1 //===-- IfConversion.cpp - Machine code if conversion pass. ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the machine instruction level if-conversion pass, which 11 // tries to convert conditional branches into predicated instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/Passes.h" 16 #include "BranchFolding.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/LivePhysRegs.h" 21 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 22 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/TargetSchedule.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetLowering.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <algorithm> 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "ifcvt" 41 42 // Hidden options for help debugging. 43 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden); 44 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden); 45 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden); 46 static cl::opt<bool> DisableSimple("disable-ifcvt-simple", 47 cl::init(false), cl::Hidden); 48 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false", 49 cl::init(false), cl::Hidden); 50 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle", 51 cl::init(false), cl::Hidden); 52 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev", 53 cl::init(false), cl::Hidden); 54 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false", 55 cl::init(false), cl::Hidden); 56 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev", 57 cl::init(false), cl::Hidden); 58 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond", 59 cl::init(false), cl::Hidden); 60 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold", 61 cl::init(true), cl::Hidden); 62 63 STATISTIC(NumSimple, "Number of simple if-conversions performed"); 64 STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed"); 65 STATISTIC(NumTriangle, "Number of triangle if-conversions performed"); 66 STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed"); 67 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed"); 68 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed"); 69 STATISTIC(NumDiamonds, "Number of diamond if-conversions performed"); 70 STATISTIC(NumIfConvBBs, "Number of if-converted blocks"); 71 STATISTIC(NumDupBBs, "Number of duplicated blocks"); 72 STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated"); 73 74 namespace { 75 class IfConverter : public MachineFunctionPass { 76 enum IfcvtKind { 77 ICNotClassfied, // BB data valid, but not classified. 78 ICSimpleFalse, // Same as ICSimple, but on the false path. 79 ICSimple, // BB is entry of an one split, no rejoin sub-CFG. 80 ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition. 81 ICTriangleRev, // Same as ICTriangle, but true path rev condition. 82 ICTriangleFalse, // Same as ICTriangle, but on the false path. 83 ICTriangle, // BB is entry of a triangle sub-CFG. 84 ICDiamond // BB is entry of a diamond sub-CFG. 85 }; 86 87 /// BBInfo - One per MachineBasicBlock, this is used to cache the result 88 /// if-conversion feasibility analysis. This includes results from 89 /// TargetInstrInfo::AnalyzeBranch() (i.e. TBB, FBB, and Cond), and its 90 /// classification, and common tail block of its successors (if it's a 91 /// diamond shape), its size, whether it's predicable, and whether any 92 /// instruction can clobber the 'would-be' predicate. 93 /// 94 /// IsDone - True if BB is not to be considered for ifcvt. 95 /// IsBeingAnalyzed - True if BB is currently being analyzed. 96 /// IsAnalyzed - True if BB has been analyzed (info is still valid). 97 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed. 98 /// IsBrAnalyzable - True if AnalyzeBranch() returns false. 99 /// HasFallThrough - True if BB may fallthrough to the following BB. 100 /// IsUnpredicable - True if BB is known to be unpredicable. 101 /// ClobbersPred - True if BB could modify predicates (e.g. has 102 /// cmp, call, etc.) 103 /// NonPredSize - Number of non-predicated instructions. 104 /// ExtraCost - Extra cost for multi-cycle instructions. 105 /// ExtraCost2 - Some instructions are slower when predicated 106 /// BB - Corresponding MachineBasicBlock. 107 /// TrueBB / FalseBB- See AnalyzeBranch(). 108 /// BrCond - Conditions for end of block conditional branches. 109 /// Predicate - Predicate used in the BB. 110 struct BBInfo { 111 bool IsDone : 1; 112 bool IsBeingAnalyzed : 1; 113 bool IsAnalyzed : 1; 114 bool IsEnqueued : 1; 115 bool IsBrAnalyzable : 1; 116 bool HasFallThrough : 1; 117 bool IsUnpredicable : 1; 118 bool CannotBeCopied : 1; 119 bool ClobbersPred : 1; 120 unsigned NonPredSize; 121 unsigned ExtraCost; 122 unsigned ExtraCost2; 123 MachineBasicBlock *BB; 124 MachineBasicBlock *TrueBB; 125 MachineBasicBlock *FalseBB; 126 SmallVector<MachineOperand, 4> BrCond; 127 SmallVector<MachineOperand, 4> Predicate; 128 BBInfo() : IsDone(false), IsBeingAnalyzed(false), 129 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false), 130 HasFallThrough(false), IsUnpredicable(false), 131 CannotBeCopied(false), ClobbersPred(false), NonPredSize(0), 132 ExtraCost(0), ExtraCost2(0), BB(nullptr), TrueBB(nullptr), 133 FalseBB(nullptr) {} 134 }; 135 136 /// IfcvtToken - Record information about pending if-conversions to attempt: 137 /// BBI - Corresponding BBInfo. 138 /// Kind - Type of block. See IfcvtKind. 139 /// NeedSubsumption - True if the to-be-predicated BB has already been 140 /// predicated. 141 /// NumDups - Number of instructions that would be duplicated due 142 /// to this if-conversion. (For diamonds, the number of 143 /// identical instructions at the beginnings of both 144 /// paths). 145 /// NumDups2 - For diamonds, the number of identical instructions 146 /// at the ends of both paths. 147 struct IfcvtToken { 148 BBInfo &BBI; 149 IfcvtKind Kind; 150 bool NeedSubsumption; 151 unsigned NumDups; 152 unsigned NumDups2; 153 IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0) 154 : BBI(b), Kind(k), NeedSubsumption(s), NumDups(d), NumDups2(d2) {} 155 }; 156 157 /// BBAnalysis - Results of if-conversion feasibility analysis indexed by 158 /// basic block number. 159 std::vector<BBInfo> BBAnalysis; 160 TargetSchedModel SchedModel; 161 162 const TargetLoweringBase *TLI; 163 const TargetInstrInfo *TII; 164 const TargetRegisterInfo *TRI; 165 const MachineBlockFrequencyInfo *MBFI; 166 const MachineBranchProbabilityInfo *MBPI; 167 MachineRegisterInfo *MRI; 168 169 LivePhysRegs Redefs; 170 LivePhysRegs DontKill; 171 172 bool PreRegAlloc; 173 bool MadeChange; 174 int FnNum; 175 std::function<bool(const Function &)> PredicateFtor; 176 177 public: 178 static char ID; 179 IfConverter(std::function<bool(const Function &)> Ftor = nullptr) 180 : MachineFunctionPass(ID), FnNum(-1), PredicateFtor(Ftor) { 181 initializeIfConverterPass(*PassRegistry::getPassRegistry()); 182 } 183 184 void getAnalysisUsage(AnalysisUsage &AU) const override { 185 AU.addRequired<MachineBlockFrequencyInfo>(); 186 AU.addRequired<MachineBranchProbabilityInfo>(); 187 MachineFunctionPass::getAnalysisUsage(AU); 188 } 189 190 bool runOnMachineFunction(MachineFunction &MF) override; 191 192 MachineFunctionProperties getRequiredProperties() const override { 193 return MachineFunctionProperties().set( 194 MachineFunctionProperties::Property::AllVRegsAllocated); 195 } 196 197 private: 198 bool ReverseBranchCondition(BBInfo &BBI); 199 bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 200 BranchProbability Prediction) const; 201 bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 202 bool FalseBranch, unsigned &Dups, 203 BranchProbability Prediction) const; 204 bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 205 unsigned &Dups1, unsigned &Dups2) const; 206 void ScanInstructions(BBInfo &BBI); 207 void AnalyzeBlock(MachineBasicBlock *MBB, 208 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 209 bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Cond, 210 bool isTriangle = false, bool RevBranch = false); 211 void AnalyzeBlocks(MachineFunction &MF, 212 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 213 void InvalidatePreds(MachineBasicBlock *BB); 214 void