1 //===- IfConversion.cpp - Machine code if conversion pass -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the machine instruction level if-conversion pass, which 10 // tries to convert conditional branches into predicated instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "BranchFolding.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/SparseSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/CodeGen/LivePhysRegs.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 25 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineModuleInfo.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSchedule.h" 37 #include "llvm/CodeGen/TargetSubtargetInfo.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/BranchProbability.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <functional> 49 #include <iterator> 50 #include <memory> 51 #include <utility> 52 #include <vector> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "if-converter" 57 58 // Hidden options for help debugging. 59 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden); 60 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden); 61 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden); 62 static cl::opt<bool> DisableSimple("disable-ifcvt-simple", 63 cl::init(false), cl::Hidden); 64 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false", 65 cl::init(false), cl::Hidden); 66 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle", 67 cl::init(false), cl::Hidden); 68 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev", 69 cl::init(false), cl::Hidden); 70 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false", 71 cl::init(false), cl::Hidden); 72 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev", 73 cl::init(false), cl::Hidden); 74 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond", 75 cl::init(false), cl::Hidden); 76 static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond", 77 cl::init(false), cl::Hidden); 78 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold", 79 cl::init(true), cl::Hidden); 80 81 STATISTIC(NumSimple, "Number of simple if-conversions performed"); 82 STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed"); 83 STATISTIC(NumTriangle, "Number of triangle if-conversions performed"); 84 STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed"); 85 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed"); 86 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed"); 87 STATISTIC(NumDiamonds, "Number of diamond if-conversions performed"); 88 STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed"); 89 STATISTIC(NumIfConvBBs, "Number of if-converted blocks"); 90 STATISTIC(NumDupBBs, "Number of duplicated blocks"); 91 STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated"); 92 93 namespace { 94 95 class IfConverter : public MachineFunctionPass { 96 enum IfcvtKind { 97 ICNotClassfied, // BB data valid, but not classified. 98 ICSimpleFalse, // Same as ICSimple, but on the false path. 99 ICSimple, // BB is entry of an one split, no rejoin sub-CFG. 100 ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition. 101 ICTriangleRev, // Same as ICTriangle, but true path rev condition. 102 ICTriangleFalse, // Same as ICTriangle, but on the false path. 103 ICTriangle, // BB is entry of a triangle sub-CFG. 104 ICDiamond, // BB is entry of a diamond sub-CFG. 105 ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a 106 // common tail that can be shared. 107 }; 108 109 /// One per MachineBasicBlock, this is used to cache the result 110 /// if-conversion feasibility analysis. This includes results from 111 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its 112 /// classification, and common tail block of its successors (if it's a 113 /// diamond shape), its size, whether it's predicable, and whether any 114 /// instruction can clobber the 'would-be' predicate. 115 /// 116 /// IsDone - True if BB is not to be considered for ifcvt. 117 /// IsBeingAnalyzed - True if BB is currently being analyzed. 118 /// IsAnalyzed - True if BB has been analyzed (info is still valid). 119 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed. 120 /// IsBrAnalyzable - True if analyzeBranch() returns false. 121 /// HasFallThrough - True if BB may fallthrough to the following BB. 122 /// IsUnpredicable - True if BB is known to be unpredicable. 123 /// ClobbersPred - True if BB could modify predicates (e.g. has 124 /// cmp, call, etc.) 125 /// NonPredSize - Number of non-predicated instructions. 126 /// ExtraCost - Extra cost for multi-cycle instructions. 127 /// ExtraCost2 - Some instructions are slower when predicated 128 /// BB - Corresponding MachineBasicBlock. 129 /// TrueBB / FalseBB- See analyzeBranch(). 130 /// BrCond - Conditions for end of block conditional branches. 131 /// Predicate - Predicate used in the BB. 132 struct BBInfo { 133 bool IsDone : 1; 134 bool IsBeingAnalyzed : 1; 135 bool IsAnalyzed : 1; 136 bool IsEnqueued : 1; 137 bool IsBrAnalyzable : 1; 138 bool IsBrReversible : 1; 139 bool HasFallThrough : 1; 140 bool IsUnpredicable : 1; 141 bool CannotBeCopied : 1; 142 bool ClobbersPred : 1; 143 unsigned NonPredSize = 0; 144 unsigned ExtraCost = 0; 145 unsigned ExtraCost2 = 0; 146 MachineBasicBlock *BB = nullptr; 147 MachineBasicBlock *TrueBB = nullptr; 148 MachineBasicBlock *FalseBB = nullptr; 149 SmallVector<MachineOperand, 4> BrCond; 150 SmallVector<MachineOperand, 4> Predicate; 151 152 BBInfo() : IsDone(false), IsBeingAnalyzed(false), 153 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false), 154 IsBrReversible(false), HasFallThrough(false), 155 IsUnpredicable(false), CannotBeCopied(false), 156 ClobbersPred(false) {} 157 }; 158 159 /// Record information about pending if-conversions to attempt: 160 /// BBI - Corresponding BBInfo. 161 /// Kind - Type of block. See IfcvtKind. 162 /// NeedSubsumption - True if the to-be-predicated BB has already been 163 /// predicated. 164 /// NumDups - Number of instructions that would be duplicated due 165 /// to this if-conversion. (For diamonds, the number of 166 /// identical instructions at the beginnings of both 167 /// paths). 168 /// NumDups2 - For diamonds, the number of identical instructions 169 /// at the ends of both paths. 170 struct IfcvtToken { 171 BBInfo &BBI; 172 IfcvtKind Kind; 173 unsigned NumDups; 174 unsigned NumDups2; 175 bool NeedSubsumption : 1; 176 bool TClobbersPred : 1; 177 bool FClobbersPred : 1; 178 179 IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0, 180 bool tc = false, bool fc = false) 181 : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s), 182 TClobbersPred(tc), FClobbersPred(fc) {} 183 }; 184 185 /// Results of if-conversion feasibility analysis indexed by basic block 186 /// number. 187 std::vector<BBInfo> BBAnalysis; 188 TargetSchedModel SchedModel; 189 190 const TargetLoweringBase *TLI; 191 const TargetInstrInfo *TII; 192 const TargetRegisterInfo *TRI; 193 const MachineBranchProbabilityInfo *MBPI; 194 MachineRegisterInfo *MRI; 195 196 LivePhysRegs Redefs; 197 198 bool PreRegAlloc; 199 bool MadeChange; 200 int FnNum = -1; 201 std::function<bool(const MachineFunction &)> PredicateFtor; 202 203 public: 204 static char ID; 205 206 IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr) 207 : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) { 208 initializeIfConverterPass(*PassRegistry::getPassRegistry()); 209 } 210 211 void getAnalysisUsage(AnalysisUsage &AU) const override { 212 AU.addRequired<MachineBlockFrequencyInfo>(); 213 AU.addRequired<MachineBranchProbabilityInfo>(); 214 MachineFunctionPass::getAnalysisUsage(AU); 215 } 216 217 bool runOnMachineFunction(MachineFunction &MF) override; 218 219 MachineFunctionProperties getRequiredProperties() const override { 220 return MachineFunctionProperties().set( 221 MachineFunctionProperties::Property::NoVRegs); 222 } 223 224 private: 225 bool reverseBranchCondition(BBInfo &BBI) const; 226 bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 227 BranchProbability Prediction) const; 228 bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 229 bool FalseBranch, unsigned &Dups, 230 BranchProbability Prediction) const; 231 bool CountDuplicatedInstructions( 232 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 233 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 234 unsigned &Dups1, unsigned &Dups2, 235 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 236 bool SkipUnconditionalBranches) const; 237 bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 238 unsigned &Dups1, unsigned &Dups2, 239 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 240 bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 241 unsigned &Dups1, unsigned &Dups2, 242 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 243 void AnalyzeBranches(BBInfo &BBI); 244 void ScanInstructions(BBInfo &BBI, 245 MachineBasicBlock::iterator &Begin, 246 MachineBasicBlock::iterator &End, 247 bool BranchUnpredicable = false) const; 248 bool RescanInstructions( 249 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 250 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 251 BBInfo &TrueBBI, BBInfo &FalseBBI) const; 252 void AnalyzeBlock(MachineBasicBlock &MBB, 253 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 254 bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred, 255 bool isTriangle = false, bool RevBranch = false, 256 bool hasCommonTail = false); 257 void AnalyzeBlocks(MachineFunction &MF, 258 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 259 void InvalidatePreds(MachineBasicBlock &MBB); 260 bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind); 261 bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind); 262 bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 263 unsigned NumDups1, unsigned NumDups2, 264 bool TClobbersPred, bool FClobbersPred, 265 bool RemoveBranch, bool MergeAddEdges); 266 bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 267 unsigned NumDups1, unsigned NumDups2, 268 bool TClobbers, bool FClobbers); 269 bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind, 270 unsigned NumDups1, unsigned NumDups2, 271 bool TClobbers, bool FClobbers); 272 void PredicateBlock(BBInfo &BBI, 273 MachineBasicBlock::iterator E, 274 SmallVectorImpl<MachineOperand> &Cond, 275 SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr); 276 void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 277 SmallVectorImpl<MachineOperand> &Cond, 278 bool IgnoreBr = false); 279 void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true); 280 281 bool MeetIfcvtSizeLimit(MachineBasicBlock &BB, 282 unsigned Cycle, unsigned Extra, 283 BranchProbability Prediction) const { 284 return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra, 285 Prediction); 286 } 287 288 bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB, 289 unsigned TCycle, unsigned TExtra, 290 MachineBasicBlock &FBB, 291 unsigned FCycle, unsigned FExtra, 292 BranchProbability Prediction) const { 293 return TCycle > 0 && FCycle > 0 && 294 TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra, 295 Prediction); 296 } 297 298 /// Returns true if Block ends without a terminator. 