1 //===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass turns explicit null checks of the form 10 // 11 // test %r10, %r10 12 // je throw_npe 13 // movl (%r10), %esi 14 // ... 15 // 16 // to 17 // 18 // faulting_load_op("movl (%r10), %esi", throw_npe) 19 // ... 20 // 21 // With the help of a runtime that understands the .fault_maps section, 22 // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs 23 // a page fault. 24 // Store and LoadStore are also supported. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/Optional.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/Analysis/AliasAnalysis.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/CodeGen/FaultMaps.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFunctionPass.h" 40 #include "llvm/CodeGen/MachineInstr.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineOperand.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/PseudoSourceValue.h" 46 #include "llvm/CodeGen/TargetInstrInfo.h" 47 #include "llvm/CodeGen/TargetOpcodes.h" 48 #include "llvm/CodeGen/TargetRegisterInfo.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/MC/MCInstrDesc.h" 54 #include "llvm/MC/MCRegisterInfo.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/CommandLine.h" 57 #include <cassert> 58 #include <cstdint> 59 #include <iterator> 60 61 using namespace llvm; 62 63 static cl::opt<int> PageSize("imp-null-check-page-size", 64 cl::desc("The page size of the target in bytes"), 65 cl::init(4096), cl::Hidden); 66 67 static cl::opt<unsigned> MaxInstsToConsider( 68 "imp-null-max-insts-to-consider", 69 cl::desc("The max number of instructions to consider hoisting loads over " 70 "(the algorithm is quadratic over this number)"), 71 cl::Hidden, cl::init(8)); 72 73 #define DEBUG_TYPE "implicit-null-checks" 74 75 STATISTIC(NumImplicitNullChecks, 76 "Number of explicit null checks made implicit"); 77 78 namespace { 79 80 class ImplicitNullChecks : public MachineFunctionPass { 81 /// Return true if \c computeDependence can process \p MI. 82 static bool canHandle(const MachineInstr *MI); 83 84 /// Helper function for \c computeDependence. Return true if \p A 85 /// and \p B do not have any dependences between them, and can be 86 /// re-ordered without changing program semantics. 87 bool canReorder(const MachineInstr *A, const MachineInstr *B); 88 89 /// A data type for representing the result computed by \c 90 /// computeDependence. States whether it is okay to reorder the 91 /// instruction passed to \c computeDependence with at most one 92 /// dependency. 93 struct DependenceResult { 94 /// Can we actually re-order \p MI with \p Insts (see \c 95 /// computeDependence). 96 bool CanReorder; 97 98 /// If non-None, then an instruction in \p Insts that also must be 99 /// hoisted. 100 Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence; 101 102 /*implicit*/ DependenceResult( 103 bool CanReorder, 104 Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence) 105 : CanReorder(CanReorder), PotentialDependence(PotentialDependence) { 106 assert((!PotentialDependence || CanReorder) && 107 "!CanReorder && PotentialDependence.hasValue() not allowed!"); 108 } 109 }; 110 111 /// Compute a result for the following question: can \p MI be 112 /// re-ordered from after \p Insts to before it. 113 /// 114 /// \c canHandle should return true for all instructions in \p 115 /// Insts. 116 DependenceResult computeDependence(const MachineInstr *MI, 117 ArrayRef<MachineInstr *> Block); 118 119 /// Represents one null check that can be made implicit. 120 class NullCheck { 121 // The memory operation the null check can be folded into. 122 MachineInstr *MemOperation; 123 124 // The instruction actually doing the null check (Ptr != 0). 125 MachineInstr *CheckOperation; 126 127 // The block the check resides in. 128 MachineBasicBlock *CheckBlock; 129 130 // The block branched to if the pointer is non-null. 131 MachineBasicBlock *NotNullSucc; 132 133 // The block branched to if the pointer is null. 134 MachineBasicBlock *NullSucc; 135 136 // If this is non-null, then MemOperation has a dependency on this 137 // instruction; and it needs to be hoisted to execute before MemOperation. 