1 //===-- IfConversion.cpp - Machine code if conversion pass. ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the machine instruction level if-conversion pass, which 11 // tries to convert conditional branches into predicated instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/Passes.h" 16 #include "BranchFolding.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/LivePhysRegs.h" 21 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 22 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/TargetSchedule.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetLowering.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <algorithm> 37 #include <utility> 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "ifcvt" 42 43 // Hidden options for help debugging. 44 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden); 45 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden); 46 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden); 47 static cl::opt<bool> DisableSimple("disable-ifcvt-simple", 48 cl::init(false), cl::Hidden); 49 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false", 50 cl::init(false), cl::Hidden); 51 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle", 52 cl::init(false), cl::Hidden); 53 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev", 54 cl::init(false), cl::Hidden); 55 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false", 56 cl::init(false), cl::Hidden); 57 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev", 58 cl::init(false), cl::Hidden); 59 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond", 60 cl::init(false), cl::Hidden); 61 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold", 62 cl::init(true), cl::Hidden); 63 64 STATISTIC(NumSimple, "Number of simple if-conversions performed"); 65 STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed"); 66 STATISTIC(NumTriangle, "Number of triangle if-conversions performed"); 67 STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed"); 68 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed"); 69 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed"); 70 STATISTIC(NumDiamonds, "Number of diamond if-conversions performed"); 71 STATISTIC(NumIfConvBBs, "Number of if-converted blocks"); 72 STATISTIC(NumDupBBs, "Number of duplicated blocks"); 73 STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated"); 74 75 namespace { 76 class IfConverter : public MachineFunctionPass { 77 enum IfcvtKind { 78 ICNotClassfied, // BB data valid, but not classified. 79 ICSimpleFalse, // Same as ICSimple, but on the false path. 80 ICSimple, // BB is entry of an one split, no rejoin sub-CFG. 81 ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition. 82 ICTriangleRev, // Same as ICTriangle, but true path rev condition. 83 ICTriangleFalse, // Same as ICTriangle, but on the false path. 84 ICTriangle, // BB is entry of a triangle sub-CFG. 85 ICDiamond // BB is entry of a diamond sub-CFG. 86 }; 87 88 /// BBInfo - One per MachineBasicBlock, this is used to cache the result 89 /// if-conversion feasibility analysis. This includes results from 90 /// TargetInstrInfo::AnalyzeBranch() (i.e. TBB, FBB, and Cond), and its 91 /// classification, and common tail block of its successors (if it's a 92 /// diamond shape), its size, whether it's predicable, and whether any 93 /// instruction can clobber the 'would-be' predicate. 94 /// 95 /// IsDone - True if BB is not to be considered for ifcvt. 96 /// IsBeingAnalyzed - True if BB is currently being analyzed. 97 /// IsAnalyzed - True if BB has been analyzed (info is still valid). 98 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed. 99 /// IsBrAnalyzable - True if AnalyzeBranch() returns false. 100 /// HasFallThrough - True if BB may fallthrough to the following BB. 101 /// IsUnpredicable - True if BB is known to be unpredicable. 102 /// ClobbersPred - True if BB could modify predicates (e.g. has 103 /// cmp, call, etc.) 104 /// NonPredSize - Number of non-predicated instructions. 