299 bool blockAlwaysFallThrough(BBInfo &BBI) const { 300 return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr; 301 } 302 303 /// Used to sort if-conversion candidates. 304 static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1, 305 const std::unique_ptr<IfcvtToken> &C2) { 306 int Incr1 = (C1->Kind == ICDiamond) 307 ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups; 308 int Incr2 = (C2->Kind == ICDiamond) 309 ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups; 310 if (Incr1 > Incr2) 311 return true; 312 else if (Incr1 == Incr2) { 313 // Favors subsumption. 314 if (!C1->NeedSubsumption && C2->NeedSubsumption) 315 return true; 316 else if (C1->NeedSubsumption == C2->NeedSubsumption) { 317 // Favors diamond over triangle, etc. 318 if ((unsigned)C1->Kind < (unsigned)C2->Kind) 319 return true; 320 else if (C1->Kind == C2->Kind) 321 return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber(); 322 } 323 } 324 return false; 325 } 326 }; 327 328 } // end anonymous namespace 329 330 char IfConverter::ID = 0; 331 332 char &llvm::IfConverterID = IfConverter::ID; 333 334 INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false) 335 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 336 INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false) 337 338 bool IfConverter::runOnMachineFunction(MachineFunction &MF) { 339 if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF))) 340 return false; 341 342 const TargetSubtargetInfo &ST = MF.getSubtarget(); 343 TLI = ST.getTargetLowering(); 344 TII = ST.getInstrInfo(); 345 TRI = ST.getRegisterInfo(); 346 BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>()); 347 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 348 MRI = &MF.getRegInfo(); 349 SchedModel.init(&ST); 350 351 if (!TII) return false; 352 353 PreRegAlloc = MRI->isSSA(); 354 355 bool BFChange = false; 356 if (!PreRegAlloc) { 357 // Tail merge tend to expose more if-conversion opportunities. 358 BranchFolder BF(true, false, MBFI, *MBPI); 359 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 360 BFChange = BF.OptimizeFunction( 361 MF, TII, ST.getRegisterInfo(), 362 MMIWP ? &MMIWP->getMMI() : nullptr); 363 } 364 365 LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'" 366 << MF.getName() << "\'"); 367 368 if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) { 369 LLVM_DEBUG(dbgs() << " skipped\n"); 370 return false; 371 } 372 LLVM_DEBUG(dbgs() << "\n"); 373 374 MF.RenumberBlocks(); 375 BBAnalysis.resize(MF.getNumBlockIDs()); 376 377 std::vector<std::unique_ptr<IfcvtToken>> Tokens; 378 MadeChange = false; 379 unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + 380 NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds; 381 while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) { 382 // Do an initial analysis for each basic block and find all the potential 383 // candidates to perform if-conversion. 384 bool Change = false; 385 AnalyzeBlocks(MF, Tokens); 386 while (!Tokens.empty()) { 387 std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back()); 388 Tokens.pop_back(); 389 BBInfo &BBI = Token->BBI; 390 IfcvtKind Kind = Token->Kind; 391 unsigned NumDups = Token->NumDups; 392 unsigned NumDups2 = Token->NumDups2; 393 394 // If the block has been evicted out of the queue or it has already been 395 // marked dead (due to it being predicated), then skip it. 396 if (BBI.IsDone) 397 BBI.IsEnqueued = false; 398 if (!BBI.IsEnqueued) 399 continue; 400 401 BBI.IsEnqueued = false; 402 403 bool RetVal = false; 404 switch (Kind) { 405 default: llvm_unreachable("Unexpected!"); 406 case ICSimple: 407 case ICSimpleFalse: { 408 bool isFalse = Kind == ICSimpleFalse; 409 if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break; 410 LLVM_DEBUG(dbgs() << "Ifcvt (Simple" 411 << (Kind == ICSimpleFalse ? " false" : "") 412 << "): " << printMBBReference(*BBI.BB) << " (" 413 << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber() 414 : BBI.TrueBB->getNumber()) 415 << ") "); 416 RetVal = IfConvertSimple(BBI, Kind); 417 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 418 if (RetVal) { 419 if (isFalse) ++NumSimpleFalse; 420 else ++NumSimple; 421 } 422 break; 423 } 424 case ICTriangle: 425 case ICTriangleRev: 426 case ICTriangleFalse: 427 case ICTriangleFRev: { 428 bool isFalse = Kind == ICTriangleFalse; 429 bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev); 430 if (DisableTriangle && !isFalse && !isRev) break; 431 if (DisableTriangleR && !isFalse && isRev) break; 432 if (DisableTriangleF && isFalse && !isRev) break; 433 if (DisableTriangleFR && isFalse && isRev) break; 434 LLVM_DEBUG(dbgs() << "Ifcvt (Triangle"); 435 if (isFalse) 436 LLVM_DEBUG(dbgs() << " false"); 437 if (isRev) 438 LLVM_DEBUG(dbgs() << " rev"); 439 LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB) 440 << " (T:" << BBI.TrueBB->getNumber() 441 << ",F:" << BBI.FalseBB->getNumber() << ") "); 442 RetVal = IfConvertTriangle(BBI, Kind); 443 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 444 if (RetVal) { 445 if (isFalse) { 446 if (isRev) ++NumTriangleFRev; 447 else ++NumTriangleFalse; 448 } else { 449 if (isRev) ++NumTriangleRev; 450 else ++NumTriangle; 451 } 452 } 453 break; 454 } 455 case ICDiamond: 456 if (DisableDiamond) break; 457 LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB) 458 << " (T:" << BBI.TrueBB->getNumber() 459 << ",F:" << BBI.FalseBB->getNumber() << ") "); 460 RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2, 461 Token->TClobbersPred, 462 Token->FClobbersPred); 463 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 464 if (RetVal) ++NumDiamonds; 465 break; 466 case ICForkedDiamond: 467 if (DisableForkedDiamond) break; 468 LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): " 469 << printMBBReference(*BBI.BB) 470 << " (T:" << BBI.TrueBB->getNumber() 471 << ",F:" << BBI.FalseBB->getNumber() << ") "); 472 RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2, 473 Token->TClobbersPred, 474 Token->FClobbersPred); 475 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 476 if (RetVal) ++NumForkedDiamonds; 477 break; 478 } 479 480 if (RetVal && MRI->tracksLiveness()) 481 recomputeLivenessFlags(*BBI.BB); 482 483 Change |= RetVal; 484 485 NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev + 486 NumTriangleFalse + NumTriangleFRev + NumDiamonds; 487 if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit) 488 break; 489 } 490 491 if (!Change) 492 break; 493 MadeChange |= Change; 494 } 495 496 Tokens.clear(); 497 BBAnalysis.clear(); 498 499 if (MadeChange && IfCvtBranchFold) { 500 BranchFolder BF(false, false, MBFI, *MBPI); 501 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 502 BF.OptimizeFunction( 503 MF, TII, MF.getSubtarget().getRegisterInfo(), 504 MMIWP ? &MMIWP->getMMI() : nullptr); 505 } 506 507 MadeChange |= BFChange; 508 return MadeChange; 509 } 510 511 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor. 512 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 513 MachineBasicBlock *TrueBB) { 514 for (MachineBasicBlock *SuccBB : BB->successors()) { 515 if (SuccBB != TrueBB) 516 return SuccBB; 517 } 518 return nullptr; 519 } 520 521 /// Reverse the condition of the end of the block branch. Swap block's 'true' 522 /// and 'false' successors. 523 bool IfConverter::reverseBranchCondition(BBInfo &BBI) const { 524 DebugLoc dl; // FIXME: this is nowhere 525 if (!TII->reverseBranchCondition(BBI.BrCond)) { 526 TII->removeBranch(*BBI.BB); 527 TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl); 528 std::swap(BBI.TrueBB, BBI.FalseBB); 529 return true; 530 } 531 return false; 532 } 533 534 /// Returns the next block in the function blocks ordering. If it is the end, 535 /// returns NULL. 536 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) { 537 MachineFunction::iterator I = MBB.getIterator(); 538 MachineFunction::iterator E = MBB.getParent()->end(); 539 if (++I == E) 540 return nullptr; 541 return &*I; 542 } 543 544 /// Returns true if the 'true' block (along with its predecessor) forms a valid 545 /// simple shape for ifcvt. It also returns the number of instructions that the 546 /// ifcvt would need to duplicate if performed in Dups. 547 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 548 BranchProbability Prediction) const { 549 Dups = 0; 550 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 551 return false; 552 553 if (TrueBBI.IsBrAnalyzable) 554 return false; 555 556 if (TrueBBI.BB->pred_size() > 1) { 557 if (TrueBBI.CannotBeCopied || 558 !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize, 559 Prediction)) 560 return false; 561 Dups = TrueBBI.NonPredSize; 562 } 563 564 return true; 565 } 566 567 /// Returns true if the 'true' and 'false' blocks (along with their common 568 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is 569 /// true, it checks if 'true' block's false branch branches to the 'false' block 570 /// rather than the other way around. It also returns the number of instructions 571 /// that the ifcvt would need to duplicate if performed in 'Dups'. 