1 //===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass turns explicit null checks of the form 10 // 11 // test %r10, %r10 12 // je throw_npe 13 // movl (%r10), %esi 14 // ... 15 // 16 // to 17 // 18 // faulting_load_op("movl (%r10), %esi", throw_npe) 19 // ... 20 // 21 // With the help of a runtime that understands the .fault_maps section, 22 // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs 23 // a page fault. 24 // Store and LoadStore are also supported. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/Optional.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/Analysis/AliasAnalysis.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/CodeGen/FaultMaps.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFunctionPass.h" 40 #include "llvm/CodeGen/MachineInstr.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineOperand.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/PseudoSourceValue.h" 46 #include "llvm/CodeGen/TargetInstrInfo.h" 47 #include "llvm/CodeGen/TargetOpcodes.h" 48 #include "llvm/CodeGen/TargetRegisterInfo.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/MC/MCInstrDesc.h" 54 #include "llvm/MC/MCRegisterInfo.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/CommandLine.h" 57 #include <cassert> 58 #include <cstdint> 59 #include <iterator> 60 61 using namespace llvm; 62 63 static cl::opt<int> PageSize("imp-null-check-page-size", 64 cl::desc("The page size of the target in bytes"), 65 cl::init(4096), cl::Hidden); 66 67 static cl::opt<unsigned> MaxInstsToConsider( 68 "imp-null-max-insts-to-consider", 69 cl::desc("The max number of instructions to consider hoisting loads over " 70 "(the algorithm is quadratic over this number)"), 71 cl::Hidden, cl::init(8)); 72 73 #define DEBUG_TYPE "implicit-null-checks" 74 75 STATISTIC(NumImplicitNullChecks, 76 "Number of explicit null checks made implicit"); 77 78 namespace { 79 80 class ImplicitNullChecks : public MachineFunctionPass { 81 /// Return true if \c computeDependence can process \p MI. 82 static bool canHandle(const MachineInstr *MI); 83 84 /// Helper function for \c computeDependence. Return true if \p A 85 /// and \p B do not have any dependences between them, and can be 86 /// re-ordered without changing program semantics. 87 bool canReorder(const MachineInstr *A, const MachineInstr *B); 88 89 /// A data type for representing the result computed by \c 90 /// computeDependence. States whether it is okay to reorder the 91 /// instruction passed to \c computeDependence with at most one 92 /// dependency. 93 struct DependenceResult { 94 /// Can we actually re-order \p MI with \p Insts (see \c 95 /// computeDependence). 96 bool CanReorder; 97 98 /// If non-None, then an instruction in \p Insts that also must be 99 /// hoisted. 100 Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence; 101 102 /*implicit*/ DependenceResult( 103 bool CanReorder, 104 Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence) 105 : CanReorder(CanReorder), PotentialDependence(PotentialDependence) { 106 assert((!PotentialDependence || CanReorder) && 107 "!CanReorder && PotentialDependence.hasValue() not allowed!"); 108 } 109 }; 110 111 /// Compute a result for the following question: can \p MI be 112 /// re-ordered from after \p Insts to before it. 113 /// 114 /// \c canHandle should return true for all instructions in \p 115 /// Insts. 116 DependenceResult computeDependence(const MachineInstr *MI, 117 ArrayRef<MachineInstr *> Block); 118 119 /// Represents one null check that can be made implicit. 120 class NullCheck { 121 // The memory operation the null check can be folded into. 122 MachineInstr *MemOperation; 123 124 // The instruction actually doing the null check (Ptr != 0). 125 MachineInstr *CheckOperation; 126 127 // The block the check resides in. 128 MachineBasicBlock *CheckBlock; 129 130 // The block branched to if the pointer is non-null. 131 MachineBasicBlock *NotNullSucc; 132 133 // The block branched to if the pointer is null. 134 MachineBasicBlock *NullSucc; 135 136 // If this is non-null, then MemOperation has a dependency on this 137 // instruction; and it needs to be hoisted to execute before MemOperation. 