1 //===-- IfConversion.cpp - Machine code if conversion pass. ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the machine instruction level if-conversion pass, which 11 // tries to convert conditional branches into predicated instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/Passes.h" 16 #include "BranchFolding.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/ScopeExit.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/LivePhysRegs.h" 22 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 23 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetSchedule.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Target/TargetLowering.h" 35 #include "llvm/Target/TargetRegisterInfo.h" 36 #include "llvm/Target/TargetSubtargetInfo.h" 37 #include <algorithm> 38 #include <utility> 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "ifcvt" 43 44 // Hidden options for help debugging. 45 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden); 46 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden); 47 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden); 48 static cl::opt<bool> DisableSimple("disable-ifcvt-simple", 49 cl::init(false), cl::Hidden); 50 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false", 51 cl::init(false), cl::Hidden); 52 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle", 53 cl::init(false), cl::Hidden); 54 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev", 55 cl::init(false), cl::Hidden); 56 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false", 57 cl::init(false), cl::Hidden); 58 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev", 59 cl::init(false), cl::Hidden); 60 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond", 61 cl::init(false), cl::Hidden); 62 static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond", 63 cl::init(false), cl::Hidden); 64 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold", 65 cl::init(true), cl::Hidden); 66 67 STATISTIC(NumSimple, "Number of simple if-conversions performed"); 68 STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed"); 69 STATISTIC(NumTriangle, "Number of triangle if-conversions performed"); 70 STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed"); 71 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed"); 72 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed"); 73 STATISTIC(NumDiamonds, "Number of diamond if-conversions performed"); 74 STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed"); 75 STATISTIC(NumIfConvBBs, "Number of if-converted blocks"); 76 STATISTIC(NumDupBBs, "Number of duplicated blocks"); 77 STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated"); 78 79 namespace { 80 class IfConverter : public MachineFunctionPass { 81 enum IfcvtKind { 82 ICNotClassfied, // BB data valid, but not classified. 83 ICSimpleFalse, // Same as ICSimple, but on the false path. 84 ICSimple, // BB is entry of an one split, no rejoin sub-CFG. 85 ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition. 86 ICTriangleRev, // Same as ICTriangle, but true path rev condition. 87 ICTriangleFalse, // Same as ICTriangle, but on the false path. 88 ICTriangle, // BB is entry of a triangle sub-CFG. 89 ICDiamond, // BB is entry of a diamond sub-CFG. 90 ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a 91 // common tail that can be shared. 92 }; 93 94 /// One per MachineBasicBlock, this is used to cache the result 95 /// if-conversion feasibility analysis. This includes results from 96 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its 97 /// classification, and common tail block of its successors (if it's a 98 /// diamond shape), its size, whether it's predicable, and whether any 99 /// instruction can clobber the 'would-be' predicate. 100 /// 101 /// IsDone - True if BB is not to be considered for ifcvt. 102 /// IsBeingAnalyzed - True if BB is currently being analyzed. 103 /// IsAnalyzed - True if BB has been analyzed (info is still valid). 104 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed. 105 /// IsBrAnalyzable - True if analyzeBranch() returns false. 106 /// HasFallThrough - True if BB may fallthrough to the following BB. 107 /// IsUnpredicable - True if BB is known to be unpredicable. 108 /// ClobbersPred - True if BB could modify predicates (e.g. has 109 /// cmp, call, etc.) 110 /// NonPredSize - Number of non-predicated instructions. 111 /// ExtraCost - Extra cost for multi-cycle instructions. 112 /// ExtraCost2 - Some instructions are slower when predicated 113 /// BB - Corresponding MachineBasicBlock. 114 /// TrueBB / FalseBB- See analyzeBranch(). 115 /// BrCond - Conditions for end of block conditional branches. 116 /// Predicate - Predicate used in the BB. 117 struct BBInfo { 118 bool IsDone : 1; 119 bool IsBeingAnalyzed : 1; 120 bool IsAnalyzed : 1; 121 bool IsEnqueued : 1; 122 bool IsBrAnalyzable : 1; 123 bool IsBrReversible : 1; 124 bool HasFallThrough : 1; 125 bool IsUnpredicable : 1; 126 bool CannotBeCopied : 1; 127 bool ClobbersPred : 1; 128 unsigned NonPredSize; 129 unsigned ExtraCost; 130 unsigned ExtraCost2; 131 MachineBasicBlock *BB; 132 MachineBasicBlock *TrueBB; 133 MachineBasicBlock *FalseBB; 134 SmallVector<MachineOperand, 4> BrCond; 135 SmallVector<MachineOperand, 4> Predicate; 136 BBInfo() : IsDone(false), IsBeingAnalyzed(false), 137 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false), 138 IsBrReversible(false), HasFallThrough(false), 139 IsUnpredicable(false), CannotBeCopied(false), 140 ClobbersPred(false), NonPredSize(0), ExtraCost(0), 141 ExtraCost2(0), BB(nullptr), TrueBB(nullptr), 142 FalseBB(nullptr) {} 143 }; 144 145 /// Record information about pending if-conversions to attempt: 146 /// BBI - Corresponding BBInfo. 147 /// Kind - Type of block. See IfcvtKind. 148 /// NeedSubsumption - True if the to-be-predicated BB has already been 149 /// predicated. 150 /// NumDups - Number of instructions that would be duplicated due 151 /// to this if-conversion. (For diamonds, the number of 152 /// identical instructions at the beginnings of both 153 /// paths). 154 /// NumDups2 - For diamonds, the number of identical instructions 155 /// at the ends of both paths. 156 struct IfcvtToken { 157 BBInfo &BBI; 158 IfcvtKind Kind; 159 unsigned NumDups; 160 unsigned NumDups2; 161 bool NeedSubsumption : 1; 162 bool TClobbersPred : 1; 163 bool FClobbersPred : 1; 164 IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0, 165 bool tc = false, bool fc = false) 166 : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s), 167 TClobbersPred(tc), FClobbersPred(fc) {} 168 }; 169 170 /// Results of if-conversion feasibility analysis indexed by basic block 171 /// number. 172 std::vector<BBInfo> BBAnalysis; 173 TargetSchedModel SchedModel; 174 175 const TargetLoweringBase *TLI; 176 const TargetInstrInfo *TII; 177 const TargetRegisterInfo *TRI; 178 const MachineBranchProbabilityInfo *MBPI; 179 MachineRegisterInfo *MRI; 180 181 LivePhysRegs Redefs; 182 LivePhysRegs DontKill; 183 184 bool PreRegAlloc; 185 bool MadeChange; 186 int FnNum; 187 std::function<bool(const MachineFunction &)> PredicateFtor; 188 189 public: 190 static char ID; 191 IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr) 192 : MachineFunctionPass(ID), FnNum(-1), PredicateFtor(std::move(Ftor)) { 193 initializeIfConverterPass(*PassRegistry::getPassRegistry()); 194 } 195 196 void getAnalysisUsage(AnalysisUsage &AU) const override { 197 AU.addRequired<MachineBlockFrequencyInfo>(); 198 AU.addRequired<MachineBranchProbabilityInfo>(); 199 MachineFunctionPass::getAnalysisUsage(AU); 200 } 201 202 bool runOnMachineFunction(MachineFunction &MF) override; 203 204 MachineFunctionProperties getRequiredProperties() const override { 205 return MachineFunctionProperties().set( 206 MachineFunctionProperties::Property::NoVRegs); 207 } 208 209 private: 210 bool reverseBranchCondition(BBInfo &BBI) const; 211 bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 212 BranchProbability Prediction) const; 213 bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 214 bool FalseBranch, unsigned &Dups, 215 BranchProbability Prediction) const; 216 bool CountDuplicatedInstructions( 217 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 218 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 219 unsigned &Dups1, unsigned &Dups2, 220 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 221 bool SkipUnconditionalBranches) const; 222 bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 223 unsigned &Dups1, unsigned &Dups2, 224 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 225 bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 226 unsigned &Dups1, unsigned &Dups2, 227 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 228 void AnalyzeBranches(BBInfo &BBI); 229 void ScanInstructions(BBInfo &BBI, 230 MachineBasicBlock::iterator &Begin, 231 MachineBasicBlock::iterator &End, 232 bool BranchUnpredicable = false) const; 233 bool RescanInstructions( 234 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 235 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 236 BBInfo &TrueBBI, BBInfo &FalseBBI) const; 237 void AnalyzeBlock(MachineBasicBlock &MBB, 238 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 239 bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Cond, 240 bool isTriangle = false, bool RevBranch = false, 241 bool hasCommonTail = false); 242 void AnalyzeBlocks(MachineFunction &MF, 243 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 244 void InvalidatePreds(MachineBasicBlock &MBB); 245 void RemoveExtraEdges(BBInfo &BBI); 246 bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind); 247 bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind); 248 bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 249 unsigned NumDups1, unsigned NumDups2, 250 bool TClobbersPred, bool FClobbersPred, 251 bool RemoveBranch, bool MergeAddEdges); 252 bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 253 unsigned NumDups1, unsigned NumDups2, 254 bool TClobbers, bool FClobbers); 255 bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind, 256 unsigned NumDups1, unsigned NumDups2, 257 bool TClobbers, bool FClobbers); 258 void PredicateBlock(BBInfo &BBI, 259 MachineBasicBlock::iterator E, 260 SmallVectorImpl<MachineOperand> &Cond, 261 SmallSet<unsigned, 4> *LaterRedefs = nullptr); 262 void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 263 SmallVectorImpl<MachineOperand> &Cond, 264 bool IgnoreBr = false); 265 void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true); 266 267 bool MeetIfcvtSizeLimit(MachineBasicBlock &BB, 268 unsigned Cycle, unsigned Extra, 269 BranchProbability Prediction) const { 270 return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra, 271 Prediction); 272 } 273 274 bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB, 275 unsigned TCycle, unsigned TExtra, 276 MachineBasicBlock &FBB, 277 unsigned FCycle, unsigned FExtra, 278 BranchProbability Prediction) const { 279 return TCycle > 0 && FCycle > 0 && 280 TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra, 281 Prediction); 282 } 283 284 /// Returns true if Block ends without a terminator. 