1 //===- IfConversion.cpp - Machine code if conversion pass -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the machine instruction level if-conversion pass, which 10 // tries to convert conditional branches into predicated instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "BranchFolding.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/SparseSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/CodeGen/LivePhysRegs.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 25 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineModuleInfo.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSchedule.h" 37 #include "llvm/CodeGen/TargetSubtargetInfo.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/BranchProbability.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <functional> 49 #include <iterator> 50 #include <memory> 51 #include <utility> 52 #include <vector> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "if-converter" 57 58 // Hidden options for help debugging. 59 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden); 60 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden); 61 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden); 62 static cl::opt<bool> DisableSimple("disable-ifcvt-simple", 63 cl::init(false), cl::Hidden); 64 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false", 65 cl::init(false), cl::Hidden); 66 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle", 67 cl::init(false), cl::Hidden); 68 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev", 69 cl::init(false), cl::Hidden); 70 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false", 71 cl::init(false), cl::Hidden); 72 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev", 73 cl::init(false), cl::Hidden); 74 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond", 75 cl::init(false), cl::Hidden); 76 static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond", 77 cl::init(false), cl::Hidden); 78 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold", 79 cl::init(true), cl::Hidden); 80 81 STATISTIC(NumSimple, "Number of simple if-conversions performed"); 82 STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed"); 83 STATISTIC(NumTriangle, "Number of triangle if-conversions performed"); 84 STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed"); 85 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed"); 86 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed"); 87 STATISTIC(NumDiamonds, "Number of diamond if-conversions performed"); 88 STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed"); 89 STATISTIC(NumIfConvBBs, "Number of if-converted blocks"); 90 STATISTIC(NumDupBBs, "Number of duplicated blocks"); 91 STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated"); 92 93 namespace { 94 95 class IfConverter : public MachineFunctionPass { 96 enum IfcvtKind { 97 ICNotClassfied, // BB data valid, but not classified. 98 ICSimpleFalse, // Same as ICSimple, but on the false path. 99 ICSimple, // BB is entry of an one split, no rejoin sub-CFG. 100 ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition. 101 ICTriangleRev, // Same as ICTriangle, but true path rev condition. 102 ICTriangleFalse, // Same as ICTriangle, but on the false path. 103 ICTriangle, // BB is entry of a triangle sub-CFG. 104 ICDiamond, // BB is entry of a diamond sub-CFG. 105 ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a 106 // common tail that can be shared. 107 }; 108 109 /// One per MachineBasicBlock, this is used to cache the result 110 /// if-conversion feasibility analysis. This includes results from 111 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its 112 /// classification, and common tail block of its successors (if it's a 113 /// diamond shape), its size, whether it's predicable, and whether any 114 /// instruction can clobber the 'would-be' predicate. 115 /// 116 /// IsDone - True if BB is not to be considered for ifcvt. 117 /// IsBeingAnalyzed - True if BB is currently being analyzed. 118 /// IsAnalyzed - True if BB has been analyzed (info is still valid). 119 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed. 120 /// IsBrAnalyzable - True if analyzeBranch() returns false. 121 /// HasFallThrough - True if BB may fallthrough to the following BB. 122 /// IsUnpredicable - True if BB is known to be unpredicable. 123 /// ClobbersPred - True if BB could modify predicates (e.g. has 124 /// cmp, call, etc.) 125 /// NonPredSize - Number of non-predicated instructions. 126 /// ExtraCost - Extra cost for multi-cycle instructions. 127 /// ExtraCost2 - Some instructions are slower when predicated 128 /// BB - Corresponding MachineBasicBlock. 129 /// TrueBB / FalseBB- See analyzeBranch(). 130 /// BrCond - Conditions for end of block conditional branches. 131 /// Predicate - Predicate used in the BB. 132 struct BBInfo { 133 bool IsDone : 1; 134 bool IsBeingAnalyzed : 1; 135 bool IsAnalyzed : 1; 136 bool IsEnqueued : 1; 137 bool IsBrAnalyzable : 1; 138 bool IsBrReversible : 1; 139 bool HasFallThrough : 1; 140 bool IsUnpredicable : 1; 141 bool CannotBeCopied : 1; 142 bool ClobbersPred : 1; 143 unsigned NonPredSize = 0; 144 unsigned ExtraCost = 0; 145 unsigned ExtraCost2 = 0; 146 MachineBasicBlock *BB = nullptr; 147 MachineBasicBlock *TrueBB = nullptr; 148 MachineBasicBlock *FalseBB = nullptr; 149 SmallVector<MachineOperand, 4> BrCond; 150 SmallVector<MachineOperand, 4> Predicate; 151 152 BBInfo() : IsDone(false), IsBeingAnalyzed(false), 153 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false), 154 IsBrReversible(false), HasFallThrough(false), 155 IsUnpredicable(false), CannotBeCopied(false), 156 ClobbersPred(false) {} 157 }; 158 159 /// Record information about pending if-conversions to attempt: 160 /// BBI - Corresponding BBInfo. 161 /// Kind - Type of block. See IfcvtKind. 162 /// NeedSubsumption - True if the to-be-predicated BB has already been 163 /// predicated. 164 /// NumDups - Number of instructions that would be duplicated due 165 /// to this if-conversion. (For diamonds, the number of 166 /// identical instructions at the beginnings of both 167 /// paths). 168 /// NumDups2 - For diamonds, the number of identical instructions 169 /// at the ends of both paths. 170 struct IfcvtToken { 171 BBInfo &BBI; 172 IfcvtKind Kind; 173 unsigned NumDups; 174 unsigned NumDups2; 175 bool NeedSubsumption : 1; 176 bool TClobbersPred : 1; 177 bool FClobbersPred : 1; 178 179 IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0, 180 bool tc = false, bool fc = false) 181 : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s), 182 TClobbersPred(tc), FClobbersPred(fc) {} 183 }; 184 185 /// Results of if-conversion feasibility analysis indexed by basic block 186 /// number. 187 std::vector<BBInfo> BBAnalysis; 188 TargetSchedModel SchedModel; 189 190 const TargetLoweringBase *TLI; 191 const TargetInstrInfo *TII; 192 const TargetRegisterInfo *TRI; 193 const MachineBranchProbabilityInfo *MBPI; 194 MachineRegisterInfo *MRI; 195 196 LivePhysRegs Redefs; 197 198 bool PreRegAlloc; 199 bool MadeChange; 200 int FnNum = -1; 201 std::function<bool(const MachineFunction &)> PredicateFtor; 202 203 public: 204 static char ID; 205 206 IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr) 207 : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) { 208 initializeIfConverterPass(*PassRegistry::getPassRegistry()); 209 } 210 211 void getAnalysisUsage(AnalysisUsage &AU) const override { 212 AU.addRequired<MachineBlockFrequencyInfo>(); 213 AU.addRequired<MachineBranchProbabilityInfo>(); 214 MachineFunctionPass::getAnalysisUsage(AU); 215 } 216 217 bool runOnMachineFunction(MachineFunction &MF) override; 218 219 MachineFunctionProperties getRequiredProperties() const override { 220 return MachineFunctionProperties().set( 221 MachineFunctionProperties::Property::NoVRegs); 222 } 223 224 private: 225 bool reverseBranchCondition(BBInfo &BBI) const; 226 bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 227 BranchProbability Prediction) const; 228 bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 229 bool FalseBranch, unsigned &Dups, 230 BranchProbability Prediction) const; 231 bool CountDuplicatedInstructions( 232 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 233 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 234 unsigned &Dups1, unsigned &Dups2, 235 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 236 bool SkipUnconditionalBranches) const; 237 bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 238 unsigned &Dups1, unsigned &Dups2, 239 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 240 bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 241 unsigned &Dups1, unsigned &Dups2, 242 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 243 void AnalyzeBranches(BBInfo &BBI); 244 void ScanInstructions(BBInfo &BBI, 245 MachineBasicBlock::iterator &Begin, 246 MachineBasicBlock::iterator &End, 247 bool BranchUnpredicable = false) const; 248 bool RescanInstructions( 249 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 250 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 251 BBInfo &TrueBBI, BBInfo &FalseBBI) const; 252 void AnalyzeBlock(MachineBasicBlock &MBB, 253 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 254 bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred, 255 bool isTriangle = false, bool RevBranch = false, 256 bool hasCommonTail = false); 257 void AnalyzeBlocks(MachineFunction &MF, 258 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 259 void InvalidatePreds(MachineBasicBlock &MBB); 260 bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind); 261 bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind); 262 bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 263 unsigned NumDups1, unsigned NumDups2, 264 bool TClobbersPred, bool FClobbersPred, 265 bool RemoveBranch, bool MergeAddEdges); 266 bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 267 unsigned NumDups1, unsigned NumDups2, 268 bool TClobbers, bool FClobbers); 269 bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind, 270 unsigned NumDups1, unsigned NumDups2, 271 bool TClobbers, bool FClobbers); 272 void PredicateBlock(BBInfo &BBI, 273 MachineBasicBlock::iterator E, 274 SmallVectorImpl<MachineOperand> &Cond, 275 SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr); 276 void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 277 SmallVectorImpl<MachineOperand> &Cond, 278 bool IgnoreBr = false); 279 void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true); 280 281 bool MeetIfcvtSizeLimit(MachineBasicBlock &BB, 282 unsigned Cycle, unsigned Extra, 283 BranchProbability Prediction) const { 284 return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra, 285 Prediction); 286 } 287 288 bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB, 289 unsigned TCycle, unsigned TExtra, 290 MachineBasicBlock &FBB, 291 unsigned FCycle, unsigned FExtra, 292 BranchProbability Prediction) const { 293 return TCycle > 0 && FCycle > 0 && 294 TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra, 295 Prediction); 296 } 297 298 /// Returns true if Block ends without a terminator. 