138 MachineInstr *OnlyDependency; 139 140 public: 141 explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation, 142 MachineBasicBlock *checkBlock, 143 MachineBasicBlock *notNullSucc, 144 MachineBasicBlock *nullSucc, 145 MachineInstr *onlyDependency) 146 : MemOperation(memOperation), CheckOperation(checkOperation), 147 CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc), 148 OnlyDependency(onlyDependency) {} 149 150 MachineInstr *getMemOperation() const { return MemOperation; } 151 152 MachineInstr *getCheckOperation() const { return CheckOperation; } 153 154 MachineBasicBlock *getCheckBlock() const { return CheckBlock; } 155 156 MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; } 157 158 MachineBasicBlock *getNullSucc() const { return NullSucc; } 159 160 MachineInstr *getOnlyDependency() const { return OnlyDependency; } 161 }; 162 163 const TargetInstrInfo *TII = nullptr; 164 const TargetRegisterInfo *TRI = nullptr; 165 AliasAnalysis *AA = nullptr; 166 MachineFrameInfo *MFI = nullptr; 167 168 bool analyzeBlockForNullChecks(MachineBasicBlock &MBB, 169 SmallVectorImpl<NullCheck> &NullCheckList); 170 MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB, 171 MachineBasicBlock *HandlerMBB); 172 void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList); 173 174 enum AliasResult { 175 AR_NoAlias, 176 AR_MayAlias, 177 AR_WillAliasEverything 178 }; 179 180 /// Returns AR_NoAlias if \p MI memory operation does not alias with 181 /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if 182 /// they may alias and any further memory operation may alias with \p PrevMI. 183 AliasResult areMemoryOpsAliased(const MachineInstr &MI, 184 const MachineInstr *PrevMI) const; 185 186 enum SuitabilityResult { 187 SR_Suitable, 188 SR_Unsuitable, 189 SR_Impossible 190 }; 191 192 /// Return SR_Suitable if \p MI a memory operation that can be used to 193 /// implicitly null check the value in \p PointerReg, SR_Unsuitable if 194 /// \p MI cannot be used to null check and SR_Impossible if there is 195 /// no sense to continue lookup due to any other instruction will not be able 196 /// to be used. \p PrevInsts is the set of instruction seen since 197 /// the explicit null check on \p PointerReg. 198 SuitabilityResult isSuitableMemoryOp(const MachineInstr &MI, 199 unsigned PointerReg, 200 ArrayRef<MachineInstr *> PrevInsts); 201 202 /// Return true if \p FaultingMI can be hoisted from after the 203 /// instructions in \p InstsSeenSoFar to before them. Set \p Dependence to a 204 /// non-null value if we also need to (and legally can) hoist a depedency. 205 bool canHoistInst(MachineInstr *FaultingMI, unsigned PointerReg, 206 ArrayRef<MachineInstr *> InstsSeenSoFar, 207 MachineBasicBlock *NullSucc, MachineInstr *&Dependence); 208 209 public: 210 static char ID; 211 212 ImplicitNullChecks() : MachineFunctionPass(ID) { 213 initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry()); 214 } 215 216 bool runOnMachineFunction(MachineFunction &MF) override; 217 218 void getAnalysisUsage(AnalysisUsage &AU) const override { 219 AU.addRequired<AAResultsWrapperPass>(); 220 MachineFunctionPass::getAnalysisUsage(AU); 221 } 222 223 MachineFunctionProperties getRequiredProperties() const override { 224 return MachineFunctionProperties().set( 225 MachineFunctionProperties::Property::NoVRegs); 226 } 227 }; 228 229 } // end anonymous namespace 230 231 bool ImplicitNullChecks::canHandle(const MachineInstr *MI) { 232 if (MI->isCall() || MI->hasUnmodeledSideEffects()) 233 return false; 234 auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); }; 235 (void)IsRegMask; 236 237 assert(!llvm::any_of(MI->operands(), IsRegMask) && 238 "Calls were filtered out above!"); 239 240 auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); }; 241 return llvm::all_of(MI->memoperands(), IsUnordered); 242 } 243 244 ImplicitNullChecks::DependenceResult 