RemoveExtraEdges(BBInfo &BBI); 215 bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind); 216 bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind); 217 bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 218 unsigned NumDups1, unsigned NumDups2); 219 void PredicateBlock(BBInfo &BBI, 220 MachineBasicBlock::iterator E, 221 SmallVectorImpl<MachineOperand> &Cond, 222 SmallSet<unsigned, 4> *LaterRedefs = nullptr); 223 void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 224 SmallVectorImpl<MachineOperand> &Cond, 225 bool IgnoreBr = false); 226 void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true); 227 228 bool MeetIfcvtSizeLimit(MachineBasicBlock &BB, 229 unsigned Cycle, unsigned Extra, 230 BranchProbability Prediction) const { 231 return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra, 232 Prediction); 233 } 234 235 bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB, 236 unsigned TCycle, unsigned TExtra, 237 MachineBasicBlock &FBB, 238 unsigned FCycle, unsigned FExtra, 239 BranchProbability Prediction) const { 240 return TCycle > 0 && FCycle > 0 && 241 TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra, 242 Prediction); 243 } 244 245 // blockAlwaysFallThrough - Block ends without a terminator. 246 bool blockAlwaysFallThrough(BBInfo &BBI) const { 247 return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr; 248 } 249 250 // IfcvtTokenCmp - Used to sort if-conversion candidates. 251 static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1, 252 const std::unique_ptr<IfcvtToken> &C2) { 253 int Incr1 = (C1->Kind == ICDiamond) 254 ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups; 255 int Incr2 = (C2->Kind == ICDiamond) 256 ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups; 257 if (Incr1 > Incr2) 258 return true; 259 else if (Incr1 == Incr2) { 260 // Favors subsumption. 261 if (!C1->NeedSubsumption && C2->NeedSubsumption) 262 return true; 263 else if (C1->NeedSubsumption == C2->NeedSubsumption) { 264 // Favors diamond over triangle, etc. 265 if ((unsigned)C1->Kind < (unsigned)C2->Kind) 266 return true; 267 else if (C1->Kind == C2->Kind) 268 return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber(); 269 } 270 } 271 return false; 272 } 273 }; 274 275 char IfConverter::ID = 0; 276 } 277 278 char &llvm::IfConverterID = IfConverter::ID; 279 280 INITIALIZE_PASS_BEGIN(IfConverter, "if-converter", "If Converter", false, false) 281 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 282 INITIALIZE_PASS_END(IfConverter, "if-converter", "If Converter", false, false) 283 284 bool IfConverter::runOnMachineFunction(MachineFunction &MF) { 285 if (PredicateFtor && !PredicateFtor(*MF.getFunction())) 286 return false; 287 288 const TargetSubtargetInfo &ST = MF.getSubtarget(); 289 TLI = ST.getTargetLowering(); 290 TII = ST.getInstrInfo(); 291 TRI = ST.getRegisterInfo(); 292 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 293 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 294 MRI = &MF.getRegInfo(); 295 SchedModel.init(ST.getSchedModel(), &ST, TII); 296 297 if (!TII) return false; 298 299 PreRegAlloc = MRI->isSSA(); 300 301 bool BFChange = false; 302 if (!PreRegAlloc) { 303 // Tail merge tend to expose more if-conversion opportunities. 304 BranchFolder BF(true, false, *MBFI, *MBPI); 305 BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(), 306 getAnalysisIfAvailable<MachineModuleInfo>()); 307 } 308 309 DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'" 310 << MF.getName() << "\'"); 311 312 if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) { 313 DEBUG(dbgs() << " skipped\n"); 314 return false; 315 } 316 DEBUG(dbgs() << "\n"); 317 318 MF.RenumberBlocks(); 319 BBAnalysis.resize(MF.getNumBlockIDs()); 320 321 std::vector<std::unique_ptr<IfcvtToken>> Tokens; 322 MadeChange = false; 323 unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + 324 NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds; 325 while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) { 326 // Do an initial analysis for each basic block and find all the potential 327 // candidates to perform if-conversion. 328 bool Change = false; 329 AnalyzeBlocks(MF, Tokens); 330 while (!Tokens.empty()) { 331 std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back()); 332 Tokens.pop_back(); 333 BBInfo &BBI = Token->BBI; 334 IfcvtKind Kind = Token->Kind; 335 unsigned NumDups = Token->NumDups; 336 unsigned NumDups2 = Token->NumDups2; 337 338 // If the block has been evicted out of the queue or it has already been 339 // marked dead (due to it being predicated), then skip it. 340 if (BBI.IsDone) 341 BBI.IsEnqueued = false; 342 if (!BBI.IsEnqueued) 343 continue; 344 345 BBI.IsEnqueued = false; 346 347 bool RetVal = false; 348 switch (Kind) { 349 default: llvm_unreachable("Unexpected!"); 350 case ICSimple: 351 case ICSimpleFalse: { 352 bool isFalse = Kind == ICSimpleFalse; 353 if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break; 354 DEBUG(dbgs() << "Ifcvt (Simple" << (Kind == ICSimpleFalse ? 355 " false" : "") 356 << "): BB#" << BBI.BB->getNumber() << " (" 357 << ((Kind == ICSimpleFalse) 358 ? BBI.FalseBB->getNumber() 359 : BBI.TrueBB->getNumber()) << ") "); 360 RetVal = IfConvertSimple(BBI, Kind); 361 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 362 if (RetVal) { 363 if (isFalse) ++NumSimpleFalse; 364 else ++NumSimple; 365 } 366 break; 367 } 368 case ICTriangle: 369 case ICTriangleRev: 370 case ICTriangleFalse: 371 case ICTriangleFRev: { 372 bool isFalse = Kind == ICTriangleFalse; 373 bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev); 374 if (DisableTriangle && !isFalse && !isRev) break; 375 if (DisableTriangleR && !isFalse && isRev) break; 376 if (DisableTriangleF && isFalse && !isRev) break; 377 if (DisableTriangleFR && isFalse && isRev) break; 378 DEBUG(dbgs() << "Ifcvt (Triangle"); 379 if (isFalse) 380 DEBUG(dbgs() << " false"); 381 if (isRev) 382 DEBUG(dbgs() << " rev"); 383 DEBUG(dbgs() << "): BB#" << BBI.BB->getNumber() << " (T:" 384 << BBI.TrueBB->getNumber() << ",F:" 385 << BBI.FalseBB->getNumber() << ") "); 386 RetVal = IfConvertTriangle(BBI, Kind); 387 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 388 if (RetVal) { 389 if (isFalse) { 390 if (isRev) ++NumTriangleFRev; 391 else ++NumTriangleFalse; 392 } else { 393 if (isRev) ++NumTriangleRev; 394 else ++NumTriangle; 395 } 396 } 397 break; 398 } 399 case ICDiamond: { 400 if (DisableDiamond) break; 401 DEBUG(dbgs() << "Ifcvt (Diamond): BB#" << BBI.BB->getNumber() << " (T:" 402 << BBI.TrueBB->getNumber() << ",F:" 403 << BBI.FalseBB->getNumber() << ") "); 404 RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2); 405 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 406 if (RetVal) ++NumDiamonds; 407 break; 408 } 409 } 410 411 Change |= RetVal; 412 413 NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev + 414 NumTriangleFalse + NumTriangleFRev + NumDiamonds; 415 if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit) 416 break; 417 } 418 419 if (!Change) 420 break; 421 MadeChange |= Change; 422 } 423 424 Tokens.clear(); 425 BBAnalysis.clear(); 426 427 if (MadeChange && IfCvtBranchFold) { 428 BranchFolder BF(false, false, *MBFI, *MBPI); 429 BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 430 getAnalysisIfAvailable<MachineModuleInfo>()); 431 } 432 433 MadeChange |= BFChange; 434 return MadeChange; 435 } 436 437 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given 438 /// its 'true' successor. 439 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 440 MachineBasicBlock *TrueBB) { 441 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 442 E = BB->succ_end(); SI != E; ++SI) { 443 MachineBasicBlock *SuccBB = *SI; 444 if (SuccBB != TrueBB) 445 return SuccBB; 446 } 447 return nullptr; 448 } 449 450 /// ReverseBranchCondition - Reverse the condition of the end of the block 451 /// branch. Swap block's 'true' and 'false' successors. 