1 //===-- IfConversion.cpp - Machine code if conversion pass. ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the machine instruction level if-conversion pass, which 11 // tries to convert conditional branches into predicated instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/Passes.h" 16 #include "BranchFolding.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/ScopeExit.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/LivePhysRegs.h" 22 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 23 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetSchedule.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Target/TargetLowering.h" 35 #include "llvm/Target/TargetRegisterInfo.h" 36 #include "llvm/Target/TargetSubtargetInfo.h" 37 #include <algorithm> 38 #include <utility> 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "ifcvt" 43 44 // Hidden options for help debugging. 45 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden); 46 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden); 47 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden); 48 static cl::opt<bool> DisableSimple("disable-ifcvt-simple", 49 cl::init(false), cl::Hidden); 50 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false", 51 cl::init(false), cl::Hidden); 52 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle", 53 cl::init(false), cl::Hidden); 54 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev", 55 cl::init(false), cl::Hidden); 56 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false", 57 cl::init(false), cl::Hidden); 58 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev", 59 cl::init(false), cl::Hidden); 60 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond", 61 cl::init(false), cl::Hidden); 62 static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond", 63 cl::init(false), cl::Hidden); 64 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold", 65 cl::init(true), cl::Hidden); 66 67 STATISTIC(NumSimple, "Number of simple if-conversions performed"); 68 STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed"); 69 STATISTIC(NumTriangle, "Number of triangle if-conversions performed"); 70 STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed"); 71 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed"); 72 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed"); 73 STATISTIC(NumDiamonds, "Number of diamond if-conversions performed"); 74 STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed"); 75 STATISTIC(NumIfConvBBs, "Number of if-converted blocks"); 76 STATISTIC(NumDupBBs, "Number of duplicated blocks"); 77 STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated"); 78 79 namespace { 80 class IfConverter : public MachineFunctionPass { 81 enum IfcvtKind { 82 ICNotClassfied, // BB data valid, but not classified. 83 ICSimpleFalse, // Same as ICSimple, but on the false path. 84 ICSimple, // BB is entry of an one split, no rejoin sub-CFG. 85 ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition. 86 ICTriangleRev, // Same as ICTriangle, but true path rev condition. 87 ICTriangleFalse, // Same as ICTriangle, but on the false path. 88 ICTriangle, // BB is entry of a triangle sub-CFG. 89 ICDiamond, // BB is entry of a diamond sub-CFG. 90 ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a 91 // common tail that can be shared. 92 }; 93 94 /// One per MachineBasicBlock, this is used to cache the result 95 /// if-conversion feasibility analysis. This includes results from 96 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its 97 /// classification, and common tail block of its successors (if it's a 98 /// diamond shape), its size, whether it's predicable, and whether any 99 /// instruction can clobber the 'would-be' predicate. 100 /// 101 /// IsDone - True if BB is not to be considered for ifcvt. 102 /// IsBeingAnalyzed - True if BB is currently being analyzed. 103 /// IsAnalyzed - True if BB has been analyzed (info is still valid). 104 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed. 105 /// IsBrAnalyzable - True if analyzeBranch() returns false. 106 /// HasFallThrough - True if BB may fallthrough to the following BB. 107 /// IsUnpredicable - True if BB is known to be unpredicable. 108 /// ClobbersPred - True if BB could modify predicates (e.g. has 109 /// cmp, call, etc.) 110 /// NonPredSize - Number of non-predicated instructions. 111 /// ExtraCost - Extra cost for multi-cycle instructions. 112 /// ExtraCost2 - Some instructions are slower when predicated 113 /// BB - Corresponding MachineBasicBlock. 114 /// TrueBB / FalseBB- See analyzeBranch(). 115 /// BrCond - Conditions for end of block conditional branches. 116 /// Predicate - Predicate used in the BB. 117 struct BBInfo { 118 bool IsDone : 1; 119 bool IsBeingAnalyzed : 1; 120 bool IsAnalyzed : 1; 121 bool IsEnqueued : 1; 122 bool IsBrAnalyzable : 1; 123 bool IsBrReversible : 1; 124 bool HasFallThrough : 1; 125 bool IsUnpredicable : 1; 126 bool CannotBeCopied : 1; 127 bool ClobbersPred : 1; 128 unsigned NonPredSize; 129 unsigned ExtraCost; 130 unsigned ExtraCost2; 131 MachineBasicBlock *BB; 132 MachineBasicBlock *TrueBB; 133 MachineBasicBlock *FalseBB; 134 SmallVector<MachineOperand, 4> BrCond; 135 SmallVector<MachineOperand, 4> Predicate; 136 BBInfo() : IsDone(false), IsBeingAnalyzed(false), 137 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false), 138 IsBrReversible(false), HasFallThrough(false), 139 IsUnpredicable(false), CannotBeCopied(false), 140 ClobbersPred(false), NonPredSize(0), ExtraCost(0), 141 ExtraCost2(0), BB(nullptr), TrueBB(nullptr), 142 FalseBB(nullptr) {} 143 }; 144 145 /// Record information about pending if-conversions to attempt: 146 /// BBI - Corresponding BBInfo. 147 /// Kind - Type of block. See IfcvtKind. 148 /// NeedSubsumption - True if the to-be-predicated BB has already been 149 /// predicated. 150 /// NumDups - Number of instructions that would be duplicated due 151 /// to this if-conversion. (For diamonds, the number of 152 /// identical instructions at the beginnings of both 153 /// paths). 154 /// NumDups2 - For diamonds, the number of identical instructions 155 /// at the ends of both paths. 156 struct IfcvtToken { 157 BBInfo &BBI; 158 IfcvtKind Kind; 159 unsigned NumDups; 160 unsigned NumDups2; 161 bool NeedSubsumption : 1; 162 bool TClobbersPred : 1; 163 bool FClobbersPred : 1; 164 IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0, 165 bool tc = false, bool fc = false) 166 : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s), 167 TClobbersPred(tc), FClobbersPred(fc) {} 168 }; 169 170 /// Results of if-conversion feasibility analysis indexed by basic block 171 /// number. 172 std::vector<BBInfo> BBAnalysis; 173 TargetSchedModel SchedModel; 174 175 const TargetLoweringBase *TLI; 176 const TargetInstrInfo *TII; 177 const TargetRegisterInfo *TRI; 178 const MachineBranchProbabilityInfo *MBPI; 179 MachineRegisterInfo *MRI; 180 181 LivePhysRegs Redefs; 182 LivePhysRegs DontKill; 183 184 bool PreRegAlloc; 185 bool MadeChange; 186 int FnNum; 187 std::function<bool(const Function &)> PredicateFtor; 188 189 public: 190 static char ID; 191 IfConverter(std::function<bool(const Function &)> Ftor = nullptr) 192 : MachineFunctionPass(ID), FnNum(-1), PredicateFtor(std::move(Ftor)) { 193 initializeIfConverterPass(*PassRegistry::getPassRegistry()); 194 } 195 196 void getAnalysisUsage(AnalysisUsage &AU) const override { 197 AU.addRequired<MachineBlockFrequencyInfo>(); 198 AU.addRequired<MachineBranchProbabilityInfo>(); 199 MachineFunctionPass::getAnalysisUsage(AU); 200 } 201 202 bool runOnMachineFunction(MachineFunction &MF) override; 203 204 MachineFunctionProperties getRequiredProperties() const override { 205 return MachineFunctionProperties().set( 206 MachineFunctionProperties::Property::NoVRegs); 207 } 208 209 private: 210 bool ReverseBranchCondition(BBInfo &BBI) const; 211 bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 212 BranchProbability Prediction) const; 213 bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 214 bool FalseBranch, unsigned &Dups, 215 BranchProbability Prediction) const; 216 bool CountDuplicatedInstructions( 217 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 218 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 219 unsigned &Dups1, unsigned &Dups2, 220 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 221 bool SkipUnconditionalBranches) const; 222 bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 223 unsigned &Dups1, unsigned &Dups2, 224 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 225 bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 226 unsigned &Dups1, unsigned &Dups2, 227 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 228 void AnalyzeBranches(BBInfo &BBI); 229 void ScanInstructions(BBInfo &BBI, 230 MachineBasicBlock::iterator &Begin, 231 MachineBasicBlock::iterator &End, 232 bool BranchUnpredicable = false) const; 233 bool RescanInstructions( 234 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 235 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 236 BBInfo &TrueBBI, BBInfo &FalseBBI) const; 237 void AnalyzeBlock(MachineBasicBlock &MBB, 238 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 239 bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Cond, 240 bool isTriangle = false, bool RevBranch = false, 241 bool hasCommonTail = false); 242 void AnalyzeBlocks(MachineFunction &MF, 243 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 244 void InvalidatePreds(MachineBasicBlock &MBB); 245 void RemoveExtraEdges(BBInfo &BBI); 246 bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind); 247 bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind); 248 bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 249 unsigned NumDups1, unsigned NumDups2, 250 bool TClobbersPred, bool FClobbersPred, 251 bool RemoveTrueBranch, bool RemoveFalseBranch, 252 bool MergeAddEdges); 253 bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 254 unsigned NumDups1, unsigned NumDups2, 255 bool TClobbers, bool FClobbers); 256 bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind, 257 unsigned NumDups1, unsigned NumDups2, 258 bool TClobbers, bool FClobbers); 259 void PredicateBlock(BBInfo &BBI, 260 MachineBasicBlock::iterator E, 261 SmallVectorImpl<MachineOperand> &Cond, 262 SmallSet<unsigned, 4> *LaterRedefs = nullptr); 263 void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 264 SmallVectorImpl<MachineOperand> &Cond, 265 bool IgnoreBr = false); 266 void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true); 267 268 bool MeetIfcvtSizeLimit(MachineBasicBlock &BB, 269 unsigned Cycle, unsigned Extra, 270 BranchProbability Prediction) const { 271 return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra, 272 Prediction); 273 } 274 275 bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB, 276 unsigned TCycle, unsigned TExtra, 277 MachineBasicBlock &FBB, 278 unsigned FCycle, unsigned FExtra, 279 BranchProbability Prediction) const { 280 return TCycle > 0 && FCycle > 0 && 281 TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra, 282 Prediction); 283 } 284 285 /// Returns true if Block ends without a terminator. 