572 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 573 bool FalseBranch, unsigned &Dups, 574 BranchProbability Prediction) const { 575 Dups = 0; 576 if (TrueBBI.BB == FalseBBI.BB) 577 return false; 578 579 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 580 return false; 581 582 if (TrueBBI.BB->pred_size() > 1) { 583 if (TrueBBI.CannotBeCopied) 584 return false; 585 586 unsigned Size = TrueBBI.NonPredSize; 587 if (TrueBBI.IsBrAnalyzable) { 588 if (TrueBBI.TrueBB && TrueBBI.BrCond.empty()) 589 // Ends with an unconditional branch. It will be removed. 590 --Size; 591 else { 592 MachineBasicBlock *FExit = FalseBranch 593 ? TrueBBI.TrueBB : TrueBBI.FalseBB; 594 if (FExit) 595 // Require a conditional branch 596 ++Size; 597 } 598 } 599 if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction)) 600 return false; 601 Dups = Size; 602 } 603 604 MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB; 605 if (!TExit && blockAlwaysFallThrough(TrueBBI)) { 606 MachineFunction::iterator I = TrueBBI.BB->getIterator(); 607 if (++I == TrueBBI.BB->getParent()->end()) 608 return false; 609 TExit = &*I; 610 } 611 return TExit && TExit == FalseBBI.BB; 612 } 613 614 /// Count duplicated instructions and move the iterators to show where they 615 /// are. 616 /// @param TIB True Iterator Begin 617 /// @param FIB False Iterator Begin 618 /// These two iterators initially point to the first instruction of the two 619 /// blocks, and finally point to the first non-shared instruction. 620 /// @param TIE True Iterator End 621 /// @param FIE False Iterator End 622 /// These two iterators initially point to End() for the two blocks() and 623 /// finally point to the first shared instruction in the tail. 624 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of 625 /// two blocks. 626 /// @param Dups1 count of duplicated instructions at the beginning of the 2 627 /// blocks. 628 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks. 629 /// @param SkipUnconditionalBranches if true, Don't make sure that 630 /// unconditional branches at the end of the blocks are the same. True is 631 /// passed when the blocks are analyzable to allow for fallthrough to be 632 /// handled. 633 /// @return false if the shared portion prevents if conversion. 634 bool IfConverter::CountDuplicatedInstructions( 635 MachineBasicBlock::iterator &TIB, 636 MachineBasicBlock::iterator &FIB, 637 MachineBasicBlock::iterator &TIE, 638 MachineBasicBlock::iterator &FIE, 639 unsigned &Dups1, unsigned &Dups2, 640 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 641 bool SkipUnconditionalBranches) const { 642 while (TIB != TIE && FIB != FIE) { 643 // Skip dbg_value instructions. These do not count. 644 TIB = skipDebugInstructionsForward(TIB, TIE); 645 FIB = skipDebugInstructionsForward(FIB, FIE); 646 if (TIB == TIE || FIB == FIE) 647 break; 648 if (!TIB->isIdenticalTo(*FIB)) 649 break; 650 // A pred-clobbering instruction in the shared portion prevents 651 // if-conversion. 652 std::vector<MachineOperand> PredDefs; 653 if (TII->DefinesPredicate(*TIB, PredDefs)) 654 return false; 655 // If we get all the way to the branch instructions, don't count them. 656 if (!TIB->isBranch()) 657 ++Dups1; 658 ++TIB; 659 ++FIB; 660 } 661 662 // Check for already containing all of the block. 663 if (TIB == TIE || FIB == FIE) 664 return true; 665 // Now, in preparation for counting duplicate instructions at the ends of the 666 // blocks, switch to reverse_iterators. Note that getReverse() returns an 667 // iterator that points to the same instruction, unlike std::reverse_iterator. 668 // We have to do our own shifting so that we get the same range. 669 MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse()); 670 MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse()); 671 const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse()); 672 const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse()); 673 674 if (!TBB.succ_empty() || !FBB.succ_empty()) { 675 if (SkipUnconditionalBranches) { 676 while (RTIE != RTIB && RTIE->isUnconditionalBranch()) 677 ++RTIE; 678 while (RFIE != RFIB && RFIE->isUnconditionalBranch()) 679 ++RFIE; 680 } 681 } 682 683 // Count duplicate instructions at the ends of the blocks. 684 while (RTIE != RTIB && RFIE != RFIB) { 685 // Skip dbg_value instructions. These do not count. 686 // Note that these are reverse iterators going forward. 687 RTIE = skipDebugInstructionsForward(RTIE, RTIB); 688 RFIE = skipDebugInstructionsForward(RFIE, RFIB); 689 if (RTIE == RTIB || RFIE == RFIB) 690 break; 691 if (!RTIE->isIdenticalTo(*RFIE)) 692 break; 693 // We have to verify that any branch instructions are the same, and then we 694 // don't count them toward the # of duplicate instructions. 695 if (!RTIE->isBranch()) 696 ++Dups2; 697 ++RTIE; 698 ++RFIE; 699 } 700 TIE = std::next(RTIE.getReverse()); 701 FIE = std::next(RFIE.getReverse()); 702 return true; 703 } 704 705 /// RescanInstructions - Run ScanInstructions on a pair of blocks. 706 /// @param TIB - True Iterator Begin, points to first non-shared instruction 707 /// @param FIB - False Iterator Begin, points to first non-shared instruction 708 /// @param TIE - True Iterator End, points past last non-shared instruction 709 /// @param FIE - False Iterator End, points past last non-shared instruction 710 /// @param TrueBBI - BBInfo to update for the true block. 711 /// @param FalseBBI - BBInfo to update for the false block. 712 /// @returns - false if either block cannot be predicated or if both blocks end 713 /// with a predicate-clobbering instruction. 714 bool IfConverter::RescanInstructions( 715 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 716 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 717 BBInfo &TrueBBI, BBInfo &FalseBBI) const { 718 bool BranchUnpredicable = true; 719 TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false; 720 ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable); 721 if (TrueBBI.IsUnpredicable) 722 return false; 723 ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable); 724 if (FalseBBI.IsUnpredicable) 725 return false; 726 if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred) 727 return false; 728 return true; 729 } 730 731 #ifndef NDEBUG 732 static void verifySameBranchInstructions( 733 MachineBasicBlock *MBB1, 734 MachineBasicBlock *MBB2) { 735 const MachineBasicBlock::reverse_iterator B1 = MBB1->rend(); 736 const MachineBasicBlock::reverse_iterator B2 = MBB2->rend(); 737 MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin(); 738 MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin(); 739 while (E1 != B1 && E2 != B2) { 740 skipDebugInstructionsForward(E1, B1); 741 skipDebugInstructionsForward(E2, B2); 742 if (E1 == B1 && E2 == B2) 743 break; 744 745 if (E1 == B1) { 746 assert(!E2->isBranch() && "Branch mis-match, one block is empty."); 747 break; 748 } 749 if (E2 == B2) { 750 assert(!E1->isBranch() && "Branch mis-match, one block is empty."); 751 break; 752 } 753 754 if (E1->isBranch() || E2->isBranch()) 755 assert(E1->isIdenticalTo(*E2) && 756 "Branch mis-match, branch instructions don't match."); 757 else 758 break; 759 ++E1; 760 ++E2; 761 } 762 } 763 #endif 764 765 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along 766 /// with their common predecessor) form a diamond if a common tail block is 767 /// extracted. 768 /// While not strictly a diamond, this pattern would form a diamond if 769 /// tail-merging had merged the shared tails. 770 /// EBB 771 /// _/ \_ 772 /// | | 773 /// TBB FBB 774 /// / \ / \ 775 /// FalseBB TrueBB FalseBB 776 /// Currently only handles analyzable branches. 777 /// Specifically excludes actual diamonds to avoid overlap. 778 bool IfConverter::ValidForkedDiamond( 779 BBInfo &TrueBBI, BBInfo &FalseBBI, 780 unsigned &Dups1, unsigned &Dups2, 781 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 782 Dups1 = Dups2 = 0; 783 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 784 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 785 return false; 786 787 if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable) 788 return false; 789 // Don't IfConvert blocks that can't be folded into their predecessor. 790 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 791 return false; 792 793 // This function is specifically looking for conditional tails, as 794 // unconditional tails are already handled by the standard diamond case. 795 if (TrueBBI.BrCond.size() == 0 || 796 FalseBBI.BrCond.size() == 0) 797 return false; 798 799 MachineBasicBlock *TT = TrueBBI.TrueBB; 800 MachineBasicBlock *TF = TrueBBI.FalseBB; 801 MachineBasicBlock *FT = FalseBBI.TrueBB; 802 MachineBasicBlock *FF = FalseBBI.FalseBB; 803 804 if (!TT) 805 TT = getNextBlock(*TrueBBI.BB); 806 if (!TF) 807 TF = getNextBlock(*TrueBBI.BB); 808 if (!FT) 809 FT = getNextBlock(*FalseBBI.BB); 810 if (!FF) 811 FF = getNextBlock(*FalseBBI.BB); 812 813 if (!TT || !TF) 814 return false; 815 816 // Check successors. If they don't match, bail. 817 if (!((TT == FT && TF == FF) || (TF == FT && TT == FF))) 818 return false; 819 820 bool FalseReversed = false; 821 if (TF == FT && TT == FF) { 822 // If the branches are opposing, but we can't reverse, don't do it. 823 if (!FalseBBI.IsBrReversible) 824 return false; 825 FalseReversed = true; 826 reverseBranchCondition(FalseBBI); 827 } 828 auto UnReverseOnExit = make_scope_exit([&]() { 829 if (FalseReversed) 830 reverseBranchCondition(FalseBBI); 831 }); 832 833 // Count duplicate instructions at the beginning of the true and false blocks. 834 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 835 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 836 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 837 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 838 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 839 *TrueBBI.BB, *FalseBBI.BB, 840 /* SkipUnconditionalBranches */ true)) 841 return false; 842 843 TrueBBICalc.BB = TrueBBI.BB; 844 FalseBBICalc.BB = FalseBBI.BB; 845 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 846 return false; 847 848 // The size is used to decide whether to if-convert, and the shared portions 849 // are subtracted off. Because of the subtraction, we just use the size that 850 // was calculated by the original ScanInstructions, as it is correct. 851 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 852 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 853 return true; 854 } 855 856 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along 857 /// with their common predecessor) forms a valid diamond shape for ifcvt. 