285 bool blockAlwaysFallThrough(BBInfo &BBI) const { 286 return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr; 287 } 288 289 /// Used to sort if-conversion candidates. 290 static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1, 291 const std::unique_ptr<IfcvtToken> &C2) { 292 int Incr1 = (C1->Kind == ICDiamond) 293 ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups; 294 int Incr2 = (C2->Kind == ICDiamond) 295 ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups; 296 if (Incr1 > Incr2) 297 return true; 298 else if (Incr1 == Incr2) { 299 // Favors subsumption. 300 if (!C1->NeedSubsumption && C2->NeedSubsumption) 301 return true; 302 else if (C1->NeedSubsumption == C2->NeedSubsumption) { 303 // Favors diamond over triangle, etc. 304 if ((unsigned)C1->Kind < (unsigned)C2->Kind) 305 return true; 306 else if (C1->Kind == C2->Kind) 307 return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber(); 308 } 309 } 310 return false; 311 } 312 }; 313 314 char IfConverter::ID = 0; 315 } 316 317 char &llvm::IfConverterID = IfConverter::ID; 318 319 INITIALIZE_PASS_BEGIN(IfConverter, "if-converter", "If Converter", false, false) 320 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 321 INITIALIZE_PASS_END(IfConverter, "if-converter", "If Converter", false, false) 322 323 bool IfConverter::runOnMachineFunction(MachineFunction &MF) { 324 if (skipFunction(*MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF))) 325 return false; 326 327 const TargetSubtargetInfo &ST = MF.getSubtarget(); 328 TLI = ST.getTargetLowering(); 329 TII = ST.getInstrInfo(); 330 TRI = ST.getRegisterInfo(); 331 BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>()); 332 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 333 MRI = &MF.getRegInfo(); 334 SchedModel.init(ST.getSchedModel(), &ST, TII); 335 336 if (!TII) return false; 337 338 PreRegAlloc = MRI->isSSA(); 339 340 bool BFChange = false; 341 if (!PreRegAlloc) { 342 // Tail merge tend to expose more if-conversion opportunities. 343 BranchFolder BF(true, false, MBFI, *MBPI); 344 BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(), 345 getAnalysisIfAvailable<MachineModuleInfo>()); 346 } 347 348 DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'" 349 << MF.getName() << "\'"); 350 351 if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) { 352 DEBUG(dbgs() << " skipped\n"); 353 return false; 354 } 355 DEBUG(dbgs() << "\n"); 356 357 MF.RenumberBlocks(); 358 BBAnalysis.resize(MF.getNumBlockIDs()); 359 360 std::vector<std::unique_ptr<IfcvtToken>> Tokens; 361 MadeChange = false; 362 unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + 363 NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds; 364 while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) { 365 // Do an initial analysis for each basic block and find all the potential 366 // candidates to perform if-conversion. 367 bool Change = false; 368 AnalyzeBlocks(MF, Tokens); 369 while (!Tokens.empty()) { 370 std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back()); 371 Tokens.pop_back(); 372 BBInfo &BBI = Token->BBI; 373 IfcvtKind Kind = Token->Kind; 374 unsigned NumDups = Token->NumDups; 375 unsigned NumDups2 = Token->NumDups2; 376 377 // If the block has been evicted out of the queue or it has already been 378 // marked dead (due to it being predicated), then skip it. 379 if (BBI.IsDone) 380 BBI.IsEnqueued = false; 381 if (!BBI.IsEnqueued) 382 continue; 383 384 BBI.IsEnqueued = false; 385 386 bool RetVal = false; 387 switch (Kind) { 388 default: llvm_unreachable("Unexpected!"); 389 case ICSimple: 390 case ICSimpleFalse: { 391 bool isFalse = Kind == ICSimpleFalse; 392 if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break; 393 DEBUG(dbgs() << "Ifcvt (Simple" << (Kind == ICSimpleFalse ? 394 " false" : "") 395 << "): BB#" << BBI.BB->getNumber() << " (" 396 << ((Kind == ICSimpleFalse) 397 ? BBI.FalseBB->getNumber() 398 : BBI.TrueBB->getNumber()) << ") "); 399 RetVal = IfConvertSimple(BBI, Kind); 400 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 401 if (RetVal) { 402 if (isFalse) ++NumSimpleFalse; 403 else ++NumSimple; 404 } 405 break; 406 } 407 case ICTriangle: 408 case ICTriangleRev: 409 case ICTriangleFalse: 410 case ICTriangleFRev: { 411 bool isFalse = Kind == ICTriangleFalse; 412 bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev); 413 if (DisableTriangle && !isFalse && !isRev) break; 414 if (DisableTriangleR && !isFalse && isRev) break; 415 if (DisableTriangleF && isFalse && !isRev) break; 416 if (DisableTriangleFR && isFalse && isRev) break; 417 DEBUG(dbgs() << "Ifcvt (Triangle"); 418 if (isFalse) 419 DEBUG(dbgs() << " false"); 420 if (isRev) 421 DEBUG(dbgs() << " rev"); 422 DEBUG(dbgs() << "): BB#" << BBI.BB->getNumber() << " (T:" 423 << BBI.TrueBB->getNumber() << ",F:" 424 << BBI.FalseBB->getNumber() << ") "); 425 RetVal = IfConvertTriangle(BBI, Kind); 426 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 427 if (RetVal) { 428 if (isFalse) { 429 if (isRev) ++NumTriangleFRev; 430 else ++NumTriangleFalse; 431 } else { 432 if (isRev) ++NumTriangleRev; 433 else ++NumTriangle; 434 } 435 } 436 break; 437 } 438 case ICDiamond: { 439 if (DisableDiamond) break; 440 DEBUG(dbgs() << "Ifcvt (Diamond): BB#" << BBI.BB->getNumber() << " (T:" 441 << BBI.TrueBB->getNumber() << ",F:" 442 << BBI.FalseBB->getNumber() << ") "); 443 RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2, 444 Token->TClobbersPred, 445 Token->FClobbersPred); 446 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 447 if (RetVal) ++NumDiamonds; 448 break; 449 } 450 case ICForkedDiamond: { 451 if (DisableForkedDiamond) break; 452 DEBUG(dbgs() << "Ifcvt (Forked Diamond): BB#" 453 << BBI.BB->getNumber() << " (T:" 454 << BBI.TrueBB->getNumber() << ",F:" 455 << BBI.FalseBB->getNumber() << ") "); 456 RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2, 457 Token->TClobbersPred, 458 Token->FClobbersPred); 459 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 460 if (RetVal) ++NumForkedDiamonds; 461 break; 462 } 463 } 464 465 Change |= RetVal; 466 467 NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev + 468 NumTriangleFalse + NumTriangleFRev + NumDiamonds; 469 if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit) 470 break; 471 } 472 473 if (!Change) 474 break; 475 MadeChange |= Change; 476 } 477 478 Tokens.clear(); 479 BBAnalysis.clear(); 480 481 if (MadeChange && IfCvtBranchFold) { 482 BranchFolder BF(false, false, MBFI, *MBPI); 483 BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 484 getAnalysisIfAvailable<MachineModuleInfo>()); 485 } 486 487 MadeChange |= BFChange; 488 return MadeChange; 489 } 490 491 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor. 492 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 493 MachineBasicBlock *TrueBB) { 494 for (MachineBasicBlock *SuccBB : BB->successors()) { 495 if (SuccBB != TrueBB) 496 return SuccBB; 497 } 498 return nullptr; 499 } 500 501 /// Reverse the condition of the end of the block branch. Swap block's 'true' 502 /// and 'false' successors. 503 bool IfConverter::reverseBranchCondition(BBInfo &BBI) const { 504 DebugLoc dl; // FIXME: this is nowhere 505 if (!TII->reverseBranchCondition(BBI.BrCond)) { 506 TII->removeBranch(*BBI.BB); 507 TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl); 508 std::swap(BBI.TrueBB, BBI.FalseBB); 509 return true; 510 } 511 return false; 512 } 513 514 /// Returns the next block in the function blocks ordering. If it is the end, 515 /// returns NULL. 516 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) { 517 MachineFunction::iterator I = MBB.getIterator(); 518 MachineFunction::iterator E = MBB.getParent()->end(); 519 if (++I == E) 520 return nullptr; 521 return &*I; 522 } 523 524 /// Returns true if the 'true' block (along with its predecessor) forms a valid 525 /// simple shape for ifcvt. It also returns the number of instructions that the 526 /// ifcvt would need to duplicate if performed in Dups. 527 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 528 BranchProbability Prediction) const { 529 Dups = 0; 530 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 531 return false; 532 533 if (TrueBBI.IsBrAnalyzable) 534 return false; 535 536 if (TrueBBI.BB->pred_size() > 1) { 537 if (TrueBBI.CannotBeCopied || 538 !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize, 539 Prediction)) 540 return false; 541 Dups = TrueBBI.NonPredSize; 542 } 543 544 return true; 545 } 546 547 /// Returns true if the 'true' and 'false' blocks (along with their common 548 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is 549 /// true, it checks if 'true' block's false branch branches to the 'false' block 550 /// rather than the other way around. It also returns the number of instructions 551 /// that the ifcvt would need to duplicate if performed in 'Dups'. 552 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 553 bool FalseBranch, unsigned &Dups, 554 BranchProbability Prediction) const { 555 Dups = 0; 556 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 557 return false; 558 559 if (TrueBBI.BB->pred_size() > 1) { 560 if (TrueBBI.CannotBeCopied) 561 return false; 562 563 unsigned Size = TrueBBI.NonPredSize; 564 if (TrueBBI.IsBrAnalyzable) { 565 if (TrueBBI.TrueBB && TrueBBI.BrCond.empty()) 566 // Ends with an unconditional branch. It will be removed. 567 --Size; 568 else { 569 MachineBasicBlock *FExit = FalseBranch 570 ? TrueBBI.TrueBB : TrueBBI.FalseBB; 571 if (FExit) 572 // Require a conditional branch 573 ++Size; 574 } 575 } 576 if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction)) 577 return false; 578 Dups = Size; 579 } 580 581 MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB; 582 if (!TExit && blockAlwaysFallThrough(TrueBBI)) { 583 MachineFunction::iterator I = TrueBBI.BB->getIterator(); 584 if (++I == TrueBBI.BB->getParent()->end()) 585 return false; 586 TExit = &*I; 587 } 588 return TExit && TExit == FalseBBI.BB; 589 } 590 591 /// Increment \p It until it points to a non-debug instruction or to \p End. 592 /// @param It Iterator to increment 593 /// @param End Iterator that points to end. Will be compared to It 594 /// @returns true if It == End, false otherwise. 