452 bool IfConverter::ReverseBranchCondition(BBInfo &BBI) { 453 DebugLoc dl; // FIXME: this is nowhere 454 if (!TII->ReverseBranchCondition(BBI.BrCond)) { 455 TII->RemoveBranch(*BBI.BB); 456 TII->InsertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl); 457 std::swap(BBI.TrueBB, BBI.FalseBB); 458 return true; 459 } 460 return false; 461 } 462 463 /// getNextBlock - Returns the next block in the function blocks ordering. If 464 /// it is the end, returns NULL. 465 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock *BB) { 466 MachineFunction::iterator I = BB->getIterator(); 467 MachineFunction::iterator E = BB->getParent()->end(); 468 if (++I == E) 469 return nullptr; 470 return &*I; 471 } 472 473 /// ValidSimple - Returns true if the 'true' block (along with its 474 /// predecessor) forms a valid simple shape for ifcvt. It also returns the 475 /// number of instructions that the ifcvt would need to duplicate if performed 476 /// in Dups. 477 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 478 BranchProbability Prediction) const { 479 Dups = 0; 480 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 481 return false; 482 483 if (TrueBBI.IsBrAnalyzable) 484 return false; 485 486 if (TrueBBI.BB->pred_size() > 1) { 487 if (TrueBBI.CannotBeCopied || 488 !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize, 489 Prediction)) 490 return false; 491 Dups = TrueBBI.NonPredSize; 492 } 493 494 return true; 495 } 496 497 /// ValidTriangle - Returns true if the 'true' and 'false' blocks (along 498 /// with their common predecessor) forms a valid triangle shape for ifcvt. 499 /// If 'FalseBranch' is true, it checks if 'true' block's false branch 500 /// branches to the 'false' block rather than the other way around. It also 501 /// returns the number of instructions that the ifcvt would need to duplicate 502 /// if performed in 'Dups'. 503 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 504 bool FalseBranch, unsigned &Dups, 505 BranchProbability Prediction) const { 506 Dups = 0; 507 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 508 return false; 509 510 if (TrueBBI.BB->pred_size() > 1) { 511 if (TrueBBI.CannotBeCopied) 512 return false; 513 514 unsigned Size = TrueBBI.NonPredSize; 515 if (TrueBBI.IsBrAnalyzable) { 516 if (TrueBBI.TrueBB && TrueBBI.BrCond.empty()) 517 // Ends with an unconditional branch. It will be removed. 518 --Size; 519 else { 520 MachineBasicBlock *FExit = FalseBranch 521 ? TrueBBI.TrueBB : TrueBBI.FalseBB; 522 if (FExit) 523 // Require a conditional branch 524 ++Size; 525 } 526 } 527 if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction)) 528 return false; 529 Dups = Size; 530 } 531 532 MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB; 533 if (!TExit && blockAlwaysFallThrough(TrueBBI)) { 534 MachineFunction::iterator I = TrueBBI.BB->getIterator(); 535 if (++I == TrueBBI.BB->getParent()->end()) 536 return false; 537 TExit = &*I; 538 } 539 return TExit && TExit == FalseBBI.BB; 540 } 541 542 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along 543 /// with their common predecessor) forms a valid diamond shape for ifcvt. 544 bool IfConverter::ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 545 unsigned &Dups1, unsigned &Dups2) const { 546 Dups1 = Dups2 = 0; 547 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 548 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 549 return false; 550 551 MachineBasicBlock *TT = TrueBBI.TrueBB; 552 MachineBasicBlock *FT = FalseBBI.TrueBB; 553 554 if (!TT && blockAlwaysFallThrough(TrueBBI)) 555 TT = getNextBlock(TrueBBI.BB); 556 if (!FT && blockAlwaysFallThrough(FalseBBI)) 557 FT = getNextBlock(FalseBBI.BB); 558 if (TT != FT) 559 return false; 560 if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable)) 561 return false; 562 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 563 return false; 564 565 // FIXME: Allow true block to have an early exit? 566 if (TrueBBI.FalseBB || FalseBBI.FalseBB || 567 (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)) 568 return false; 569 570 // Count duplicate instructions at the beginning of the true and false blocks. 571 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 572 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 573 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 574 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 575 while (TIB != TIE && FIB != FIE) { 576 // Skip dbg_value instructions. These do not count. 577 if (TIB->isDebugValue()) { 578 while (TIB != TIE && TIB->isDebugValue()) 579 ++TIB; 580 if (TIB == TIE) 581 break; 582 } 583 if (FIB->isDebugValue()) { 584 while (FIB != FIE && FIB->isDebugValue()) 585 ++FIB; 586 if (FIB == FIE) 587 break; 588 } 589 if (!TIB->isIdenticalTo(*FIB)) 590 break; 591 ++Dups1; 592 ++TIB; 593 ++FIB; 594 } 595 596 // Now, in preparation for counting duplicate instructions at the ends of the 597 // blocks, move the end iterators up past any branch instructions. 598 // If both blocks are returning don't skip the branches, since they will 599 // likely be both identical return instructions. In such cases the return 600 // can be left unpredicated. 601 // Check for already containing all of the block. 602 if (TIB == TIE || FIB == FIE) 603 return true; 604 --TIE; 605 --FIE; 606 if (!TrueBBI.BB->succ_empty() || !FalseBBI.BB->succ_empty()) { 607 while (TIE != TIB && TIE->isBranch()) 608 --TIE; 609 while (FIE != FIB && FIE->isBranch()) 610 --FIE; 611 } 612 613 // If Dups1 includes all of a block, then don't count duplicate 614 // instructions at the end of the blocks. 615 if (TIB == TIE || FIB == FIE) 616 return true; 617 618 // Count duplicate instructions at the ends of the blocks. 619 while (TIE != TIB && FIE != FIB) { 620 // Skip dbg_value instructions. These do not count. 621 if (TIE->isDebugValue()) { 622 while (TIE != TIB && TIE->isDebugValue()) 623 --TIE; 624 if (TIE == TIB) 625 break; 626 } 627 if (FIE->isDebugValue()) { 628 while (FIE != FIB && FIE->isDebugValue()) 629 --FIE; 630 if (FIE == FIB) 631 break; 632 } 633 if (!TIE->isIdenticalTo(*FIE)) 634 break; 635 ++Dups2; 636 --TIE; 637 --FIE; 638 } 639 640 return true; 641 } 642 643 /// ScanInstructions - Scan all the instructions in the block to determine if 644 /// the block is predicable. In most cases, that means all the instructions 645 /// in the block are isPredicable(). Also checks if the block contains any 646 /// instruction which can clobber a predicate (e.g. condition code register). 647 /// If so, the block is not predicable unless it's the last instruction. 648 void IfConverter::ScanInstructions(BBInfo &BBI) { 649 if (BBI.IsDone) 650 return; 651 652 bool AlreadyPredicated = !BBI.Predicate.empty(); 653 // First analyze the end of BB branches. 654 BBI.TrueBB = BBI.FalseBB = nullptr; 655 BBI.BrCond.clear(); 656 BBI.IsBrAnalyzable = 657 !TII->AnalyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond); 658 BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr; 659 660 if (BBI.BrCond.size()) { 661 // No false branch. This BB must end with a conditional branch and a 662 // fallthrough. 663 if (!BBI.FalseBB) 664 BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB); 665 if (!BBI.FalseBB) { 666 // Malformed bcc? True and false blocks are the same? 667 BBI.IsUnpredicable = true; 668 return; 669 } 670 } 671 672 // Then scan all the instructions. 673 BBI.NonPredSize = 0; 674 BBI.ExtraCost = 0; 675 BBI.ExtraCost2 = 0; 676 BBI.ClobbersPred = false; 677 for (auto &MI : *BBI.BB) { 678 if (MI.isDebugValue()) 679 continue; 680 681 if (MI.isNotDuplicable()) 682 BBI.CannotBeCopied = true; 683 684 bool isPredicated = TII->isPredicated(MI); 685 bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch(); 686 687 // A conditional branch is not predicable, but it may be eliminated. 688 if (isCondBr) 689 continue; 690 691 if (!isPredicated) { 692 BBI.NonPredSize++; 693 unsigned ExtraPredCost = TII->getPredicationCost(MI); 694 unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false); 695 if (NumCycles > 1) 696 BBI.ExtraCost += NumCycles-1; 697 BBI.ExtraCost2 += ExtraPredCost; 698 } else if (!AlreadyPredicated) { 699 // FIXME: This instruction is already predicated before the 700 // if-conversion pass. It's probably something like a conditional move. 701 // Mark this block unpredicable for now. 702 BBI.IsUnpredicable = true; 703 return; 704 } 705 706 if (BBI.ClobbersPred && !isPredicated) { 707 // Predicate modification instruction should end the block (except for 708 // already predicated instructions and end of block branches). 