1 //===-- IfConversion.cpp - Machine code if conversion pass. ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the machine instruction level if-conversion pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Passes.h" 15 #include "BranchFolding.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/LivePhysRegs.h" 20 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 21 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineModuleInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSchedule.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Target/TargetInstrInfo.h" 32 #include "llvm/Target/TargetLowering.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include "llvm/Target/TargetSubtargetInfo.h" 35 #include <algorithm> 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "ifcvt" 40 41 // Hidden options for help debugging. 42 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden); 43 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden); 44 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden); 45 static cl::opt<bool> DisableSimple("disable-ifcvt-simple", 46 cl::init(false), cl::Hidden); 47 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false", 48 cl::init(false), cl::Hidden); 49 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle", 50 cl::init(false), cl::Hidden); 51 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev", 52 cl::init(false), cl::Hidden); 53 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false", 54 cl::init(false), cl::Hidden); 55 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev", 56 cl::init(false), cl::Hidden); 57 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond", 58 cl::init(false), cl::Hidden); 59 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold", 60 cl::init(true), cl::Hidden); 61 62 STATISTIC(NumSimple, "Number of simple if-conversions performed"); 63 STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed"); 64 STATISTIC(NumTriangle, "Number of triangle if-conversions performed"); 65 STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed"); 66 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed"); 67 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed"); 68 STATISTIC(NumDiamonds, "Number of diamond if-conversions performed"); 69 STATISTIC(NumIfConvBBs, "Number of if-converted blocks"); 70 STATISTIC(NumDupBBs, "Number of duplicated blocks"); 71 STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated"); 72 73 namespace { 74 class IfConverter : public MachineFunctionPass { 75 enum IfcvtKind { 76 ICNotClassfied, // BB data valid, but not classified. 77 ICSimpleFalse, // Same as ICSimple, but on the false path. 78 ICSimple, // BB is entry of an one split, no rejoin sub-CFG. 79 ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition. 80 ICTriangleRev, // Same as ICTriangle, but true path rev condition. 81 ICTriangleFalse, // Same as ICTriangle, but on the false path. 82 ICTriangle, // BB is entry of a triangle sub-CFG. 83 ICDiamond // BB is entry of a diamond sub-CFG. 84 }; 85 86 /// BBInfo - One per MachineBasicBlock, this is used to cache the result 87 /// if-conversion feasibility analysis. This includes results from 88 /// TargetInstrInfo::AnalyzeBranch() (i.e. TBB, FBB, and Cond), and its 89 /// classification, and common tail block of its successors (if it's a 90 /// diamond shape), its size, whether it's predicable, and whether any 91 /// instruction can clobber the 'would-be' predicate. 92 /// 93 /// IsDone - True if BB is not to be considered for ifcvt. 94 /// IsBeingAnalyzed - True if BB is currently being analyzed. 95 /// IsAnalyzed - True if BB has been analyzed (info is still valid). 96 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed. 97 /// IsBrAnalyzable - True if AnalyzeBranch() returns false. 98 /// HasFallThrough - True if BB may fallthrough to the following BB. 99 /// IsUnpredicable - True if BB is known to be unpredicable. 100 /// ClobbersPred - True if BB could modify predicates (e.g. has 101 /// cmp, call, etc.) 102 /// NonPredSize - Number of non-predicated instructions. 103 /// ExtraCost - Extra cost for multi-cycle instructions. 104 /// ExtraCost2 - Some instructions are slower when predicated 105 /// BB - Corresponding MachineBasicBlock. 106 /// TrueBB / FalseBB- See AnalyzeBranch(). 107 /// BrCond - Conditions for end of block conditional branches. 108 /// Predicate - Predicate used in the BB. 109 struct BBInfo { 110 bool IsDone : 1; 111 bool IsBeingAnalyzed : 1; 112 bool IsAnalyzed : 1; 113 bool IsEnqueued : 1; 114 bool IsBrAnalyzable : 1; 115 bool HasFallThrough : 1; 116 bool IsUnpredicable : 1; 117 bool CannotBeCopied : 1; 118 bool ClobbersPred : 1; 119 unsigned NonPredSize; 120 unsigned ExtraCost; 121 unsigned ExtraCost2; 122 MachineBasicBlock *BB; 123 MachineBasicBlock *TrueBB; 124 MachineBasicBlock *FalseBB; 125 SmallVector<MachineOperand, 4> BrCond; 126 SmallVector<MachineOperand, 4> Predicate; 127 BBInfo() : IsDone(false), IsBeingAnalyzed(false), 128 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false), 129 HasFallThrough(false), IsUnpredicable(false), 130 CannotBeCopied(false), ClobbersPred(false), NonPredSize(0), 131 ExtraCost(0), ExtraCost2(0), BB(nullptr), TrueBB(nullptr), 132 FalseBB(nullptr) {} 133 }; 134 135 /// IfcvtToken - Record information about pending if-conversions to attempt: 136 /// BBI - Corresponding BBInfo. 137 /// Kind - Type of block. See IfcvtKind. 138 /// NeedSubsumption - True if the to-be-predicated BB has already been 139 /// predicated. 140 /// NumDups - Number of instructions that would be duplicated due 141 /// to this if-conversion. (For diamonds, the number of 142 /// identical instructions at the beginnings of both 143 /// paths). 144 /// NumDups2 - For diamonds, the number of identical instructions 145 /// at the ends of both paths. 146 struct IfcvtToken { 147 BBInfo &BBI; 148 IfcvtKind Kind; 149 bool NeedSubsumption; 150 unsigned NumDups; 151 unsigned NumDups2; 152 IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0) 153 : BBI(b), Kind(k), NeedSubsumption(s), NumDups(d), NumDups2(d2) {} 154 }; 155 156 /// BBAnalysis - Results of if-conversion feasibility analysis indexed by 157 /// basic block number. 158 std::vector<BBInfo> BBAnalysis; 159 TargetSchedModel SchedModel; 160 161 const TargetLoweringBase *TLI; 162 const TargetInstrInfo *TII; 163 const TargetRegisterInfo *TRI; 164 const MachineBlockFrequencyInfo *MBFI; 165 const MachineBranchProbabilityInfo *MBPI; 166 MachineRegisterInfo *MRI; 167 168 LivePhysRegs Redefs; 169 LivePhysRegs DontKill; 170 171 bool PreRegAlloc; 172 bool MadeChange; 173 int FnNum; 174 std::function<bool(const Function &)> PredicateFtor; 175 176 public: 177 static char ID; 178 IfConverter(std::function<bool(const Function &)> Ftor = nullptr) 179 : MachineFunctionPass(ID), FnNum(-1), PredicateFtor(Ftor) { 180 initializeIfConverterPass(*PassRegistry::getPassRegistry()); 181 } 182 183 void getAnalysisUsage(AnalysisUsage &AU) const override { 184 AU.addRequired<MachineBlockFrequencyInfo>(); 185 AU.addRequired<MachineBranchProbabilityInfo>(); 186 MachineFunctionPass::getAnalysisUsage(AU); 187 } 188 189 bool runOnMachineFunction(MachineFunction &MF) override; 190 191 private: 192 bool ReverseBranchCondition(BBInfo &BBI); 193 bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 194 BranchProbability Prediction) const; 195 bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 196 bool FalseBranch, unsigned &Dups, 197 BranchProbability Prediction) const; 198 bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 199 unsigned &Dups1, unsigned &Dups2) const; 200 void ScanInstructions(BBInfo &BBI); 201 void AnalyzeBlock(MachineBasicBlock *MBB, 202 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 203 bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Cond, 204 bool isTriangle = false, bool RevBranch = false); 205 void AnalyzeBlocks(MachineFunction &MF, 206 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 207 void InvalidatePreds(MachineBasicBlock *BB); 208 void RemoveExtraEdges(BBInfo &BBI); 209 bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind); 210 bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind); 211 bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 212 unsigned NumDups1, unsigned NumDups2); 213 void PredicateBlock(BBInfo &BBI, 214 MachineBasicBlock::iterator E, 215 SmallVectorImpl<MachineOperand> &Cond, 216 SmallSet<unsigned, 4> *LaterRedefs = nullptr); 217 void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 218 SmallVectorImpl<MachineOperand> &Cond, 219 bool IgnoreBr = false); 220 void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true); 221 222 bool MeetIfcvtSizeLimit(MachineBasicBlock &BB, 223 unsigned Cycle, unsigned Extra, 224 BranchProbability Prediction) const { 225 return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra, 226 Prediction); 227 } 228 229 bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB, 230 unsigned TCycle, unsigned TExtra, 231 MachineBasicBlock &FBB, 232 unsigned FCycle, unsigned FExtra, 233 BranchProbability Prediction) const { 234 return TCycle > 0 && FCycle > 0 && 235 TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra, 236 Prediction); 237 } 238 239 // blockAlwaysFallThrough - Block ends without a terminator. 