105 /// ExtraCost - Extra cost for multi-cycle instructions. 106 /// ExtraCost2 - Some instructions are slower when predicated 107 /// BB - Corresponding MachineBasicBlock. 108 /// TrueBB / FalseBB- See AnalyzeBranch(). 109 /// BrCond - Conditions for end of block conditional branches. 110 /// Predicate - Predicate used in the BB. 111 struct BBInfo { 112 bool IsDone : 1; 113 bool IsBeingAnalyzed : 1; 114 bool IsAnalyzed : 1; 115 bool IsEnqueued : 1; 116 bool IsBrAnalyzable : 1; 117 bool HasFallThrough : 1; 118 bool IsUnpredicable : 1; 119 bool CannotBeCopied : 1; 120 bool ClobbersPred : 1; 121 unsigned NonPredSize; 122 unsigned ExtraCost; 123 unsigned ExtraCost2; 124 MachineBasicBlock *BB; 125 MachineBasicBlock *TrueBB; 126 MachineBasicBlock *FalseBB; 127 SmallVector<MachineOperand, 4> BrCond; 128 SmallVector<MachineOperand, 4> Predicate; 129 BBInfo() : IsDone(false), IsBeingAnalyzed(false), 130 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false), 131 HasFallThrough(false), IsUnpredicable(false), 132 CannotBeCopied(false), ClobbersPred(false), NonPredSize(0), 133 ExtraCost(0), ExtraCost2(0), BB(nullptr), TrueBB(nullptr), 134 FalseBB(nullptr) {} 135 }; 136 137 /// IfcvtToken - Record information about pending if-conversions to attempt: 138 /// BBI - Corresponding BBInfo. 139 /// Kind - Type of block. See IfcvtKind. 140 /// NeedSubsumption - True if the to-be-predicated BB has already been 141 /// predicated. 142 /// NumDups - Number of instructions that would be duplicated due 143 /// to this if-conversion. (For diamonds, the number of 144 /// identical instructions at the beginnings of both 145 /// paths). 146 /// NumDups2 - For diamonds, the number of identical instructions 147 /// at the ends of both paths. 148 struct IfcvtToken { 149 BBInfo &BBI; 150 IfcvtKind Kind; 151 bool NeedSubsumption; 152 unsigned NumDups; 153 unsigned NumDups2; 154 IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0) 155 : BBI(b), Kind(k), NeedSubsumption(s), NumDups(d), NumDups2(d2) {} 156 }; 157 158 /// BBAnalysis - Results of if-conversion feasibility analysis indexed by 159 /// basic block number. 160 std::vector<BBInfo> BBAnalysis; 161 TargetSchedModel SchedModel; 162 163 const TargetLoweringBase *TLI; 164 const TargetInstrInfo *TII; 165 const TargetRegisterInfo *TRI; 166 const MachineBlockFrequencyInfo *MBFI; 167 const MachineBranchProbabilityInfo *MBPI; 168 MachineRegisterInfo *MRI; 169 170 LivePhysRegs Redefs; 171 LivePhysRegs DontKill; 172 173 bool PreRegAlloc; 174 bool MadeChange; 175 int FnNum; 176 std::function<bool(const Function &)> PredicateFtor; 177 178 public: 179 static char ID; 180 IfConverter(std::function<bool(const Function &)> Ftor = nullptr) 181 : MachineFunctionPass(ID), FnNum(-1), PredicateFtor(std::move(Ftor)) { 182 initializeIfConverterPass(*PassRegistry::getPassRegistry()); 183 } 184 185 void getAnalysisUsage(AnalysisUsage &AU) const override { 186 AU.addRequired<MachineBlockFrequencyInfo>(); 187 AU.addRequired<MachineBranchProbabilityInfo>(); 188 MachineFunctionPass::getAnalysisUsage(AU); 189 } 190 191 bool runOnMachineFunction(MachineFunction &MF) override; 192 193 MachineFunctionProperties getRequiredProperties() const override { 194 return MachineFunctionProperties().set( 195 MachineFunctionProperties::Property::AllVRegsAllocated); 196 } 197 198 private: 199 bool ReverseBranchCondition(BBInfo &BBI); 200 bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 201 BranchProbability Prediction) const; 202 bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 203 bool FalseBranch, unsigned &Dups, 204 BranchProbability Prediction) const; 205 bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 206 unsigned &Dups1, unsigned &Dups2) const; 207 void ScanInstructions(BBInfo &BBI); 208 void AnalyzeBlock(MachineBasicBlock *MBB, 209 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 210 bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Cond, 211 bool isTriangle = false, bool RevBranch = false); 212 void AnalyzeBlocks(MachineFunction &MF, 213 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 214 void InvalidatePreds(MachineBasicBlock *BB); 215 void RemoveExtraEdges(BBInfo &BBI); 216 bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind); 217 bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind); 218 bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 219 unsigned NumDups1, unsigned NumDups2); 220 void PredicateBlock(BBInfo &BBI, 221 MachineBasicBlock::iterator E, 222 SmallVectorImpl<MachineOperand> &Cond, 223 SmallSet<unsigned, 4> *LaterRedefs = nullptr); 224 void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 225 SmallVectorImpl<MachineOperand> &Cond, 226 bool IgnoreBr = false); 227 void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true); 228 229 bool MeetIfcvtSizeLimit(MachineBasicBlock &BB, 230 unsigned Cycle, unsigned Extra, 231 BranchProbability Prediction) const { 232 return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra, 233 Prediction); 234 } 235 236 bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB, 237 unsigned TCycle, unsigned TExtra, 238 MachineBasicBlock &FBB, 239 unsigned FCycle, unsigned FExtra, 240 BranchProbability Prediction) const { 241 return TCycle > 0 && FCycle > 0 && 242 TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra, 243 Prediction); 244 } 245 246 // blockAlwaysFallThrough - Block ends without a terminator. 247 bool blockAlwaysFallThrough(BBInfo &BBI) const { 248 return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr; 249 } 250 251 // IfcvtTokenCmp - Used to sort if-conversion candidates. 252 static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1, 253 const std::unique_ptr<IfcvtToken> &C2) { 254 int Incr1 = (C1->Kind == ICDiamond) 255 ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups; 256 int Incr2 = (C2->Kind == ICDiamond) 257 ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups; 258 if (Incr1 > Incr2) 259 return true; 260 else if (Incr1 == Incr2) { 261 // Favors subsumption. 262 if (!C1->NeedSubsumption && C2->NeedSubsumption) 263 return true; 264 else if (C1->NeedSubsumption == C2->NeedSubsumption) { 265 // Favors diamond over triangle, etc. 266 if ((unsigned)C1->Kind < (unsigned)C2->Kind) 267 return true; 268 else if (C1->Kind == C2->Kind) 269 return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber(); 270 } 271 } 272 return false; 273 } 274 }; 275 276 char IfConverter::ID = 0; 277 } 278 279 char &llvm::IfConverterID = IfConverter::ID; 280 281 INITIALIZE_PASS_BEGIN(IfConverter, "if-converter", "If Converter", false, false) 282 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 283 INITIALIZE_PASS_END(IfConverter, "if-converter", "If Converter", false, false) 284 285 bool IfConverter::runOnMachineFunction(MachineFunction &MF) { 286 if (skipFunction(*MF.getFunction()) || 287 (PredicateFtor && !PredicateFtor(*MF.getFunction()))) 288 return false; 289 290 const TargetSubtargetInfo &ST = MF.getSubtarget(); 291 TLI = ST.getTargetLowering(); 292 TII = ST.getInstrInfo(); 293 TRI = ST.getRegisterInfo(); 294 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 295 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 296 MRI = &MF.getRegInfo(); 297 SchedModel.init(ST.getSchedModel(), &ST, TII); 298 299 if (!TII) return false; 300 301 PreRegAlloc = MRI->isSSA(); 302 303 bool BFChange = false; 304 if (!PreRegAlloc) { 305 // Tail merge tend to expose more if-conversion opportunities. 306 BranchFolder BF(true, false, *MBFI, *MBPI); 307 BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(), 308 getAnalysisIfAvailable<MachineModuleInfo>()); 309 } 310 311 DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'" 312 << MF.getName() << "\'"); 313 314 if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) { 315 DEBUG(dbgs() << " skipped\n"); 316 return false; 317 } 318 DEBUG(dbgs() << "\n"); 319 320 MF.RenumberBlocks(); 321 BBAnalysis.resize(MF.getNumBlockIDs()); 322 323 std::vector<std::unique_ptr<IfcvtToken>> Tokens; 324 MadeChange = false; 325 unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + 326 NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds; 327 while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) { 328 // Do an initial analysis for each basic block and find all the potential 329 // candidates to perform if-conversion. 