595 static inline bool skipDebugInstructionsForward( 596 MachineBasicBlock::iterator &It, 597 MachineBasicBlock::iterator &End) { 598 while (It != End && It->isDebugValue()) 599 It++; 600 return It == End; 601 } 602 603 /// Shrink the provided inclusive range by one instruction. 604 /// If the range was one instruction (\p It == \p Begin), It is not modified, 605 /// but \p Empty is set to true. 606 static inline void shrinkInclusiveRange( 607 MachineBasicBlock::iterator &Begin, 608 MachineBasicBlock::iterator &It, 609 bool &Empty) { 610 if (It == Begin) 611 Empty = true; 612 else 613 It--; 614 } 615 616 /// Decrement \p It until it points to a non-debug instruction or the range is 617 /// empty. 618 /// @param It Iterator to decrement. 619 /// @param Begin Iterator that points to beginning. Will be compared to It 620 /// @param Empty Set to true if the resulting range is Empty 621 /// @returns the value of Empty as a convenience. 622 static inline bool skipDebugInstructionsBackward( 623 MachineBasicBlock::iterator &Begin, 624 MachineBasicBlock::iterator &It, 625 bool &Empty) { 626 while (!Empty && It->isDebugValue()) 627 shrinkInclusiveRange(Begin, It, Empty); 628 return Empty; 629 } 630 631 /// Count duplicated instructions and move the iterators to show where they 632 /// are. 633 /// @param TIB True Iterator Begin 634 /// @param FIB False Iterator Begin 635 /// These two iterators initially point to the first instruction of the two 636 /// blocks, and finally point to the first non-shared instruction. 637 /// @param TIE True Iterator End 638 /// @param FIE False Iterator End 639 /// These two iterators initially point to End() for the two blocks() and 640 /// finally point to the first shared instruction in the tail. 641 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of 642 /// two blocks. 643 /// @param Dups1 count of duplicated instructions at the beginning of the 2 644 /// blocks. 645 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks. 646 /// @param SkipUnconditionalBranches if true, Don't make sure that 647 /// unconditional branches at the end of the blocks are the same. True is 648 /// passed when the blocks are analyzable to allow for fallthrough to be 649 /// handled. 650 /// @return false if the shared portion prevents if conversion. 651 bool IfConverter::CountDuplicatedInstructions( 652 MachineBasicBlock::iterator &TIB, 653 MachineBasicBlock::iterator &FIB, 654 MachineBasicBlock::iterator &TIE, 655 MachineBasicBlock::iterator &FIE, 656 unsigned &Dups1, unsigned &Dups2, 657 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 658 bool SkipUnconditionalBranches) const { 659 660 while (TIB != TIE && FIB != FIE) { 661 // Skip dbg_value instructions. These do not count. 662 if(skipDebugInstructionsForward(TIB, TIE)) 663 break; 664 if(skipDebugInstructionsForward(FIB, FIE)) 665 break; 666 if (!TIB->isIdenticalTo(*FIB)) 667 break; 668 // A pred-clobbering instruction in the shared portion prevents 669 // if-conversion. 670 std::vector<MachineOperand> PredDefs; 671 if (TII->DefinesPredicate(*TIB, PredDefs)) 672 return false; 673 // If we get all the way to the branch instructions, don't count them. 674 if (!TIB->isBranch()) 675 ++Dups1; 676 ++TIB; 677 ++FIB; 678 } 679 680 // Check for already containing all of the block. 681 if (TIB == TIE || FIB == FIE) 682 return true; 683 // Now, in preparation for counting duplicate instructions at the ends of the 684 // blocks, move the end iterators up past any branch instructions. 685 --TIE; 686 --FIE; 687 688 // After this point TIB and TIE define an inclusive range, which means that 689 // TIB == TIE is true when there is one more instruction to consider, not at 690 // the end. Because we may not be able to go before TIB, we need a flag to 691 // indicate a completely empty range. 692 bool TEmpty = false, FEmpty = false; 693 694 // Upon exit TIE and FIE will both point at the last non-shared instruction. 695 // They need to be moved forward to point past the last non-shared 696 // instruction if the range they delimit is non-empty. 697 auto IncrementEndIteratorsOnExit = make_scope_exit([&]() { 698 if (!TEmpty) 699 ++TIE; 700 if (!FEmpty) 701 ++FIE; 702 }); 703 704 if (!TBB.succ_empty() || !FBB.succ_empty()) { 705 if (SkipUnconditionalBranches) { 706 while (!TEmpty && TIE->isUnconditionalBranch()) 707 shrinkInclusiveRange(TIB, TIE, TEmpty); 708 while (!FEmpty && FIE->isUnconditionalBranch()) 709 shrinkInclusiveRange(FIB, FIE, FEmpty); 710 } 711 } 712 713 // If Dups1 includes all of a block, then don't count duplicate 714 // instructions at the end of the blocks. 715 if (TEmpty || FEmpty) 716 return true; 717 718 // Count duplicate instructions at the ends of the blocks. 719 while (!TEmpty && !FEmpty) { 720 // Skip dbg_value instructions. These do not count. 721 if (skipDebugInstructionsBackward(TIB, TIE, TEmpty)) 722 break; 723 if (skipDebugInstructionsBackward(FIB, FIE, FEmpty)) 724 break; 725 if (!TIE->isIdenticalTo(*FIE)) 726 break; 727 // We have to verify that any branch instructions are the same, and then we 728 // don't count them toward the # of duplicate instructions. 729 if (!TIE->isBranch()) 730 ++Dups2; 731 shrinkInclusiveRange(TIB, TIE, TEmpty); 732 shrinkInclusiveRange(FIB, FIE, FEmpty); 733 } 734 return true; 735 } 736 737 /// RescanInstructions - Run ScanInstructions on a pair of blocks. 738 /// @param TIB - True Iterator Begin, points to first non-shared instruction 739 /// @param FIB - False Iterator Begin, points to first non-shared instruction 740 /// @param TIE - True Iterator End, points past last non-shared instruction 741 /// @param FIE - False Iterator End, points past last non-shared instruction 742 /// @param TrueBBI - BBInfo to update for the true block. 743 /// @param FalseBBI - BBInfo to update for the false block. 744 /// @returns - false if either block cannot be predicated or if both blocks end 745 /// with a predicate-clobbering instruction. 746 bool IfConverter::RescanInstructions( 747 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 748 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 749 BBInfo &TrueBBI, BBInfo &FalseBBI) const { 750 bool BranchUnpredicable = true; 751 TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false; 752 ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable); 753 if (TrueBBI.IsUnpredicable) 754 return false; 755 ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable); 756 if (FalseBBI.IsUnpredicable) 757 return false; 758 if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred) 759 return false; 760 return true; 761 } 762 763 #ifndef NDEBUG 764 static void verifySameBranchInstructions( 765 MachineBasicBlock *MBB1, 766 MachineBasicBlock *MBB2) { 767 MachineBasicBlock::iterator B1 = MBB1->begin(); 768 MachineBasicBlock::iterator B2 = MBB2->begin(); 769 MachineBasicBlock::iterator E1 = std::prev(MBB1->end()); 770 MachineBasicBlock::iterator E2 = std::prev(MBB2->end()); 771 bool Empty1 = false, Empty2 = false; 772 while (!Empty1 && !Empty2) { 773 skipDebugInstructionsBackward(B1, E1, Empty1); 774 skipDebugInstructionsBackward(B2, E2, Empty2); 775 if (Empty1 && Empty2) 776 break; 777 778 if (Empty1) { 779 assert(!E2->isBranch() && "Branch mis-match, one block is empty."); 780 break; 781 } 782 if (Empty2) { 783 assert(!E1->isBranch() && "Branch mis-match, one block is empty."); 784 break; 785 } 786 787 if (E1->isBranch() || E2->isBranch()) 788 assert(E1->isIdenticalTo(*E2) && 789 "Branch mis-match, branch instructions don't match."); 790 else 791 break; 792 shrinkInclusiveRange(B1, E1, Empty1); 793 shrinkInclusiveRange(B2, E2, Empty2); 794 } 795 } 796 #endif 797 798 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along 799 /// with their common predecessor) form a diamond if a common tail block is 800 /// extracted. 801 /// While not strictly a diamond, this pattern would form a diamond if 802 /// tail-merging had merged the shared tails. 803 /// EBB 804 /// _/ \_ 805 /// | | 806 /// TBB FBB 807 /// / \ / \ 808 /// FalseBB TrueBB FalseBB 809 /// Currently only handles analyzable branches. 810 /// Specifically excludes actual diamonds to avoid overlap. 811 bool IfConverter::ValidForkedDiamond( 812 BBInfo &TrueBBI, BBInfo &FalseBBI, 813 unsigned &Dups1, unsigned &Dups2, 814 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 815 Dups1 = Dups2 = 0; 816 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 817 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 818 return false; 819 820 if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable) 821 return false; 822 // Don't IfConvert blocks that can't be folded into their predecessor. 823 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 824 return false; 825 826 // This function is specifically looking for conditional tails, as 827 // unconditional tails are already handled by the standard diamond case. 828 if (TrueBBI.BrCond.size() == 0 || 829 FalseBBI.BrCond.size() == 0) 830 return false; 831 832 MachineBasicBlock *TT = TrueBBI.TrueBB; 833 MachineBasicBlock *TF = TrueBBI.FalseBB; 834 MachineBasicBlock *FT = FalseBBI.TrueBB; 835 MachineBasicBlock *FF = FalseBBI.FalseBB; 836 837 if (!TT) 838 TT = getNextBlock(*TrueBBI.BB); 839 if (!TF) 840 TF = getNextBlock(*TrueBBI.BB); 841 if (!FT) 842 FT = getNextBlock(*FalseBBI.BB); 843 if (!FF) 844 FF = getNextBlock(*FalseBBI.BB); 845 846 if (!TT || !TF) 847 return false; 848 849 // Check successors. If they don't match, bail. 850 if (!((TT == FT && TF == FF) || (TF == FT && TT == FF))) 851 return false; 852 853 bool FalseReversed = false; 854 if (TF == FT && TT == FF) { 855 // If the branches are opposing, but we can't reverse, don't do it. 856 if (!FalseBBI.IsBrReversible) 857 return false; 858 FalseReversed = true; 859 reverseBranchCondition(FalseBBI); 860 } 861 auto UnReverseOnExit = make_scope_exit([&]() { 862 if (FalseReversed) 863 reverseBranchCondition(FalseBBI); 864 }); 865 866 // Count duplicate instructions at the beginning of the true and false blocks. 