286 bool blockAlwaysFallThrough(BBInfo &BBI) const { 287 return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr; 288 } 289 290 /// Used to sort if-conversion candidates. 291 static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1, 292 const std::unique_ptr<IfcvtToken> &C2) { 293 int Incr1 = (C1->Kind == ICDiamond) 294 ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups; 295 int Incr2 = (C2->Kind == ICDiamond) 296 ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups; 297 if (Incr1 > Incr2) 298 return true; 299 else if (Incr1 == Incr2) { 300 // Favors subsumption. 301 if (!C1->NeedSubsumption && C2->NeedSubsumption) 302 return true; 303 else if (C1->NeedSubsumption == C2->NeedSubsumption) { 304 // Favors diamond over triangle, etc. 305 if ((unsigned)C1->Kind < (unsigned)C2->Kind) 306 return true; 307 else if (C1->Kind == C2->Kind) 308 return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber(); 309 } 310 } 311 return false; 312 } 313 }; 314 315 char IfConverter::ID = 0; 316 } 317 318 char &llvm::IfConverterID = IfConverter::ID; 319 320 INITIALIZE_PASS_BEGIN(IfConverter, "if-converter", "If Converter", false, false) 321 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 322 INITIALIZE_PASS_END(IfConverter, "if-converter", "If Converter", false, false) 323 324 bool IfConverter::runOnMachineFunction(MachineFunction &MF) { 325 if (skipFunction(*MF.getFunction()) || 326 (PredicateFtor && !PredicateFtor(*MF.getFunction()))) 327 return false; 328 329 const TargetSubtargetInfo &ST = MF.getSubtarget(); 330 TLI = ST.getTargetLowering(); 331 TII = ST.getInstrInfo(); 332 TRI = ST.getRegisterInfo(); 333 BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>()); 334 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 335 MRI = &MF.getRegInfo(); 336 SchedModel.init(ST.getSchedModel(), &ST, TII); 337 338 if (!TII) return false; 339 340 PreRegAlloc = MRI->isSSA(); 341 342 bool BFChange = false; 343 if (!PreRegAlloc) { 344 // Tail merge tend to expose more if-conversion opportunities. 345 BranchFolder BF(true, false, MBFI, *MBPI); 346 BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(), 347 getAnalysisIfAvailable<MachineModuleInfo>()); 348 } 349 350 DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'" 351 << MF.getName() << "\'"); 352 353 if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) { 354 DEBUG(dbgs() << " skipped\n"); 355 return false; 356 } 357 DEBUG(dbgs() << "\n"); 358 359 MF.RenumberBlocks(); 360 BBAnalysis.resize(MF.getNumBlockIDs()); 361 362 std::vector<std::unique_ptr<IfcvtToken>> Tokens; 363 MadeChange = false; 364 unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + 365 NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds; 366 while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) { 367 // Do an initial analysis for each basic block and find all the potential 368 // candidates to perform if-conversion. 369 bool Change = false; 370 AnalyzeBlocks(MF, Tokens); 371 while (!Tokens.empty()) { 372 std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back()); 373 Tokens.pop_back(); 374 BBInfo &BBI = Token->BBI; 375 IfcvtKind Kind = Token->Kind; 376 unsigned NumDups = Token->NumDups; 377 unsigned NumDups2 = Token->NumDups2; 378 379 // If the block has been evicted out of the queue or it has already been 380 // marked dead (due to it being predicated), then skip it. 381 if (BBI.IsDone) 382 BBI.IsEnqueued = false; 383 if (!BBI.IsEnqueued) 384 continue; 385 386 BBI.IsEnqueued = false; 387 388 bool RetVal = false; 389 switch (Kind) { 390 default: llvm_unreachable("Unexpected!"); 391 case ICSimple: 392 case ICSimpleFalse: { 393 bool isFalse = Kind == ICSimpleFalse; 394 if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break; 395 DEBUG(dbgs() << "Ifcvt (Simple" << (Kind == ICSimpleFalse ? 396 " false" : "") 397 << "): BB#" << BBI.BB->getNumber() << " (" 398 << ((Kind == ICSimpleFalse) 399 ? BBI.FalseBB->getNumber() 400 : BBI.TrueBB->getNumber()) << ") "); 401 RetVal = IfConvertSimple(BBI, Kind); 402 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 403 if (RetVal) { 404 if (isFalse) ++NumSimpleFalse; 405 else ++NumSimple; 406 } 407 break; 408 } 409 case ICTriangle: 410 case ICTriangleRev: 411 case ICTriangleFalse: 412 case ICTriangleFRev: { 413 bool isFalse = Kind == ICTriangleFalse; 414 bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev); 415 if (DisableTriangle && !isFalse && !isRev) break; 416 if (DisableTriangleR && !isFalse && isRev) break; 417 if (DisableTriangleF && isFalse && !isRev) break; 418 if (DisableTriangleFR && isFalse && isRev) break; 419 DEBUG(dbgs() << "Ifcvt (Triangle"); 420 if (isFalse) 421 DEBUG(dbgs() << " false"); 422 if (isRev) 423 DEBUG(dbgs() << " rev"); 424 DEBUG(dbgs() << "): BB#" << BBI.BB->getNumber() << " (T:" 425 << BBI.TrueBB->getNumber() << ",F:" 426 << BBI.FalseBB->getNumber() << ") "); 427 RetVal = IfConvertTriangle(BBI, Kind); 428 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 429 if (RetVal) { 430 if (isFalse) { 431 if (isRev) ++NumTriangleFRev; 432 else ++NumTriangleFalse; 433 } else { 434 if (isRev) ++NumTriangleRev; 435 else ++NumTriangle; 436 } 437 } 438 break; 439 } 440 case ICDiamond: { 441 if (DisableDiamond) break; 442 DEBUG(dbgs() << "Ifcvt (Diamond): BB#" << BBI.BB->getNumber() << " (T:" 443 << BBI.TrueBB->getNumber() << ",F:" 444 << BBI.FalseBB->getNumber() << ") "); 445 RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2, 446 Token->TClobbersPred, 447 Token->FClobbersPred); 448 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 449 if (RetVal) ++NumDiamonds; 450 break; 451 } 452 case ICForkedDiamond: { 453 if (DisableForkedDiamond) break; 454 DEBUG(dbgs() << "Ifcvt (Forked Diamond): BB#" 455 << BBI.BB->getNumber() << " (T:" 456 << BBI.TrueBB->getNumber() << ",F:" 457 << BBI.FalseBB->getNumber() << ") "); 458 RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2, 459 Token->TClobbersPred, 460 Token->FClobbersPred); 461 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 462 if (RetVal) ++NumForkedDiamonds; 463 break; 464 } 465 } 466 467 Change |= RetVal; 468 469 NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev + 470 NumTriangleFalse + NumTriangleFRev + NumDiamonds; 471 if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit) 472 break; 473 } 474 475 if (!Change) 476 break; 477 MadeChange |= Change; 478 } 479 480 Tokens.clear(); 481 BBAnalysis.clear(); 482 483 if (MadeChange && IfCvtBranchFold) { 484 BranchFolder BF(false, false, MBFI, *MBPI); 485 BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 486 getAnalysisIfAvailable<MachineModuleInfo>()); 487 } 488 489 MadeChange |= BFChange; 490 return MadeChange; 491 } 492 493 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor. 494 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 495 MachineBasicBlock *TrueBB) { 496 for (MachineBasicBlock *SuccBB : BB->successors()) { 497 if (SuccBB != TrueBB) 498 return SuccBB; 499 } 500 return nullptr; 501 } 502 503 /// Reverse the condition of the end of the block branch. Swap block's 'true' 504 /// and 'false' successors. 505 bool IfConverter::ReverseBranchCondition(BBInfo &BBI) const { 506 DebugLoc dl; // FIXME: this is nowhere 507 if (!TII->ReverseBranchCondition(BBI.BrCond)) { 508 TII->RemoveBranch(*BBI.BB); 509 TII->InsertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl); 510 std::swap(BBI.TrueBB, BBI.FalseBB); 511 return true; 512 } 513 return false; 514 } 515 516 /// Returns the next block in the function blocks ordering. If it is the end, 517 /// returns NULL. 518 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) { 519 MachineFunction::iterator I = MBB.getIterator(); 520 MachineFunction::iterator E = MBB.getParent()->end(); 521 if (++I == E) 522 return nullptr; 523 return &*I; 524 } 525 526 /// Returns true if the 'true' block (along with its predecessor) forms a valid 527 /// simple shape for ifcvt. It also returns the number of instructions that the 528 /// ifcvt would need to duplicate if performed in Dups. 529 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 530 BranchProbability Prediction) const { 531 Dups = 0; 532 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 533 return false; 534 535 if (TrueBBI.IsBrAnalyzable) 536 return false; 537 538 if (TrueBBI.BB->pred_size() > 1) { 539 if (TrueBBI.CannotBeCopied || 540 !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize, 541 Prediction)) 542 return false; 543 Dups = TrueBBI.NonPredSize; 544 } 545 546 return true; 547 } 548 549 /// Returns true if the 'true' and 'false' blocks (along with their common 550 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is 551 /// true, it checks if 'true' block's false branch branches to the 'false' block 552 /// rather than the other way around. It also returns the number of instructions 553 /// that the ifcvt would need to duplicate if performed in 'Dups'. 554 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 555 bool FalseBranch, unsigned &Dups, 556 BranchProbability Prediction) const { 557 Dups = 0; 558 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 559 return false; 560 561 if (TrueBBI.BB->pred_size() > 1) { 562 if (TrueBBI.CannotBeCopied) 563 return false; 564 565 unsigned Size = TrueBBI.NonPredSize; 566 if (TrueBBI.IsBrAnalyzable) { 567 if (TrueBBI.TrueBB && TrueBBI.BrCond.empty()) 568 // Ends with an unconditional branch. It will be removed. 