709 // Predicate may have been modified, the subsequent (currently) 710 // unpredicated instructions cannot be correctly predicated. 711 BBI.IsUnpredicable = true; 712 return; 713 } 714 715 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are 716 // still potentially predicable. 717 std::vector<MachineOperand> PredDefs; 718 if (TII->DefinesPredicate(MI, PredDefs)) 719 BBI.ClobbersPred = true; 720 721 if (!TII->isPredicable(MI)) { 722 BBI.IsUnpredicable = true; 723 return; 724 } 725 } 726 } 727 728 /// FeasibilityAnalysis - Determine if the block is a suitable candidate to be 729 /// predicated by the specified predicate. 730 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI, 731 SmallVectorImpl<MachineOperand> &Pred, 732 bool isTriangle, bool RevBranch) { 733 // If the block is dead or unpredicable, then it cannot be predicated. 734 if (BBI.IsDone || BBI.IsUnpredicable) 735 return false; 736 737 // If it is already predicated but we couldn't analyze its terminator, the 738 // latter might fallthrough, but we can't determine where to. 739 // Conservatively avoid if-converting again. 740 if (BBI.Predicate.size() && !BBI.IsBrAnalyzable) 741 return false; 742 743 // If it is already predicated, check if the new predicate subsumes 744 // its predicate. 745 if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate)) 746 return false; 747 748 if (BBI.BrCond.size()) { 749 if (!isTriangle) 750 return false; 751 752 // Test predicate subsumption. 753 SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end()); 754 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 755 if (RevBranch) { 756 if (TII->ReverseBranchCondition(Cond)) 757 return false; 758 } 759 if (TII->ReverseBranchCondition(RevPred) || 760 !TII->SubsumesPredicate(Cond, RevPred)) 761 return false; 762 } 763 764 return true; 765 } 766 767 /// AnalyzeBlock - Analyze the structure of the sub-CFG starting from 768 /// the specified block. Record its successors and whether it looks like an 769 /// if-conversion candidate. 770 void IfConverter::AnalyzeBlock( 771 MachineBasicBlock *MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 772 struct BBState { 773 BBState(MachineBasicBlock *BB) : MBB(BB), SuccsAnalyzed(false) {} 774 MachineBasicBlock *MBB; 775 776 /// This flag is true if MBB's successors have been analyzed. 777 bool SuccsAnalyzed; 778 }; 779 780 // Push MBB to the stack. 781 SmallVector<BBState, 16> BBStack(1, MBB); 782 783 while (!BBStack.empty()) { 784 BBState &State = BBStack.back(); 785 MachineBasicBlock *BB = State.MBB; 786 BBInfo &BBI = BBAnalysis[BB->getNumber()]; 787 788 if (!State.SuccsAnalyzed) { 789 if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) { 790 BBStack.pop_back(); 791 continue; 792 } 793 794 BBI.BB = BB; 795 BBI.IsBeingAnalyzed = true; 796 797 ScanInstructions(BBI); 798 799 // Unanalyzable or ends with fallthrough or unconditional branch, or if is 800 // not considered for ifcvt anymore. 801 if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) { 802 BBI.IsBeingAnalyzed = false; 803 BBI.IsAnalyzed = true; 804 BBStack.pop_back(); 805 continue; 806 } 807 808 // Do not ifcvt if either path is a back edge to the entry block. 809 if (BBI.TrueBB == BB || BBI.FalseBB == BB) { 810 BBI.IsBeingAnalyzed = false; 811 BBI.IsAnalyzed = true; 812 BBStack.pop_back(); 813 continue; 814 } 815 816 // Do not ifcvt if true and false fallthrough blocks are the same. 817 if (!BBI.FalseBB) { 818 BBI.IsBeingAnalyzed = false; 819 BBI.IsAnalyzed = true; 820 BBStack.pop_back(); 821 continue; 822 } 823 824 // Push the False and True blocks to the stack. 825 State.SuccsAnalyzed = true; 826 BBStack.push_back(BBI.FalseBB); 827 BBStack.push_back(BBI.TrueBB); 828 continue; 829 } 830 831 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 832 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 833 834 if (TrueBBI.IsDone && FalseBBI.IsDone) { 835 BBI.IsBeingAnalyzed = false; 836 BBI.IsAnalyzed = true; 837 BBStack.pop_back(); 838 continue; 839 } 840 841 SmallVector<MachineOperand, 4> 842 RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 843 bool CanRevCond = !TII->ReverseBranchCondition(RevCond); 844 845 unsigned Dups = 0; 846 unsigned Dups2 = 0; 847 bool TNeedSub = !TrueBBI.Predicate.empty(); 848 bool FNeedSub = !FalseBBI.Predicate.empty(); 849 bool Enqueued = false; 850 851 BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB); 852 853 if (CanRevCond && ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2) && 854 MeetIfcvtSizeLimit(*TrueBBI.BB, (TrueBBI.NonPredSize - (Dups + Dups2) + 855 TrueBBI.ExtraCost), TrueBBI.ExtraCost2, 856 *FalseBBI.BB, (FalseBBI.NonPredSize - (Dups + Dups2) + 857 FalseBBI.ExtraCost),FalseBBI.ExtraCost2, 858 Prediction) && 859 FeasibilityAnalysis(TrueBBI, BBI.BrCond) && 860 FeasibilityAnalysis(FalseBBI, RevCond)) { 861 // Diamond: 862 // EBB 863 // / \_ 864 // | | 865 // TBB FBB 866 // \ / 867 // TailBB 868 // Note TailBB can be empty. 869 Tokens.push_back(llvm::make_unique<IfcvtToken>( 870 BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2)); 871 Enqueued = true; 872 } 873 874 if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) && 875 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 876 TrueBBI.ExtraCost2, Prediction) && 877 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) { 878 // Triangle: 879 // EBB 880 // | \_ 881 // | | 882 // | TBB 883 // | / 884 // FBB 885 Tokens.push_back( 886 llvm::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups)); 887 Enqueued = true; 888 } 889 890 if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) && 891 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 892 TrueBBI.ExtraCost2, Prediction) && 893 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) { 894 Tokens.push_back( 895 llvm::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups)); 896 Enqueued = true; 897 } 898 899 if (ValidSimple(TrueBBI, Dups, Prediction) && 900 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 901 TrueBBI.ExtraCost2, Prediction) && 902 FeasibilityAnalysis(TrueBBI, BBI.BrCond)) { 903 // Simple (split, no rejoin): 904 // EBB 905 // | \_ 906 // | | 907 // | TBB---> exit 908 // | 909 // FBB 910 Tokens.push_back( 911 llvm::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups)); 912 Enqueued = true; 913 } 914 915 if (CanRevCond) { 916 // Try the other path... 917 if (ValidTriangle(FalseBBI, TrueBBI, false, Dups, 918 Prediction.getCompl()) && 919 MeetIfcvtSizeLimit(*FalseBBI.BB, 920 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 921 FalseBBI.ExtraCost2, Prediction.getCompl()) && 922 FeasibilityAnalysis(FalseBBI, RevCond, true)) { 923 Tokens.push_back(llvm::make_unique<IfcvtToken>(BBI, ICTriangleFalse, 924 FNeedSub, Dups)); 925 Enqueued = true; 926 } 927 928 if (ValidTriangle(FalseBBI, TrueBBI, true, Dups, 929 Prediction.getCompl()) && 930 MeetIfcvtSizeLimit(*FalseBBI.BB, 931 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 932 FalseBBI.ExtraCost2, Prediction.getCompl()) && 933 FeasibilityAnalysis(FalseBBI, RevCond, true, true)) { 934 Tokens.push_back( 935 llvm::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups)); 936 Enqueued = true; 937 } 938 939 if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) && 940 MeetIfcvtSizeLimit(*FalseBBI.BB, 941 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 942 FalseBBI.ExtraCost2, Prediction.getCompl()) && 943 FeasibilityAnalysis(FalseBBI, RevCond)) { 944 Tokens.push_back( 945 llvm::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups)); 946 Enqueued = true; 947 } 948 } 949 950 BBI.IsEnqueued = Enqueued; 951 BBI.IsBeingAnalyzed = false; 952 BBI.IsAnalyzed = true; 953 BBStack.pop_back(); 954 } 955 } 956 957 /// AnalyzeBlocks - Analyze all blocks and find entries for all if-conversion 958 /// candidates. 959 void IfConverter::AnalyzeBlocks( 960 MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 961 for (auto &BB : MF) 962 AnalyzeBlock(&BB, Tokens); 963 964 // Sort to favor more complex ifcvt scheme. 