1 //===- IfConversion.cpp - Machine code if conversion pass -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the machine instruction level if-conversion pass, which 10 // tries to convert conditional branches into predicated instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "BranchFolding.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/SparseSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/CodeGen/LivePhysRegs.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineFunctionPass.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/TargetInstrInfo.h" 35 #include "llvm/CodeGen/TargetLowering.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/TargetSchedule.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/IR/Attributes.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/MC/MCRegisterInfo.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/BranchProbability.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <functional> 52 #include <iterator> 53 #include <memory> 54 #include <utility> 55 #include <vector> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "if-converter" 60 61 // Hidden options for help debugging. 62 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden); 63 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden); 64 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden); 65 static cl::opt<bool> DisableSimple("disable-ifcvt-simple", 66 cl::init(false), cl::Hidden); 67 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false", 68 cl::init(false), cl::Hidden); 69 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle", 70 cl::init(false), cl::Hidden); 71 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev", 72 cl::init(false), cl::Hidden); 73 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false", 74 cl::init(false), cl::Hidden); 75 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev", 76 cl::init(false), cl::Hidden); 77 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond", 78 cl::init(false), cl::Hidden); 79 static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond", 80 cl::init(false), cl::Hidden); 81 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold", 82 cl::init(true), cl::Hidden); 83 84 STATISTIC(NumSimple, "Number of simple if-conversions performed"); 85 STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed"); 86 STATISTIC(NumTriangle, "Number of triangle if-conversions performed"); 87 STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed"); 88 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed"); 89 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed"); 90 STATISTIC(NumDiamonds, "Number of diamond if-conversions performed"); 91 STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed"); 92 STATISTIC(NumIfConvBBs, "Number of if-converted blocks"); 93 STATISTIC(NumDupBBs, "Number of duplicated blocks"); 94 STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated"); 95 96 namespace { 97 98 class IfConverter : public MachineFunctionPass { 99 enum IfcvtKind { 100 ICNotClassfied, // BB data valid, but not classified. 101 ICSimpleFalse, // Same as ICSimple, but on the false path. 102 ICSimple, // BB is entry of an one split, no rejoin sub-CFG. 103 ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition. 104 ICTriangleRev, // Same as ICTriangle, but true path rev condition. 105 ICTriangleFalse, // Same as ICTriangle, but on the false path. 106 ICTriangle, // BB is entry of a triangle sub-CFG. 107 ICDiamond, // BB is entry of a diamond sub-CFG. 108 ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a 109 // common tail that can be shared. 110 }; 111 112 /// One per MachineBasicBlock, this is used to cache the result 113 /// if-conversion feasibility analysis. This includes results from 114 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its 115 /// classification, and common tail block of its successors (if it's a 116 /// diamond shape), its size, whether it's predicable, and whether any 117 /// instruction can clobber the 'would-be' predicate. 118 /// 119 /// IsDone - True if BB is not to be considered for ifcvt. 120 /// IsBeingAnalyzed - True if BB is currently being analyzed. 121 /// IsAnalyzed - True if BB has been analyzed (info is still valid). 122 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed. 123 /// IsBrAnalyzable - True if analyzeBranch() returns false. 124 /// HasFallThrough - True if BB may fallthrough to the following BB. 125 /// IsUnpredicable - True if BB is known to be unpredicable. 126 /// ClobbersPred - True if BB could modify predicates (e.g. has 127 /// cmp, call, etc.) 128 /// NonPredSize - Number of non-predicated instructions. 129 /// ExtraCost - Extra cost for multi-cycle instructions. 130 /// ExtraCost2 - Some instructions are slower when predicated 131 /// BB - Corresponding MachineBasicBlock. 132 /// TrueBB / FalseBB- See analyzeBranch(). 133 /// BrCond - Conditions for end of block conditional branches. 134 /// Predicate - Predicate used in the BB. 135 struct BBInfo { 136 bool IsDone : 1; 137 bool IsBeingAnalyzed : 1; 138 bool IsAnalyzed : 1; 139 bool IsEnqueued : 1; 140 bool IsBrAnalyzable : 1; 141 bool IsBrReversible : 1; 142 bool HasFallThrough : 1; 143 bool IsUnpredicable : 1; 144 bool CannotBeCopied : 1; 145 bool ClobbersPred : 1; 146 unsigned NonPredSize = 0; 147 unsigned ExtraCost = 0; 148 unsigned ExtraCost2 = 0; 149 MachineBasicBlock *BB = nullptr; 150 MachineBasicBlock *TrueBB = nullptr; 151 MachineBasicBlock *FalseBB = nullptr; 152 SmallVector<MachineOperand, 4> BrCond; 153 SmallVector<MachineOperand, 4> Predicate; 154 155 BBInfo() : IsDone(false), IsBeingAnalyzed(false), 156 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false), 157 IsBrReversible(false), HasFallThrough(false), 158 IsUnpredicable(false), CannotBeCopied(false), 159 ClobbersPred(false) {} 160 }; 161 162 /// Record information about pending if-conversions to attempt: 163 /// BBI - Corresponding BBInfo. 164 /// Kind - Type of block. See IfcvtKind. 165 /// NeedSubsumption - True if the to-be-predicated BB has already been 166 /// predicated. 167 /// NumDups - Number of instructions that would be duplicated due 168 /// to this if-conversion. (For diamonds, the number of 169 /// identical instructions at the beginnings of both 170 /// paths). 171 /// NumDups2 - For diamonds, the number of identical instructions 172 /// at the ends of both paths. 173 struct IfcvtToken { 174 BBInfo &BBI; 175 IfcvtKind Kind; 176 unsigned NumDups; 177 unsigned NumDups2; 178 bool NeedSubsumption : 1; 179 bool TClobbersPred : 1; 180 bool FClobbersPred : 1; 181 182 IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0, 183 bool tc = false, bool fc = false) 184 : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s), 185 TClobbersPred(tc), FClobbersPred(fc) {} 186 }; 187 188 /// Results of if-conversion feasibility analysis indexed by basic block 189 /// number. 190 std::vector<BBInfo> BBAnalysis; 191 TargetSchedModel SchedModel; 192 193 const TargetLoweringBase *TLI; 194 const TargetInstrInfo *TII; 195 const TargetRegisterInfo *TRI; 196 const MachineBranchProbabilityInfo *MBPI; 197 MachineRegisterInfo *MRI; 198 199 LivePhysRegs Redefs; 200 201 bool PreRegAlloc; 202 bool MadeChange; 203 int FnNum = -1; 204 std::function<bool(const MachineFunction &)> PredicateFtor; 205 206 public: 207 static char ID; 208 209 IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr) 210 : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) { 211 initializeIfConverterPass(*PassRegistry::getPassRegistry()); 212 } 213 214 void getAnalysisUsage(AnalysisUsage &AU) const override { 215 AU.addRequired<MachineBlockFrequencyInfo>(); 216 AU.addRequired<MachineBranchProbabilityInfo>(); 217 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 218 MachineFunctionPass::getAnalysisUsage(AU); 219 } 220 221 bool runOnMachineFunction(MachineFunction &MF) override; 222 223 MachineFunctionProperties getRequiredProperties() const override { 224 return MachineFunctionProperties().set( 225 MachineFunctionProperties::Property::NoVRegs); 226 } 227 228 private: 229 bool reverseBranchCondition(BBInfo &BBI) const; 230 bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 231 BranchProbability Prediction) const; 232 bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 233 bool FalseBranch, unsigned &Dups, 234 BranchProbability Prediction) const; 235 bool CountDuplicatedInstructions( 236 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 237 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 238 unsigned &Dups1, unsigned &Dups2, 239 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 240 bool SkipUnconditionalBranches) const; 241 bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 242 unsigned &Dups1, unsigned &Dups2, 243 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 244 bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 245 unsigned &Dups1, unsigned &Dups2, 246 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 247 void AnalyzeBranches(BBInfo &BBI); 248 void ScanInstructions(BBInfo &BBI, 249 MachineBasicBlock::iterator &Begin, 250 MachineBasicBlock::iterator &End, 251 bool BranchUnpredicable = false) const; 252 bool RescanInstructions( 253 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 254 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 255 BBInfo &TrueBBI, BBInfo &FalseBBI) const; 256 void AnalyzeBlock(MachineBasicBlock &MBB, 257 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 258 bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred, 259 bool isTriangle = false, bool RevBranch = false, 260 bool hasCommonTail = false); 261 void AnalyzeBlocks(MachineFunction &MF, 262 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 263 void InvalidatePreds(MachineBasicBlock &MBB); 264 bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind); 265 bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind); 266 bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 267 unsigned NumDups1, unsigned NumDups2, 268 bool TClobbersPred, bool FClobbersPred, 269 bool RemoveBranch, bool MergeAddEdges); 270 bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 271 unsigned NumDups1, unsigned NumDups2, 272 bool TClobbers, bool FClobbers); 273 bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind, 274 unsigned NumDups1, unsigned NumDups2, 275 bool TClobbers, bool FClobbers); 276 void PredicateBlock(BBInfo &BBI, 277 MachineBasicBlock::iterator E, 278 SmallVectorImpl<MachineOperand> &Cond, 279 SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr); 280 void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 281 SmallVectorImpl<MachineOperand> &Cond, 282 bool IgnoreBr = false); 283 void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true); 284 285 bool MeetIfcvtSizeLimit(MachineBasicBlock &BB, 286 unsigned Cycle, unsigned Extra, 287 BranchProbability Prediction) const { 288 return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra, 289 Prediction); 290 } 291 292 bool MeetIfcvtSizeLimit(BBInfo &TBBInfo, BBInfo &FBBInfo, 293 MachineBasicBlock &CommBB, unsigned Dups, 294 BranchProbability Prediction, bool Forked) const { 295 const MachineFunction &MF = *TBBInfo.BB->getParent(); 296 if (MF.getFunction().hasMinSize()) { 297 MachineBasicBlock::iterator TIB = TBBInfo.BB->begin(); 298 MachineBasicBlock::iterator FIB = FBBInfo.BB->begin(); 299 MachineBasicBlock::iterator TIE = TBBInfo.BB->end(); 300 MachineBasicBlock::iterator FIE = FBBInfo.BB->end(); 301 302 unsigned Dups1, Dups2; 303 if (!