867 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 868 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 869 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 870 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 871 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 872 *TrueBBI.BB, *FalseBBI.BB, 873 /* SkipUnconditionalBranches */ true)) 874 return false; 875 876 TrueBBICalc.BB = TrueBBI.BB; 877 FalseBBICalc.BB = FalseBBI.BB; 878 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 879 return false; 880 881 // The size is used to decide whether to if-convert, and the shared portions 882 // are subtracted off. Because of the subtraction, we just use the size that 883 // was calculated by the original ScanInstructions, as it is correct. 884 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 885 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 886 return true; 887 } 888 889 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along 890 /// with their common predecessor) forms a valid diamond shape for ifcvt. 891 bool IfConverter::ValidDiamond( 892 BBInfo &TrueBBI, BBInfo &FalseBBI, 893 unsigned &Dups1, unsigned &Dups2, 894 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 895 Dups1 = Dups2 = 0; 896 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 897 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 898 return false; 899 900 MachineBasicBlock *TT = TrueBBI.TrueBB; 901 MachineBasicBlock *FT = FalseBBI.TrueBB; 902 903 if (!TT && blockAlwaysFallThrough(TrueBBI)) 904 TT = getNextBlock(*TrueBBI.BB); 905 if (!FT && blockAlwaysFallThrough(FalseBBI)) 906 FT = getNextBlock(*FalseBBI.BB); 907 if (TT != FT) 908 return false; 909 if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable)) 910 return false; 911 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 912 return false; 913 914 // FIXME: Allow true block to have an early exit? 915 if (TrueBBI.FalseBB || FalseBBI.FalseBB) 916 return false; 917 918 // Count duplicate instructions at the beginning and end of the true and 919 // false blocks. 920 // Skip unconditional branches only if we are considering an analyzable 921 // diamond. Otherwise the branches must be the same. 922 bool SkipUnconditionalBranches = 923 TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable; 924 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 925 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 926 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 927 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 928 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 929 *TrueBBI.BB, *FalseBBI.BB, 930 SkipUnconditionalBranches)) 931 return false; 932 933 TrueBBICalc.BB = TrueBBI.BB; 934 FalseBBICalc.BB = FalseBBI.BB; 935 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 936 return false; 937 // The size is used to decide whether to if-convert, and the shared portions 938 // are subtracted off. Because of the subtraction, we just use the size that 939 // was calculated by the original ScanInstructions, as it is correct. 940 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 941 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 942 return true; 943 } 944 945 /// AnalyzeBranches - Look at the branches at the end of a block to determine if 946 /// the block is predicable. 947 void IfConverter::AnalyzeBranches(BBInfo &BBI) { 948 if (BBI.IsDone) 949 return; 950 951 BBI.TrueBB = BBI.FalseBB = nullptr; 952 BBI.BrCond.clear(); 953 BBI.IsBrAnalyzable = 954 !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond); 955 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 956 BBI.IsBrReversible = (RevCond.size() == 0) || 957 !TII->reverseBranchCondition(RevCond); 958 BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr; 959 960 if (BBI.BrCond.size()) { 961 // No false branch. This BB must end with a conditional branch and a 962 // fallthrough. 963 if (!BBI.FalseBB) 964 BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB); 965 if (!BBI.FalseBB) { 966 // Malformed bcc? True and false blocks are the same? 967 BBI.IsUnpredicable = true; 968 } 969 } 970 } 971 972 /// ScanInstructions - Scan all the instructions in the block to determine if 973 /// the block is predicable. In most cases, that means all the instructions 974 /// in the block are isPredicable(). Also checks if the block contains any 975 /// instruction which can clobber a predicate (e.g. condition code register). 976 /// If so, the block is not predicable unless it's the last instruction. 977 void IfConverter::ScanInstructions(BBInfo &BBI, 978 MachineBasicBlock::iterator &Begin, 979 MachineBasicBlock::iterator &End, 980 bool BranchUnpredicable) const { 981 if (BBI.IsDone || BBI.IsUnpredicable) 982 return; 983 984 bool AlreadyPredicated = !BBI.Predicate.empty(); 985 986 BBI.NonPredSize = 0; 987 BBI.ExtraCost = 0; 988 BBI.ExtraCost2 = 0; 989 BBI.ClobbersPred = false; 990 for (MachineInstr &MI : make_range(Begin, End)) { 991 if (MI.isDebugValue()) 992 continue; 993 994 // It's unsafe to duplicate convergent instructions in this context, so set 995 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the 996 // following CFG, which is subject to our "simple" transformation. 997 // 998 // BB0 // if (c1) goto BB1; else goto BB2; 999 // / \ 1000 // BB1 | 1001 // | BB2 // if (c2) goto TBB; else goto FBB; 1002 // | / | 1003 // | / | 1004 // TBB | 1005 // | | 1006 // | FBB 1007 // | 1008 // exit 1009 // 1010 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd 1011 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose 1012 // TBB contains a convergent instruction. This is safe iff doing so does 1013 // not add a control-flow dependency to the convergent instruction -- i.e., 1014 // it's safe iff the set of control flows that leads us to the convergent 1015 // instruction does not get smaller after the transformation. 1016 // 1017 // Originally we executed TBB if c1 || c2. After the transformation, there 1018 // are two copies of TBB's instructions. We get to the first if c1, and we 1019 // get to the second if !c1 && c2. 1020 // 1021 // There are clearly fewer ways to satisfy the condition "c1" than 1022 // "c1 || c2". Since we've shrunk the set of control flows which lead to 1023 // our convergent instruction, the transformation is unsafe. 1024 if (MI.isNotDuplicable() || MI.isConvergent()) 1025 BBI.CannotBeCopied = true; 1026 1027 bool isPredicated = TII->isPredicated(MI); 1028 bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch(); 1029 1030 if (BranchUnpredicable && MI.isBranch()) { 1031 BBI.IsUnpredicable = true; 1032 return; 1033 } 1034 1035 // A conditional branch is not predicable, but it may be eliminated. 1036 if (isCondBr) 1037 continue; 1038 1039 if (!isPredicated) { 1040 BBI.NonPredSize++; 1041 unsigned ExtraPredCost = TII->getPredicationCost(MI); 1042 unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false); 1043 if (NumCycles > 1) 1044 BBI.ExtraCost += NumCycles-1; 1045 BBI.ExtraCost2 += ExtraPredCost; 1046 } else if (!AlreadyPredicated) { 1047 // FIXME: This instruction is already predicated before the 1048 // if-conversion pass. It's probably something like a conditional move. 1049 // Mark this block unpredicable for now. 1050 BBI.IsUnpredicable = true; 1051 return; 1052 } 1053 1054 if (BBI.ClobbersPred && !isPredicated) { 1055 // Predicate modification instruction should end the block (except for 1056 // already predicated instructions and end of block branches). 1057 // Predicate may have been modified, the subsequent (currently) 1058 // unpredicated instructions cannot be correctly predicated. 1059 BBI.IsUnpredicable = true; 1060 return; 1061 } 1062 1063 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are 1064 // still potentially predicable. 1065 std::vector<MachineOperand> PredDefs; 1066 if (TII->DefinesPredicate(MI, PredDefs)) 1067 BBI.ClobbersPred = true; 1068 1069 if (!TII->isPredicable(MI)) { 1070 BBI.IsUnpredicable = true; 1071 return; 1072 } 1073 } 1074 } 1075 1076 /// Determine if the block is a suitable candidate to be predicated by the 1077 /// specified predicate. 1078 /// @param BBI BBInfo for the block to check 1079 /// @param Pred Predicate array for the branch that leads to BBI 1080 /// @param isTriangle true if the Analysis is for a triangle 1081 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false 1082 /// case 1083 /// @param hasCommonTail true if BBI shares a tail with a sibling block that 1084 /// contains any instruction that would make the block unpredicable. 1085 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI, 1086 SmallVectorImpl<MachineOperand> &Pred, 1087 bool isTriangle, bool RevBranch, 1088 bool hasCommonTail) { 1089 // If the block is dead or unpredicable, then it cannot be predicated. 1090 // Two blocks may share a common unpredicable tail, but this doesn't prevent 1091 // them from being if-converted. The non-shared portion is assumed to have 1092 // been checked 1093 if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail)) 1094 return false; 1095 1096 // If it is already predicated but we couldn't analyze its terminator, the 1097 // latter might fallthrough, but we can't determine where to. 1098 // Conservatively avoid if-converting again. 1099 if (BBI.Predicate.size() && !BBI.IsBrAnalyzable) 1100 return false; 1101 1102 // If it is already predicated, check if the new predicate subsumes 1103 // its predicate. 1104 if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate)) 1105 return false; 1106 1107 if (!hasCommonTail && BBI.BrCond.size()) { 1108 if (!isTriangle) 1109 return false; 1110 1111 // Test predicate subsumption. 1112 SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end()); 1113 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1114 if (RevBranch) { 1115 if (TII->reverseBranchCondition(Cond)) 1116 return false; 1117 } 1118 if (TII->reverseBranchCondition(RevPred) || 1119 !TII->SubsumesPredicate(Cond, RevPred)) 1120 return false; 1121 } 1122 1123 return true; 1124 } 1125 1126 /// Analyze the structure of the sub-CFG starting from the specified block. 1127 /// Record its successors and whether it looks like an if-conversion candidate. 1128 void IfConverter::AnalyzeBlock( 1129 MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1130 struct BBState { 1131 BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {} 1132 MachineBasicBlock *MBB; 1133 1134 /// This flag is true if MBB's successors have been analyzed. 1135 bool SuccsAnalyzed; 1136 }; 1137 1138 // Push MBB to the stack. 