240 bool blockAlwaysFallThrough(BBInfo &BBI) const { 241 return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr; 242 } 243 244 // IfcvtTokenCmp - Used to sort if-conversion candidates. 245 static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1, 246 const std::unique_ptr<IfcvtToken> &C2) { 247 int Incr1 = (C1->Kind == ICDiamond) 248 ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups; 249 int Incr2 = (C2->Kind == ICDiamond) 250 ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups; 251 if (Incr1 > Incr2) 252 return true; 253 else if (Incr1 == Incr2) { 254 // Favors subsumption. 255 if (!C1->NeedSubsumption && C2->NeedSubsumption) 256 return true; 257 else if (C1->NeedSubsumption == C2->NeedSubsumption) { 258 // Favors diamond over triangle, etc. 259 if ((unsigned)C1->Kind < (unsigned)C2->Kind) 260 return true; 261 else if (C1->Kind == C2->Kind) 262 return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber(); 263 } 264 } 265 return false; 266 } 267 }; 268 269 char IfConverter::ID = 0; 270 } 271 272 char &llvm::IfConverterID = IfConverter::ID; 273 274 INITIALIZE_PASS_BEGIN(IfConverter, "if-converter", "If Converter", false, false) 275 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 276 INITIALIZE_PASS_END(IfConverter, "if-converter", "If Converter", false, false) 277 278 bool IfConverter::runOnMachineFunction(MachineFunction &MF) { 279 if (PredicateFtor && !PredicateFtor(*MF.getFunction())) 280 return false; 281 282 const TargetSubtargetInfo &ST = MF.getSubtarget(); 283 TLI = ST.getTargetLowering(); 284 TII = ST.getInstrInfo(); 285 TRI = ST.getRegisterInfo(); 286 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 287 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 288 MRI = &MF.getRegInfo(); 289 SchedModel.init(ST.getSchedModel(), &ST, TII); 290 291 if (!TII) return false; 292 293 PreRegAlloc = MRI->isSSA(); 294 295 bool BFChange = false; 296 if (!PreRegAlloc) { 297 // Tail merge tend to expose more if-conversion opportunities. 298 BranchFolder BF(true, false, *MBFI, *MBPI); 299 BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(), 300 getAnalysisIfAvailable<MachineModuleInfo>()); 301 } 302 303 DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'" 304 << MF.getName() << "\'"); 305 306 if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) { 307 DEBUG(dbgs() << " skipped\n"); 308 return false; 309 } 310 DEBUG(dbgs() << "\n"); 311 312 MF.RenumberBlocks(); 313 BBAnalysis.resize(MF.getNumBlockIDs()); 314 315 std::vector<std::unique_ptr<IfcvtToken>> Tokens; 316 MadeChange = false; 317 unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + 318 NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds; 319 while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) { 320 // Do an initial analysis for each basic block and find all the potential 321 // candidates to perform if-conversion. 322 bool Change = false; 323 AnalyzeBlocks(MF, Tokens); 324 while (!Tokens.empty()) { 325 std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back()); 326 Tokens.pop_back(); 327 BBInfo &BBI = Token->BBI; 328 IfcvtKind Kind = Token->Kind; 329 unsigned NumDups = Token->NumDups; 330 unsigned NumDups2 = Token->NumDups2; 331 332 // If the block has been evicted out of the queue or it has already been 333 // marked dead (due to it being predicated), then skip it. 334 if (BBI.IsDone) 335 BBI.IsEnqueued = false; 336 if (!BBI.IsEnqueued) 337 continue; 338 339 BBI.IsEnqueued = false; 340 341 bool RetVal = false; 342 switch (Kind) { 343 default: llvm_unreachable("Unexpected!"); 344 case ICSimple: 345 case ICSimpleFalse: { 346 bool isFalse = Kind == ICSimpleFalse; 347 if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break; 348 DEBUG(dbgs() << "Ifcvt (Simple" << (Kind == ICSimpleFalse ? 349 " false" : "") 350 << "): BB#" << BBI.BB->getNumber() << " (" 351 << ((Kind == ICSimpleFalse) 352 ? BBI.FalseBB->getNumber() 353 : BBI.TrueBB->getNumber()) << ") "); 354 RetVal = IfConvertSimple(BBI, Kind); 355 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 356 if (RetVal) { 357 if (isFalse) ++NumSimpleFalse; 358 else ++NumSimple; 359 } 360 break; 361 } 362 case ICTriangle: 363 case ICTriangleRev: 364 case ICTriangleFalse: 365 case ICTriangleFRev: { 366 bool isFalse = Kind == ICTriangleFalse; 367 bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev); 368 if (DisableTriangle && !isFalse && !isRev) break; 369 if (DisableTriangleR && !isFalse && isRev) break; 370 if (DisableTriangleF && isFalse && !isRev) break; 371 if (DisableTriangleFR && isFalse && isRev) break; 372 DEBUG(dbgs() << "Ifcvt (Triangle"); 373 if (isFalse) 374 DEBUG(dbgs() << " false"); 375 if (isRev) 376 DEBUG(dbgs() << " rev"); 377 DEBUG(dbgs() << "): BB#" << BBI.BB->getNumber() << " (T:" 378 << BBI.TrueBB->getNumber() << ",F:" 379 << BBI.FalseBB->getNumber() << ") "); 380 RetVal = IfConvertTriangle(BBI, Kind); 381 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 382 if (RetVal) { 383 if (isFalse) { 384 if (isRev) ++NumTriangleFRev; 385 else ++NumTriangleFalse; 386 } else { 387 if (isRev) ++NumTriangleRev; 388 else ++NumTriangle; 389 } 390 } 391 break; 392 } 393 case ICDiamond: { 394 if (DisableDiamond) break; 395 DEBUG(dbgs() << "Ifcvt (Diamond): BB#" << BBI.BB->getNumber() << " (T:" 396 << BBI.TrueBB->getNumber() << ",F:" 397 << BBI.FalseBB->getNumber() << ") "); 398 RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2); 399 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 400 if (RetVal) ++NumDiamonds; 401 break; 402 } 403 } 404 405 Change |= RetVal; 406 407 NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev + 408 NumTriangleFalse + NumTriangleFRev + NumDiamonds; 409 if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit) 410 break; 411 } 412 413 if (!Change) 414 break; 415 MadeChange |= Change; 416 } 417 418 Tokens.clear(); 419 BBAnalysis.clear(); 420 421 if (MadeChange && IfCvtBranchFold) { 422 BranchFolder BF(false, false, *MBFI, *MBPI); 423 BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 424 getAnalysisIfAvailable<MachineModuleInfo>()); 425 } 426 427 MadeChange |= BFChange; 428 return MadeChange; 429 } 430 431 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given 432 /// its 'true' successor. 433 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 434 MachineBasicBlock *TrueBB) { 435 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 436 E = BB->succ_end(); SI != E; ++SI) { 437 MachineBasicBlock *SuccBB = *SI; 438 if (SuccBB != TrueBB) 439 return SuccBB; 440 } 441 return nullptr; 442 } 443 444 /// ReverseBranchCondition - Reverse the condition of the end of the block 445 /// branch. Swap block's 'true' and 'false' successors. 