138 MachineInstr *OnlyDependency; 139 140 public: 141 explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation, 142 MachineBasicBlock *checkBlock, 143 MachineBasicBlock *notNullSucc, 144 MachineBasicBlock *nullSucc, 145 MachineInstr *onlyDependency) 146 : MemOperation(memOperation), CheckOperation(checkOperation), 147 CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc), 148 OnlyDependency(onlyDependency) {} 149 150 MachineInstr *getMemOperation() const { return MemOperation; } 151 152 MachineInstr *getCheckOperation() const { return CheckOperation; } 153 154 MachineBasicBlock *getCheckBlock() const { return CheckBlock; } 155 156 MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; } 157 158 MachineBasicBlock *getNullSucc() const { return NullSucc; } 159 160 MachineInstr *getOnlyDependency() const { return OnlyDependency; } 161 }; 162 163 const TargetInstrInfo *TII = nullptr; 164 const TargetRegisterInfo *TRI = nullptr; 165 AliasAnalysis *AA = nullptr; 166 MachineFrameInfo *MFI = nullptr; 167 168 bool analyzeBlockForNullChecks(MachineBasicBlock &MBB, 169 SmallVectorImpl<NullCheck> &NullCheckList); 170 MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB, 171 MachineBasicBlock *HandlerMBB); 172 void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList); 173 174 enum AliasResult { 175 AR_NoAlias, 176 AR_MayAlias, 177 AR_WillAliasEverything 178 }; 179 180 /// Returns AR_NoAlias if \p MI memory operation does not alias with 181 /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if 182 /// they may alias and any further memory operation may alias with \p PrevMI. 183 AliasResult areMemoryOpsAliased(MachineInstr &MI, MachineInstr *PrevMI); 184 185 enum SuitabilityResult { 186 SR_Suitable, 187 SR_Unsuitable, 188 SR_Impossible 189 }; 190 191 /// Return SR_Suitable if \p MI a memory operation that can be used to 192 /// implicitly null check the value in \p PointerReg, SR_Unsuitable if 193 /// \p MI cannot be used to null check and SR_Impossible if there is 194 /// no sense to continue lookup due to any other instruction will not be able 195 /// to be used. \p PrevInsts is the set of instruction seen since 196 /// the explicit null check on \p PointerReg. 197 SuitabilityResult isSuitableMemoryOp(MachineInstr &MI, unsigned PointerReg, 198 ArrayRef<MachineInstr *> PrevInsts); 199 200 /// Return true if \p FaultingMI can be hoisted from after the 201 /// instructions in \p InstsSeenSoFar to before them. Set \p Dependence to a 202 /// non-null value if we also need to (and legally can) hoist a depedency. 203 bool canHoistInst(MachineInstr *FaultingMI, unsigned PointerReg, 204 ArrayRef<MachineInstr *> InstsSeenSoFar, 205 MachineBasicBlock *NullSucc, MachineInstr *&Dependence); 206 207 public: 208 static char ID; 209 210 ImplicitNullChecks() : MachineFunctionPass(ID) { 211 initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry()); 212 } 213 214 bool runOnMachineFunction(MachineFunction &MF) override; 215 216 void getAnalysisUsage(AnalysisUsage &AU) const override { 217 AU.addRequired<AAResultsWrapperPass>(); 218 MachineFunctionPass::getAnalysisUsage(AU); 219 } 220 221 MachineFunctionProperties getRequiredProperties() const override { 222 return MachineFunctionProperties().set( 223 MachineFunctionProperties::Property::NoVRegs); 224 } 225 }; 226 227 } // end anonymous namespace 228 229 bool ImplicitNullChecks::canHandle(const MachineInstr *MI) { 230 if (MI->isCall() || MI->hasUnmodeledSideEffects()) 231 return false; 232 auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); }; 233 (void)IsRegMask; 234 235 assert(!llvm::any_of(MI->operands(), IsRegMask) && 236 "Calls were filtered out above!"); 237 238 auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); }; 239 return llvm::all_of(MI->memoperands(), IsUnordered); 240 } 241 242 ImplicitNullChecks::DependenceResult 