1 //===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass turns explicit null checks of the form
10 //
11 //   test %r10, %r10
12 //   je throw_npe
13 //   movl (%r10), %esi
14 //   ...
15 //
16 // to
17 //
18 //   faulting_load_op("movl (%r10), %esi", throw_npe)
19 //   ...
20 //
21 // With the help of a runtime that understands the .fault_maps section,
22 // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
23 // a page fault.
24 // Store and LoadStore are also supported.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/Analysis/AliasAnalysis.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/CodeGen/FaultMaps.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFunctionPass.h"
40 #include "llvm/CodeGen/MachineInstr.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/PseudoSourceValue.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/TargetOpcodes.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/IR/BasicBlock.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/MC/MCInstrDesc.h"
55 #include "llvm/MC/MCRegisterInfo.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/CommandLine.h"
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 
62 using namespace llvm;
63 
64 static cl::opt<int> PageSize("imp-null-check-page-size",
65                              cl::desc("The page size of the target in bytes"),
66                              cl::init(4096), cl::Hidden);
67 
68 static cl::opt<unsigned> MaxInstsToConsider(
69     "imp-null-max-insts-to-consider",
70     cl::desc("The max number of instructions to consider hoisting loads over "
71              "(the algorithm is quadratic over this number)"),
72     cl::Hidden, cl::init(8));
73 
74 #define DEBUG_TYPE "implicit-null-checks"
75 
76 STATISTIC(NumImplicitNullChecks,
77           "Number of explicit null checks made implicit");
78 
79 namespace {
80 
81 class ImplicitNullChecks : public MachineFunctionPass {
82   /// Return true if \c computeDependence can process \p MI.
83   static bool canHandle(const MachineInstr *MI);
84 
85   /// Helper function for \c computeDependence.  Return true if \p A
86   /// and \p B do not have any dependences between them, and can be
87   /// re-ordered without changing program semantics.
88   bool canReorder(const MachineInstr *A, const MachineInstr *B);
89 
90   /// A data type for representing the result computed by \c
91   /// computeDependence.  States whether it is okay to reorder the
92   /// instruction passed to \c computeDependence with at most one
93   /// dependency.
94   struct DependenceResult {
95     /// Can we actually re-order \p MI with \p Insts (see \c
96     /// computeDependence).
97     bool CanReorder;
98 
99     /// If non-None, then an instruction in \p Insts that also must be
100     /// hoisted.
101     Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence;
102 
103     /*implicit*/ DependenceResult(
104         bool CanReorder,
105         Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence)
106         : CanReorder(CanReorder), PotentialDependence(PotentialDependence) {
107       assert((!PotentialDependence || CanReorder) &&
108              "!CanReorder && PotentialDependence.hasValue() not allowed!");
109     }
110   };
111 
112   /// Compute a result for the following question: can \p MI be
113   /// re-ordered from after \p Insts to before it.
114   ///
115   /// \c canHandle should return true for all instructions in \p
116   /// Insts.
117   DependenceResult computeDependence(const MachineInstr *MI,
118                                      ArrayRef<MachineInstr *> Block);
119 
120   /// Represents one null check that can be made implicit.
121   class NullCheck {
122     // The memory operation the null check can be folded into.
123     MachineInstr *MemOperation;
124 
125     // The instruction actually doing the null check (Ptr != 0).
126     MachineInstr *CheckOperation;
127 
128     // The block the check resides in.
129     MachineBasicBlock *CheckBlock;
130 
131     // The block branched to if the pointer is non-null.
132     MachineBasicBlock *NotNullSucc;
133 
134     // The block branched to if the pointer is null.
135     MachineBasicBlock *NullSucc;
136 
137     // If this is non-null, then MemOperation has a dependency on this
138     // instruction; and it needs to be hoisted to execute before MemOperation.