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 304 *TBBInfo.BB, *FBBInfo.BB, 305 /*SkipUnconditionalBranches*/ true)) 306 llvm_unreachable("should already have been checked by ValidDiamond"); 307 308 unsigned BranchBytes = 0; 309 unsigned CommonBytes = 0; 310 311 // Count common instructions at the start of the true and false blocks. 312 for (auto &I : make_range(TBBInfo.BB->begin(), TIB)) { 313 LLVM_DEBUG(dbgs() << "Common inst: " << I); 314 CommonBytes += TII->getInstSizeInBytes(I); 315 } 316 for (auto &I : make_range(FBBInfo.BB->begin(), FIB)) { 317 LLVM_DEBUG(dbgs() << "Common inst: " << I); 318 CommonBytes += TII->getInstSizeInBytes(I); 319 } 320 321 // Count instructions at the end of the true and false blocks, after 322 // the ones we plan to predicate. Analyzable branches will be removed 323 // (unless this is a forked diamond), and all other instructions are 324 // common between the two blocks. 325 for (auto &I : make_range(TIE, TBBInfo.BB->end())) { 326 if (I.isBranch() && TBBInfo.IsBrAnalyzable && !Forked) { 327 LLVM_DEBUG(dbgs() << "Saving branch: " << I); 328 BranchBytes += TII->predictBranchSizeForIfCvt(I); 329 } else { 330 LLVM_DEBUG(dbgs() << "Common inst: " << I); 331 CommonBytes += TII->getInstSizeInBytes(I); 332 } 333 } 334 for (auto &I : make_range(FIE, FBBInfo.BB->end())) { 335 if (I.isBranch() && FBBInfo.IsBrAnalyzable && !Forked) { 336 LLVM_DEBUG(dbgs() << "Saving branch: " << I); 337 BranchBytes += TII->predictBranchSizeForIfCvt(I); 338 } else { 339 LLVM_DEBUG(dbgs() << "Common inst: " << I); 340 CommonBytes += TII->getInstSizeInBytes(I); 341 } 342 } 343 for (auto &I : CommBB.terminators()) { 344 if (I.isBranch()) { 345 LLVM_DEBUG(dbgs() << "Saving branch: " << I); 346 BranchBytes += TII->predictBranchSizeForIfCvt(I); 347 } 348 } 349 350 // The common instructions in one branch will be eliminated, halving 351 // their code size. 352 CommonBytes /= 2; 353 354 // Count the instructions which we need to predicate. 355 unsigned NumPredicatedInstructions = 0; 356 for (auto &I : make_range(TIB, TIE)) { 357 if (!I.isDebugInstr()) { 358 LLVM_DEBUG(dbgs() << "Predicating: " << I); 359 NumPredicatedInstructions++; 360 } 361 } 362 for (auto &I : make_range(FIB, FIE)) { 363 if (!I.isDebugInstr()) { 364 LLVM_DEBUG(dbgs() << "Predicating: " << I); 365 NumPredicatedInstructions++; 366 } 367 } 368 369 // Even though we're optimising for size at the expense of performance, 370 // avoid creating really long predicated blocks. 371 if (NumPredicatedInstructions > 15) 372 return false; 373 374 // Some targets (e.g. Thumb2) need to insert extra instructions to 375 // start predicated blocks. 376 unsigned ExtraPredicateBytes = TII->extraSizeToPredicateInstructions( 377 MF, NumPredicatedInstructions); 378 379 LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(BranchBytes=" << BranchBytes 380 << ", CommonBytes=" << CommonBytes 381 << ", NumPredicatedInstructions=" 382 << NumPredicatedInstructions 383 << ", ExtraPredicateBytes=" << ExtraPredicateBytes 384 << ")\n"); 385 return (BranchBytes + CommonBytes) > ExtraPredicateBytes; 386 } else { 387 unsigned TCycle = TBBInfo.NonPredSize + TBBInfo.ExtraCost - Dups; 388 unsigned FCycle = FBBInfo.NonPredSize + FBBInfo.ExtraCost - Dups; 389 bool Res = TCycle > 0 && FCycle > 0 && 390 TII->isProfitableToIfCvt( 391 *TBBInfo.BB, TCycle, TBBInfo.ExtraCost2, *FBBInfo.BB, 392 FCycle, FBBInfo.ExtraCost2, Prediction); 393 LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(TCycle=" << TCycle 394 << ", FCycle=" << FCycle 395 << ", TExtra=" << TBBInfo.ExtraCost2 << ", FExtra=" 396 << FBBInfo.ExtraCost2 << ") = " << Res << "\n"); 397 return Res; 398 } 399 } 400 401 /// Returns true if Block ends without a terminator. 402 bool blockAlwaysFallThrough(BBInfo &BBI) const { 403 return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr; 404 } 405 406 /// Used to sort if-conversion candidates. 407 static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1, 408 const std::unique_ptr<IfcvtToken> &C2) { 409 int Incr1 = (C1->Kind == ICDiamond) 410 ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups; 411 int Incr2 = (C2->Kind == ICDiamond) 412 ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups; 413 if (Incr1 > Incr2) 414 return true; 415 else if (Incr1 == Incr2) { 416 // Favors subsumption. 417 if (!C1->NeedSubsumption && C2->NeedSubsumption) 418 return true; 419 else if (C1->NeedSubsumption == C2->NeedSubsumption) { 420 // Favors diamond over triangle, etc. 421 if ((unsigned)C1->Kind < (unsigned)C2->Kind) 422 return true; 423 else if (C1->Kind == C2->Kind) 424 return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber(); 425 } 426 } 427 return false; 428 } 429 }; 430 431 } // end anonymous namespace 432 433 char IfConverter::ID = 0; 434 435 char &llvm::IfConverterID = IfConverter::ID; 436 437 INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false) 438 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 439 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 440 INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false) 441 442 bool IfConverter::runOnMachineFunction(MachineFunction &MF) { 443 if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF))) 444 return false; 445 446 const TargetSubtargetInfo &ST = MF.getSubtarget(); 447 TLI = ST.getTargetLowering(); 448 TII = ST.getInstrInfo(); 449 TRI = ST.getRegisterInfo(); 450 MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>()); 451 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 452 ProfileSummaryInfo *PSI = 453 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 454 MRI = &MF.getRegInfo(); 455 SchedModel.init(&ST); 456 457 if (!TII) return false; 458 459 PreRegAlloc = MRI->isSSA(); 460 461 bool BFChange = false; 462 if (!PreRegAlloc) { 463 // Tail merge tend to expose more if-conversion opportunities. 464 BranchFolder BF(true, false, MBFI, *MBPI, PSI); 465 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 466 BFChange = BF.OptimizeFunction( 467 MF, TII, ST.getRegisterInfo(), 468 MMIWP ? &MMIWP->getMMI() : nullptr); 469 } 470 471 LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'" 472 << MF.getName() << "\'"); 473 474 if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) { 475 LLVM_DEBUG(dbgs() << " skipped\n"); 476 return false; 477 } 478 LLVM_DEBUG(dbgs() << "\n"); 479 480 MF.RenumberBlocks(); 481 BBAnalysis.resize(MF.getNumBlockIDs()); 482 483 std::vector<std::unique_ptr<IfcvtToken>> Tokens; 484 MadeChange = false; 485 unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + 486 NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds; 487 while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) { 488 // Do an initial analysis for each basic block and find all the potential 489 // candidates to perform if-conversion. 490 bool Change = false; 491 AnalyzeBlocks(MF, Tokens); 492 while (!Tokens.empty()) { 493 std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back()); 494 Tokens.pop_back(); 495 BBInfo &BBI = Token->BBI; 496 IfcvtKind Kind = Token->Kind; 497 unsigned NumDups = Token->NumDups; 498 unsigned NumDups2 = Token->NumDups2; 499 500 // If the block has been evicted out of the queue or it has already been 501 // marked dead (due to it being predicated), then skip it. 502 if (BBI.IsDone) 503 BBI.IsEnqueued = false; 504 if (!BBI.IsEnqueued) 505 continue; 506 507 BBI.IsEnqueued = false; 508 509 bool RetVal = false; 510 switch (Kind) { 511 default: llvm_unreachable("Unexpected!"); 512 case ICSimple: 513 case ICSimpleFalse: { 514 bool isFalse = Kind == ICSimpleFalse; 515 if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break; 516 LLVM_DEBUG(dbgs() << "Ifcvt (Simple" 517 << (Kind == ICSimpleFalse ? " false" : "") 518 << "): " << printMBBReference(*BBI.BB) << " (" 519 << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber() 520 : BBI.TrueBB->getNumber()) 521 << ") "); 522 RetVal = IfConvertSimple(BBI, Kind); 523 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 524 if (RetVal) { 525 if (isFalse) ++NumSimpleFalse; 526 else ++NumSimple; 527 } 528 break; 529 } 530 case ICTriangle: 531 case ICTriangleRev: 532 case ICTriangleFalse: 533 case ICTriangleFRev: { 534 bool isFalse = Kind == ICTriangleFalse; 535 bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev); 536 if (DisableTriangle && !isFalse && !isRev) break; 537 if (DisableTriangleR && !isFalse && isRev) break; 538 if (DisableTriangleF && isFalse && !isRev) break; 539 if (DisableTriangleFR && isFalse && isRev) break; 540 LLVM_DEBUG(dbgs() << "Ifcvt (Triangle"); 541 if (isFalse) 542 LLVM_DEBUG(dbgs() << " false"); 543 if (isRev) 544 LLVM_DEBUG(dbgs() << " rev"); 545 LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB) 546 << " (T:" << BBI.TrueBB->getNumber() 547 << ",F:" << BBI.FalseBB->getNumber() << ") "); 548 RetVal = IfConvertTriangle(BBI, Kind); 549 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 550 if (RetVal) { 551 if (isFalse) { 552 if (isRev) ++NumTriangleFRev; 553 else ++NumTriangleFalse; 554 } else { 555 if (isRev) ++NumTriangleRev; 556 else ++NumTriangle; 557 } 558 } 559 break; 560 } 561 case ICDiamond: 562 if (DisableDiamond) break; 563 LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB) 564 << " (T:" << BBI.TrueBB->getNumber() 565 << ",F:" << BBI.FalseBB->getNumber() << ") "); 566 RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2, 567 Token->TClobbersPred, 568 Token->FClobbersPred); 569 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 570 if (RetVal) ++NumDiamonds; 571 break; 572 case ICForkedDiamond: 573 if (DisableForkedDiamond) break; 574 LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): " 575 << printMBBReference(*BBI.BB) 576 << " (T:" << BBI.TrueBB->getNumber() 577 << ",F:" << BBI.FalseBB->getNumber() << ") "); 578 RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2, 579 Token->TClobbersPred, 580 Token->FClobbersPred); 581 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 582 if (RetVal) ++NumForkedDiamonds; 583 break; 584 } 585 586 if (RetVal && MRI->tracksLiveness()) 587 recomputeLivenessFlags(*BBI.BB); 588 589 Change |= RetVal; 590 591 NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev + 592 NumTriangleFalse + NumTriangleFRev + NumDiamonds; 593 if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit) 594 break; 595 } 596 597 if (!Change) 598 break; 599 MadeChange |= Change; 600 } 601 602 Tokens.clear(); 603 BBAnalysis.clear(); 604 605 if (MadeChange && IfCvtBranchFold) { 606 BranchFolder BF(false, false, MBFI, *MBPI, PSI); 607 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 608 BF.OptimizeFunction( 609 MF, TII, MF.getSubtarget().getRegisterInfo(), 610 MMIWP ? &MMIWP->getMMI() : nullptr); 611 } 612 613 MadeChange |= BFChange; 614 return MadeChange; 615 } 616 617 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor. 618 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 619 MachineBasicBlock *TrueBB) { 620 for (MachineBasicBlock *SuccBB : BB->successors()) { 621 if (SuccBB != TrueBB) 622 return SuccBB; 623 } 624 return nullptr; 625 } 626 627 /// Reverse the condition of the end of the block branch. Swap block's 'true' 628 /// and 'false' successors. 