1 //===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass turns explicit null checks of the form
10 //
11 //   test %r10, %r10
12 //   je throw_npe
13 //   movl (%r10), %esi
14 //   ...
15 //
16 // to
17 //
18 //   faulting_load_op("movl (%r10), %esi", throw_npe)
19 //   ...
20 //
21 // With the help of a runtime that understands the .fault_maps section,
22 // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
23 // a page fault.
24 // Store and LoadStore are also supported.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/Analysis/AliasAnalysis.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/CodeGen/FaultMaps.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFunctionPass.h"
40 #include "llvm/CodeGen/MachineInstr.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/PseudoSourceValue.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/TargetOpcodes.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/IR/BasicBlock.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/MC/MCInstrDesc.h"
54 #include "llvm/MC/MCRegisterInfo.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/CommandLine.h"
57 #include <cassert>
58 #include <cstdint>
59 #include <iterator>
60 
61 using namespace llvm;
62 
63 static cl::opt<int> PageSize("imp-null-check-page-size",
64                              cl::desc("The page size of the target in bytes"),
65                              cl::init(4096), cl::Hidden);
66 
67 static cl::opt<unsigned> MaxInstsToConsider(
68     "imp-null-max-insts-to-consider",
69     cl::desc("The max number of instructions to consider hoisting loads over "
70              "(the algorithm is quadratic over this number)"),
71     cl::Hidden, cl::init(8));
72 
73 #define DEBUG_TYPE "implicit-null-checks"
74 
75 STATISTIC(NumImplicitNullChecks,
76           "Number of explicit null checks made implicit");
77 
78 namespace {
79 
80 class ImplicitNullChecks : public MachineFunctionPass {
81   /// Return true if \c computeDependence can process \p MI.
82   static bool canHandle(const MachineInstr *MI);
83 
84   /// Helper function for \c computeDependence.  Return true if \p A
85   /// and \p B do not have any dependences between them, and can be
86   /// re-ordered without changing program semantics.
87   bool canReorder(const MachineInstr *A, const MachineInstr *B);
88 
89   /// A data type for representing the result computed by \c
90   /// computeDependence.  States whether it is okay to reorder the
91   /// instruction passed to \c computeDependence with at most one
92   /// dependency.
93   struct DependenceResult {
94     /// Can we actually re-order \p MI with \p Insts (see \c
95     /// computeDependence).
96     bool CanReorder;
97 
98     /// If non-None, then an instruction in \p Insts that also must be
99     /// hoisted.
100     Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence;
101 
102     /*implicit*/ DependenceResult(
103         bool CanReorder,
104         Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence)
105         : CanReorder(CanReorder), PotentialDependence(PotentialDependence) {
106       assert((!PotentialDependence || CanReorder) &&
107              "!CanReorder && PotentialDependence.hasValue() not allowed!");
108     }
109   };
110 
111   /// Compute a result for the following question: can \p MI be
112   /// re-ordered from after \p Insts to before it.
113   ///
114   /// \c canHandle should return true for all instructions in \p
115   /// Insts.
116   DependenceResult computeDependence(const MachineInstr *MI,
117                                      ArrayRef<MachineInstr *> Block);
118 
119   /// Represents one null check that can be made implicit.
120   class NullCheck {
121     // The memory operation the null check can be folded into.
122     MachineInstr *MemOperation;
123 
124     // The instruction actually doing the null check (Ptr != 0).
125     MachineInstr *CheckOperation;
126 
127     // The block the check resides in.
128     MachineBasicBlock *CheckBlock;
129 
130     // The block branched to if the pointer is non-null.
131     MachineBasicBlock *NotNullSucc;
132 
133     // The block branched to if the pointer is null.
134     MachineBasicBlock *NullSucc;
135 
136     // If this is non-null, then MemOperation has a dependency on this
137     // instruction; and it needs to be hoisted to execute before MemOperation.