446 bool IfConverter::ReverseBranchCondition(BBInfo &BBI) { 447 DebugLoc dl; // FIXME: this is nowhere 448 if (!TII->ReverseBranchCondition(BBI.BrCond)) { 449 TII->RemoveBranch(*BBI.BB); 450 TII->InsertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl); 451 std::swap(BBI.TrueBB, BBI.FalseBB); 452 return true; 453 } 454 return false; 455 } 456 457 /// getNextBlock - Returns the next block in the function blocks ordering. If 458 /// it is the end, returns NULL. 459 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock *BB) { 460 MachineFunction::iterator I = BB->getIterator(); 461 MachineFunction::iterator E = BB->getParent()->end(); 462 if (++I == E) 463 return nullptr; 464 return &*I; 465 } 466 467 /// ValidSimple - Returns true if the 'true' block (along with its 468 /// predecessor) forms a valid simple shape for ifcvt. It also returns the 469 /// number of instructions that the ifcvt would need to duplicate if performed 470 /// in Dups. 471 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 472 BranchProbability Prediction) const { 473 Dups = 0; 474 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 475 return false; 476 477 if (TrueBBI.IsBrAnalyzable) 478 return false; 479 480 if (TrueBBI.BB->pred_size() > 1) { 481 if (TrueBBI.CannotBeCopied || 482 !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize, 483 Prediction)) 484 return false; 485 Dups = TrueBBI.NonPredSize; 486 } 487 488 return true; 489 } 490 491 /// ValidTriangle - Returns true if the 'true' and 'false' blocks (along 492 /// with their common predecessor) forms a valid triangle shape for ifcvt. 493 /// If 'FalseBranch' is true, it checks if 'true' block's false branch 494 /// branches to the 'false' block rather than the other way around. It also 495 /// returns the number of instructions that the ifcvt would need to duplicate 496 /// if performed in 'Dups'. 497 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 498 bool FalseBranch, unsigned &Dups, 499 BranchProbability Prediction) const { 500 Dups = 0; 501 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 502 return false; 503 504 if (TrueBBI.BB->pred_size() > 1) { 505 if (TrueBBI.CannotBeCopied) 506 return false; 507 508 unsigned Size = TrueBBI.NonPredSize; 509 if (TrueBBI.IsBrAnalyzable) { 510 if (TrueBBI.TrueBB && TrueBBI.BrCond.empty()) 511 // Ends with an unconditional branch. It will be removed. 512 --Size; 513 else { 514 MachineBasicBlock *FExit = FalseBranch 515 ? TrueBBI.TrueBB : TrueBBI.FalseBB; 516 if (FExit) 517 // Require a conditional branch 518 ++Size; 519 } 520 } 521 if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction)) 522 return false; 523 Dups = Size; 524 } 525 526 MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB; 527 if (!TExit && blockAlwaysFallThrough(TrueBBI)) { 528 MachineFunction::iterator I = TrueBBI.BB->getIterator(); 529 if (++I == TrueBBI.BB->getParent()->end()) 530 return false; 531 TExit = &*I; 532 } 533 return TExit && TExit == FalseBBI.BB; 534 } 535 536 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along 537 /// with their common predecessor) forms a valid diamond shape for ifcvt. 538 bool IfConverter::ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 539 unsigned &Dups1, unsigned &Dups2) const { 540 Dups1 = Dups2 = 0; 541 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 542 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 543 return false; 544 545 MachineBasicBlock *TT = TrueBBI.TrueBB; 546 MachineBasicBlock *FT = FalseBBI.TrueBB; 547 548 if (!TT && blockAlwaysFallThrough(TrueBBI)) 549 TT = getNextBlock(TrueBBI.BB); 550 if (!FT && blockAlwaysFallThrough(FalseBBI)) 551 FT = getNextBlock(FalseBBI.BB); 552 if (TT != FT) 553 return false; 554 if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable)) 555 return false; 556 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 557 return false; 558 559 // FIXME: Allow true block to have an early exit? 560 if (TrueBBI.FalseBB || FalseBBI.FalseBB || 561 (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)) 562 return false; 563 564 // Count duplicate instructions at the beginning of the true and false blocks. 565 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 566 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 567 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 568 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 569 while (TIB != TIE && FIB != FIE) { 570 // Skip dbg_value instructions. These do not count. 571 if (TIB->isDebugValue()) { 572 while (TIB != TIE && TIB->isDebugValue()) 573 ++TIB; 574 if (TIB == TIE) 575 break; 576 } 577 if (FIB->isDebugValue()) { 578 while (FIB != FIE && FIB->isDebugValue()) 579 ++FIB; 580 if (FIB == FIE) 581 break; 582 } 583 if (!TIB->isIdenticalTo(*FIB)) 584 break; 585 ++Dups1; 586 ++TIB; 587 ++FIB; 588 } 589 590 // Now, in preparation for counting duplicate instructions at the ends of the 591 // blocks, move the end iterators up past any branch instructions. 592 // If both blocks are returning don't skip the branches, since they will 593 // likely be both identical return instructions. In such cases the return 594 // can be left unpredicated. 595 // Check for already containing all of the block. 596 if (TIB == TIE || FIB == FIE) 597 return true; 598 --TIE; 599 --FIE; 600 if (!TrueBBI.BB->succ_empty() || !FalseBBI.BB->succ_empty()) { 601 while (TIE != TIB && TIE->isBranch()) 602 --TIE; 603 while (FIE != FIB && FIE->isBranch()) 604 --FIE; 605 } 606 607 // If Dups1 includes all of a block, then don't count duplicate 608 // instructions at the end of the blocks. 609 if (TIB == TIE || FIB == FIE) 610 return true; 611 612 // Count duplicate instructions at the ends of the blocks. 613 while (TIE != TIB && FIE != FIB) { 614 // Skip dbg_value instructions. These do not count. 615 if (TIE->isDebugValue()) { 616 while (TIE != TIB && TIE->isDebugValue()) 617 --TIE; 618 if (TIE == TIB) 619 break; 620 } 621 if (FIE->isDebugValue()) { 622 while (FIE != FIB && FIE->isDebugValue()) 623 --FIE; 624 if (FIE == FIB) 625 break; 626 } 627 if (!TIE->isIdenticalTo(*FIE)) 628 break; 629 ++Dups2; 630 --TIE; 631 --FIE; 632 } 633 634 return true; 635 } 636 637 /// ScanInstructions - Scan all the instructions in the block to determine if 638 /// the block is predicable. In most cases, that means all the instructions 639 /// in the block are isPredicable(). Also checks if the block contains any 640 /// instruction which can clobber a predicate (e.g. condition code register). 641 /// If so, the block is not predicable unless it's the last instruction. 642 void IfConverter::ScanInstructions(BBInfo &BBI) { 643 if (BBI.IsDone) 644 return; 645 646 bool AlreadyPredicated = !BBI.Predicate.empty(); 647 // First analyze the end of BB branches. 648 BBI.TrueBB = BBI.FalseBB = nullptr; 649 BBI.BrCond.clear(); 650 BBI.IsBrAnalyzable = 651 !TII->AnalyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond); 652 BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr; 653 654 if (BBI.BrCond.size()) { 655 // No false branch. This BB must end with a conditional branch and a 656 // fallthrough. 657 if (!BBI.FalseBB) 658 BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB); 659 if (!BBI.FalseBB) { 660 // Malformed bcc? True and false blocks are the same? 661 BBI.IsUnpredicable = true; 662 return; 663 } 664 } 665 666 // Then scan all the instructions. 667 BBI.NonPredSize = 0; 668 BBI.ExtraCost = 0; 669 BBI.ExtraCost2 = 0; 670 BBI.ClobbersPred = false; 671 for (auto &MI : *BBI.BB) { 672 if (MI.isDebugValue()) 673 continue; 674 675 if (MI.isNotDuplicable()) 676 BBI.CannotBeCopied = true; 677 678 bool isPredicated = TII->isPredicated(MI); 679 bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch(); 680 681 // A conditional branch is not predicable, but it may be eliminated. 682 if (isCondBr) 683 continue; 684 685 if (!isPredicated) { 686 BBI.NonPredSize++; 687 unsigned ExtraPredCost = TII->getPredicationCost(MI); 688 unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false); 689 if (NumCycles > 1) 690 BBI.ExtraCost += NumCycles-1; 691 BBI.ExtraCost2 += ExtraPredCost; 692 } else if (!AlreadyPredicated) { 693 // FIXME: This instruction is already predicated before the 694 // if-conversion pass. It's probably something like a conditional move. 695 // Mark this block unpredicable for now. 696 BBI.IsUnpredicable = true; 697 return; 698 } 699 700 if (BBI.ClobbersPred && !isPredicated) { 701 // Predicate modification instruction should end the block (except for 702 // already predicated instructions and end of block branches). 