569 --Size; 570 else { 571 MachineBasicBlock *FExit = FalseBranch 572 ? TrueBBI.TrueBB : TrueBBI.FalseBB; 573 if (FExit) 574 // Require a conditional branch 575 ++Size; 576 } 577 } 578 if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction)) 579 return false; 580 Dups = Size; 581 } 582 583 MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB; 584 if (!TExit && blockAlwaysFallThrough(TrueBBI)) { 585 MachineFunction::iterator I = TrueBBI.BB->getIterator(); 586 if (++I == TrueBBI.BB->getParent()->end()) 587 return false; 588 TExit = &*I; 589 } 590 return TExit && TExit == FalseBBI.BB; 591 } 592 593 /// Increment \p It until it points to a non-debug instruction or to \p End. 594 /// @param It Iterator to increment 595 /// @param End Iterator that points to end. Will be compared to It 596 /// @returns true if It == End, false otherwise. 597 static inline bool skipDebugInstructionsForward( 598 MachineBasicBlock::iterator &It, 599 MachineBasicBlock::iterator &End) { 600 while (It != End && It->isDebugValue()) 601 It++; 602 return It == End; 603 } 604 605 /// Shrink the provided inclusive range by one instruction. 606 /// If the range was one instruction (\p It == \p Begin), It is not modified, 607 /// but \p Empty is set to true. 608 static inline void shrinkInclusiveRange( 609 MachineBasicBlock::iterator &Begin, 610 MachineBasicBlock::iterator &It, 611 bool &Empty) { 612 if (It == Begin) 613 Empty = true; 614 else 615 It--; 616 } 617 618 /// Decrement \p It until it points to a non-debug instruction or the range is 619 /// empty. 620 /// @param It Iterator to decrement. 621 /// @param Begin Iterator that points to beginning. Will be compared to It 622 /// @param Empty Set to true if the resulting range is Empty 623 /// @returns the value of Empty as a convenience. 624 static inline bool skipDebugInstructionsBackward( 625 MachineBasicBlock::iterator &Begin, 626 MachineBasicBlock::iterator &It, 627 bool &Empty) { 628 while (!Empty && It->isDebugValue()) 629 shrinkInclusiveRange(Begin, It, Empty); 630 return Empty; 631 } 632 633 /// Count duplicated instructions and move the iterators to show where they 634 /// are. 635 /// @param TIB True Iterator Begin 636 /// @param FIB False Iterator Begin 637 /// These two iterators initially point to the first instruction of the two 638 /// blocks, and finally point to the first non-shared instruction. 639 /// @param TIE True Iterator End 640 /// @param FIE False Iterator End 641 /// These two iterators initially point to End() for the two blocks() and 642 /// finally point to the first shared instruction in the tail. 643 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of 644 /// two blocks. 645 /// @param Dups1 count of duplicated instructions at the beginning of the 2 646 /// blocks. 647 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks. 648 /// @param SkipUnconditionalBranches if true, Don't make sure that 649 /// unconditional branches at the end of the blocks are the same. True is 650 /// passed when the blocks are analyzable to allow for fallthrough to be 651 /// handled. 652 /// @return false if the shared portion prevents if conversion. 653 bool IfConverter::CountDuplicatedInstructions( 654 MachineBasicBlock::iterator &TIB, 655 MachineBasicBlock::iterator &FIB, 656 MachineBasicBlock::iterator &TIE, 657 MachineBasicBlock::iterator &FIE, 658 unsigned &Dups1, unsigned &Dups2, 659 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 660 bool SkipUnconditionalBranches) const { 661 662 while (TIB != TIE && FIB != FIE) { 663 // Skip dbg_value instructions. These do not count. 664 if(skipDebugInstructionsForward(TIB, TIE)) 665 break; 666 if(skipDebugInstructionsForward(FIB, FIE)) 667 break; 668 if (!TIB->isIdenticalTo(*FIB)) 669 break; 670 // A pred-clobbering instruction in the shared portion prevents 671 // if-conversion. 672 std::vector<MachineOperand> PredDefs; 673 if (TII->DefinesPredicate(*TIB, PredDefs)) 674 return false; 675 ++Dups1; 676 ++TIB; 677 ++FIB; 678 } 679 680 // Check for already containing all of the block. 681 if (TIB == TIE || FIB == FIE) 682 return true; 683 // Now, in preparation for counting duplicate instructions at the ends of the 684 // blocks, move the end iterators up past any branch instructions. 685 --TIE; 686 --FIE; 687 688 // After this point TIB and TIE define an inclusive range, which means that 689 // TIB == TIE is true when there is one more instruction to consider, not at 690 // the end. Because we may not be able to go before TIB, we need a flag to 691 // indicate a completely empty range. 692 bool TEmpty = false, FEmpty = false; 693 694 // Upon exit TIE and FIE will both point at the last non-shared instruction. 695 // They need to be moved forward to point past the last non-shared 696 // instruction if the range they delimit is non-empty. 697 auto IncrementEndIteratorsOnExit = make_scope_exit([&]() { 698 if (!TEmpty) 699 ++TIE; 700 if (!FEmpty) 701 ++FIE; 702 }); 703 704 if (!TBB.succ_empty() || !FBB.succ_empty()) { 705 if (SkipUnconditionalBranches) { 706 while (!TEmpty && TIE->isUnconditionalBranch()) 707 shrinkInclusiveRange(TIB, TIE, TEmpty); 708 while (!FEmpty && FIE->isUnconditionalBranch()) 709 shrinkInclusiveRange(FIB, FIE, FEmpty); 710 } 711 } 712 713 // If Dups1 includes all of a block, then don't count duplicate 714 // instructions at the end of the blocks. 715 if (TEmpty || FEmpty) 716 return true; 717 718 // Count duplicate instructions at the ends of the blocks. 719 while (!TEmpty && !FEmpty) { 720 // Skip dbg_value instructions. These do not count. 721 if (skipDebugInstructionsBackward(TIB, TIE, TEmpty)) 722 break; 723 if (skipDebugInstructionsBackward(FIB, FIE, FEmpty)) 724 break; 725 if (!TIE->isIdenticalTo(*FIE)) 726 break; 727 // We have to verify that any branch instructions are the same, and then we 728 // don't count them toward the # of duplicate instructions. 729 if (!TIE->isBranch()) 730 ++Dups2; 731 shrinkInclusiveRange(TIB, TIE, TEmpty); 732 shrinkInclusiveRange(FIB, FIE, FEmpty); 733 } 734 return true; 735 } 736 737 /// RescanInstructions - Run ScanInstructions on a pair of blocks. 738 /// @param TIB - True Iterator Begin, points to first non-shared instruction 739 /// @param FIB - False Iterator Begin, points to first non-shared instruction 740 /// @param TIE - True Iterator End, points past last non-shared instruction 741 /// @param FIE - False Iterator End, points past last non-shared instruction 742 /// @param TrueBBI - BBInfo to update for the true block. 743 /// @param FalseBBI - BBInfo to update for the false block. 744 /// @returns - false if either block cannot be predicated or if both blocks end 745 /// with a predicate-clobbering instruction. 746 bool IfConverter::RescanInstructions( 747 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 748 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 749 BBInfo &TrueBBI, BBInfo &FalseBBI) const { 750 bool BranchUnpredicable = true; 751 TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false; 752 ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable); 753 if (TrueBBI.IsUnpredicable) 754 return false; 755 ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable); 756 if (FalseBBI.IsUnpredicable) 757 return false; 758 if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred) 759 return false; 760 return true; 761 } 762 763 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along 764 /// with their common predecessor) form a diamond if a common tail block is 765 /// extracted. 766 /// While not strictly a diamond, this pattern would form a diamond if 767 /// tail-merging had merged the shared tails. 768 /// EBB 769 /// _/ \_ 770 /// | | 771 /// TBB FBB 772 /// / \ / \ 773 /// FalseBB TrueBB FalseBB 774 /// Currently only handles analyzable branches. 775 /// Specifically excludes actual diamonds to avoid overlap. 776 bool IfConverter::ValidForkedDiamond( 777 BBInfo &TrueBBI, BBInfo &FalseBBI, 778 unsigned &Dups1, unsigned &Dups2, 779 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 780 Dups1 = Dups2 = 0; 781 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 782 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 783 return false; 784 785 if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable) 786 return false; 787 // Don't IfConvert blocks that can't be folded into their predecessor. 788 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 789 return false; 790 791 // This function is specifically looking for conditional tails, as 792 // unconditional tails are already handled by the standard diamond case. 793 if (TrueBBI.BrCond.size() == 0 || 794 FalseBBI.BrCond.size() == 0) 795 return false; 796 797 MachineBasicBlock *TT = TrueBBI.TrueBB; 798 MachineBasicBlock *TF = TrueBBI.FalseBB; 799 MachineBasicBlock *FT = FalseBBI.TrueBB; 800 MachineBasicBlock *FF = FalseBBI.FalseBB; 801 802 if (!TT) 803 TT = getNextBlock(*TrueBBI.BB); 804 if (!TF) 805 TF = getNextBlock(*TrueBBI.BB); 806 if (!FT) 807 FT = getNextBlock(*FalseBBI.BB); 808 if (!FF) 809 FF = getNextBlock(*FalseBBI.BB); 810 811 if (!TT || !TF) 812 return false; 813 814 // Check successors. If they don't match, bail. 815 if (!((TT == FT && TF == FF) || (TF == FT && TT == FF))) 816 return false; 817 818 bool FalseReversed = false; 819 if (TF == FT && TT == FF) { 820 // If the branches are opposing, but we can't reverse, don't do it. 821 if (!FalseBBI.IsBrReversible) 822 return false; 823 FalseReversed = true; 824 ReverseBranchCondition(FalseBBI); 825 } 826 auto UnReverseOnExit = make_scope_exit([&]() { 827 if (FalseReversed) 828 ReverseBranchCondition(FalseBBI); 829 }); 830 831 // Count duplicate instructions at the beginning of the true and false blocks. 832 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 833 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 834 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 835 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 836 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 837 *TrueBBI.BB, *FalseBBI.BB, 838 /* SkipUnconditionalBranches */ true)) 839 return false; 840 841 TrueBBICalc.BB = TrueBBI.BB; 842 FalseBBICalc.BB = FalseBBI.BB; 843 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 844 return false; 845 846 // The size is used to decide whether to if-convert, and the shared portions 847 // are subtracted off. Because of the subtraction, we just use the size that 848 // was calculated by the original ScanInstructions, as it is correct. 