299 bool blockAlwaysFallThrough(BBInfo &BBI) const { 300 return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr; 301 } 302 303 /// Used to sort if-conversion candidates. 304 static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1, 305 const std::unique_ptr<IfcvtToken> &C2) { 306 int Incr1 = (C1->Kind == ICDiamond) 307 ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups; 308 int Incr2 = (C2->Kind == ICDiamond) 309 ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups; 310 if (Incr1 > Incr2) 311 return true; 312 else if (Incr1 == Incr2) { 313 // Favors subsumption. 314 if (!C1->NeedSubsumption && C2->NeedSubsumption) 315 return true; 316 else if (C1->NeedSubsumption == C2->NeedSubsumption) { 317 // Favors diamond over triangle, etc. 318 if ((unsigned)C1->Kind < (unsigned)C2->Kind) 319 return true; 320 else if (C1->Kind == C2->Kind) 321 return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber(); 322 } 323 } 324 return false; 325 } 326 }; 327 328 } // end anonymous namespace 329 330 char IfConverter::ID = 0; 331 332 char &llvm::IfConverterID = IfConverter::ID; 333 334 INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false) 335 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 336 INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false) 337 338 bool IfConverter::runOnMachineFunction(MachineFunction &MF) { 339 if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF))) 340 return false; 341 342 const TargetSubtargetInfo &ST = MF.getSubtarget(); 343 TLI = ST.getTargetLowering(); 344 TII = ST.getInstrInfo(); 345 TRI = ST.getRegisterInfo(); 346 BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>()); 347 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 348 MRI = &MF.getRegInfo(); 349 SchedModel.init(&ST); 350 351 if (!TII) return false; 352 353 PreRegAlloc = MRI->isSSA(); 354 355 bool BFChange = false; 356 if (!PreRegAlloc) { 357 // Tail merge tend to expose more if-conversion opportunities. 358 BranchFolder BF(true, false, MBFI, *MBPI); 359 BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(), 360 getAnalysisIfAvailable<MachineModuleInfo>()); 361 } 362 363 LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'" 364 << MF.getName() << "\'"); 365 366 if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) { 367 LLVM_DEBUG(dbgs() << " skipped\n"); 368 return false; 369 } 370 LLVM_DEBUG(dbgs() << "\n"); 371 372 MF.RenumberBlocks(); 373 BBAnalysis.resize(MF.getNumBlockIDs()); 374 375 std::vector<std::unique_ptr<IfcvtToken>> Tokens; 376 MadeChange = false; 377 unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + 378 NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds; 379 while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) { 380 // Do an initial analysis for each basic block and find all the potential 381 // candidates to perform if-conversion. 382 bool Change = false; 383 AnalyzeBlocks(MF, Tokens); 384 while (!Tokens.empty()) { 385 std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back()); 386 Tokens.pop_back(); 387 BBInfo &BBI = Token->BBI; 388 IfcvtKind Kind = Token->Kind; 389 unsigned NumDups = Token->NumDups; 390 unsigned NumDups2 = Token->NumDups2; 391 392 // If the block has been evicted out of the queue or it has already been 393 // marked dead (due to it being predicated), then skip it. 394 if (BBI.IsDone) 395 BBI.IsEnqueued = false; 396 if (!BBI.IsEnqueued) 397 continue; 398 399 BBI.IsEnqueued = false; 400 401 bool RetVal = false; 402 switch (Kind) { 403 default: llvm_unreachable("Unexpected!"); 404 case ICSimple: 405 case ICSimpleFalse: { 406 bool isFalse = Kind == ICSimpleFalse; 407 if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break; 408 LLVM_DEBUG(dbgs() << "Ifcvt (Simple" 409 << (Kind == ICSimpleFalse ? " false" : "") 410 << "): " << printMBBReference(*BBI.BB) << " (" 411 << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber() 412 : BBI.TrueBB->getNumber()) 413 << ") "); 414 RetVal = IfConvertSimple(BBI, Kind); 415 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 416 if (RetVal) { 417 if (isFalse) ++NumSimpleFalse; 418 else ++NumSimple; 419 } 420 break; 421 } 422 case ICTriangle: 423 case ICTriangleRev: 424 case ICTriangleFalse: 425 case ICTriangleFRev: { 426 bool isFalse = Kind == ICTriangleFalse; 427 bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev); 428 if (DisableTriangle && !isFalse && !isRev) break; 429 if (DisableTriangleR && !isFalse && isRev) break; 430 if (DisableTriangleF && isFalse && !isRev) break; 431 if (DisableTriangleFR && isFalse && isRev) break; 432 LLVM_DEBUG(dbgs() << "Ifcvt (Triangle"); 433 if (isFalse) 434 LLVM_DEBUG(dbgs() << " false"); 435 if (isRev) 436 LLVM_DEBUG(dbgs() << " rev"); 437 LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB) 438 << " (T:" << BBI.TrueBB->getNumber() 439 << ",F:" << BBI.FalseBB->getNumber() << ") "); 440 RetVal = IfConvertTriangle(BBI, Kind); 441 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 442 if (RetVal) { 443 if (isFalse) { 444 if (isRev) ++NumTriangleFRev; 445 else ++NumTriangleFalse; 446 } else { 447 if (isRev) ++NumTriangleRev; 448 else ++NumTriangle; 449 } 450 } 451 break; 452 } 453 case ICDiamond: 454 if (DisableDiamond) break; 455 LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB) 456 << " (T:" << BBI.TrueBB->getNumber() 457 << ",F:" << BBI.FalseBB->getNumber() << ") "); 458 RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2, 459 Token->TClobbersPred, 460 Token->FClobbersPred); 461 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 462 if (RetVal) ++NumDiamonds; 463 break; 464 case ICForkedDiamond: 465 if (DisableForkedDiamond) break; 466 LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): " 467 << printMBBReference(*BBI.BB) 468 << " (T:" << BBI.TrueBB->getNumber() 469 << ",F:" << BBI.FalseBB->getNumber() << ") "); 470 RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2, 471 Token->TClobbersPred, 472 Token->FClobbersPred); 473 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 474 if (RetVal) ++NumForkedDiamonds; 475 break; 476 } 477 478 if (RetVal && MRI->tracksLiveness()) 479 recomputeLivenessFlags(*BBI.BB); 480 481 Change |= RetVal; 482 483 NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev + 484 NumTriangleFalse + NumTriangleFRev + NumDiamonds; 485 if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit) 486 break; 487 } 488 489 if (!Change) 490 break; 491 MadeChange |= Change; 492 } 493 494 Tokens.clear(); 495 BBAnalysis.clear(); 496 497 if (MadeChange && IfCvtBranchFold) { 498 BranchFolder BF(false, false, MBFI, *MBPI); 499 BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 500 getAnalysisIfAvailable<MachineModuleInfo>()); 501 } 502 503 MadeChange |= BFChange; 504 return MadeChange; 505 } 506 507 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor. 508 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 509 MachineBasicBlock *TrueBB) { 510 for (MachineBasicBlock *SuccBB : BB->successors()) { 511 if (SuccBB != TrueBB) 512 return SuccBB; 513 } 514 return nullptr; 515 } 516 517 /// Reverse the condition of the end of the block branch. Swap block's 'true' 518 /// and 'false' successors. 519 bool IfConverter::reverseBranchCondition(BBInfo &BBI) const { 520 DebugLoc dl; // FIXME: this is nowhere 521 if (!TII->reverseBranchCondition(BBI.BrCond)) { 522 TII->removeBranch(*BBI.BB); 523 TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl); 524 std::swap(BBI.TrueBB, BBI.FalseBB); 525 return true; 526 } 527 return false; 528 } 529 530 /// Returns the next block in the function blocks ordering. If it is the end, 531 /// returns NULL. 532 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) { 533 MachineFunction::iterator I = MBB.getIterator(); 534 MachineFunction::iterator E = MBB.getParent()->end(); 535 if (++I == E) 536 return nullptr; 537 return &*I; 538 } 539 540 /// Returns true if the 'true' block (along with its predecessor) forms a valid 541 /// simple shape for ifcvt. It also returns the number of instructions that the 542 /// ifcvt would need to duplicate if performed in Dups. 543 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 544 BranchProbability Prediction) const { 545 Dups = 0; 546 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 547 return false; 548 549 if (TrueBBI.IsBrAnalyzable) 550 return false; 551 552 if (TrueBBI.BB->pred_size() > 1) { 553 if (TrueBBI.CannotBeCopied || 554 !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize, 555 Prediction)) 556 return false; 557 Dups = TrueBBI.NonPredSize; 558 } 559 560 return true; 561 } 562 563 /// Returns true if the 'true' and 'false' blocks (along with their common 564 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is 565 /// true, it checks if 'true' block's false branch branches to the 'false' block 566 /// rather than the other way around. It also returns the number of instructions 567 /// that the ifcvt would need to duplicate if performed in 'Dups'. 568 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 569 bool FalseBranch, unsigned &Dups, 570 BranchProbability Prediction) const { 571 Dups = 0; 572 if (TrueBBI.BB == FalseBBI.BB) 573 return false; 574 575 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 576 return false; 577 578 if (TrueBBI.BB->pred_size() > 1) { 579 if (TrueBBI.CannotBeCopied) 580 return false; 581 582 unsigned Size = TrueBBI.NonPredSize; 583 if (TrueBBI.IsBrAnalyzable) { 584 if (TrueBBI.TrueBB && TrueBBI.BrCond.empty()) 585 // Ends with an unconditional branch. It will be removed. 