330 bool Change = false; 331 AnalyzeBlocks(MF, Tokens); 332 while (!Tokens.empty()) { 333 std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back()); 334 Tokens.pop_back(); 335 BBInfo &BBI = Token->BBI; 336 IfcvtKind Kind = Token->Kind; 337 unsigned NumDups = Token->NumDups; 338 unsigned NumDups2 = Token->NumDups2; 339 340 // If the block has been evicted out of the queue or it has already been 341 // marked dead (due to it being predicated), then skip it. 342 if (BBI.IsDone) 343 BBI.IsEnqueued = false; 344 if (!BBI.IsEnqueued) 345 continue; 346 347 BBI.IsEnqueued = false; 348 349 bool RetVal = false; 350 switch (Kind) { 351 default: llvm_unreachable("Unexpected!"); 352 case ICSimple: 353 case ICSimpleFalse: { 354 bool isFalse = Kind == ICSimpleFalse; 355 if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break; 356 DEBUG(dbgs() << "Ifcvt (Simple" << (Kind == ICSimpleFalse ? 357 " false" : "") 358 << "): BB#" << BBI.BB->getNumber() << " (" 359 << ((Kind == ICSimpleFalse) 360 ? BBI.FalseBB->getNumber() 361 : BBI.TrueBB->getNumber()) << ") "); 362 RetVal = IfConvertSimple(BBI, Kind); 363 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 364 if (RetVal) { 365 if (isFalse) ++NumSimpleFalse; 366 else ++NumSimple; 367 } 368 break; 369 } 370 case ICTriangle: 371 case ICTriangleRev: 372 case ICTriangleFalse: 373 case ICTriangleFRev: { 374 bool isFalse = Kind == ICTriangleFalse; 375 bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev); 376 if (DisableTriangle && !isFalse && !isRev) break; 377 if (DisableTriangleR && !isFalse && isRev) break; 378 if (DisableTriangleF && isFalse && !isRev) break; 379 if (DisableTriangleFR && isFalse && isRev) break; 380 DEBUG(dbgs() << "Ifcvt (Triangle"); 381 if (isFalse) 382 DEBUG(dbgs() << " false"); 383 if (isRev) 384 DEBUG(dbgs() << " rev"); 385 DEBUG(dbgs() << "): BB#" << BBI.BB->getNumber() << " (T:" 386 << BBI.TrueBB->getNumber() << ",F:" 387 << BBI.FalseBB->getNumber() << ") "); 388 RetVal = IfConvertTriangle(BBI, Kind); 389 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 390 if (RetVal) { 391 if (isFalse) { 392 if (isRev) ++NumTriangleFRev; 393 else ++NumTriangleFalse; 394 } else { 395 if (isRev) ++NumTriangleRev; 396 else ++NumTriangle; 397 } 398 } 399 break; 400 } 401 case ICDiamond: { 402 if (DisableDiamond) break; 403 DEBUG(dbgs() << "Ifcvt (Diamond): BB#" << BBI.BB->getNumber() << " (T:" 404 << BBI.TrueBB->getNumber() << ",F:" 405 << BBI.FalseBB->getNumber() << ") "); 406 RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2); 407 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 408 if (RetVal) ++NumDiamonds; 409 break; 410 } 411 } 412 413 Change |= RetVal; 414 415 NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev + 416 NumTriangleFalse + NumTriangleFRev + NumDiamonds; 417 if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit) 418 break; 419 } 420 421 if (!Change) 422 break; 423 MadeChange |= Change; 424 } 425 426 Tokens.clear(); 427 BBAnalysis.clear(); 428 429 if (MadeChange && IfCvtBranchFold) { 430 BranchFolder BF(false, false, *MBFI, *MBPI); 431 BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 432 getAnalysisIfAvailable<MachineModuleInfo>()); 433 } 434 435 MadeChange |= BFChange; 436 return MadeChange; 437 } 438 439 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given 440 /// its 'true' successor. 441 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 442 MachineBasicBlock *TrueBB) { 443 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 444 E = BB->succ_end(); SI != E; ++SI) { 445 MachineBasicBlock *SuccBB = *SI; 446 if (SuccBB != TrueBB) 447 return SuccBB; 448 } 449 return nullptr; 450 } 451 452 /// ReverseBranchCondition - Reverse the condition of the end of the block 453 /// branch. Swap block's 'true' and 'false' successors. 