858 bool IfConverter::ValidDiamond( 859 BBInfo &TrueBBI, BBInfo &FalseBBI, 860 unsigned &Dups1, unsigned &Dups2, 861 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 862 Dups1 = Dups2 = 0; 863 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 864 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 865 return false; 866 867 MachineBasicBlock *TT = TrueBBI.TrueBB; 868 MachineBasicBlock *FT = FalseBBI.TrueBB; 869 870 if (!TT && blockAlwaysFallThrough(TrueBBI)) 871 TT = getNextBlock(*TrueBBI.BB); 872 if (!FT && blockAlwaysFallThrough(FalseBBI)) 873 FT = getNextBlock(*FalseBBI.BB); 874 if (TT != FT) 875 return false; 876 if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable)) 877 return false; 878 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 879 return false; 880 881 // FIXME: Allow true block to have an early exit? 882 if (TrueBBI.FalseBB || FalseBBI.FalseBB) 883 return false; 884 885 // Count duplicate instructions at the beginning and end of the true and 886 // false blocks. 887 // Skip unconditional branches only if we are considering an analyzable 888 // diamond. Otherwise the branches must be the same. 889 bool SkipUnconditionalBranches = 890 TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable; 891 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 892 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 893 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 894 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 895 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 896 *TrueBBI.BB, *FalseBBI.BB, 897 SkipUnconditionalBranches)) 898 return false; 899 900 TrueBBICalc.BB = TrueBBI.BB; 901 FalseBBICalc.BB = FalseBBI.BB; 902 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 903 return false; 904 // The size is used to decide whether to if-convert, and the shared portions 905 // are subtracted off. Because of the subtraction, we just use the size that 906 // was calculated by the original ScanInstructions, as it is correct. 907 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 908 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 909 return true; 910 } 911 912 /// AnalyzeBranches - Look at the branches at the end of a block to determine if 913 /// the block is predicable. 914 void IfConverter::AnalyzeBranches(BBInfo &BBI) { 915 if (BBI.IsDone) 916 return; 917 918 BBI.TrueBB = BBI.FalseBB = nullptr; 919 BBI.BrCond.clear(); 920 BBI.IsBrAnalyzable = 921 !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond); 922 if (!BBI.IsBrAnalyzable) { 923 BBI.TrueBB = nullptr; 924 BBI.FalseBB = nullptr; 925 BBI.BrCond.clear(); 926 } 927 928 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 929 BBI.IsBrReversible = (RevCond.size() == 0) || 930 !TII->reverseBranchCondition(RevCond); 931 BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr; 932 933 if (BBI.BrCond.size()) { 934 // No false branch. This BB must end with a conditional branch and a 935 // fallthrough. 936 if (!BBI.FalseBB) 937 BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB); 938 if (!BBI.FalseBB) { 939 // Malformed bcc? True and false blocks are the same? 940 BBI.IsUnpredicable = true; 941 } 942 } 943 } 944 945 /// ScanInstructions - Scan all the instructions in the block to determine if 946 /// the block is predicable. In most cases, that means all the instructions 947 /// in the block are isPredicable(). Also checks if the block contains any 948 /// instruction which can clobber a predicate (e.g. condition code register). 949 /// If so, the block is not predicable unless it's the last instruction. 950 void IfConverter::ScanInstructions(BBInfo &BBI, 951 MachineBasicBlock::iterator &Begin, 952 MachineBasicBlock::iterator &End, 953 bool BranchUnpredicable) const { 954 if (BBI.IsDone || BBI.IsUnpredicable) 955 return; 956 957 bool AlreadyPredicated = !BBI.Predicate.empty(); 958 959 BBI.NonPredSize = 0; 960 BBI.ExtraCost = 0; 961 BBI.ExtraCost2 = 0; 962 BBI.ClobbersPred = false; 963 for (MachineInstr &MI : make_range(Begin, End)) { 964 if (MI.isDebugInstr()) 965 continue; 966 967 // It's unsafe to duplicate convergent instructions in this context, so set 968 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the 969 // following CFG, which is subject to our "simple" transformation. 970 // 971 // BB0 // if (c1) goto BB1; else goto BB2; 972 // / \ 973 // BB1 | 974 // | BB2 // if (c2) goto TBB; else goto FBB; 975 // | / | 976 // | / | 977 // TBB | 978 // | | 979 // | FBB 980 // | 981 // exit 982 // 983 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd 984 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose 985 // TBB contains a convergent instruction. This is safe iff doing so does 986 // not add a control-flow dependency to the convergent instruction -- i.e., 987 // it's safe iff the set of control flows that leads us to the convergent 988 // instruction does not get smaller after the transformation. 989 // 990 // Originally we executed TBB if c1 || c2. After the transformation, there 991 // are two copies of TBB's instructions. We get to the first if c1, and we 992 // get to the second if !c1 && c2. 993 // 994 // There are clearly fewer ways to satisfy the condition "c1" than 995 // "c1 || c2". Since we've shrunk the set of control flows which lead to 996 // our convergent instruction, the transformation is unsafe. 997 if (MI.isNotDuplicable() || MI.isConvergent()) 998 BBI.CannotBeCopied = true; 999 1000 bool isPredicated = TII->isPredicated(MI); 1001 bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch(); 1002 1003 if (BranchUnpredicable && MI.isBranch()) { 1004 BBI.IsUnpredicable = true; 1005 return; 1006 } 1007 1008 // A conditional branch is not predicable, but it may be eliminated. 1009 if (isCondBr) 1010 continue; 1011 1012 if (!isPredicated) { 1013 BBI.NonPredSize++; 1014 unsigned ExtraPredCost = TII->getPredicationCost(MI); 1015 unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false); 1016 if (NumCycles > 1) 1017 BBI.ExtraCost += NumCycles-1; 1018 BBI.ExtraCost2 += ExtraPredCost; 1019 } else if (!AlreadyPredicated) { 1020 // FIXME: This instruction is already predicated before the 1021 // if-conversion pass. It's probably something like a conditional move. 1022 // Mark this block unpredicable for now. 1023 BBI.IsUnpredicable = true; 1024 return; 1025 } 1026 1027 if (BBI.ClobbersPred && !isPredicated) { 1028 // Predicate modification instruction should end the block (except for 1029 // already predicated instructions and end of block branches). 1030 // Predicate may have been modified, the subsequent (currently) 1031 // unpredicated instructions cannot be correctly predicated. 1032 BBI.IsUnpredicable = true; 1033 return; 1034 } 1035 1036 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are 1037 // still potentially predicable. 1038 std::vector<MachineOperand> PredDefs; 1039 if (TII->DefinesPredicate(MI, PredDefs)) 1040 BBI.ClobbersPred = true; 1041 1042 if (!TII->isPredicable(MI)) { 1043 BBI.IsUnpredicable = true; 1044 return; 1045 } 1046 } 1047 } 1048 1049 /// Determine if the block is a suitable candidate to be predicated by the 1050 /// specified predicate. 1051 /// @param BBI BBInfo for the block to check 1052 /// @param Pred Predicate array for the branch that leads to BBI 1053 /// @param isTriangle true if the Analysis is for a triangle 1054 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false 1055 /// case 1056 /// @param hasCommonTail true if BBI shares a tail with a sibling block that 1057 /// contains any instruction that would make the block unpredicable. 1058 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI, 1059 SmallVectorImpl<MachineOperand> &Pred, 1060 bool isTriangle, bool RevBranch, 1061 bool hasCommonTail) { 1062 // If the block is dead or unpredicable, then it cannot be predicated. 1063 // Two blocks may share a common unpredicable tail, but this doesn't prevent 1064 // them from being if-converted. The non-shared portion is assumed to have 1065 // been checked 1066 if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail)) 1067 return false; 1068 1069 // If it is already predicated but we couldn't analyze its terminator, the 1070 // latter might fallthrough, but we can't determine where to. 1071 // Conservatively avoid if-converting again. 1072 if (BBI.Predicate.size() && !BBI.IsBrAnalyzable) 1073 return false; 1074 1075 // If it is already predicated, check if the new predicate subsumes 1076 // its predicate. 1077 if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate)) 1078 return false; 1079 1080 if (!hasCommonTail && BBI.BrCond.size()) { 1081 if (!isTriangle) 1082 return false; 1083 1084 // Test predicate subsumption. 1085 SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end()); 1086 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1087 if (RevBranch) { 1088 if (TII->reverseBranchCondition(Cond)) 1089 return false; 1090 } 1091 if (TII->reverseBranchCondition(RevPred) || 1092 !TII->SubsumesPredicate(Cond, RevPred)) 1093 return false; 1094 } 1095 1096 return true; 1097 } 1098 1099 /// Analyze the structure of the sub-CFG starting from the specified block. 1100 /// Record its successors and whether it looks like an if-conversion candidate. 1101 void IfConverter::AnalyzeBlock( 1102 MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1103 struct BBState { 1104 BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {} 1105 MachineBasicBlock *MBB; 1106 1107 /// This flag is true if MBB's successors have been analyzed. 1108 bool SuccsAnalyzed; 1109 }; 1110 1111 // Push MBB to the stack. 1112 SmallVector<BBState, 16> BBStack(1, MBB); 1113 1114 while (!BBStack.empty()) { 1115 BBState &State = BBStack.back(); 1116 MachineBasicBlock *BB = State.MBB; 1117 BBInfo &BBI = BBAnalysis[BB->getNumber()]; 1118 1119 if (!State.SuccsAnalyzed) { 1120 if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) { 1121 BBStack.pop_back(); 1122 continue; 1123 } 1124 1125 BBI.BB = BB; 1126 BBI.IsBeingAnalyzed = true; 1127 1128 AnalyzeBranches(BBI); 1129 MachineBasicBlock::iterator Begin = BBI.BB->begin(); 1130 MachineBasicBlock::iterator End = BBI.BB->end(); 1131 ScanInstructions(BBI, Begin, End); 1132 1133 // Unanalyzable or ends with fallthrough or unconditional branch, or if is 1134 // not considered for ifcvt anymore. 