629 bool IfConverter::reverseBranchCondition(BBInfo &BBI) const { 630 DebugLoc dl; // FIXME: this is nowhere 631 if (!TII->reverseBranchCondition(BBI.BrCond)) { 632 TII->removeBranch(*BBI.BB); 633 TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl); 634 std::swap(BBI.TrueBB, BBI.FalseBB); 635 return true; 636 } 637 return false; 638 } 639 640 /// Returns the next block in the function blocks ordering. If it is the end, 641 /// returns NULL. 642 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) { 643 MachineFunction::iterator I = MBB.getIterator(); 644 MachineFunction::iterator E = MBB.getParent()->end(); 645 if (++I == E) 646 return nullptr; 647 return &*I; 648 } 649 650 /// Returns true if the 'true' block (along with its predecessor) forms a valid 651 /// simple shape for ifcvt. It also returns the number of instructions that the 652 /// ifcvt would need to duplicate if performed in Dups. 653 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 654 BranchProbability Prediction) const { 655 Dups = 0; 656 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 657 return false; 658 659 if (TrueBBI.IsBrAnalyzable) 660 return false; 661 662 if (TrueBBI.BB->pred_size() > 1) { 663 if (TrueBBI.CannotBeCopied || 664 !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize, 665 Prediction)) 666 return false; 667 Dups = TrueBBI.NonPredSize; 668 } 669 670 return true; 671 } 672 673 /// Returns true if the 'true' and 'false' blocks (along with their common 674 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is 675 /// true, it checks if 'true' block's false branch branches to the 'false' block 676 /// rather than the other way around. It also returns the number of instructions 677 /// that the ifcvt would need to duplicate if performed in 'Dups'. 678 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 679 bool FalseBranch, unsigned &Dups, 680 BranchProbability Prediction) const { 681 Dups = 0; 682 if (TrueBBI.BB == FalseBBI.BB) 683 return false; 684 685 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 686 return false; 687 688 if (TrueBBI.BB->pred_size() > 1) { 689 if (TrueBBI.CannotBeCopied) 690 return false; 691 692 unsigned Size = TrueBBI.NonPredSize; 693 if (TrueBBI.IsBrAnalyzable) { 694 if (TrueBBI.TrueBB && TrueBBI.BrCond.empty()) 695 // Ends with an unconditional branch. It will be removed. 696 --Size; 697 else { 698 MachineBasicBlock *FExit = FalseBranch 699 ? TrueBBI.TrueBB : TrueBBI.FalseBB; 700 if (FExit) 701 // Require a conditional branch 702 ++Size; 703 } 704 } 705 if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction)) 706 return false; 707 Dups = Size; 708 } 709 710 MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB; 711 if (!TExit && blockAlwaysFallThrough(TrueBBI)) { 712 MachineFunction::iterator I = TrueBBI.BB->getIterator(); 713 if (++I == TrueBBI.BB->getParent()->end()) 714 return false; 715 TExit = &*I; 716 } 717 return TExit && TExit == FalseBBI.BB; 718 } 719 720 /// Count duplicated instructions and move the iterators to show where they 721 /// are. 722 /// @param TIB True Iterator Begin 723 /// @param FIB False Iterator Begin 724 /// These two iterators initially point to the first instruction of the two 725 /// blocks, and finally point to the first non-shared instruction. 726 /// @param TIE True Iterator End 727 /// @param FIE False Iterator End 728 /// These two iterators initially point to End() for the two blocks() and 729 /// finally point to the first shared instruction in the tail. 730 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of 731 /// two blocks. 732 /// @param Dups1 count of duplicated instructions at the beginning of the 2 733 /// blocks. 734 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks. 735 /// @param SkipUnconditionalBranches if true, Don't make sure that 736 /// unconditional branches at the end of the blocks are the same. True is 737 /// passed when the blocks are analyzable to allow for fallthrough to be 738 /// handled. 739 /// @return false if the shared portion prevents if conversion. 740 bool IfConverter::CountDuplicatedInstructions( 741 MachineBasicBlock::iterator &TIB, 742 MachineBasicBlock::iterator &FIB, 743 MachineBasicBlock::iterator &TIE, 744 MachineBasicBlock::iterator &FIE, 745 unsigned &Dups1, unsigned &Dups2, 746 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 747 bool SkipUnconditionalBranches) const { 748 while (TIB != TIE && FIB != FIE) { 749 // Skip dbg_value instructions. These do not count. 750 TIB = skipDebugInstructionsForward(TIB, TIE); 751 FIB = skipDebugInstructionsForward(FIB, FIE); 752 if (TIB == TIE || FIB == FIE) 753 break; 754 if (!TIB->isIdenticalTo(*FIB)) 755 break; 756 // A pred-clobbering instruction in the shared portion prevents 757 // if-conversion. 758 std::vector<MachineOperand> PredDefs; 759 if (TII->DefinesPredicate(*TIB, PredDefs)) 760 return false; 761 // If we get all the way to the branch instructions, don't count them. 762 if (!TIB->isBranch()) 763 ++Dups1; 764 ++TIB; 765 ++FIB; 766 } 767 768 // Check for already containing all of the block. 769 if (TIB == TIE || FIB == FIE) 770 return true; 771 // Now, in preparation for counting duplicate instructions at the ends of the 772 // blocks, switch to reverse_iterators. Note that getReverse() returns an 773 // iterator that points to the same instruction, unlike std::reverse_iterator. 774 // We have to do our own shifting so that we get the same range. 775 MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse()); 776 MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse()); 777 const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse()); 778 const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse()); 779 780 if (!TBB.succ_empty() || !FBB.succ_empty()) { 781 if (SkipUnconditionalBranches) { 782 while (RTIE != RTIB && RTIE->isUnconditionalBranch()) 783 ++RTIE; 784 while (RFIE != RFIB && RFIE->isUnconditionalBranch()) 785 ++RFIE; 786 } 787 } 788 789 // Count duplicate instructions at the ends of the blocks. 790 while (RTIE != RTIB && RFIE != RFIB) { 791 // Skip dbg_value instructions. These do not count. 792 // Note that these are reverse iterators going forward. 793 RTIE = skipDebugInstructionsForward(RTIE, RTIB); 794 RFIE = skipDebugInstructionsForward(RFIE, RFIB); 795 if (RTIE == RTIB || RFIE == RFIB) 796 break; 797 if (!RTIE->isIdenticalTo(*RFIE)) 798 break; 799 // We have to verify that any branch instructions are the same, and then we 800 // don't count them toward the # of duplicate instructions. 801 if (!RTIE->isBranch()) 802 ++Dups2; 803 ++RTIE; 804 ++RFIE; 805 } 806 TIE = std::next(RTIE.getReverse()); 807 FIE = std::next(RFIE.getReverse()); 808 return true; 809 } 810 811 /// RescanInstructions - Run ScanInstructions on a pair of blocks. 812 /// @param TIB - True Iterator Begin, points to first non-shared instruction 813 /// @param FIB - False Iterator Begin, points to first non-shared instruction 814 /// @param TIE - True Iterator End, points past last non-shared instruction 815 /// @param FIE - False Iterator End, points past last non-shared instruction 816 /// @param TrueBBI - BBInfo to update for the true block. 817 /// @param FalseBBI - BBInfo to update for the false block. 818 /// @returns - false if either block cannot be predicated or if both blocks end 819 /// with a predicate-clobbering instruction. 820 bool IfConverter::RescanInstructions( 821 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 822 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 823 BBInfo &TrueBBI, BBInfo &FalseBBI) const { 824 bool BranchUnpredicable = true; 825 TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false; 826 ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable); 827 if (TrueBBI.IsUnpredicable) 828 return false; 829 ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable); 830 if (FalseBBI.IsUnpredicable) 831 return false; 832 if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred) 833 return false; 834 return true; 835 } 836 837 #ifndef NDEBUG 838 static void verifySameBranchInstructions( 839 MachineBasicBlock *MBB1, 840 MachineBasicBlock *MBB2) { 841 const MachineBasicBlock::reverse_iterator B1 = MBB1->rend(); 842 const MachineBasicBlock::reverse_iterator B2 = MBB2->rend(); 843 MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin(); 844 MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin(); 845 while (E1 != B1 && E2 != B2) { 846 skipDebugInstructionsForward(E1, B1); 847 skipDebugInstructionsForward(E2, B2); 848 if (E1 == B1 && E2 == B2) 849 break; 850 851 if (E1 == B1) { 852 assert(!E2->isBranch() && "Branch mis-match, one block is empty."); 853 break; 854 } 855 if (E2 == B2) { 856 assert(!E1->isBranch() && "Branch mis-match, one block is empty."); 857 break; 858 } 859 860 if (E1->isBranch() || E2->isBranch()) 861 assert(E1->isIdenticalTo(*E2) && 862 "Branch mis-match, branch instructions don't match."); 863 else 864 break; 865 ++E1; 866 ++E2; 867 } 868 } 869 #endif 870 871 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along 872 /// with their common predecessor) form a diamond if a common tail block is 873 /// extracted. 874 /// While not strictly a diamond, this pattern would form a diamond if 875 /// tail-merging had merged the shared tails. 876 /// EBB 877 /// _/ \_ 878 /// | | 879 /// TBB FBB 880 /// / \ / \ 881 /// FalseBB TrueBB FalseBB 882 /// Currently only handles analyzable branches. 883 /// Specifically excludes actual diamonds to avoid overlap. 884 bool IfConverter::ValidForkedDiamond( 885 BBInfo &TrueBBI, BBInfo &FalseBBI, 886 unsigned &Dups1, unsigned &Dups2, 887 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 888 Dups1 = Dups2 = 0; 889 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 890 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 891 return false; 892 893 if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable) 894 return false; 895 // Don't IfConvert blocks that can't be folded into their predecessor. 