454 bool IfConverter::ReverseBranchCondition(BBInfo &BBI) { 455 DebugLoc dl; // FIXME: this is nowhere 456 if (!TII->ReverseBranchCondition(BBI.BrCond)) { 457 TII->RemoveBranch(*BBI.BB); 458 TII->InsertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl); 459 std::swap(BBI.TrueBB, BBI.FalseBB); 460 return true; 461 } 462 return false; 463 } 464 465 /// getNextBlock - Returns the next block in the function blocks ordering. If 466 /// it is the end, returns NULL. 467 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock *BB) { 468 MachineFunction::iterator I = BB->getIterator(); 469 MachineFunction::iterator E = BB->getParent()->end(); 470 if (++I == E) 471 return nullptr; 472 return &*I; 473 } 474 475 /// ValidSimple - Returns true if the 'true' block (along with its 476 /// predecessor) forms a valid simple shape for ifcvt. It also returns the 477 /// number of instructions that the ifcvt would need to duplicate if performed 478 /// in Dups. 479 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 480 BranchProbability Prediction) const { 481 Dups = 0; 482 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 483 return false; 484 485 if (TrueBBI.IsBrAnalyzable) 486 return false; 487 488 if (TrueBBI.BB->pred_size() > 1) { 489 if (TrueBBI.CannotBeCopied || 490 !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize, 491 Prediction)) 492 return false; 493 Dups = TrueBBI.NonPredSize; 494 } 495 496 return true; 497 } 498 499 /// ValidTriangle - Returns true if the 'true' and 'false' blocks (along 500 /// with their common predecessor) forms a valid triangle shape for ifcvt. 501 /// If 'FalseBranch' is true, it checks if 'true' block's false branch 502 /// branches to the 'false' block rather than the other way around. It also 503 /// returns the number of instructions that the ifcvt would need to duplicate 504 /// if performed in 'Dups'. 505 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 506 bool FalseBranch, unsigned &Dups, 507 BranchProbability Prediction) const { 508 Dups = 0; 509 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 510 return false; 511 512 if (TrueBBI.BB->pred_size() > 1) { 513 if (TrueBBI.CannotBeCopied) 514 return false; 515 516 unsigned Size = TrueBBI.NonPredSize; 517 if (TrueBBI.IsBrAnalyzable) { 518 if (TrueBBI.TrueBB && TrueBBI.BrCond.empty()) 519 // Ends with an unconditional branch. It will be removed. 520 --Size; 521 else { 522 MachineBasicBlock *FExit = FalseBranch 523 ? TrueBBI.TrueBB : TrueBBI.FalseBB; 524 if (FExit) 525 // Require a conditional branch 526 ++Size; 527 } 528 } 529 if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction)) 530 return false; 531 Dups = Size; 532 } 533 534 MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB; 535 if (!TExit && blockAlwaysFallThrough(TrueBBI)) { 536 MachineFunction::iterator I = TrueBBI.BB->getIterator(); 537 if (++I == TrueBBI.BB->getParent()->end()) 538 return false; 539 TExit = &*I; 540 } 541 return TExit && TExit == FalseBBI.BB; 542 } 543 544 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along 545 /// with their common predecessor) forms a valid diamond shape for ifcvt. 546 bool IfConverter::ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 547 unsigned &Dups1, unsigned &Dups2) const { 548 Dups1 = Dups2 = 0; 549 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 550 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 551 return false; 552 553 MachineBasicBlock *TT = TrueBBI.TrueBB; 554 MachineBasicBlock *FT = FalseBBI.TrueBB; 555 556 if (!TT && blockAlwaysFallThrough(TrueBBI)) 557 TT = getNextBlock(TrueBBI.BB); 558 if (!FT && blockAlwaysFallThrough(FalseBBI)) 559 FT = getNextBlock(FalseBBI.BB); 560 if (TT != FT) 561 return false; 562 if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable)) 563 return false; 564 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 565 return false; 566 567 // FIXME: Allow true block to have an early exit? 568 if (TrueBBI.FalseBB || FalseBBI.FalseBB || 569 (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)) 570 return false; 571 572 // Count duplicate instructions at the beginning of the true and false blocks. 