138     MachineInstr *OnlyDependency;
139 
140   public:
141     explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
142                        MachineBasicBlock *checkBlock,
143                        MachineBasicBlock *notNullSucc,
144                        MachineBasicBlock *nullSucc,
145                        MachineInstr *onlyDependency)
146         : MemOperation(memOperation), CheckOperation(checkOperation),
147           CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc),
148           OnlyDependency(onlyDependency) {}
149 
150     MachineInstr *getMemOperation() const { return MemOperation; }
151 
152     MachineInstr *getCheckOperation() const { return CheckOperation; }
153 
154     MachineBasicBlock *getCheckBlock() const { return CheckBlock; }
155 
156     MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; }
157 
158     MachineBasicBlock *getNullSucc() const { return NullSucc; }
159 
160     MachineInstr *getOnlyDependency() const { return OnlyDependency; }
161   };
162 
163   const TargetInstrInfo *TII = nullptr;
164   const TargetRegisterInfo *TRI = nullptr;
165   AliasAnalysis *AA = nullptr;
166   MachineFrameInfo *MFI = nullptr;
167 
168   bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
169                                  SmallVectorImpl<NullCheck> &NullCheckList);
170   MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB,
171                                     MachineBasicBlock *HandlerMBB);
172   void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
173 
174   enum AliasResult {
175     AR_NoAlias,
176     AR_MayAlias,
177     AR_WillAliasEverything
178   };
179 
180   /// Returns AR_NoAlias if \p MI memory operation does not alias with
181   /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if
182   /// they may alias and any further memory operation may alias with \p PrevMI.
183   AliasResult areMemoryOpsAliased(const MachineInstr &MI,
184                                   const MachineInstr *PrevMI) const;
185 
186   enum SuitabilityResult {
187     SR_Suitable,
188     SR_Unsuitable,
189     SR_Impossible
190   };
191 
192   /// Return SR_Suitable if \p MI a memory operation that can be used to
193   /// implicitly null check the value in \p PointerReg, SR_Unsuitable if
194   /// \p MI cannot be used to null check and SR_Impossible if there is
195   /// no sense to continue lookup due to any other instruction will not be able
196   /// to be used. \p PrevInsts is the set of instruction seen since
197   /// the explicit null check on \p PointerReg.
198   SuitabilityResult isSuitableMemoryOp(const MachineInstr &MI,
199                                        unsigned PointerReg,
200                                        ArrayRef<MachineInstr *> PrevInsts);
201 
202   /// Return true if \p FaultingMI can be hoisted from after the
203   /// instructions in \p InstsSeenSoFar to before them.  Set \p Dependence to a
204   /// non-null value if we also need to (and legally can) hoist a depedency.
205   bool canHoistInst(MachineInstr *FaultingMI, unsigned PointerReg,
206                     ArrayRef<MachineInstr *> InstsSeenSoFar,
207                     MachineBasicBlock *NullSucc, MachineInstr *&Dependence);
208 
209 public:
210   static char ID;
211 
212   ImplicitNullChecks() : MachineFunctionPass(ID) {
213     initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
214   }
215 
216   bool runOnMachineFunction(MachineFunction &MF) override;
217 
218   void getAnalysisUsage(AnalysisUsage &AU) const override {
219     AU.addRequired<AAResultsWrapperPass>();
220     MachineFunctionPass::getAnalysisUsage(AU);
221   }
222 
223   MachineFunctionProperties getRequiredProperties() const override {
224     return MachineFunctionProperties().set(
225         MachineFunctionProperties::Property::NoVRegs);
226   }
227 };
228 
229 } // end anonymous namespace
230 
231 bool ImplicitNullChecks::canHandle(const MachineInstr *MI) {
232   if (MI->isCall() || MI->hasUnmodeledSideEffects())
233     return false;
234   auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); };
235   (void)IsRegMask;
236 
237   assert(!llvm::any_of(MI->operands(), IsRegMask) &&
238          "Calls were filtered out above!");
239 
240   auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); };
241   return llvm::all_of(MI->memoperands(), IsUnordered);
242 }
243 
244 ImplicitNullChecks::DependenceResult
245 ImplicitNullChecks::computeDependence(const MachineInstr *MI,
246                                       ArrayRef<MachineInstr *> Block) {
247   assert(llvm::all_of(Block, canHandle) && "Check this first!");
248   assert(!is_contained(Block, MI) && "Block must be exclusive of MI!");
249 
250   Optional<ArrayRef<MachineInstr *>::iterator> Dep;
251 
252   for (auto I = Block.begin(), E = Block.end(); I != E; ++I) {
253     if (canReorder(*I, MI))
254       continue;
255 
256     if (Dep == None) {
257       // Found one possible dependency, keep track of it.