243 ImplicitNullChecks::computeDependence(const MachineInstr *MI, 244 ArrayRef<MachineInstr *> Block) { 245 assert(llvm::all_of(Block, canHandle) && "Check this first!"); 246 assert(!is_contained(Block, MI) && "Block must be exclusive of MI!"); 247 248 Optional<ArrayRef<MachineInstr *>::iterator> Dep; 249 250 for (auto I = Block.begin(), E = Block.end(); I != E; ++I) { 251 if (canReorder(*I, MI)) 252 continue; 253 254 if (Dep == None) { 255 // Found one possible dependency, keep track of it. 256 Dep = I; 257 } else { 258 // We found two dependencies, so bail out. 259 return {false, None}; 260 } 261 } 262 263 return {true, Dep}; 264 } 265 266 bool ImplicitNullChecks::canReorder(const MachineInstr *A, 267 const MachineInstr *B) { 268 assert(canHandle(A) && canHandle(B) && "Precondition!"); 269 270 // canHandle makes sure that we _can_ correctly analyze the dependencies 271 // between A and B here -- for instance, we should not be dealing with heap 272 // load-store dependencies here. 273 274 for (auto MOA : A->operands()) { 275 if (!(MOA.isReg() && MOA.getReg())) 276 continue; 277 278 unsigned RegA = MOA.getReg(); 279 for (auto MOB : B->operands()) { 280 if (!(MOB.isReg() && MOB.getReg())) 281 continue; 282 283 unsigned RegB = MOB.getReg(); 284 285 if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef())) 286 return false; 287 } 288 } 289 290 return true; 291 } 292 293 bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) { 294 TII = MF.getSubtarget().getInstrInfo(); 295 TRI = MF.getRegInfo().getTargetRegisterInfo(); 296 MFI = &MF.getFrameInfo(); 297 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 298 299 SmallVector<NullCheck, 16> NullCheckList; 300 301 for (auto &MBB : MF) 302 analyzeBlockForNullChecks(MBB, NullCheckList); 303 304 if (!NullCheckList.empty()) 305 rewriteNullChecks(NullCheckList); 306 307 return !NullCheckList.empty(); 308 } 309 310 // Return true if any register aliasing \p Reg is live-in into \p MBB. 311 static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI, 312 MachineBasicBlock *MBB, unsigned Reg) { 313 for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid(); 314 ++AR) 315 if (MBB->isLiveIn(*AR)) 316 return true; 317 return false; 318 } 319 320 ImplicitNullChecks::AliasResult 321 ImplicitNullChecks::areMemoryOpsAliased(MachineInstr &MI, 322 MachineInstr *PrevMI) { 323 // If it is not memory access, skip the check. 324 if (!(PrevMI->mayStore() || PrevMI->mayLoad())) 325 return AR_NoAlias; 326 // Load-Load may alias 327 if (!(MI.mayStore() || PrevMI->mayStore())) 328 return AR_NoAlias; 329 // We lost info, conservatively alias. If it was store then no sense to 330 // continue because we won't be able to check against it further. 331 if (MI.memoperands_empty()) 332 return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias; 333 if (PrevMI->memoperands_empty()) 334 return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias; 335 336 for (MachineMemOperand *MMO1 : MI.memoperands()) { 337 // MMO1 should have a value due it comes from operation we'd like to use 338 // as implicit null check. 339 assert(MMO1->getValue() && "MMO1 should have a Value!"); 340 for (MachineMemOperand *MMO2 : PrevMI->memoperands()) { 341 if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) { 342 if (PSV->mayAlias(MFI)) 343 return AR_MayAlias; 344 continue; 345 } 346 llvm::AliasResult AAResult = 347 AA->alias(MemoryLocation(MMO1->getValue(), LocationSize::unknown(), 348 MMO1->getAAInfo()), 349 MemoryLocation(MMO2->getValue(), LocationSize::unknown(), 350 MMO2->getAAInfo())); 351 if (AAResult != NoAlias) 352 return AR_MayAlias; 353 } 354 } 355 return AR_NoAlias; 356 } 357 358 ImplicitNullChecks::SuitabilityResult 359 ImplicitNullChecks::isSuitableMemoryOp(MachineInstr &MI, unsigned PointerReg, 360 ArrayRef<MachineInstr *> PrevInsts) { 361 int64_t Offset; 362 MachineOperand *BaseOp; 363 364 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI) || 365 !BaseOp->isReg() || BaseOp->getReg() != PointerReg) 366 return SR_Unsuitable; 367 368 // We want the mem access to be issued at a sane offset from PointerReg, 369 // so that if PointerReg is null then the access reliably page faults. 