586 --Size; 587 else { 588 MachineBasicBlock *FExit = FalseBranch 589 ? TrueBBI.TrueBB : TrueBBI.FalseBB; 590 if (FExit) 591 // Require a conditional branch 592 ++Size; 593 } 594 } 595 if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction)) 596 return false; 597 Dups = Size; 598 } 599 600 MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB; 601 if (!TExit && blockAlwaysFallThrough(TrueBBI)) { 602 MachineFunction::iterator I = TrueBBI.BB->getIterator(); 603 if (++I == TrueBBI.BB->getParent()->end()) 604 return false; 605 TExit = &*I; 606 } 607 return TExit && TExit == FalseBBI.BB; 608 } 609 610 /// Count duplicated instructions and move the iterators to show where they 611 /// are. 612 /// @param TIB True Iterator Begin 613 /// @param FIB False Iterator Begin 614 /// These two iterators initially point to the first instruction of the two 615 /// blocks, and finally point to the first non-shared instruction. 616 /// @param TIE True Iterator End 617 /// @param FIE False Iterator End 618 /// These two iterators initially point to End() for the two blocks() and 619 /// finally point to the first shared instruction in the tail. 620 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of 621 /// two blocks. 622 /// @param Dups1 count of duplicated instructions at the beginning of the 2 623 /// blocks. 624 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks. 625 /// @param SkipUnconditionalBranches if true, Don't make sure that 626 /// unconditional branches at the end of the blocks are the same. True is 627 /// passed when the blocks are analyzable to allow for fallthrough to be 628 /// handled. 629 /// @return false if the shared portion prevents if conversion. 630 bool IfConverter::CountDuplicatedInstructions( 631 MachineBasicBlock::iterator &TIB, 632 MachineBasicBlock::iterator &FIB, 633 MachineBasicBlock::iterator &TIE, 634 MachineBasicBlock::iterator &FIE, 635 unsigned &Dups1, unsigned &Dups2, 636 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 637 bool SkipUnconditionalBranches) const { 638 while (TIB != TIE && FIB != FIE) { 639 // Skip dbg_value instructions. These do not count. 640 TIB = skipDebugInstructionsForward(TIB, TIE); 641 FIB = skipDebugInstructionsForward(FIB, FIE); 642 if (TIB == TIE || FIB == FIE) 643 break; 644 if (!TIB->isIdenticalTo(*FIB)) 645 break; 646 // A pred-clobbering instruction in the shared portion prevents 647 // if-conversion. 648 std::vector<MachineOperand> PredDefs; 649 if (TII->DefinesPredicate(*TIB, PredDefs)) 650 return false; 651 // If we get all the way to the branch instructions, don't count them. 652 if (!TIB->isBranch()) 653 ++Dups1; 654 ++TIB; 655 ++FIB; 656 } 657 658 // Check for already containing all of the block. 659 if (TIB == TIE || FIB == FIE) 660 return true; 661 // Now, in preparation for counting duplicate instructions at the ends of the 662 // blocks, switch to reverse_iterators. Note that getReverse() returns an 663 // iterator that points to the same instruction, unlike std::reverse_iterator. 664 // We have to do our own shifting so that we get the same range. 665 MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse()); 666 MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse()); 667 const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse()); 668 const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse()); 669 670 if (!TBB.succ_empty() || !FBB.succ_empty()) { 671 if (SkipUnconditionalBranches) { 672 while (RTIE != RTIB && RTIE->isUnconditionalBranch()) 673 ++RTIE; 674 while (RFIE != RFIB && RFIE->isUnconditionalBranch()) 675 ++RFIE; 676 } 677 } 678 679 // Count duplicate instructions at the ends of the blocks. 680 while (RTIE != RTIB && RFIE != RFIB) { 681 // Skip dbg_value instructions. These do not count. 682 // Note that these are reverse iterators going forward. 683 RTIE = skipDebugInstructionsForward(RTIE, RTIB); 684 RFIE = skipDebugInstructionsForward(RFIE, RFIB); 685 if (RTIE == RTIB || RFIE == RFIB) 686 break; 687 if (!RTIE->isIdenticalTo(*RFIE)) 688 break; 689 // We have to verify that any branch instructions are the same, and then we 690 // don't count them toward the # of duplicate instructions. 691 if (!RTIE->isBranch()) 692 ++Dups2; 693 ++RTIE; 694 ++RFIE; 695 } 696 TIE = std::next(RTIE.getReverse()); 697 FIE = std::next(RFIE.getReverse()); 698 return true; 699 } 700 701 /// RescanInstructions - Run ScanInstructions on a pair of blocks. 702 /// @param TIB - True Iterator Begin, points to first non-shared instruction 703 /// @param FIB - False Iterator Begin, points to first non-shared instruction 704 /// @param TIE - True Iterator End, points past last non-shared instruction 705 /// @param FIE - False Iterator End, points past last non-shared instruction 706 /// @param TrueBBI - BBInfo to update for the true block. 707 /// @param FalseBBI - BBInfo to update for the false block. 708 /// @returns - false if either block cannot be predicated or if both blocks end 709 /// with a predicate-clobbering instruction. 710 bool IfConverter::RescanInstructions( 711 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 712 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 713 BBInfo &TrueBBI, BBInfo &FalseBBI) const { 714 bool BranchUnpredicable = true; 715 TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false; 716 ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable); 717 if (TrueBBI.IsUnpredicable) 718 return false; 719 ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable); 720 if (FalseBBI.IsUnpredicable) 721 return false; 722 if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred) 723 return false; 724 return true; 725 } 726 727 #ifndef NDEBUG 728 static void verifySameBranchInstructions( 729 MachineBasicBlock *MBB1, 730 MachineBasicBlock *MBB2) { 731 const MachineBasicBlock::reverse_iterator B1 = MBB1->rend(); 732 const MachineBasicBlock::reverse_iterator B2 = MBB2->rend(); 733 MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin(); 734 MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin(); 735 while (E1 != B1 && E2 != B2) { 736 skipDebugInstructionsForward(E1, B1); 737 skipDebugInstructionsForward(E2, B2); 738 if (E1 == B1 && E2 == B2) 739 break; 740 741 if (E1 == B1) { 742 assert(!E2->isBranch() && "Branch mis-match, one block is empty."); 743 break; 744 } 745 if (E2 == B2) { 746 assert(!E1->isBranch() && "Branch mis-match, one block is empty."); 747 break; 748 } 749 750 if (E1->isBranch() || E2->isBranch()) 751 assert(E1->isIdenticalTo(*E2) && 752 "Branch mis-match, branch instructions don't match."); 753 else 754 break; 755 ++E1; 756 ++E2; 757 } 758 } 759 #endif 760 761 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along 762 /// with their common predecessor) form a diamond if a common tail block is 763 /// extracted. 764 /// While not strictly a diamond, this pattern would form a diamond if 765 /// tail-merging had merged the shared tails. 766 /// EBB 767 /// _/ \_ 768 /// | | 769 /// TBB FBB 770 /// / \ / \ 771 /// FalseBB TrueBB FalseBB 772 /// Currently only handles analyzable branches. 773 /// Specifically excludes actual diamonds to avoid overlap. 774 bool IfConverter::ValidForkedDiamond( 775 BBInfo &TrueBBI, BBInfo &FalseBBI, 776 unsigned &Dups1, unsigned &Dups2, 777 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 778 Dups1 = Dups2 = 0; 779 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 780 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 781 return false; 782 783 if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable) 784 return false; 785 // Don't IfConvert blocks that can't be folded into their predecessor. 786 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 787 return false; 788 789 // This function is specifically looking for conditional tails, as 790 // unconditional tails are already handled by the standard diamond case. 791 if (TrueBBI.BrCond.size() == 0 || 792 FalseBBI.BrCond.size() == 0) 793 return false; 794 795 MachineBasicBlock *TT = TrueBBI.TrueBB; 796 MachineBasicBlock *TF = TrueBBI.FalseBB; 797 MachineBasicBlock *FT = FalseBBI.TrueBB; 798 MachineBasicBlock *FF = FalseBBI.FalseBB; 799 800 if (!TT) 801 TT = getNextBlock(*TrueBBI.BB); 802 if (!TF) 803 TF = getNextBlock(*TrueBBI.BB); 804 if (!FT) 805 FT = getNextBlock(*FalseBBI.BB); 806 if (!FF) 807 FF = getNextBlock(*FalseBBI.BB); 808 809 if (!TT || !TF) 810 return false; 811 812 // Check successors. If they don't match, bail. 813 if (!((TT == FT && TF == FF) || (TF == FT && TT == FF))) 814 return false; 815 816 bool FalseReversed = false; 817 if (TF == FT && TT == FF) { 818 // If the branches are opposing, but we can't reverse, don't do it. 819 if (!FalseBBI.IsBrReversible) 820 return false; 821 FalseReversed = true; 822 reverseBranchCondition(FalseBBI); 823 } 824 auto UnReverseOnExit = make_scope_exit([&]() { 825 if (FalseReversed) 826 reverseBranchCondition(FalseBBI); 827 }); 828 829 // Count duplicate instructions at the beginning of the true and false blocks. 830 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 831 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 832 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 833 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 834 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 835 *TrueBBI.BB, *FalseBBI.BB, 836 /* SkipUnconditionalBranches */ true)) 837 return false; 838 839 TrueBBICalc.BB = TrueBBI.BB; 840 FalseBBICalc.BB = FalseBBI.BB; 841 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 842 return false; 843 844 // The size is used to decide whether to if-convert, and the shared portions 845 // are subtracted off. Because of the subtraction, we just use the size that 846 // was calculated by the original ScanInstructions, as it is correct. 847 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 848 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 849 return true; 850 } 851 852 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along 853 /// with their common predecessor) forms a valid diamond shape for ifcvt. 