258       Dep = I;
259     } else {
260       // We found two dependencies, so bail out.
261       return {false, None};
262     }
263   }
264 
265   return {true, Dep};
266 }
267 
268 bool ImplicitNullChecks::canReorder(const MachineInstr *A,
269                                     const MachineInstr *B) {
270   assert(canHandle(A) && canHandle(B) && "Precondition!");
271 
272   // canHandle makes sure that we _can_ correctly analyze the dependencies
273   // between A and B here -- for instance, we should not be dealing with heap
274   // load-store dependencies here.
275 
276   for (auto MOA : A->operands()) {
277     if (!(MOA.isReg() && MOA.getReg()))
278       continue;
279 
280     unsigned RegA = MOA.getReg();
281     for (auto MOB : B->operands()) {
282       if (!(MOB.isReg() && MOB.getReg()))
283         continue;
284 
285       unsigned RegB = MOB.getReg();
286 
287       if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef()))
288         return false;
289     }
290   }
291 
292   return true;
293 }
294 
295 bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
296   TII = MF.getSubtarget().getInstrInfo();
297   TRI = MF.getRegInfo().getTargetRegisterInfo();
298   MFI = &MF.getFrameInfo();
299   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
300 
301   SmallVector<NullCheck, 16> NullCheckList;
302 
303   for (auto &MBB : MF)
304     analyzeBlockForNullChecks(MBB, NullCheckList);
305 
306   if (!NullCheckList.empty())
307     rewriteNullChecks(NullCheckList);
308 
309   return !NullCheckList.empty();
310 }
311 
312 // Return true if any register aliasing \p Reg is live-in into \p MBB.
313 static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
314                            MachineBasicBlock *MBB, unsigned Reg) {
315   for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid();
316        ++AR)
317     if (MBB->isLiveIn(*AR))
318       return true;
319   return false;
320 }
321 
322 ImplicitNullChecks::AliasResult
323 ImplicitNullChecks::areMemoryOpsAliased(const MachineInstr &MI,
324                                         const MachineInstr *PrevMI) const {
325   // If it is not memory access, skip the check.
326   if (!(PrevMI->mayStore() || PrevMI->mayLoad()))
327     return AR_NoAlias;
328   // Load-Load may alias
329   if (!(MI.mayStore() || PrevMI->mayStore()))
330     return AR_NoAlias;
331   // We lost info, conservatively alias. If it was store then no sense to
332   // continue because we won't be able to check against it further.
333   if (MI.memoperands_empty())
334     return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias;
335   if (PrevMI->memoperands_empty())
336     return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias;
337 
338   for (MachineMemOperand *MMO1 : MI.memoperands()) {
339     // MMO1 should have a value due it comes from operation we'd like to use
340     // as implicit null check.
341     assert(MMO1->getValue() && "MMO1 should have a Value!");
342     for (MachineMemOperand *MMO2 : PrevMI->memoperands()) {
343       if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) {
344         if (PSV->mayAlias(MFI))
345           return AR_MayAlias;
346         continue;
347       }
348       llvm::AliasResult AAResult =
349           AA->alias(MemoryLocation(MMO1->getValue(), LocationSize::unknown(),
350                                    MMO1->getAAInfo()),
351                     MemoryLocation(MMO2->getValue(), LocationSize::unknown(),
352                                    MMO2->getAAInfo()));
353       if (AAResult != NoAlias)
354         return AR_MayAlias;
355     }
356   }
357   return AR_NoAlias;
358 }
359 
360 ImplicitNullChecks::SuitabilityResult
361 ImplicitNullChecks::isSuitableMemoryOp(const MachineInstr &MI,
362                                        unsigned PointerReg,
363                                        ArrayRef<MachineInstr *> PrevInsts) {
364   int64_t Offset;
365   const MachineOperand *BaseOp;
366 
367   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI) ||
368       !BaseOp->isReg() || BaseOp->getReg() != PointerReg)
369     return SR_Unsuitable;
370 
371   // We want the mem access to be issued at a sane offset from PointerReg,
372   // so that if PointerReg is null then the access reliably page faults.
