1 //===-- ImplicitNullChecks.cpp - Fold null checks into memory accesses ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass turns explicit null checks of the form 11 // 12 // test %r10, %r10 13 // je throw_npe 14 // movl (%r10), %esi 15 // ... 16 // 17 // to 18 // 19 // faulting_load_op("movl (%r10), %esi", throw_npe) 20 // ... 21 // 22 // With the help of a runtime that understands the .fault_maps section, 23 // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs 24 // a page fault. 25 // Store is also supported. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/DenseSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/CodeGen/FaultMaps.h" 34 #include "llvm/CodeGen/Passes.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineFunctionPass.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/MachineModuleInfo.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 #include "llvm/Target/TargetInstrInfo.h" 49 50 using namespace llvm; 51 52 static cl::opt<int> PageSize("imp-null-check-page-size", 53 cl::desc("The page size of the target in bytes"), 54 cl::init(4096)); 55 56 static cl::opt<unsigned> MaxInstsToConsider( 57 "imp-null-max-insts-to-consider", 58 cl::desc("The max number of instructions to consider hoisting loads over " 59 "(the algorithm is quadratic over this number)"), 60 cl::init(8)); 61 62 #define DEBUG_TYPE "implicit-null-checks" 63 64 STATISTIC(NumImplicitNullChecks, 65 "Number of explicit null checks made implicit"); 66 67 namespace { 68 69 class ImplicitNullChecks : public MachineFunctionPass { 70 /// Return true if \c computeDependence can process \p MI. 71 static bool canHandle(const MachineInstr *MI); 72 73 /// Helper function for \c computeDependence. Return true if \p A 74 /// and \p B do not have any dependences between them, and can be 75 /// re-ordered without changing program semantics. 76 bool canReorder(const MachineInstr *A, const MachineInstr *B); 77 78 /// A data type for representing the result computed by \c 79 /// computeDependence. States whether it is okay to reorder the 80 /// instruction passed to \c computeDependence with at most one 81 /// depednency. 82 struct DependenceResult { 83 /// Can we actually re-order \p MI with \p Insts (see \c 84 /// computeDependence). 85 bool CanReorder; 86 87 /// If non-None, then an instruction in \p Insts that also must be 88 /// hoisted. 89 Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence; 90 91 /*implicit*/ DependenceResult( 92 bool CanReorder, 93 Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence) 94 : CanReorder(CanReorder), PotentialDependence(PotentialDependence) { 95 assert((!PotentialDependence || CanReorder) && 96 "!CanReorder && PotentialDependence.hasValue() not allowed!"); 97 } 98 }; 99 100 /// Compute a result for the following question: can \p MI be 101 /// re-ordered from after \p Insts to before it. 102 /// 103 /// \c canHandle should return true for all instructions in \p 104 /// Insts. 105 DependenceResult computeDependence(const MachineInstr *MI, 106 ArrayRef<MachineInstr *> Insts); 107 108 /// Represents one null check that can be made implicit. 109 class NullCheck { 110 // The memory operation the null check can be folded into. 111 MachineInstr *MemOperation; 112 113 // The instruction actually doing the null check (Ptr != 0). 114 MachineInstr *CheckOperation; 115 116 // The block the check resides in. 117 MachineBasicBlock *CheckBlock; 118 119 // The block branched to if the pointer is non-null. 120 MachineBasicBlock *NotNullSucc; 121 122 // The block branched to if the pointer is null. 123 MachineBasicBlock *NullSucc; 124 125 // If this is non-null, then MemOperation has a dependency on on this 126 // instruction; and it needs to be hoisted to execute before MemOperation. 