854 bool IfConverter::ValidDiamond( 855 BBInfo &TrueBBI, BBInfo &FalseBBI, 856 unsigned &Dups1, unsigned &Dups2, 857 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 858 Dups1 = Dups2 = 0; 859 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 860 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 861 return false; 862 863 MachineBasicBlock *TT = TrueBBI.TrueBB; 864 MachineBasicBlock *FT = FalseBBI.TrueBB; 865 866 if (!TT && blockAlwaysFallThrough(TrueBBI)) 867 TT = getNextBlock(*TrueBBI.BB); 868 if (!FT && blockAlwaysFallThrough(FalseBBI)) 869 FT = getNextBlock(*FalseBBI.BB); 870 if (TT != FT) 871 return false; 872 if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable)) 873 return false; 874 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 875 return false; 876 877 // FIXME: Allow true block to have an early exit? 878 if (TrueBBI.FalseBB || FalseBBI.FalseBB) 879 return false; 880 881 // Count duplicate instructions at the beginning and end of the true and 882 // false blocks. 883 // Skip unconditional branches only if we are considering an analyzable 884 // diamond. Otherwise the branches must be the same. 885 bool SkipUnconditionalBranches = 886 TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable; 887 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 888 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 889 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 890 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 891 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 892 *TrueBBI.BB, *FalseBBI.BB, 893 SkipUnconditionalBranches)) 894 return false; 895 896 TrueBBICalc.BB = TrueBBI.BB; 897 FalseBBICalc.BB = FalseBBI.BB; 898 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 899 return false; 900 // The size is used to decide whether to if-convert, and the shared portions 901 // are subtracted off. Because of the subtraction, we just use the size that 902 // was calculated by the original ScanInstructions, as it is correct. 903 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 904 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 905 return true; 906 } 907 908 /// AnalyzeBranches - Look at the branches at the end of a block to determine if 909 /// the block is predicable. 910 void IfConverter::AnalyzeBranches(BBInfo &BBI) { 911 if (BBI.IsDone) 912 return; 913 914 BBI.TrueBB = BBI.FalseBB = nullptr; 915 BBI.BrCond.clear(); 916 BBI.IsBrAnalyzable = 917 !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond); 918 if (!BBI.IsBrAnalyzable) { 919 BBI.TrueBB = nullptr; 920 BBI.FalseBB = nullptr; 921 BBI.BrCond.clear(); 922 } 923 924 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 925 BBI.IsBrReversible = (RevCond.size() == 0) || 926 !TII->reverseBranchCondition(RevCond); 927 BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr; 928 929 if (BBI.BrCond.size()) { 930 // No false branch. This BB must end with a conditional branch and a 931 // fallthrough. 932 if (!BBI.FalseBB) 933 BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB); 934 if (!BBI.FalseBB) { 935 // Malformed bcc? True and false blocks are the same? 936 BBI.IsUnpredicable = true; 937 } 938 } 939 } 940 941 /// ScanInstructions - Scan all the instructions in the block to determine if 942 /// the block is predicable. In most cases, that means all the instructions 943 /// in the block are isPredicable(). Also checks if the block contains any 944 /// instruction which can clobber a predicate (e.g. condition code register). 945 /// If so, the block is not predicable unless it's the last instruction. 946 void IfConverter::ScanInstructions(BBInfo &BBI, 947 MachineBasicBlock::iterator &Begin, 948 MachineBasicBlock::iterator &End, 949 bool BranchUnpredicable) const { 950 if (BBI.IsDone || BBI.IsUnpredicable) 951 return; 952 953 bool AlreadyPredicated = !BBI.Predicate.empty(); 954 955 BBI.NonPredSize = 0; 956 BBI.ExtraCost = 0; 957 BBI.ExtraCost2 = 0; 958 BBI.ClobbersPred = false; 959 for (MachineInstr &MI : make_range(Begin, End)) { 960 if (MI.isDebugInstr()) 961 continue; 962 963 // It's unsafe to duplicate convergent instructions in this context, so set 964 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the 965 // following CFG, which is subject to our "simple" transformation. 966 // 967 // BB0 // if (c1) goto BB1; else goto BB2; 968 // / \ 969 // BB1 | 970 // | BB2 // if (c2) goto TBB; else goto FBB; 971 // | / | 972 // | / | 973 // TBB | 974 // | | 975 // | FBB 976 // | 977 // exit 978 // 979 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd 980 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose 981 // TBB contains a convergent instruction. This is safe iff doing so does 982 // not add a control-flow dependency to the convergent instruction -- i.e., 983 // it's safe iff the set of control flows that leads us to the convergent 984 // instruction does not get smaller after the transformation. 985 // 986 // Originally we executed TBB if c1 || c2. After the transformation, there 987 // are two copies of TBB's instructions. We get to the first if c1, and we 988 // get to the second if !c1 && c2. 989 // 990 // There are clearly fewer ways to satisfy the condition "c1" than 991 // "c1 || c2". Since we've shrunk the set of control flows which lead to 992 // our convergent instruction, the transformation is unsafe. 993 if (MI.isNotDuplicable() || MI.isConvergent()) 994 BBI.CannotBeCopied = true; 995 996 bool isPredicated = TII->isPredicated(MI); 997 bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch(); 998 999 if (BranchUnpredicable && MI.isBranch()) { 1000 BBI.IsUnpredicable = true; 1001 return; 1002 } 1003 1004 // A conditional branch is not predicable, but it may be eliminated. 1005 if (isCondBr) 1006 continue; 1007 1008 if (!isPredicated) { 1009 BBI.NonPredSize++; 1010 unsigned ExtraPredCost = TII->getPredicationCost(MI); 1011 unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false); 1012 if (NumCycles > 1) 1013 BBI.ExtraCost += NumCycles-1; 1014 BBI.ExtraCost2 += ExtraPredCost; 1015 } else if (!AlreadyPredicated) { 1016 // FIXME: This instruction is already predicated before the 1017 // if-conversion pass. It's probably something like a conditional move. 1018 // Mark this block unpredicable for now. 1019 BBI.IsUnpredicable = true; 1020 return; 1021 } 1022 1023 if (BBI.ClobbersPred && !isPredicated) { 1024 // Predicate modification instruction should end the block (except for 1025 // already predicated instructions and end of block branches). 1026 // Predicate may have been modified, the subsequent (currently) 1027 // unpredicated instructions cannot be correctly predicated. 1028 BBI.IsUnpredicable = true; 1029 return; 1030 } 1031 1032 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are 1033 // still potentially predicable. 1034 std::vector<MachineOperand> PredDefs; 1035 if (TII->DefinesPredicate(MI, PredDefs)) 1036 BBI.ClobbersPred = true; 1037 1038 if (!TII->isPredicable(MI)) { 1039 BBI.IsUnpredicable = true; 1040 return; 1041 } 1042 } 1043 } 1044 1045 /// Determine if the block is a suitable candidate to be predicated by the 1046 /// specified predicate. 1047 /// @param BBI BBInfo for the block to check 1048 /// @param Pred Predicate array for the branch that leads to BBI 1049 /// @param isTriangle true if the Analysis is for a triangle 1050 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false 1051 /// case 1052 /// @param hasCommonTail true if BBI shares a tail with a sibling block that 1053 /// contains any instruction that would make the block unpredicable. 1054 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI, 1055 SmallVectorImpl<MachineOperand> &Pred, 1056 bool isTriangle, bool RevBranch, 1057 bool hasCommonTail) { 1058 // If the block is dead or unpredicable, then it cannot be predicated. 1059 // Two blocks may share a common unpredicable tail, but this doesn't prevent 1060 // them from being if-converted. The non-shared portion is assumed to have 1061 // been checked 1062 if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail)) 1063 return false; 1064 1065 // If it is already predicated but we couldn't analyze its terminator, the 1066 // latter might fallthrough, but we can't determine where to. 1067 // Conservatively avoid if-converting again. 1068 if (BBI.Predicate.size() && !BBI.IsBrAnalyzable) 1069 return false; 1070 1071 // If it is already predicated, check if the new predicate subsumes 1072 // its predicate. 1073 if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate)) 1074 return false; 1075 1076 if (!hasCommonTail && BBI.BrCond.size()) { 1077 if (!isTriangle) 1078 return false; 1079 1080 // Test predicate subsumption. 1081 SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end()); 1082 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1083 if (RevBranch) { 1084 if (TII->reverseBranchCondition(Cond)) 1085 return false; 1086 } 1087 if (TII->reverseBranchCondition(RevPred) || 1088 !TII->SubsumesPredicate(Cond, RevPred)) 1089 return false; 1090 } 1091 1092 return true; 1093 } 1094 1095 /// Analyze the structure of the sub-CFG starting from the specified block. 1096 /// Record its successors and whether it looks like an if-conversion candidate. 1097 void IfConverter::AnalyzeBlock( 1098 MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1099 struct BBState { 1100 BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {} 1101 MachineBasicBlock *MBB; 1102 1103 /// This flag is true if MBB's successors have been analyzed. 1104 bool SuccsAnalyzed; 1105 }; 1106 1107 // Push MBB to the stack. 1108 SmallVector<BBState, 16> BBStack(1, MBB); 1109 1110 while (!BBStack.empty()) { 1111 BBState &State = BBStack.back(); 1112 MachineBasicBlock *BB = State.MBB; 1113 BBInfo &BBI = BBAnalysis[BB->getNumber()]; 1114 1115 if (!State.SuccsAnalyzed) { 1116 if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) { 1117 BBStack.pop_back(); 1118 continue; 1119 } 1120 1121 BBI.BB = BB; 1122 BBI.IsBeingAnalyzed = true; 1123 1124 AnalyzeBranches(BBI); 1125 MachineBasicBlock::iterator Begin = BBI.BB->begin(); 1126 MachineBasicBlock::iterator End = BBI.BB->end(); 1127 ScanInstructions(BBI, Begin, End); 1128 1129 // Unanalyzable or ends with fallthrough or unconditional branch, or if is 1130 // not considered for ifcvt anymore. 