139     MachineInstr *OnlyDependency;
140 
141   public:
142     explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
143                        MachineBasicBlock *checkBlock,
144                        MachineBasicBlock *notNullSucc,
145                        MachineBasicBlock *nullSucc,
146                        MachineInstr *onlyDependency)
147         : MemOperation(memOperation), CheckOperation(checkOperation),
148           CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc),
149           OnlyDependency(onlyDependency) {}
150 
151     MachineInstr *getMemOperation() const { return MemOperation; }
152 
153     MachineInstr *getCheckOperation() const { return CheckOperation; }
154 
155     MachineBasicBlock *getCheckBlock() const { return CheckBlock; }
156 
157     MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; }
158 
159     MachineBasicBlock *getNullSucc() const { return NullSucc; }
160 
161     MachineInstr *getOnlyDependency() const { return OnlyDependency; }
162   };
163 
164   const TargetInstrInfo *TII = nullptr;
165   const TargetRegisterInfo *TRI = nullptr;
166   AliasAnalysis *AA = nullptr;
167   MachineFrameInfo *MFI = nullptr;
168 
169   bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
170                                  SmallVectorImpl<NullCheck> &NullCheckList);
171   MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB,
172                                     MachineBasicBlock *HandlerMBB);
173   void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
174 
175   enum AliasResult {
176     AR_NoAlias,
177     AR_MayAlias,
178     AR_WillAliasEverything
179   };
180 
181   /// Returns AR_NoAlias if \p MI memory operation does not alias with
182   /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if
183   /// they may alias and any further memory operation may alias with \p PrevMI.
184   AliasResult areMemoryOpsAliased(const MachineInstr &MI,
185                                   const MachineInstr *PrevMI) const;
186 
187   enum SuitabilityResult {
188     SR_Suitable,
189     SR_Unsuitable,
190     SR_Impossible
191   };
192 
193   /// Return SR_Suitable if \p MI a memory operation that can be used to
194   /// implicitly null check the value in \p PointerReg, SR_Unsuitable if
195   /// \p MI cannot be used to null check and SR_Impossible if there is
196   /// no sense to continue lookup due to any other instruction will not be able
197   /// to be used. \p PrevInsts is the set of instruction seen since
198   /// the explicit null check on \p PointerReg.
199   SuitabilityResult isSuitableMemoryOp(const MachineInstr &MI,
200                                        unsigned PointerReg,
201                                        ArrayRef<MachineInstr *> PrevInsts);
202 
203   /// Returns true if \p DependenceMI can clobber the liveIns in NullSucc block
204   /// if it was hoisted to the NullCheck block. This is used by caller
205   /// canHoistInst to decide if DependenceMI can be hoisted safely.
206   bool canDependenceHoistingClobberLiveIns(MachineInstr *DependenceMI,
207                                            MachineBasicBlock *NullSucc);
208 
209   /// Return true if \p FaultingMI can be hoisted from after the
210   /// instructions in \p InstsSeenSoFar to before them.  Set \p Dependence to a
211   /// non-null value if we also need to (and legally can) hoist a dependency.
212   bool canHoistInst(MachineInstr *FaultingMI,
213                     ArrayRef<MachineInstr *> InstsSeenSoFar,
214                     MachineBasicBlock *NullSucc, MachineInstr *&Dependence);
215 
216 public:
217   static char ID;
218 
219   ImplicitNullChecks() : MachineFunctionPass(ID) {
220     initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
221   }
222 
223   bool runOnMachineFunction(MachineFunction &MF) override;
224 
225   void getAnalysisUsage(AnalysisUsage &AU) const override {
226     AU.addRequired<AAResultsWrapperPass>();
227     MachineFunctionPass::getAnalysisUsage(AU);
228   }
229 
230   MachineFunctionProperties getRequiredProperties() const override {
231     return MachineFunctionProperties().set(
232         MachineFunctionProperties::Property::NoVRegs);
233   }
234 };
235 
236 } // end anonymous namespace
237 
238 bool ImplicitNullChecks::canHandle(const MachineInstr *MI) {
239   if (MI->isCall() || MI->mayRaiseFPException() ||
240       MI->hasUnmodeledSideEffects())
241     return false;
242   auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); };
243   (void)IsRegMask;
244 
245   assert(!llvm::any_of(MI->operands(), IsRegMask) &&
246          "Calls were filtered out above!");
247 
248   auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); };
249   return llvm::all_of(MI->memoperands(), IsUnordered);
250 }
251 
252 ImplicitNullChecks::DependenceResult
253 ImplicitNullChecks::computeDependence(const MachineInstr *MI,
254                                       ArrayRef<MachineInstr *> Block) {
255   assert(llvm::all_of(Block, canHandle) && "Check this first!");
256   assert(!is_contained(Block, MI) && "Block must be exclusive of MI!");
257 
258   Optional<ArrayRef<MachineInstr *>::iterator> Dep;
259 
260   for (auto I = Block.begin(), E = Block.end(); I != E; ++I) {
261     if (canReorder(*I, MI))
262       continue;
263 
264     if (Dep == None) {
265       // Found one possible dependency, keep track of it.