245 ImplicitNullChecks::computeDependence(const MachineInstr *MI, 246 ArrayRef<MachineInstr *> Block) { 247 assert(llvm::all_of(Block, canHandle) && "Check this first!"); 248 assert(!is_contained(Block, MI) && "Block must be exclusive of MI!"); 249 250 Optional<ArrayRef<MachineInstr *>::iterator> Dep; 251 252 for (auto I = Block.begin(), E = Block.end(); I != E; ++I) { 253 if (canReorder(*I, MI)) 254 continue; 255 256 if (Dep == None) { 257 // Found one possible dependency, keep track of it. 258 Dep = I; 259 } else { 260 // We found two dependencies, so bail out. 261 return {false, None}; 262 } 263 } 264 265 return {true, Dep}; 266 } 267 268 bool ImplicitNullChecks::canReorder(const MachineInstr *A, 269 const MachineInstr *B) { 270 assert(canHandle(A) && canHandle(B) && "Precondition!"); 271 272 // canHandle makes sure that we _can_ correctly analyze the dependencies 273 // between A and B here -- for instance, we should not be dealing with heap 274 // load-store dependencies here. 275 276 for (auto MOA : A->operands()) { 277 if (!(MOA.isReg() && MOA.getReg())) 278 continue; 279 280 unsigned RegA = MOA.getReg(); 281 for (auto MOB : B->operands()) { 282 if (!(MOB.isReg() && MOB.getReg())) 283 continue; 284 285 unsigned RegB = MOB.getReg(); 286 287 if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef())) 288 return false; 289 } 290 } 291 292 return true; 293 } 294 295 bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) { 296 TII = MF.getSubtarget().getInstrInfo(); 297 TRI = MF.getRegInfo().getTargetRegisterInfo(); 298 MFI = &MF.getFrameInfo(); 299 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 300 301 SmallVector<NullCheck, 16> NullCheckList; 302 303 for (auto &MBB : MF) 304 analyzeBlockForNullChecks(MBB, NullCheckList); 305 306 if (!NullCheckList.empty()) 307 rewriteNullChecks(NullCheckList); 308 309 return !NullCheckList.empty(); 310 } 311 312 // Return true if any register aliasing \p Reg is live-in into \p MBB. 313 static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI, 314 MachineBasicBlock *MBB, unsigned Reg) { 315 for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid(); 316 ++AR) 317 if (MBB->isLiveIn(*AR)) 318 return true; 319 return false; 320 } 321 322 ImplicitNullChecks::AliasResult 323 ImplicitNullChecks::areMemoryOpsAliased(const MachineInstr &MI, 324 const MachineInstr *PrevMI) const { 325 // If it is not memory access, skip the check. 326 if (!(PrevMI->mayStore() || PrevMI->mayLoad())) 327 return AR_NoAlias; 328 // Load-Load may alias 329 if (!(MI.mayStore() || PrevMI->mayStore())) 330 return AR_NoAlias; 331 // We lost info, conservatively alias. If it was store then no sense to 332 // continue because we won't be able to check against it further. 333 if (MI.memoperands_empty()) 334 return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias; 335 if (PrevMI->memoperands_empty()) 336 return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias; 337 338 for (MachineMemOperand *MMO1 : MI.memoperands()) { 339 // MMO1 should have a value due it comes from operation we'd like to use 340 // as implicit null check. 341 assert(MMO1->getValue() && "MMO1 should have a Value!"); 342 for (MachineMemOperand *MMO2 : PrevMI->memoperands()) { 343 if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) { 344 if (PSV->mayAlias(MFI)) 345 return AR_MayAlias; 346 continue; 347 } 348 llvm::AliasResult AAResult = 349 AA->alias(MemoryLocation(MMO1->getValue(), LocationSize::unknown(), 350 MMO1->getAAInfo()), 351 MemoryLocation(MMO2->getValue(), LocationSize::unknown(), 352 MMO2->getAAInfo())); 353 if (AAResult != NoAlias) 354 return AR_MayAlias; 355 } 356 } 357 return AR_NoAlias; 358 } 359 360 ImplicitNullChecks::SuitabilityResult 361 ImplicitNullChecks::isSuitableMemoryOp(const MachineInstr &MI, 362 unsigned PointerReg, 363 ArrayRef<MachineInstr *> PrevInsts) { 364 int64_t Offset; 365 const MachineOperand *BaseOp; 366 367 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI) || 368 !BaseOp->isReg() || BaseOp->getReg() != PointerReg) 369 return SR_Unsuitable; 370 371 // We want the mem access to be issued at a sane offset from PointerReg, 372 // so that if PointerReg is null then the access reliably page faults. 