1131 if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) { 1132 BBI.IsBeingAnalyzed = false; 1133 BBI.IsAnalyzed = true; 1134 BBStack.pop_back(); 1135 continue; 1136 } 1137 1138 // Do not ifcvt if either path is a back edge to the entry block. 1139 if (BBI.TrueBB == BB || BBI.FalseBB == BB) { 1140 BBI.IsBeingAnalyzed = false; 1141 BBI.IsAnalyzed = true; 1142 BBStack.pop_back(); 1143 continue; 1144 } 1145 1146 // Do not ifcvt if true and false fallthrough blocks are the same. 1147 if (!BBI.FalseBB) { 1148 BBI.IsBeingAnalyzed = false; 1149 BBI.IsAnalyzed = true; 1150 BBStack.pop_back(); 1151 continue; 1152 } 1153 1154 // Push the False and True blocks to the stack. 1155 State.SuccsAnalyzed = true; 1156 BBStack.push_back(*BBI.FalseBB); 1157 BBStack.push_back(*BBI.TrueBB); 1158 continue; 1159 } 1160 1161 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1162 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1163 1164 if (TrueBBI.IsDone && FalseBBI.IsDone) { 1165 BBI.IsBeingAnalyzed = false; 1166 BBI.IsAnalyzed = true; 1167 BBStack.pop_back(); 1168 continue; 1169 } 1170 1171 SmallVector<MachineOperand, 4> 1172 RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1173 bool CanRevCond = !TII->reverseBranchCondition(RevCond); 1174 1175 unsigned Dups = 0; 1176 unsigned Dups2 = 0; 1177 bool TNeedSub = !TrueBBI.Predicate.empty(); 1178 bool FNeedSub = !FalseBBI.Predicate.empty(); 1179 bool Enqueued = false; 1180 1181 BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB); 1182 1183 if (CanRevCond) { 1184 BBInfo TrueBBICalc, FalseBBICalc; 1185 auto feasibleDiamond = [&]() { 1186 bool MeetsSize = MeetIfcvtSizeLimit( 1187 *TrueBBI.BB, (TrueBBICalc.NonPredSize - (Dups + Dups2) + 1188 TrueBBICalc.ExtraCost), TrueBBICalc.ExtraCost2, 1189 *FalseBBI.BB, (FalseBBICalc.NonPredSize - (Dups + Dups2) + 1190 FalseBBICalc.ExtraCost), FalseBBICalc.ExtraCost2, 1191 Prediction); 1192 bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond, 1193 /* IsTriangle */ false, /* RevCond */ false, 1194 /* hasCommonTail */ true); 1195 bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond, 1196 /* IsTriangle */ false, /* RevCond */ false, 1197 /* hasCommonTail */ true); 1198 return MeetsSize && TrueFeasible && FalseFeasible; 1199 }; 1200 1201 if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1202 TrueBBICalc, FalseBBICalc)) { 1203 if (feasibleDiamond()) { 1204 // Diamond: 1205 // EBB 1206 // / \_ 1207 // | | 1208 // TBB FBB 1209 // \ / 1210 // TailBB 1211 // Note TailBB can be empty. 1212 Tokens.push_back(std::make_unique<IfcvtToken>( 1213 BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1214 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1215 Enqueued = true; 1216 } 1217 } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1218 TrueBBICalc, FalseBBICalc)) { 1219 if (feasibleDiamond()) { 1220 // ForkedDiamond: 1221 // if TBB and FBB have a common tail that includes their conditional 1222 // branch instructions, then we can If Convert this pattern. 1223 // EBB 1224 // _/ \_ 1225 // | | 1226 // TBB FBB 1227 // / \ / \ 1228 // FalseBB TrueBB FalseBB 1229 // 1230 Tokens.push_back(std::make_unique<IfcvtToken>( 1231 BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1232 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1233 Enqueued = true; 1234 } 1235 } 1236 } 1237 1238 if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) && 1239 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1240 TrueBBI.ExtraCost2, Prediction) && 1241 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) { 1242 // Triangle: 1243 // EBB 1244 // | \_ 1245 // | | 1246 // | TBB 1247 // | / 1248 // FBB 1249 Tokens.push_back( 1250 std::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups)); 1251 Enqueued = true; 1252 } 1253 1254 if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) && 1255 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1256 TrueBBI.ExtraCost2, Prediction) && 1257 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) { 1258 Tokens.push_back( 1259 std::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups)); 1260 Enqueued = true; 1261 } 1262 1263 if (ValidSimple(TrueBBI, Dups, Prediction) && 1264 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1265 TrueBBI.ExtraCost2, Prediction) && 1266 FeasibilityAnalysis(TrueBBI, BBI.BrCond)) { 1267 // Simple (split, no rejoin): 1268 // EBB 1269 // | \_ 1270 // | | 1271 // | TBB---> exit 1272 // | 1273 // FBB 1274 Tokens.push_back( 1275 std::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups)); 1276 Enqueued = true; 1277 } 1278 1279 if (CanRevCond) { 1280 // Try the other path... 1281 if (ValidTriangle(FalseBBI, TrueBBI, false, Dups, 1282 Prediction.getCompl()) && 1283 MeetIfcvtSizeLimit(*FalseBBI.BB, 1284 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1285 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1286 FeasibilityAnalysis(FalseBBI, RevCond, true)) { 1287 Tokens.push_back(std::make_unique<IfcvtToken>(BBI, ICTriangleFalse, 1288 FNeedSub, Dups)); 1289 Enqueued = true; 1290 } 1291 1292 if (ValidTriangle(FalseBBI, TrueBBI, true, Dups, 1293 Prediction.getCompl()) && 1294 MeetIfcvtSizeLimit(*FalseBBI.BB, 1295 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1296 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1297 FeasibilityAnalysis(FalseBBI, RevCond, true, true)) { 1298 Tokens.push_back( 1299 std::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups)); 1300 Enqueued = true; 1301 } 1302 1303 if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) && 1304 MeetIfcvtSizeLimit(*FalseBBI.BB, 1305 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1306 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1307 FeasibilityAnalysis(FalseBBI, RevCond)) { 1308 Tokens.push_back( 1309 std::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups)); 1310 Enqueued = true; 1311 } 1312 } 1313 1314 BBI.IsEnqueued = Enqueued; 1315 BBI.IsBeingAnalyzed = false; 1316 BBI.IsAnalyzed = true; 1317 BBStack.pop_back(); 1318 } 1319 } 1320 1321 /// Analyze all blocks and find entries for all if-conversion candidates. 1322 void IfConverter::AnalyzeBlocks( 1323 MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1324 for (MachineBasicBlock &MBB : MF) 1325 AnalyzeBlock(MBB, Tokens); 1326 1327 // Sort to favor more complex ifcvt scheme. 1328 llvm::stable_sort(Tokens, IfcvtTokenCmp); 1329 } 1330 1331 /// Returns true either if ToMBB is the next block after MBB or that all the 1332 /// intervening blocks are empty (given MBB can fall through to its next block). 1333 static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) { 1334 MachineFunction::iterator PI = MBB.getIterator(); 1335 MachineFunction::iterator I = std::next(PI); 1336 MachineFunction::iterator TI = ToMBB.getIterator(); 1337 MachineFunction::iterator E = MBB.getParent()->end(); 1338 while (I != TI) { 1339 // Check isSuccessor to avoid case where the next block is empty, but 1340 // it's not a successor. 1341 if (I == E || !I->empty() || !PI->isSuccessor(&*I)) 1342 return false; 1343 PI = I++; 1344 } 1345 // Finally see if the last I is indeed a successor to PI. 1346 return PI->isSuccessor(&*I); 1347 } 1348 1349 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it 1350 /// can be if-converted. If predecessor is already enqueued, dequeue it! 1351 void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) { 1352 for (const MachineBasicBlock *Predecessor : MBB.predecessors()) { 1353 BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()]; 1354 if (PBBI.IsDone || PBBI.BB == &MBB) 1355 continue; 1356 PBBI.IsAnalyzed = false; 1357 PBBI.IsEnqueued = false; 1358 } 1359 } 1360 1361 /// Inserts an unconditional branch from \p MBB to \p ToMBB. 1362 static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB, 1363 const TargetInstrInfo *TII) { 1364 DebugLoc dl; // FIXME: this is nowhere 1365 SmallVector<MachineOperand, 0> NoCond; 1366 TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl); 1367 } 1368 1369 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all 1370 /// values defined in MI which are also live/used by MI. 1371 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) { 1372 const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo(); 1373 1374 // Before stepping forward past MI, remember which regs were live 1375 // before MI. This is needed to set the Undef flag only when reg is 1376 // dead. 1377 SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI; 1378 LiveBeforeMI.setUniverse(TRI->getNumRegs()); 1379 for (unsigned Reg : Redefs) 1380 LiveBeforeMI.insert(Reg); 1381 1382 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers; 1383 Redefs.stepForward(MI, Clobbers); 1384 1385 // Now add the implicit uses for each of the clobbered values. 1386 for (auto Clobber : Clobbers) { 1387 // FIXME: Const cast here is nasty, but better than making StepForward 1388 // take a mutable instruction instead of const. 1389 unsigned Reg = Clobber.first; 1390 MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second); 1391 MachineInstr *OpMI = Op.getParent(); 1392 MachineInstrBuilder MIB(*OpMI->getMF(), OpMI); 1393 if (Op.isRegMask()) { 1394 // First handle regmasks. They clobber any entries in the mask which 1395 // means that we need a def for those registers. 1396 if (LiveBeforeMI.count(Reg)) 1397 MIB.addReg(Reg, RegState::Implicit); 1398 1399 // We also need to add an implicit def of this register for the later 1400 // use to read from. 1401 // For the register allocator to have allocated a register clobbered 1402 // by the call which is used later, it must be the case that 1403 // the call doesn't return. 