965 std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp); 966 } 967 968 /// canFallThroughTo - Returns true either if ToBB is the next block after BB or 969 /// that all the intervening blocks are empty (given BB can fall through to its 970 /// next block). 971 static bool canFallThroughTo(MachineBasicBlock *BB, MachineBasicBlock *ToBB) { 972 MachineFunction::iterator PI = BB->getIterator(); 973 MachineFunction::iterator I = std::next(PI); 974 MachineFunction::iterator TI = ToBB->getIterator(); 975 MachineFunction::iterator E = BB->getParent()->end(); 976 while (I != TI) { 977 // Check isSuccessor to avoid case where the next block is empty, but 978 // it's not a successor. 979 if (I == E || !I->empty() || !PI->isSuccessor(&*I)) 980 return false; 981 PI = I++; 982 } 983 return true; 984 } 985 986 /// InvalidatePreds - Invalidate predecessor BB info so it would be re-analyzed 987 /// to determine if it can be if-converted. If predecessor is already enqueued, 988 /// dequeue it! 989 void IfConverter::InvalidatePreds(MachineBasicBlock *BB) { 990 for (const auto &Predecessor : BB->predecessors()) { 991 BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()]; 992 if (PBBI.IsDone || PBBI.BB == BB) 993 continue; 994 PBBI.IsAnalyzed = false; 995 PBBI.IsEnqueued = false; 996 } 997 } 998 999 /// InsertUncondBranch - Inserts an unconditional branch from BB to ToBB. 1000 /// 1001 static void InsertUncondBranch(MachineBasicBlock *BB, MachineBasicBlock *ToBB, 1002 const TargetInstrInfo *TII) { 1003 DebugLoc dl; // FIXME: this is nowhere 1004 SmallVector<MachineOperand, 0> NoCond; 1005 TII->InsertBranch(*BB, ToBB, nullptr, NoCond, dl); 1006 } 1007 1008 /// RemoveExtraEdges - Remove true / false edges if either / both are no longer 1009 /// successors. 1010 void IfConverter::RemoveExtraEdges(BBInfo &BBI) { 1011 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1012 SmallVector<MachineOperand, 4> Cond; 1013 if (!TII->AnalyzeBranch(*BBI.BB, TBB, FBB, Cond)) 1014 BBI.BB->CorrectExtraCFGEdges(TBB, FBB, !Cond.empty()); 1015 } 1016 1017 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all 1018 /// values defined in MI which are not live/used by MI. 1019 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) { 1020 SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Clobbers; 1021 Redefs.stepForward(MI, Clobbers); 1022 1023 // Now add the implicit uses for each of the clobbered values. 1024 for (auto Reg : Clobbers) { 1025 // FIXME: Const cast here is nasty, but better than making StepForward 1026 // take a mutable instruction instead of const. 1027 MachineOperand &Op = const_cast<MachineOperand&>(*Reg.second); 1028 MachineInstr *OpMI = Op.getParent(); 1029 MachineInstrBuilder MIB(*OpMI->getParent()->getParent(), OpMI); 1030 if (Op.isRegMask()) { 1031 // First handle regmasks. They clobber any entries in the mask which 1032 // means that we need a def for those registers. 1033 MIB.addReg(Reg.first, RegState::Implicit | RegState::Undef); 1034 1035 // We also need to add an implicit def of this register for the later 1036 // use to read from. 1037 // For the register allocator to have allocated a register clobbered 1038 // by the call which is used later, it must be the case that 1039 // the call doesn't return. 1040 MIB.addReg(Reg.first, RegState::Implicit | RegState::Define); 1041 continue; 1042 } 1043 assert(Op.isReg() && "Register operand required"); 1044 if (Op.isDead()) { 1045 // If we found a dead def, but it needs to be live, then remove the dead 1046 // flag. 1047 if (Redefs.contains(Op.getReg())) 1048 Op.setIsDead(false); 1049 } 1050 MIB.addReg(Reg.first, RegState::Implicit | RegState::Undef); 1051 } 1052 } 1053 1054 /** 1055 * Remove kill flags from operands with a registers in the @p DontKill set. 1056 */ 1057 static void RemoveKills(MachineInstr &MI, const LivePhysRegs &DontKill) { 1058 for (MIBundleOperands O(MI); O.isValid(); ++O) { 1059 if (!O->isReg() || !O->isKill()) 1060 continue; 1061 if (DontKill.contains(O->getReg())) 1062 O->setIsKill(false); 1063 } 1064 } 1065 1066 /** 1067 * Walks a range of machine instructions and removes kill flags for registers 1068 * in the @p DontKill set. 1069 */ 1070 static void RemoveKills(MachineBasicBlock::iterator I, 1071 MachineBasicBlock::iterator E, 1072 const LivePhysRegs &DontKill, 1073 const MCRegisterInfo &MCRI) { 1074 for ( ; I != E; ++I) 1075 RemoveKills(*I, DontKill); 1076 } 1077 1078 /// IfConvertSimple - If convert a simple (split, no rejoin) sub-CFG. 1079 /// 1080 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) { 1081 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1082 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1083 BBInfo *CvtBBI = &TrueBBI; 1084 BBInfo *NextBBI = &FalseBBI; 1085 1086 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1087 if (Kind == ICSimpleFalse) 1088 std::swap(CvtBBI, NextBBI); 1089 1090 if (CvtBBI->IsDone || 1091 (CvtBBI->CannotBeCopied && CvtBBI->BB->pred_size() > 1)) { 1092 // Something has changed. It's no longer safe to predicate this block. 1093 BBI.IsAnalyzed = false; 1094 CvtBBI->IsAnalyzed = false; 1095 return false; 1096 } 1097 1098 if (CvtBBI->BB->hasAddressTaken()) 1099 // Conservatively abort if-conversion if BB's address is taken. 1100 return false; 1101 1102 if (Kind == ICSimpleFalse) 1103 if (TII->ReverseBranchCondition(Cond)) 1104 llvm_unreachable("Unable to reverse branch condition!"); 1105 1106 // Initialize liveins to the first BB. These are potentiall redefined by 1107 // predicated instructions. 1108 Redefs.init(TRI); 1109 Redefs.addLiveIns(CvtBBI->BB); 1110 Redefs.addLiveIns(NextBBI->BB); 1111 1112 // Compute a set of registers which must not be killed by instructions in 1113 // BB1: This is everything live-in to BB2. 1114 DontKill.init(TRI); 1115 DontKill.addLiveIns(NextBBI->BB); 1116 1117 if (CvtBBI->BB->pred_size() > 1) { 1118 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); 1119 // Copy instructions in the true block, predicate them, and add them to 1120 // the entry block. 1121 CopyAndPredicateBlock(BBI, *CvtBBI, Cond); 1122 1123 // RemoveExtraEdges won't work if the block has an unanalyzable branch, so 1124 // explicitly remove CvtBBI as a successor. 1125 BBI.BB->removeSuccessor(CvtBBI->BB, true); 1126 } else { 1127 RemoveKills(CvtBBI->BB->begin(), CvtBBI->BB->end(), DontKill, *TRI); 1128 PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond); 1129 1130 // Merge converted block into entry block. 1131 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); 1132 MergeBlocks(BBI, *CvtBBI); 1133 } 1134 1135 bool IterIfcvt = true; 1136 if (!canFallThroughTo(BBI.BB, NextBBI->BB)) { 1137 InsertUncondBranch(BBI.BB, NextBBI->BB, TII); 1138 BBI.HasFallThrough = false; 1139 // Now ifcvt'd block will look like this: 1140 // BB: 1141 // ... 1142 // t, f = cmp 1143 // if t op 1144 // b BBf 1145 // 1146 // We cannot further ifcvt this block because the unconditional branch 1147 // will have to be predicated on the new condition, that will not be 1148 // available if cmp executes. 1149 IterIfcvt = false; 1150 } 1151 1152 RemoveExtraEdges(BBI); 1153 1154 // Update block info. BB can be iteratively if-converted. 1155 if (!IterIfcvt) 1156 BBI.IsDone = true; 1157 InvalidatePreds(BBI.BB); 1158 CvtBBI->IsDone = true; 1159 1160 // FIXME: Must maintain LiveIns. 1161 return true; 1162 } 1163 1164 /// IfConvertTriangle - If convert a triangle sub-CFG. 1165 /// 1166 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) { 1167 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1168 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1169 BBInfo *CvtBBI = &TrueBBI; 1170 BBInfo *NextBBI = &FalseBBI; 1171 DebugLoc dl; // FIXME: this is nowhere 1172 1173 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1174 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1175 std::swap(CvtBBI, NextBBI); 1176 1177 if (CvtBBI->IsDone || 1178 (CvtBBI->CannotBeCopied && CvtBBI->BB->pred_size() > 1)) { 1179 // Something has changed. It's no longer safe to predicate this block. 