266       Dep = I;
267     } else {
268       // We found two dependencies, so bail out.
269       return {false, None};
270     }
271   }
272 
273   return {true, Dep};
274 }
275 
276 bool ImplicitNullChecks::canReorder(const MachineInstr *A,
277                                     const MachineInstr *B) {
278   assert(canHandle(A) && canHandle(B) && "Precondition!");
279 
280   // canHandle makes sure that we _can_ correctly analyze the dependencies
281   // between A and B here -- for instance, we should not be dealing with heap
282   // load-store dependencies here.
283 
284   for (const auto &MOA : A->operands()) {
285     if (!(MOA.isReg() && MOA.getReg()))
286       continue;
287 
288     Register RegA = MOA.getReg();
289     for (const auto &MOB : B->operands()) {
290       if (!(MOB.isReg() && MOB.getReg()))
291         continue;
292 
293       Register RegB = MOB.getReg();
294 
295       if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef()))
296         return false;
297     }
298   }
299 
300   return true;
301 }
302 
303 bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
304   TII = MF.getSubtarget().getInstrInfo();
305   TRI = MF.getRegInfo().getTargetRegisterInfo();
306   MFI = &MF.getFrameInfo();
307   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
308 
309   SmallVector<NullCheck, 16> NullCheckList;
310 
311   for (auto &MBB : MF)
312     analyzeBlockForNullChecks(MBB, NullCheckList);
313 
314   if (!NullCheckList.empty())
315     rewriteNullChecks(NullCheckList);
316 
317   return !NullCheckList.empty();
318 }
319 
320 // Return true if any register aliasing \p Reg is live-in into \p MBB.
321 static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
322                            MachineBasicBlock *MBB, unsigned Reg) {
323   for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid();
324        ++AR)
325     if (MBB->isLiveIn(*AR))
326       return true;
327   return false;
328 }
329 
330 ImplicitNullChecks::AliasResult
331 ImplicitNullChecks::areMemoryOpsAliased(const MachineInstr &MI,
332                                         const MachineInstr *PrevMI) const {
333   // If it is not memory access, skip the check.
334   if (!(PrevMI->mayStore() || PrevMI->mayLoad()))
335     return AR_NoAlias;
336   // Load-Load may alias
337   if (!(MI.mayStore() || PrevMI->mayStore()))
338     return AR_NoAlias;
339   // We lost info, conservatively alias. If it was store then no sense to
340   // continue because we won't be able to check against it further.
341   if (MI.memoperands_empty())
342     return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias;
343   if (PrevMI->memoperands_empty())
344     return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias;
345 
346   for (MachineMemOperand *MMO1 : MI.memoperands()) {
347     // MMO1 should have a value due it comes from operation we'd like to use
348     // as implicit null check.
349     assert(MMO1->getValue() && "MMO1 should have a Value!");
350     for (MachineMemOperand *MMO2 : PrevMI->memoperands()) {
351       if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) {
352         if (PSV->mayAlias(MFI))
353           return AR_MayAlias;
354         continue;
355       }
356       llvm::AliasResult AAResult =
357           AA->alias(MemoryLocation(MMO1->getValue(), LocationSize::unknown(),
358                                    MMO1->getAAInfo()),
359                     MemoryLocation(MMO2->getValue(), LocationSize::unknown(),
360                                    MMO2->getAAInfo()));
361       if (AAResult != NoAlias)
362         return AR_MayAlias;
363     }
364   }
365   return AR_NoAlias;
366 }
367 
368 ImplicitNullChecks::SuitabilityResult
369 ImplicitNullChecks::isSuitableMemoryOp(const MachineInstr &MI,
370                                        unsigned PointerReg,
371                                        ArrayRef<MachineInstr *> PrevInsts) {
372   int64_t Offset;
373   bool OffsetIsScalable;
374   const MachineOperand *BaseOp;
375 
376   // Implementation restriction for faulting_op insertion
377   // TODO: This could be relaxed if we find a test case which warrants it.
378   if (MI.getDesc().getNumDefs() > 1)
379    return SR_Unsuitable;
380 
381   // FIXME: This handles only simple addressing mode.