703 // Predicate may have been modified, the subsequent (currently) 704 // unpredicated instructions cannot be correctly predicated. 705 BBI.IsUnpredicable = true; 706 return; 707 } 708 709 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are 710 // still potentially predicable. 711 std::vector<MachineOperand> PredDefs; 712 if (TII->DefinesPredicate(MI, PredDefs)) 713 BBI.ClobbersPred = true; 714 715 if (!TII->isPredicable(MI)) { 716 BBI.IsUnpredicable = true; 717 return; 718 } 719 } 720 } 721 722 /// FeasibilityAnalysis - Determine if the block is a suitable candidate to be 723 /// predicated by the specified predicate. 724 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI, 725 SmallVectorImpl<MachineOperand> &Pred, 726 bool isTriangle, bool RevBranch) { 727 // If the block is dead or unpredicable, then it cannot be predicated. 728 if (BBI.IsDone || BBI.IsUnpredicable) 729 return false; 730 731 // If it is already predicated but we couldn't analyze its terminator, the 732 // latter might fallthrough, but we can't determine where to. 733 // Conservatively avoid if-converting again. 734 if (BBI.Predicate.size() && !BBI.IsBrAnalyzable) 735 return false; 736 737 // If it is already predicated, check if the new predicate subsumes 738 // its predicate. 739 if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate)) 740 return false; 741 742 if (BBI.BrCond.size()) { 743 if (!isTriangle) 744 return false; 745 746 // Test predicate subsumption. 747 SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end()); 748 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 749 if (RevBranch) { 750 if (TII->ReverseBranchCondition(Cond)) 751 return false; 752 } 753 if (TII->ReverseBranchCondition(RevPred) || 754 !TII->SubsumesPredicate(Cond, RevPred)) 755 return false; 756 } 757 758 return true; 759 } 760 761 /// AnalyzeBlock - Analyze the structure of the sub-CFG starting from 762 /// the specified block. Record its successors and whether it looks like an 763 /// if-conversion candidate. 764 void IfConverter::AnalyzeBlock( 765 MachineBasicBlock *MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 766 struct BBState { 767 BBState(MachineBasicBlock *BB) : MBB(BB), SuccsAnalyzed(false) {} 768 MachineBasicBlock *MBB; 769 770 /// This flag is true if MBB's successors have been analyzed. 771 bool SuccsAnalyzed; 772 }; 773 774 // Push MBB to the stack. 775 SmallVector<BBState, 16> BBStack(1, MBB); 776 777 while (!BBStack.empty()) { 778 BBState &State = BBStack.back(); 779 MachineBasicBlock *BB = State.MBB; 780 BBInfo &BBI = BBAnalysis[BB->getNumber()]; 781 782 if (!State.SuccsAnalyzed) { 783 if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) { 784 BBStack.pop_back(); 785 continue; 786 } 787 788 BBI.BB = BB; 789 BBI.IsBeingAnalyzed = true; 790 791 ScanInstructions(BBI); 792 793 // Unanalyzable or ends with fallthrough or unconditional branch, or if is 794 // not considered for ifcvt anymore. 795 if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) { 796 BBI.IsBeingAnalyzed = false; 797 BBI.IsAnalyzed = true; 798 BBStack.pop_back(); 799 continue; 800 } 801 802 // Do not ifcvt if either path is a back edge to the entry block. 803 if (BBI.TrueBB == BB || BBI.FalseBB == BB) { 804 BBI.IsBeingAnalyzed = false; 805 BBI.IsAnalyzed = true; 806 BBStack.pop_back(); 807 continue; 808 } 809 810 // Do not ifcvt if true and false fallthrough blocks are the same. 811 if (!BBI.FalseBB) { 812 BBI.IsBeingAnalyzed = false; 813 BBI.IsAnalyzed = true; 814 BBStack.pop_back(); 815 continue; 816 } 817 818 // Push the False and True blocks to the stack. 819 State.SuccsAnalyzed = true; 820 BBStack.push_back(BBI.FalseBB); 821 BBStack.push_back(BBI.TrueBB); 822 continue; 823 } 824 825 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 826 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 827 828 if (TrueBBI.IsDone && FalseBBI.IsDone) { 829 BBI.IsBeingAnalyzed = false; 830 BBI.IsAnalyzed = true; 831 BBStack.pop_back(); 832 continue; 833 } 834 835 SmallVector<MachineOperand, 4> 836 RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 837 bool CanRevCond = !TII->ReverseBranchCondition(RevCond); 838 839 unsigned Dups = 0; 840 unsigned Dups2 = 0; 841 bool TNeedSub = !TrueBBI.Predicate.empty(); 842 bool FNeedSub = !FalseBBI.Predicate.empty(); 843 bool Enqueued = false; 844 845 BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB); 846 847 if (CanRevCond && ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2) && 848 MeetIfcvtSizeLimit(*TrueBBI.BB, (TrueBBI.NonPredSize - (Dups + Dups2) + 849 TrueBBI.ExtraCost), TrueBBI.ExtraCost2, 850 *FalseBBI.BB, (FalseBBI.NonPredSize - (Dups + Dups2) + 851 FalseBBI.ExtraCost),FalseBBI.ExtraCost2, 852 Prediction) && 853 FeasibilityAnalysis(TrueBBI, BBI.BrCond) && 854 FeasibilityAnalysis(FalseBBI, RevCond)) { 855 // Diamond: 856 // EBB 857 // / \_ 858 // | | 859 // TBB FBB 860 // \ / 861 // TailBB 862 // Note TailBB can be empty. 863 Tokens.push_back(llvm::make_unique<IfcvtToken>( 864 BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2)); 865 Enqueued = true; 866 } 867 868 if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) && 869 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 870 TrueBBI.ExtraCost2, Prediction) && 871 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) { 872 // Triangle: 873 // EBB 874 // | \_ 875 // | | 876 // | TBB 877 // | / 878 // FBB 879 Tokens.push_back( 880 llvm::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups)); 881 Enqueued = true; 882 } 883 884 if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) && 885 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 886 TrueBBI.ExtraCost2, Prediction) && 887 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) { 888 Tokens.push_back( 889 llvm::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups)); 890 Enqueued = true; 891 } 892 893 if (ValidSimple(TrueBBI, Dups, Prediction) && 894 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 895 TrueBBI.ExtraCost2, Prediction) && 896 FeasibilityAnalysis(TrueBBI, BBI.BrCond)) { 897 // Simple (split, no rejoin): 898 // EBB 899 // | \_ 900 // | | 901 // | TBB---> exit 902 // | 903 // FBB 904 Tokens.push_back( 905 llvm::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups)); 906 Enqueued = true; 907 } 908 909 if (CanRevCond) { 910 // Try the other path... 911 if (ValidTriangle(FalseBBI, TrueBBI, false, Dups, 912 Prediction.getCompl()) && 913 MeetIfcvtSizeLimit(*FalseBBI.BB, 914 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 915 FalseBBI.ExtraCost2, Prediction.getCompl()) && 916 FeasibilityAnalysis(FalseBBI, RevCond, true)) { 917 Tokens.push_back(llvm::make_unique<IfcvtToken>(BBI, ICTriangleFalse, 918 FNeedSub, Dups)); 919 Enqueued = true; 920 } 921 922 if (ValidTriangle(FalseBBI, TrueBBI, true, Dups, 923 Prediction.getCompl()) && 924 MeetIfcvtSizeLimit(*FalseBBI.BB, 925 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 926 FalseBBI.ExtraCost2, Prediction.getCompl()) && 927 FeasibilityAnalysis(FalseBBI, RevCond, true, true)) { 928 Tokens.push_back( 929 llvm::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups)); 930 Enqueued = true; 931 } 932 933 if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) && 934 MeetIfcvtSizeLimit(*FalseBBI.BB, 935 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 936 FalseBBI.ExtraCost2, Prediction.getCompl()) && 937 FeasibilityAnalysis(FalseBBI, RevCond)) { 938 Tokens.push_back( 939 llvm::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups)); 940 Enqueued = true; 941 } 942 } 943 944 BBI.IsEnqueued = Enqueued; 945 BBI.IsBeingAnalyzed = false; 946 BBI.IsAnalyzed = true; 947 BBStack.pop_back(); 948 } 949 } 950 951 /// AnalyzeBlocks - Analyze all blocks and find entries for all if-conversion 952 /// candidates. 953 void IfConverter::AnalyzeBlocks( 954 MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 955 for (auto &BB : MF) 956 AnalyzeBlock(&BB, Tokens); 957 958 // Sort to favor more complex ifcvt scheme. 