevector instructions in \p Shuffles instead. If so, the necessary 117 /// replacements are also performed. 118 bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts, 119 ArrayRef<ShuffleVectorInst *> Shuffles); 120 }; 121 122 } // end anonymous namespace. 123 124 char InterleavedAccess::ID = 0; 125 126 INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE, 127 "Lower interleaved memory accesses to target specific intrinsics", false, 128 false) 129 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 130 INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE, 131 "Lower interleaved memory accesses to target specific intrinsics", false, 132 false) 133 134 FunctionPass *llvm::createInterleavedAccessPass() { 135 return new InterleavedAccess(); 136 } 137 138 /// Check if the mask is a DE-interleave mask of the given factor 139 /// \p Factor like: 140 /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor> 141 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor, 142 unsigned &Index) { 143 // Check all potential start indices from 0 to (Factor - 1). 144 for (Index = 0; Index < Factor; Index++) { 145 unsigned i = 0; 146 147 // Check that elements are in ascending order by Factor. Ignore undef 148 // elements. 149 for (; i < Mask.size(); i++) 150 if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor) 151 break; 152 153 if (i == Mask.size()) 154 return true; 155 } 156 157 return false; 158 } 159 160 /// Check if the mask is a DE-interleave mask for an interleaved load. 161 /// 162 /// E.g. DE-interleave masks (Factor = 2) could be: 163 /// <0, 2, 4, 6> (mask of index 0 to extract even elements) 164 /// <1, 3, 5, 7> (mask of index 1 to extract odd elements) 165 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, 166 unsigned &Index, unsigned MaxFactor) { 167 if (Mask.size() < 2) 168 return false; 169 170 // Check potential Factors. 171 for (Factor = 2; Factor <= MaxFactor; Factor++) 172 if (isDeInterleaveMaskOfFactor(Mask, Factor, Index)) 173 return true; 174 175 return false; 176 } 177 178 /// Check if the mask can be used in an interleaved store. 179 // 180 /// It checks for a more general pattern than the RE-interleave mask. 181 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...> 182 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35> 183 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> 184 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5> 185 /// 186 /// The particular case of an RE-interleave mask is: 187 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...> 188 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7> 189 static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, 190 unsigned MaxFactor, unsigned OpNumElts) { 191 unsigned NumElts = Mask.size(); 192 if (NumElts < 4) 193 return false; 194 195 // Check potential Factors. 196 for (Factor = 2; Factor <= MaxFactor; Factor++) { 197 if (NumElts % Factor) 198 continue; 199 200 unsigned LaneLen = NumElts / Factor; 201 if (!isPowerOf2_32(LaneLen)) 202 continue; 203 204 // Check whether each element matches the general interleaved rule. 205 // Ignore undef elements, as long as the defined elements match the rule. 206 // Outer loop processes all factors (x, y, z in the above example) 207 unsigned I = 0, J; 208 for (; I < Factor; I++) { 209 unsigned SavedLaneValue; 210 unsigned SavedNoUndefs = 0; 211 212 // Inner loop processes consecutive accesses (x, x+1... in the example) 213 for (J = 0; J < LaneLen - 1; J++) { 214 // Lane computes x's position in the Mask 215 unsigned Lane = J * Factor + I; 216 unsigned NextLane = Lane + Factor; 217 int LaneValue = Mask[Lane]; 218 int NextLaneValue = Mask[NextLane]; 219 220 // If both are defined, values must be sequential 221 if (LaneValue >= 0 && NextLaneValue >= 0 && 222 LaneValue + 1 != NextLaneValue) 223 break; 224 225 // If the next value is undef, save the current one as reference 226 if (LaneValue >= 0 && NextLaneValue < 0) { 227 SavedLaneValue = LaneValue; 228 SavedNoUndefs = 1; 229 } 230 231 // Undefs are allowed, but defined elements must still be consecutive: 232 // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, .... 233 // Verify this by storing the last non-undef followed by an undef 234 // Check that following non-undef masks are incremented with the 235 // corresponding distance. 236 if (SavedNoUndefs > 0 && LaneValue < 0) { 237 SavedNoUndefs++; 238 if (NextLaneValue >= 0 && 239 SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue) 240 break; 241 } 242 } 243 244 if (J < LaneLen - 1) 245 break; 246 247 int StartMask = 0; 248 if (Mask[I] >= 0) { 249 // Check that the start of the I range (J=0) is greater than 0 250 StartMask = Mask[I]; 251 } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) { 252 // StartMask defined by the last value in lane 253 StartMask = Mask[(LaneLen - 1) * Factor + I] - J; 254 } else if (SavedNoUndefs > 0) { 255 // StartMask defined by some non-zero value in the j loop 256 StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs); 257 } 258 // else StartMask remains set to 0, i.e. all elements are undefs 259 260 if (StartMask < 0) 261 break; 262 // We must stay within the vectors; This case can happen with undefs. 263 if (StartMask + LaneLen > OpNumElts*2) 264 break; 265 } 266 267 // Found an interleaved mask of current factor. 268 if (I == Factor) 269 return true; 270 } 271 272 return false; 273 } 274 275 bool InterleavedAccess::lowerInterleavedLoad( 276 LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) { 277 if (!LI->isSimple()) 278 return false; 279 280 SmallVector<ShuffleVectorInst *, 4> Shuffles; 281 SmallVector<ExtractElementInst *, 4> Extracts; 282 283 // Check if all users of this load are shufflevectors. If we encounter any 284 // users that are extractelement instructions, we save them to later check if 285 // they can be modifed to extract from one of the shufflevectors instead of 286 // the load. 287 for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) { 288 auto *Extract = dyn_cast<ExtractElementInst>(*UI); 289 if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) { 290 Extracts.push_back(Extract); 291 continue; 292 } 293 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI); 294 if (!SVI || !isa<UndefValue>(SVI->getOperand(1))) 295 return false; 296 297 Shuffles.push_back(SVI); 298 } 299 300 if (Shuffles.empty()) 301 return false; 302 303 unsigned Factor, Index; 304 305 // Check if the first shufflevector is DE-interleave shuffle. 