1139 SmallVector<BBState, 16> BBStack(1, MBB); 1140 1141 while (!BBStack.empty()) { 1142 BBState &State = BBStack.back(); 1143 MachineBasicBlock *BB = State.MBB; 1144 BBInfo &BBI = BBAnalysis[BB->getNumber()]; 1145 1146 if (!State.SuccsAnalyzed) { 1147 if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) { 1148 BBStack.pop_back(); 1149 continue; 1150 } 1151 1152 BBI.BB = BB; 1153 BBI.IsBeingAnalyzed = true; 1154 1155 AnalyzeBranches(BBI); 1156 MachineBasicBlock::iterator Begin = BBI.BB->begin(); 1157 MachineBasicBlock::iterator End = BBI.BB->end(); 1158 ScanInstructions(BBI, Begin, End); 1159 1160 // Unanalyzable or ends with fallthrough or unconditional branch, or if is 1161 // not considered for ifcvt anymore. 1162 if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) { 1163 BBI.IsBeingAnalyzed = false; 1164 BBI.IsAnalyzed = true; 1165 BBStack.pop_back(); 1166 continue; 1167 } 1168 1169 // Do not ifcvt if either path is a back edge to the entry block. 1170 if (BBI.TrueBB == BB || BBI.FalseBB == BB) { 1171 BBI.IsBeingAnalyzed = false; 1172 BBI.IsAnalyzed = true; 1173 BBStack.pop_back(); 1174 continue; 1175 } 1176 1177 // Do not ifcvt if true and false fallthrough blocks are the same. 1178 if (!BBI.FalseBB) { 1179 BBI.IsBeingAnalyzed = false; 1180 BBI.IsAnalyzed = true; 1181 BBStack.pop_back(); 1182 continue; 1183 } 1184 1185 // Push the False and True blocks to the stack. 1186 State.SuccsAnalyzed = true; 1187 BBStack.push_back(*BBI.FalseBB); 1188 BBStack.push_back(*BBI.TrueBB); 1189 continue; 1190 } 1191 1192 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1193 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1194 1195 if (TrueBBI.IsDone && FalseBBI.IsDone) { 1196 BBI.IsBeingAnalyzed = false; 1197 BBI.IsAnalyzed = true; 1198 BBStack.pop_back(); 1199 continue; 1200 } 1201 1202 SmallVector<MachineOperand, 4> 1203 RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1204 bool CanRevCond = !TII->reverseBranchCondition(RevCond); 1205 1206 unsigned Dups = 0; 1207 unsigned Dups2 = 0; 1208 bool TNeedSub = !TrueBBI.Predicate.empty(); 1209 bool FNeedSub = !FalseBBI.Predicate.empty(); 1210 bool Enqueued = false; 1211 1212 BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB); 1213 1214 if (CanRevCond) { 1215 BBInfo TrueBBICalc, FalseBBICalc; 1216 auto feasibleDiamond = [&]() { 1217 bool MeetsSize = MeetIfcvtSizeLimit( 1218 *TrueBBI.BB, (TrueBBICalc.NonPredSize - (Dups + Dups2) + 1219 TrueBBICalc.ExtraCost), TrueBBICalc.ExtraCost2, 1220 *FalseBBI.BB, (FalseBBICalc.NonPredSize - (Dups + Dups2) + 1221 FalseBBICalc.ExtraCost), FalseBBICalc.ExtraCost2, 1222 Prediction); 1223 bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond, 1224 /* IsTriangle */ false, /* RevCond */ false, 1225 /* hasCommonTail */ true); 1226 bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond, 1227 /* IsTriangle */ false, /* RevCond */ false, 1228 /* hasCommonTail */ true); 1229 return MeetsSize && TrueFeasible && FalseFeasible; 1230 }; 1231 1232 if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1233 TrueBBICalc, FalseBBICalc)) { 1234 if (feasibleDiamond()) { 1235 // Diamond: 1236 // EBB 1237 // / \_ 1238 // | | 1239 // TBB FBB 1240 // \ / 1241 // TailBB 1242 // Note TailBB can be empty. 1243 Tokens.push_back(llvm::make_unique<IfcvtToken>( 1244 BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1245 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1246 Enqueued = true; 1247 } 1248 } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1249 TrueBBICalc, FalseBBICalc)) { 1250 if (feasibleDiamond()) { 1251 // ForkedDiamond: 1252 // if TBB and FBB have a common tail that includes their conditional 1253 // branch instructions, then we can If Convert this pattern. 1254 // EBB 1255 // _/ \_ 1256 // | | 1257 // TBB FBB 1258 // / \ / \ 1259 // FalseBB TrueBB FalseBB 1260 // 1261 Tokens.push_back(llvm::make_unique<IfcvtToken>( 1262 BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1263 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1264 Enqueued = true; 1265 } 1266 } 1267 } 1268 1269 if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) && 1270 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1271 TrueBBI.ExtraCost2, Prediction) && 1272 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) { 1273 // Triangle: 1274 // EBB 1275 // | \_ 1276 // | | 1277 // | TBB 1278 // | / 1279 // FBB 1280 Tokens.push_back( 1281 llvm::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups)); 1282 Enqueued = true; 1283 } 1284 1285 if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) && 1286 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1287 TrueBBI.ExtraCost2, Prediction) && 1288 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) { 1289 Tokens.push_back( 1290 llvm::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups)); 1291 Enqueued = true; 1292 } 1293 1294 if (ValidSimple(TrueBBI, Dups, Prediction) && 1295 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1296 TrueBBI.ExtraCost2, Prediction) && 1297 FeasibilityAnalysis(TrueBBI, BBI.BrCond)) { 1298 // Simple (split, no rejoin): 1299 // EBB 1300 // | \_ 1301 // | | 1302 // | TBB---> exit 1303 // | 1304 // FBB 1305 Tokens.push_back( 1306 llvm::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups)); 1307 Enqueued = true; 1308 } 1309 1310 if (CanRevCond) { 1311 // Try the other path... 1312 if (ValidTriangle(FalseBBI, TrueBBI, false, Dups, 1313 Prediction.getCompl()) && 1314 MeetIfcvtSizeLimit(*FalseBBI.BB, 1315 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1316 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1317 FeasibilityAnalysis(FalseBBI, RevCond, true)) { 1318 Tokens.push_back(llvm::make_unique<IfcvtToken>(BBI, ICTriangleFalse, 1319 FNeedSub, Dups)); 1320 Enqueued = true; 1321 } 1322 1323 if (ValidTriangle(FalseBBI, TrueBBI, true, Dups, 1324 Prediction.getCompl()) && 1325 MeetIfcvtSizeLimit(*FalseBBI.BB, 1326 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1327 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1328 FeasibilityAnalysis(FalseBBI, RevCond, true, true)) { 1329 Tokens.push_back( 1330 llvm::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups)); 1331 Enqueued = true; 1332 } 1333 1334 if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) && 1335 MeetIfcvtSizeLimit(*FalseBBI.BB, 1336 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1337 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1338 FeasibilityAnalysis(FalseBBI, RevCond)) { 1339 Tokens.push_back( 1340 llvm::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups)); 1341 Enqueued = true; 1342 } 1343 } 1344 1345 BBI.IsEnqueued = Enqueued; 1346 BBI.IsBeingAnalyzed = false; 1347 BBI.IsAnalyzed = true; 1348 BBStack.pop_back(); 1349 } 1350 } 1351 1352 /// Analyze all blocks and find entries for all if-conversion candidates. 1353 void IfConverter::AnalyzeBlocks( 1354 MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1355 for (MachineBasicBlock &MBB : MF) 1356 AnalyzeBlock(MBB, Tokens); 1357 1358 // Sort to favor more complex ifcvt scheme. 1359 std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp); 1360 } 1361 1362 /// Returns true either if ToMBB is the next block after MBB or that all the 1363 /// intervening blocks are empty (given MBB can fall through to its next block). 1364 static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) { 1365 MachineFunction::iterator PI = MBB.getIterator(); 1366 MachineFunction::iterator I = std::next(PI); 1367 MachineFunction::iterator TI = ToMBB.getIterator(); 1368 MachineFunction::iterator E = MBB.getParent()->end(); 1369 while (I != TI) { 1370 // Check isSuccessor to avoid case where the next block is empty, but 1371 // it's not a successor. 1372 if (I == E || !I->empty() || !PI->isSuccessor(&*I)) 1373 return false; 1374 PI = I++; 1375 } 1376 return true; 1377 } 1378 1379 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it 1380 /// can be if-converted. If predecessor is already enqueued, dequeue it! 1381 void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) { 1382 for (const MachineBasicBlock *Predecessor : MBB.predecessors()) { 1383 BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()]; 1384 if (PBBI.IsDone || PBBI.BB == &MBB) 1385 continue; 1386 PBBI.IsAnalyzed = false; 1387 PBBI.IsEnqueued = false; 1388 } 1389 } 1390 1391 /// Inserts an unconditional branch from \p MBB to \p ToMBB. 1392 static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB, 1393 const TargetInstrInfo *TII) { 1394 DebugLoc dl; // FIXME: this is nowhere 1395 SmallVector<MachineOperand, 0> NoCond; 1396 TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl); 1397 } 1398 1399 /// Remove true / false edges if either / both are no longer successors. 1400 void IfConverter::RemoveExtraEdges(BBInfo &BBI) { 1401 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1402 SmallVector<MachineOperand, 4> Cond; 1403 if (!TII->analyzeBranch(*BBI.BB, TBB, FBB, Cond)) 1404 BBI.BB->CorrectExtraCFGEdges(TBB, FBB, !Cond.empty()); 1405 } 1406 1407 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all 1408 /// values defined in MI which are also live/used by MI. 1409 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) { 1410 const TargetRegisterInfo *TRI = MI.getParent()->getParent() 1411 ->getSubtarget().getRegisterInfo(); 1412 1413 // Before stepping forward past MI, remember which regs were live 1414 // before MI. This is needed to set the Undef flag only when reg is 1415 // dead. 1416 SparseSet<unsigned> LiveBeforeMI; 1417 LiveBeforeMI.setUniverse(TRI->getNumRegs()); 1418 for (unsigned Reg : Redefs) 1419 LiveBeforeMI.insert(Reg); 1420 1421 SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Clobbers; 1422 Redefs.stepForward(MI, Clobbers); 1423 1424 // Now add the implicit uses for each of the clobbered values. 1425 for (auto Clobber : Clobbers) { 1426 // FIXME: Const cast here is nasty, but better than making StepForward 1427 // take a mutable instruction instead of const. 1428 unsigned Reg = Clobber.first; 1429 MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second); 1430 MachineInstr *OpMI = Op.getParent(); 1431 MachineInstrBuilder MIB(*OpMI->getParent()->getParent(), OpMI); 1432 if (Op.isRegMask()) { 1433 // First handle regmasks. They clobber any entries in the mask which 1434 // means that we need a def for those registers. 1435 if (LiveBeforeMI.count(Reg)) 1436 MIB.addReg(Reg, RegState::Implicit); 1437 1438 // We also need to add an implicit def of this register for the later 1439 // use to read from. 1440 // For the register allocator to have allocated a register clobbered 1441 // by the call which is used later, it must be the case that 1442 // the call doesn't return. 