373 if (!((MI.mayLoad() || MI.mayStore()) && !MI.isPredicable() && 374 -PageSize < Offset && Offset < PageSize)) 375 return SR_Unsuitable; 376 377 // Finally, check whether the current memory access aliases with previous one. 378 for (auto *PrevMI : PrevInsts) { 379 AliasResult AR = areMemoryOpsAliased(MI, PrevMI); 380 if (AR == AR_WillAliasEverything) 381 return SR_Impossible; 382 if (AR == AR_MayAlias) 383 return SR_Unsuitable; 384 } 385 return SR_Suitable; 386 } 387 388 bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI, 389 unsigned PointerReg, 390 ArrayRef<MachineInstr *> InstsSeenSoFar, 391 MachineBasicBlock *NullSucc, 392 MachineInstr *&Dependence) { 393 auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar); 394 if (!DepResult.CanReorder) 395 return false; 396 397 if (!DepResult.PotentialDependence) { 398 Dependence = nullptr; 399 return true; 400 } 401 402 auto DependenceItr = *DepResult.PotentialDependence; 403 auto *DependenceMI = *DependenceItr; 404 405 // We don't want to reason about speculating loads. Note -- at this point 406 // we should have already filtered out all of the other non-speculatable 407 // things, like calls and stores. 408 // We also do not want to hoist stores because it might change the memory 409 // while the FaultingMI may result in faulting. 410 assert(canHandle(DependenceMI) && "Should never have reached here!"); 411 if (DependenceMI->mayLoadOrStore()) 412 return false; 413 414 for (auto &DependenceMO : DependenceMI->operands()) { 415 if (!(DependenceMO.isReg() && DependenceMO.getReg())) 416 continue; 417 418 // Make sure that we won't clobber any live ins to the sibling block by 419 // hoisting Dependency. For instance, we can't hoist INST to before the 420 // null check (even if it safe, and does not violate any dependencies in 421 // the non_null_block) if %rdx is live in to _null_block. 422 // 423 // test %rcx, %rcx 424 // je _null_block 425 // _non_null_block: 426 // %rdx = INST 427 // ... 428 // 429 // This restriction does not apply to the faulting load inst because in 430 // case the pointer loaded from is in the null page, the load will not 431 // semantically execute, and affect machine state. That is, if the load 432 // was loading into %rax and it faults, the value of %rax should stay the 433 // same as it would have been had the load not have executed and we'd have 434 // branched to NullSucc directly. 435 if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg())) 436 return false; 437 438 // The Dependency can't be re-defining the base register -- then we won't 439 // get the memory operation on the address we want. This is already 440 // checked in \c IsSuitableMemoryOp. 441 assert(!(DependenceMO.isDef() && 442 TRI->regsOverlap(DependenceMO.getReg(), PointerReg)) && 443 "Should have been checked before!"); 444 } 445 446 auto DepDepResult = 447 computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr}); 448 449 if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence) 450 return false; 451 452 Dependence = DependenceMI; 453 return true; 454 } 455 456 /// Analyze MBB to check if its terminating branch can be turned into an 457 /// implicit null check. If yes, append a description of the said null check to 458 /// NullCheckList and return true, else return false. 