1404 MIB.addReg(Reg, RegState::Implicit | RegState::Define); 1405 continue; 1406 } 1407 if (LiveBeforeMI.count(Reg)) 1408 MIB.addReg(Reg, RegState::Implicit); 1409 else { 1410 bool HasLiveSubReg = false; 1411 for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) { 1412 if (!LiveBeforeMI.count(*S)) 1413 continue; 1414 HasLiveSubReg = true; 1415 break; 1416 } 1417 if (HasLiveSubReg) 1418 MIB.addReg(Reg, RegState::Implicit); 1419 } 1420 } 1421 } 1422 1423 /// If convert a simple (split, no rejoin) sub-CFG. 1424 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) { 1425 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1426 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1427 BBInfo *CvtBBI = &TrueBBI; 1428 BBInfo *NextBBI = &FalseBBI; 1429 1430 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1431 if (Kind == ICSimpleFalse) 1432 std::swap(CvtBBI, NextBBI); 1433 1434 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1435 MachineBasicBlock &NextMBB = *NextBBI->BB; 1436 if (CvtBBI->IsDone || 1437 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1438 // Something has changed. It's no longer safe to predicate this block. 1439 BBI.IsAnalyzed = false; 1440 CvtBBI->IsAnalyzed = false; 1441 return false; 1442 } 1443 1444 if (CvtMBB.hasAddressTaken()) 1445 // Conservatively abort if-conversion if BB's address is taken. 1446 return false; 1447 1448 if (Kind == ICSimpleFalse) 1449 if (TII->reverseBranchCondition(Cond)) 1450 llvm_unreachable("Unable to reverse branch condition!"); 1451 1452 Redefs.init(*TRI); 1453 1454 if (MRI->tracksLiveness()) { 1455 // Initialize liveins to the first BB. These are potentially redefined by 1456 // predicated instructions. 1457 Redefs.addLiveIns(CvtMBB); 1458 Redefs.addLiveIns(NextMBB); 1459 } 1460 1461 // Remove the branches from the entry so we can add the contents of the true 1462 // block to it. 1463 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1464 1465 if (CvtMBB.pred_size() > 1) { 1466 // Copy instructions in the true block, predicate them, and add them to 1467 // the entry block. 1468 CopyAndPredicateBlock(BBI, *CvtBBI, Cond); 1469 1470 // Keep the CFG updated. 1471 BBI.BB->removeSuccessor(&CvtMBB, true); 1472 } else { 1473 // Predicate the instructions in the true block. 1474 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1475 1476 // Merge converted block into entry block. The BB to Cvt edge is removed 1477 // by MergeBlocks. 1478 MergeBlocks(BBI, *CvtBBI); 1479 } 1480 1481 bool IterIfcvt = true; 1482 if (!canFallThroughTo(*BBI.BB, NextMBB)) { 1483 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1484 BBI.HasFallThrough = false; 1485 // Now ifcvt'd block will look like this: 1486 // BB: 1487 // ... 1488 // t, f = cmp 1489 // if t op 1490 // b BBf 1491 // 1492 // We cannot further ifcvt this block because the unconditional branch 1493 // will have to be predicated on the new condition, that will not be 1494 // available if cmp executes. 1495 IterIfcvt = false; 1496 } 1497 1498 // Update block info. BB can be iteratively if-converted. 1499 if (!IterIfcvt) 1500 BBI.IsDone = true; 1501 InvalidatePreds(*BBI.BB); 1502 CvtBBI->IsDone = true; 1503 1504 // FIXME: Must maintain LiveIns. 1505 return true; 1506 } 1507 1508 /// If convert a triangle sub-CFG. 1509 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) { 1510 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1511 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1512 BBInfo *CvtBBI = &TrueBBI; 1513 BBInfo *NextBBI = &FalseBBI; 1514 DebugLoc dl; // FIXME: this is nowhere 1515 1516 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1517 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1518 std::swap(CvtBBI, NextBBI); 1519 1520 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1521 MachineBasicBlock &NextMBB = *NextBBI->BB; 1522 if (CvtBBI->IsDone || 1523 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1524 // Something has changed. It's no longer safe to predicate this block. 1525 BBI.IsAnalyzed = false; 1526 CvtBBI->IsAnalyzed = false; 1527 return false; 1528 } 1529 1530 if (CvtMBB.hasAddressTaken()) 1531 // Conservatively abort if-conversion if BB's address is taken. 1532 return false; 1533 1534 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1535 if (TII->reverseBranchCondition(Cond)) 1536 llvm_unreachable("Unable to reverse branch condition!"); 1537 1538 if (Kind == ICTriangleRev || Kind == ICTriangleFRev) { 1539 if (reverseBranchCondition(*CvtBBI)) { 1540 // BB has been changed, modify its predecessors (except for this 1541 // one) so they don't get ifcvt'ed based on bad intel. 1542 for (MachineBasicBlock *PBB : CvtMBB.predecessors()) { 1543 if (PBB == BBI.BB) 1544 continue; 1545 BBInfo &PBBI = BBAnalysis[PBB->getNumber()]; 1546 if (PBBI.IsEnqueued) { 1547 PBBI.IsAnalyzed = false; 1548 PBBI.IsEnqueued = false; 1549 } 1550 } 1551 } 1552 } 1553 1554 // Initialize liveins to the first BB. These are potentially redefined by 1555 // predicated instructions. 1556 Redefs.init(*TRI); 1557 if (MRI->tracksLiveness()) { 1558 Redefs.addLiveIns(CvtMBB); 1559 Redefs.addLiveIns(NextMBB); 1560 } 1561 1562 bool HasEarlyExit = CvtBBI->FalseBB != nullptr; 1563 BranchProbability CvtNext, CvtFalse, BBNext, BBCvt; 1564 1565 if (HasEarlyExit) { 1566 // Get probabilities before modifying CvtMBB and BBI.BB. 1567 CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB); 1568 CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB); 1569 BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB); 1570 BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB); 1571 } 1572 1573 // Remove the branches from the entry so we can add the contents of the true 1574 // block to it. 1575 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1576 1577 if (CvtMBB.pred_size() > 1) { 1578 // Copy instructions in the true block, predicate them, and add them to 1579 // the entry block. 1580 CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true); 1581 } else { 1582 // Predicate the 'true' block after removing its branch. 1583 CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB); 1584 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1585 1586 // Now merge the entry of the triangle with the true block. 1587 MergeBlocks(BBI, *CvtBBI, false); 1588 } 1589 1590 // Keep the CFG updated. 1591 BBI.BB->removeSuccessor(&CvtMBB, true); 1592 1593 // If 'true' block has a 'false' successor, add an exit branch to it. 1594 if (HasEarlyExit) { 1595 SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(), 1596 CvtBBI->BrCond.end()); 1597 if (TII->reverseBranchCondition(RevCond)) 1598 llvm_unreachable("Unable to reverse branch condition!"); 1599 1600 // Update the edge probability for both CvtBBI->FalseBB and NextBBI. 1601 // NewNext = New_Prob(BBI.BB, NextMBB) = 1602 // Prob(BBI.BB, NextMBB) + 1603 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB) 1604 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) = 1605 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB) 1606 auto NewTrueBB = getNextBlock(*BBI.BB); 1607 auto NewNext = BBNext + BBCvt * CvtNext; 1608 auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB); 1609 if (NewTrueBBIter != BBI.BB->succ_end()) 1610 BBI.BB->setSuccProbability(NewTrueBBIter, NewNext); 1611 1612 auto NewFalse = BBCvt * CvtFalse; 1613 TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl); 1614 BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse); 1615 } 1616 1617 // Merge in the 'false' block if the 'false' block has no other 1618 // predecessors. Otherwise, add an unconditional branch to 'false'. 1619 bool FalseBBDead = false; 1620 bool IterIfcvt = true; 1621 bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB); 1622 if (!isFallThrough) { 1623 // Only merge them if the true block does not fallthrough to the false 1624 // block. By not merging them, we make it possible to iteratively 1625 // ifcvt the blocks. 1626 if (!HasEarlyExit && 1627 NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough && 1628 !NextMBB.hasAddressTaken()) { 1629 MergeBlocks(BBI, *NextBBI); 1630 FalseBBDead = true; 1631 } else { 1632 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1633 BBI.HasFallThrough = false; 1634 } 1635 // Mixed predicated and unpredicated code. This cannot be iteratively 1636 // predicated. 1637 IterIfcvt = false; 1638 } 1639 1640 // Update block info. BB can be iteratively if-converted. 1641 if (!IterIfcvt) 1642 BBI.IsDone = true; 1643 InvalidatePreds(*BBI.BB); 1644 CvtBBI->IsDone = true; 1645 if (FalseBBDead) 1646 NextBBI->IsDone = true; 1647 1648 // FIXME: Must maintain LiveIns. 1649 return true; 1650 } 1651 1652 /// Common code shared between diamond conversions. 1653 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape. 1654 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI 1655 /// and FalseBBI 1656 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI 1657 /// and \p FalseBBI 1658 /// \p RemoveBranch - Remove the common branch of the two blocks before 1659 /// predicating. Only false for unanalyzable fallthrough 1660 /// cases. The caller will replace the branch if necessary. 1661 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for 1662 /// unanalyzable fallthrough 1663 bool IfConverter::IfConvertDiamondCommon( 1664 BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 1665 unsigned NumDups1, unsigned NumDups2, 1666 bool TClobbersPred, bool FClobbersPred, 1667 bool RemoveBranch, bool MergeAddEdges) { 1668 1669 if (TrueBBI.IsDone || FalseBBI.IsDone || 1670 TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) { 1671 // Something has changed. It's no longer safe to predicate these blocks. 1672 BBI.IsAnalyzed = false; 1673 TrueBBI.IsAnalyzed = false; 1674 FalseBBI.IsAnalyzed = false; 1675 return false; 1676 } 1677 1678 if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken()) 1679 // Conservatively abort if-conversion if either BB has its address taken. 1680 return false; 1681 1682 // Put the predicated instructions from the 'true' block before the 1683 // instructions from the 'false' block, unless the true block would clobber 1684 // the predicate, in which case, do the opposite. 1685 BBInfo *BBI1 = &TrueBBI; 1686 BBInfo *BBI2 = &FalseBBI; 1687 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1688 if (TII->reverseBranchCondition(RevCond)) 1689 llvm_unreachable("Unable to reverse branch condition!"); 1690 SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond; 1691 SmallVector<MachineOperand, 4> *Cond2 = &RevCond; 1692 1693 // Figure out the more profitable ordering. 