127 MachineInstr *OnlyDependency; 128 129 public: 130 explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation, 131 MachineBasicBlock *checkBlock, 132 MachineBasicBlock *notNullSucc, 133 MachineBasicBlock *nullSucc, 134 MachineInstr *onlyDependency) 135 : MemOperation(memOperation), CheckOperation(checkOperation), 136 CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc), 137 OnlyDependency(onlyDependency) {} 138 139 MachineInstr *getMemOperation() const { return MemOperation; } 140 141 MachineInstr *getCheckOperation() const { return CheckOperation; } 142 143 MachineBasicBlock *getCheckBlock() const { return CheckBlock; } 144 145 MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; } 146 147 MachineBasicBlock *getNullSucc() const { return NullSucc; } 148 149 MachineInstr *getOnlyDependency() const { return OnlyDependency; } 150 }; 151 152 const TargetInstrInfo *TII = nullptr; 153 const TargetRegisterInfo *TRI = nullptr; 154 AliasAnalysis *AA = nullptr; 155 MachineModuleInfo *MMI = nullptr; 156 157 bool analyzeBlockForNullChecks(MachineBasicBlock &MBB, 158 SmallVectorImpl<NullCheck> &NullCheckList); 159 MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB, 160 MachineBasicBlock *HandlerMBB); 161 void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList); 162 163 enum SuitabilityResult { SR_Suitable, SR_Unsuitable, SR_Impossible }; 164 165 /// Return SR_Suitable if \p MI a memory operation that can be used to 166 /// implicitly null check the value in \p PointerReg, SR_Unsuitable if 167 /// \p MI cannot be used to null check and SR_Impossible if there is 168 /// no sense to continue lookup due to any other instruction will not be able 169 /// to be used. \p PrevInsts is the set of instruction seen since 170 /// the explicit null check on \p PointerReg. \p SeenLoad means that load 171 /// instruction has been observed in \PrevInsts set. 172 SuitabilityResult isSuitableMemoryOp(MachineInstr &MI, unsigned PointerReg, 173 ArrayRef<MachineInstr *> PrevInsts, 174 bool &SeenLoad); 175 176 /// Return true if \p FaultingMI can be hoisted from after the the 177 /// instructions in \p InstsSeenSoFar to before them. Set \p Dependence to a 178 /// non-null value if we also need to (and legally can) hoist a depedency. 179 bool canHoistInst(MachineInstr *FaultingMI, unsigned PointerReg, 180 ArrayRef<MachineInstr *> InstsSeenSoFar, 181 MachineBasicBlock *NullSucc, MachineInstr *&Dependence); 182 183 public: 184 static char ID; 185 186 ImplicitNullChecks() : MachineFunctionPass(ID) { 187 initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry()); 188 } 189 190 bool runOnMachineFunction(MachineFunction &MF) override; 191 void getAnalysisUsage(AnalysisUsage &AU) const override { 192 AU.addRequired<AAResultsWrapperPass>(); 193 MachineFunctionPass::getAnalysisUsage(AU); 194 } 195 196 MachineFunctionProperties getRequiredProperties() const override { 197 return MachineFunctionProperties().set( 198 MachineFunctionProperties::Property::NoVRegs); 199 } 200 }; 201 202 } 203 204 bool ImplicitNullChecks::canHandle(const MachineInstr *MI) { 205 if (MI->isCall() || MI->hasUnmodeledSideEffects()) 206 return false; 207 auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); }; 208 (void)IsRegMask; 209 210 assert(!llvm::any_of(MI->operands(), IsRegMask) && 211 "Calls were filtered out above!"); 212 213 auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); }; 214 return llvm::all_of(MI->memoperands(), IsUnordered); 215 } 216 217 ImplicitNullChecks::DependenceResult 218 ImplicitNullChecks::computeDependence(const MachineInstr *MI, 219 ArrayRef<MachineInstr *> Block) { 220 assert(llvm::all_of(Block, canHandle) && "Check this first!"); 221 assert(!llvm::is_contained(Block, MI) && "Block must be exclusive of MI!"); 222 223 Optional<ArrayRef<MachineInstr *>::iterator> Dep; 224 225 for (auto I = Block.begin(), E = Block.end(); I != E; ++I) { 226 if (canReorder(*I, MI)) 227 continue; 228 229 if (Dep == None) { 230 // Found one possible dependency, keep track of it. 231 Dep = I; 232 } else { 233 // We found two dependencies, so bail out. 234 return {false, None}; 235 } 236 } 237 238 return {true, Dep}; 239 } 240 241 bool ImplicitNullChecks::canReorder(const MachineInstr *A, 242 const MachineInstr *B) { 243 assert(canHandle(A) && canHandle(B) && "Precondition!"); 244 245 // canHandle makes sure that we _can_ correctly analyze the dependencies 246 // between A and B here -- for instance, we should not be dealing with heap 247 // load-store dependencies here. 248 249 for (auto MOA : A->operands()) { 250 if (!(MOA.isReg() && MOA.getReg())) 251 continue; 252 253 unsigned RegA = MOA.getReg(); 254 for (auto MOB : B->operands()) { 255 if (!