1135 if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) { 1136 BBI.IsBeingAnalyzed = false; 1137 BBI.IsAnalyzed = true; 1138 BBStack.pop_back(); 1139 continue; 1140 } 1141 1142 // Do not ifcvt if either path is a back edge to the entry block. 1143 if (BBI.TrueBB == BB || BBI.FalseBB == BB) { 1144 BBI.IsBeingAnalyzed = false; 1145 BBI.IsAnalyzed = true; 1146 BBStack.pop_back(); 1147 continue; 1148 } 1149 1150 // Do not ifcvt if true and false fallthrough blocks are the same. 1151 if (!BBI.FalseBB) { 1152 BBI.IsBeingAnalyzed = false; 1153 BBI.IsAnalyzed = true; 1154 BBStack.pop_back(); 1155 continue; 1156 } 1157 1158 // Push the False and True blocks to the stack. 1159 State.SuccsAnalyzed = true; 1160 BBStack.push_back(*BBI.FalseBB); 1161 BBStack.push_back(*BBI.TrueBB); 1162 continue; 1163 } 1164 1165 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1166 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1167 1168 if (TrueBBI.IsDone && FalseBBI.IsDone) { 1169 BBI.IsBeingAnalyzed = false; 1170 BBI.IsAnalyzed = true; 1171 BBStack.pop_back(); 1172 continue; 1173 } 1174 1175 SmallVector<MachineOperand, 4> 1176 RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1177 bool CanRevCond = !TII->reverseBranchCondition(RevCond); 1178 1179 unsigned Dups = 0; 1180 unsigned Dups2 = 0; 1181 bool TNeedSub = !TrueBBI.Predicate.empty(); 1182 bool FNeedSub = !FalseBBI.Predicate.empty(); 1183 bool Enqueued = false; 1184 1185 BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB); 1186 1187 if (CanRevCond) { 1188 BBInfo TrueBBICalc, FalseBBICalc; 1189 auto feasibleDiamond = [&]() { 1190 bool MeetsSize = MeetIfcvtSizeLimit( 1191 *TrueBBI.BB, (TrueBBICalc.NonPredSize - (Dups + Dups2) + 1192 TrueBBICalc.ExtraCost), TrueBBICalc.ExtraCost2, 1193 *FalseBBI.BB, (FalseBBICalc.NonPredSize - (Dups + Dups2) + 1194 FalseBBICalc.ExtraCost), FalseBBICalc.ExtraCost2, 1195 Prediction); 1196 bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond, 1197 /* IsTriangle */ false, /* RevCond */ false, 1198 /* hasCommonTail */ true); 1199 bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond, 1200 /* IsTriangle */ false, /* RevCond */ false, 1201 /* hasCommonTail */ true); 1202 return MeetsSize && TrueFeasible && FalseFeasible; 1203 }; 1204 1205 if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1206 TrueBBICalc, FalseBBICalc)) { 1207 if (feasibleDiamond()) { 1208 // Diamond: 1209 // EBB 1210 // / \_ 1211 // | | 1212 // TBB FBB 1213 // \ / 1214 // TailBB 1215 // Note TailBB can be empty. 1216 Tokens.push_back(std::make_unique<IfcvtToken>( 1217 BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1218 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1219 Enqueued = true; 1220 } 1221 } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1222 TrueBBICalc, FalseBBICalc)) { 1223 if (feasibleDiamond()) { 1224 // ForkedDiamond: 1225 // if TBB and FBB have a common tail that includes their conditional 1226 // branch instructions, then we can If Convert this pattern. 1227 // EBB 1228 // _/ \_ 1229 // | | 1230 // TBB FBB 1231 // / \ / \ 1232 // FalseBB TrueBB FalseBB 1233 // 1234 Tokens.push_back(std::make_unique<IfcvtToken>( 1235 BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1236 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1237 Enqueued = true; 1238 } 1239 } 1240 } 1241 1242 if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) && 1243 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1244 TrueBBI.ExtraCost2, Prediction) && 1245 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) { 1246 // Triangle: 1247 // EBB 1248 // | \_ 1249 // | | 1250 // | TBB 1251 // | / 1252 // FBB 1253 Tokens.push_back( 1254 std::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups)); 1255 Enqueued = true; 1256 } 1257 1258 if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) && 1259 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1260 TrueBBI.ExtraCost2, Prediction) && 1261 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) { 1262 Tokens.push_back( 1263 std::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups)); 1264 Enqueued = true; 1265 } 1266 1267 if (ValidSimple(TrueBBI, Dups, Prediction) && 1268 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1269 TrueBBI.ExtraCost2, Prediction) && 1270 FeasibilityAnalysis(TrueBBI, BBI.BrCond)) { 1271 // Simple (split, no rejoin): 1272 // EBB 1273 // | \_ 1274 // | | 1275 // | TBB---> exit 1276 // | 1277 // FBB 1278 Tokens.push_back( 1279 std::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups)); 1280 Enqueued = true; 1281 } 1282 1283 if (CanRevCond) { 1284 // Try the other path... 1285 if (ValidTriangle(FalseBBI, TrueBBI, false, Dups, 1286 Prediction.getCompl()) && 1287 MeetIfcvtSizeLimit(*FalseBBI.BB, 1288 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1289 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1290 FeasibilityAnalysis(FalseBBI, RevCond, true)) { 1291 Tokens.push_back(std::make_unique<IfcvtToken>(BBI, ICTriangleFalse, 1292 FNeedSub, Dups)); 1293 Enqueued = true; 1294 } 1295 1296 if (ValidTriangle(FalseBBI, TrueBBI, true, Dups, 1297 Prediction.getCompl()) && 1298 MeetIfcvtSizeLimit(*FalseBBI.BB, 1299 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1300 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1301 FeasibilityAnalysis(FalseBBI, RevCond, true, true)) { 1302 Tokens.push_back( 1303 std::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups)); 1304 Enqueued = true; 1305 } 1306 1307 if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) && 1308 MeetIfcvtSizeLimit(*FalseBBI.BB, 1309 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1310 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1311 FeasibilityAnalysis(FalseBBI, RevCond)) { 1312 Tokens.push_back( 1313 std::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups)); 1314 Enqueued = true; 1315 } 1316 } 1317 1318 BBI.IsEnqueued = Enqueued; 1319 BBI.IsBeingAnalyzed = false; 1320 BBI.IsAnalyzed = true; 1321 BBStack.pop_back(); 1322 } 1323 } 1324 1325 /// Analyze all blocks and find entries for all if-conversion candidates. 1326 void IfConverter::AnalyzeBlocks( 1327 MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1328 for (MachineBasicBlock &MBB : MF) 1329 AnalyzeBlock(MBB, Tokens); 1330 1331 // Sort to favor more complex ifcvt scheme. 1332 llvm::stable_sort(Tokens, IfcvtTokenCmp); 1333 } 1334 1335 /// Returns true either if ToMBB is the next block after MBB or that all the 1336 /// intervening blocks are empty (given MBB can fall through to its next block). 1337 static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) { 1338 MachineFunction::iterator PI = MBB.getIterator(); 1339 MachineFunction::iterator I = std::next(PI); 1340 MachineFunction::iterator TI = ToMBB.getIterator(); 1341 MachineFunction::iterator E = MBB.getParent()->end(); 1342 while (I != TI) { 1343 // Check isSuccessor to avoid case where the next block is empty, but 1344 // it's not a successor. 1345 if (I == E || !I->empty() || !PI->isSuccessor(&*I)) 1346 return false; 1347 PI = I++; 1348 } 1349 // Finally see if the last I is indeed a successor to PI. 1350 return PI->isSuccessor(&*I); 1351 } 1352 1353 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it 1354 /// can be if-converted. If predecessor is already enqueued, dequeue it! 1355 void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) { 1356 for (const MachineBasicBlock *Predecessor : MBB.predecessors()) { 1357 BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()]; 1358 if (PBBI.IsDone || PBBI.BB == &MBB) 1359 continue; 1360 PBBI.IsAnalyzed = false; 1361 PBBI.IsEnqueued = false; 1362 } 1363 } 1364 1365 /// Inserts an unconditional branch from \p MBB to \p ToMBB. 1366 static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB, 1367 const TargetInstrInfo *TII) { 1368 DebugLoc dl; // FIXME: this is nowhere 1369 SmallVector<MachineOperand, 0> NoCond; 1370 TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl); 1371 } 1372 1373 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all 1374 /// values defined in MI which are also live/used by MI. 1375 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) { 1376 const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo(); 1377 1378 // Before stepping forward past MI, remember which regs were live 1379 // before MI. This is needed to set the Undef flag only when reg is 1380 // dead. 1381 SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI; 1382 LiveBeforeMI.setUniverse(TRI->getNumRegs()); 1383 for (unsigned Reg : Redefs) 1384 LiveBeforeMI.insert(Reg); 1385 1386 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers; 1387 Redefs.stepForward(MI, Clobbers); 1388 1389 // Now add the implicit uses for each of the clobbered values. 1390 for (auto Clobber : Clobbers) { 1391 // FIXME: Const cast here is nasty, but better than making StepForward 1392 // take a mutable instruction instead of const. 1393 unsigned Reg = Clobber.first; 1394 MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second); 1395 MachineInstr *OpMI = Op.getParent(); 1396 MachineInstrBuilder MIB(*OpMI->getMF(), OpMI); 1397 if (Op.isRegMask()) { 1398 // First handle regmasks. They clobber any entries in the mask which 1399 // means that we need a def for those registers. 1400 if (LiveBeforeMI.count(Reg)) 1401 MIB.addReg(Reg, RegState::Implicit); 1402 1403 // We also need to add an implicit def of this register for the later 1404 // use to read from. 1405 // For the register allocator to have allocated a register clobbered 1406 // by the call which is used later, it must be the case that 1407 // the call doesn't return. 