849 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 850 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 851 return true; 852 } 853 854 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along 855 /// with their common predecessor) forms a valid diamond shape for ifcvt. 856 bool IfConverter::ValidDiamond( 857 BBInfo &TrueBBI, BBInfo &FalseBBI, 858 unsigned &Dups1, unsigned &Dups2, 859 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 860 Dups1 = Dups2 = 0; 861 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 862 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 863 return false; 864 865 MachineBasicBlock *TT = TrueBBI.TrueBB; 866 MachineBasicBlock *FT = FalseBBI.TrueBB; 867 868 if (!TT && blockAlwaysFallThrough(TrueBBI)) 869 TT = getNextBlock(*TrueBBI.BB); 870 if (!FT && blockAlwaysFallThrough(FalseBBI)) 871 FT = getNextBlock(*FalseBBI.BB); 872 if (TT != FT) 873 return false; 874 if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable)) 875 return false; 876 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 877 return false; 878 879 // FIXME: Allow true block to have an early exit? 880 if (TrueBBI.FalseBB || FalseBBI.FalseBB) 881 return false; 882 883 // Count duplicate instructions at the beginning and end of the true and 884 // false blocks. 885 // Skip unconditional branches only if we are considering an analyzable 886 // diamond. Otherwise the branches must be the same. 887 bool SkipUnconditionalBranches = 888 TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable; 889 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 890 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 891 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 892 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 893 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 894 *TrueBBI.BB, *FalseBBI.BB, 895 SkipUnconditionalBranches)) 896 return false; 897 898 TrueBBICalc.BB = TrueBBI.BB; 899 FalseBBICalc.BB = FalseBBI.BB; 900 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 901 return false; 902 // The size is used to decide whether to if-convert, and the shared portions 903 // are subtracted off. Because of the subtraction, we just use the size that 904 // was calculated by the original ScanInstructions, as it is correct. 905 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 906 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 907 return true; 908 } 909 910 /// AnalyzeBranches - Look at the branches at the end of a block to determine if 911 /// the block is predicable. 912 void IfConverter::AnalyzeBranches(BBInfo &BBI) { 913 if (BBI.IsDone) 914 return; 915 916 BBI.TrueBB = BBI.FalseBB = nullptr; 917 BBI.BrCond.clear(); 918 BBI.IsBrAnalyzable = 919 !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond); 920 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 921 BBI.IsBrReversible = (RevCond.size() == 0) || 922 !TII->ReverseBranchCondition(RevCond); 923 BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr; 924 925 if (BBI.BrCond.size()) { 926 // No false branch. This BB must end with a conditional branch and a 927 // fallthrough. 928 if (!BBI.FalseBB) 929 BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB); 930 if (!BBI.FalseBB) { 931 // Malformed bcc? True and false blocks are the same? 932 BBI.IsUnpredicable = true; 933 } 934 } 935 } 936 937 /// ScanInstructions - Scan all the instructions in the block to determine if 938 /// the block is predicable. In most cases, that means all the instructions 939 /// in the block are isPredicable(). Also checks if the block contains any 940 /// instruction which can clobber a predicate (e.g. condition code register). 941 /// If so, the block is not predicable unless it's the last instruction. 942 void IfConverter::ScanInstructions(BBInfo &BBI, 943 MachineBasicBlock::iterator &Begin, 944 MachineBasicBlock::iterator &End, 945 bool BranchUnpredicable) const { 946 if (BBI.IsDone || BBI.IsUnpredicable) 947 return; 948 949 bool AlreadyPredicated = !BBI.Predicate.empty(); 950 951 BBI.NonPredSize = 0; 952 BBI.ExtraCost = 0; 953 BBI.ExtraCost2 = 0; 954 BBI.ClobbersPred = false; 955 for (MachineInstr &MI : make_range(Begin, End)) { 956 if (MI.isDebugValue()) 957 continue; 958 959 // It's unsafe to duplicate convergent instructions in this context, so set 960 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the 961 // following CFG, which is subject to our "simple" transformation. 962 // 963 // BB0 // if (c1) goto BB1; else goto BB2; 964 // / \ 965 // BB1 | 966 // | BB2 // if (c2) goto TBB; else goto FBB; 967 // | / | 968 // | / | 969 // TBB | 970 // | | 971 // | FBB 972 // | 973 // exit 974 // 975 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd 976 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose 977 // TBB contains a convergent instruction. This is safe iff doing so does 978 // not add a control-flow dependency to the convergent instruction -- i.e., 979 // it's safe iff the set of control flows that leads us to the convergent 980 // instruction does not get smaller after the transformation. 981 // 982 // Originally we executed TBB if c1 || c2. After the transformation, there 983 // are two copies of TBB's instructions. We get to the first if c1, and we 984 // get to the second if !c1 && c2. 985 // 986 // There are clearly fewer ways to satisfy the condition "c1" than 987 // "c1 || c2". Since we've shrunk the set of control flows which lead to 988 // our convergent instruction, the transformation is unsafe. 989 if (MI.isNotDuplicable() || MI.isConvergent()) 990 BBI.CannotBeCopied = true; 991 992 bool isPredicated = TII->isPredicated(MI); 993 bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch(); 994 995 if (BranchUnpredicable && MI.isBranch()) { 996 BBI.IsUnpredicable = true; 997 return; 998 } 999 1000 // A conditional branch is not predicable, but it may be eliminated. 1001 if (isCondBr) 1002 continue; 1003 1004 if (!isPredicated) { 1005 BBI.NonPredSize++; 1006 unsigned ExtraPredCost = TII->getPredicationCost(MI); 1007 unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false); 1008 if (NumCycles > 1) 1009 BBI.ExtraCost += NumCycles-1; 1010 BBI.ExtraCost2 += ExtraPredCost; 1011 } else if (!AlreadyPredicated) { 1012 // FIXME: This instruction is already predicated before the 1013 // if-conversion pass. It's probably something like a conditional move. 1014 // Mark this block unpredicable for now. 1015 BBI.IsUnpredicable = true; 1016 return; 1017 } 1018 1019 if (BBI.ClobbersPred && !isPredicated) { 1020 // Predicate modification instruction should end the block (except for 1021 // already predicated instructions and end of block branches). 1022 // Predicate may have been modified, the subsequent (currently) 1023 // unpredicated instructions cannot be correctly predicated. 1024 BBI.IsUnpredicable = true; 1025 return; 1026 } 1027 1028 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are 1029 // still potentially predicable. 1030 std::vector<MachineOperand> PredDefs; 1031 if (TII->DefinesPredicate(MI, PredDefs)) 1032 BBI.ClobbersPred = true; 1033 1034 if (!TII->isPredicable(MI)) { 1035 BBI.IsUnpredicable = true; 1036 return; 1037 } 1038 } 1039 } 1040 1041 /// Determine if the block is a suitable candidate to be predicated by the 1042 /// specified predicate. 1043 /// @param BBI BBInfo for the block to check 1044 /// @param Pred Predicate array for the branch that leads to BBI 1045 /// @param isTriangle true if the Analysis is for a triangle 1046 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false 1047 /// case 1048 /// @param hasCommonTail true if BBI shares a tail with a sibling block that 1049 /// contains any instruction that would make the block unpredicable. 1050 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI, 1051 SmallVectorImpl<MachineOperand> &Pred, 1052 bool isTriangle, bool RevBranch, 1053 bool hasCommonTail) { 1054 // If the block is dead or unpredicable, then it cannot be predicated. 1055 // Two blocks may share a common unpredicable tail, but this doesn't prevent 1056 // them from being if-converted. The non-shared portion is assumed to have 1057 // been checked 1058 if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail)) 1059 return false; 1060 1061 // If it is already predicated but we couldn't analyze its terminator, the 1062 // latter might fallthrough, but we can't determine where to. 1063 // Conservatively avoid if-converting again. 1064 if (BBI.Predicate.size() && !BBI.IsBrAnalyzable) 1065 return false; 1066 1067 // If it is already predicated, check if the new predicate subsumes 1068 // its predicate. 1069 if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate)) 1070 return false; 1071 1072 if (!hasCommonTail && BBI.BrCond.size()) { 1073 if (!isTriangle) 1074 return false; 1075 1076 // Test predicate subsumption. 1077 SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end()); 1078 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1079 if (RevBranch) { 1080 if (TII->ReverseBranchCondition(Cond)) 1081 return false; 1082 } 1083 if (TII->ReverseBranchCondition(RevPred) || 1084 !TII->SubsumesPredicate(Cond, RevPred)) 1085 return false; 1086 } 1087 1088 return true; 1089 } 1090 1091 /// Analyze the structure of the sub-CFG starting from the specified block. 1092 /// Record its successors and whether it looks like an if-conversion candidate. 1093 void IfConverter::AnalyzeBlock( 1094 MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1095 struct BBState { 1096 BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {} 1097 MachineBasicBlock *MBB; 1098 1099 /// This flag is true if MBB's successors have been analyzed. 1100 bool SuccsAnalyzed; 1101 }; 1102 1103 // Push MBB to the stack. 1104 SmallVector<BBState, 16> BBStack(1, MBB); 1105 1106 while (!BBStack.empty()) { 1107 BBState &State = BBStack.back(); 1108 MachineBasicBlock *BB = State.MBB; 1109 BBInfo &BBI = BBAnalysis[BB->getNumber()]; 1110 1111 if (!State.SuccsAnalyzed) { 1112 if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) { 1113 BBStack.pop_back(); 1114 continue; 1115 } 1116 1117 BBI.BB = BB; 1118 BBI.IsBeingAnalyzed = true; 1119 1120 AnalyzeBranches(BBI); 1121 MachineBasicBlock::iterator Begin = BBI.BB->begin(); 1122 MachineBasicBlock::iterator End = BBI.BB->end(); 1123 ScanInstructions(BBI, Begin, End); 1124 1125 // Unanalyzable or ends with fallthrough or unconditional branch, or if is 1126 // not considered for ifcvt anymore. 