1180 BBI.IsAnalyzed = false; 1181 CvtBBI->IsAnalyzed = false; 1182 return false; 1183 } 1184 1185 if (CvtBBI->BB->hasAddressTaken()) 1186 // Conservatively abort if-conversion if BB's address is taken. 1187 return false; 1188 1189 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1190 if (TII->ReverseBranchCondition(Cond)) 1191 llvm_unreachable("Unable to reverse branch condition!"); 1192 1193 if (Kind == ICTriangleRev || Kind == ICTriangleFRev) { 1194 if (ReverseBranchCondition(*CvtBBI)) { 1195 // BB has been changed, modify its predecessors (except for this 1196 // one) so they don't get ifcvt'ed based on bad intel. 1197 for (MachineBasicBlock::pred_iterator PI = CvtBBI->BB->pred_begin(), 1198 E = CvtBBI->BB->pred_end(); PI != E; ++PI) { 1199 MachineBasicBlock *PBB = *PI; 1200 if (PBB == BBI.BB) 1201 continue; 1202 BBInfo &PBBI = BBAnalysis[PBB->getNumber()]; 1203 if (PBBI.IsEnqueued) { 1204 PBBI.IsAnalyzed = false; 1205 PBBI.IsEnqueued = false; 1206 } 1207 } 1208 } 1209 } 1210 1211 // Initialize liveins to the first BB. These are potentially redefined by 1212 // predicated instructions. 1213 Redefs.init(TRI); 1214 Redefs.addLiveIns(CvtBBI->BB); 1215 Redefs.addLiveIns(NextBBI->BB); 1216 1217 DontKill.clear(); 1218 1219 bool HasEarlyExit = CvtBBI->FalseBB != nullptr; 1220 BranchProbability CvtNext, CvtFalse, BBNext, BBCvt; 1221 1222 if (HasEarlyExit) { 1223 // Get probabilities before modifying CvtBBI->BB and BBI.BB. 1224 CvtNext = MBPI->getEdgeProbability(CvtBBI->BB, NextBBI->BB); 1225 CvtFalse = MBPI->getEdgeProbability(CvtBBI->BB, CvtBBI->FalseBB); 1226 BBNext = MBPI->getEdgeProbability(BBI.BB, NextBBI->BB); 1227 BBCvt = MBPI->getEdgeProbability(BBI.BB, CvtBBI->BB); 1228 } 1229 1230 if (CvtBBI->BB->pred_size() > 1) { 1231 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); 1232 // Copy instructions in the true block, predicate them, and add them to 1233 // the entry block. 1234 CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true); 1235 1236 // RemoveExtraEdges won't work if the block has an unanalyzable branch, so 1237 // explicitly remove CvtBBI as a successor. 1238 BBI.BB->removeSuccessor(CvtBBI->BB, true); 1239 } else { 1240 // Predicate the 'true' block after removing its branch. 1241 CvtBBI->NonPredSize -= TII->RemoveBranch(*CvtBBI->BB); 1242 PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond); 1243 1244 // Now merge the entry of the triangle with the true block. 1245 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); 1246 MergeBlocks(BBI, *CvtBBI, false); 1247 } 1248 1249 // If 'true' block has a 'false' successor, add an exit branch to it. 1250 if (HasEarlyExit) { 1251 SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(), 1252 CvtBBI->BrCond.end()); 1253 if (TII->ReverseBranchCondition(RevCond)) 1254 llvm_unreachable("Unable to reverse branch condition!"); 1255 1256 // Update the edge probability for both CvtBBI->FalseBB and NextBBI. 1257 // NewNext = New_Prob(BBI.BB, NextBBI->BB) = 1258 // Prob(BBI.BB, NextBBI->BB) + 1259 // Prob(BBI.BB, CvtBBI->BB) * Prob(CvtBBI->BB, NextBBI->BB) 1260 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) = 1261 // Prob(BBI.BB, CvtBBI->BB) * Prob(CvtBBI->BB, CvtBBI->FalseBB) 1262 auto NewTrueBB = getNextBlock(BBI.BB); 1263 auto NewNext = BBNext + BBCvt * CvtNext; 1264 auto NewTrueBBIter = 1265 std::find(BBI.BB->succ_begin(), BBI.BB->succ_end(), NewTrueBB); 1266 if (NewTrueBBIter != BBI.BB->succ_end()) 1267 BBI.BB->setSuccProbability(NewTrueBBIter, NewNext); 1268 1269 auto NewFalse = BBCvt * CvtFalse; 1270 TII->InsertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl); 1271 BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse); 1272 } 1273 1274 // Merge in the 'false' block if the 'false' block has no other 1275 // predecessors. Otherwise, add an unconditional branch to 'false'. 1276 bool FalseBBDead = false; 1277 bool IterIfcvt = true; 1278 bool isFallThrough = canFallThroughTo(BBI.BB, NextBBI->BB); 1279 if (!isFallThrough) { 1280 // Only merge them if the true block does not fallthrough to the false 1281 // block. By not merging them, we make it possible to iteratively 1282 // ifcvt the blocks. 1283 if (!HasEarlyExit && 1284 NextBBI->BB->pred_size() == 1 && !NextBBI->HasFallThrough && 1285 !NextBBI->BB->hasAddressTaken()) { 1286 MergeBlocks(BBI, *NextBBI); 1287 FalseBBDead = true; 1288 } else { 1289 InsertUncondBranch(BBI.BB, NextBBI->BB, TII); 1290 BBI.HasFallThrough = false; 1291 } 1292 // Mixed predicated and unpredicated code. This cannot be iteratively 1293 // predicated. 1294 IterIfcvt = false; 1295 } 1296 1297 RemoveExtraEdges(BBI); 1298 1299 // Update block info. BB can be iteratively if-converted. 1300 if (!IterIfcvt) 1301 BBI.IsDone = true; 1302 InvalidatePreds(BBI.BB); 1303 CvtBBI->IsDone = true; 1304 if (FalseBBDead) 1305 NextBBI->IsDone = true; 1306 1307 // FIXME: Must maintain LiveIns. 1308 return true; 1309 } 1310 1311 /// IfConvertDiamond - If convert a diamond sub-CFG. 1312 /// 1313 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 1314 unsigned NumDups1, unsigned NumDups2) { 1315 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1316 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1317 MachineBasicBlock *TailBB = TrueBBI.TrueBB; 1318 // True block must fall through or end with an unanalyzable terminator. 1319 if (!TailBB) { 1320 if (blockAlwaysFallThrough(TrueBBI)) 1321 TailBB = FalseBBI.TrueBB; 1322 assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!"); 1323 } 1324 1325 if (TrueBBI.IsDone || FalseBBI.IsDone || 1326 TrueBBI.BB->pred_size() > 1 || 1327 FalseBBI.BB->pred_size() > 1) { 1328 // Something has changed. It's no longer safe to predicate these blocks. 1329 BBI.IsAnalyzed = false; 1330 TrueBBI.IsAnalyzed = false; 1331 FalseBBI.IsAnalyzed = false; 1332 return false; 1333 } 1334 1335 if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken()) 1336 // Conservatively abort if-conversion if either BB has its address taken. 1337 return false; 1338 1339 // Put the predicated instructions from the 'true' block before the 1340 // instructions from the 'false' block, unless the true block would clobber 1341 // the predicate, in which case, do the opposite. 1342 BBInfo *BBI1 = &TrueBBI; 1343 BBInfo *BBI2 = &FalseBBI; 1344 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1345 if (TII->ReverseBranchCondition(RevCond)) 1346 llvm_unreachable("Unable to reverse branch condition!"); 1347 SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond; 1348 SmallVector<MachineOperand, 4> *Cond2 = &RevCond; 1349 1350 // Figure out the more profitable ordering. 1351 bool DoSwap = false; 1352 if (TrueBBI.ClobbersPred && !FalseBBI.ClobbersPred) 1353 DoSwap = true; 1354 else if (TrueBBI.ClobbersPred == FalseBBI.ClobbersPred) { 1355 if (TrueBBI.NonPredSize > FalseBBI.NonPredSize) 1356 DoSwap = true; 1357 } 1358 if (DoSwap) { 1359 std::swap(BBI1, BBI2); 1360 std::swap(Cond1, Cond2); 1361 } 1362 1363 // Remove the conditional branch from entry to the blocks. 1364 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); 1365 1366 // Initialize liveins to the first BB. These are potentially redefined by 1367 // predicated instructions. 1368 Redefs.init(TRI); 1369 Redefs.addLiveIns(BBI1->BB); 1370 1371 // Remove the duplicated instructions at the beginnings of both paths. 1372 // Skip dbg_value instructions 1373 MachineBasicBlock::iterator DI1 = BBI1->BB->getFirstNonDebugInstr(); 1374 MachineBasicBlock::iterator DI2 = BBI2->BB->getFirstNonDebugInstr(); 1375 BBI1->NonPredSize -= NumDups1; 1376 BBI2->NonPredSize -= NumDups1; 1377 1378 // Skip past the dups on each side separately since there may be 1379 // differing dbg_value entries. 1380 for (unsigned i = 0; i < NumDups1; ++DI1) { 1381 if (!DI1->isDebugValue()) 1382 ++i; 1383 } 1384 while (NumDups1 != 0) { 1385 ++DI2; 1386 if (!DI2->isDebugValue()) 1387 --NumDups1; 1388 } 1389 1390 // Compute a set of registers which must not be killed by instructions in BB1: 1391 // This is everything used+live in BB2 after the duplicated instructions. We 1392 // can compute this set by simulating liveness backwards from the end of BB2. 