1408 MIB.addReg(Reg, RegState::Implicit | RegState::Define); 1409 continue; 1410 } 1411 if (LiveBeforeMI.count(Reg)) 1412 MIB.addReg(Reg, RegState::Implicit); 1413 else { 1414 bool HasLiveSubReg = false; 1415 for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) { 1416 if (!LiveBeforeMI.count(*S)) 1417 continue; 1418 HasLiveSubReg = true; 1419 break; 1420 } 1421 if (HasLiveSubReg) 1422 MIB.addReg(Reg, RegState::Implicit); 1423 } 1424 } 1425 } 1426 1427 /// If convert a simple (split, no rejoin) sub-CFG. 1428 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) { 1429 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1430 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1431 BBInfo *CvtBBI = &TrueBBI; 1432 BBInfo *NextBBI = &FalseBBI; 1433 1434 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1435 if (Kind == ICSimpleFalse) 1436 std::swap(CvtBBI, NextBBI); 1437 1438 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1439 MachineBasicBlock &NextMBB = *NextBBI->BB; 1440 if (CvtBBI->IsDone || 1441 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1442 // Something has changed. It's no longer safe to predicate this block. 1443 BBI.IsAnalyzed = false; 1444 CvtBBI->IsAnalyzed = false; 1445 return false; 1446 } 1447 1448 if (CvtMBB.hasAddressTaken()) 1449 // Conservatively abort if-conversion if BB's address is taken. 1450 return false; 1451 1452 if (Kind == ICSimpleFalse) 1453 if (TII->reverseBranchCondition(Cond)) 1454 llvm_unreachable("Unable to reverse branch condition!"); 1455 1456 Redefs.init(*TRI); 1457 1458 if (MRI->tracksLiveness()) { 1459 // Initialize liveins to the first BB. These are potentially redefined by 1460 // predicated instructions. 1461 Redefs.addLiveIns(CvtMBB); 1462 Redefs.addLiveIns(NextMBB); 1463 } 1464 1465 // Remove the branches from the entry so we can add the contents of the true 1466 // block to it. 1467 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1468 1469 if (CvtMBB.pred_size() > 1) { 1470 // Copy instructions in the true block, predicate them, and add them to 1471 // the entry block. 1472 CopyAndPredicateBlock(BBI, *CvtBBI, Cond); 1473 1474 // Keep the CFG updated. 1475 BBI.BB->removeSuccessor(&CvtMBB, true); 1476 } else { 1477 // Predicate the instructions in the true block. 1478 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1479 1480 // Merge converted block into entry block. The BB to Cvt edge is removed 1481 // by MergeBlocks. 1482 MergeBlocks(BBI, *CvtBBI); 1483 } 1484 1485 bool IterIfcvt = true; 1486 if (!canFallThroughTo(*BBI.BB, NextMBB)) { 1487 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1488 BBI.HasFallThrough = false; 1489 // Now ifcvt'd block will look like this: 1490 // BB: 1491 // ... 1492 // t, f = cmp 1493 // if t op 1494 // b BBf 1495 // 1496 // We cannot further ifcvt this block because the unconditional branch 1497 // will have to be predicated on the new condition, that will not be 1498 // available if cmp executes. 1499 IterIfcvt = false; 1500 } 1501 1502 // Update block info. BB can be iteratively if-converted. 1503 if (!IterIfcvt) 1504 BBI.IsDone = true; 1505 InvalidatePreds(*BBI.BB); 1506 CvtBBI->IsDone = true; 1507 1508 // FIXME: Must maintain LiveIns. 1509 return true; 1510 } 1511 1512 /// If convert a triangle sub-CFG. 1513 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) { 1514 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1515 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1516 BBInfo *CvtBBI = &TrueBBI; 1517 BBInfo *NextBBI = &FalseBBI; 1518 DebugLoc dl; // FIXME: this is nowhere 1519 1520 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1521 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1522 std::swap(CvtBBI, NextBBI); 1523 1524 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1525 MachineBasicBlock &NextMBB = *NextBBI->BB; 1526 if (CvtBBI->IsDone || 1527 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1528 // Something has changed. It's no longer safe to predicate this block. 1529 BBI.IsAnalyzed = false; 1530 CvtBBI->IsAnalyzed = false; 1531 return false; 1532 } 1533 1534 if (CvtMBB.hasAddressTaken()) 1535 // Conservatively abort if-conversion if BB's address is taken. 1536 return false; 1537 1538 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1539 if (TII->reverseBranchCondition(Cond)) 1540 llvm_unreachable("Unable to reverse branch condition!"); 1541 1542 if (Kind == ICTriangleRev || Kind == ICTriangleFRev) { 1543 if (reverseBranchCondition(*CvtBBI)) { 1544 // BB has been changed, modify its predecessors (except for this 1545 // one) so they don't get ifcvt'ed based on bad intel. 1546 for (MachineBasicBlock *PBB : CvtMBB.predecessors()) { 1547 if (PBB == BBI.BB) 1548 continue; 1549 BBInfo &PBBI = BBAnalysis[PBB->getNumber()]; 1550 if (PBBI.IsEnqueued) { 1551 PBBI.IsAnalyzed = false; 1552 PBBI.IsEnqueued = false; 1553 } 1554 } 1555 } 1556 } 1557 1558 // Initialize liveins to the first BB. These are potentially redefined by 1559 // predicated instructions. 1560 Redefs.init(*TRI); 1561 if (MRI->tracksLiveness()) { 1562 Redefs.addLiveIns(CvtMBB); 1563 Redefs.addLiveIns(NextMBB); 1564 } 1565 1566 bool HasEarlyExit = CvtBBI->FalseBB != nullptr; 1567 BranchProbability CvtNext, CvtFalse, BBNext, BBCvt; 1568 1569 if (HasEarlyExit) { 1570 // Get probabilities before modifying CvtMBB and BBI.BB. 1571 CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB); 1572 CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB); 1573 BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB); 1574 BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB); 1575 } 1576 1577 // Remove the branches from the entry so we can add the contents of the true 1578 // block to it. 1579 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1580 1581 if (CvtMBB.pred_size() > 1) { 1582 // Copy instructions in the true block, predicate them, and add them to 1583 // the entry block. 1584 CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true); 1585 } else { 1586 // Predicate the 'true' block after removing its branch. 1587 CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB); 1588 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1589 1590 // Now merge the entry of the triangle with the true block. 1591 MergeBlocks(BBI, *CvtBBI, false); 1592 } 1593 1594 // Keep the CFG updated. 1595 BBI.BB->removeSuccessor(&CvtMBB, true); 1596 1597 // If 'true' block has a 'false' successor, add an exit branch to it. 1598 if (HasEarlyExit) { 1599 SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(), 1600 CvtBBI->BrCond.end()); 1601 if (TII->reverseBranchCondition(RevCond)) 1602 llvm_unreachable("Unable to reverse branch condition!"); 1603 1604 // Update the edge probability for both CvtBBI->FalseBB and NextBBI. 1605 // NewNext = New_Prob(BBI.BB, NextMBB) = 1606 // Prob(BBI.BB, NextMBB) + 1607 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB) 1608 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) = 1609 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB) 1610 auto NewTrueBB = getNextBlock(*BBI.BB); 1611 auto NewNext = BBNext + BBCvt * CvtNext; 1612 auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB); 1613 if (NewTrueBBIter != BBI.BB->succ_end()) 1614 BBI.BB->setSuccProbability(NewTrueBBIter, NewNext); 1615 1616 auto NewFalse = BBCvt * CvtFalse; 1617 TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl); 1618 BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse); 1619 } 1620 1621 // Merge in the 'false' block if the 'false' block has no other 1622 // predecessors. Otherwise, add an unconditional branch to 'false'. 1623 bool FalseBBDead = false; 1624 bool IterIfcvt = true; 1625 bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB); 1626 if (!isFallThrough) { 1627 // Only merge them if the true block does not fallthrough to the false 1628 // block. By not merging them, we make it possible to iteratively 1629 // ifcvt the blocks. 1630 if (!HasEarlyExit && 1631 NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough && 1632 !NextMBB.hasAddressTaken()) { 1633 MergeBlocks(BBI, *NextBBI); 1634 FalseBBDead = true; 1635 } else { 1636 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1637 BBI.HasFallThrough = false; 1638 } 1639 // Mixed predicated and unpredicated code. This cannot be iteratively 1640 // predicated. 1641 IterIfcvt = false; 1642 } 1643 1644 // Update block info. BB can be iteratively if-converted. 1645 if (!IterIfcvt) 1646 BBI.IsDone = true; 1647 InvalidatePreds(*BBI.BB); 1648 CvtBBI->IsDone = true; 1649 if (FalseBBDead) 1650 NextBBI->IsDone = true; 1651 1652 // FIXME: Must maintain LiveIns. 1653 return true; 1654 } 1655 1656 /// Common code shared between diamond conversions. 1657 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape. 1658 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI 1659 /// and FalseBBI 1660 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI 1661 /// and \p FalseBBI 1662 /// \p RemoveBranch - Remove the common branch of the two blocks before 1663 /// predicating. Only false for unanalyzable fallthrough 1664 /// cases. The caller will replace the branch if necessary. 1665 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for 1666 /// unanalyzable fallthrough 1667 bool IfConverter::IfConvertDiamondCommon( 1668 BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 1669 unsigned NumDups1, unsigned NumDups2, 1670 bool TClobbersPred, bool FClobbersPred, 1671 bool RemoveBranch, bool MergeAddEdges) { 1672 1673 if (TrueBBI.IsDone || FalseBBI.IsDone || 1674 TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) { 1675 // Something has changed. It's no longer safe to predicate these blocks. 1676 BBI.IsAnalyzed = false; 1677 TrueBBI.IsAnalyzed = false; 1678 FalseBBI.IsAnalyzed = false; 1679 return false; 1680 } 1681 1682 if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken()) 1683 // Conservatively abort if-conversion if either BB has its address taken. 1684 return false; 1685 1686 // Put the predicated instructions from the 'true' block before the 1687 // instructions from the 'false' block, unless the true block would clobber 1688 // the predicate, in which case, do the opposite. 1689 BBInfo *BBI1 = &TrueBBI; 1690 BBInfo *BBI2 = &FalseBBI; 1691 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1692 if (TII->reverseBranchCondition(RevCond)) 1693 llvm_unreachable("Unable to reverse branch condition!"); 1694 SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond; 1695 SmallVector<MachineOperand, 4> *Cond2 = &RevCond; 1696 1697 // Figure out the more profitable ordering. 