370 if (!((MI.mayLoad() || MI.mayStore()) && !MI.isPredicable() && 371 -PageSize < Offset && Offset < PageSize)) 372 return SR_Unsuitable; 373 374 // Finally, check whether the current memory access aliases with previous one. 375 for (auto *PrevMI : PrevInsts) { 376 AliasResult AR = areMemoryOpsAliased(MI, PrevMI); 377 if (AR == AR_WillAliasEverything) 378 return SR_Impossible; 379 if (AR == AR_MayAlias) 380 return SR_Unsuitable; 381 } 382 return SR_Suitable; 383 } 384 385 bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI, 386 unsigned PointerReg, 387 ArrayRef<MachineInstr *> InstsSeenSoFar, 388 MachineBasicBlock *NullSucc, 389 MachineInstr *&Dependence) { 390 auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar); 391 if (!DepResult.CanReorder) 392 return false; 393 394 if (!DepResult.PotentialDependence) { 395 Dependence = nullptr; 396 return true; 397 } 398 399 auto DependenceItr = *DepResult.PotentialDependence; 400 auto *DependenceMI = *DependenceItr; 401 402 // We don't want to reason about speculating loads. Note -- at this point 403 // we should have already filtered out all of the other non-speculatable 404 // things, like calls and stores. 405 // We also do not want to hoist stores because it might change the memory 406 // while the FaultingMI may result in faulting. 407 assert(canHandle(DependenceMI) && "Should never have reached here!"); 408 if (DependenceMI->mayLoadOrStore()) 409 return false; 410 411 for (auto &DependenceMO : DependenceMI->operands()) { 412 if (!(DependenceMO.isReg() && DependenceMO.getReg())) 413 continue; 414 415 // Make sure that we won't clobber any live ins to the sibling block by 416 // hoisting Dependency. For instance, we can't hoist INST to before the 417 // null check (even if it safe, and does not violate any dependencies in 418 // the non_null_block) if %rdx is live in to _null_block. 419 // 420 // test %rcx, %rcx 421 // je _null_block 422 // _non_null_block: 423 // %rdx = INST 424 // ... 425 // 426 // This restriction does not apply to the faulting load inst because in 427 // case the pointer loaded from is in the null page, the load will not 428 // semantically execute, and affect machine state. That is, if the load 429 // was loading into %rax and it faults, the value of %rax should stay the 430 // same as it would have been had the load not have executed and we'd have 431 // branched to NullSucc directly. 432 if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg())) 433 return false; 434 435 // The Dependency can't be re-defining the base register -- then we won't 436 // get the memory operation on the address we want. This is already 437 // checked in \c IsSuitableMemoryOp. 438 assert(!(DependenceMO.isDef() && 439 TRI->regsOverlap(DependenceMO.getReg(), PointerReg)) && 440 "Should have been checked before!"); 441 } 442 443 auto DepDepResult = 444 computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr}); 445 446 if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence) 447 return false; 448 449 Dependence = DependenceMI; 450 return true; 451 } 452 453 /// Analyze MBB to check if its terminating branch can be turned into an 454 /// implicit null check. If yes, append a description of the said null check to 455 /// NullCheckList and return true, else return false. 