1443 MIB.addReg(Reg, RegState::Implicit | RegState::Define); 1444 continue; 1445 } 1446 assert(Op.isReg() && "Register operand required"); 1447 if (Op.isDead()) { 1448 // If we found a dead def, but it needs to be live, then remove the dead 1449 // flag. 1450 if (Redefs.contains(Op.getReg())) 1451 Op.setIsDead(false); 1452 } 1453 if (LiveBeforeMI.count(Reg)) 1454 MIB.addReg(Reg, RegState::Implicit); 1455 else { 1456 bool HasLiveSubReg = false; 1457 for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) { 1458 if (!LiveBeforeMI.count(*S)) 1459 continue; 1460 HasLiveSubReg = true; 1461 break; 1462 } 1463 if (HasLiveSubReg) 1464 MIB.addReg(Reg, RegState::Implicit); 1465 } 1466 } 1467 } 1468 1469 /// Remove kill flags from operands with a registers in the \p DontKill set. 1470 static void RemoveKills(MachineInstr &MI, const LivePhysRegs &DontKill) { 1471 for (MIBundleOperands O(MI); O.isValid(); ++O) { 1472 if (!O->isReg() || !O->isKill()) 1473 continue; 1474 if (DontKill.contains(O->getReg())) 1475 O->setIsKill(false); 1476 } 1477 } 1478 1479 /// Walks a range of machine instructions and removes kill flags for registers 1480 /// in the \p DontKill set. 1481 static void RemoveKills(MachineBasicBlock::iterator I, 1482 MachineBasicBlock::iterator E, 1483 const LivePhysRegs &DontKill, 1484 const MCRegisterInfo &MCRI) { 1485 for (MachineInstr &MI : make_range(I, E)) 1486 RemoveKills(MI, DontKill); 1487 } 1488 1489 /// If convert a simple (split, no rejoin) sub-CFG. 1490 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) { 1491 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1492 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1493 BBInfo *CvtBBI = &TrueBBI; 1494 BBInfo *NextBBI = &FalseBBI; 1495 1496 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1497 if (Kind == ICSimpleFalse) 1498 std::swap(CvtBBI, NextBBI); 1499 1500 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1501 MachineBasicBlock &NextMBB = *NextBBI->BB; 1502 if (CvtBBI->IsDone || 1503 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1504 // Something has changed. It's no longer safe to predicate this block. 1505 BBI.IsAnalyzed = false; 1506 CvtBBI->IsAnalyzed = false; 1507 return false; 1508 } 1509 1510 if (CvtMBB.hasAddressTaken()) 1511 // Conservatively abort if-conversion if BB's address is taken. 1512 return false; 1513 1514 if (Kind == ICSimpleFalse) 1515 if (TII->reverseBranchCondition(Cond)) 1516 llvm_unreachable("Unable to reverse branch condition!"); 1517 1518 // Initialize liveins to the first BB. These are potentiall redefined by 1519 // predicated instructions. 1520 Redefs.init(TRI); 1521 Redefs.addLiveIns(CvtMBB); 1522 Redefs.addLiveIns(NextMBB); 1523 1524 // Compute a set of registers which must not be killed by instructions in 1525 // BB1: This is everything live-in to BB2. 1526 DontKill.init(TRI); 1527 DontKill.addLiveIns(NextMBB); 1528 1529 if (CvtMBB.pred_size() > 1) { 1530 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1531 // Copy instructions in the true block, predicate them, and add them to 1532 // the entry block. 1533 CopyAndPredicateBlock(BBI, *CvtBBI, Cond); 1534 1535 // RemoveExtraEdges won't work if the block has an unanalyzable branch, so 1536 // explicitly remove CvtBBI as a successor. 1537 BBI.BB->removeSuccessor(&CvtMBB, true); 1538 } else { 1539 RemoveKills(CvtMBB.begin(), CvtMBB.end(), DontKill, *TRI); 1540 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1541 1542 // Merge converted block into entry block. 1543 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1544 MergeBlocks(BBI, *CvtBBI); 1545 } 1546 1547 bool IterIfcvt = true; 1548 if (!canFallThroughTo(*BBI.BB, NextMBB)) { 1549 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1550 BBI.HasFallThrough = false; 1551 // Now ifcvt'd block will look like this: 1552 // BB: 1553 // ... 1554 // t, f = cmp 1555 // if t op 1556 // b BBf 1557 // 1558 // We cannot further ifcvt this block because the unconditional branch 1559 // will have to be predicated on the new condition, that will not be 1560 // available if cmp executes. 1561 IterIfcvt = false; 1562 } 1563 1564 RemoveExtraEdges(BBI); 1565 1566 // Update block info. BB can be iteratively if-converted. 1567 if (!IterIfcvt) 1568 BBI.IsDone = true; 1569 InvalidatePreds(*BBI.BB); 1570 CvtBBI->IsDone = true; 1571 1572 // FIXME: Must maintain LiveIns. 1573 return true; 1574 } 1575 1576 /// If convert a triangle sub-CFG. 1577 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) { 1578 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1579 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1580 BBInfo *CvtBBI = &TrueBBI; 1581 BBInfo *NextBBI = &FalseBBI; 1582 DebugLoc dl; // FIXME: this is nowhere 1583 1584 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1585 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1586 std::swap(CvtBBI, NextBBI); 1587 1588 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1589 MachineBasicBlock &NextMBB = *NextBBI->BB; 1590 if (CvtBBI->IsDone || 1591 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1592 // Something has changed. It's no longer safe to predicate this block. 1593 BBI.IsAnalyzed = false; 1594 CvtBBI->IsAnalyzed = false; 1595 return false; 1596 } 1597 1598 if (CvtMBB.hasAddressTaken()) 1599 // Conservatively abort if-conversion if BB's address is taken. 1600 return false; 1601 1602 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1603 if (TII->reverseBranchCondition(Cond)) 1604 llvm_unreachable("Unable to reverse branch condition!"); 1605 1606 if (Kind == ICTriangleRev || Kind == ICTriangleFRev) { 1607 if (reverseBranchCondition(*CvtBBI)) { 1608 // BB has been changed, modify its predecessors (except for this 1609 // one) so they don't get ifcvt'ed based on bad intel. 1610 for (MachineBasicBlock *PBB : CvtMBB.predecessors()) { 1611 if (PBB == BBI.BB) 1612 continue; 1613 BBInfo &PBBI = BBAnalysis[PBB->getNumber()]; 1614 if (PBBI.IsEnqueued) { 1615 PBBI.IsAnalyzed = false; 1616 PBBI.IsEnqueued = false; 1617 } 1618 } 1619 } 1620 } 1621 1622 // Initialize liveins to the first BB. These are potentially redefined by 1623 // predicated instructions. 1624 Redefs.init(TRI); 1625 Redefs.addLiveIns(CvtMBB); 1626 Redefs.addLiveIns(NextMBB); 1627 1628 DontKill.clear(); 1629 1630 bool HasEarlyExit = CvtBBI->FalseBB != nullptr; 1631 BranchProbability CvtNext, CvtFalse, BBNext, BBCvt; 1632 1633 if (HasEarlyExit) { 1634 // Get probabilities before modifying CvtMBB and BBI.BB. 1635 CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB); 1636 CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB); 1637 BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB); 1638 BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB); 1639 } 1640 1641 if (CvtMBB.pred_size() > 1) { 1642 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1643 // Copy instructions in the true block, predicate them, and add them to 1644 // the entry block. 1645 CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true); 1646 1647 // RemoveExtraEdges won't work if the block has an unanalyzable branch, so 1648 // explicitly remove CvtBBI as a successor. 1649 BBI.BB->removeSuccessor(&CvtMBB, true); 1650 } else { 1651 // Predicate the 'true' block after removing its branch. 1652 CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB); 1653 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1654 1655 // Now merge the entry of the triangle with the true block. 1656 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1657 MergeBlocks(BBI, *CvtBBI, false); 1658 } 1659 1660 // If 'true' block has a 'false' successor, add an exit branch to it. 1661 if (HasEarlyExit) { 1662 SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(), 1663 CvtBBI->BrCond.end()); 1664 if (TII->reverseBranchCondition(RevCond)) 1665 llvm_unreachable("Unable to reverse branch condition!"); 1666 1667 // Update the edge probability for both CvtBBI->FalseBB and NextBBI. 1668 // NewNext = New_Prob(BBI.BB, NextMBB) = 1669 // Prob(BBI.BB, NextMBB) + 1670 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB) 1671 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) = 1672 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB) 1673 auto NewTrueBB = getNextBlock(*BBI.BB); 1674 auto NewNext = BBNext + BBCvt * CvtNext; 1675 auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB); 1676 if (NewTrueBBIter != BBI.BB->succ_end()) 1677 BBI.BB->setSuccProbability(NewTrueBBIter, NewNext); 1678 1679 auto NewFalse = BBCvt * CvtFalse; 1680 TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl); 1681 BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse); 1682 } 1683 1684 // Merge in the 'false' block if the 'false' block has no other 1685 // predecessors. Otherwise, add an unconditional branch to 'false'. 1686 bool FalseBBDead = false; 1687 bool IterIfcvt = true; 1688 bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB); 1689 if (!isFallThrough) { 1690 // Only merge them if the true block does not fallthrough to the false 1691 // block. By not merging them, we make it possible to iteratively 1692 // ifcvt the blocks. 1693 if (!HasEarlyExit && 1694 NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough && 1695 !NextMBB.hasAddressTaken()) { 1696 MergeBlocks(BBI, *NextBBI); 1697 FalseBBDead = true; 1698 } else { 1699 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1700 BBI.HasFallThrough = false; 1701 } 1702 // Mixed predicated and unpredicated code. This cannot be iteratively 1703 // predicated. 1704 IterIfcvt = false; 1705 } 1706 1707 RemoveExtraEdges(BBI); 1708 1709 // Update block info. BB can be iteratively if-converted. 1710 if (!IterIfcvt) 1711 BBI.IsDone = true; 1712 InvalidatePreds(*BBI.BB); 1713 CvtBBI->IsDone = true; 1714 if (FalseBBDead) 1715 NextBBI->IsDone = true; 1716 1717 // FIXME: Must maintain LiveIns. 1718 return true; 1719 } 1720 1721 /// Common code shared between diamond conversions. 1722 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape. 1723 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI 1724 /// and FalseBBI 1725 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI 1726 /// and \p FalseBBI 1727 /// \p RemoveBranch - Remove the common branch of the two blocks before 1728 /// predicating. Only false for unanalyzable fallthrough 1729 /// cases. The caller will replace the branch if necessary. 1730 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for 1731 /// unanalyzable fallthrough 1732 bool IfConverter::IfConvertDiamondCommon( 1733 BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 1734 unsigned NumDups1, unsigned NumDups2, 1735 bool TClobbersPred, bool FClobbersPred, 1736 bool RemoveBranch, bool MergeAddEdges) { 1737 1738 if (TrueBBI.IsDone || FalseBBI.IsDone || 1739 TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) { 1740 // Something has changed. It's no longer safe to predicate these blocks. 