1694 bool DoSwap = false; 1695 if (TClobbersPred && !FClobbersPred) 1696 DoSwap = true; 1697 else if (!TClobbersPred && !FClobbersPred) { 1698 if (TrueBBI.NonPredSize > FalseBBI.NonPredSize) 1699 DoSwap = true; 1700 } else if (TClobbersPred && FClobbersPred) 1701 llvm_unreachable("Predicate info cannot be clobbered by both sides."); 1702 if (DoSwap) { 1703 std::swap(BBI1, BBI2); 1704 std::swap(Cond1, Cond2); 1705 } 1706 1707 // Remove the conditional branch from entry to the blocks. 1708 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1709 1710 MachineBasicBlock &MBB1 = *BBI1->BB; 1711 MachineBasicBlock &MBB2 = *BBI2->BB; 1712 1713 // Initialize the Redefs: 1714 // - BB2 live-in regs need implicit uses before being redefined by BB1 1715 // instructions. 1716 // - BB1 live-out regs need implicit uses before being redefined by BB2 1717 // instructions. We start with BB1 live-ins so we have the live-out regs 1718 // after tracking the BB1 instructions. 1719 Redefs.init(*TRI); 1720 if (MRI->tracksLiveness()) { 1721 Redefs.addLiveIns(MBB1); 1722 Redefs.addLiveIns(MBB2); 1723 } 1724 1725 // Remove the duplicated instructions at the beginnings of both paths. 1726 // Skip dbg_value instructions. 1727 MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr(); 1728 MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr(); 1729 BBI1->NonPredSize -= NumDups1; 1730 BBI2->NonPredSize -= NumDups1; 1731 1732 // Skip past the dups on each side separately since there may be 1733 // differing dbg_value entries. NumDups1 can include a "return" 1734 // instruction, if it's not marked as "branch". 1735 for (unsigned i = 0; i < NumDups1; ++DI1) { 1736 if (DI1 == MBB1.end()) 1737 break; 1738 if (!DI1->isDebugInstr()) 1739 ++i; 1740 } 1741 while (NumDups1 != 0) { 1742 ++DI2; 1743 if (DI2 == MBB2.end()) 1744 break; 1745 if (!DI2->isDebugInstr()) 1746 --NumDups1; 1747 } 1748 1749 if (MRI->tracksLiveness()) { 1750 for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) { 1751 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy; 1752 Redefs.stepForward(MI, Dummy); 1753 } 1754 } 1755 1756 BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1); 1757 MBB2.erase(MBB2.begin(), DI2); 1758 1759 // The branches have been checked to match, so it is safe to remove the 1760 // branch in BB1 and rely on the copy in BB2. The complication is that 1761 // the blocks may end with a return instruction, which may or may not 1762 // be marked as "branch". If it's not, then it could be included in 1763 // "dups1", leaving the blocks potentially empty after moving the common 1764 // duplicates. 1765 #ifndef NDEBUG 1766 // Unanalyzable branches must match exactly. Check that now. 1767 if (!BBI1->IsBrAnalyzable) 1768 verifySameBranchInstructions(&MBB1, &MBB2); 1769 #endif 1770 // Remove duplicated instructions from the tail of MBB1: any branch 1771 // instructions, and the common instructions counted by NumDups2. 1772 DI1 = MBB1.end(); 1773 while (DI1 != MBB1.begin()) { 1774 MachineBasicBlock::iterator Prev = std::prev(DI1); 1775 if (!Prev->isBranch() && !Prev->isDebugInstr()) 1776 break; 1777 DI1 = Prev; 1778 } 1779 for (unsigned i = 0; i != NumDups2; ) { 1780 // NumDups2 only counted non-dbg_value instructions, so this won't 1781 // run off the head of the list. 1782 assert(DI1 != MBB1.begin()); 1783 --DI1; 1784 // skip dbg_value instructions 1785 if (!DI1->isDebugInstr()) 1786 ++i; 1787 } 1788 MBB1.erase(DI1, MBB1.end()); 1789 1790 DI2 = BBI2->BB->end(); 1791 // The branches have been checked to match. Skip over the branch in the false 1792 // block so that we don't try to predicate it. 1793 if (RemoveBranch) 1794 BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB); 1795 else { 1796 // Make DI2 point to the end of the range where the common "tail" 1797 // instructions could be found. 1798 while (DI2 != MBB2.begin()) { 1799 MachineBasicBlock::iterator Prev = std::prev(DI2); 1800 if (!Prev->isBranch() && !Prev->isDebugInstr()) 1801 break; 1802 DI2 = Prev; 1803 } 1804 } 1805 while (NumDups2 != 0) { 1806 // NumDups2 only counted non-dbg_value instructions, so this won't 1807 // run off the head of the list. 1808 assert(DI2 != MBB2.begin()); 1809 --DI2; 1810 // skip dbg_value instructions 1811 if (!DI2->isDebugInstr()) 1812 --NumDups2; 1813 } 1814 1815 // Remember which registers would later be defined by the false block. 1816 // This allows us not to predicate instructions in the true block that would 1817 // later be re-defined. That is, rather than 1818 // subeq r0, r1, #1 1819 // addne r0, r1, #1 1820 // generate: 1821 // sub r0, r1, #1 1822 // addne r0, r1, #1 1823 SmallSet<MCPhysReg, 4> RedefsByFalse; 1824 SmallSet<MCPhysReg, 4> ExtUses; 1825 if (TII->isProfitableToUnpredicate(MBB1, MBB2)) { 1826 for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) { 1827 if (FI.isDebugInstr()) 1828 continue; 1829 SmallVector<MCPhysReg, 4> Defs; 1830 for (const MachineOperand &MO : FI.operands()) { 1831 if (!MO.isReg()) 1832 continue; 1833 Register Reg = MO.getReg(); 1834 if (!Reg) 1835 continue; 1836 if (MO.isDef()) { 1837 Defs.push_back(Reg); 1838 } else if (!RedefsByFalse.count(Reg)) { 1839 // These are defined before ctrl flow reach the 'false' instructions. 1840 // They cannot be modified by the 'true' instructions. 1841 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1842 SubRegs.isValid(); ++SubRegs) 1843 ExtUses.insert(*SubRegs); 1844 } 1845 } 1846 1847 for (MCPhysReg Reg : Defs) { 1848 if (!ExtUses.count(Reg)) { 1849 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1850 SubRegs.isValid(); ++SubRegs) 1851 RedefsByFalse.insert(*SubRegs); 1852 } 1853 } 1854 } 1855 } 1856 1857 // Predicate the 'true' block. 1858 PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse); 1859 1860 // After predicating BBI1, if there is a predicated terminator in BBI1 and 1861 // a non-predicated in BBI2, then we don't want to predicate the one from 1862 // BBI2. The reason is that if we merged these blocks, we would end up with 1863 // two predicated terminators in the same block. 1864 // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't 1865 // predicate them either. They were checked to be identical, and so the 1866 // same branch would happen regardless of which path was taken. 1867 if (!MBB2.empty() && (DI2 == MBB2.end())) { 1868 MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator(); 1869 MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator(); 1870 bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T); 1871 bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T); 1872 if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable)) 1873 --DI2; 1874 } 1875 1876 // Predicate the 'false' block. 1877 PredicateBlock(*BBI2, DI2, *Cond2); 1878 1879 // Merge the true block into the entry of the diamond. 1880 MergeBlocks(BBI, *BBI1, MergeAddEdges); 1881 MergeBlocks(BBI, *BBI2, MergeAddEdges); 1882 return true; 1883 } 1884 1885 /// If convert an almost-diamond sub-CFG where the true 1886 /// and false blocks share a common tail. 1887 bool IfConverter::IfConvertForkedDiamond( 1888 BBInfo &BBI, IfcvtKind Kind, 1889 unsigned NumDups1, unsigned NumDups2, 1890 bool TClobbersPred, bool FClobbersPred) { 1891 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1892 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1893 1894 // Save the debug location for later. 1895 DebugLoc dl; 1896 MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator(); 1897 if (TIE != TrueBBI.BB->end()) 1898 dl = TIE->getDebugLoc(); 1899 // Removing branches from both blocks is safe, because we have already 1900 // determined that both blocks have the same branch instructions. The branch 1901 // will be added back at the end, unpredicated. 1902 if (!IfConvertDiamondCommon( 1903 BBI, TrueBBI, FalseBBI, 1904 NumDups1, NumDups2, 1905 TClobbersPred, FClobbersPred, 1906 /* RemoveBranch */ true, /* MergeAddEdges */ true)) 1907 return false; 1908 1909 // Add back the branch. 1910 // Debug location saved above when removing the branch from BBI2 1911 TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB, 1912 TrueBBI.BrCond, dl); 1913 1914 // Update block info. 1915 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 1916 InvalidatePreds(*BBI.BB); 1917 1918 // FIXME: Must maintain LiveIns. 1919 return true; 1920 } 1921 1922 /// If convert a diamond sub-CFG. 1923 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 1924 unsigned NumDups1, unsigned NumDups2, 1925 bool TClobbersPred, bool FClobbersPred) { 1926 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1927 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1928 MachineBasicBlock *TailBB = TrueBBI.TrueBB; 1929 1930 // True block must fall through or end with an unanalyzable terminator. 1931 if (!TailBB) { 1932 if (blockAlwaysFallThrough(TrueBBI)) 1933 TailBB = FalseBBI.TrueBB; 1934 assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!"); 1935 } 1936 1937 if (!IfConvertDiamondCommon( 1938 BBI, TrueBBI, FalseBBI, 1939 NumDups1, NumDups2, 1940 TClobbersPred, FClobbersPred, 1941 /* RemoveBranch */ TrueBBI.IsBrAnalyzable, 1942 /* MergeAddEdges */ TailBB == nullptr)) 1943 return false; 1944 1945 // If the if-converted block falls through or unconditionally branches into 1946 // the tail block, and the tail block does not have other predecessors, then 1947 // fold the tail block in as well. Otherwise, unless it falls through to the 1948 // tail, add a unconditional branch to it. 1949 if (TailBB) { 1950 // We need to remove the edges to the true and false blocks manually since 1951 // we didn't let IfConvertDiamondCommon update the CFG. 1952 BBI.BB->removeSuccessor(TrueBBI.BB); 1953 BBI.BB->removeSuccessor(FalseBBI.BB, true); 1954 1955 BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()]; 1956 bool CanMergeTail = !TailBBI.HasFallThrough && 1957 !TailBBI.BB->hasAddressTaken(); 1958 // The if-converted block can still have a predicated terminator 1959 // (e.g. a predicated return). If that is the case, we cannot merge 1960 // it with the tail block. 1961 MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator(); 1962 if (TI != BBI.BB->end() && TII->isPredicated(*TI)) 1963 CanMergeTail = false; 1964 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB; 1965 // check if there are any other predecessors besides those. 