896 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 897 return false; 898 899 // This function is specifically looking for conditional tails, as 900 // unconditional tails are already handled by the standard diamond case. 901 if (TrueBBI.BrCond.size() == 0 || 902 FalseBBI.BrCond.size() == 0) 903 return false; 904 905 MachineBasicBlock *TT = TrueBBI.TrueBB; 906 MachineBasicBlock *TF = TrueBBI.FalseBB; 907 MachineBasicBlock *FT = FalseBBI.TrueBB; 908 MachineBasicBlock *FF = FalseBBI.FalseBB; 909 910 if (!TT) 911 TT = getNextBlock(*TrueBBI.BB); 912 if (!TF) 913 TF = getNextBlock(*TrueBBI.BB); 914 if (!FT) 915 FT = getNextBlock(*FalseBBI.BB); 916 if (!FF) 917 FF = getNextBlock(*FalseBBI.BB); 918 919 if (!TT || !TF) 920 return false; 921 922 // Check successors. If they don't match, bail. 923 if (!((TT == FT && TF == FF) || (TF == FT && TT == FF))) 924 return false; 925 926 bool FalseReversed = false; 927 if (TF == FT && TT == FF) { 928 // If the branches are opposing, but we can't reverse, don't do it. 929 if (!FalseBBI.IsBrReversible) 930 return false; 931 FalseReversed = true; 932 reverseBranchCondition(FalseBBI); 933 } 934 auto UnReverseOnExit = make_scope_exit([&]() { 935 if (FalseReversed) 936 reverseBranchCondition(FalseBBI); 937 }); 938 939 // Count duplicate instructions at the beginning of the true and false blocks. 940 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 941 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 942 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 943 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 944 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 945 *TrueBBI.BB, *FalseBBI.BB, 946 /* SkipUnconditionalBranches */ true)) 947 return false; 948 949 TrueBBICalc.BB = TrueBBI.BB; 950 FalseBBICalc.BB = FalseBBI.BB; 951 TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable; 952 FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable; 953 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 954 return false; 955 956 // The size is used to decide whether to if-convert, and the shared portions 957 // are subtracted off. Because of the subtraction, we just use the size that 958 // was calculated by the original ScanInstructions, as it is correct. 959 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 960 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 961 return true; 962 } 963 964 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along 965 /// with their common predecessor) forms a valid diamond shape for ifcvt. 966 bool IfConverter::ValidDiamond( 967 BBInfo &TrueBBI, BBInfo &FalseBBI, 968 unsigned &Dups1, unsigned &Dups2, 969 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 970 Dups1 = Dups2 = 0; 971 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 972 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 973 return false; 974 975 // If the True and False BBs are equal we're dealing with a degenerate case 976 // that we don't treat as a diamond. 977 if (TrueBBI.BB == FalseBBI.BB) 978 return false; 979 980 MachineBasicBlock *TT = TrueBBI.TrueBB; 981 MachineBasicBlock *FT = FalseBBI.TrueBB; 982 983 if (!TT && blockAlwaysFallThrough(TrueBBI)) 984 TT = getNextBlock(*TrueBBI.BB); 985 if (!FT && blockAlwaysFallThrough(FalseBBI)) 986 FT = getNextBlock(*FalseBBI.BB); 987 if (TT != FT) 988 return false; 989 if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable)) 990 return false; 991 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 992 return false; 993 994 // FIXME: Allow true block to have an early exit? 995 if (TrueBBI.FalseBB || FalseBBI.FalseBB) 996 return false; 997 998 // Count duplicate instructions at the beginning and end of the true and 999 // false blocks. 1000 // Skip unconditional branches only if we are considering an analyzable 1001 // diamond. Otherwise the branches must be the same. 1002 bool SkipUnconditionalBranches = 1003 TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable; 1004 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 1005 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 1006 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 1007 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 1008 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 1009 *TrueBBI.BB, *FalseBBI.BB, 1010 SkipUnconditionalBranches)) 1011 return false; 1012 1013 TrueBBICalc.BB = TrueBBI.BB; 1014 FalseBBICalc.BB = FalseBBI.BB; 1015 TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable; 1016 FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable; 1017 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 1018 return false; 1019 // The size is used to decide whether to if-convert, and the shared portions 1020 // are subtracted off. Because of the subtraction, we just use the size that 1021 // was calculated by the original ScanInstructions, as it is correct. 1022 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 1023 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 1024 return true; 1025 } 1026 1027 /// AnalyzeBranches - Look at the branches at the end of a block to determine if 1028 /// the block is predicable. 1029 void IfConverter::AnalyzeBranches(BBInfo &BBI) { 1030 if (BBI.IsDone) 1031 return; 1032 1033 BBI.TrueBB = BBI.FalseBB = nullptr; 1034 BBI.BrCond.clear(); 1035 BBI.IsBrAnalyzable = 1036 !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond); 1037 if (!BBI.IsBrAnalyzable) { 1038 BBI.TrueBB = nullptr; 1039 BBI.FalseBB = nullptr; 1040 BBI.BrCond.clear(); 1041 } 1042 1043 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1044 BBI.IsBrReversible = (RevCond.size() == 0) || 1045 !TII->reverseBranchCondition(RevCond); 1046 BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr; 1047 1048 if (BBI.BrCond.size()) { 1049 // No false branch. This BB must end with a conditional branch and a 1050 // fallthrough. 1051 if (!BBI.FalseBB) 1052 BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB); 1053 if (!BBI.FalseBB) { 1054 // Malformed bcc? True and false blocks are the same? 1055 BBI.IsUnpredicable = true; 1056 } 1057 } 1058 } 1059 1060 /// ScanInstructions - Scan all the instructions in the block to determine if 1061 /// the block is predicable. In most cases, that means all the instructions 1062 /// in the block are isPredicable(). Also checks if the block contains any 1063 /// instruction which can clobber a predicate (e.g. condition code register). 1064 /// If so, the block is not predicable unless it's the last instruction. 1065 void IfConverter::ScanInstructions(BBInfo &BBI, 1066 MachineBasicBlock::iterator &Begin, 1067 MachineBasicBlock::iterator &End, 1068 bool BranchUnpredicable) const { 1069 if (BBI.IsDone || BBI.IsUnpredicable) 1070 return; 1071 1072 bool AlreadyPredicated = !BBI.Predicate.empty(); 1073 1074 BBI.NonPredSize = 0; 1075 BBI.ExtraCost = 0; 1076 BBI.ExtraCost2 = 0; 1077 BBI.ClobbersPred = false; 1078 for (MachineInstr &MI : make_range(Begin, End)) { 1079 if (MI.isDebugInstr()) 1080 continue; 1081 1082 // It's unsafe to duplicate convergent instructions in this context, so set 1083 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the 1084 // following CFG, which is subject to our "simple" transformation. 1085 // 1086 // BB0 // if (c1) goto BB1; else goto BB2; 1087 // / \ 1088 // BB1 | 1089 // | BB2 // if (c2) goto TBB; else goto FBB; 1090 // | / | 1091 // | / | 1092 // TBB | 1093 // | | 1094 // | FBB 1095 // | 1096 // exit 1097 // 1098 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd 1099 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose 1100 // TBB contains a convergent instruction. This is safe iff doing so does 1101 // not add a control-flow dependency to the convergent instruction -- i.e., 1102 // it's safe iff the set of control flows that leads us to the convergent 1103 // instruction does not get smaller after the transformation. 1104 // 1105 // Originally we executed TBB if c1 || c2. After the transformation, there 1106 // are two copies of TBB's instructions. We get to the first if c1, and we 1107 // get to the second if !c1 && c2. 1108 // 1109 // There are clearly fewer ways to satisfy the condition "c1" than 1110 // "c1 || c2". Since we've shrunk the set of control flows which lead to 1111 // our convergent instruction, the transformation is unsafe. 1112 if (MI.isNotDuplicable() || MI.isConvergent()) 1113 BBI.CannotBeCopied = true; 1114 1115 bool isPredicated = TII->isPredicated(MI); 1116 bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch(); 1117 1118 if (BranchUnpredicable && MI.isBranch()) { 1119 BBI.IsUnpredicable = true; 1120 return; 1121 } 1122 1123 // A conditional branch is not predicable, but it may be eliminated. 1124 if (isCondBr) 1125 continue; 1126 1127 if (!isPredicated) { 1128 BBI.NonPredSize++; 1129 unsigned ExtraPredCost = TII->getPredicationCost(MI); 1130 unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false); 1131 if (NumCycles > 1) 1132 BBI.ExtraCost += NumCycles-1; 1133 BBI.ExtraCost2 += ExtraPredCost; 1134 } else if (!AlreadyPredicated) { 1135 // FIXME: This instruction is already predicated before the 1136 // if-conversion pass. It's probably something like a conditional move. 1137 // Mark this block unpredicable for now. 1138 BBI.IsUnpredicable = true; 1139 return; 1140 } 1141 1142 if (BBI.ClobbersPred && !isPredicated) { 1143 // Predicate modification instruction should end the block (except for 1144 // already predicated instructions and end of block branches). 1145 // Predicate may have been modified, the subsequent (currently) 1146 // unpredicated instructions cannot be correctly predicated. 1147 BBI.IsUnpredicable = true; 1148 return; 1149 } 1150 1151 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are 1152 // still potentially predicable. 1153 std::vector<MachineOperand> PredDefs; 1154 if (TII->DefinesPredicate(MI, PredDefs)) 1155 BBI.ClobbersPred = true; 1156 1157 if (!TII->isPredicable(MI)) { 1158 BBI.IsUnpredicable = true; 1159 return; 1160 } 1161 } 1162 } 1163 1164 /// Determine if the block is a suitable candidate to be predicated by the 1165 /// specified predicate. 1166 /// @param BBI BBInfo for the block to check 1167 /// @param Pred Predicate array for the branch that leads to BBI 1168 /// @param isTriangle true if the Analysis is for a triangle 1169 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false 1170 /// case 1171 /// @param hasCommonTail true if BBI shares a tail with a sibling block that 1172 /// contains any instruction that would make the block unpredicable. 1173 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI, 1174 SmallVectorImpl<MachineOperand> &Pred, 1175 bool isTriangle, bool RevBranch, 1176 bool hasCommonTail) { 1177 // If the block is dead or unpredicable, then it cannot be predicated. 