959 std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp); 960 } 961 962 /// canFallThroughTo - Returns true either if ToBB is the next block after BB or 963 /// that all the intervening blocks are empty (given BB can fall through to its 964 /// next block). 965 static bool canFallThroughTo(MachineBasicBlock *BB, MachineBasicBlock *ToBB) { 966 MachineFunction::iterator PI = BB->getIterator(); 967 MachineFunction::iterator I = std::next(PI); 968 MachineFunction::iterator TI = ToBB->getIterator(); 969 MachineFunction::iterator E = BB->getParent()->end(); 970 while (I != TI) { 971 // Check isSuccessor to avoid case where the next block is empty, but 972 // it's not a successor. 973 if (I == E || !I->empty() || !PI->isSuccessor(&*I)) 974 return false; 975 PI = I++; 976 } 977 return true; 978 } 979 980 /// InvalidatePreds - Invalidate predecessor BB info so it would be re-analyzed 981 /// to determine if it can be if-converted. If predecessor is already enqueued, 982 /// dequeue it! 983 void IfConverter::InvalidatePreds(MachineBasicBlock *BB) { 984 for (const auto &Predecessor : BB->predecessors()) { 985 BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()]; 986 if (PBBI.IsDone || PBBI.BB == BB) 987 continue; 988 PBBI.IsAnalyzed = false; 989 PBBI.IsEnqueued = false; 990 } 991 } 992 993 /// InsertUncondBranch - Inserts an unconditional branch from BB to ToBB. 994 /// 995 static void InsertUncondBranch(MachineBasicBlock *BB, MachineBasicBlock *ToBB, 996 const TargetInstrInfo *TII) { 997 DebugLoc dl; // FIXME: this is nowhere 998 SmallVector<MachineOperand, 0> NoCond; 999 TII->InsertBranch(*BB, ToBB, nullptr, NoCond, dl); 1000 } 1001 1002 /// RemoveExtraEdges - Remove true / false edges if either / both are no longer 1003 /// successors. 1004 void IfConverter::RemoveExtraEdges(BBInfo &BBI) { 1005 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1006 SmallVector<MachineOperand, 4> Cond; 1007 if (!TII->AnalyzeBranch(*BBI.BB, TBB, FBB, Cond)) 1008 BBI.BB->CorrectExtraCFGEdges(TBB, FBB, !Cond.empty()); 1009 } 1010 1011 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all 1012 /// values defined in MI which are not live/used by MI. 1013 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) { 1014 SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Clobbers; 1015 Redefs.stepForward(MI, Clobbers); 1016 1017 // Now add the implicit uses for each of the clobbered values. 1018 for (auto Reg : Clobbers) { 1019 // FIXME: Const cast here is nasty, but better than making StepForward 1020 // take a mutable instruction instead of const. 1021 MachineOperand &Op = const_cast<MachineOperand&>(*Reg.second); 1022 MachineInstr *OpMI = Op.getParent(); 1023 MachineInstrBuilder MIB(*OpMI->getParent()->getParent(), OpMI); 1024 if (Op.isRegMask()) { 1025 // First handle regmasks. They clobber any entries in the mask which 1026 // means that we need a def for those registers. 1027 MIB.addReg(Reg.first, RegState::Implicit | RegState::Undef); 1028 1029 // We also need to add an implicit def of this register for the later 1030 // use to read from. 1031 // For the register allocator to have allocated a register clobbered 1032 // by the call which is used later, it must be the case that 1033 // the call doesn't return. 1034 MIB.addReg(Reg.first, RegState::Implicit | RegState::Define); 1035 continue; 1036 } 1037 assert(Op.isReg() && "Register operand required"); 1038 if (Op.isDead()) { 1039 // If we found a dead def, but it needs to be live, then remove the dead 1040 // flag. 1041 if (Redefs.contains(Op.getReg())) 1042 Op.setIsDead(false); 1043 } 1044 MIB.addReg(Reg.first, RegState::Implicit | RegState::Undef); 1045 } 1046 } 1047 1048 /** 1049 * Remove kill flags from operands with a registers in the @p DontKill set. 1050 */ 1051 static void RemoveKills(MachineInstr &MI, const LivePhysRegs &DontKill) { 1052 for (MIBundleOperands O(MI); O.isValid(); ++O) { 1053 if (!O->isReg() || !O->isKill()) 1054 continue; 1055 if (DontKill.contains(O->getReg())) 1056 O->setIsKill(false); 1057 } 1058 } 1059 1060 /** 1061 * Walks a range of machine instructions and removes kill flags for registers 1062 * in the @p DontKill set. 1063 */ 1064 static void RemoveKills(MachineBasicBlock::iterator I, 1065 MachineBasicBlock::iterator E, 1066 const LivePhysRegs &DontKill, 1067 const MCRegisterInfo &MCRI) { 1068 for ( ; I != E; ++I) 1069 RemoveKills(*I, DontKill); 1070 } 1071 1072 /// IfConvertSimple - If convert a simple (split, no rejoin) sub-CFG. 1073 /// 1074 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) { 1075 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1076 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1077 BBInfo *CvtBBI = &TrueBBI; 1078 BBInfo *NextBBI = &FalseBBI; 1079 1080 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1081 if (Kind == ICSimpleFalse) 1082 std::swap(CvtBBI, NextBBI); 1083 1084 if (CvtBBI->IsDone || 1085 (CvtBBI->CannotBeCopied && CvtBBI->BB->pred_size() > 1)) { 1086 // Something has changed. It's no longer safe to predicate this block. 1087 BBI.IsAnalyzed = false; 1088 CvtBBI->IsAnalyzed = false; 1089 return false; 1090 } 1091 1092 if (CvtBBI->BB->hasAddressTaken()) 1093 // Conservatively abort if-conversion if BB's address is taken. 1094 return false; 1095 1096 if (Kind == ICSimpleFalse) 1097 if (TII->ReverseBranchCondition(Cond)) 1098 llvm_unreachable("Unable to reverse branch condition!"); 1099 1100 // Initialize liveins to the first BB. These are potentiall redefined by 1101 // predicated instructions. 1102 Redefs.init(TRI); 1103 Redefs.addLiveIns(CvtBBI->BB); 1104 Redefs.addLiveIns(NextBBI->BB); 1105 1106 // Compute a set of registers which must not be killed by instructions in 1107 // BB1: This is everything live-in to BB2. 1108 DontKill.init(TRI); 1109 DontKill.addLiveIns(NextBBI->BB); 1110 1111 if (CvtBBI->BB->pred_size() > 1) { 1112 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); 1113 // Copy instructions in the true block, predicate them, and add them to 1114 // the entry block. 1115 CopyAndPredicateBlock(BBI, *CvtBBI, Cond); 1116 1117 // RemoveExtraEdges won't work if the block has an unanalyzable branch, so 1118 // explicitly remove CvtBBI as a successor. 1119 BBI.BB->removeSuccessor(CvtBBI->BB, true); 1120 } else { 1121 RemoveKills(CvtBBI->BB->begin(), CvtBBI->BB->end(), DontKill, *TRI); 1122 PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond); 1123 1124 // Merge converted block into entry block. 1125 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); 1126 MergeBlocks(BBI, *CvtBBI); 1127 } 1128 1129 bool IterIfcvt = true; 1130 if (!canFallThroughTo(BBI.BB, NextBBI->BB)) { 1131 InsertUncondBranch(BBI.BB, NextBBI->BB, TII); 1132 BBI.HasFallThrough = false; 1133 // Now ifcvt'd block will look like this: 1134 // BB: 1135 // ... 1136 // t, f = cmp 1137 // if t op 1138 // b BBf 1139 // 1140 // We cannot further ifcvt this block because the unconditional branch 1141 // will have to be predicated on the new condition, that will not be 1142 // available if cmp executes. 1143 IterIfcvt = false; 1144 } 1145 1146 RemoveExtraEdges(BBI); 1147 1148 // Update block info. BB can be iteratively if-converted. 1149 if (!IterIfcvt) 1150 BBI.IsDone = true; 1151 InvalidatePreds(BBI.BB); 1152 CvtBBI->IsDone = true; 1153 1154 // FIXME: Must maintain LiveIns. 1155 return true; 1156 } 1157 1158 /// IfConvertTriangle - If convert a triangle sub-CFG. 1159 /// 1160 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) { 1161 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1162 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1163 BBInfo *CvtBBI = &TrueBBI; 1164 BBInfo *NextBBI = &FalseBBI; 1165 DebugLoc dl; // FIXME: this is nowhere 1166 1167 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1168 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1169 std::swap(CvtBBI, NextBBI); 1170 1171 if (CvtBBI->IsDone || 1172 (CvtBBI->CannotBeCopied && CvtBBI->BB->pred_size() > 1)) { 1173 // Something has changed. It's no longer safe to predicate this block. 