1127 if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) { 1128 BBI.IsBeingAnalyzed = false; 1129 BBI.IsAnalyzed = true; 1130 BBStack.pop_back(); 1131 continue; 1132 } 1133 1134 // Do not ifcvt if either path is a back edge to the entry block. 1135 if (BBI.TrueBB == BB || BBI.FalseBB == BB) { 1136 BBI.IsBeingAnalyzed = false; 1137 BBI.IsAnalyzed = true; 1138 BBStack.pop_back(); 1139 continue; 1140 } 1141 1142 // Do not ifcvt if true and false fallthrough blocks are the same. 1143 if (!BBI.FalseBB) { 1144 BBI.IsBeingAnalyzed = false; 1145 BBI.IsAnalyzed = true; 1146 BBStack.pop_back(); 1147 continue; 1148 } 1149 1150 // Push the False and True blocks to the stack. 1151 State.SuccsAnalyzed = true; 1152 BBStack.push_back(*BBI.FalseBB); 1153 BBStack.push_back(*BBI.TrueBB); 1154 continue; 1155 } 1156 1157 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1158 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1159 1160 if (TrueBBI.IsDone && FalseBBI.IsDone) { 1161 BBI.IsBeingAnalyzed = false; 1162 BBI.IsAnalyzed = true; 1163 BBStack.pop_back(); 1164 continue; 1165 } 1166 1167 SmallVector<MachineOperand, 4> 1168 RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1169 bool CanRevCond = !TII->ReverseBranchCondition(RevCond); 1170 1171 unsigned Dups = 0; 1172 unsigned Dups2 = 0; 1173 bool TNeedSub = !TrueBBI.Predicate.empty(); 1174 bool FNeedSub = !FalseBBI.Predicate.empty(); 1175 bool Enqueued = false; 1176 1177 BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB); 1178 1179 if (CanRevCond) { 1180 BBInfo TrueBBICalc, FalseBBICalc; 1181 auto feasibleDiamond = [&]() { 1182 bool MeetsSize = MeetIfcvtSizeLimit( 1183 *TrueBBI.BB, (TrueBBICalc.NonPredSize - (Dups + Dups2) + 1184 TrueBBICalc.ExtraCost), TrueBBICalc.ExtraCost2, 1185 *FalseBBI.BB, (FalseBBICalc.NonPredSize - (Dups + Dups2) + 1186 FalseBBICalc.ExtraCost), FalseBBICalc.ExtraCost2, 1187 Prediction); 1188 bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond, 1189 /* IsTriangle */ false, /* RevCond */ false, 1190 /* hasCommonTail */ true); 1191 bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond, 1192 /* IsTriangle */ false, /* RevCond */ false, 1193 /* hasCommonTail */ true); 1194 return MeetsSize && TrueFeasible && FalseFeasible; 1195 }; 1196 1197 if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1198 TrueBBICalc, FalseBBICalc)) { 1199 if (feasibleDiamond()) { 1200 // Diamond: 1201 // EBB 1202 // / \_ 1203 // | | 1204 // TBB FBB 1205 // \ / 1206 // TailBB 1207 // Note TailBB can be empty. 1208 Tokens.push_back(llvm::make_unique<IfcvtToken>( 1209 BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1210 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1211 Enqueued = true; 1212 } 1213 } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1214 TrueBBICalc, FalseBBICalc)) { 1215 if (feasibleDiamond()) { 1216 // ForkedDiamond: 1217 // if TBB and FBB have a common tail that includes their conditional 1218 // branch instructions, then we can If Convert this pattern. 1219 // EBB 1220 // _/ \_ 1221 // | | 1222 // TBB FBB 1223 // / \ / \ 1224 // FalseBB TrueBB FalseBB 1225 // 1226 Tokens.push_back(llvm::make_unique<IfcvtToken>( 1227 BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1228 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1229 Enqueued = true; 1230 } 1231 } 1232 } 1233 1234 if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) && 1235 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1236 TrueBBI.ExtraCost2, Prediction) && 1237 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) { 1238 // Triangle: 1239 // EBB 1240 // | \_ 1241 // | | 1242 // | TBB 1243 // | / 1244 // FBB 1245 Tokens.push_back( 1246 llvm::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups)); 1247 Enqueued = true; 1248 } 1249 1250 if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) && 1251 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1252 TrueBBI.ExtraCost2, Prediction) && 1253 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) { 1254 Tokens.push_back( 1255 llvm::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups)); 1256 Enqueued = true; 1257 } 1258 1259 if (ValidSimple(TrueBBI, Dups, Prediction) && 1260 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1261 TrueBBI.ExtraCost2, Prediction) && 1262 FeasibilityAnalysis(TrueBBI, BBI.BrCond)) { 1263 // Simple (split, no rejoin): 1264 // EBB 1265 // | \_ 1266 // | | 1267 // | TBB---> exit 1268 // | 1269 // FBB 1270 Tokens.push_back( 1271 llvm::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups)); 1272 Enqueued = true; 1273 } 1274 1275 if (CanRevCond) { 1276 // Try the other path... 1277 if (ValidTriangle(FalseBBI, TrueBBI, false, Dups, 1278 Prediction.getCompl()) && 1279 MeetIfcvtSizeLimit(*FalseBBI.BB, 1280 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1281 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1282 FeasibilityAnalysis(FalseBBI, RevCond, true)) { 1283 Tokens.push_back(llvm::make_unique<IfcvtToken>(BBI, ICTriangleFalse, 1284 FNeedSub, Dups)); 1285 Enqueued = true; 1286 } 1287 1288 if (ValidTriangle(FalseBBI, TrueBBI, true, Dups, 1289 Prediction.getCompl()) && 1290 MeetIfcvtSizeLimit(*FalseBBI.BB, 1291 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1292 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1293 FeasibilityAnalysis(FalseBBI, RevCond, true, true)) { 1294 Tokens.push_back( 1295 llvm::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups)); 1296 Enqueued = true; 1297 } 1298 1299 if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) && 1300 MeetIfcvtSizeLimit(*FalseBBI.BB, 1301 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1302 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1303 FeasibilityAnalysis(FalseBBI, RevCond)) { 1304 Tokens.push_back( 1305 llvm::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups)); 1306 Enqueued = true; 1307 } 1308 } 1309 1310 BBI.IsEnqueued = Enqueued; 1311 BBI.IsBeingAnalyzed = false; 1312 BBI.IsAnalyzed = true; 1313 BBStack.pop_back(); 1314 } 1315 } 1316 1317 /// Analyze all blocks and find entries for all if-conversion candidates. 1318 void IfConverter::AnalyzeBlocks( 1319 MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1320 for (MachineBasicBlock &MBB : MF) 1321 AnalyzeBlock(MBB, Tokens); 1322 1323 // Sort to favor more complex ifcvt scheme. 1324 std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp); 1325 } 1326 1327 /// Returns true either if ToMBB is the next block after MBB or that all the 1328 /// intervening blocks are empty (given MBB can fall through to its next block). 1329 static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) { 1330 MachineFunction::iterator PI = MBB.getIterator(); 1331 MachineFunction::iterator I = std::next(PI); 1332 MachineFunction::iterator TI = ToMBB.getIterator(); 1333 MachineFunction::iterator E = MBB.getParent()->end(); 1334 while (I != TI) { 1335 // Check isSuccessor to avoid case where the next block is empty, but 1336 // it's not a successor. 1337 if (I == E || !I->empty() || !PI->isSuccessor(&*I)) 1338 return false; 1339 PI = I++; 1340 } 1341 return true; 1342 } 1343 1344 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it 1345 /// can be if-converted. If predecessor is already enqueued, dequeue it! 1346 void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) { 1347 for (const MachineBasicBlock *Predecessor : MBB.predecessors()) { 1348 BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()]; 1349 if (PBBI.IsDone || PBBI.BB == &MBB) 1350 continue; 1351 PBBI.IsAnalyzed = false; 1352 PBBI.IsEnqueued = false; 1353 } 1354 } 1355 1356 /// Inserts an unconditional branch from \p MBB to \p ToMBB. 1357 static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB, 1358 const TargetInstrInfo *TII) { 1359 DebugLoc dl; // FIXME: this is nowhere 1360 SmallVector<MachineOperand, 0> NoCond; 1361 TII->InsertBranch(MBB, &ToMBB, nullptr, NoCond, dl); 1362 } 1363 1364 /// Remove true / false edges if either / both are no longer successors. 1365 void IfConverter::RemoveExtraEdges(BBInfo &BBI) { 1366 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1367 SmallVector<MachineOperand, 4> Cond; 1368 if (!TII->analyzeBranch(*BBI.BB, TBB, FBB, Cond)) 1369 BBI.BB->CorrectExtraCFGEdges(TBB, FBB, !Cond.empty()); 1370 } 1371 1372 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all 1373 /// values defined in MI which are also live/used by MI. 1374 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) { 1375 const TargetRegisterInfo *TRI = MI.getParent()->getParent() 1376 ->getSubtarget().getRegisterInfo(); 1377 1378 // Before stepping forward past MI, remember which regs were live 1379 // before MI. This is needed to set the Undef flag only when reg is 1380 // dead. 1381 SparseSet<unsigned> LiveBeforeMI; 1382 LiveBeforeMI.setUniverse(TRI->getNumRegs()); 1383 for (unsigned Reg : Redefs) 1384 LiveBeforeMI.insert(Reg); 1385 1386 SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Clobbers; 1387 Redefs.stepForward(MI, Clobbers); 1388 1389 // Now add the implicit uses for each of the clobbered values. 1390 for (auto Clobber : Clobbers) { 1391 // FIXME: Const cast here is nasty, but better than making StepForward 1392 // take a mutable instruction instead of const. 1393 unsigned Reg = Clobber.first; 1394 MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second); 1395 MachineInstr *OpMI = Op.getParent(); 1396 MachineInstrBuilder MIB(*OpMI->getParent()->getParent(), OpMI); 1397 if (Op.isRegMask()) { 1398 // First handle regmasks. They clobber any entries in the mask which 1399 // means that we need a def for those registers. 1400 if (LiveBeforeMI.count(Reg)) 1401 MIB.addReg(Reg, RegState::Implicit); 1402 1403 // We also need to add an implicit def of this register for the later 1404 // use to read from. 1405 // For the register allocator to have allocated a register clobbered 1406 // by the call which is used later, it must be the case that 1407 // the call doesn't return. 