1966 unsigned NumPreds = TailBB->pred_size(); 1967 if (NumPreds > 1) 1968 CanMergeTail = false; 1969 else if (NumPreds == 1 && CanMergeTail) { 1970 MachineBasicBlock::pred_iterator PI = TailBB->pred_begin(); 1971 if (*PI != TrueBBI.BB && *PI != FalseBBI.BB) 1972 CanMergeTail = false; 1973 } 1974 if (CanMergeTail) { 1975 MergeBlocks(BBI, TailBBI); 1976 TailBBI.IsDone = true; 1977 } else { 1978 BBI.BB->addSuccessor(TailBB, BranchProbability::getOne()); 1979 InsertUncondBranch(*BBI.BB, *TailBB, TII); 1980 BBI.HasFallThrough = false; 1981 } 1982 } 1983 1984 // Update block info. 1985 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 1986 InvalidatePreds(*BBI.BB); 1987 1988 // FIXME: Must maintain LiveIns. 1989 return true; 1990 } 1991 1992 static bool MaySpeculate(const MachineInstr &MI, 1993 SmallSet<MCPhysReg, 4> &LaterRedefs) { 1994 bool SawStore = true; 1995 if (!MI.isSafeToMove(nullptr, SawStore)) 1996 return false; 1997 1998 for (const MachineOperand &MO : MI.operands()) { 1999 if (!MO.isReg()) 2000 continue; 2001 Register Reg = MO.getReg(); 2002 if (!Reg) 2003 continue; 2004 if (MO.isDef() && !LaterRedefs.count(Reg)) 2005 return false; 2006 } 2007 2008 return true; 2009 } 2010 2011 /// Predicate instructions from the start of the block to the specified end with 2012 /// the specified condition. 2013 void IfConverter::PredicateBlock(BBInfo &BBI, 2014 MachineBasicBlock::iterator E, 2015 SmallVectorImpl<MachineOperand> &Cond, 2016 SmallSet<MCPhysReg, 4> *LaterRedefs) { 2017 bool AnyUnpred = false; 2018 bool MaySpec = LaterRedefs != nullptr; 2019 for (MachineInstr &I : make_range(BBI.BB->begin(), E)) { 2020 if (I.isDebugInstr() || TII->isPredicated(I)) 2021 continue; 2022 // It may be possible not to predicate an instruction if it's the 'true' 2023 // side of a diamond and the 'false' side may re-define the instruction's 2024 // defs. 2025 if (MaySpec && MaySpeculate(I, *LaterRedefs)) { 2026 AnyUnpred = true; 2027 continue; 2028 } 2029 // If any instruction is predicated, then every instruction after it must 2030 // be predicated. 2031 MaySpec = false; 2032 if (!TII->PredicateInstruction(I, Cond)) { 2033 #ifndef NDEBUG 2034 dbgs() << "Unable to predicate " << I << "!\n"; 2035 #endif 2036 llvm_unreachable(nullptr); 2037 } 2038 2039 // If the predicated instruction now redefines a register as the result of 2040 // if-conversion, add an implicit kill. 2041 UpdatePredRedefs(I, Redefs); 2042 } 2043 2044 BBI.Predicate.append(Cond.begin(), Cond.end()); 2045 2046 BBI.IsAnalyzed = false; 2047 BBI.NonPredSize = 0; 2048 2049 ++NumIfConvBBs; 2050 if (AnyUnpred) 2051 ++NumUnpred; 2052 } 2053 2054 /// Copy and predicate instructions from source BB to the destination block. 2055 /// Skip end of block branches if IgnoreBr is true. 2056 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 2057 SmallVectorImpl<MachineOperand> &Cond, 2058 bool IgnoreBr) { 2059 MachineFunction &MF = *ToBBI.BB->getParent(); 2060 2061 MachineBasicBlock &FromMBB = *FromBBI.BB; 2062 for (MachineInstr &I : FromMBB) { 2063 // Do not copy the end of the block branches. 2064 if (IgnoreBr && I.isBranch()) 2065 break; 2066 2067 MachineInstr *MI = MF.CloneMachineInstr(&I); 2068 ToBBI.BB->insert(ToBBI.BB->end(), MI); 2069 ToBBI.NonPredSize++; 2070 unsigned ExtraPredCost = TII->getPredicationCost(I); 2071 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); 2072 if (NumCycles > 1) 2073 ToBBI.ExtraCost += NumCycles-1; 2074 ToBBI.ExtraCost2 += ExtraPredCost; 2075 2076 if (!TII->isPredicated(I) && !MI->isDebugInstr()) { 2077 if (!TII->PredicateInstruction(*MI, Cond)) { 2078 #ifndef NDEBUG 2079 dbgs() << "Unable to predicate " << I << "!\n"; 2080 #endif 2081 llvm_unreachable(nullptr); 2082 } 2083 } 2084 2085 // If the predicated instruction now redefines a register as the result of 2086 // if-conversion, add an implicit kill. 2087 UpdatePredRedefs(*MI, Redefs); 2088 } 2089 2090 if (!IgnoreBr) { 2091 std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(), 2092 FromMBB.succ_end()); 2093 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2094 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2095 2096 for (MachineBasicBlock *Succ : Succs) { 2097 // Fallthrough edge can't be transferred. 2098 if (Succ == FallThrough) 2099 continue; 2100 ToBBI.BB->addSuccessor(Succ); 2101 } 2102 } 2103 2104 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2105 ToBBI.Predicate.append(Cond.begin(), Cond.end()); 2106 2107 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2108 ToBBI.IsAnalyzed = false; 2109 2110 ++NumDupBBs; 2111 } 2112 2113 /// Move all instructions from FromBB to the end of ToBB. This will leave 2114 /// FromBB as an empty block, so remove all of its successor edges except for 2115 /// the fall-through edge. If AddEdges is true, i.e., when FromBBI's branch is 2116 /// being moved, add those successor edges to ToBBI and remove the old edge 2117 /// from ToBBI to FromBBI. 2118 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) { 2119 MachineBasicBlock &FromMBB = *FromBBI.BB; 2120 assert(!FromMBB.hasAddressTaken() && 2121 "Removing a BB whose address is taken!"); 2122 2123 // In case FromMBB contains terminators (e.g. return instruction), 2124 // first move the non-terminator instructions, then the terminators. 2125 MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator(); 2126 MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator(); 2127 ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI); 2128 2129 // If FromBB has non-predicated terminator we should copy it at the end. 2130 if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI)) 2131 ToTI = ToBBI.BB->end(); 2132 ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end()); 2133 2134 // Force normalizing the successors' probabilities of ToBBI.BB to convert all 2135 // unknown probabilities into known ones. 2136 // FIXME: This usage is too tricky and in the future we would like to 2137 // eliminate all unknown probabilities in MBB. 2138 if (ToBBI.IsBrAnalyzable) 2139 ToBBI.BB->normalizeSuccProbs(); 2140 2141 SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(), 2142 FromMBB.succ_end()); 2143 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2144 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2145 // The edge probability from ToBBI.BB to FromMBB, which is only needed when 2146 // AddEdges is true and FromMBB is a successor of ToBBI.BB. 2147 auto To2FromProb = BranchProbability::getZero(); 2148 if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) { 2149 // Remove the old edge but remember the edge probability so we can calculate 2150 // the correct weights on the new edges being added further down. 2151 To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB); 2152 ToBBI.BB->removeSuccessor(&FromMBB); 2153 } 2154 2155 for (MachineBasicBlock *Succ : FromSuccs) { 2156 // Fallthrough edge can't be transferred. 2157 if (Succ == FallThrough) 2158 continue; 2159 2160 auto NewProb = BranchProbability::getZero(); 2161 if (AddEdges) { 2162 // Calculate the edge probability for the edge from ToBBI.BB to Succ, 2163 // which is a portion of the edge probability from FromMBB to Succ. The 2164 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if 2165 // FromBBI is a successor of ToBBI.BB. See comment below for exception). 2166 NewProb = MBPI->getEdgeProbability(&FromMBB, Succ); 2167 2168 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This 2169 // only happens when if-converting a diamond CFG and FromMBB is the 2170 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we 2171 // could just use the probabilities on FromMBB's out-edges when adding 2172 // new successors. 2173 if (!To2FromProb.isZero()) 2174 NewProb *= To2FromProb; 2175 } 2176 2177 FromMBB.removeSuccessor(Succ); 2178 2179 if (AddEdges) { 2180 // If the edge from ToBBI.BB to Succ already exists, update the 2181 // probability of this edge by adding NewProb to it. An example is shown 2182 // below, in which A is ToBBI.BB and B is FromMBB. In this case we 2183 // don't have to set C as A's successor as it already is. We only need to 2184 // update the edge probability on A->C. Note that B will not be 2185 // immediately removed from A's successors. It is possible that B->D is 2186 // not removed either if D is a fallthrough of B. Later the edge A->D 2187 // (generated here) and B->D will be combined into one edge. To maintain 2188 // correct edge probability of this combined edge, we need to set the edge 2189 // probability of A->B to zero, which is already done above. The edge 2190 // probability on A->D is calculated by scaling the original probability 2191 // on A->B by the probability of B->D. 2192 // 2193 // Before ifcvt: After ifcvt (assume B->D is kept): 2194 // 2195 // A A 2196 // /| /|\ 2197 // / B / B| 2198 // | /| | || 2199 // |/ | | |/ 2200 // C D C D 2201 // 2202 if (ToBBI.BB->isSuccessor(Succ)) 2203 ToBBI.BB->setSuccProbability( 2204 find(ToBBI.BB->successors(), Succ), 2205 MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb); 2206 else 2207 ToBBI.BB->addSuccessor(Succ, NewProb); 2208 } 2209 } 2210 2211 // Move the now empty FromMBB out of the way to the end of the function so 2212 // it doesn't interfere with fallthrough checks done by canFallThroughTo(). 2213 MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin(); 2214 if (Last != &FromMBB) 2215 FromMBB.moveAfter(Last); 2216 2217 // Normalize the probabilities of ToBBI.BB's successors with all adjustment 2218 // we've done above. 2219 if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable) 2220 ToBBI.BB->normalizeSuccProbs(); 2221 2222 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2223 FromBBI.Predicate.clear(); 2224 2225 ToBBI.NonPredSize += FromBBI.NonPredSize; 2226 ToBBI.ExtraCost += FromBBI.ExtraCost; 2227 ToBBI.ExtraCost2 += FromBBI.ExtraCost2; 2228 FromBBI.NonPredSize = 0; 2229 FromBBI.ExtraCost = 0; 2230 FromBBI.ExtraCost2 = 0; 2231 2232 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2233 ToBBI.HasFallThrough = FromBBI.HasFallThrough; 2234 ToBBI.IsAnalyzed = false; 2235 FromBBI.IsAnalyzed = false; 2236 } 2237 2238 FunctionPass * 2239 llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) { 2240 return new IfConverter(std::move(Ftor)); 2241 } 2242