(MOB.isReg() && MOB.getReg())) 256 continue; 257 258 unsigned RegB = MOB.getReg(); 259 260 if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef())) 261 return false; 262 } 263 } 264 265 return true; 266 } 267 268 bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) { 269 TII = MF.getSubtarget().getInstrInfo(); 270 TRI = MF.getRegInfo().getTargetRegisterInfo(); 271 MMI = &MF.getMMI(); 272 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 273 274 SmallVector<NullCheck, 16> NullCheckList; 275 276 for (auto &MBB : MF) 277 analyzeBlockForNullChecks(MBB, NullCheckList); 278 279 if (!NullCheckList.empty()) 280 rewriteNullChecks(NullCheckList); 281 282 return !NullCheckList.empty(); 283 } 284 285 // Return true if any register aliasing \p Reg is live-in into \p MBB. 286 static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI, 287 MachineBasicBlock *MBB, unsigned Reg) { 288 for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid(); 289 ++AR) 290 if (MBB->isLiveIn(*AR)) 291 return true; 292 return false; 293 } 294 295 ImplicitNullChecks::SuitabilityResult 296 ImplicitNullChecks::isSuitableMemoryOp(MachineInstr &MI, unsigned PointerReg, 297 ArrayRef<MachineInstr *> PrevInsts, 298 bool &SeenLoad) { 299 int64_t Offset; 300 unsigned BaseReg; 301 302 // First, if it is a store and we saw load before we bail out 303 // because we will not be able to re-order load-store without 304 // using alias analysis. 305 if (SeenLoad && MI.mayStore()) 306 return SR_Impossible; 307 308 SeenLoad = SeenLoad || MI.mayLoad(); 309 310 // Without alias analysis we cannot re-order store with anything. 311 // so if this instruction is not a candidate we should stop. 312 SuitabilityResult Unsuitable = MI.mayStore() ? SR_Impossible : SR_Unsuitable; 313 314 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI) || 315 BaseReg != PointerReg) 316 return Unsuitable; 317 318 // We want the mem access to be issued at a sane offset from PointerReg, 319 // so that if PointerReg is null then the access reliably page faults. 320 if (!((MI.mayLoad() || MI.mayStore()) && !MI.isPredicable() && 321 Offset < PageSize)) 322 return Unsuitable; 323 324 // Finally, we need to make sure that the access instruction actually is 325 // accessing from PointerReg, and there isn't some re-definition of PointerReg 326 // between the compare and the memory access. 327 // If PointerReg has been redefined before then there is no sense to continue 328 // lookup due to this condition will fail for any further instruction. 329 for (auto *PrevMI : PrevInsts) 330 for (auto &PrevMO : PrevMI->operands()) 331 if (PrevMO.isReg() && PrevMO.getReg() && PrevMO.isDef() && 332 TRI->regsOverlap(PrevMO.getReg(), PointerReg)) 333 return SR_Impossible; 334 335 return SR_Suitable; 336 } 337 338 bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI, 339 unsigned PointerReg, 340 ArrayRef<MachineInstr *> InstsSeenSoFar, 341 MachineBasicBlock *NullSucc, 342 MachineInstr *&Dependence) { 343 auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar); 344 if (!DepResult.CanReorder) 345 return false; 346 347 if (!DepResult.PotentialDependence) { 348 Dependence = nullptr; 349 return true; 350 } 351 352 auto DependenceItr = *DepResult.PotentialDependence; 353 auto *DependenceMI = *DependenceItr; 354 355 // We don't want to reason about speculating loads. Note -- at this point 356 // we should have already filtered out all of the other non-speculatable 357 // things, like calls and stores. 358 assert(canHandle(DependenceMI) && "Should never have reached here!"); 359 if (DependenceMI->mayLoad()) 360 return false; 361 362 for (auto &DependenceMO : DependenceMI->operands()) { 363 if (!(DependenceMO.isReg() && DependenceMO.getReg())) 364 continue; 365 366 // Make sure that we won't clobber any live ins to the sibling block by 367 // hoisting Dependency. For instance, we can't hoist INST to before the 368 // null check (even if it safe, and does not violate any dependencies in 369 // the non_null_block) if %rdx is live in to _null_block. 370 // 371 // test %rcx, %rcx 372 // je _null_block 373 // _non_null_block: 374 // %rdx<def> = INST 375 // ... 376 // 377 // This restriction does not apply to the faulting load inst because in 378 // case the pointer loaded from is in the null page, the load will not 379 // semantically execute, and affect machine state. That is, if the load 380 // was loading into %rax and it faults, the value of %rax should stay the 381 // same as it would have been had the load not have executed and we'd have 382 // branched to NullSucc directly. 