1178 // Two blocks may share a common unpredicable tail, but this doesn't prevent 1179 // them from being if-converted. The non-shared portion is assumed to have 1180 // been checked 1181 if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail)) 1182 return false; 1183 1184 // If it is already predicated but we couldn't analyze its terminator, the 1185 // latter might fallthrough, but we can't determine where to. 1186 // Conservatively avoid if-converting again. 1187 if (BBI.Predicate.size() && !BBI.IsBrAnalyzable) 1188 return false; 1189 1190 // If it is already predicated, check if the new predicate subsumes 1191 // its predicate. 1192 if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate)) 1193 return false; 1194 1195 if (!hasCommonTail && BBI.BrCond.size()) { 1196 if (!isTriangle) 1197 return false; 1198 1199 // Test predicate subsumption. 1200 SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end()); 1201 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1202 if (RevBranch) { 1203 if (TII->reverseBranchCondition(Cond)) 1204 return false; 1205 } 1206 if (TII->reverseBranchCondition(RevPred) || 1207 !TII->SubsumesPredicate(Cond, RevPred)) 1208 return false; 1209 } 1210 1211 return true; 1212 } 1213 1214 /// Analyze the structure of the sub-CFG starting from the specified block. 1215 /// Record its successors and whether it looks like an if-conversion candidate. 1216 void IfConverter::AnalyzeBlock( 1217 MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1218 struct BBState { 1219 BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {} 1220 MachineBasicBlock *MBB; 1221 1222 /// This flag is true if MBB's successors have been analyzed. 1223 bool SuccsAnalyzed; 1224 }; 1225 1226 // Push MBB to the stack. 1227 SmallVector<BBState, 16> BBStack(1, MBB); 1228 1229 while (!BBStack.empty()) { 1230 BBState &State = BBStack.back(); 1231 MachineBasicBlock *BB = State.MBB; 1232 BBInfo &BBI = BBAnalysis[BB->getNumber()]; 1233 1234 if (!State.SuccsAnalyzed) { 1235 if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) { 1236 BBStack.pop_back(); 1237 continue; 1238 } 1239 1240 BBI.BB = BB; 1241 BBI.IsBeingAnalyzed = true; 1242 1243 AnalyzeBranches(BBI); 1244 MachineBasicBlock::iterator Begin = BBI.BB->begin(); 1245 MachineBasicBlock::iterator End = BBI.BB->end(); 1246 ScanInstructions(BBI, Begin, End); 1247 1248 // Unanalyzable or ends with fallthrough or unconditional branch, or if is 1249 // not considered for ifcvt anymore. 1250 if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) { 1251 BBI.IsBeingAnalyzed = false; 1252 BBI.IsAnalyzed = true; 1253 BBStack.pop_back(); 1254 continue; 1255 } 1256 1257 // Do not ifcvt if either path is a back edge to the entry block. 1258 if (BBI.TrueBB == BB || BBI.FalseBB == BB) { 1259 BBI.IsBeingAnalyzed = false; 1260 BBI.IsAnalyzed = true; 1261 BBStack.pop_back(); 1262 continue; 1263 } 1264 1265 // Do not ifcvt if true and false fallthrough blocks are the same. 1266 if (!BBI.FalseBB) { 1267 BBI.IsBeingAnalyzed = false; 1268 BBI.IsAnalyzed = true; 1269 BBStack.pop_back(); 1270 continue; 1271 } 1272 1273 // Push the False and True blocks to the stack. 1274 State.SuccsAnalyzed = true; 1275 BBStack.push_back(*BBI.FalseBB); 1276 BBStack.push_back(*BBI.TrueBB); 1277 continue; 1278 } 1279 1280 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1281 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1282 1283 if (TrueBBI.IsDone && FalseBBI.IsDone) { 1284 BBI.IsBeingAnalyzed = false; 1285 BBI.IsAnalyzed = true; 1286 BBStack.pop_back(); 1287 continue; 1288 } 1289 1290 SmallVector<MachineOperand, 4> 1291 RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1292 bool CanRevCond = !TII->reverseBranchCondition(RevCond); 1293 1294 unsigned Dups = 0; 1295 unsigned Dups2 = 0; 1296 bool TNeedSub = !TrueBBI.Predicate.empty(); 1297 bool FNeedSub = !FalseBBI.Predicate.empty(); 1298 bool Enqueued = false; 1299 1300 BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB); 1301 1302 if (CanRevCond) { 1303 BBInfo TrueBBICalc, FalseBBICalc; 1304 auto feasibleDiamond = [&](bool Forked) { 1305 bool MeetsSize = MeetIfcvtSizeLimit(TrueBBICalc, FalseBBICalc, *BB, 1306 Dups + Dups2, Prediction, Forked); 1307 bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond, 1308 /* IsTriangle */ false, /* RevCond */ false, 1309 /* hasCommonTail */ true); 1310 bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond, 1311 /* IsTriangle */ false, /* RevCond */ false, 1312 /* hasCommonTail */ true); 1313 return MeetsSize && TrueFeasible && FalseFeasible; 1314 }; 1315 1316 if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1317 TrueBBICalc, FalseBBICalc)) { 1318 if (feasibleDiamond(false)) { 1319 // Diamond: 1320 // EBB 1321 // / \_ 1322 // | | 1323 // TBB FBB 1324 // \ / 1325 // TailBB 1326 // Note TailBB can be empty. 1327 Tokens.push_back(std::make_unique<IfcvtToken>( 1328 BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1329 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1330 Enqueued = true; 1331 } 1332 } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1333 TrueBBICalc, FalseBBICalc)) { 1334 if (feasibleDiamond(true)) { 1335 // ForkedDiamond: 1336 // if TBB and FBB have a common tail that includes their conditional 1337 // branch instructions, then we can If Convert this pattern. 1338 // EBB 1339 // _/ \_ 1340 // | | 1341 // TBB FBB 1342 // / \ / \ 1343 // FalseBB TrueBB FalseBB 1344 // 1345 Tokens.push_back(std::make_unique<IfcvtToken>( 1346 BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1347 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1348 Enqueued = true; 1349 } 1350 } 1351 } 1352 1353 if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) && 1354 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1355 TrueBBI.ExtraCost2, Prediction) && 1356 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) { 1357 // Triangle: 1358 // EBB 1359 // | \_ 1360 // | | 1361 // | TBB 1362 // | / 1363 // FBB 1364 Tokens.push_back( 1365 std::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups)); 1366 Enqueued = true; 1367 } 1368 1369 if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) && 1370 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1371 TrueBBI.ExtraCost2, Prediction) && 1372 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) { 1373 Tokens.push_back( 1374 std::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups)); 1375 Enqueued = true; 1376 } 1377 1378 if (ValidSimple(TrueBBI, Dups, Prediction) && 1379 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1380 TrueBBI.ExtraCost2, Prediction) && 1381 FeasibilityAnalysis(TrueBBI, BBI.BrCond)) { 1382 // Simple (split, no rejoin): 1383 // EBB 1384 // | \_ 1385 // | | 1386 // | TBB---> exit 1387 // | 1388 // FBB 1389 Tokens.push_back( 1390 std::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups)); 1391 Enqueued = true; 1392 } 1393 1394 if (CanRevCond) { 1395 // Try the other path... 1396 if (ValidTriangle(FalseBBI, TrueBBI, false, Dups, 1397 Prediction.getCompl()) && 1398 MeetIfcvtSizeLimit(*FalseBBI.BB, 1399 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1400 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1401 FeasibilityAnalysis(FalseBBI, RevCond, true)) { 1402 Tokens.push_back(std::make_unique<IfcvtToken>(BBI, ICTriangleFalse, 1403 FNeedSub, Dups)); 1404 Enqueued = true; 1405 } 1406 1407 if (ValidTriangle(FalseBBI, TrueBBI, true, Dups, 1408 Prediction.getCompl()) && 1409 MeetIfcvtSizeLimit(*FalseBBI.BB, 1410 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1411 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1412 FeasibilityAnalysis(FalseBBI, RevCond, true, true)) { 1413 Tokens.push_back( 1414 std::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups)); 1415 Enqueued = true; 1416 } 1417 1418 if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) && 1419 MeetIfcvtSizeLimit(*FalseBBI.BB, 1420 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1421 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1422 FeasibilityAnalysis(FalseBBI, RevCond)) { 1423 Tokens.push_back( 1424 std::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups)); 1425 Enqueued = true; 1426 } 1427 } 1428 1429 BBI.IsEnqueued = Enqueued; 1430 BBI.IsBeingAnalyzed = false; 1431 BBI.IsAnalyzed = true; 1432 BBStack.pop_back(); 1433 } 1434 } 1435 1436 /// Analyze all blocks and find entries for all if-conversion candidates. 1437 void IfConverter::AnalyzeBlocks( 1438 MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1439 for (MachineBasicBlock &MBB : MF) 1440 AnalyzeBlock(MBB, Tokens); 1441 1442 // Sort to favor more complex ifcvt scheme. 1443 llvm::stable_sort(Tokens, IfcvtTokenCmp); 1444 } 1445 1446 /// Returns true either if ToMBB is the next block after MBB or that all the 1447 /// intervening blocks are empty (given MBB can fall through to its next block). 1448 static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) { 1449 MachineFunction::iterator PI = MBB.getIterator(); 1450 MachineFunction::iterator I = std::next(PI); 1451 MachineFunction::iterator TI = ToMBB.getIterator(); 1452 MachineFunction::iterator E = MBB.getParent()->end(); 1453 while (I != TI) { 1454 // Check isSuccessor to avoid case where the next block is empty, but 1455 // it's not a successor. 1456 if (I == E || !I->empty() || !PI->isSuccessor(&*I)) 1457 return false; 1458 PI = I++; 1459 } 1460 // Finally see if the last I is indeed a successor to PI. 1461 return PI->isSuccessor(&*I); 1462 } 1463 1464 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it 1465 /// can be if-converted. If predecessor is already enqueued, dequeue it! 1466 void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) { 1467 for (const MachineBasicBlock *Predecessor : MBB.predecessors()) { 1468 BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()]; 1469 if (PBBI.IsDone || PBBI.BB == &MBB) 1470 continue; 1471 PBBI.IsAnalyzed = false; 1472 PBBI.IsEnqueued = false; 1473 } 1474 } 1475 1476 /// Inserts an unconditional branch from \p MBB to \p ToMBB. 1477 static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB, 1478 const TargetInstrInfo *TII) { 1479 DebugLoc dl; // FIXME: this is nowhere 1480 SmallVector<MachineOperand, 0> NoCond; 1481 TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl); 1482 } 1483 1484 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all 1485 /// values defined in MI which are also live/used by MI. 1486 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) { 1487 const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo(); 1488 1489 // Before stepping forward past MI, remember which regs were live 1490 // before MI. This is needed to set the Undef flag only when reg is 1491 // dead. 1492 SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI; 1493 LiveBeforeMI.setUniverse(TRI->getNumRegs()); 1494 for (unsigned Reg : Redefs) 1495 LiveBeforeMI.insert(Reg); 1496 1497 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers; 1498 Redefs.stepForward(MI, Clobbers); 1499 1500 // Now add the implicit uses for each of the clobbered values. 