573 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 574 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 575 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 576 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 577 while (TIB != TIE && FIB != FIE) { 578 // Skip dbg_value instructions. These do not count. 579 if (TIB->isDebugValue()) { 580 while (TIB != TIE && TIB->isDebugValue()) 581 ++TIB; 582 if (TIB == TIE) 583 break; 584 } 585 if (FIB->isDebugValue()) { 586 while (FIB != FIE && FIB->isDebugValue()) 587 ++FIB; 588 if (FIB == FIE) 589 break; 590 } 591 if (!TIB->isIdenticalTo(*FIB)) 592 break; 593 ++Dups1; 594 ++TIB; 595 ++FIB; 596 } 597 598 // Now, in preparation for counting duplicate instructions at the ends of the 599 // blocks, move the end iterators up past any branch instructions. 600 // If both blocks are returning don't skip the branches, since they will 601 // likely be both identical return instructions. In such cases the return 602 // can be left unpredicated. 603 // Check for already containing all of the block. 604 if (TIB == TIE || FIB == FIE) 605 return true; 606 --TIE; 607 --FIE; 608 if (!TrueBBI.BB->succ_empty() || !FalseBBI.BB->succ_empty()) { 609 while (TIE != TIB && TIE->isBranch()) 610 --TIE; 611 while (FIE != FIB && FIE->isBranch()) 612 --FIE; 613 } 614 615 // If Dups1 includes all of a block, then don't count duplicate 616 // instructions at the end of the blocks. 617 if (TIB == TIE || FIB == FIE) 618 return true; 619 620 // Count duplicate instructions at the ends of the blocks. 621 while (TIE != TIB && FIE != FIB) { 622 // Skip dbg_value instructions. These do not count. 623 if (TIE->isDebugValue()) { 624 while (TIE != TIB && TIE->isDebugValue()) 625 --TIE; 626 if (TIE == TIB) 627 break; 628 } 629 if (FIE->isDebugValue()) { 630 while (FIE != FIB && FIE->isDebugValue()) 631 --FIE; 632 if (FIE == FIB) 633 break; 634 } 635 if (!TIE->isIdenticalTo(*FIE)) 636 break; 637 ++Dups2; 638 --TIE; 639 --FIE; 640 } 641 642 return true; 643 } 644 645 /// ScanInstructions - Scan all the instructions in the block to determine if 646 /// the block is predicable. In most cases, that means all the instructions 647 /// in the block are isPredicable(). Also checks if the block contains any 648 /// instruction which can clobber a predicate (e.g. condition code register). 649 /// If so, the block is not predicable unless it's the last instruction. 650 void IfConverter::ScanInstructions(BBInfo &BBI) { 651 if (BBI.IsDone) 652 return; 653 654 bool AlreadyPredicated = !BBI.Predicate.empty(); 655 // First analyze the end of BB branches. 656 BBI.TrueBB = BBI.FalseBB = nullptr; 657 BBI.BrCond.clear(); 658 BBI.IsBrAnalyzable = 659 !TII->AnalyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond); 660 BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr; 661 662 if (BBI.BrCond.size()) { 663 // No false branch. This BB must end with a conditional branch and a 664 // fallthrough. 665 if (!BBI.FalseBB) 666 BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB); 667 if (!BBI.FalseBB) { 668 // Malformed bcc? True and false blocks are the same? 669 BBI.IsUnpredicable = true; 670 return; 671 } 672 } 673 674 // Then scan all the instructions. 675 BBI.NonPredSize = 0; 676 BBI.ExtraCost = 0; 677 BBI.ExtraCost2 = 0; 678 BBI.ClobbersPred = false; 679 for (auto &MI : *BBI.BB) { 680 if (MI.isDebugValue()) 681 continue; 682 683 // It's unsafe to duplicate convergent instructions in this context, so set 684 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the 685 // following CFG, which is subject to our "simple" transformation. 