1741 BBI.IsAnalyzed = false; 1742 TrueBBI.IsAnalyzed = false; 1743 FalseBBI.IsAnalyzed = false; 1744 return false; 1745 } 1746 1747 if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken()) 1748 // Conservatively abort if-conversion if either BB has its address taken. 1749 return false; 1750 1751 // Put the predicated instructions from the 'true' block before the 1752 // instructions from the 'false' block, unless the true block would clobber 1753 // the predicate, in which case, do the opposite. 1754 BBInfo *BBI1 = &TrueBBI; 1755 BBInfo *BBI2 = &FalseBBI; 1756 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1757 if (TII->reverseBranchCondition(RevCond)) 1758 llvm_unreachable("Unable to reverse branch condition!"); 1759 SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond; 1760 SmallVector<MachineOperand, 4> *Cond2 = &RevCond; 1761 1762 // Figure out the more profitable ordering. 1763 bool DoSwap = false; 1764 if (TClobbersPred && !FClobbersPred) 1765 DoSwap = true; 1766 else if (!TClobbersPred && !FClobbersPred) { 1767 if (TrueBBI.NonPredSize > FalseBBI.NonPredSize) 1768 DoSwap = true; 1769 } else if (TClobbersPred && FClobbersPred) 1770 llvm_unreachable("Predicate info cannot be clobbered by both sides."); 1771 if (DoSwap) { 1772 std::swap(BBI1, BBI2); 1773 std::swap(Cond1, Cond2); 1774 } 1775 1776 // Remove the conditional branch from entry to the blocks. 1777 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1778 1779 MachineBasicBlock &MBB1 = *BBI1->BB; 1780 MachineBasicBlock &MBB2 = *BBI2->BB; 1781 1782 // Initialize the Redefs: 1783 // - BB2 live-in regs need implicit uses before being redefined by BB1 1784 // instructions. 1785 // - BB1 live-out regs need implicit uses before being redefined by BB2 1786 // instructions. We start with BB1 live-ins so we have the live-out regs 1787 // after tracking the BB1 instructions. 1788 Redefs.init(TRI); 1789 Redefs.addLiveIns(MBB1); 1790 Redefs.addLiveIns(MBB2); 1791 1792 // Remove the duplicated instructions at the beginnings of both paths. 1793 // Skip dbg_value instructions 1794 MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr(); 1795 MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr(); 1796 BBI1->NonPredSize -= NumDups1; 1797 BBI2->NonPredSize -= NumDups1; 1798 1799 // Skip past the dups on each side separately since there may be 1800 // differing dbg_value entries. 1801 for (unsigned i = 0; i < NumDups1; ++DI1) { 1802 if (!DI1->isDebugValue()) 1803 ++i; 1804 } 1805 while (NumDups1 != 0) { 1806 ++DI2; 1807 if (!DI2->isDebugValue()) 1808 --NumDups1; 1809 } 1810 1811 // Compute a set of registers which must not be killed by instructions in BB1: 1812 // This is everything used+live in BB2 after the duplicated instructions. We 1813 // can compute this set by simulating liveness backwards from the end of BB2. 1814 DontKill.init(TRI); 1815 for (const MachineInstr &MI : make_range(MBB2.rbegin(), ++DI2.getReverse())) 1816 DontKill.stepBackward(MI); 1817 1818 for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) { 1819 SmallVector<std::pair<unsigned, const MachineOperand*>, 4> IgnoredClobbers; 1820 Redefs.stepForward(MI, IgnoredClobbers); 1821 } 1822 BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1); 1823 MBB2.erase(MBB2.begin(), DI2); 1824 1825 // The branches have been checked to match, so it is safe to remove the branch 1826 // in BB1 and rely on the copy in BB2 1827 #ifndef NDEBUG 1828 // Unanalyzable branches must match exactly. Check that now. 1829 if (!BBI1->IsBrAnalyzable) 1830 verifySameBranchInstructions(&MBB1, &MBB2); 1831 #endif 1832 BBI1->NonPredSize -= TII->removeBranch(*BBI1->BB); 1833 // Remove duplicated instructions. 1834 DI1 = MBB1.end(); 1835 for (unsigned i = 0; i != NumDups2; ) { 1836 // NumDups2 only counted non-dbg_value instructions, so this won't 1837 // run off the head of the list. 1838 assert(DI1 != MBB1.begin()); 1839 --DI1; 1840 // skip dbg_value instructions 1841 if (!DI1->isDebugValue()) 1842 ++i; 1843 } 1844 MBB1.erase(DI1, MBB1.end()); 1845 1846 // Kill flags in the true block for registers living into the false block 1847 // must be removed. 1848 RemoveKills(MBB1.begin(), MBB1.end(), DontKill, *TRI); 1849 1850 DI2 = BBI2->BB->end(); 1851 // The branches have been checked to match. Skip over the branch in the false 1852 // block so that we don't try to predicate it. 1853 if (RemoveBranch) 1854 BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB); 1855 else { 1856 do { 1857 assert(DI2 != MBB2.begin()); 1858 DI2--; 1859 } while (DI2->isBranch() || DI2->isDebugValue()); 1860 DI2++; 1861 } 1862 while (NumDups2 != 0) { 1863 // NumDups2 only counted non-dbg_value instructions, so this won't 1864 // run off the head of the list. 1865 assert(DI2 != MBB2.begin()); 1866 --DI2; 1867 // skip dbg_value instructions 1868 if (!DI2->isDebugValue()) 1869 --NumDups2; 1870 } 1871 1872 // Remember which registers would later be defined by the false block. 1873 // This allows us not to predicate instructions in the true block that would 1874 // later be re-defined. That is, rather than 1875 // subeq r0, r1, #1 1876 // addne r0, r1, #1 1877 // generate: 1878 // sub r0, r1, #1 1879 // addne r0, r1, #1 1880 SmallSet<unsigned, 4> RedefsByFalse; 1881 SmallSet<unsigned, 4> ExtUses; 1882 if (TII->isProfitableToUnpredicate(MBB1, MBB2)) { 1883 for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) { 1884 if (FI.isDebugValue()) 1885 continue; 1886 SmallVector<unsigned, 4> Defs; 1887 for (const MachineOperand &MO : FI.operands()) { 1888 if (!MO.isReg()) 1889 continue; 1890 unsigned Reg = MO.getReg(); 1891 if (!Reg) 1892 continue; 1893 if (MO.isDef()) { 1894 Defs.push_back(Reg); 1895 } else if (!RedefsByFalse.count(Reg)) { 1896 // These are defined before ctrl flow reach the 'false' instructions. 1897 // They cannot be modified by the 'true' instructions. 1898 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1899 SubRegs.isValid(); ++SubRegs) 1900 ExtUses.insert(*SubRegs); 1901 } 1902 } 1903 1904 for (unsigned Reg : Defs) { 1905 if (!ExtUses.count(Reg)) { 1906 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1907 SubRegs.isValid(); ++SubRegs) 1908 RedefsByFalse.insert(*SubRegs); 1909 } 1910 } 1911 } 1912 } 1913 1914 // Predicate the 'true' block. 1915 PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse); 1916 1917 // After predicating BBI1, if there is a predicated terminator in BBI1 and 1918 // a non-predicated in BBI2, then we don't want to predicate the one from 1919 // BBI2. The reason is that if we merged these blocks, we would end up with 1920 // two predicated terminators in the same block. 1921 if (!MBB2.empty() && (DI2 == MBB2.end())) { 1922 MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator(); 1923 MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator(); 1924 if (BBI1T != MBB1.end() && TII->isPredicated(*BBI1T) && 1925 BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T)) 1926 --DI2; 1927 } 1928 1929 // Predicate the 'false' block. 1930 PredicateBlock(*BBI2, DI2, *Cond2); 1931 1932 // Merge the true block into the entry of the diamond. 1933 MergeBlocks(BBI, *BBI1, MergeAddEdges); 1934 MergeBlocks(BBI, *BBI2, MergeAddEdges); 1935 return true; 1936 } 1937 1938 /// If convert an almost-diamond sub-CFG where the true 1939 /// and false blocks share a common tail. 1940 bool IfConverter::IfConvertForkedDiamond( 1941 BBInfo &BBI, IfcvtKind Kind, 1942 unsigned NumDups1, unsigned NumDups2, 1943 bool TClobbersPred, bool FClobbersPred) { 1944 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1945 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1946 1947 // Save the debug location for later. 1948 DebugLoc dl; 1949 MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator(); 1950 if (TIE != TrueBBI.BB->end()) 1951 dl = TIE->getDebugLoc(); 1952 // Removing branches from both blocks is safe, because we have already 1953 // determined that both blocks have the same branch instructions. The branch 1954 // will be added back at the end, unpredicated. 1955 if (!IfConvertDiamondCommon( 1956 BBI, TrueBBI, FalseBBI, 1957 NumDups1, NumDups2, 1958 TClobbersPred, FClobbersPred, 1959 /* RemoveBranch */ true, /* MergeAddEdges */ true)) 1960 return false; 1961 1962 // Add back the branch. 1963 // Debug location saved above when removing the branch from BBI2 1964 TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB, 1965 TrueBBI.BrCond, dl); 1966 1967 RemoveExtraEdges(BBI); 1968 1969 // Update block info. 1970 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 1971 InvalidatePreds(*BBI.BB); 1972 1973 // FIXME: Must maintain LiveIns. 1974 return true; 1975 } 1976 1977 /// If convert a diamond sub-CFG. 1978 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 1979 unsigned NumDups1, unsigned NumDups2, 1980 bool TClobbersPred, bool FClobbersPred) { 1981 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1982 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1983 MachineBasicBlock *TailBB = TrueBBI.TrueBB; 1984 1985 // True block must fall through or end with an unanalyzable terminator. 1986 if (!TailBB) { 1987 if (blockAlwaysFallThrough(TrueBBI)) 1988 TailBB = FalseBBI.TrueBB; 1989 assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!"); 1990 } 1991 1992 if (!IfConvertDiamondCommon( 1993 BBI, TrueBBI, FalseBBI, 1994 NumDups1, NumDups2, 1995 TClobbersPred, FClobbersPred, 1996 /* RemoveBranch */ TrueBBI.IsBrAnalyzable, 1997 /* MergeAddEdges */ TailBB == nullptr)) 1998 return false; 1999 2000 // If the if-converted block falls through or unconditionally branches into 2001 // the tail block, and the tail block does not have other predecessors, then 2002 // fold the tail block in as well. Otherwise, unless it falls through to the 2003 // tail, add a unconditional branch to it. 2004 if (TailBB) { 2005 BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()]; 2006 bool CanMergeTail = !TailBBI.HasFallThrough && 2007 !TailBBI.BB->hasAddressTaken(); 2008 // The if-converted block can still have a predicated terminator 2009 // (e.g. a predicated return). If that is the case, we cannot merge 2010 // it with the tail block. 2011 MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator(); 2012 if (TI != BBI.BB->end() && TII->isPredicated(*TI)) 2013 CanMergeTail = false; 2014 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB; 2015 // check if there are any other predecessors besides those. 