1393 DontKill.init(TRI); 1394 for (MachineBasicBlock::reverse_iterator I = BBI2->BB->rbegin(), 1395 E = MachineBasicBlock::reverse_iterator(DI2); I != E; ++I) { 1396 DontKill.stepBackward(*I); 1397 } 1398 1399 for (MachineBasicBlock::const_iterator I = BBI1->BB->begin(), E = DI1; I != E; 1400 ++I) { 1401 SmallVector<std::pair<unsigned, const MachineOperand*>, 4> IgnoredClobbers; 1402 Redefs.stepForward(*I, IgnoredClobbers); 1403 } 1404 BBI.BB->splice(BBI.BB->end(), BBI1->BB, BBI1->BB->begin(), DI1); 1405 BBI2->BB->erase(BBI2->BB->begin(), DI2); 1406 1407 // Remove branch from the 'true' block, unless it was not analyzable. 1408 // Non-analyzable branches need to be preserved, since in such cases, 1409 // the CFG structure is not an actual diamond (the join block may not 1410 // be present). 1411 if (BBI1->IsBrAnalyzable) 1412 BBI1->NonPredSize -= TII->RemoveBranch(*BBI1->BB); 1413 // Remove duplicated instructions. 1414 DI1 = BBI1->BB->end(); 1415 for (unsigned i = 0; i != NumDups2; ) { 1416 // NumDups2 only counted non-dbg_value instructions, so this won't 1417 // run off the head of the list. 1418 assert (DI1 != BBI1->BB->begin()); 1419 --DI1; 1420 // skip dbg_value instructions 1421 if (!DI1->isDebugValue()) 1422 ++i; 1423 } 1424 BBI1->BB->erase(DI1, BBI1->BB->end()); 1425 1426 // Kill flags in the true block for registers living into the false block 1427 // must be removed. 1428 RemoveKills(BBI1->BB->begin(), BBI1->BB->end(), DontKill, *TRI); 1429 1430 // Remove 'false' block branch (unless it was not analyzable), and find 1431 // the last instruction to predicate. 1432 if (BBI2->IsBrAnalyzable) 1433 BBI2->NonPredSize -= TII->RemoveBranch(*BBI2->BB); 1434 DI2 = BBI2->BB->end(); 1435 while (NumDups2 != 0) { 1436 // NumDups2 only counted non-dbg_value instructions, so this won't 1437 // run off the head of the list. 1438 assert (DI2 != BBI2->BB->begin()); 1439 --DI2; 1440 // skip dbg_value instructions 1441 if (!DI2->isDebugValue()) 1442 --NumDups2; 1443 } 1444 1445 // Remember which registers would later be defined by the false block. 1446 // This allows us not to predicate instructions in the true block that would 1447 // later be re-defined. That is, rather than 1448 // subeq r0, r1, #1 1449 // addne r0, r1, #1 1450 // generate: 1451 // sub r0, r1, #1 1452 // addne r0, r1, #1 1453 SmallSet<unsigned, 4> RedefsByFalse; 1454 SmallSet<unsigned, 4> ExtUses; 1455 if (TII->isProfitableToUnpredicate(*BBI1->BB, *BBI2->BB)) { 1456 for (MachineBasicBlock::iterator FI = BBI2->BB->begin(); FI != DI2; ++FI) { 1457 if (FI->isDebugValue()) 1458 continue; 1459 SmallVector<unsigned, 4> Defs; 1460 for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) { 1461 const MachineOperand &MO = FI->getOperand(i); 1462 if (!MO.isReg()) 1463 continue; 1464 unsigned Reg = MO.getReg(); 1465 if (!Reg) 1466 continue; 1467 if (MO.isDef()) { 1468 Defs.push_back(Reg); 1469 } else if (!RedefsByFalse.count(Reg)) { 1470 // These are defined before ctrl flow reach the 'false' instructions. 1471 // They cannot be modified by the 'true' instructions. 1472 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1473 SubRegs.isValid(); ++SubRegs) 1474 ExtUses.insert(*SubRegs); 1475 } 1476 } 1477 1478 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1479 unsigned Reg = Defs[i]; 1480 if (!ExtUses.count(Reg)) { 1481 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1482 SubRegs.isValid(); ++SubRegs) 1483 RedefsByFalse.insert(*SubRegs); 1484 } 1485 } 1486 } 1487 } 1488 1489 // Predicate the 'true' block. 1490 PredicateBlock(*BBI1, BBI1->BB->end(), *Cond1, &RedefsByFalse); 1491 1492 // After predicating BBI1, if there is a predicated terminator in BBI1 and 1493 // a non-predicated in BBI2, then we don't want to predicate the one from 1494 // BBI2. The reason is that if we merged these blocks, we would end up with 1495 // two predicated terminators in the same block. 1496 if (!BBI2->BB->empty() && (DI2 == BBI2->BB->end())) { 1497 MachineBasicBlock::iterator BBI1T = BBI1->BB->getFirstTerminator(); 1498 MachineBasicBlock::iterator BBI2T = BBI2->BB->getFirstTerminator(); 1499 if (BBI1T != BBI1->BB->end() && TII->isPredicated(*BBI1T) && 1500 BBI2T != BBI2->BB->end() && !TII->isPredicated(*BBI2T)) 1501 --DI2; 1502 } 1503 1504 // Predicate the 'false' block. 1505 PredicateBlock(*BBI2, DI2, *Cond2); 1506 1507 // Merge the true block into the entry of the diamond. 1508 MergeBlocks(BBI, *BBI1, TailBB == nullptr); 1509 MergeBlocks(BBI, *BBI2, TailBB == nullptr); 1510 1511 // If the if-converted block falls through or unconditionally branches into 1512 // the tail block, and the tail block does not have other predecessors, then 1513 // fold the tail block in as well. Otherwise, unless it falls through to the 1514 // tail, add a unconditional branch to it. 1515 if (TailBB) { 1516 BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()]; 1517 bool CanMergeTail = !TailBBI.HasFallThrough && 1518 !TailBBI.BB->hasAddressTaken(); 1519 // The if-converted block can still have a predicated terminator 1520 // (e.g. a predicated return). If that is the case, we cannot merge 1521 // it with the tail block. 1522 MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator(); 1523 if (TI != BBI.BB->end() && TII->isPredicated(*TI)) 1524 CanMergeTail = false; 1525 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB; 1526 // check if there are any other predecessors besides those. 1527 unsigned NumPreds = TailBB->pred_size(); 1528 if (NumPreds > 1) 1529 CanMergeTail = false; 1530 else if (NumPreds == 1 && CanMergeTail) { 1531 MachineBasicBlock::pred_iterator PI = TailBB->pred_begin(); 1532 if (*PI != BBI1->BB && *PI != BBI2->BB) 1533 CanMergeTail = false; 1534 } 1535 if (CanMergeTail) { 1536 MergeBlocks(BBI, TailBBI); 1537 TailBBI.IsDone = true; 1538 } else { 1539 BBI.BB->addSuccessor(TailBB, BranchProbability::getOne()); 1540 InsertUncondBranch(BBI.BB, TailBB, TII); 1541 BBI.HasFallThrough = false; 1542 } 1543 } 1544 1545 // RemoveExtraEdges won't work if the block has an unanalyzable branch, 1546 // which can happen here if TailBB is unanalyzable and is merged, so 1547 // explicitly remove BBI1 and BBI2 as successors. 1548 BBI.BB->removeSuccessor(BBI1->BB); 1549 BBI.BB->removeSuccessor(BBI2->BB, true); 1550 RemoveExtraEdges(BBI); 1551 1552 // Update block info. 1553 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 1554 InvalidatePreds(BBI.BB); 1555 1556 // FIXME: Must maintain LiveIns. 1557 return true; 1558 } 1559 1560 static bool MaySpeculate(const MachineInstr *MI, 1561 SmallSet<unsigned, 4> &LaterRedefs) { 1562 bool SawStore = true; 1563 if (!MI->isSafeToMove(nullptr, SawStore)) 1564 return false; 1565 1566 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1567 const MachineOperand &MO = MI->getOperand(i); 1568 if (!MO.isReg()) 1569 continue; 1570 unsigned Reg = MO.getReg(); 1571 if (!Reg) 1572 continue; 1573 if (MO.isDef() && !LaterRedefs.count(Reg)) 1574 return false; 1575 } 1576 1577 return true; 1578 } 1579 1580 /// PredicateBlock - Predicate instructions from the start of the block to the 1581 /// specified end with the specified condition. 1582 void IfConverter::PredicateBlock(BBInfo &BBI, 1583 MachineBasicBlock::iterator E, 1584 SmallVectorImpl<MachineOperand> &Cond, 1585 SmallSet<unsigned, 4> *LaterRedefs) { 1586 bool AnyUnpred = false; 1587 bool MaySpec = LaterRedefs != nullptr; 1588 for (MachineBasicBlock::iterator I = BBI.BB->begin(); I != E; ++I) { 1589 if (I->isDebugValue() || TII->isPredicated(*I)) 1590 continue; 1591 // It may be possible not to predicate an instruction if it's the 'true' 1592 // side of a diamond and the 'false' side may re-define the instruction's 1593 // defs. 1594 if (MaySpec && MaySpeculate(I, *LaterRedefs)) { 1595 AnyUnpred = true; 1596 continue; 1597 } 1598 // If any instruction is predicated, then every instruction after it must 1599 // be predicated. 1600 MaySpec = false; 1601 if (!TII->PredicateInstruction(*I, Cond)) { 1602 #ifndef NDEBUG 1603 dbgs() << "Unable to predicate " << *I << "!