1501 for (auto Clobber : Clobbers) { 1502 // FIXME: Const cast here is nasty, but better than making StepForward 1503 // take a mutable instruction instead of const. 1504 unsigned Reg = Clobber.first; 1505 MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second); 1506 MachineInstr *OpMI = Op.getParent(); 1507 MachineInstrBuilder MIB(*OpMI->getMF(), OpMI); 1508 if (Op.isRegMask()) { 1509 // First handle regmasks. They clobber any entries in the mask which 1510 // means that we need a def for those registers. 1511 if (LiveBeforeMI.count(Reg)) 1512 MIB.addReg(Reg, RegState::Implicit); 1513 1514 // We also need to add an implicit def of this register for the later 1515 // use to read from. 1516 // For the register allocator to have allocated a register clobbered 1517 // by the call which is used later, it must be the case that 1518 // the call doesn't return. 1519 MIB.addReg(Reg, RegState::Implicit | RegState::Define); 1520 continue; 1521 } 1522 if (LiveBeforeMI.count(Reg)) 1523 MIB.addReg(Reg, RegState::Implicit); 1524 else { 1525 bool HasLiveSubReg = false; 1526 for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) { 1527 if (!LiveBeforeMI.count(*S)) 1528 continue; 1529 HasLiveSubReg = true; 1530 break; 1531 } 1532 if (HasLiveSubReg) 1533 MIB.addReg(Reg, RegState::Implicit); 1534 } 1535 } 1536 } 1537 1538 /// If convert a simple (split, no rejoin) sub-CFG. 1539 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) { 1540 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1541 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1542 BBInfo *CvtBBI = &TrueBBI; 1543 BBInfo *NextBBI = &FalseBBI; 1544 1545 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1546 if (Kind == ICSimpleFalse) 1547 std::swap(CvtBBI, NextBBI); 1548 1549 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1550 MachineBasicBlock &NextMBB = *NextBBI->BB; 1551 if (CvtBBI->IsDone || 1552 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1553 // Something has changed. It's no longer safe to predicate this block. 1554 BBI.IsAnalyzed = false; 1555 CvtBBI->IsAnalyzed = false; 1556 return false; 1557 } 1558 1559 if (CvtMBB.hasAddressTaken()) 1560 // Conservatively abort if-conversion if BB's address is taken. 1561 return false; 1562 1563 if (Kind == ICSimpleFalse) 1564 if (TII->reverseBranchCondition(Cond)) 1565 llvm_unreachable("Unable to reverse branch condition!"); 1566 1567 Redefs.init(*TRI); 1568 1569 if (MRI->tracksLiveness()) { 1570 // Initialize liveins to the first BB. These are potentially redefined by 1571 // predicated instructions. 1572 Redefs.addLiveIns(CvtMBB); 1573 Redefs.addLiveIns(NextMBB); 1574 } 1575 1576 // Remove the branches from the entry so we can add the contents of the true 1577 // block to it. 1578 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1579 1580 if (CvtMBB.pred_size() > 1) { 1581 // Copy instructions in the true block, predicate them, and add them to 1582 // the entry block. 1583 CopyAndPredicateBlock(BBI, *CvtBBI, Cond); 1584 1585 // Keep the CFG updated. 1586 BBI.BB->removeSuccessor(&CvtMBB, true); 1587 } else { 1588 // Predicate the instructions in the true block. 1589 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1590 1591 // Merge converted block into entry block. The BB to Cvt edge is removed 1592 // by MergeBlocks. 1593 MergeBlocks(BBI, *CvtBBI); 1594 } 1595 1596 bool IterIfcvt = true; 1597 if (!canFallThroughTo(*BBI.BB, NextMBB)) { 1598 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1599 BBI.HasFallThrough = false; 1600 // Now ifcvt'd block will look like this: 1601 // BB: 1602 // ... 1603 // t, f = cmp 1604 // if t op 1605 // b BBf 1606 // 1607 // We cannot further ifcvt this block because the unconditional branch 1608 // will have to be predicated on the new condition, that will not be 1609 // available if cmp executes. 1610 IterIfcvt = false; 1611 } 1612 1613 // Update block info. BB can be iteratively if-converted. 1614 if (!IterIfcvt) 1615 BBI.IsDone = true; 1616 InvalidatePreds(*BBI.BB); 1617 CvtBBI->IsDone = true; 1618 1619 // FIXME: Must maintain LiveIns. 1620 return true; 1621 } 1622 1623 /// If convert a triangle sub-CFG. 1624 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) { 1625 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1626 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1627 BBInfo *CvtBBI = &TrueBBI; 1628 BBInfo *NextBBI = &FalseBBI; 1629 DebugLoc dl; // FIXME: this is nowhere 1630 1631 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1632 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1633 std::swap(CvtBBI, NextBBI); 1634 1635 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1636 MachineBasicBlock &NextMBB = *NextBBI->BB; 1637 if (CvtBBI->IsDone || 1638 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1639 // Something has changed. It's no longer safe to predicate this block. 1640 BBI.IsAnalyzed = false; 1641 CvtBBI->IsAnalyzed = false; 1642 return false; 1643 } 1644 1645 if (CvtMBB.hasAddressTaken()) 1646 // Conservatively abort if-conversion if BB's address is taken. 1647 return false; 1648 1649 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1650 if (TII->reverseBranchCondition(Cond)) 1651 llvm_unreachable("Unable to reverse branch condition!"); 1652 1653 if (Kind == ICTriangleRev || Kind == ICTriangleFRev) { 1654 if (reverseBranchCondition(*CvtBBI)) { 1655 // BB has been changed, modify its predecessors (except for this 1656 // one) so they don't get ifcvt'ed based on bad intel. 1657 for (MachineBasicBlock *PBB : CvtMBB.predecessors()) { 1658 if (PBB == BBI.BB) 1659 continue; 1660 BBInfo &PBBI = BBAnalysis[PBB->getNumber()]; 1661 if (PBBI.IsEnqueued) { 1662 PBBI.IsAnalyzed = false; 1663 PBBI.IsEnqueued = false; 1664 } 1665 } 1666 } 1667 } 1668 1669 // Initialize liveins to the first BB. These are potentially redefined by 1670 // predicated instructions. 1671 Redefs.init(*TRI); 1672 if (MRI->tracksLiveness()) { 1673 Redefs.addLiveIns(CvtMBB); 1674 Redefs.addLiveIns(NextMBB); 1675 } 1676 1677 bool HasEarlyExit = CvtBBI->FalseBB != nullptr; 1678 BranchProbability CvtNext, CvtFalse, BBNext, BBCvt; 1679 1680 if (HasEarlyExit) { 1681 // Get probabilities before modifying CvtMBB and BBI.BB. 1682 CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB); 1683 CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB); 1684 BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB); 1685 BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB); 1686 } 1687 1688 // Remove the branches from the entry so we can add the contents of the true 1689 // block to it. 1690 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1691 1692 if (CvtMBB.pred_size() > 1) { 1693 // Copy instructions in the true block, predicate them, and add them to 1694 // the entry block. 1695 CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true); 1696 } else { 1697 // Predicate the 'true' block after removing its branch. 1698 CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB); 1699 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1700 1701 // Now merge the entry of the triangle with the true block. 1702 MergeBlocks(BBI, *CvtBBI, false); 1703 } 1704 1705 // Keep the CFG updated. 1706 BBI.BB->removeSuccessor(&CvtMBB, true); 1707 1708 // If 'true' block has a 'false' successor, add an exit branch to it. 1709 if (HasEarlyExit) { 1710 SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(), 1711 CvtBBI->BrCond.end()); 1712 if (TII->reverseBranchCondition(RevCond)) 1713 llvm_unreachable("Unable to reverse branch condition!"); 1714 1715 // Update the edge probability for both CvtBBI->FalseBB and NextBBI. 1716 // NewNext = New_Prob(BBI.BB, NextMBB) = 1717 // Prob(BBI.BB, NextMBB) + 1718 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB) 1719 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) = 1720 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB) 1721 auto NewTrueBB = getNextBlock(*BBI.BB); 1722 auto NewNext = BBNext + BBCvt * CvtNext; 1723 auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB); 1724 if (NewTrueBBIter != BBI.BB->succ_end()) 1725 BBI.BB->setSuccProbability(NewTrueBBIter, NewNext); 1726 1727 auto NewFalse = BBCvt * CvtFalse; 1728 TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl); 1729 BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse); 1730 } 1731 1732 // Merge in the 'false' block if the 'false' block has no other 1733 // predecessors. Otherwise, add an unconditional branch to 'false'. 1734 bool FalseBBDead = false; 1735 bool IterIfcvt = true; 1736 bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB); 1737 if (!isFallThrough) { 1738 // Only merge them if the true block does not fallthrough to the false 1739 // block. By not merging them, we make it possible to iteratively 1740 // ifcvt the blocks. 1741 if (!HasEarlyExit && 1742 NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough && 1743 !NextMBB.hasAddressTaken()) { 1744 MergeBlocks(BBI, *NextBBI); 1745 FalseBBDead = true; 1746 } else { 1747 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1748 BBI.HasFallThrough = false; 1749 } 1750 // Mixed predicated and unpredicated code. This cannot be iteratively 1751 // predicated. 1752 IterIfcvt = false; 1753 } 1754 1755 // Update block info. BB can be iteratively if-converted. 1756 if (!IterIfcvt) 1757 BBI.IsDone = true; 1758 InvalidatePreds(*BBI.BB); 1759 CvtBBI->IsDone = true; 1760 if (FalseBBDead) 1761 NextBBI->IsDone = true; 1762 1763 // FIXME: Must maintain LiveIns. 1764 return true; 1765 } 1766 1767 /// Common code shared between diamond conversions. 1768 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape. 1769 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI 1770 /// and FalseBBI 1771 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI 1772 /// and \p FalseBBI 1773 /// \p RemoveBranch - Remove the common branch of the two blocks before 1774 /// predicating. Only false for unanalyzable fallthrough 1775 /// cases. The caller will replace the branch if necessary. 1776 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for 1777 /// unanalyzable fallthrough 1778 bool IfConverter::IfConvertDiamondCommon( 1779 BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 1780 unsigned NumDups1, unsigned NumDups2, 1781 bool TClobbersPred, bool FClobbersPred, 1782 bool RemoveBranch, bool MergeAddEdges) { 1783 1784 if (TrueBBI.IsDone || FalseBBI.IsDone || 1785 TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) { 1786 // Something has changed. It's no longer safe to predicate these blocks. 1787 BBI.IsAnalyzed = false; 1788 TrueBBI.IsAnalyzed = false; 1789 FalseBBI.IsAnalyzed = false; 1790 return false; 1791 } 1792 1793 if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken()) 1794 // Conservatively abort if-conversion if either BB has its address taken. 