1408 MIB.addReg(Reg, RegState::Implicit | RegState::Define); 1409 continue; 1410 } 1411 assert(Op.isReg() && "Register operand required"); 1412 if (Op.isDead()) { 1413 // If we found a dead def, but it needs to be live, then remove the dead 1414 // flag. 1415 if (Redefs.contains(Op.getReg())) 1416 Op.setIsDead(false); 1417 } 1418 if (LiveBeforeMI.count(Reg)) 1419 MIB.addReg(Reg, RegState::Implicit); 1420 } 1421 } 1422 1423 /// Remove kill flags from operands with a registers in the \p DontKill set. 1424 static void RemoveKills(MachineInstr &MI, const LivePhysRegs &DontKill) { 1425 for (MIBundleOperands O(MI); O.isValid(); ++O) { 1426 if (!O->isReg() || !O->isKill()) 1427 continue; 1428 if (DontKill.contains(O->getReg())) 1429 O->setIsKill(false); 1430 } 1431 } 1432 1433 /// Walks a range of machine instructions and removes kill flags for registers 1434 /// in the \p DontKill set. 1435 static void RemoveKills(MachineBasicBlock::iterator I, 1436 MachineBasicBlock::iterator E, 1437 const LivePhysRegs &DontKill, 1438 const MCRegisterInfo &MCRI) { 1439 for (MachineInstr &MI : make_range(I, E)) 1440 RemoveKills(MI, DontKill); 1441 } 1442 1443 /// If convert a simple (split, no rejoin) sub-CFG. 1444 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) { 1445 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1446 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1447 BBInfo *CvtBBI = &TrueBBI; 1448 BBInfo *NextBBI = &FalseBBI; 1449 1450 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1451 if (Kind == ICSimpleFalse) 1452 std::swap(CvtBBI, NextBBI); 1453 1454 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1455 MachineBasicBlock &NextMBB = *NextBBI->BB; 1456 if (CvtBBI->IsDone || 1457 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1458 // Something has changed. It's no longer safe to predicate this block. 1459 BBI.IsAnalyzed = false; 1460 CvtBBI->IsAnalyzed = false; 1461 return false; 1462 } 1463 1464 if (CvtMBB.hasAddressTaken()) 1465 // Conservatively abort if-conversion if BB's address is taken. 1466 return false; 1467 1468 if (Kind == ICSimpleFalse) 1469 if (TII->ReverseBranchCondition(Cond)) 1470 llvm_unreachable("Unable to reverse branch condition!"); 1471 1472 // Initialize liveins to the first BB. These are potentiall redefined by 1473 // predicated instructions. 1474 Redefs.init(TRI); 1475 Redefs.addLiveIns(CvtMBB); 1476 Redefs.addLiveIns(NextMBB); 1477 1478 // Compute a set of registers which must not be killed by instructions in 1479 // BB1: This is everything live-in to BB2. 1480 DontKill.init(TRI); 1481 DontKill.addLiveIns(NextMBB); 1482 1483 if (CvtMBB.pred_size() > 1) { 1484 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); 1485 // Copy instructions in the true block, predicate them, and add them to 1486 // the entry block. 1487 CopyAndPredicateBlock(BBI, *CvtBBI, Cond); 1488 1489 // RemoveExtraEdges won't work if the block has an unanalyzable branch, so 1490 // explicitly remove CvtBBI as a successor. 1491 BBI.BB->removeSuccessor(&CvtMBB, true); 1492 } else { 1493 RemoveKills(CvtMBB.begin(), CvtMBB.end(), DontKill, *TRI); 1494 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1495 1496 // Merge converted block into entry block. 1497 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); 1498 MergeBlocks(BBI, *CvtBBI); 1499 } 1500 1501 bool IterIfcvt = true; 1502 if (!canFallThroughTo(*BBI.BB, NextMBB)) { 1503 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1504 BBI.HasFallThrough = false; 1505 // Now ifcvt'd block will look like this: 1506 // BB: 1507 // ... 1508 // t, f = cmp 1509 // if t op 1510 // b BBf 1511 // 1512 // We cannot further ifcvt this block because the unconditional branch 1513 // will have to be predicated on the new condition, that will not be 1514 // available if cmp executes. 1515 IterIfcvt = false; 1516 } 1517 1518 RemoveExtraEdges(BBI); 1519 1520 // Update block info. BB can be iteratively if-converted. 1521 if (!IterIfcvt) 1522 BBI.IsDone = true; 1523 InvalidatePreds(*BBI.BB); 1524 CvtBBI->IsDone = true; 1525 1526 // FIXME: Must maintain LiveIns. 1527 return true; 1528 } 1529 1530 /// If convert a triangle sub-CFG. 1531 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) { 1532 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1533 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1534 BBInfo *CvtBBI = &TrueBBI; 1535 BBInfo *NextBBI = &FalseBBI; 1536 DebugLoc dl; // FIXME: this is nowhere 1537 1538 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1539 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1540 std::swap(CvtBBI, NextBBI); 1541 1542 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1543 MachineBasicBlock &NextMBB = *NextBBI->BB; 1544 if (CvtBBI->IsDone || 1545 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1546 // Something has changed. It's no longer safe to predicate this block. 1547 BBI.IsAnalyzed = false; 1548 CvtBBI->IsAnalyzed = false; 1549 return false; 1550 } 1551 1552 if (CvtMBB.hasAddressTaken()) 1553 // Conservatively abort if-conversion if BB's address is taken. 1554 return false; 1555 1556 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1557 if (TII->ReverseBranchCondition(Cond)) 1558 llvm_unreachable("Unable to reverse branch condition!"); 1559 1560 if (Kind == ICTriangleRev || Kind == ICTriangleFRev) { 1561 if (ReverseBranchCondition(*CvtBBI)) { 1562 // BB has been changed, modify its predecessors (except for this 1563 // one) so they don't get ifcvt'ed based on bad intel. 1564 for (MachineBasicBlock *PBB : CvtMBB.predecessors()) { 1565 if (PBB == BBI.BB) 1566 continue; 1567 BBInfo &PBBI = BBAnalysis[PBB->getNumber()]; 1568 if (PBBI.IsEnqueued) { 1569 PBBI.IsAnalyzed = false; 1570 PBBI.IsEnqueued = false; 1571 } 1572 } 1573 } 1574 } 1575 1576 // Initialize liveins to the first BB. These are potentially redefined by 1577 // predicated instructions. 1578 Redefs.init(TRI); 1579 Redefs.addLiveIns(CvtMBB); 1580 Redefs.addLiveIns(NextMBB); 1581 1582 DontKill.clear(); 1583 1584 bool HasEarlyExit = CvtBBI->FalseBB != nullptr; 1585 BranchProbability CvtNext, CvtFalse, BBNext, BBCvt; 1586 1587 if (HasEarlyExit) { 1588 // Get probabilities before modifying CvtMBB and BBI.BB. 1589 CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB); 1590 CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB); 1591 BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB); 1592 BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB); 1593 } 1594 1595 if (CvtMBB.pred_size() > 1) { 1596 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); 1597 // Copy instructions in the true block, predicate them, and add them to 1598 // the entry block. 1599 CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true); 1600 1601 // RemoveExtraEdges won't work if the block has an unanalyzable branch, so 1602 // explicitly remove CvtBBI as a successor. 1603 BBI.BB->removeSuccessor(&CvtMBB, true); 1604 } else { 1605 // Predicate the 'true' block after removing its branch. 1606 CvtBBI->NonPredSize -= TII->RemoveBranch(CvtMBB); 1607 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1608 1609 // Now merge the entry of the triangle with the true block. 1610 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); 1611 MergeBlocks(BBI, *CvtBBI, false); 1612 } 1613 1614 // If 'true' block has a 'false' successor, add an exit branch to it. 1615 if (HasEarlyExit) { 1616 SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(), 1617 CvtBBI->BrCond.end()); 1618 if (TII->ReverseBranchCondition(RevCond)) 1619 llvm_unreachable("Unable to reverse branch condition!"); 1620 1621 // Update the edge probability for both CvtBBI->FalseBB and NextBBI. 1622 // NewNext = New_Prob(BBI.BB, NextMBB) = 1623 // Prob(BBI.BB, NextMBB) + 1624 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB) 1625 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) = 1626 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB) 1627 auto NewTrueBB = getNextBlock(*BBI.BB); 1628 auto NewNext = BBNext + BBCvt * CvtNext; 1629 auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB); 1630 if (NewTrueBBIter != BBI.BB->succ_end()) 1631 BBI.BB->setSuccProbability(NewTrueBBIter, NewNext); 1632 1633 auto NewFalse = BBCvt * CvtFalse; 1634 TII->InsertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl); 1635 BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse); 1636 } 1637 1638 // Merge in the 'false' block if the 'false' block has no other 1639 // predecessors. Otherwise, add an unconditional branch to 'false'. 1640 bool FalseBBDead = false; 1641 bool IterIfcvt = true; 1642 bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB); 1643 if (!isFallThrough) { 1644 // Only merge them if the true block does not fallthrough to the false 1645 // block. By not merging them, we make it possible to iteratively 1646 // ifcvt the blocks. 1647 if (!HasEarlyExit && 1648 NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough && 1649 !NextMBB.hasAddressTaken()) { 1650 MergeBlocks(BBI, *NextBBI); 1651 FalseBBDead = true; 1652 } else { 1653 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1654 BBI.HasFallThrough = false; 1655 } 1656 // Mixed predicated and unpredicated code. This cannot be iteratively 1657 // predicated. 1658 IterIfcvt = false; 1659 } 1660 1661 RemoveExtraEdges(BBI); 1662 1663 // Update block info. BB can be iteratively if-converted. 1664 if (!IterIfcvt) 1665 BBI.IsDone = true; 1666 InvalidatePreds(*BBI.BB); 1667 CvtBBI->IsDone = true; 1668 if (FalseBBDead) 1669 NextBBI->IsDone = true; 1670 1671 // FIXME: Must maintain LiveIns. 1672 return true; 1673 } 1674 1675 /// Common code shared between diamond conversions. 1676 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape. 1677 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI 1678 /// and FalseBBI 1679 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI 1680 /// and \p FalseBBI 1681 /// \p RemoveTrueBranch - Remove the branch of the true block before predicating 1682 /// Only false for unanalyzable fallthrough cases. 1683 /// \p RemoveFalseBranch - Remove the branch of the false block before 1684 /// predicating Only false for unanalyzable fallthrough 1685 /// cases. 1686 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for 1687 /// unanalyzable fallthrough 1688 bool IfConverter::IfConvertDiamondCommon( 1689 BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 1690 unsigned NumDups1, unsigned NumDups2, 1691 bool TClobbersPred, bool FClobbersPred, 1692 bool RemoveTrueBranch, bool RemoveFalseBranch, 1693 bool MergeAddEdges) { 1694 1695 if (TrueBBI.IsDone || FalseBBI.IsDone || 1696 TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) { 1697 // Something has changed. It's no longer safe to predicate these blocks. 