\n"; 1604 #endif 1605 llvm_unreachable(nullptr); 1606 } 1607 1608 // If the predicated instruction now redefines a register as the result of 1609 // if-conversion, add an implicit kill. 1610 UpdatePredRedefs(*I, Redefs); 1611 } 1612 1613 BBI.Predicate.append(Cond.begin(), Cond.end()); 1614 1615 BBI.IsAnalyzed = false; 1616 BBI.NonPredSize = 0; 1617 1618 ++NumIfConvBBs; 1619 if (AnyUnpred) 1620 ++NumUnpred; 1621 } 1622 1623 /// CopyAndPredicateBlock - Copy and predicate instructions from source BB to 1624 /// the destination block. Skip end of block branches if IgnoreBr is true. 1625 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 1626 SmallVectorImpl<MachineOperand> &Cond, 1627 bool IgnoreBr) { 1628 MachineFunction &MF = *ToBBI.BB->getParent(); 1629 1630 for (auto &I : *FromBBI.BB) { 1631 // Do not copy the end of the block branches. 1632 if (IgnoreBr && I.isBranch()) 1633 break; 1634 1635 MachineInstr *MI = MF.CloneMachineInstr(&I); 1636 ToBBI.BB->insert(ToBBI.BB->end(), MI); 1637 ToBBI.NonPredSize++; 1638 unsigned ExtraPredCost = TII->getPredicationCost(I); 1639 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); 1640 if (NumCycles > 1) 1641 ToBBI.ExtraCost += NumCycles-1; 1642 ToBBI.ExtraCost2 += ExtraPredCost; 1643 1644 if (!TII->isPredicated(I) && !MI->isDebugValue()) { 1645 if (!TII->PredicateInstruction(*MI, Cond)) { 1646 #ifndef NDEBUG 1647 dbgs() << "Unable to predicate " << I << "!\n"; 1648 #endif 1649 llvm_unreachable(nullptr); 1650 } 1651 } 1652 1653 // If the predicated instruction now redefines a register as the result of 1654 // if-conversion, add an implicit kill. 1655 UpdatePredRedefs(*MI, Redefs); 1656 1657 // Some kill flags may not be correct anymore. 1658 if (!DontKill.empty()) 1659 RemoveKills(*MI, DontKill); 1660 } 1661 1662 if (!IgnoreBr) { 1663 std::vector<MachineBasicBlock *> Succs(FromBBI.BB->succ_begin(), 1664 FromBBI.BB->succ_end()); 1665 MachineBasicBlock *NBB = getNextBlock(FromBBI.BB); 1666 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 1667 1668 for (unsigned i = 0, e = Succs.size(); i != e; ++i) { 1669 MachineBasicBlock *Succ = Succs[i]; 1670 // Fallthrough edge can't be transferred. 1671 if (Succ == FallThrough) 1672 continue; 1673 ToBBI.BB->addSuccessor(Succ); 1674 } 1675 } 1676 1677 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 1678 ToBBI.Predicate.append(Cond.begin(), Cond.end()); 1679 1680 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 1681 ToBBI.IsAnalyzed = false; 1682 1683 ++NumDupBBs; 1684 } 1685 1686 /// MergeBlocks - Move all instructions from FromBB to the end of ToBB. 1687 /// This will leave FromBB as an empty block, so remove all of its 1688 /// successor edges except for the fall-through edge. If AddEdges is true, 1689 /// i.e., when FromBBI's branch is being moved, add those successor edges to 1690 /// ToBBI. 1691 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) { 1692 assert(!FromBBI.BB->hasAddressTaken() && 1693 "Removing a BB whose address is taken!"); 1694 1695 // In case FromBBI.BB contains terminators (e.g. return instruction), 1696 // first move the non-terminator instructions, then the terminators. 1697 MachineBasicBlock::iterator FromTI = FromBBI.BB->getFirstTerminator(); 1698 MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator(); 1699 ToBBI.BB->splice(ToTI, FromBBI.BB, FromBBI.BB->begin(), FromTI); 1700 1701 // If FromBB has non-predicated terminator we should copy it at the end. 1702 if (FromTI != FromBBI.BB->end() && !TII->isPredicated(*FromTI)) 1703 ToTI = ToBBI.BB->end(); 1704 ToBBI.BB->splice(ToTI, FromBBI.BB, FromTI, FromBBI.BB->end()); 1705 1706 // Force normalizing the successors' probabilities of ToBBI.BB to convert all 1707 // unknown probabilities into known ones. 1708 // FIXME: This usage is too tricky and in the future we would like to 1709 // eliminate all unknown probabilities in MBB. 1710 ToBBI.BB->normalizeSuccProbs(); 1711 1712 SmallVector<MachineBasicBlock *, 4> FromSuccs(FromBBI.BB->succ_begin(), 1713 FromBBI.BB->succ_end()); 1714 MachineBasicBlock *NBB = getNextBlock(FromBBI.BB); 1715 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 1716 // The edge probability from ToBBI.BB to FromBBI.BB, which is only needed when 1717 // AddEdges is true and FromBBI.BB is a successor of ToBBI.BB. 1718 auto To2FromProb = BranchProbability::getZero(); 1719 if (AddEdges && ToBBI.BB->isSuccessor(FromBBI.BB)) { 1720 To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, FromBBI.BB); 1721 // Set the edge probability from ToBBI.BB to FromBBI.BB to zero to avoid the 1722 // edge probability being merged to other edges when this edge is removed 1723 // later. 1724 ToBBI.BB->setSuccProbability( 1725 std::find(ToBBI.BB->succ_begin(), ToBBI.BB->succ_end(), FromBBI.BB), 1726 BranchProbability::getZero()); 1727 } 1728 1729 for (unsigned i = 0, e = FromSuccs.size(); i != e; ++i) { 1730 MachineBasicBlock *Succ = FromSuccs[i]; 1731 // Fallthrough edge can't be transferred. 1732 if (Succ == FallThrough) 1733 continue; 1734 1735 auto NewProb = BranchProbability::getZero(); 1736 if (AddEdges) { 1737 // Calculate the edge probability for the edge from ToBBI.BB to Succ, 1738 // which is a portion of the edge probability from FromBBI.BB to Succ. The 1739 // portion ratio is the edge probability from ToBBI.BB to FromBBI.BB (if 1740 // FromBBI is a successor of ToBBI.BB. See comment below for excepion). 1741 NewProb = MBPI->getEdgeProbability(FromBBI.BB, Succ); 1742 1743 // To2FromProb is 0 when FromBBI.BB is not a successor of ToBBI.BB. This 1744 // only happens when if-converting a diamond CFG and FromBBI.BB is the 1745 // tail BB. In this case FromBBI.BB post-dominates ToBBI.BB and hence we 1746 // could just use the probabilities on FromBBI.BB's out-edges when adding 1747 // new successors. 1748 if (!To2FromProb.isZero()) 1749 NewProb *= To2FromProb; 1750 } 1751 1752 FromBBI.BB->removeSuccessor(Succ); 1753 1754 if (AddEdges) { 1755 // If the edge from ToBBI.BB to Succ already exists, update the 1756 // probability of this edge by adding NewProb to it. An example is shown 1757 // below, in which A is ToBBI.BB and B is FromBBI.BB. In this case we 1758 // don't have to set C as A's successor as it already is. We only need to 1759 // update the edge probability on A->C. Note that B will not be 1760 // immediately removed from A's successors. It is possible that B->D is 1761 // not removed either if D is a fallthrough of B. Later the edge A->D 1762 // (generated here) and B->D will be combined into one edge. To maintain 1763 // correct edge probability of this combined edge, we need to set the edge 1764 // probability of A->B to zero, which is already done above. The edge 1765 // probability on A->D is calculated by scaling the original probability 1766 // on A->B by the probability of B->D. 1767 // 1768 // Before ifcvt: After ifcvt (assume B->D is kept): 1769 // 1770 // A A 1771 // /| /|\ 1772 // / B / B| 1773 // | /| | || 1774 // |/ | | |/ 1775 // C D C D 1776 // 1777 if (ToBBI.BB->isSuccessor(Succ)) 1778 ToBBI.BB->setSuccProbability( 1779 std::find(ToBBI.BB->succ_begin(), ToBBI.BB->succ_end(), Succ), 1780 MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb); 1781 else 1782 ToBBI.BB->addSuccessor(Succ, NewProb); 1783 } 1784 } 1785 1786 // Now FromBBI always falls through to the next block! 1787 if (NBB && !FromBBI.BB->isSuccessor(NBB)) 1788 FromBBI.BB->addSuccessor(NBB); 1789 1790 // Normalize the probabilities of ToBBI.BB's successors with all adjustment 1791 // we've done above. 1792 ToBBI.BB->normalizeSuccProbs(); 1793 1794 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 1795 FromBBI.Predicate.clear(); 1796 1797 ToBBI.NonPredSize += FromBBI.NonPredSize; 1798 ToBBI.ExtraCost += FromBBI.ExtraCost; 1799 ToBBI.ExtraCost2 += FromBBI.ExtraCost2; 1800 FromBBI.NonPredSize = 0; 1801 FromBBI.ExtraCost = 0; 1802 FromBBI.ExtraCost2 = 0; 1803 1804 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 1805 ToBBI.HasFallThrough = FromBBI.HasFallThrough; 1806 ToBBI.IsAnalyzed = false; 1807 FromBBI.IsAnalyzed = false; 1808 } 1809 1810 FunctionPass * 1811 llvm::createIfConverter(std::function<bool(const Function &)> Ftor) { 1812 return new IfConverter(Ftor); 1813 } 1814