686 // 687 // BB0 // if (c1) goto BB1; else goto BB2; 688 // / \ 689 // BB1 | 690 // | BB2 // if (c2) goto TBB; else goto FBB; 691 // | / | 692 // | / | 693 // TBB | 694 // | | 695 // | FBB 696 // | 697 // exit 698 // 699 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd 700 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose 701 // TBB contains a convergent instruction. This is safe iff doing so does 702 // not add a control-flow dependency to the convergent instruction -- i.e., 703 // it's safe iff the set of control flows that leads us to the convergent 704 // instruction does not get smaller after the transformation. 705 // 706 // Originally we executed TBB if c1 || c2. After the transformation, there 707 // are two copies of TBB's instructions. We get to the first if c1, and we 708 // get to the second if !c1 && c2. 709 // 710 // There are clearly fewer ways to satisfy the condition "c1" than 711 // "c1 || c2". Since we've shrunk the set of control flows which lead to 712 // our convergent instruction, the transformation is unsafe. 713 if (MI.isNotDuplicable() || MI.isConvergent()) 714 BBI.CannotBeCopied = true; 715 716 bool isPredicated = TII->isPredicated(MI); 717 bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch(); 718 719 // A conditional branch is not predicable, but it may be eliminated. 720 if (isCondBr) 721 continue; 722 723 if (!isPredicated) { 724 BBI.NonPredSize++; 725 unsigned ExtraPredCost = TII->getPredicationCost(MI); 726 unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false); 727 if (NumCycles > 1) 728 BBI.ExtraCost += NumCycles-1; 729 BBI.ExtraCost2 += ExtraPredCost; 730 } else if (!AlreadyPredicated) { 731 // FIXME: This instruction is already predicated before the 732 // if-conversion pass. It's probably something like a conditional move. 733 // Mark this block unpredicable for now. 734 BBI.IsUnpredicable = true; 735 return; 736 } 737 738 if (BBI.ClobbersPred && !isPredicated) { 739 // Predicate modification instruction should end the block (except for 740 // already predicated instructions and end of block branches). 741 // Predicate may have been modified, the subsequent (currently) 742 // unpredicated instructions cannot be correctly predicated. 743 BBI.IsUnpredicable = true; 744 return; 745 } 746 747 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are 748 // still potentially predicable. 749 std::vector<MachineOperand> PredDefs; 750 if (TII->DefinesPredicate(MI, PredDefs)) 751 BBI.ClobbersPred = true; 752 753 if (!TII->isPredicable(MI)) { 754 BBI.IsUnpredicable = true; 755 return; 756 } 757 } 758 } 759 760 /// FeasibilityAnalysis - Determine if the block is a suitable candidate to be 761 /// predicated by the specified predicate. 762 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI, 763 SmallVectorImpl<MachineOperand> &Pred, 764 bool isTriangle, bool RevBranch) { 765 // If the block is dead or unpredicable, then it cannot be predicated. 766 if (BBI.IsDone || BBI.IsUnpredicable) 767 return false; 768 769 // If it is already predicated but we couldn't analyze its terminator, the 770 // latter might fallthrough, but we can't determine where to. 771 // Conservatively avoid if-converting again. 772 if (BBI.Predicate.size() && !BBI.IsBrAnalyzable) 773 return false; 774 775 // If it is already predicated, check if the new predicate subsumes 776 // its predicate. 777 if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate)) 778 return false; 779 780 if (BBI.BrCond.size()) { 781 if (!isTriangle) 782 return false; 783 784 // Test predicate subsumption. 785 SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end()); 786 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 787 if (RevBranch) { 788 if (TII->ReverseBranchCondition(Cond)) 789 return false; 790 } 791 if (TII->ReverseBranchCondition(RevPred) || 792 !TII->SubsumesPredicate(Cond, RevPred)) 793 return false; 794 } 795 796 return true; 797 } 798 799 /// AnalyzeBlock - Analyze the structure of the sub-CFG starting from 800 /// the specified block. Record its successors and whether it looks like an 801 /// if-conversion candidate. 