1698 BBI.IsAnalyzed = false; 1699 TrueBBI.IsAnalyzed = false; 1700 FalseBBI.IsAnalyzed = false; 1701 return false; 1702 } 1703 1704 if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken()) 1705 // Conservatively abort if-conversion if either BB has its address taken. 1706 return false; 1707 1708 // Put the predicated instructions from the 'true' block before the 1709 // instructions from the 'false' block, unless the true block would clobber 1710 // the predicate, in which case, do the opposite. 1711 BBInfo *BBI1 = &TrueBBI; 1712 BBInfo *BBI2 = &FalseBBI; 1713 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1714 if (TII->ReverseBranchCondition(RevCond)) 1715 llvm_unreachable("Unable to reverse branch condition!"); 1716 SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond; 1717 SmallVector<MachineOperand, 4> *Cond2 = &RevCond; 1718 1719 // Figure out the more profitable ordering. 1720 bool DoSwap = false; 1721 if (TClobbersPred && !FClobbersPred) 1722 DoSwap = true; 1723 else if (TClobbersPred == FClobbersPred) { 1724 if (TrueBBI.NonPredSize > FalseBBI.NonPredSize) 1725 DoSwap = true; 1726 } 1727 if (DoSwap) { 1728 std::swap(BBI1, BBI2); 1729 std::swap(Cond1, Cond2); 1730 std::swap(RemoveTrueBranch, RemoveFalseBranch); 1731 } 1732 1733 // Remove the conditional branch from entry to the blocks. 1734 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); 1735 1736 MachineBasicBlock &MBB1 = *BBI1->BB; 1737 MachineBasicBlock &MBB2 = *BBI2->BB; 1738 1739 // Initialize the Redefs: 1740 // - BB2 live-in regs need implicit uses before being redefined by BB1 1741 // instructions. 1742 // - BB1 live-out regs need implicit uses before being redefined by BB2 1743 // instructions. We start with BB1 live-ins so we have the live-out regs 1744 // after tracking the BB1 instructions. 1745 Redefs.init(TRI); 1746 Redefs.addLiveIns(MBB1); 1747 Redefs.addLiveIns(MBB2); 1748 1749 // Remove the duplicated instructions at the beginnings of both paths. 1750 // Skip dbg_value instructions 1751 MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr(); 1752 MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr(); 1753 BBI1->NonPredSize -= NumDups1; 1754 BBI2->NonPredSize -= NumDups1; 1755 1756 // Skip past the dups on each side separately since there may be 1757 // differing dbg_value entries. 1758 for (unsigned i = 0; i < NumDups1; ++DI1) { 1759 if (!DI1->isDebugValue()) 1760 ++i; 1761 } 1762 while (NumDups1 != 0) { 1763 ++DI2; 1764 if (!DI2->isDebugValue()) 1765 --NumDups1; 1766 } 1767 1768 // Compute a set of registers which must not be killed by instructions in BB1: 1769 // This is everything used+live in BB2 after the duplicated instructions. We 1770 // can compute this set by simulating liveness backwards from the end of BB2. 1771 DontKill.init(TRI); 1772 for (const MachineInstr &MI : 1773 make_range(MBB2.rbegin(), MachineBasicBlock::reverse_iterator(DI2))) 1774 DontKill.stepBackward(MI); 1775 1776 for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) { 1777 SmallVector<std::pair<unsigned, const MachineOperand*>, 4> IgnoredClobbers; 1778 Redefs.stepForward(MI, IgnoredClobbers); 1779 } 1780 BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1); 1781 MBB2.erase(MBB2.begin(), DI2); 1782 1783 if (RemoveTrueBranch) 1784 BBI1->NonPredSize -= TII->RemoveBranch(*BBI1->BB); 1785 // Remove duplicated instructions. 1786 DI1 = MBB1.end(); 1787 for (unsigned i = 0; i != NumDups2; ) { 1788 // NumDups2 only counted non-dbg_value instructions, so this won't 1789 // run off the head of the list. 1790 assert(DI1 != MBB1.begin()); 1791 --DI1; 1792 // skip dbg_value instructions 1793 if (!DI1->isDebugValue()) 1794 ++i; 1795 } 1796 MBB1.erase(DI1, MBB1.end()); 1797 1798 // Kill flags in the true block for registers living into the false block 1799 // must be removed. 1800 RemoveKills(MBB1.begin(), MBB1.end(), DontKill, *TRI); 1801 1802 // Remove 'false' block branch, and find the last instruction to predicate. 1803 // Save the debug location. 1804 if (RemoveFalseBranch) 1805 BBI2->NonPredSize -= TII->RemoveBranch(*BBI2->BB); 1806 DI2 = BBI2->BB->end(); 1807 while (NumDups2 != 0) { 1808 // NumDups2 only counted non-dbg_value instructions, so this won't 1809 // run off the head of the list. 1810 assert(DI2 != MBB2.begin()); 1811 --DI2; 1812 // skip dbg_value instructions 1813 if (!DI2->isDebugValue()) 1814 --NumDups2; 1815 } 1816 1817 // Remember which registers would later be defined by the false block. 1818 // This allows us not to predicate instructions in the true block that would 1819 // later be re-defined. That is, rather than 1820 // subeq r0, r1, #1 1821 // addne r0, r1, #1 1822 // generate: 1823 // sub r0, r1, #1 1824 // addne r0, r1, #1 1825 SmallSet<unsigned, 4> RedefsByFalse; 1826 SmallSet<unsigned, 4> ExtUses; 1827 if (TII->isProfitableToUnpredicate(MBB1, MBB2)) { 1828 for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) { 1829 if (FI.isDebugValue()) 1830 continue; 1831 SmallVector<unsigned, 4> Defs; 1832 for (const MachineOperand &MO : FI.operands()) { 1833 if (!MO.isReg()) 1834 continue; 1835 unsigned Reg = MO.getReg(); 1836 if (!Reg) 1837 continue; 1838 if (MO.isDef()) { 1839 Defs.push_back(Reg); 1840 } else if (!RedefsByFalse.count(Reg)) { 1841 // These are defined before ctrl flow reach the 'false' instructions. 1842 // They cannot be modified by the 'true' instructions. 1843 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1844 SubRegs.isValid(); ++SubRegs) 1845 ExtUses.insert(*SubRegs); 1846 } 1847 } 1848 1849 for (unsigned Reg : Defs) { 1850 if (!ExtUses.count(Reg)) { 1851 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1852 SubRegs.isValid(); ++SubRegs) 1853 RedefsByFalse.insert(*SubRegs); 1854 } 1855 } 1856 } 1857 } 1858 1859 // Predicate the 'true' block. 1860 PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse); 1861 1862 // After predicating BBI1, if there is a predicated terminator in BBI1 and 1863 // a non-predicated in BBI2, then we don't want to predicate the one from 1864 // BBI2. The reason is that if we merged these blocks, we would end up with 1865 // two predicated terminators in the same block. 1866 if (!MBB2.empty() && (DI2 == MBB2.end())) { 1867 MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator(); 1868 MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator(); 1869 if (BBI1T != MBB1.end() && TII->isPredicated(*BBI1T) && 1870 BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T)) 1871 --DI2; 1872 } 1873 1874 // Predicate the 'false' block. 1875 PredicateBlock(*BBI2, DI2, *Cond2); 1876 1877 // Merge the true block into the entry of the diamond. 1878 MergeBlocks(BBI, *BBI1, MergeAddEdges); 1879 MergeBlocks(BBI, *BBI2, MergeAddEdges); 1880 return true; 1881 } 1882 1883 /// If convert an almost-diamond sub-CFG where the true 1884 /// and false blocks share a common tail. 1885 bool IfConverter::IfConvertForkedDiamond( 1886 BBInfo &BBI, IfcvtKind Kind, 1887 unsigned NumDups1, unsigned NumDups2, 1888 bool TClobbersPred, bool FClobbersPred) { 1889 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1890 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1891 1892 // Save the debug location for later. 1893 DebugLoc dl; 1894 MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator(); 1895 if (TIE != TrueBBI.BB->end()) 1896 dl = TIE->getDebugLoc(); 1897 // Removing branches from both blocks is safe, because we have already 1898 // determined that both blocks have the same branch instructions. The branch 1899 // will be added back at the end, unpredicated. 1900 if (!IfConvertDiamondCommon( 1901 BBI, TrueBBI, FalseBBI, 1902 NumDups1, NumDups2, 1903 TClobbersPred, FClobbersPred, 1904 /* RemoveTrueBranch */ true, /* RemoveFalseBranch */ true, 1905 /* MergeAddEdges */ true)) 1906 return false; 1907 1908 // Add back the branch. 1909 // Debug location saved above when removing the branch from BBI2 1910 TII->InsertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB, 1911 TrueBBI.BrCond, dl); 1912 1913 RemoveExtraEdges(BBI); 1914 1915 // Update block info. 1916 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 1917 InvalidatePreds(*BBI.BB); 1918 1919 // FIXME: Must maintain LiveIns. 1920 return true; 1921 } 1922 1923 /// If convert a diamond sub-CFG. 1924 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 1925 unsigned NumDups1, unsigned NumDups2, 1926 bool TClobbersPred, bool FClobbersPred) { 1927 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1928 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1929 MachineBasicBlock *TailBB = TrueBBI.TrueBB; 1930 1931 // True block must fall through or end with an unanalyzable terminator. 1932 if (!TailBB) { 1933 if (blockAlwaysFallThrough(TrueBBI)) 1934 TailBB = FalseBBI.TrueBB; 1935 assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!"); 1936 } 1937 1938 if (!IfConvertDiamondCommon( 1939 BBI, TrueBBI, FalseBBI, 1940 NumDups1, NumDups2, 1941 TrueBBI.ClobbersPred, FalseBBI.ClobbersPred, 1942 /* RemoveTrueBranch */ TrueBBI.IsBrAnalyzable, 1943 /* RemoveFalseBranch */ FalseBBI.IsBrAnalyzable, 1944 /* MergeAddEdges */ TailBB == nullptr)) 1945 return false; 1946 1947 // If the if-converted block falls through or unconditionally branches into 1948 // the tail block, and the tail block does not have other predecessors, then 1949 // fold the tail block in as well. Otherwise, unless it falls through to the 1950 // tail, add a unconditional branch to it. 1951 if (TailBB) { 1952 BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()]; 1953 bool CanMergeTail = !TailBBI.HasFallThrough && 1954 !TailBBI.BB->hasAddressTaken(); 1955 // The if-converted block can still have a predicated terminator 1956 // (e.g. a predicated return). If that is the case, we cannot merge 1957 // it with the tail block. 1958 MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator(); 1959 if (TI != BBI.BB->end() && TII->isPredicated(*TI)) 1960 CanMergeTail = false; 1961 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB; 1962 // check if there are any other predecessors besides those. 