459 bool ImplicitNullChecks::analyzeBlockForNullChecks( 460 MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) { 461 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 462 463 MDNode *BranchMD = nullptr; 464 if (auto *BB = MBB.getBasicBlock()) 465 BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit); 466 467 if (!BranchMD) 468 return false; 469 470 MachineBranchPredicate MBP; 471 472 if (TII->analyzeBranchPredicate(MBB, MBP, true)) 473 return false; 474 475 // Is the predicate comparing an integer to zero? 476 if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 477 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 478 MBP.Predicate == MachineBranchPredicate::PRED_EQ))) 479 return false; 480 481 // If we cannot erase the test instruction itself, then making the null check 482 // implicit does not buy us much. 483 if (!MBP.SingleUseCondition) 484 return false; 485 486 MachineBasicBlock *NotNullSucc, *NullSucc; 487 488 if (MBP.Predicate == MachineBranchPredicate::PRED_NE) { 489 NotNullSucc = MBP.TrueDest; 490 NullSucc = MBP.FalseDest; 491 } else { 492 NotNullSucc = MBP.FalseDest; 493 NullSucc = MBP.TrueDest; 494 } 495 496 // We handle the simplest case for now. We can potentially do better by using 497 // the machine dominator tree. 498 if (NotNullSucc->pred_size() != 1) 499 return false; 500 501 // To prevent the invalid transformation of the following code: 502 // 503 // mov %rax, %rcx 504 // test %rax, %rax 505 // %rax = ... 506 // je throw_npe 507 // mov(%rcx), %r9 508 // mov(%rax), %r10 509 // 510 // into: 511 // 512 // mov %rax, %rcx 513 // %rax = .... 514 // faulting_load_op("movl (%rax), %r10", throw_npe) 515 // mov(%rcx), %r9 516 // 517 // we must ensure that there are no instructions between the 'test' and 518 // conditional jump that modify %rax. 519 const unsigned PointerReg = MBP.LHS.getReg(); 520 521 assert(MBP.ConditionDef->getParent() == &MBB && "Should be in basic block"); 522 523 for (auto I = MBB.rbegin(); MBP.ConditionDef != &*I; ++I) 524 if (I->modifiesRegister(PointerReg, TRI)) 525 return false; 526 527 // Starting with a code fragment like: 528 // 529 // test %rax, %rax 530 // jne LblNotNull 531 // 532 // LblNull: 533 // callq throw_NullPointerException 534 // 535 // LblNotNull: 536 // Inst0 537 // Inst1 538 // ... 539 // Def = Load (%rax + <offset>) 540 // ... 541 // 542 // 543 // we want to end up with 544 // 545 // Def = FaultingLoad (%rax + <offset>), LblNull 546 // jmp LblNotNull ;; explicit or fallthrough 547 // 548 // LblNotNull: 549 // Inst0 550 // Inst1 551 // ... 552 // 553 // LblNull: 554 // callq throw_NullPointerException 555 // 556 // 557 // To see why this is legal, consider the two possibilities: 558 // 559 // 1. %rax is null: since we constrain <offset> to be less than PageSize, the 560 // load instruction dereferences the null page, causing a segmentation 561 // fault. 562 // 563 // 2. %rax is not null: in this case we know that the load cannot fault, as 564 // otherwise the load would've faulted in the original program too and the 565 // original program would've been undefined. 566 // 567 // This reasoning cannot be extended to justify hoisting through arbitrary 568 // control flow. For instance, in the example below (in pseudo-C) 569 // 570 // if (ptr == null) { throw_npe(); unreachable; } 571 // if (some_cond) { return 42; } 572 // v = ptr->field; // LD 573 // ... 574 // 575 // we cannot (without code duplication) use the load marked "LD" to null check 576 // ptr -- clause (2) above does not apply in this case. In the above program 577 // the safety of ptr->field can be dependent on some_cond; and, for instance, 578 // ptr could be some non-null invalid reference that never gets loaded from 579 // because some_cond is always true. 580 581 SmallVector<MachineInstr *, 8> InstsSeenSoFar; 582 583 for (auto &MI : *NotNullSucc) { 584 if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider) 585 return false; 586 587 MachineInstr *Dependence; 588 SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar); 589 if (SR == SR_Impossible) 590 return false; 591 if (SR == SR_Suitable && 592 canHoistInst(&MI, PointerReg, InstsSeenSoFar, NullSucc, Dependence)) { 593 NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc, 594 NullSucc, Dependence); 595 return true; 596 } 597 598 // If MI re-defines the PointerReg then we cannot move further. 599 if (llvm::any_of(MI.operands(), [&](MachineOperand &MO) { 600 return MO.isReg() && MO.getReg() && MO.isDef() && 601 TRI->regsOverlap(MO.getReg(), PointerReg); 602 })) 603 return false; 604 InstsSeenSoFar.push_back(&MI); 605 } 606 607 return false; 608 } 609 610 /// Wrap a machine instruction, MI, into a FAULTING machine instruction. 