383 if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg())) 384 return false; 385 386 // The Dependency can't be re-defining the base register -- then we won't 387 // get the memory operation on the address we want. This is already 388 // checked in \c IsSuitableMemoryOp. 389 assert(!(DependenceMO.isDef() && 390 TRI->regsOverlap(DependenceMO.getReg(), PointerReg)) && 391 "Should have been checked before!"); 392 } 393 394 auto DepDepResult = 395 computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr}); 396 397 if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence) 398 return false; 399 400 Dependence = DependenceMI; 401 return true; 402 } 403 404 /// Analyze MBB to check if its terminating branch can be turned into an 405 /// implicit null check. If yes, append a description of the said null check to 406 /// NullCheckList and return true, else return false. 407 bool ImplicitNullChecks::analyzeBlockForNullChecks( 408 MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) { 409 typedef TargetInstrInfo::MachineBranchPredicate MachineBranchPredicate; 410 411 MDNode *BranchMD = nullptr; 412 if (auto *BB = MBB.getBasicBlock()) 413 BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit); 414 415 if (!BranchMD) 416 return false; 417 418 MachineBranchPredicate MBP; 419 420 if (TII->analyzeBranchPredicate(MBB, MBP, true)) 421 return false; 422 423 // Is the predicate comparing an integer to zero? 424 if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 425 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 426 MBP.Predicate == MachineBranchPredicate::PRED_EQ))) 427 return false; 428 429 // If we cannot erase the test instruction itself, then making the null check 430 // implicit does not buy us much. 431 if (!MBP.SingleUseCondition) 432 return false; 433 434 MachineBasicBlock *NotNullSucc, *NullSucc; 435 436 if (MBP.Predicate == MachineBranchPredicate::PRED_NE) { 437 NotNullSucc = MBP.TrueDest; 438 NullSucc = MBP.FalseDest; 439 } else { 440 NotNullSucc = MBP.FalseDest; 441 NullSucc = MBP.TrueDest; 442 } 443 444 // We handle the simplest case for now. We can potentially do better by using 445 // the machine dominator tree. 446 if (NotNullSucc->pred_size() != 1) 447 return false; 448 449 // Starting with a code fragment like: 450 // 451 // test %RAX, %RAX 452 // jne LblNotNull 453 // 454 // LblNull: 455 // callq throw_NullPointerException 456 // 457 // LblNotNull: 458 // Inst0 459 // Inst1 460 // ... 461 // Def = Load (%RAX + <offset>) 462 // ... 463 // 464 // 465 // we want to end up with 466 // 467 // Def = FaultingLoad (%RAX + <offset>), LblNull 468 // jmp LblNotNull ;; explicit or fallthrough 469 // 470 // LblNotNull: 471 // Inst0 472 // Inst1 473 // ... 474 // 475 // LblNull: 476 // callq throw_NullPointerException 477 // 478 // 479 // To see why this is legal, consider the two possibilities: 480 // 481 // 1. %RAX is null: since we constrain <offset> to be less than PageSize, the 482 // load instruction dereferences the null page, causing a segmentation 483 // fault. 484 // 485 // 2. %RAX is not null: in this case we know that the load cannot fault, as 486 // otherwise the load would've faulted in the original program too and the 487 // original program would've been undefined. 488 // 489 // This reasoning cannot be extended to justify hoisting through arbitrary 490 // control flow. For instance, in the example below (in pseudo-C) 491 // 492 // if (ptr == null) { throw_npe(); unreachable; } 493 // if (some_cond) { return 42; } 494 // v = ptr->field; // LD 495 // ... 