1698 bool DoSwap = false; 1699 if (TClobbersPred && !FClobbersPred) 1700 DoSwap = true; 1701 else if (!TClobbersPred && !FClobbersPred) { 1702 if (TrueBBI.NonPredSize > FalseBBI.NonPredSize) 1703 DoSwap = true; 1704 } else if (TClobbersPred && FClobbersPred) 1705 llvm_unreachable("Predicate info cannot be clobbered by both sides."); 1706 if (DoSwap) { 1707 std::swap(BBI1, BBI2); 1708 std::swap(Cond1, Cond2); 1709 } 1710 1711 // Remove the conditional branch from entry to the blocks. 1712 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1713 1714 MachineBasicBlock &MBB1 = *BBI1->BB; 1715 MachineBasicBlock &MBB2 = *BBI2->BB; 1716 1717 // Initialize the Redefs: 1718 // - BB2 live-in regs need implicit uses before being redefined by BB1 1719 // instructions. 1720 // - BB1 live-out regs need implicit uses before being redefined by BB2 1721 // instructions. We start with BB1 live-ins so we have the live-out regs 1722 // after tracking the BB1 instructions. 1723 Redefs.init(*TRI); 1724 if (MRI->tracksLiveness()) { 1725 Redefs.addLiveIns(MBB1); 1726 Redefs.addLiveIns(MBB2); 1727 } 1728 1729 // Remove the duplicated instructions at the beginnings of both paths. 1730 // Skip dbg_value instructions. 1731 MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr(); 1732 MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr(); 1733 BBI1->NonPredSize -= NumDups1; 1734 BBI2->NonPredSize -= NumDups1; 1735 1736 // Skip past the dups on each side separately since there may be 1737 // differing dbg_value entries. NumDups1 can include a "return" 1738 // instruction, if it's not marked as "branch". 1739 for (unsigned i = 0; i < NumDups1; ++DI1) { 1740 if (DI1 == MBB1.end()) 1741 break; 1742 if (!DI1->isDebugInstr()) 1743 ++i; 1744 } 1745 while (NumDups1 != 0) { 1746 ++DI2; 1747 if (DI2 == MBB2.end()) 1748 break; 1749 if (!DI2->isDebugInstr()) 1750 --NumDups1; 1751 } 1752 1753 if (MRI->tracksLiveness()) { 1754 for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) { 1755 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy; 1756 Redefs.stepForward(MI, Dummy); 1757 } 1758 } 1759 1760 BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1); 1761 MBB2.erase(MBB2.begin(), DI2); 1762 1763 // The branches have been checked to match, so it is safe to remove the 1764 // branch in BB1 and rely on the copy in BB2. The complication is that 1765 // the blocks may end with a return instruction, which may or may not 1766 // be marked as "branch". If it's not, then it could be included in 1767 // "dups1", leaving the blocks potentially empty after moving the common 1768 // duplicates. 1769 #ifndef NDEBUG 1770 // Unanalyzable branches must match exactly. Check that now. 1771 if (!BBI1->IsBrAnalyzable) 1772 verifySameBranchInstructions(&MBB1, &MBB2); 1773 #endif 1774 // Remove duplicated instructions from the tail of MBB1: any branch 1775 // instructions, and the common instructions counted by NumDups2. 1776 DI1 = MBB1.end(); 1777 while (DI1 != MBB1.begin()) { 1778 MachineBasicBlock::iterator Prev = std::prev(DI1); 1779 if (!Prev->isBranch() && !Prev->isDebugInstr()) 1780 break; 1781 DI1 = Prev; 1782 } 1783 for (unsigned i = 0; i != NumDups2; ) { 1784 // NumDups2 only counted non-dbg_value instructions, so this won't 1785 // run off the head of the list. 1786 assert(DI1 != MBB1.begin()); 1787 --DI1; 1788 // skip dbg_value instructions 1789 if (!DI1->isDebugInstr()) 1790 ++i; 1791 } 1792 MBB1.erase(DI1, MBB1.end()); 1793 1794 DI2 = BBI2->BB->end(); 1795 // The branches have been checked to match. Skip over the branch in the false 1796 // block so that we don't try to predicate it. 1797 if (RemoveBranch) 1798 BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB); 1799 else { 1800 // Make DI2 point to the end of the range where the common "tail" 1801 // instructions could be found. 1802 while (DI2 != MBB2.begin()) { 1803 MachineBasicBlock::iterator Prev = std::prev(DI2); 1804 if (!Prev->isBranch() && !Prev->isDebugInstr()) 1805 break; 1806 DI2 = Prev; 1807 } 1808 } 1809 while (NumDups2 != 0) { 1810 // NumDups2 only counted non-dbg_value instructions, so this won't 1811 // run off the head of the list. 1812 assert(DI2 != MBB2.begin()); 1813 --DI2; 1814 // skip dbg_value instructions 1815 if (!DI2->isDebugInstr()) 1816 --NumDups2; 1817 } 1818 1819 // Remember which registers would later be defined by the false block. 1820 // This allows us not to predicate instructions in the true block that would 1821 // later be re-defined. That is, rather than 1822 // subeq r0, r1, #1 1823 // addne r0, r1, #1 1824 // generate: 1825 // sub r0, r1, #1 1826 // addne r0, r1, #1 1827 SmallSet<MCPhysReg, 4> RedefsByFalse; 1828 SmallSet<MCPhysReg, 4> ExtUses; 1829 if (TII->isProfitableToUnpredicate(MBB1, MBB2)) { 1830 for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) { 1831 if (FI.isDebugInstr()) 1832 continue; 1833 SmallVector<MCPhysReg, 4> Defs; 1834 for (const MachineOperand &MO : FI.operands()) { 1835 if (!MO.isReg()) 1836 continue; 1837 Register Reg = MO.getReg(); 1838 if (!Reg) 1839 continue; 1840 if (MO.isDef()) { 1841 Defs.push_back(Reg); 1842 } else if (!RedefsByFalse.count(Reg)) { 1843 // These are defined before ctrl flow reach the 'false' instructions. 1844 // They cannot be modified by the 'true' instructions. 1845 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1846 SubRegs.isValid(); ++SubRegs) 1847 ExtUses.insert(*SubRegs); 1848 } 1849 } 1850 1851 for (MCPhysReg Reg : Defs) { 1852 if (!ExtUses.count(Reg)) { 1853 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1854 SubRegs.isValid(); ++SubRegs) 1855 RedefsByFalse.insert(*SubRegs); 1856 } 1857 } 1858 } 1859 } 1860 1861 // Predicate the 'true' block. 1862 PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse); 1863 1864 // After predicating BBI1, if there is a predicated terminator in BBI1 and 1865 // a non-predicated in BBI2, then we don't want to predicate the one from 1866 // BBI2. The reason is that if we merged these blocks, we would end up with 1867 // two predicated terminators in the same block. 1868 // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't 1869 // predicate them either. They were checked to be identical, and so the 1870 // same branch would happen regardless of which path was taken. 1871 if (!MBB2.empty() && (DI2 == MBB2.end())) { 1872 MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator(); 1873 MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator(); 1874 bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T); 1875 bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T); 1876 if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable)) 1877 --DI2; 1878 } 1879 1880 // Predicate the 'false' block. 1881 PredicateBlock(*BBI2, DI2, *Cond2); 1882 1883 // Merge the true block into the entry of the diamond. 1884 MergeBlocks(BBI, *BBI1, MergeAddEdges); 1885 MergeBlocks(BBI, *BBI2, MergeAddEdges); 1886 return true; 1887 } 1888 1889 /// If convert an almost-diamond sub-CFG where the true 1890 /// and false blocks share a common tail. 1891 bool IfConverter::IfConvertForkedDiamond( 1892 BBInfo &BBI, IfcvtKind Kind, 1893 unsigned NumDups1, unsigned NumDups2, 1894 bool TClobbersPred, bool FClobbersPred) { 1895 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1896 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1897 1898 // Save the debug location for later. 1899 DebugLoc dl; 1900 MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator(); 1901 if (TIE != TrueBBI.BB->end()) 1902 dl = TIE->getDebugLoc(); 1903 // Removing branches from both blocks is safe, because we have already 1904 // determined that both blocks have the same branch instructions. The branch 1905 // will be added back at the end, unpredicated. 1906 if (!IfConvertDiamondCommon( 1907 BBI, TrueBBI, FalseBBI, 1908 NumDups1, NumDups2, 1909 TClobbersPred, FClobbersPred, 1910 /* RemoveBranch */ true, /* MergeAddEdges */ true)) 1911 return false; 1912 1913 // Add back the branch. 1914 // Debug location saved above when removing the branch from BBI2 1915 TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB, 1916 TrueBBI.BrCond, dl); 1917 1918 // Update block info. 1919 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 1920 InvalidatePreds(*BBI.BB); 1921 1922 // FIXME: Must maintain LiveIns. 1923 return true; 1924 } 1925 1926 /// If convert a diamond sub-CFG. 1927 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 1928 unsigned NumDups1, unsigned NumDups2, 1929 bool TClobbersPred, bool FClobbersPred) { 1930 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1931 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1932 MachineBasicBlock *TailBB = TrueBBI.TrueBB; 1933 1934 // True block must fall through or end with an unanalyzable terminator. 1935 if (!TailBB) { 1936 if (blockAlwaysFallThrough(TrueBBI)) 1937 TailBB = FalseBBI.TrueBB; 1938 assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!"); 1939 } 1940 1941 if (!IfConvertDiamondCommon( 1942 BBI, TrueBBI, FalseBBI, 1943 NumDups1, NumDups2, 1944 TClobbersPred, FClobbersPred, 1945 /* RemoveBranch */ TrueBBI.IsBrAnalyzable, 1946 /* MergeAddEdges */ TailBB == nullptr)) 1947 return false; 1948 1949 // If the if-converted block falls through or unconditionally branches into 1950 // the tail block, and the tail block does not have other predecessors, then 1951 // fold the tail block in as well. Otherwise, unless it falls through to the 1952 // tail, add a unconditional branch to it. 1953 if (TailBB) { 1954 // We need to remove the edges to the true and false blocks manually since 1955 // we didn't let IfConvertDiamondCommon update the CFG. 1956 BBI.BB->removeSuccessor(TrueBBI.BB); 1957 BBI.BB->removeSuccessor(FalseBBI.BB, true); 1958 1959 BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()]; 1960 bool CanMergeTail = !TailBBI.HasFallThrough && 1961 !TailBBI.BB->hasAddressTaken(); 1962 // The if-converted block can still have a predicated terminator 1963 // (e.g. a predicated return). If that is the case, we cannot merge 1964 // it with the tail block. 1965 MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator(); 1966 if (TI != BBI.BB->end() && TII->isPredicated(*TI)) 1967 CanMergeTail = false; 1968 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB; 1969 // check if there are any other predecessors besides those. 