1174 BBI.IsAnalyzed = false; 1175 CvtBBI->IsAnalyzed = false; 1176 return false; 1177 } 1178 1179 if (CvtBBI->BB->hasAddressTaken()) 1180 // Conservatively abort if-conversion if BB's address is taken. 1181 return false; 1182 1183 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1184 if (TII->ReverseBranchCondition(Cond)) 1185 llvm_unreachable("Unable to reverse branch condition!"); 1186 1187 if (Kind == ICTriangleRev || Kind == ICTriangleFRev) { 1188 if (ReverseBranchCondition(*CvtBBI)) { 1189 // BB has been changed, modify its predecessors (except for this 1190 // one) so they don't get ifcvt'ed based on bad intel. 1191 for (MachineBasicBlock::pred_iterator PI = CvtBBI->BB->pred_begin(), 1192 E = CvtBBI->BB->pred_end(); PI != E; ++PI) { 1193 MachineBasicBlock *PBB = *PI; 1194 if (PBB == BBI.BB) 1195 continue; 1196 BBInfo &PBBI = BBAnalysis[PBB->getNumber()]; 1197 if (PBBI.IsEnqueued) { 1198 PBBI.IsAnalyzed = false; 1199 PBBI.IsEnqueued = false; 1200 } 1201 } 1202 } 1203 } 1204 1205 // Initialize liveins to the first BB. These are potentially redefined by 1206 // predicated instructions. 1207 Redefs.init(TRI); 1208 Redefs.addLiveIns(CvtBBI->BB); 1209 Redefs.addLiveIns(NextBBI->BB); 1210 1211 DontKill.clear(); 1212 1213 bool HasEarlyExit = CvtBBI->FalseBB != nullptr; 1214 BranchProbability CvtNext, CvtFalse, BBNext, BBCvt; 1215 1216 if (HasEarlyExit) { 1217 // Get probabilities before modifying CvtBBI->BB and BBI.BB. 1218 CvtNext = MBPI->getEdgeProbability(CvtBBI->BB, NextBBI->BB); 1219 CvtFalse = MBPI->getEdgeProbability(CvtBBI->BB, CvtBBI->FalseBB); 1220 BBNext = MBPI->getEdgeProbability(BBI.BB, NextBBI->BB); 1221 BBCvt = MBPI->getEdgeProbability(BBI.BB, CvtBBI->BB); 1222 } 1223 1224 if (CvtBBI->BB->pred_size() > 1) { 1225 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); 1226 // Copy instructions in the true block, predicate them, and add them to 1227 // the entry block. 1228 CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true); 1229 1230 // RemoveExtraEdges won't work if the block has an unanalyzable branch, so 1231 // explicitly remove CvtBBI as a successor. 1232 BBI.BB->removeSuccessor(CvtBBI->BB, true); 1233 } else { 1234 // Predicate the 'true' block after removing its branch. 1235 CvtBBI->NonPredSize -= TII->RemoveBranch(*CvtBBI->BB); 1236 PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond); 1237 1238 // Now merge the entry of the triangle with the true block. 1239 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); 1240 MergeBlocks(BBI, *CvtBBI, false); 1241 } 1242 1243 // If 'true' block has a 'false' successor, add an exit branch to it. 1244 if (HasEarlyExit) { 1245 SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(), 1246 CvtBBI->BrCond.end()); 1247 if (TII->ReverseBranchCondition(RevCond)) 1248 llvm_unreachable("Unable to reverse branch condition!"); 1249 1250 // Update the edge probability for both CvtBBI->FalseBB and NextBBI. 1251 // NewNext = New_Prob(BBI.BB, NextBBI->BB) = 1252 // Prob(BBI.BB, NextBBI->BB) + 1253 // Prob(BBI.BB, CvtBBI->BB) * Prob(CvtBBI->BB, NextBBI->BB) 1254 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) = 1255 // Prob(BBI.BB, CvtBBI->BB) * Prob(CvtBBI->BB, CvtBBI->FalseBB) 1256 auto NewTrueBB = getNextBlock(BBI.BB); 1257 auto NewNext = BBNext + BBCvt * CvtNext; 1258 auto NewTrueBBIter = 1259 std::find(BBI.BB->succ_begin(), BBI.BB->succ_end(), NewTrueBB); 1260 if (NewTrueBBIter != BBI.BB->succ_end()) 1261 BBI.BB->setSuccProbability(NewTrueBBIter, NewNext); 1262 1263 auto NewFalse = BBCvt * CvtFalse; 1264 TII->InsertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl); 1265 BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse); 1266 } 1267 1268 // Merge in the 'false' block if the 'false' block has no other 1269 // predecessors. Otherwise, add an unconditional branch to 'false'. 1270 bool FalseBBDead = false; 1271 bool IterIfcvt = true; 1272 bool isFallThrough = canFallThroughTo(BBI.BB, NextBBI->BB); 1273 if (!isFallThrough) { 1274 // Only merge them if the true block does not fallthrough to the false 1275 // block. By not merging them, we make it possible to iteratively 1276 // ifcvt the blocks. 1277 if (!HasEarlyExit && 1278 NextBBI->BB->pred_size() == 1 && !NextBBI->HasFallThrough && 1279 !NextBBI->BB->hasAddressTaken()) { 1280 MergeBlocks(BBI, *NextBBI); 1281 FalseBBDead = true; 1282 } else { 1283 InsertUncondBranch(BBI.BB, NextBBI->BB, TII); 1284 BBI.HasFallThrough = false; 1285 } 1286 // Mixed predicated and unpredicated code. This cannot be iteratively 1287 // predicated. 1288 IterIfcvt = false; 1289 } 1290 1291 RemoveExtraEdges(BBI); 1292 1293 // Update block info. BB can be iteratively if-converted. 1294 if (!IterIfcvt) 1295 BBI.IsDone = true; 1296 InvalidatePreds(BBI.BB); 1297 CvtBBI->IsDone = true; 1298 if (FalseBBDead) 1299 NextBBI->IsDone = true; 1300 1301 // FIXME: Must maintain LiveIns. 1302 return true; 1303 } 1304 1305 /// IfConvertDiamond - If convert a diamond sub-CFG. 1306 /// 1307 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 1308 unsigned NumDups1, unsigned NumDups2) { 1309 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1310 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1311 MachineBasicBlock *TailBB = TrueBBI.TrueBB; 1312 // True block must fall through or end with an unanalyzable terminator. 1313 if (!TailBB) { 1314 if (blockAlwaysFallThrough(TrueBBI)) 1315 TailBB = FalseBBI.TrueBB; 1316 assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!"); 1317 } 1318 1319 if (TrueBBI.IsDone || FalseBBI.IsDone || 1320 TrueBBI.BB->pred_size() > 1 || 1321 FalseBBI.BB->pred_size() > 1) { 1322 // Something has changed. It's no longer safe to predicate these blocks. 1323 BBI.IsAnalyzed = false; 1324 TrueBBI.IsAnalyzed = false; 1325 FalseBBI.IsAnalyzed = false; 1326 return false; 1327 } 1328 1329 if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken()) 1330 // Conservatively abort if-conversion if either BB has its address taken. 1331 return false; 1332 1333 // Put the predicated instructions from the 'true' block before the 1334 // instructions from the 'false' block, unless the true block would clobber 1335 // the predicate, in which case, do the opposite. 1336 BBInfo *BBI1 = &TrueBBI; 1337 BBInfo *BBI2 = &FalseBBI; 1338 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1339 if (TII->ReverseBranchCondition(RevCond)) 1340 llvm_unreachable("Unable to reverse branch condition!"); 1341 SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond; 1342 SmallVector<MachineOperand, 4> *Cond2 = &RevCond; 1343 1344 // Figure out the more profitable ordering. 1345 bool DoSwap = false; 1346 if (TrueBBI.ClobbersPred && !FalseBBI.ClobbersPred) 1347 DoSwap = true; 1348 else if (TrueBBI.ClobbersPred == FalseBBI.ClobbersPred) { 1349 if (TrueBBI.NonPredSize > FalseBBI.NonPredSize) 1350 DoSwap = true; 1351 } 1352 if (DoSwap) { 1353 std::swap(BBI1, BBI2); 1354 std::swap(Cond1, Cond2); 1355 } 1356 1357 // Remove the conditional branch from entry to the blocks. 1358 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); 1359 1360 // Initialize liveins to the first BB. These are potentially redefined by 1361 // predicated instructions. 1362 Redefs.init(TRI); 1363 Redefs.addLiveIns(BBI1->BB); 1364 1365 // Remove the duplicated instructions at the beginnings of both paths. 1366 // Skip dbg_value instructions 1367 MachineBasicBlock::iterator DI1 = BBI1->BB->getFirstNonDebugInstr(); 1368 MachineBasicBlock::iterator DI2 = BBI2->BB->getFirstNonDebugInstr(); 1369 BBI1->NonPredSize -= NumDups1; 1370 BBI2->NonPredSize -= NumDups1; 1371 1372 // Skip past the dups on each side separately since there may be 1373 // differing dbg_value entries. 1374 for (unsigned i = 0; i < NumDups1; ++DI1) { 1375 if (!DI1->isDebugValue()) 1376 ++i; 1377 } 1378 while (NumDups1 != 0) { 1379 ++DI2; 1380 if (!DI2->isDebugValue()) 1381 --NumDups1; 1382 } 1383 1384 // Compute a set of registers which must not be killed by instructions in BB1: 1385 // This is everything used+live in BB2 after the duplicated instructions. We 1386 // can compute this set by simulating liveness backwards from the end of BB2. 