496 // 497 // we cannot (without code duplication) use the load marked "LD" to null check 498 // ptr -- clause (2) above does not apply in this case. In the above program 499 // the safety of ptr->field can be dependent on some_cond; and, for instance, 500 // ptr could be some non-null invalid reference that never gets loaded from 501 // because some_cond is always true. 502 503 const unsigned PointerReg = MBP.LHS.getReg(); 504 505 SmallVector<MachineInstr *, 8> InstsSeenSoFar; 506 bool SeenLoad = false; 507 508 for (auto &MI : *NotNullSucc) { 509 if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider) 510 return false; 511 512 MachineInstr *Dependence; 513 SuitabilityResult SR = 514 isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar, SeenLoad); 515 if (SR == SR_Impossible) 516 return false; 517 if (SR == SR_Suitable && 518 canHoistInst(&MI, PointerReg, InstsSeenSoFar, NullSucc, Dependence)) { 519 NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc, 520 NullSucc, Dependence); 521 return true; 522 } 523 524 InstsSeenSoFar.push_back(&MI); 525 } 526 527 return false; 528 } 529 530 /// Wrap a machine instruction, MI, into a FAULTING machine instruction. 531 /// The FAULTING instruction does the same load/store as MI 532 /// (defining the same register), and branches to HandlerMBB if the mem access 533 /// faults. The FAULTING instruction is inserted at the end of MBB. 534 MachineInstr *ImplicitNullChecks::insertFaultingInstr( 535 MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) { 536 const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for 537 // all targets. 538 539 DebugLoc DL; 540 unsigned NumDefs = MI->getDesc().getNumDefs(); 541 assert(NumDefs <= 1 && "other cases unhandled!"); 542 543 unsigned DefReg = NoRegister; 544 if (NumDefs != 0) { 545 DefReg = MI->defs().begin()->getReg(); 546 assert(std::distance(MI->defs().begin(), MI->defs().end()) == 1 && 547 "expected exactly one def!"); 548 } 549 550 FaultMaps::FaultKind FK; 551 if (MI->mayLoad()) 552 FK = 553 MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad; 554 else 555 FK = FaultMaps::FaultingStore; 556 557 auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg) 558 .addImm(FK) 559 .addMBB(HandlerMBB) 560 .addImm(MI->getOpcode()); 561 562 for (auto &MO : MI->uses()) 563 MIB.add(MO); 564 565 MIB.setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); 566 567 return MIB; 568 } 569 570 /// Rewrite the null checks in NullCheckList into implicit null checks. 571 void ImplicitNullChecks::rewriteNullChecks( 572 ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) { 573 DebugLoc DL; 574 575 for (auto &NC : NullCheckList) { 576 // Remove the conditional branch dependent on the null check. 577 unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock()); 578 (void)BranchesRemoved; 579 assert(BranchesRemoved > 0 && "expected at least one branch!"); 580 581 if (auto *DepMI = NC.getOnlyDependency()) { 582 DepMI->removeFromParent(); 583 NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI); 584 } 585 586 // Insert a faulting instruction where the conditional branch was 587 // originally. We check earlier ensures that this bit of code motion 588 // is legal. We do not touch the successors list for any basic block 589 // since we haven't changed control flow, we've just made it implicit. 590 MachineInstr *FaultingInstr = insertFaultingInstr( 591 NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc()); 592 // Now the values defined by MemOperation, if any, are live-in of 593 // the block of MemOperation. 594 // The original operation may define implicit-defs alongside 595 // the value. 596 MachineBasicBlock *MBB = NC.getMemOperation()->getParent(); 597 for (const MachineOperand &MO : FaultingInstr->operands()) { 598 if (!MO.isReg() || !MO.isDef()) 599 continue; 600 unsigned Reg = MO.getReg(); 601 if (!Reg || MBB->isLiveIn(Reg)) 602 continue; 603 MBB->addLiveIn(Reg); 604 } 605 606 if (auto *DepMI = NC.getOnlyDependency()) { 607 for (auto &MO : DepMI->operands()) { 608 if (!MO.isReg() || !MO.getReg() || !MO.isDef()) 609 continue; 610 if (!NC.getNotNullSucc()->isLiveIn(MO.getReg())) 611 NC.getNotNullSucc()->addLiveIn(MO.getReg()); 612 } 613 } 614 615 NC.getMemOperation()->eraseFromParent(); 616 NC.getCheckOperation()->eraseFromParent(); 617 618 // Insert an *unconditional* branch to not-null successor. 619 TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr, 620 /*Cond=*/None, DL); 621 622 NumImplicitNullChecks++; 623 } 624 } 625 626 627 char ImplicitNullChecks::ID = 0; 628 char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID; 629 INITIALIZE_PASS_BEGIN(ImplicitNullChecks, "implicit-null-checks", 630 "Implicit null checks", false, false) 631 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 632 INITIALIZE_PASS_END(ImplicitNullChecks, "implicit-null-checks", 633 "Implicit null checks", false, false) 634