456 bool ImplicitNullChecks::analyzeBlockForNullChecks( 457 MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) { 458 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 459 460 MDNode *BranchMD = nullptr; 461 if (auto *BB = MBB.getBasicBlock()) 462 BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit); 463 464 if (!BranchMD) 465 return false; 466 467 MachineBranchPredicate MBP; 468 469 if (TII->analyzeBranchPredicate(MBB, MBP, true)) 470 return false; 471 472 // Is the predicate comparing an integer to zero? 473 if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 474 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 475 MBP.Predicate == MachineBranchPredicate::PRED_EQ))) 476 return false; 477 478 // If we cannot erase the test instruction itself, then making the null check 479 // implicit does not buy us much. 480 if (!MBP.SingleUseCondition) 481 return false; 482 483 MachineBasicBlock *NotNullSucc, *NullSucc; 484 485 if (MBP.Predicate == MachineBranchPredicate::PRED_NE) { 486 NotNullSucc = MBP.TrueDest; 487 NullSucc = MBP.FalseDest; 488 } else { 489 NotNullSucc = MBP.FalseDest; 490 NullSucc = MBP.TrueDest; 491 } 492 493 // We handle the simplest case for now. We can potentially do better by using 494 // the machine dominator tree. 495 if (NotNullSucc->pred_size() != 1) 496 return false; 497 498 // To prevent the invalid transformation of the following code: 499 // 500 // mov %rax, %rcx 501 // test %rax, %rax 502 // %rax = ... 503 // je throw_npe 504 // mov(%rcx), %r9 505 // mov(%rax), %r10 506 // 507 // into: 508 // 509 // mov %rax, %rcx 510 // %rax = .... 511 // faulting_load_op("movl (%rax), %r10", throw_npe) 512 // mov(%rcx), %r9 513 // 514 // we must ensure that there are no instructions between the 'test' and 515 // conditional jump that modify %rax. 516 const unsigned PointerReg = MBP.LHS.getReg(); 517 518 assert(MBP.ConditionDef->getParent() == &MBB && "Should be in basic block"); 519 520 for (auto I = MBB.rbegin(); MBP.ConditionDef != &*I; ++I) 521 if (I->modifiesRegister(PointerReg, TRI)) 522 return false; 523 524 // Starting with a code fragment like: 525 // 526 // test %rax, %rax 527 // jne LblNotNull 528 // 529 // LblNull: 530 // callq throw_NullPointerException 531 // 532 // LblNotNull: 533 // Inst0 534 // Inst1 535 // ... 536 // Def = Load (%rax + <offset>) 537 // ... 538 // 539 // 540 // we want to end up with 541 // 542 // Def = FaultingLoad (%rax + <offset>), LblNull 543 // jmp LblNotNull ;; explicit or fallthrough 544 // 545 // LblNotNull: 546 // Inst0 547 // Inst1 548 // ... 549 // 550 // LblNull: 551 // callq throw_NullPointerException 552 // 553 // 554 // To see why this is legal, consider the two possibilities: 555 // 556 // 1. %rax is null: since we constrain <offset> to be less than PageSize, the 557 // load instruction dereferences the null page, causing a segmentation 558 // fault. 559 // 560 // 2. %rax is not null: in this case we know that the load cannot fault, as 561 // otherwise the load would've faulted in the original program too and the 562 // original program would've been undefined. 563 // 564 // This reasoning cannot be extended to justify hoisting through arbitrary 565 // control flow. For instance, in the example below (in pseudo-C) 566 // 567 // if (ptr == null) { throw_npe(); unreachable; } 568 // if (some_cond) { return 42; } 569 // v = ptr->field; // LD 570 // ... 571 // 572 // we cannot (without code duplication) use the load marked "LD" to null check 573 // ptr -- clause (2) above does not apply in this case. In the above program 574 // the safety of ptr->field can be dependent on some_cond; and, for instance, 575 // ptr could be some non-null invalid reference that never gets loaded from 576 // because some_cond is always true. 577 578 SmallVector<MachineInstr *, 8> InstsSeenSoFar; 579 580 for (auto &MI : *NotNullSucc) { 581 if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider) 582 return false; 583 584 MachineInstr *Dependence; 585 SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar); 586 if (SR == SR_Impossible) 587 return false; 588 if (SR == SR_Suitable && 589 canHoistInst(&MI, PointerReg, InstsSeenSoFar, NullSucc, Dependence)) { 590 NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc, 591 NullSucc, Dependence); 592 return true; 593 } 594 595 // If MI re-defines the PointerReg then we cannot move further. 596 if (llvm::any_of(MI.operands(), [&](MachineOperand &MO) { 597 return MO.isReg() && MO.getReg() && MO.isDef() && 598 TRI->regsOverlap(MO.getReg(), PointerReg); 599 })) 600 return false; 601 InstsSeenSoFar.push_back(&MI); 602 } 603 604 return false; 605 } 606 607 /// Wrap a machine instruction, MI, into a FAULTING machine instruction. 