1387 DontKill.init(TRI); 1388 for (MachineBasicBlock::reverse_iterator I = BBI2->BB->rbegin(), 1389 E = MachineBasicBlock::reverse_iterator(DI2); I != E; ++I) { 1390 DontKill.stepBackward(*I); 1391 } 1392 1393 for (MachineBasicBlock::const_iterator I = BBI1->BB->begin(), E = DI1; I != E; 1394 ++I) { 1395 SmallVector<std::pair<unsigned, const MachineOperand*>, 4> IgnoredClobbers; 1396 Redefs.stepForward(*I, IgnoredClobbers); 1397 } 1398 BBI.BB->splice(BBI.BB->end(), BBI1->BB, BBI1->BB->begin(), DI1); 1399 BBI2->BB->erase(BBI2->BB->begin(), DI2); 1400 1401 // Remove branch from the 'true' block, unless it was not analyzable. 1402 // Non-analyzable branches need to be preserved, since in such cases, 1403 // the CFG structure is not an actual diamond (the join block may not 1404 // be present). 1405 if (BBI1->IsBrAnalyzable) 1406 BBI1->NonPredSize -= TII->RemoveBranch(*BBI1->BB); 1407 // Remove duplicated instructions. 1408 DI1 = BBI1->BB->end(); 1409 for (unsigned i = 0; i != NumDups2; ) { 1410 // NumDups2 only counted non-dbg_value instructions, so this won't 1411 // run off the head of the list. 1412 assert (DI1 != BBI1->BB->begin()); 1413 --DI1; 1414 // skip dbg_value instructions 1415 if (!DI1->isDebugValue()) 1416 ++i; 1417 } 1418 BBI1->BB->erase(DI1, BBI1->BB->end()); 1419 1420 // Kill flags in the true block for registers living into the false block 1421 // must be removed. 1422 RemoveKills(BBI1->BB->begin(), BBI1->BB->end(), DontKill, *TRI); 1423 1424 // Remove 'false' block branch (unless it was not analyzable), and find 1425 // the last instruction to predicate. 1426 if (BBI2->IsBrAnalyzable) 1427 BBI2->NonPredSize -= TII->RemoveBranch(*BBI2->BB); 1428 DI2 = BBI2->BB->end(); 1429 while (NumDups2 != 0) { 1430 // NumDups2 only counted non-dbg_value instructions, so this won't 1431 // run off the head of the list. 1432 assert (DI2 != BBI2->BB->begin()); 1433 --DI2; 1434 // skip dbg_value instructions 1435 if (!DI2->isDebugValue()) 1436 --NumDups2; 1437 } 1438 1439 // Remember which registers would later be defined by the false block. 1440 // This allows us not to predicate instructions in the true block that would 1441 // later be re-defined. That is, rather than 1442 // subeq r0, r1, #1 1443 // addne r0, r1, #1 1444 // generate: 1445 // sub r0, r1, #1 1446 // addne r0, r1, #1 1447 SmallSet<unsigned, 4> RedefsByFalse; 1448 SmallSet<unsigned, 4> ExtUses; 1449 if (TII->isProfitableToUnpredicate(*BBI1->BB, *BBI2->BB)) { 1450 for (MachineBasicBlock::iterator FI = BBI2->BB->begin(); FI != DI2; ++FI) { 1451 if (FI->isDebugValue()) 1452 continue; 1453 SmallVector<unsigned, 4> Defs; 1454 for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) { 1455 const MachineOperand &MO = FI->getOperand(i); 1456 if (!MO.isReg()) 1457 continue; 1458 unsigned Reg = MO.getReg(); 1459 if (!Reg) 1460 continue; 1461 if (MO.isDef()) { 1462 Defs.push_back(Reg); 1463 } else if (!RedefsByFalse.count(Reg)) { 1464 // These are defined before ctrl flow reach the 'false' instructions. 1465 // They cannot be modified by the 'true' instructions. 1466 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1467 SubRegs.isValid(); ++SubRegs) 1468 ExtUses.insert(*SubRegs); 1469 } 1470 } 1471 1472 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1473 unsigned Reg = Defs[i]; 1474 if (!ExtUses.count(Reg)) { 1475 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1476 SubRegs.isValid(); ++SubRegs) 1477 RedefsByFalse.insert(*SubRegs); 1478 } 1479 } 1480 } 1481 } 1482 1483 // Predicate the 'true' block. 1484 PredicateBlock(*BBI1, BBI1->BB->end(), *Cond1, &RedefsByFalse); 1485 1486 // After predicating BBI1, if there is a predicated terminator in BBI1 and 1487 // a non-predicated in BBI2, then we don't want to predicate the one from 1488 // BBI2. The reason is that if we merged these blocks, we would end up with 1489 // two predicated terminators in the same block. 1490 if (!BBI2->BB->empty() && (DI2 == BBI2->BB->end())) { 1491 MachineBasicBlock::iterator BBI1T = BBI1->BB->getFirstTerminator(); 1492 MachineBasicBlock::iterator BBI2T = BBI2->BB->getFirstTerminator(); 1493 if (BBI1T != BBI1->BB->end() && TII->isPredicated(*BBI1T) && 1494 BBI2T != BBI2->BB->end() && !TII->isPredicated(*BBI2T)) 1495 --DI2; 1496 } 1497 1498 // Predicate the 'false' block. 1499 PredicateBlock(*BBI2, DI2, *Cond2); 1500 1501 // Merge the true block into the entry of the diamond. 1502 MergeBlocks(BBI, *BBI1, TailBB == nullptr); 1503 MergeBlocks(BBI, *BBI2, TailBB == nullptr); 1504 1505 // If the if-converted block falls through or unconditionally branches into 1506 // the tail block, and the tail block does not have other predecessors, then 1507 // fold the tail block in as well. Otherwise, unless it falls through to the 1508 // tail, add a unconditional branch to it. 1509 if (TailBB) { 1510 BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()]; 1511 bool CanMergeTail = !TailBBI.HasFallThrough && 1512 !TailBBI.BB->hasAddressTaken(); 1513 // The if-converted block can still have a predicated terminator 1514 // (e.g. a predicated return). If that is the case, we cannot merge 1515 // it with the tail block. 1516 MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator(); 1517 if (TI != BBI.BB->end() && TII->isPredicated(*TI)) 1518 CanMergeTail = false; 1519 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB; 1520 // check if there are any other predecessors besides those. 1521 unsigned NumPreds = TailBB->pred_size(); 1522 if (NumPreds > 1) 1523 CanMergeTail = false; 1524 else if (NumPreds == 1 && CanMergeTail) { 1525 MachineBasicBlock::pred_iterator PI = TailBB->pred_begin(); 1526 if (*PI != BBI1->BB && *PI != BBI2->BB) 1527 CanMergeTail = false; 1528 } 1529 if (CanMergeTail) { 1530 MergeBlocks(BBI, TailBBI); 1531 TailBBI.IsDone = true; 1532 } else { 1533 BBI.BB->addSuccessor(TailBB, BranchProbability::getOne()); 1534 InsertUncondBranch(BBI.BB, TailBB, TII); 1535 BBI.HasFallThrough = false; 1536 } 1537 } 1538 1539 // RemoveExtraEdges won't work if the block has an unanalyzable branch, 1540 // which can happen here if TailBB is unanalyzable and is merged, so 1541 // explicitly remove BBI1 and BBI2 as successors. 1542 BBI.BB->removeSuccessor(BBI1->BB); 1543 BBI.BB->removeSuccessor(BBI2->BB, true); 1544 RemoveExtraEdges(BBI); 1545 1546 // Update block info. 1547 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 1548 InvalidatePreds(BBI.BB); 1549 1550 // FIXME: Must maintain LiveIns. 1551 return true; 1552 } 1553 1554 static bool MaySpeculate(const MachineInstr *MI, 1555 SmallSet<unsigned, 4> &LaterRedefs) { 1556 bool SawStore = true; 1557 if (!MI->isSafeToMove(nullptr, SawStore)) 1558 return false; 1559 1560 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1561 const MachineOperand &MO = MI->getOperand(i); 1562 if (!MO.isReg()) 1563 continue; 1564 unsigned Reg = MO.getReg(); 1565 if (!Reg) 1566 continue; 1567 if (MO.isDef() && !LaterRedefs.count(Reg)) 1568 return false; 1569 } 1570 1571 return true; 1572 } 1573 1574 /// PredicateBlock - Predicate instructions from the start of the block to the 1575 /// specified end with the specified condition. 1576 void IfConverter::PredicateBlock(BBInfo &BBI, 1577 MachineBasicBlock::iterator E, 1578 SmallVectorImpl<MachineOperand> &Cond, 1579 SmallSet<unsigned, 4> *LaterRedefs) { 1580 bool AnyUnpred = false; 1581 bool MaySpec = LaterRedefs != nullptr; 1582 for (MachineBasicBlock::iterator I = BBI.BB->begin(); I != E; ++I) { 1583 if (I->isDebugValue() || TII->isPredicated(*I)) 1584 continue; 1585 // It may be possible not to predicate an instruction if it's the 'true' 1586 // side of a diamond and the 'false' side may re-define the instruction's 1587 // defs. 1588 if (MaySpec && MaySpeculate(I, *LaterRedefs)) { 1589 AnyUnpred = true; 1590 continue; 1591 } 1592 // If any instruction is predicated, then every instruction after it must 1593 // be predicated. 1594 MaySpec = false; 1595 if (!TII->PredicateInstruction(*I, Cond)) { 1596 #ifndef NDEBUG 1597 dbgs() << "Unable to predicate " << *I << "!