1970 unsigned NumPreds = TailBB->pred_size(); 1971 if (NumPreds > 1) 1972 CanMergeTail = false; 1973 else if (NumPreds == 1 && CanMergeTail) { 1974 MachineBasicBlock::pred_iterator PI = TailBB->pred_begin(); 1975 if (*PI != TrueBBI.BB && *PI != FalseBBI.BB) 1976 CanMergeTail = false; 1977 } 1978 if (CanMergeTail) { 1979 MergeBlocks(BBI, TailBBI); 1980 TailBBI.IsDone = true; 1981 } else { 1982 BBI.BB->addSuccessor(TailBB, BranchProbability::getOne()); 1983 InsertUncondBranch(*BBI.BB, *TailBB, TII); 1984 BBI.HasFallThrough = false; 1985 } 1986 } 1987 1988 // Update block info. 1989 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 1990 InvalidatePreds(*BBI.BB); 1991 1992 // FIXME: Must maintain LiveIns. 1993 return true; 1994 } 1995 1996 static bool MaySpeculate(const MachineInstr &MI, 1997 SmallSet<MCPhysReg, 4> &LaterRedefs) { 1998 bool SawStore = true; 1999 if (!MI.isSafeToMove(nullptr, SawStore)) 2000 return false; 2001 2002 for (const MachineOperand &MO : MI.operands()) { 2003 if (!MO.isReg()) 2004 continue; 2005 Register Reg = MO.getReg(); 2006 if (!Reg) 2007 continue; 2008 if (MO.isDef() && !LaterRedefs.count(Reg)) 2009 return false; 2010 } 2011 2012 return true; 2013 } 2014 2015 /// Predicate instructions from the start of the block to the specified end with 2016 /// the specified condition. 2017 void IfConverter::PredicateBlock(BBInfo &BBI, 2018 MachineBasicBlock::iterator E, 2019 SmallVectorImpl<MachineOperand> &Cond, 2020 SmallSet<MCPhysReg, 4> *LaterRedefs) { 2021 bool AnyUnpred = false; 2022 bool MaySpec = LaterRedefs != nullptr; 2023 for (MachineInstr &I : make_range(BBI.BB->begin(), E)) { 2024 if (I.isDebugInstr() || TII->isPredicated(I)) 2025 continue; 2026 // It may be possible not to predicate an instruction if it's the 'true' 2027 // side of a diamond and the 'false' side may re-define the instruction's 2028 // defs. 2029 if (MaySpec && MaySpeculate(I, *LaterRedefs)) { 2030 AnyUnpred = true; 2031 continue; 2032 } 2033 // If any instruction is predicated, then every instruction after it must 2034 // be predicated. 2035 MaySpec = false; 2036 if (!TII->PredicateInstruction(I, Cond)) { 2037 #ifndef NDEBUG 2038 dbgs() << "Unable to predicate " << I << "!\n"; 2039 #endif 2040 llvm_unreachable(nullptr); 2041 } 2042 2043 // If the predicated instruction now redefines a register as the result of 2044 // if-conversion, add an implicit kill. 2045 UpdatePredRedefs(I, Redefs); 2046 } 2047 2048 BBI.Predicate.append(Cond.begin(), Cond.end()); 2049 2050 BBI.IsAnalyzed = false; 2051 BBI.NonPredSize = 0; 2052 2053 ++NumIfConvBBs; 2054 if (AnyUnpred) 2055 ++NumUnpred; 2056 } 2057 2058 /// Copy and predicate instructions from source BB to the destination block. 2059 /// Skip end of block branches if IgnoreBr is true. 2060 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 2061 SmallVectorImpl<MachineOperand> &Cond, 2062 bool IgnoreBr) { 2063 MachineFunction &MF = *ToBBI.BB->getParent(); 2064 2065 MachineBasicBlock &FromMBB = *FromBBI.BB; 2066 for (MachineInstr &I : FromMBB) { 2067 // Do not copy the end of the block branches. 2068 if (IgnoreBr && I.isBranch()) 2069 break; 2070 2071 MachineInstr *MI = MF.CloneMachineInstr(&I); 2072 ToBBI.BB->insert(ToBBI.BB->end(), MI); 2073 ToBBI.NonPredSize++; 2074 unsigned ExtraPredCost = TII->getPredicationCost(I); 2075 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); 2076 if (NumCycles > 1) 2077 ToBBI.ExtraCost += NumCycles-1; 2078 ToBBI.ExtraCost2 += ExtraPredCost; 2079 2080 if (!TII->isPredicated(I) && !MI->isDebugInstr()) { 2081 if (!TII->PredicateInstruction(*MI, Cond)) { 2082 #ifndef NDEBUG 2083 dbgs() << "Unable to predicate " << I << "!\n"; 2084 #endif 2085 llvm_unreachable(nullptr); 2086 } 2087 } 2088 2089 // If the predicated instruction now redefines a register as the result of 2090 // if-conversion, add an implicit kill. 2091 UpdatePredRedefs(*MI, Redefs); 2092 } 2093 2094 if (!IgnoreBr) { 2095 std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(), 2096 FromMBB.succ_end()); 2097 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2098 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2099 2100 for (MachineBasicBlock *Succ : Succs) { 2101 // Fallthrough edge can't be transferred. 2102 if (Succ == FallThrough) 2103 continue; 2104 ToBBI.BB->addSuccessor(Succ); 2105 } 2106 } 2107 2108 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2109 ToBBI.Predicate.append(Cond.begin(), Cond.end()); 2110 2111 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2112 ToBBI.IsAnalyzed = false; 2113 2114 ++NumDupBBs; 2115 } 2116 2117 /// Move all instructions from FromBB to the end of ToBB. This will leave 2118 /// FromBB as an empty block, so remove all of its successor edges except for 2119 /// the fall-through edge. If AddEdges is true, i.e., when FromBBI's branch is 2120 /// being moved, add those successor edges to ToBBI and remove the old edge 2121 /// from ToBBI to FromBBI. 2122 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) { 2123 MachineBasicBlock &FromMBB = *FromBBI.BB; 2124 assert(!FromMBB.hasAddressTaken() && 2125 "Removing a BB whose address is taken!"); 2126 2127 // In case FromMBB contains terminators (e.g. return instruction), 2128 // first move the non-terminator instructions, then the terminators. 2129 MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator(); 2130 MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator(); 2131 ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI); 2132 2133 // If FromBB has non-predicated terminator we should copy it at the end. 2134 if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI)) 2135 ToTI = ToBBI.BB->end(); 2136 ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end()); 2137 2138 // Force normalizing the successors' probabilities of ToBBI.BB to convert all 2139 // unknown probabilities into known ones. 2140 // FIXME: This usage is too tricky and in the future we would like to 2141 // eliminate all unknown probabilities in MBB. 2142 if (ToBBI.IsBrAnalyzable) 2143 ToBBI.BB->normalizeSuccProbs(); 2144 2145 SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(), 2146 FromMBB.succ_end()); 2147 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2148 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2149 // The edge probability from ToBBI.BB to FromMBB, which is only needed when 2150 // AddEdges is true and FromMBB is a successor of ToBBI.BB. 2151 auto To2FromProb = BranchProbability::getZero(); 2152 if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) { 2153 // Remove the old edge but remember the edge probability so we can calculate 2154 // the correct weights on the new edges being added further down. 2155 To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB); 2156 ToBBI.BB->removeSuccessor(&FromMBB); 2157 } 2158 2159 for (MachineBasicBlock *Succ : FromSuccs) { 2160 // Fallthrough edge can't be transferred. 2161 if (Succ == FallThrough) 2162 continue; 2163 2164 auto NewProb = BranchProbability::getZero(); 2165 if (AddEdges) { 2166 // Calculate the edge probability for the edge from ToBBI.BB to Succ, 2167 // which is a portion of the edge probability from FromMBB to Succ. The 2168 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if 2169 // FromBBI is a successor of ToBBI.BB. See comment below for exception). 2170 NewProb = MBPI->getEdgeProbability(&FromMBB, Succ); 2171 2172 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This 2173 // only happens when if-converting a diamond CFG and FromMBB is the 2174 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we 2175 // could just use the probabilities on FromMBB's out-edges when adding 2176 // new successors. 2177 if (!To2FromProb.isZero()) 2178 NewProb *= To2FromProb; 2179 } 2180 2181 FromMBB.removeSuccessor(Succ); 2182 2183 if (AddEdges) { 2184 // If the edge from ToBBI.BB to Succ already exists, update the 2185 // probability of this edge by adding NewProb to it. An example is shown 2186 // below, in which A is ToBBI.BB and B is FromMBB. In this case we 2187 // don't have to set C as A's successor as it already is. We only need to 2188 // update the edge probability on A->C. Note that B will not be 2189 // immediately removed from A's successors. It is possible that B->D is 2190 // not removed either if D is a fallthrough of B. Later the edge A->D 2191 // (generated here) and B->D will be combined into one edge. To maintain 2192 // correct edge probability of this combined edge, we need to set the edge 2193 // probability of A->B to zero, which is already done above. The edge 2194 // probability on A->D is calculated by scaling the original probability 2195 // on A->B by the probability of B->D. 2196 // 2197 // Before ifcvt: After ifcvt (assume B->D is kept): 2198 // 2199 // A A 2200 // /| /|\ 2201 // / B / B| 2202 // | /| | || 2203 // |/ | | |/ 2204 // C D C D 2205 // 2206 if (ToBBI.BB->isSuccessor(Succ)) 2207 ToBBI.BB->setSuccProbability( 2208 find(ToBBI.BB->successors(), Succ), 2209 MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb); 2210 else 2211 ToBBI.BB->addSuccessor(Succ, NewProb); 2212 } 2213 } 2214 2215 // Move the now empty FromMBB out of the way to the end of the function so 2216 // it doesn't interfere with fallthrough checks done by canFallThroughTo(). 2217 MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin(); 2218 if (Last != &FromMBB) 2219 FromMBB.moveAfter(Last); 2220 2221 // Normalize the probabilities of ToBBI.BB's successors with all adjustment 2222 // we've done above. 2223 if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable) 2224 ToBBI.BB->normalizeSuccProbs(); 2225 2226 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2227 FromBBI.Predicate.clear(); 2228 2229 ToBBI.NonPredSize += FromBBI.NonPredSize; 2230 ToBBI.ExtraCost += FromBBI.ExtraCost; 2231 ToBBI.ExtraCost2 += FromBBI.ExtraCost2; 2232 FromBBI.NonPredSize = 0; 2233 FromBBI.ExtraCost = 0; 2234 FromBBI.ExtraCost2 = 0; 2235 2236 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2237 ToBBI.HasFallThrough = FromBBI.HasFallThrough; 2238 ToBBI.IsAnalyzed = false; 2239 FromBBI.IsAnalyzed = false; 2240 } 2241 2242 FunctionPass * 2243 llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) { 2244 return new IfConverter(std::move(Ftor)); 2245 } 2246