373   if (!((MI.mayLoad() || MI.mayStore()) && !MI.isPredicable() &&
374         -PageSize < Offset && Offset < PageSize))
375     return SR_Unsuitable;
376 
377   // Finally, check whether the current memory access aliases with previous one.
378   for (auto *PrevMI : PrevInsts) {
379     AliasResult AR = areMemoryOpsAliased(MI, PrevMI);
380     if (AR == AR_WillAliasEverything)
381       return SR_Impossible;
382     if (AR == AR_MayAlias)
383       return SR_Unsuitable;
384   }
385   return SR_Suitable;
386 }
387 
388 bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI,
389                                       unsigned PointerReg,
390                                       ArrayRef<MachineInstr *> InstsSeenSoFar,
391                                       MachineBasicBlock *NullSucc,
392                                       MachineInstr *&Dependence) {
393   auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar);
394   if (!DepResult.CanReorder)
395     return false;
396 
397   if (!DepResult.PotentialDependence) {
398     Dependence = nullptr;
399     return true;
400   }
401 
402   auto DependenceItr = *DepResult.PotentialDependence;
403   auto *DependenceMI = *DependenceItr;
404 
405   // We don't want to reason about speculating loads.  Note -- at this point
406   // we should have already filtered out all of the other non-speculatable
407   // things, like calls and stores.
408   // We also do not want to hoist stores because it might change the memory
409   // while the FaultingMI may result in faulting.
410   assert(canHandle(DependenceMI) && "Should never have reached here!");
411   if (DependenceMI->mayLoadOrStore())
412     return false;
413 
414   for (auto &DependenceMO : DependenceMI->operands()) {
415     if (!(DependenceMO.isReg() && DependenceMO.getReg()))
416       continue;
417 
418     // Make sure that we won't clobber any live ins to the sibling block by
419     // hoisting Dependency.  For instance, we can't hoist INST to before the
420     // null check (even if it safe, and does not violate any dependencies in
421     // the non_null_block) if %rdx is live in to _null_block.
422     //
423     //    test %rcx, %rcx
424     //    je _null_block
425     //  _non_null_block:
426     //    %rdx = INST
427     //    ...
428     //
429     // This restriction does not apply to the faulting load inst because in
430     // case the pointer loaded from is in the null page, the load will not
431     // semantically execute, and affect machine state.  That is, if the load
432     // was loading into %rax and it faults, the value of %rax should stay the
433     // same as it would have been had the load not have executed and we'd have
434     // branched to NullSucc directly.
435     if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg()))
436       return false;
437 
438     // The Dependency can't be re-defining the base register -- then we won't
439     // get the memory operation on the address we want.  This is already
440     // checked in \c IsSuitableMemoryOp.
441     assert(!(DependenceMO.isDef() &&
442              TRI->regsOverlap(DependenceMO.getReg(), PointerReg)) &&
443            "Should have been checked before!");
444   }
445 
446   auto DepDepResult =
447       computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr});
448 
449   if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence)
450     return false;
451 
452   Dependence = DependenceMI;
453   return true;
454 }
455 
456 /// Analyze MBB to check if its terminating branch can be turned into an
457 /// implicit null check.  If yes, append a description of the said null check to
458 /// NullCheckList and return true, else return false.
459 bool ImplicitNullChecks::analyzeBlockForNullChecks(
460     MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
461   using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
462 
463   MDNode *BranchMD = nullptr;
464   if (auto *BB = MBB.getBasicBlock())
465     BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
466 
467   if (!BranchMD)
468     return false;
469 
470   MachineBranchPredicate MBP;
471 
472   if (TII->analyzeBranchPredicate(MBB, MBP, true))
473     return false;
474 
475   // Is the predicate comparing an integer to zero?
476   if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
477         (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
478          MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
479     return false;
480 
481   // If we cannot erase the test instruction itself, then making the null check
482   // implicit does not buy us much.