611 /// The FAULTING instruction does the same load/store as MI 612 /// (defining the same register), and branches to HandlerMBB if the mem access 613 /// faults. The FAULTING instruction is inserted at the end of MBB. 614 MachineInstr *ImplicitNullChecks::insertFaultingInstr( 615 MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) { 616 const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for 617 // all targets. 618 619 DebugLoc DL; 620 unsigned NumDefs = MI->getDesc().getNumDefs(); 621 assert(NumDefs <= 1 && "other cases unhandled!"); 622 623 unsigned DefReg = NoRegister; 624 if (NumDefs != 0) { 625 DefReg = MI->getOperand(0).getReg(); 626 assert(NumDefs == 1 && "expected exactly one def!"); 627 } 628 629 FaultMaps::FaultKind FK; 630 if (MI->mayLoad()) 631 FK = 632 MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad; 633 else 634 FK = FaultMaps::FaultingStore; 635 636 auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg) 637 .addImm(FK) 638 .addMBB(HandlerMBB) 639 .addImm(MI->getOpcode()); 640 641 for (auto &MO : MI->uses()) { 642 if (MO.isReg()) { 643 MachineOperand NewMO = MO; 644 if (MO.isUse()) { 645 NewMO.setIsKill(false); 646 } else { 647 assert(MO.isDef() && "Expected def or use"); 648 NewMO.setIsDead(false); 649 } 650 MIB.add(NewMO); 651 } else { 652 MIB.add(MO); 653 } 654 } 655 656 MIB.setMemRefs(MI->memoperands()); 657 658 return MIB; 659 } 660 661 /// Rewrite the null checks in NullCheckList into implicit null checks. 662 void ImplicitNullChecks::rewriteNullChecks( 663 ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) { 664 DebugLoc DL; 665 666 for (auto &NC : NullCheckList) { 667 // Remove the conditional branch dependent on the null check. 668 unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock()); 669 (void)BranchesRemoved; 670 assert(BranchesRemoved > 0 && "expected at least one branch!"); 671 672 if (auto *DepMI = NC.getOnlyDependency()) { 673 DepMI->removeFromParent(); 674 NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI); 675 } 676 677 // Insert a faulting instruction where the conditional branch was 678 // originally. We check earlier ensures that this bit of code motion 679 // is legal. We do not touch the successors list for any basic block 680 // since we haven't changed control flow, we've just made it implicit. 681 MachineInstr *FaultingInstr = insertFaultingInstr( 682 NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc()); 683 // Now the values defined by MemOperation, if any, are live-in of 684 // the block of MemOperation. 685 // The original operation may define implicit-defs alongside 686 // the value. 687 MachineBasicBlock *MBB = NC.getMemOperation()->getParent(); 688 for (const MachineOperand &MO : FaultingInstr->operands()) { 689 if (!MO.isReg() || !MO.isDef()) 690 continue; 691 unsigned Reg = MO.getReg(); 692 if (!Reg || MBB->isLiveIn(Reg)) 693 continue; 694 MBB->addLiveIn(Reg); 695 } 696 697 if (auto *DepMI = NC.getOnlyDependency()) { 698 for (auto &MO : DepMI->operands()) { 699 if (!MO.isReg() || !MO.getReg() || !MO.isDef()) 700 continue; 701 if (!NC.getNotNullSucc()->isLiveIn(MO.getReg())) 702 NC.getNotNullSucc()->addLiveIn(MO.getReg()); 703 } 704 } 705 706 NC.getMemOperation()->eraseFromParent(); 707 NC.getCheckOperation()->eraseFromParent(); 708 709 // Insert an *unconditional* branch to not-null successor. 710 TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr, 711 /*Cond=*/None, DL); 712 713 NumImplicitNullChecks++; 714 } 715 } 716 717 char ImplicitNullChecks::ID = 0; 718 719 char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID; 720 721 INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE, 722 "Implicit null checks", false, false) 723 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 724 INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE, 725 "Implicit null checks", false, false) 726