1795 return false; 1796 1797 // Put the predicated instructions from the 'true' block before the 1798 // instructions from the 'false' block, unless the true block would clobber 1799 // the predicate, in which case, do the opposite. 1800 BBInfo *BBI1 = &TrueBBI; 1801 BBInfo *BBI2 = &FalseBBI; 1802 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1803 if (TII->reverseBranchCondition(RevCond)) 1804 llvm_unreachable("Unable to reverse branch condition!"); 1805 SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond; 1806 SmallVector<MachineOperand, 4> *Cond2 = &RevCond; 1807 1808 // Figure out the more profitable ordering. 1809 bool DoSwap = false; 1810 if (TClobbersPred && !FClobbersPred) 1811 DoSwap = true; 1812 else if (!TClobbersPred && !FClobbersPred) { 1813 if (TrueBBI.NonPredSize > FalseBBI.NonPredSize) 1814 DoSwap = true; 1815 } else if (TClobbersPred && FClobbersPred) 1816 llvm_unreachable("Predicate info cannot be clobbered by both sides."); 1817 if (DoSwap) { 1818 std::swap(BBI1, BBI2); 1819 std::swap(Cond1, Cond2); 1820 } 1821 1822 // Remove the conditional branch from entry to the blocks. 1823 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1824 1825 MachineBasicBlock &MBB1 = *BBI1->BB; 1826 MachineBasicBlock &MBB2 = *BBI2->BB; 1827 1828 // Initialize the Redefs: 1829 // - BB2 live-in regs need implicit uses before being redefined by BB1 1830 // instructions. 1831 // - BB1 live-out regs need implicit uses before being redefined by BB2 1832 // instructions. We start with BB1 live-ins so we have the live-out regs 1833 // after tracking the BB1 instructions. 1834 Redefs.init(*TRI); 1835 if (MRI->tracksLiveness()) { 1836 Redefs.addLiveIns(MBB1); 1837 Redefs.addLiveIns(MBB2); 1838 } 1839 1840 // Remove the duplicated instructions at the beginnings of both paths. 1841 // Skip dbg_value instructions. 1842 MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr(); 1843 MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr(); 1844 BBI1->NonPredSize -= NumDups1; 1845 BBI2->NonPredSize -= NumDups1; 1846 1847 // Skip past the dups on each side separately since there may be 1848 // differing dbg_value entries. NumDups1 can include a "return" 1849 // instruction, if it's not marked as "branch". 1850 for (unsigned i = 0; i < NumDups1; ++DI1) { 1851 if (DI1 == MBB1.end()) 1852 break; 1853 if (!DI1->isDebugInstr()) 1854 ++i; 1855 } 1856 while (NumDups1 != 0) { 1857 // Since this instruction is going to be deleted, update call 1858 // site info state if the instruction is call instruction. 1859 if (DI2->shouldUpdateCallSiteInfo()) 1860 MBB2.getParent()->eraseCallSiteInfo(&*DI2); 1861 1862 ++DI2; 1863 if (DI2 == MBB2.end()) 1864 break; 1865 if (!DI2->isDebugInstr()) 1866 --NumDups1; 1867 } 1868 1869 if (MRI->tracksLiveness()) { 1870 for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) { 1871 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy; 1872 Redefs.stepForward(MI, Dummy); 1873 } 1874 } 1875 1876 BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1); 1877 MBB2.erase(MBB2.begin(), DI2); 1878 1879 // The branches have been checked to match, so it is safe to remove the 1880 // branch in BB1 and rely on the copy in BB2. The complication is that 1881 // the blocks may end with a return instruction, which may or may not 1882 // be marked as "branch". If it's not, then it could be included in 1883 // "dups1", leaving the blocks potentially empty after moving the common 1884 // duplicates. 1885 #ifndef NDEBUG 1886 // Unanalyzable branches must match exactly. Check that now. 1887 if (!BBI1->IsBrAnalyzable) 1888 verifySameBranchInstructions(&MBB1, &MBB2); 1889 #endif 1890 // Remove duplicated instructions from the tail of MBB1: any branch 1891 // instructions, and the common instructions counted by NumDups2. 1892 DI1 = MBB1.end(); 1893 while (DI1 != MBB1.begin()) { 1894 MachineBasicBlock::iterator Prev = std::prev(DI1); 1895 if (!Prev->isBranch() && !Prev->isDebugInstr()) 1896 break; 1897 DI1 = Prev; 1898 } 1899 for (unsigned i = 0; i != NumDups2; ) { 1900 // NumDups2 only counted non-dbg_value instructions, so this won't 1901 // run off the head of the list. 1902 assert(DI1 != MBB1.begin()); 1903 1904 --DI1; 1905 1906 // Since this instruction is going to be deleted, update call 1907 // site info state if the instruction is call instruction. 1908 if (DI1->shouldUpdateCallSiteInfo()) 1909 MBB1.getParent()->eraseCallSiteInfo(&*DI1); 1910 1911 // skip dbg_value instructions 1912 if (!DI1->isDebugInstr()) 1913 ++i; 1914 } 1915 MBB1.erase(DI1, MBB1.end()); 1916 1917 DI2 = BBI2->BB->end(); 1918 // The branches have been checked to match. Skip over the branch in the false 1919 // block so that we don't try to predicate it. 1920 if (RemoveBranch) 1921 BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB); 1922 else { 1923 // Make DI2 point to the end of the range where the common "tail" 1924 // instructions could be found. 1925 while (DI2 != MBB2.begin()) { 1926 MachineBasicBlock::iterator Prev = std::prev(DI2); 1927 if (!Prev->isBranch() && !Prev->isDebugInstr()) 1928 break; 1929 DI2 = Prev; 1930 } 1931 } 1932 while (NumDups2 != 0) { 1933 // NumDups2 only counted non-dbg_value instructions, so this won't 1934 // run off the head of the list. 1935 assert(DI2 != MBB2.begin()); 1936 --DI2; 1937 // skip dbg_value instructions 1938 if (!DI2->isDebugInstr()) 1939 --NumDups2; 1940 } 1941 1942 // Remember which registers would later be defined by the false block. 1943 // This allows us not to predicate instructions in the true block that would 1944 // later be re-defined. That is, rather than 1945 // subeq r0, r1, #1 1946 // addne r0, r1, #1 1947 // generate: 1948 // sub r0, r1, #1 1949 // addne r0, r1, #1 1950 SmallSet<MCPhysReg, 4> RedefsByFalse; 1951 SmallSet<MCPhysReg, 4> ExtUses; 1952 if (TII->isProfitableToUnpredicate(MBB1, MBB2)) { 1953 for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) { 1954 if (FI.isDebugInstr()) 1955 continue; 1956 SmallVector<MCPhysReg, 4> Defs; 1957 for (const MachineOperand &MO : FI.operands()) { 1958 if (!MO.isReg()) 1959 continue; 1960 Register Reg = MO.getReg(); 1961 if (!Reg) 1962 continue; 1963 if (MO.isDef()) { 1964 Defs.push_back(Reg); 1965 } else if (!RedefsByFalse.count(Reg)) { 1966 // These are defined before ctrl flow reach the 'false' instructions. 1967 // They cannot be modified by the 'true' instructions. 1968 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1969 SubRegs.isValid(); ++SubRegs) 1970 ExtUses.insert(*SubRegs); 1971 } 1972 } 1973 1974 for (MCPhysReg Reg : Defs) { 1975 if (!ExtUses.count(Reg)) { 1976 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1977 SubRegs.isValid(); ++SubRegs) 1978 RedefsByFalse.insert(*SubRegs); 1979 } 1980 } 1981 } 1982 } 1983 1984 // Predicate the 'true' block. 1985 PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse); 1986 1987 // After predicating BBI1, if there is a predicated terminator in BBI1 and 1988 // a non-predicated in BBI2, then we don't want to predicate the one from 1989 // BBI2. The reason is that if we merged these blocks, we would end up with 1990 // two predicated terminators in the same block. 1991 // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't 1992 // predicate them either. They were checked to be identical, and so the 1993 // same branch would happen regardless of which path was taken. 1994 if (!MBB2.empty() && (DI2 == MBB2.end())) { 1995 MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator(); 1996 MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator(); 1997 bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T); 1998 bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T); 1999 if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable)) 2000 --DI2; 2001 } 2002 2003 // Predicate the 'false' block. 2004 PredicateBlock(*BBI2, DI2, *Cond2); 2005 2006 // Merge the true block into the entry of the diamond. 2007 MergeBlocks(BBI, *BBI1, MergeAddEdges); 2008 MergeBlocks(BBI, *BBI2, MergeAddEdges); 2009 return true; 2010 } 2011 2012 /// If convert an almost-diamond sub-CFG where the true 2013 /// and false blocks share a common tail. 2014 bool IfConverter::IfConvertForkedDiamond( 2015 BBInfo &BBI, IfcvtKind Kind, 2016 unsigned NumDups1, unsigned NumDups2, 2017 bool TClobbersPred, bool FClobbersPred) { 2018 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 2019 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 2020 2021 // Save the debug location for later. 2022 DebugLoc dl; 2023 MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator(); 2024 if (TIE != TrueBBI.BB->end()) 2025 dl = TIE->getDebugLoc(); 2026 // Removing branches from both blocks is safe, because we have already 2027 // determined that both blocks have the same branch instructions. The branch 2028 // will be added back at the end, unpredicated. 2029 if (!IfConvertDiamondCommon( 2030 BBI, TrueBBI, FalseBBI, 2031 NumDups1, NumDups2, 2032 TClobbersPred, FClobbersPred, 2033 /* RemoveBranch */ true, /* MergeAddEdges */ true)) 2034 return false; 2035 2036 // Add back the branch. 2037 // Debug location saved above when removing the branch from BBI2 2038 TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB, 2039 TrueBBI.BrCond, dl); 2040 2041 // Update block info. 2042 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 2043 InvalidatePreds(*BBI.BB); 2044 2045 // FIXME: Must maintain LiveIns. 2046 return true; 2047 } 2048 2049 /// If convert a diamond sub-CFG. 2050 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 2051 unsigned NumDups1, unsigned NumDups2, 2052 bool TClobbersPred, bool FClobbersPred) { 2053 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 2054 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 2055 MachineBasicBlock *TailBB = TrueBBI.TrueBB; 2056 2057 // True block must fall through or end with an unanalyzable terminator. 2058 if (!TailBB) { 2059 if (blockAlwaysFallThrough(TrueBBI)) 2060 TailBB = FalseBBI.TrueBB; 2061 assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!"); 2062 } 2063 2064 if (!IfConvertDiamondCommon( 2065 BBI, TrueBBI, FalseBBI, 2066 NumDups1, NumDups2, 2067 TClobbersPred, FClobbersPred, 2068 /* RemoveBranch */ TrueBBI.IsBrAnalyzable, 2069 /* MergeAddEdges */ TailBB == nullptr)) 2070 return false; 2071 2072 // If the if-converted block falls through or unconditionally branches into 2073 // the tail block, and the tail block does not have other predecessors, then 2074 // fold the tail block in as well. Otherwise, unless it falls through to the 2075 // tail, add a unconditional branch to it. 2076 if (TailBB) { 2077 // We need to remove the edges to the true and false blocks manually since 2078 // we didn't let IfConvertDiamondCommon update the CFG. 2079 BBI.BB->removeSuccessor(TrueBBI.BB); 2080 BBI.BB->removeSuccessor(FalseBBI.BB, true); 2081 2082 BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()]; 2083 bool CanMergeTail = !TailBBI.HasFallThrough && 2084 !TailBBI.BB->hasAddressTaken(); 2085 // The if-converted block can still have a predicated terminator 2086 // (e.g. a predicated return). If that is the case, we cannot merge 2087 // it with the tail block. 