382   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
383     return SR_Unsuitable;
384 
385   // We need the base of the memory instruction to be same as the register
386   // where the null check is performed (i.e. PointerReg).
387   if (!BaseOp->isReg() || BaseOp->getReg() != PointerReg)
388     return SR_Unsuitable;
389 
390   // Scalable offsets are a part of scalable vectors (SVE for AArch64). That
391   // target is in-practice unsupported for ImplicitNullChecks.
392   if (OffsetIsScalable)
393     return SR_Unsuitable;
394 
395   if (!MI.mayLoadOrStore() || MI.isPredicable())
396     return SR_Unsuitable;
397 
398   // We want the mem access to be issued at a sane offset from PointerReg,
399   // so that if PointerReg is null then the access reliably page faults.
400   if (!(-PageSize < Offset && Offset < PageSize))
401     return SR_Unsuitable;
402 
403   // Finally, check whether the current memory access aliases with previous one.
404   for (auto *PrevMI : PrevInsts) {
405     AliasResult AR = areMemoryOpsAliased(MI, PrevMI);
406     if (AR == AR_WillAliasEverything)
407       return SR_Impossible;
408     if (AR == AR_MayAlias)
409       return SR_Unsuitable;
410   }
411   return SR_Suitable;
412 }
413 
414 bool ImplicitNullChecks::canDependenceHoistingClobberLiveIns(
415     MachineInstr *DependenceMI, MachineBasicBlock *NullSucc) {
416   for (const auto &DependenceMO : DependenceMI->operands()) {
417     if (!(DependenceMO.isReg() && DependenceMO.getReg()))
418       continue;
419 
420     // Make sure that we won't clobber any live ins to the sibling block by
421     // hoisting Dependency.  For instance, we can't hoist INST to before the
422     // null check (even if it safe, and does not violate any dependencies in
423     // the non_null_block) if %rdx is live in to _null_block.
424     //
425     //    test %rcx, %rcx
426     //    je _null_block
427     //  _non_null_block:
428     //    %rdx = INST
429     //    ...
430     //
431     // This restriction does not apply to the faulting load inst because in
432     // case the pointer loaded from is in the null page, the load will not
433     // semantically execute, and affect machine state.  That is, if the load
434     // was loading into %rax and it faults, the value of %rax should stay the
435     // same as it would have been had the load not have executed and we'd have
436     // branched to NullSucc directly.
437     if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg()))
438       return true;
439 
440   }
441 
442   // The dependence does not clobber live-ins in NullSucc block.
443   return false;
444 }
445 
446 bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI,
447                                       ArrayRef<MachineInstr *> InstsSeenSoFar,
448                                       MachineBasicBlock *NullSucc,
449                                       MachineInstr *&Dependence) {
450   auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar);
451   if (!DepResult.CanReorder)
452     return false;
453 
454   if (!DepResult.PotentialDependence) {
455     Dependence = nullptr;
456     return true;
457   }
458 
459   auto DependenceItr = *DepResult.PotentialDependence;
460   auto *DependenceMI = *DependenceItr;
461 
462   // We don't want to reason about speculating loads.  Note -- at this point
463   // we should have already filtered out all of the other non-speculatable
464   // things, like calls and stores.
465   // We also do not want to hoist stores because it might change the memory
466   // while the FaultingMI may result in faulting.
467   assert(canHandle(DependenceMI) && "Should never have reached here!");
468   if (DependenceMI->mayLoadOrStore())
469     return false;
470 
471   if (canDependenceHoistingClobberLiveIns(DependenceMI, NullSucc))
472     return false;
473 
474   auto DepDepResult =
475       computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr});
476 
477   if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence)
478     return false;
479 
480   Dependence = DependenceMI;
481   return true;
482 }
483 
484 /// Analyze MBB to check if its terminating branch can be turned into an
485 /// implicit null check.  If yes, append a description of the said null check to
486 /// NullCheckList and return true, else return false.
487 bool ImplicitNullChecks::analyzeBlockForNullChecks(
488     MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
489   using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
490 
491   MDNode *BranchMD = nullptr;
492   if (auto *BB = MBB.getBasicBlock())
493     BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
494 
495   if (!BranchMD)
496     return false;
497 
498   MachineBranchPredicate MBP;
499 
500   if (TII->analyzeBranchPredicate(MBB, MBP, true))
501     return false;
502 
503   // Is the predicate comparing an integer to zero?