483   if (!MBP.SingleUseCondition)
484     return false;
485 
486   MachineBasicBlock *NotNullSucc, *NullSucc;
487 
488   if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
489     NotNullSucc = MBP.TrueDest;
490     NullSucc = MBP.FalseDest;
491   } else {
492     NotNullSucc = MBP.FalseDest;
493     NullSucc = MBP.TrueDest;
494   }
495 
496   // We handle the simplest case for now.  We can potentially do better by using
497   // the machine dominator tree.
498   if (NotNullSucc->pred_size() != 1)
499     return false;
500 
501   // To prevent the invalid transformation of the following code:
502   //
503   //   mov %rax, %rcx
504   //   test %rax, %rax
505   //   %rax = ...
506   //   je throw_npe
507   //   mov(%rcx), %r9
508   //   mov(%rax), %r10
509   //
510   // into:
511   //
512   //   mov %rax, %rcx
513   //   %rax = ....
514   //   faulting_load_op("movl (%rax), %r10", throw_npe)
515   //   mov(%rcx), %r9
516   //
517   // we must ensure that there are no instructions between the 'test' and
518   // conditional jump that modify %rax.
519   const unsigned PointerReg = MBP.LHS.getReg();
520 
521   assert(MBP.ConditionDef->getParent() ==  &MBB && "Should be in basic block");
522 
523   for (auto I = MBB.rbegin(); MBP.ConditionDef != &*I; ++I)
524     if (I->modifiesRegister(PointerReg, TRI))
525       return false;
526 
527   // Starting with a code fragment like:
528   //
529   //   test %rax, %rax
530   //   jne LblNotNull
531   //
532   //  LblNull:
533   //   callq throw_NullPointerException
534   //
535   //  LblNotNull:
536   //   Inst0
537   //   Inst1
538   //   ...
539   //   Def = Load (%rax + <offset>)
540   //   ...
541   //
542   //
543   // we want to end up with
544   //
545   //   Def = FaultingLoad (%rax + <offset>), LblNull
546   //   jmp LblNotNull ;; explicit or fallthrough
547   //
548   //  LblNotNull:
549   //   Inst0
550   //   Inst1
551   //   ...
552   //
553   //  LblNull:
554   //   callq throw_NullPointerException
555   //
556   //
557   // To see why this is legal, consider the two possibilities:
558   //
559   //  1. %rax is null: since we constrain <offset> to be less than PageSize, the
560   //     load instruction dereferences the null page, causing a segmentation
561   //     fault.
562   //
563   //  2. %rax is not null: in this case we know that the load cannot fault, as
564   //     otherwise the load would've faulted in the original program too and the
565   //     original program would've been undefined.
566   //
567   // This reasoning cannot be extended to justify hoisting through arbitrary
568   // control flow.  For instance, in the example below (in pseudo-C)
569   //
570   //    if (ptr == null) { throw_npe(); unreachable; }
571   //    if (some_cond) { return 42; }
572   //    v = ptr->field;  // LD
573   //    ...
574   //
575   // we cannot (without code duplication) use the load marked "LD" to null check
576   // ptr -- clause (2) above does not apply in this case.  In the above program
577   // the safety of ptr->field can be dependent on some_cond; and, for instance,
578   // ptr could be some non-null invalid reference that never gets loaded from
579   // because some_cond is always true.
580 
581   SmallVector<MachineInstr *, 8> InstsSeenSoFar;
582 
583   for (auto &MI : *NotNullSucc) {
584     if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider)
585       return false;
586 
587     MachineInstr *Dependence;
588     SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar);
589     if (SR == SR_Impossible)
590       return false;
591     if (SR == SR_Suitable &&
592         canHoistInst(&MI, PointerReg, InstsSeenSoFar, NullSucc, Dependence)) {
593       NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
594                                  NullSucc, Dependence);
595       return true;
596     }
597 
598     // If MI re-defines the PointerReg then we cannot move further.
599     if (llvm::any_of(MI.operands(), [&](MachineOperand &MO) {
600           return MO.isReg() && MO.getReg() && MO.isDef() &&
601                  TRI->regsOverlap(MO.getReg(), PointerReg);
602         }))
603       return false;
604     InstsSeenSoFar.push_back(&MI);
605   }
606 
607   return false;
608 }
609 
610 /// Wrap a machine instruction, MI, into a FAULTING machine instruction.