608 /// The FAULTING instruction does the same load/store as MI 609 /// (defining the same register), and branches to HandlerMBB if the mem access 610 /// faults. The FAULTING instruction is inserted at the end of MBB. 611 MachineInstr *ImplicitNullChecks::insertFaultingInstr( 612 MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) { 613 const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for 614 // all targets. 615 616 DebugLoc DL; 617 unsigned NumDefs = MI->getDesc().getNumDefs(); 618 assert(NumDefs <= 1 && "other cases unhandled!"); 619 620 unsigned DefReg = NoRegister; 621 if (NumDefs != 0) { 622 DefReg = MI->getOperand(0).getReg(); 623 assert(NumDefs == 1 && "expected exactly one def!"); 624 } 625 626 FaultMaps::FaultKind FK; 627 if (MI->mayLoad()) 628 FK = 629 MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad; 630 else 631 FK = FaultMaps::FaultingStore; 632 633 auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg) 634 .addImm(FK) 635 .addMBB(HandlerMBB) 636 .addImm(MI->getOpcode()); 637 638 for (auto &MO : MI->uses()) { 639 if (MO.isReg()) { 640 MachineOperand NewMO = MO; 641 if (MO.isUse()) { 642 NewMO.setIsKill(false); 643 } else { 644 assert(MO.isDef() && "Expected def or use"); 645 NewMO.setIsDead(false); 646 } 647 MIB.add(NewMO); 648 } else { 649 MIB.add(MO); 650 } 651 } 652 653 MIB.setMemRefs(MI->memoperands()); 654 655 return MIB; 656 } 657 658 /// Rewrite the null checks in NullCheckList into implicit null checks. 659 void ImplicitNullChecks::rewriteNullChecks( 660 ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) { 661 DebugLoc DL; 662 663 for (auto &NC : NullCheckList) { 664 // Remove the conditional branch dependent on the null check. 665 unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock()); 666 (void)BranchesRemoved; 667 assert(BranchesRemoved > 0 && "expected at least one branch!"); 668 669 if (auto *DepMI = NC.getOnlyDependency()) { 670 DepMI->removeFromParent(); 671 NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI); 672 } 673 674 // Insert a faulting instruction where the conditional branch was 675 // originally. We check earlier ensures that this bit of code motion 676 // is legal. We do not touch the successors list for any basic block 677 // since we haven't changed control flow, we've just made it implicit. 678 MachineInstr *FaultingInstr = insertFaultingInstr( 679 NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc()); 680 // Now the values defined by MemOperation, if any, are live-in of 681 // the block of MemOperation. 682 // The original operation may define implicit-defs alongside 683 // the value. 684 MachineBasicBlock *MBB = NC.getMemOperation()->getParent(); 685 for (const MachineOperand &MO : FaultingInstr->operands()) { 686 if (!MO.isReg() || !MO.isDef()) 687 continue; 688 unsigned Reg = MO.getReg(); 689 if (!Reg || MBB->isLiveIn(Reg)) 690 continue; 691 MBB->addLiveIn(Reg); 692 } 693 694 if (auto *DepMI = NC.getOnlyDependency()) { 695 for (auto &MO : DepMI->operands()) { 696 if (!MO.isReg() || !MO.getReg() || !MO.isDef()) 697 continue; 698 if (!NC.getNotNullSucc()->isLiveIn(MO.getReg())) 699 NC.getNotNullSucc()->addLiveIn(MO.getReg()); 700 } 701 } 702 703 NC.getMemOperation()->eraseFromParent(); 704 NC.getCheckOperation()->eraseFromParent(); 705 706 // Insert an *unconditional* branch to not-null successor. 707 TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr, 708 /*Cond=*/None, DL); 709 710 NumImplicitNullChecks++; 711 } 712 } 713 714 char ImplicitNullChecks::ID = 0; 715 716 char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID; 717 718 INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE, 719 "Implicit null checks", false, false) 720 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 721 INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE, 722 "Implicit null checks", false, false) 723