504   if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
505         (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
506          MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
507     return false;
508 
509   // If there is a separate condition generation instruction, we chose not to
510   // transform unless we can remove both condition and consuming branch.
511   if (MBP.ConditionDef && !MBP.SingleUseCondition)
512     return false;
513 
514   MachineBasicBlock *NotNullSucc, *NullSucc;
515 
516   if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
517     NotNullSucc = MBP.TrueDest;
518     NullSucc = MBP.FalseDest;
519   } else {
520     NotNullSucc = MBP.FalseDest;
521     NullSucc = MBP.TrueDest;
522   }
523 
524   // We handle the simplest case for now.  We can potentially do better by using
525   // the machine dominator tree.
526   if (NotNullSucc->pred_size() != 1)
527     return false;
528 
529   const Register PointerReg = MBP.LHS.getReg();
530 
531   if (MBP.ConditionDef) {
532     // To prevent the invalid transformation of the following code:
533     //
534     //   mov %rax, %rcx
535     //   test %rax, %rax
536     //   %rax = ...
537     //   je throw_npe
538     //   mov(%rcx), %r9
539     //   mov(%rax), %r10
540     //
541     // into:
542     //
543     //   mov %rax, %rcx
544     //   %rax = ....
545     //   faulting_load_op("movl (%rax), %r10", throw_npe)
546     //   mov(%rcx), %r9
547     //
548     // we must ensure that there are no instructions between the 'test' and
549     // conditional jump that modify %rax.
550     assert(MBP.ConditionDef->getParent() ==  &MBB &&
551            "Should be in basic block");
552 
553     for (auto I = MBB.rbegin(); MBP.ConditionDef != &*I; ++I)
554       if (I->modifiesRegister(PointerReg, TRI))
555         return false;
556   }
557   // Starting with a code fragment like:
558   //
559   //   test %rax, %rax
560   //   jne LblNotNull
561   //
562   //  LblNull:
563   //   callq throw_NullPointerException
564   //
565   //  LblNotNull:
566   //   Inst0
567   //   Inst1
568   //   ...
569   //   Def = Load (%rax + <offset>)
570   //   ...
571   //
572   //
573   // we want to end up with
574   //
575   //   Def = FaultingLoad (%rax + <offset>), LblNull
576   //   jmp LblNotNull ;; explicit or fallthrough
577   //
578   //  LblNotNull:
579   //   Inst0
580   //   Inst1
581   //   ...
582   //
583   //  LblNull:
584   //   callq throw_NullPointerException
585   //
586   //
587   // To see why this is legal, consider the two possibilities:
588   //
589   //  1. %rax is null: since we constrain <offset> to be less than PageSize, the
590   //     load instruction dereferences the null page, causing a segmentation
591   //     fault.
592   //
593   //  2. %rax is not null: in this case we know that the load cannot fault, as
594   //     otherwise the load would've faulted in the original program too and the
595   //     original program would've been undefined.
596   //
597   // This reasoning cannot be extended to justify hoisting through arbitrary
598   // control flow.  For instance, in the example below (in pseudo-C)
599   //
600   //    if (ptr == null) { throw_npe(); unreachable; }
601   //    if (some_cond) { return 42; }
602   //    v = ptr->field;  // LD
603   //    ...
604   //
605   // we cannot (without code duplication) use the load marked "LD" to null check
606   // ptr -- clause (2) above does not apply in this case.  In the above program
607   // the safety of ptr->field can be dependent on some_cond; and, for instance,
608   // ptr could be some non-null invalid reference that never gets loaded from
609   // because some_cond is always true.
610 
611   SmallVector<MachineInstr *, 8> InstsSeenSoFar;
612 
613   for (auto &MI : *NotNullSucc) {
614     if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider)
615       return false;
616 
617     MachineInstr *Dependence;
618     SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar);
619     if (SR == SR_Impossible)
620       return false;
621     if (SR == SR_Suitable &&
622         canHoistInst(&MI, InstsSeenSoFar, NullSucc, Dependence)) {
623       NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
624                                  NullSucc, Dependence);
625       return true;
626     }
627 
628     // If MI re-defines the PointerReg in a way that changes the value of
629     // PointerReg if it was null, then we cannot move further.