2088 MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator(); 2089 if (TI != BBI.BB->end() && TII->isPredicated(*TI)) 2090 CanMergeTail = false; 2091 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB; 2092 // check if there are any other predecessors besides those. 2093 unsigned NumPreds = TailBB->pred_size(); 2094 if (NumPreds > 1) 2095 CanMergeTail = false; 2096 else if (NumPreds == 1 && CanMergeTail) { 2097 MachineBasicBlock::pred_iterator PI = TailBB->pred_begin(); 2098 if (*PI != TrueBBI.BB && *PI != FalseBBI.BB) 2099 CanMergeTail = false; 2100 } 2101 if (CanMergeTail) { 2102 MergeBlocks(BBI, TailBBI); 2103 TailBBI.IsDone = true; 2104 } else { 2105 BBI.BB->addSuccessor(TailBB, BranchProbability::getOne()); 2106 InsertUncondBranch(*BBI.BB, *TailBB, TII); 2107 BBI.HasFallThrough = false; 2108 } 2109 } 2110 2111 // Update block info. 2112 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 2113 InvalidatePreds(*BBI.BB); 2114 2115 // FIXME: Must maintain LiveIns. 2116 return true; 2117 } 2118 2119 static bool MaySpeculate(const MachineInstr &MI, 2120 SmallSet<MCPhysReg, 4> &LaterRedefs) { 2121 bool SawStore = true; 2122 if (!MI.isSafeToMove(nullptr, SawStore)) 2123 return false; 2124 2125 for (const MachineOperand &MO : MI.operands()) { 2126 if (!MO.isReg()) 2127 continue; 2128 Register Reg = MO.getReg(); 2129 if (!Reg) 2130 continue; 2131 if (MO.isDef() && !LaterRedefs.count(Reg)) 2132 return false; 2133 } 2134 2135 return true; 2136 } 2137 2138 /// Predicate instructions from the start of the block to the specified end with 2139 /// the specified condition. 2140 void IfConverter::PredicateBlock(BBInfo &BBI, 2141 MachineBasicBlock::iterator E, 2142 SmallVectorImpl<MachineOperand> &Cond, 2143 SmallSet<MCPhysReg, 4> *LaterRedefs) { 2144 bool AnyUnpred = false; 2145 bool MaySpec = LaterRedefs != nullptr; 2146 for (MachineInstr &I : make_range(BBI.BB->begin(), E)) { 2147 if (I.isDebugInstr() || TII->isPredicated(I)) 2148 continue; 2149 // It may be possible not to predicate an instruction if it's the 'true' 2150 // side of a diamond and the 'false' side may re-define the instruction's 2151 // defs. 2152 if (MaySpec && MaySpeculate(I, *LaterRedefs)) { 2153 AnyUnpred = true; 2154 continue; 2155 } 2156 // If any instruction is predicated, then every instruction after it must 2157 // be predicated. 2158 MaySpec = false; 2159 if (!TII->PredicateInstruction(I, Cond)) { 2160 #ifndef NDEBUG 2161 dbgs() << "Unable to predicate " << I << "!\n"; 2162 #endif 2163 llvm_unreachable(nullptr); 2164 } 2165 2166 // If the predicated instruction now redefines a register as the result of 2167 // if-conversion, add an implicit kill. 2168 UpdatePredRedefs(I, Redefs); 2169 } 2170 2171 BBI.Predicate.append(Cond.begin(), Cond.end()); 2172 2173 BBI.IsAnalyzed = false; 2174 BBI.NonPredSize = 0; 2175 2176 ++NumIfConvBBs; 2177 if (AnyUnpred) 2178 ++NumUnpred; 2179 } 2180 2181 /// Copy and predicate instructions from source BB to the destination block. 2182 /// Skip end of block branches if IgnoreBr is true. 2183 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 2184 SmallVectorImpl<MachineOperand> &Cond, 2185 bool IgnoreBr) { 2186 MachineFunction &MF = *ToBBI.BB->getParent(); 2187 2188 MachineBasicBlock &FromMBB = *FromBBI.BB; 2189 for (MachineInstr &I : FromMBB) { 2190 // Do not copy the end of the block branches. 2191 if (IgnoreBr && I.isBranch()) 2192 break; 2193 2194 MachineInstr *MI = MF.CloneMachineInstr(&I); 2195 // Make a copy of the call site info. 2196 if (I.isCandidateForCallSiteEntry()) 2197 MF.copyCallSiteInfo(&I, MI); 2198 2199 ToBBI.BB->insert(ToBBI.BB->end(), MI); 2200 ToBBI.NonPredSize++; 2201 unsigned ExtraPredCost = TII->getPredicationCost(I); 2202 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); 2203 if (NumCycles > 1) 2204 ToBBI.ExtraCost += NumCycles-1; 2205 ToBBI.ExtraCost2 += ExtraPredCost; 2206 2207 if (!TII->isPredicated(I) && !MI->isDebugInstr()) { 2208 if (!TII->PredicateInstruction(*MI, Cond)) { 2209 #ifndef NDEBUG 2210 dbgs() << "Unable to predicate " << I << "!\n"; 2211 #endif 2212 llvm_unreachable(nullptr); 2213 } 2214 } 2215 2216 // If the predicated instruction now redefines a register as the result of 2217 // if-conversion, add an implicit kill. 2218 UpdatePredRedefs(*MI, Redefs); 2219 } 2220 2221 if (!IgnoreBr) { 2222 std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(), 2223 FromMBB.succ_end()); 2224 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2225 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2226 2227 for (MachineBasicBlock *Succ : Succs) { 2228 // Fallthrough edge can't be transferred. 2229 if (Succ == FallThrough) 2230 continue; 2231 ToBBI.BB->addSuccessor(Succ); 2232 } 2233 } 2234 2235 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2236 ToBBI.Predicate.append(Cond.begin(), Cond.end()); 2237 2238 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2239 ToBBI.IsAnalyzed = false; 2240 2241 ++NumDupBBs; 2242 } 2243 2244 /// Move all instructions from FromBB to the end of ToBB. This will leave 2245 /// FromBB as an empty block, so remove all of its successor edges except for 2246 /// the fall-through edge. If AddEdges is true, i.e., when FromBBI's branch is 2247 /// being moved, add those successor edges to ToBBI and remove the old edge 2248 /// from ToBBI to FromBBI. 2249 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) { 2250 MachineBasicBlock &FromMBB = *FromBBI.BB; 2251 assert(!FromMBB.hasAddressTaken() && 2252 "Removing a BB whose address is taken!"); 2253 2254 // In case FromMBB contains terminators (e.g. return instruction), 2255 // first move the non-terminator instructions, then the terminators. 2256 MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator(); 2257 MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator(); 2258 ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI); 2259 2260 // If FromBB has non-predicated terminator we should copy it at the end. 2261 if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI)) 2262 ToTI = ToBBI.BB->end(); 2263 ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end()); 2264 2265 // Force normalizing the successors' probabilities of ToBBI.BB to convert all 2266 // unknown probabilities into known ones. 2267 // FIXME: This usage is too tricky and in the future we would like to 2268 // eliminate all unknown probabilities in MBB. 2269 if (ToBBI.IsBrAnalyzable) 2270 ToBBI.BB->normalizeSuccProbs(); 2271 2272 SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(), 2273 FromMBB.succ_end()); 2274 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2275 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2276 // The edge probability from ToBBI.BB to FromMBB, which is only needed when 2277 // AddEdges is true and FromMBB is a successor of ToBBI.BB. 2278 auto To2FromProb = BranchProbability::getZero(); 2279 if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) { 2280 // Remove the old edge but remember the edge probability so we can calculate 2281 // the correct weights on the new edges being added further down. 2282 To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB); 2283 ToBBI.BB->removeSuccessor(&FromMBB); 2284 } 2285 2286 for (MachineBasicBlock *Succ : FromSuccs) { 2287 // Fallthrough edge can't be transferred. 2288 if (Succ == FallThrough) 2289 continue; 2290 2291 auto NewProb = BranchProbability::getZero(); 2292 if (AddEdges) { 2293 // Calculate the edge probability for the edge from ToBBI.BB to Succ, 2294 // which is a portion of the edge probability from FromMBB to Succ. The 2295 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if 2296 // FromBBI is a successor of ToBBI.BB. See comment below for exception). 2297 NewProb = MBPI->getEdgeProbability(&FromMBB, Succ); 2298 2299 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This 2300 // only happens when if-converting a diamond CFG and FromMBB is the 2301 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we 2302 // could just use the probabilities on FromMBB's out-edges when adding 2303 // new successors. 2304 if (!To2FromProb.isZero()) 2305 NewProb *= To2FromProb; 2306 } 2307 2308 FromMBB.removeSuccessor(Succ); 2309 2310 if (AddEdges) { 2311 // If the edge from ToBBI.BB to Succ already exists, update the 2312 // probability of this edge by adding NewProb to it. An example is shown 2313 // below, in which A is ToBBI.BB and B is FromMBB. In this case we 2314 // don't have to set C as A's successor as it already is. We only need to 2315 // update the edge probability on A->C. Note that B will not be 2316 // immediately removed from A's successors. It is possible that B->D is 2317 // not removed either if D is a fallthrough of B. Later the edge A->D 2318 // (generated here) and B->D will be combined into one edge. To maintain 2319 // correct edge probability of this combined edge, we need to set the edge 2320 // probability of A->B to zero, which is already done above. The edge 2321 // probability on A->D is calculated by scaling the original probability 2322 // on A->B by the probability of B->D. 2323 // 2324 // Before ifcvt: After ifcvt (assume B->D is kept): 2325 // 2326 // A A 2327 // /| /|\ 2328 // / B / B| 2329 // | /| | || 2330 // |/ | | |/ 2331 // C D C D 2332 // 2333 if (ToBBI.BB->isSuccessor(Succ)) 2334 ToBBI.BB->setSuccProbability( 2335 find(ToBBI.BB->successors(), Succ), 2336 MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb); 2337 else 2338 ToBBI.BB->addSuccessor(Succ, NewProb); 2339 } 2340 } 2341 2342 // Move the now empty FromMBB out of the way to the end of the function so 2343 // it doesn't interfere with fallthrough checks done by canFallThroughTo(). 2344 MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin(); 2345 if (Last != &FromMBB) 2346 FromMBB.moveAfter(Last); 2347 2348 // Normalize the probabilities of ToBBI.BB's successors with all adjustment 2349 // we've done above. 2350 if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable) 2351 ToBBI.BB->normalizeSuccProbs(); 2352 2353 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2354 FromBBI.Predicate.clear(); 2355 2356 ToBBI.NonPredSize += FromBBI.NonPredSize; 2357 ToBBI.ExtraCost += FromBBI.ExtraCost; 2358 ToBBI.ExtraCost2 += FromBBI.ExtraCost2; 2359 FromBBI.NonPredSize = 0; 2360 FromBBI.ExtraCost = 0; 2361 FromBBI.ExtraCost2 = 0; 2362 2363 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2364 ToBBI.HasFallThrough = FromBBI.HasFallThrough; 2365 ToBBI.IsAnalyzed = false; 2366 FromBBI.IsAnalyzed = false; 2367 } 2368 2369 FunctionPass * 2370 llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) { 2371 return new IfConverter(std::move(Ftor)); 2372 } 2373