306 if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index, 307 MaxFactor)) 308 return false; 309 310 // Holds the corresponding index for each DE-interleave shuffle. 311 SmallVector<unsigned, 4> Indices; 312 Indices.push_back(Index); 313 314 Type *VecTy = Shuffles[0]->getType(); 315 316 // Check if other shufflevectors are also DE-interleaved of the same type 317 // and factor as the first shufflevector. 318 for (unsigned i = 1; i < Shuffles.size(); i++) { 319 if (Shuffles[i]->getType() != VecTy) 320 return false; 321 322 if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor, 323 Index)) 324 return false; 325 326 Indices.push_back(Index); 327 } 328 329 // Try and modify users of the load that are extractelement instructions to 330 // use the shufflevector instructions instead of the load. 331 if (!tryReplaceExtracts(Extracts, Shuffles)) 332 return false; 333 334 LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n"); 335 336 // Try to create target specific intrinsics to replace the load and shuffles. 337 if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) 338 return false; 339 340 for (auto SVI : Shuffles) 341 DeadInsts.push_back(SVI); 342 343 DeadInsts.push_back(LI); 344 return true; 345 } 346 347 bool InterleavedAccess::tryReplaceExtracts( 348 ArrayRef<ExtractElementInst *> Extracts, 349 ArrayRef<ShuffleVectorInst *> Shuffles) { 350 // If there aren't any extractelement instructions to modify, there's nothing 351 // to do. 352 if (Extracts.empty()) 353 return true; 354 355 // Maps extractelement instructions to vector-index pairs. The extractlement 356 // instructions will be modified to use the new vector and index operands. 357 DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap; 358 359 for (auto *Extract : Extracts) { 360 // The vector index that is extracted. 361 auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand()); 362 auto Index = IndexOperand->getSExtValue(); 363 364 // Look for a suitable shufflevector instruction. The goal is to modify the 365 // extractelement instruction (which uses an interleaved load) to use one 366 // of the shufflevector instructions instead of the load. 367 for (auto *Shuffle : Shuffles) { 368 // If the shufflevector instruction doesn't dominate the extract, we 369 // can't create a use of it. 370 if (!DT->dominates(Shuffle, Extract)) 371 continue; 372 373 // Inspect the indices of the shufflevector instruction. If the shuffle 374 // selects the same index that is extracted, we can modify the 375 // extractelement instruction. 376 SmallVector<int, 4> Indices; 377 Shuffle->getShuffleMask(Indices); 378 for (unsigned I = 0; I < Indices.size(); ++I) 379 if (Indices[I] == Index) { 380 assert(Extract->getOperand(0) == Shuffle->getOperand(0) && 381 "Vector operations do not match"); 382 ReplacementMap[Extract] = std::make_pair(Shuffle, I); 383 break; 384 } 385 386 // If we found a suitable shufflevector instruction, stop looking. 387 if (ReplacementMap.count(Extract)) 388 break; 389 } 390 391 // If we did not find a suitable shufflevector instruction, the 392 // extractelement instruction cannot be modified, so we must give up. 393 if (!ReplacementMap.count(Extract)) 394 return false; 395 } 396 397 // Finally, perform the replacements. 398 IRBuilder<> Builder(Extracts[0]->getContext()); 399 for (auto &Replacement : ReplacementMap) { 400 auto *Extract = Replacement.first; 401 auto *Vector = Replacement.second.first; 402 auto Index = Replacement.second.second; 403 Builder.SetInsertPoint(Extract); 404 Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index)); 405 Extract->eraseFromParent(); 406 } 407 408 return true; 409 } 410 411 bool InterleavedAccess::lowerInterleavedStore( 412 StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) { 413 if (!SI->isSimple()) 414 return false; 415 416 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand()); 417 if (!SVI || !SVI->hasOneUse()) 418 return false; 419 420 // Check if the shufflevector is RE-interleave shuffle. 421 unsigned Factor; 422 unsigned OpNumElts = SVI->getOperand(0)->getType()->getVectorNumElements(); 423 if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts)) 424 return false; 425 426 LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n"); 427 428 // Try to create target specific intrinsics to replace the store and shuffle. 429 if (!TLI->lowerInterleavedStore(SI, SVI, Factor)) 430 return false; 431 432 // Already have a new target specific interleaved store. Erase the old store. 433 DeadInsts.push_back(SI); 434 DeadInsts.push_back(SVI); 435 return true; 436 } 437 438 bool InterleavedAccess::runOnFunction(Function &F) { 439 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 440 if (!TPC || !LowerInterleavedAccesses) 441 return false; 442 443 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n"); 444 445 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 446 auto &TM = TPC->getTM<TargetMachine>(); 447 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 448 MaxFactor = TLI->getMaxSupportedInterleaveFactor(); 449 450 // Holds dead instructions that will be erased later. 451 SmallVector<Instruction *, 32> DeadInsts; 452 bool Changed = false; 453 454 for (auto &I : instructions(F)) { 455 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) 456 Changed |= lowerInterleavedLoad(LI, DeadInsts); 457 458 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 459 Changed |= lowerInterleavedStore(SI, DeadInsts); 460 } 461 462 for (auto I : DeadInsts) 463 I->eraseFromParent(); 464 465 return Changed; 466 } 467