630     if (!TII->preservesZeroValueInReg(&MI, PointerReg, TRI))
631       return false;
632     InstsSeenSoFar.push_back(&MI);
633   }
634 
635   return false;
636 }
637 
638 /// Wrap a machine instruction, MI, into a FAULTING machine instruction.
639 /// The FAULTING instruction does the same load/store as MI
640 /// (defining the same register), and branches to HandlerMBB if the mem access
641 /// faults.  The FAULTING instruction is inserted at the end of MBB.
642 MachineInstr *ImplicitNullChecks::insertFaultingInstr(
643     MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) {
644   const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
645                                  // all targets.
646 
647   DebugLoc DL;
648   unsigned NumDefs = MI->getDesc().getNumDefs();
649   assert(NumDefs <= 1 && "other cases unhandled!");
650 
651   unsigned DefReg = NoRegister;
652   if (NumDefs != 0) {
653     DefReg = MI->getOperand(0).getReg();
654     assert(NumDefs == 1 && "expected exactly one def!");
655   }
656 
657   FaultMaps::FaultKind FK;
658   if (MI->mayLoad())
659     FK =
660         MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad;
661   else
662     FK = FaultMaps::FaultingStore;
663 
664   auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg)
665                  .addImm(FK)
666                  .addMBB(HandlerMBB)
667                  .addImm(MI->getOpcode());
668 
669   for (auto &MO : MI->uses()) {
670     if (MO.isReg()) {
671       MachineOperand NewMO = MO;
672       if (MO.isUse()) {
673         NewMO.setIsKill(false);
674       } else {
675         assert(MO.isDef() && "Expected def or use");
676         NewMO.setIsDead(false);
677       }
678       MIB.add(NewMO);
679     } else {
680       MIB.add(MO);
681     }
682   }
683 
684   MIB.setMemRefs(MI->memoperands());
685 
686   return MIB;
687 }
688 
689 /// Rewrite the null checks in NullCheckList into implicit null checks.
690 void ImplicitNullChecks::rewriteNullChecks(
691     ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
692   DebugLoc DL;
693 
694   for (auto &NC : NullCheckList) {
695     // Remove the conditional branch dependent on the null check.
696     unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock());
697     (void)BranchesRemoved;
698     assert(BranchesRemoved > 0 && "expected at least one branch!");
699 
700     if (auto *DepMI = NC.getOnlyDependency()) {
701       DepMI->removeFromParent();
702       NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI);
703     }
704 
705     // Insert a faulting instruction where the conditional branch was
706     // originally. We check earlier ensures that this bit of code motion
707     // is legal.  We do not touch the successors list for any basic block
708     // since we haven't changed control flow, we've just made it implicit.
709     MachineInstr *FaultingInstr = insertFaultingInstr(
710         NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc());
711     // Now the values defined by MemOperation, if any, are live-in of
712     // the block of MemOperation.
713     // The original operation may define implicit-defs alongside
714     // the value.
715     MachineBasicBlock *MBB = NC.getMemOperation()->getParent();
716     for (const MachineOperand &MO : FaultingInstr->operands()) {
717       if (!MO.isReg() || !MO.isDef())
718         continue;
719       Register Reg = MO.getReg();
720       if (!Reg || MBB->isLiveIn(Reg))
721         continue;
722       MBB->addLiveIn(Reg);
723     }
724 
725     if (auto *DepMI = NC.getOnlyDependency()) {
726       for (auto &MO : DepMI->operands()) {
727         if (!MO.isReg() || !MO.getReg() || !MO.isDef() || MO.isDead())
728           continue;
729         if (!NC.getNotNullSucc()->isLiveIn(MO.getReg()))
730           NC.getNotNullSucc()->addLiveIn(MO.getReg());
731       }
732     }
733 
734     NC.getMemOperation()->eraseFromParent();
735     if (auto *CheckOp = NC.getCheckOperation())
736       CheckOp->eraseFromParent();
737 
738     // Insert an *unconditional* branch to not-null successor - we expect
739     // block placement to remove fallthroughs later.
740     TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
741                       /*Cond=*/None, DL);
742 
743     NumImplicitNullChecks++;
744   }
745 }
746 
747 char ImplicitNullChecks::ID = 0;
748 
749 char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
750 
751 INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE,
752                       "Implicit null checks", false, false)
753 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
754 INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE,
755                     "Implicit null checks", false, false)
756