611 /// The FAULTING instruction does the same load/store as MI
612 /// (defining the same register), and branches to HandlerMBB if the mem access
613 /// faults.  The FAULTING instruction is inserted at the end of MBB.
614 MachineInstr *ImplicitNullChecks::insertFaultingInstr(
615     MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) {
616   const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
617                                  // all targets.
618 
619   DebugLoc DL;
620   unsigned NumDefs = MI->getDesc().getNumDefs();
621   assert(NumDefs <= 1 && "other cases unhandled!");
622 
623   unsigned DefReg = NoRegister;
624   if (NumDefs != 0) {
625     DefReg = MI->getOperand(0).getReg();
626     assert(NumDefs == 1 && "expected exactly one def!");
627   }
628 
629   FaultMaps::FaultKind FK;
630   if (MI->mayLoad())
631     FK =
632         MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad;
633   else
634     FK = FaultMaps::FaultingStore;
635 
636   auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg)
637                  .addImm(FK)
638                  .addMBB(HandlerMBB)
639                  .addImm(MI->getOpcode());
640 
641   for (auto &MO : MI->uses()) {
642     if (MO.isReg()) {
643       MachineOperand NewMO = MO;
644       if (MO.isUse()) {
645         NewMO.setIsKill(false);
646       } else {
647         assert(MO.isDef() && "Expected def or use");
648         NewMO.setIsDead(false);
649       }
650       MIB.add(NewMO);
651     } else {
652       MIB.add(MO);
653     }
654   }
655 
656   MIB.setMemRefs(MI->memoperands());
657 
658   return MIB;
659 }
660 
661 /// Rewrite the null checks in NullCheckList into implicit null checks.
662 void ImplicitNullChecks::rewriteNullChecks(
663     ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
664   DebugLoc DL;
665 
666   for (auto &NC : NullCheckList) {
667     // Remove the conditional branch dependent on the null check.
668     unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock());
669     (void)BranchesRemoved;
670     assert(BranchesRemoved > 0 && "expected at least one branch!");
671 
672     if (auto *DepMI = NC.getOnlyDependency()) {
673       DepMI->removeFromParent();
674       NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI);
675     }
676 
677     // Insert a faulting instruction where the conditional branch was
678     // originally. We check earlier ensures that this bit of code motion
679     // is legal.  We do not touch the successors list for any basic block
680     // since we haven't changed control flow, we've just made it implicit.
681     MachineInstr *FaultingInstr = insertFaultingInstr(
682         NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc());
683     // Now the values defined by MemOperation, if any, are live-in of
684     // the block of MemOperation.
685     // The original operation may define implicit-defs alongside
686     // the value.
687     MachineBasicBlock *MBB = NC.getMemOperation()->getParent();
688     for (const MachineOperand &MO : FaultingInstr->operands()) {
689       if (!MO.isReg() || !MO.isDef())
690         continue;
691       unsigned Reg = MO.getReg();
692       if (!Reg || MBB->isLiveIn(Reg))
693         continue;
694       MBB->addLiveIn(Reg);
695     }
696 
697     if (auto *DepMI = NC.getOnlyDependency()) {
698       for (auto &MO : DepMI->operands()) {
699         if (!MO.isReg() || !MO.getReg() || !MO.isDef())
700           continue;
701         if (!NC.getNotNullSucc()->isLiveIn(MO.getReg()))
702           NC.getNotNullSucc()->addLiveIn(MO.getReg());
703       }
704     }
705 
706     NC.getMemOperation()->eraseFromParent();
707     NC.getCheckOperation()->eraseFromParent();
708 
709     // Insert an *unconditional* branch to not-null successor.
710     TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
711                       /*Cond=*/None, DL);
712 
713     NumImplicitNullChecks++;
714   }
715 }
716 
717 char ImplicitNullChecks::ID = 0;
718 
719 char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
720 
721 INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE,
722                       "Implicit null checks", false, false)
723 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
724 INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE,
725                     "Implicit null checks", false, false)
726