1963 unsigned NumPreds = TailBB->pred_size(); 1964 if (NumPreds > 1) 1965 CanMergeTail = false; 1966 else if (NumPreds == 1 && CanMergeTail) { 1967 MachineBasicBlock::pred_iterator PI = TailBB->pred_begin(); 1968 if (*PI != TrueBBI.BB && *PI != FalseBBI.BB) 1969 CanMergeTail = false; 1970 } 1971 if (CanMergeTail) { 1972 MergeBlocks(BBI, TailBBI); 1973 TailBBI.IsDone = true; 1974 } else { 1975 BBI.BB->addSuccessor(TailBB, BranchProbability::getOne()); 1976 InsertUncondBranch(*BBI.BB, *TailBB, TII); 1977 BBI.HasFallThrough = false; 1978 } 1979 } 1980 1981 // RemoveExtraEdges won't work if the block has an unanalyzable branch, 1982 // which can happen here if TailBB is unanalyzable and is merged, so 1983 // explicitly remove BBI1 and BBI2 as successors. 1984 BBI.BB->removeSuccessor(TrueBBI.BB); 1985 BBI.BB->removeSuccessor(FalseBBI.BB, /* NormalizeSuccessProbs */ true); 1986 RemoveExtraEdges(BBI); 1987 1988 // Update block info. 1989 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 1990 InvalidatePreds(*BBI.BB); 1991 1992 // FIXME: Must maintain LiveIns. 1993 return true; 1994 } 1995 1996 static bool MaySpeculate(const MachineInstr &MI, 1997 SmallSet<unsigned, 4> &LaterRedefs) { 1998 bool SawStore = true; 1999 if (!MI.isSafeToMove(nullptr, SawStore)) 2000 return false; 2001 2002 for (const MachineOperand &MO : MI.operands()) { 2003 if (!MO.isReg()) 2004 continue; 2005 unsigned Reg = MO.getReg(); 2006 if (!Reg) 2007 continue; 2008 if (MO.isDef() && !LaterRedefs.count(Reg)) 2009 return false; 2010 } 2011 2012 return true; 2013 } 2014 2015 /// Predicate instructions from the start of the block to the specified end with 2016 /// the specified condition. 2017 void IfConverter::PredicateBlock(BBInfo &BBI, 2018 MachineBasicBlock::iterator E, 2019 SmallVectorImpl<MachineOperand> &Cond, 2020 SmallSet<unsigned, 4> *LaterRedefs) { 2021 bool AnyUnpred = false; 2022 bool MaySpec = LaterRedefs != nullptr; 2023 for (MachineInstr &I : make_range(BBI.BB->begin(), E)) { 2024 if (I.isDebugValue() || TII->isPredicated(I)) 2025 continue; 2026 // It may be possible not to predicate an instruction if it's the 'true' 2027 // side of a diamond and the 'false' side may re-define the instruction's 2028 // defs. 2029 if (MaySpec && MaySpeculate(I, *LaterRedefs)) { 2030 AnyUnpred = true; 2031 continue; 2032 } 2033 // If any instruction is predicated, then every instruction after it must 2034 // be predicated. 2035 MaySpec = false; 2036 if (!TII->PredicateInstruction(I, Cond)) { 2037 #ifndef NDEBUG 2038 dbgs() << "Unable to predicate " << I << "!\n"; 2039 #endif 2040 llvm_unreachable(nullptr); 2041 } 2042 2043 // If the predicated instruction now redefines a register as the result of 2044 // if-conversion, add an implicit kill. 2045 UpdatePredRedefs(I, Redefs); 2046 } 2047 2048 BBI.Predicate.append(Cond.begin(), Cond.end()); 2049 2050 BBI.IsAnalyzed = false; 2051 BBI.NonPredSize = 0; 2052 2053 ++NumIfConvBBs; 2054 if (AnyUnpred) 2055 ++NumUnpred; 2056 } 2057 2058 /// Copy and predicate instructions from source BB to the destination block. 2059 /// Skip end of block branches if IgnoreBr is true. 2060 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 2061 SmallVectorImpl<MachineOperand> &Cond, 2062 bool IgnoreBr) { 2063 MachineFunction &MF = *ToBBI.BB->getParent(); 2064 2065 MachineBasicBlock &FromMBB = *FromBBI.BB; 2066 for (MachineInstr &I : FromMBB) { 2067 // Do not copy the end of the block branches. 2068 if (IgnoreBr && I.isBranch()) 2069 break; 2070 2071 MachineInstr *MI = MF.CloneMachineInstr(&I); 2072 ToBBI.BB->insert(ToBBI.BB->end(), MI); 2073 ToBBI.NonPredSize++; 2074 unsigned ExtraPredCost = TII->getPredicationCost(I); 2075 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); 2076 if (NumCycles > 1) 2077 ToBBI.ExtraCost += NumCycles-1; 2078 ToBBI.ExtraCost2 += ExtraPredCost; 2079 2080 if (!TII->isPredicated(I) && !MI->isDebugValue()) { 2081 if (!TII->PredicateInstruction(*MI, Cond)) { 2082 #ifndef NDEBUG 2083 dbgs() << "Unable to predicate " << I << "!\n"; 2084 #endif 2085 llvm_unreachable(nullptr); 2086 } 2087 } 2088 2089 // If the predicated instruction now redefines a register as the result of 2090 // if-conversion, add an implicit kill. 2091 UpdatePredRedefs(*MI, Redefs); 2092 2093 // Some kill flags may not be correct anymore. 2094 if (!DontKill.empty()) 2095 RemoveKills(*MI, DontKill); 2096 } 2097 2098 if (!IgnoreBr) { 2099 std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(), 2100 FromMBB.succ_end()); 2101 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2102 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2103 2104 for (MachineBasicBlock *Succ : Succs) { 2105 // Fallthrough edge can't be transferred. 2106 if (Succ == FallThrough) 2107 continue; 2108 ToBBI.BB->addSuccessor(Succ); 2109 } 2110 } 2111 2112 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2113 ToBBI.Predicate.append(Cond.begin(), Cond.end()); 2114 2115 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2116 ToBBI.IsAnalyzed = false; 2117 2118 ++NumDupBBs; 2119 } 2120 2121 /// Move all instructions from FromBB to the end of ToBB. This will leave 2122 /// FromBB as an empty block, so remove all of its successor edges except for 2123 /// the fall-through edge. If AddEdges is true, i.e., when FromBBI's branch is 2124 /// being moved, add those successor edges to ToBBI. 2125 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) { 2126 MachineBasicBlock &FromMBB = *FromBBI.BB; 2127 assert(!FromMBB.hasAddressTaken() && 2128 "Removing a BB whose address is taken!"); 2129 2130 // In case FromMBB contains terminators (e.g. return instruction), 2131 // first move the non-terminator instructions, then the terminators. 2132 MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator(); 2133 MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator(); 2134 ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI); 2135 2136 // If FromBB has non-predicated terminator we should copy it at the end. 2137 if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI)) 2138 ToTI = ToBBI.BB->end(); 2139 ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end()); 2140 2141 // Force normalizing the successors' probabilities of ToBBI.BB to convert all 2142 // unknown probabilities into known ones. 2143 // FIXME: This usage is too tricky and in the future we would like to 2144 // eliminate all unknown probabilities in MBB. 2145 ToBBI.BB->normalizeSuccProbs(); 2146 2147 SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(), 2148 FromMBB.succ_end()); 2149 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2150 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2151 // The edge probability from ToBBI.BB to FromMBB, which is only needed when 2152 // AddEdges is true and FromMBB is a successor of ToBBI.BB. 2153 auto To2FromProb = BranchProbability::getZero(); 2154 if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) { 2155 To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB); 2156 // Set the edge probability from ToBBI.BB to FromMBB to zero to avoid the 2157 // edge probability being merged to other edges when this edge is removed 2158 // later. 2159 ToBBI.BB->setSuccProbability(find(ToBBI.BB->successors(), &FromMBB), 2160 BranchProbability::getZero()); 2161 } 2162 2163 for (MachineBasicBlock *Succ : FromSuccs) { 2164 // Fallthrough edge can't be transferred. 2165 if (Succ == FallThrough) 2166 continue; 2167 2168 auto NewProb = BranchProbability::getZero(); 2169 if (AddEdges) { 2170 // Calculate the edge probability for the edge from ToBBI.BB to Succ, 2171 // which is a portion of the edge probability from FromMBB to Succ. The 2172 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if 2173 // FromBBI is a successor of ToBBI.BB. See comment below for excepion). 2174 NewProb = MBPI->getEdgeProbability(&FromMBB, Succ); 2175 2176 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This 2177 // only happens when if-converting a diamond CFG and FromMBB is the 2178 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we 2179 // could just use the probabilities on FromMBB's out-edges when adding 2180 // new successors. 2181 if (!To2FromProb.isZero()) 2182 NewProb *= To2FromProb; 2183 } 2184 2185 FromMBB.removeSuccessor(Succ); 2186 2187 if (AddEdges) { 2188 // If the edge from ToBBI.BB to Succ already exists, update the 2189 // probability of this edge by adding NewProb to it. An example is shown 2190 // below, in which A is ToBBI.BB and B is FromMBB. In this case we 2191 // don't have to set C as A's successor as it already is. We only need to 2192 // update the edge probability on A->C. Note that B will not be 2193 // immediately removed from A's successors. It is possible that B->D is 2194 // not removed either if D is a fallthrough of B. Later the edge A->D 2195 // (generated here) and B->D will be combined into one edge. To maintain 2196 // correct edge probability of this combined edge, we need to set the edge 2197 // probability of A->B to zero, which is already done above. The edge 2198 // probability on A->D is calculated by scaling the original probability 2199 // on A->B by the probability of B->D. 2200 // 2201 // Before ifcvt: After ifcvt (assume B->D is kept): 2202 // 2203 // A A 2204 // /| /|\ 2205 // / B / B| 2206 // | /| | || 2207 // |/ | | |/ 2208 // C D C D 2209 // 2210 if (ToBBI.BB->isSuccessor(Succ)) 2211 ToBBI.BB->setSuccProbability( 2212 find(ToBBI.BB->successors(), Succ), 2213 MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb); 2214 else 2215 ToBBI.BB->addSuccessor(Succ, NewProb); 2216 } 2217 } 2218 2219 // Now FromBBI always falls through to the next block! 2220 if (NBB && !FromMBB.isSuccessor(NBB)) 2221 FromMBB.addSuccessor(NBB); 2222 2223 // Normalize the probabilities of ToBBI.BB's successors with all adjustment 2224 // we've done above. 2225 ToBBI.BB->normalizeSuccProbs(); 2226 2227 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2228 FromBBI.Predicate.clear(); 2229 2230 ToBBI.NonPredSize += FromBBI.NonPredSize; 2231 ToBBI.ExtraCost += FromBBI.ExtraCost; 2232 ToBBI.ExtraCost2 += FromBBI.ExtraCost2; 2233 FromBBI.NonPredSize = 0; 2234 FromBBI.ExtraCost = 0; 2235 FromBBI.ExtraCost2 = 0; 2236 2237 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2238 ToBBI.HasFallThrough = FromBBI.HasFallThrough; 2239 ToBBI.IsAnalyzed = false; 2240 FromBBI.IsAnalyzed = false; 2241 } 2242 2243 FunctionPass * 2244 llvm::createIfConverter(std::function<bool(const Function &)> Ftor) { 2245 return new IfConverter(std::move(Ftor)); 2246 } 2247