2016 unsigned NumPreds = TailBB->pred_size(); 2017 if (NumPreds > 1) 2018 CanMergeTail = false; 2019 else if (NumPreds == 1 && CanMergeTail) { 2020 MachineBasicBlock::pred_iterator PI = TailBB->pred_begin(); 2021 if (*PI != TrueBBI.BB && *PI != FalseBBI.BB) 2022 CanMergeTail = false; 2023 } 2024 if (CanMergeTail) { 2025 MergeBlocks(BBI, TailBBI); 2026 TailBBI.IsDone = true; 2027 } else { 2028 BBI.BB->addSuccessor(TailBB, BranchProbability::getOne()); 2029 InsertUncondBranch(*BBI.BB, *TailBB, TII); 2030 BBI.HasFallThrough = false; 2031 } 2032 } 2033 2034 // RemoveExtraEdges won't work if the block has an unanalyzable branch, 2035 // which can happen here if TailBB is unanalyzable and is merged, so 2036 // explicitly remove BBI1 and BBI2 as successors. 2037 BBI.BB->removeSuccessor(TrueBBI.BB); 2038 BBI.BB->removeSuccessor(FalseBBI.BB, /* NormalizeSuccessProbs */ true); 2039 RemoveExtraEdges(BBI); 2040 2041 // Update block info. 2042 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 2043 InvalidatePreds(*BBI.BB); 2044 2045 // FIXME: Must maintain LiveIns. 2046 return true; 2047 } 2048 2049 static bool MaySpeculate(const MachineInstr &MI, 2050 SmallSet<unsigned, 4> &LaterRedefs) { 2051 bool SawStore = true; 2052 if (!MI.isSafeToMove(nullptr, SawStore)) 2053 return false; 2054 2055 for (const MachineOperand &MO : MI.operands()) { 2056 if (!MO.isReg()) 2057 continue; 2058 unsigned Reg = MO.getReg(); 2059 if (!Reg) 2060 continue; 2061 if (MO.isDef() && !LaterRedefs.count(Reg)) 2062 return false; 2063 } 2064 2065 return true; 2066 } 2067 2068 /// Predicate instructions from the start of the block to the specified end with 2069 /// the specified condition. 2070 void IfConverter::PredicateBlock(BBInfo &BBI, 2071 MachineBasicBlock::iterator E, 2072 SmallVectorImpl<MachineOperand> &Cond, 2073 SmallSet<unsigned, 4> *LaterRedefs) { 2074 bool AnyUnpred = false; 2075 bool MaySpec = LaterRedefs != nullptr; 2076 for (MachineInstr &I : make_range(BBI.BB->begin(), E)) { 2077 if (I.isDebugValue() || TII->isPredicated(I)) 2078 continue; 2079 // It may be possible not to predicate an instruction if it's the 'true' 2080 // side of a diamond and the 'false' side may re-define the instruction's 2081 // defs. 2082 if (MaySpec && MaySpeculate(I, *LaterRedefs)) { 2083 AnyUnpred = true; 2084 continue; 2085 } 2086 // If any instruction is predicated, then every instruction after it must 2087 // be predicated. 2088 MaySpec = false; 2089 if (!TII->PredicateInstruction(I, Cond)) { 2090 #ifndef NDEBUG 2091 dbgs() << "Unable to predicate " << I << "!\n"; 2092 #endif 2093 llvm_unreachable(nullptr); 2094 } 2095 2096 // If the predicated instruction now redefines a register as the result of 2097 // if-conversion, add an implicit kill. 2098 UpdatePredRedefs(I, Redefs); 2099 } 2100 2101 BBI.Predicate.append(Cond.begin(), Cond.end()); 2102 2103 BBI.IsAnalyzed = false; 2104 BBI.NonPredSize = 0; 2105 2106 ++NumIfConvBBs; 2107 if (AnyUnpred) 2108 ++NumUnpred; 2109 } 2110 2111 /// Copy and predicate instructions from source BB to the destination block. 2112 /// Skip end of block branches if IgnoreBr is true. 2113 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 2114 SmallVectorImpl<MachineOperand> &Cond, 2115 bool IgnoreBr) { 2116 MachineFunction &MF = *ToBBI.BB->getParent(); 2117 2118 MachineBasicBlock &FromMBB = *FromBBI.BB; 2119 for (MachineInstr &I : FromMBB) { 2120 // Do not copy the end of the block branches. 2121 if (IgnoreBr && I.isBranch()) 2122 break; 2123 2124 MachineInstr *MI = MF.CloneMachineInstr(&I); 2125 ToBBI.BB->insert(ToBBI.BB->end(), MI); 2126 ToBBI.NonPredSize++; 2127 unsigned ExtraPredCost = TII->getPredicationCost(I); 2128 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); 2129 if (NumCycles > 1) 2130 ToBBI.ExtraCost += NumCycles-1; 2131 ToBBI.ExtraCost2 += ExtraPredCost; 2132 2133 if (!TII->isPredicated(I) && !MI->isDebugValue()) { 2134 if (!TII->PredicateInstruction(*MI, Cond)) { 2135 #ifndef NDEBUG 2136 dbgs() << "Unable to predicate " << I << "!\n"; 2137 #endif 2138 llvm_unreachable(nullptr); 2139 } 2140 } 2141 2142 // If the predicated instruction now redefines a register as the result of 2143 // if-conversion, add an implicit kill. 2144 UpdatePredRedefs(*MI, Redefs); 2145 2146 // Some kill flags may not be correct anymore. 2147 if (!DontKill.empty()) 2148 RemoveKills(*MI, DontKill); 2149 } 2150 2151 if (!IgnoreBr) { 2152 std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(), 2153 FromMBB.succ_end()); 2154 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2155 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2156 2157 for (MachineBasicBlock *Succ : Succs) { 2158 // Fallthrough edge can't be transferred. 2159 if (Succ == FallThrough) 2160 continue; 2161 ToBBI.BB->addSuccessor(Succ); 2162 } 2163 } 2164 2165 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2166 ToBBI.Predicate.append(Cond.begin(), Cond.end()); 2167 2168 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2169 ToBBI.IsAnalyzed = false; 2170 2171 ++NumDupBBs; 2172 } 2173 2174 /// Move all instructions from FromBB to the end of ToBB. This will leave 2175 /// FromBB as an empty block, so remove all of its successor edges except for 2176 /// the fall-through edge. If AddEdges is true, i.e., when FromBBI's branch is 2177 /// being moved, add those successor edges to ToBBI. 2178 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) { 2179 MachineBasicBlock &FromMBB = *FromBBI.BB; 2180 assert(!FromMBB.hasAddressTaken() && 2181 "Removing a BB whose address is taken!"); 2182 2183 // In case FromMBB contains terminators (e.g. return instruction), 2184 // first move the non-terminator instructions, then the terminators. 2185 MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator(); 2186 MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator(); 2187 ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI); 2188 2189 // If FromBB has non-predicated terminator we should copy it at the end. 2190 if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI)) 2191 ToTI = ToBBI.BB->end(); 2192 ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end()); 2193 2194 // Force normalizing the successors' probabilities of ToBBI.BB to convert all 2195 // unknown probabilities into known ones. 2196 // FIXME: This usage is too tricky and in the future we would like to 2197 // eliminate all unknown probabilities in MBB. 2198 ToBBI.BB->normalizeSuccProbs(); 2199 2200 SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(), 2201 FromMBB.succ_end()); 2202 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2203 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2204 // The edge probability from ToBBI.BB to FromMBB, which is only needed when 2205 // AddEdges is true and FromMBB is a successor of ToBBI.BB. 2206 auto To2FromProb = BranchProbability::getZero(); 2207 if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) { 2208 To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB); 2209 // Set the edge probability from ToBBI.BB to FromMBB to zero to avoid the 2210 // edge probability being merged to other edges when this edge is removed 2211 // later. 2212 ToBBI.BB->setSuccProbability(find(ToBBI.BB->successors(), &FromMBB), 2213 BranchProbability::getZero()); 2214 } 2215 2216 for (MachineBasicBlock *Succ : FromSuccs) { 2217 // Fallthrough edge can't be transferred. 2218 if (Succ == FallThrough) 2219 continue; 2220 2221 auto NewProb = BranchProbability::getZero(); 2222 if (AddEdges) { 2223 // Calculate the edge probability for the edge from ToBBI.BB to Succ, 2224 // which is a portion of the edge probability from FromMBB to Succ. The 2225 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if 2226 // FromBBI is a successor of ToBBI.BB. See comment below for excepion). 2227 NewProb = MBPI->getEdgeProbability(&FromMBB, Succ); 2228 2229 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This 2230 // only happens when if-converting a diamond CFG and FromMBB is the 2231 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we 2232 // could just use the probabilities on FromMBB's out-edges when adding 2233 // new successors. 2234 if (!To2FromProb.isZero()) 2235 NewProb *= To2FromProb; 2236 } 2237 2238 FromMBB.removeSuccessor(Succ); 2239 2240 if (AddEdges) { 2241 // If the edge from ToBBI.BB to Succ already exists, update the 2242 // probability of this edge by adding NewProb to it. An example is shown 2243 // below, in which A is ToBBI.BB and B is FromMBB. In this case we 2244 // don't have to set C as A's successor as it already is. We only need to 2245 // update the edge probability on A->C. Note that B will not be 2246 // immediately removed from A's successors. It is possible that B->D is 2247 // not removed either if D is a fallthrough of B. Later the edge A->D 2248 // (generated here) and B->D will be combined into one edge. To maintain 2249 // correct edge probability of this combined edge, we need to set the edge 2250 // probability of A->B to zero, which is already done above. The edge 2251 // probability on A->D is calculated by scaling the original probability 2252 // on A->B by the probability of B->D. 2253 // 2254 // Before ifcvt: After ifcvt (assume B->D is kept): 2255 // 2256 // A A 2257 // /| /|\ 2258 // / B / B| 2259 // | /| | || 2260 // |/ | | |/ 2261 // C D C D 2262 // 2263 if (ToBBI.BB->isSuccessor(Succ)) 2264 ToBBI.BB->setSuccProbability( 2265 find(ToBBI.BB->successors(), Succ), 2266 MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb); 2267 else 2268 ToBBI.BB->addSuccessor(Succ, NewProb); 2269 } 2270 } 2271 2272 // Now FromBBI always falls through to the next block! 2273 if (NBB && !FromMBB.isSuccessor(NBB)) 2274 FromMBB.addSuccessor(NBB); 2275 2276 // Normalize the probabilities of ToBBI.BB's successors with all adjustment 2277 // we've done above. 2278 ToBBI.BB->normalizeSuccProbs(); 2279 2280 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2281 FromBBI.Predicate.clear(); 2282 2283 ToBBI.NonPredSize += FromBBI.NonPredSize; 2284 ToBBI.ExtraCost += FromBBI.ExtraCost; 2285 ToBBI.ExtraCost2 += FromBBI.ExtraCost2; 2286 FromBBI.NonPredSize = 0; 2287 FromBBI.ExtraCost = 0; 2288 FromBBI.ExtraCost2 = 0; 2289 2290 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2291 ToBBI.HasFallThrough = FromBBI.HasFallThrough; 2292 ToBBI.IsAnalyzed = false; 2293 FromBBI.IsAnalyzed = false; 2294 } 2295 2296 FunctionPass * 2297 llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) { 2298 return new IfConverter(std::move(Ftor)); 2299 } 2300