\n"; 1598 #endif 1599 llvm_unreachable(nullptr); 1600 } 1601 1602 // If the predicated instruction now redefines a register as the result of 1603 // if-conversion, add an implicit kill. 1604 UpdatePredRedefs(*I, Redefs); 1605 } 1606 1607 BBI.Predicate.append(Cond.begin(), Cond.end()); 1608 1609 BBI.IsAnalyzed = false; 1610 BBI.NonPredSize = 0; 1611 1612 ++NumIfConvBBs; 1613 if (AnyUnpred) 1614 ++NumUnpred; 1615 } 1616 1617 /// CopyAndPredicateBlock - Copy and predicate instructions from source BB to 1618 /// the destination block. Skip end of block branches if IgnoreBr is true. 1619 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 1620 SmallVectorImpl<MachineOperand> &Cond, 1621 bool IgnoreBr) { 1622 MachineFunction &MF = *ToBBI.BB->getParent(); 1623 1624 for (auto &I : *FromBBI.BB) { 1625 // Do not copy the end of the block branches. 1626 if (IgnoreBr && I.isBranch()) 1627 break; 1628 1629 MachineInstr *MI = MF.CloneMachineInstr(&I); 1630 ToBBI.BB->insert(ToBBI.BB->end(), MI); 1631 ToBBI.NonPredSize++; 1632 unsigned ExtraPredCost = TII->getPredicationCost(I); 1633 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); 1634 if (NumCycles > 1) 1635 ToBBI.ExtraCost += NumCycles-1; 1636 ToBBI.ExtraCost2 += ExtraPredCost; 1637 1638 if (!TII->isPredicated(I) && !MI->isDebugValue()) { 1639 if (!TII->PredicateInstruction(*MI, Cond)) { 1640 #ifndef NDEBUG 1641 dbgs() << "Unable to predicate " << I << "!\n"; 1642 #endif 1643 llvm_unreachable(nullptr); 1644 } 1645 } 1646 1647 // If the predicated instruction now redefines a register as the result of 1648 // if-conversion, add an implicit kill. 1649 UpdatePredRedefs(*MI, Redefs); 1650 1651 // Some kill flags may not be correct anymore. 1652 if (!DontKill.empty()) 1653 RemoveKills(*MI, DontKill); 1654 } 1655 1656 if (!IgnoreBr) { 1657 std::vector<MachineBasicBlock *> Succs(FromBBI.BB->succ_begin(), 1658 FromBBI.BB->succ_end()); 1659 MachineBasicBlock *NBB = getNextBlock(FromBBI.BB); 1660 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 1661 1662 for (unsigned i = 0, e = Succs.size(); i != e; ++i) { 1663 MachineBasicBlock *Succ = Succs[i]; 1664 // Fallthrough edge can't be transferred. 1665 if (Succ == FallThrough) 1666 continue; 1667 ToBBI.BB->addSuccessor(Succ); 1668 } 1669 } 1670 1671 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 1672 ToBBI.Predicate.append(Cond.begin(), Cond.end()); 1673 1674 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 1675 ToBBI.IsAnalyzed = false; 1676 1677 ++NumDupBBs; 1678 } 1679 1680 /// MergeBlocks - Move all instructions from FromBB to the end of ToBB. 1681 /// This will leave FromBB as an empty block, so remove all of its 1682 /// successor edges except for the fall-through edge. If AddEdges is true, 1683 /// i.e., when FromBBI's branch is being moved, add those successor edges to 1684 /// ToBBI. 1685 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) { 1686 assert(!FromBBI.BB->hasAddressTaken() && 1687 "Removing a BB whose address is taken!"); 1688 1689 // In case FromBBI.BB contains terminators (e.g. return instruction), 1690 // first move the non-terminator instructions, then the terminators. 1691 MachineBasicBlock::iterator FromTI = FromBBI.BB->getFirstTerminator(); 1692 MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator(); 1693 ToBBI.BB->splice(ToTI, FromBBI.BB, FromBBI.BB->begin(), FromTI); 1694 1695 // If FromBB has non-predicated terminator we should copy it at the end. 1696 if (FromTI != FromBBI.BB->end() && !TII->isPredicated(*FromTI)) 1697 ToTI = ToBBI.BB->end(); 1698 ToBBI.BB->splice(ToTI, FromBBI.BB, FromTI, FromBBI.BB->end()); 1699 1700 // Force normalizing the successors' probabilities of ToBBI.BB to convert all 1701 // unknown probabilities into known ones. 1702 // FIXME: This usage is too tricky and in the future we would like to 1703 // eliminate all unknown probabilities in MBB. 1704 ToBBI.BB->normalizeSuccProbs(); 1705 1706 SmallVector<MachineBasicBlock *, 4> FromSuccs(FromBBI.BB->succ_begin(), 1707 FromBBI.BB->succ_end()); 1708 MachineBasicBlock *NBB = getNextBlock(FromBBI.BB); 1709 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 1710 // The edge probability from ToBBI.BB to FromBBI.BB, which is only needed when 1711 // AddEdges is true and FromBBI.BB is a successor of ToBBI.BB. 1712 auto To2FromProb = BranchProbability::getZero(); 1713 if (AddEdges && ToBBI.BB->isSuccessor(FromBBI.BB)) { 1714 To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, FromBBI.BB); 1715 // Set the edge probability from ToBBI.BB to FromBBI.BB to zero to avoid the 1716 // edge probability being merged to other edges when this edge is removed 1717 // later. 1718 ToBBI.BB->setSuccProbability( 1719 std::find(ToBBI.BB->succ_begin(), ToBBI.BB->succ_end(), FromBBI.BB), 1720 BranchProbability::getZero()); 1721 } 1722 1723 for (unsigned i = 0, e = FromSuccs.size(); i != e; ++i) { 1724 MachineBasicBlock *Succ = FromSuccs[i]; 1725 // Fallthrough edge can't be transferred. 1726 if (Succ == FallThrough) 1727 continue; 1728 1729 auto NewProb = BranchProbability::getZero(); 1730 if (AddEdges) { 1731 // Calculate the edge probability for the edge from ToBBI.BB to Succ, 1732 // which is a portion of the edge probability from FromBBI.BB to Succ. The 1733 // portion ratio is the edge probability from ToBBI.BB to FromBBI.BB (if 1734 // FromBBI is a successor of ToBBI.BB. See comment below for excepion). 1735 NewProb = MBPI->getEdgeProbability(FromBBI.BB, Succ); 1736 1737 // To2FromProb is 0 when FromBBI.BB is not a successor of ToBBI.BB. This 1738 // only happens when if-converting a diamond CFG and FromBBI.BB is the 1739 // tail BB. In this case FromBBI.BB post-dominates ToBBI.BB and hence we 1740 // could just use the probabilities on FromBBI.BB's out-edges when adding 1741 // new successors. 1742 if (!To2FromProb.isZero()) 1743 NewProb *= To2FromProb; 1744 } 1745 1746 FromBBI.BB->removeSuccessor(Succ); 1747 1748 if (AddEdges) { 1749 // If the edge from ToBBI.BB to Succ already exists, update the 1750 // probability of this edge by adding NewProb to it. An example is shown 1751 // below, in which A is ToBBI.BB and B is FromBBI.BB. In this case we 1752 // don't have to set C as A's successor as it already is. We only need to 1753 // update the edge probability on A->C. Note that B will not be 1754 // immediately removed from A's successors. It is possible that B->D is 1755 // not removed either if D is a fallthrough of B. Later the edge A->D 1756 // (generated here) and B->D will be combined into one edge. To maintain 1757 // correct edge probability of this combined edge, we need to set the edge 1758 // probability of A->B to zero, which is already done above. The edge 1759 // probability on A->D is calculated by scaling the original probability 1760 // on A->B by the probability of B->D. 1761 // 1762 // Before ifcvt: After ifcvt (assume B->D is kept): 1763 // 1764 // A A 1765 // /| /|\ 1766 // / B / B| 1767 // | /| | || 1768 // |/ | | |/ 1769 // C D C D 1770 // 1771 if (ToBBI.BB->isSuccessor(Succ)) 1772 ToBBI.BB->setSuccProbability( 1773 std::find(ToBBI.BB->succ_begin(), ToBBI.BB->succ_end(), Succ), 1774 MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb); 1775 else 1776 ToBBI.BB->addSuccessor(Succ, NewProb); 1777 } 1778 } 1779 1780 // Now FromBBI always falls through to the next block! 1781 if (NBB && !FromBBI.BB->isSuccessor(NBB)) 1782 FromBBI.BB->addSuccessor(NBB); 1783 1784 // Normalize the probabilities of ToBBI.BB's successors with all adjustment 1785 // we've done above. 1786 ToBBI.BB->normalizeSuccProbs(); 1787 1788 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 1789 FromBBI.Predicate.clear(); 1790 1791 ToBBI.NonPredSize += FromBBI.NonPredSize; 1792 ToBBI.ExtraCost += FromBBI.ExtraCost; 1793 ToBBI.ExtraCost2 += FromBBI.ExtraCost2; 1794 FromBBI.NonPredSize = 0; 1795 FromBBI.ExtraCost = 0; 1796 FromBBI.ExtraCost2 = 0; 1797 1798 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 1799 ToBBI.HasFallThrough = FromBBI.HasFallThrough; 1800 ToBBI.IsAnalyzed = false; 1801 FromBBI.IsAnalyzed = false; 1802 } 1803 1804 FunctionPass * 1805 llvm::createIfConverter(std::function<bool(const Function &)> Ftor) { 1806 return new IfConverter(Ftor); 1807 } 1808