802 void IfConverter::AnalyzeBlock( 803 MachineBasicBlock *MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 804 struct BBState { 805 BBState(MachineBasicBlock *BB) : MBB(BB), SuccsAnalyzed(false) {} 806 MachineBasicBlock *MBB; 807 808 /// This flag is true if MBB's successors have been analyzed. 809 bool SuccsAnalyzed; 810 }; 811 812 // Push MBB to the stack. 813 SmallVector<BBState, 16> BBStack(1, MBB); 814 815 while (!BBStack.empty()) { 816 BBState &State = BBStack.back(); 817 MachineBasicBlock *BB = State.MBB; 818 BBInfo &BBI = BBAnalysis[BB->getNumber()]; 819 820 if (!State.SuccsAnalyzed) { 821 if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) { 822 BBStack.pop_back(); 823 continue; 824 } 825 826 BBI.BB = BB; 827 BBI.IsBeingAnalyzed = true; 828 829 ScanInstructions(BBI); 830 831 // Unanalyzable or ends with fallthrough or unconditional branch, or if is 832 // not considered for ifcvt anymore. 833 if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) { 834 BBI.IsBeingAnalyzed = false; 835 BBI.IsAnalyzed = true; 836 BBStack.pop_back(); 837 continue; 838 } 839 840 // Do not ifcvt if either path is a back edge to the entry block. 841 if (BBI.TrueBB == BB || BBI.FalseBB == BB) { 842 BBI.IsBeingAnalyzed = false; 843 BBI.IsAnalyzed = true; 844 BBStack.pop_back(); 845 continue; 846 } 847 848 // Do not ifcvt if true and false fallthrough blocks are the same. 849 if (!BBI.FalseBB) { 850 BBI.IsBeingAnalyzed = false; 851 BBI.IsAnalyzed = true; 852 BBStack.pop_back(); 853 continue; 854 } 855 856 // Push the False and True blocks to the stack. 857 State.SuccsAnalyzed = true; 858 BBStack.push_back(BBI.FalseBB); 859 BBStack.push_back(BBI.TrueBB); 860 continue; 861 } 862 863 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 864 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 865 866 if (TrueBBI.IsDone && FalseBBI.IsDone) { 867 BBI.IsBeingAnalyzed = false; 868 BBI.IsAnalyzed = true; 869 BBStack.pop_back(); 870 continue; 871 } 872 873 SmallVector<MachineOperand, 4> 874 RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 875 bool CanRevCond = !TII->ReverseBranchCondition(RevCond); 876 877 unsigned Dups = 0; 878 unsigned Dups2 = 0; 879 bool TNeedSub = !TrueBBI.Predicate.empty(); 880 bool FNeedSub = !FalseBBI.Predicate.empty(); 881 bool Enqueued = false; 882 883 BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB); 884 885 if (CanRevCond && ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2) && 886 MeetIfcvtSizeLimit(*TrueBBI.BB, (TrueBBI.NonPredSize - (Dups + Dups2) + 887 TrueBBI.ExtraCost), TrueBBI.ExtraCost2, 888 *FalseBBI.BB, (FalseBBI.NonPredSize - (Dups + Dups2) + 889 FalseBBI.ExtraCost),FalseBBI.ExtraCost2, 890 Prediction) && 891 FeasibilityAnalysis(TrueBBI, BBI.BrCond) && 892 FeasibilityAnalysis(FalseBBI, RevCond)) { 893 // Diamond: 894 // EBB 895 // / \_ 896 // | | 897 // TBB FBB 898 // \ / 899 // TailBB 900 // Note TailBB can be empty. 901 Tokens.push_back(llvm::make_unique<IfcvtToken>( 902 BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2)); 903 Enqueued = true; 904 } 905 906 if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) && 907 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 908 TrueBBI.ExtraCost2, Prediction) && 909 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) { 910 // Triangle: 911 // EBB 912 // | \_ 913 // | | 914 // | TBB 915 // | / 916 // FBB 917 Tokens.push_back( 918 llvm::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups)); 919 Enqueued = true; 920 } 921 922 if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) && 923 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 924 TrueBBI.ExtraCost2, Prediction) && 925 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) { 926 Tokens.push_back( 927 llvm::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups)); 928 Enqueued = true; 929 } 930 931 if (ValidSimple(TrueBBI, Dups, Prediction) && 932 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 933 TrueBBI.ExtraCost2, Prediction) && 934 FeasibilityAnalysis(TrueBBI, BBI.BrCond)) { 935 // Simple (split, no rejoin): 936 // EBB 937 // | \_ 938 // | | 939 // | TBB---> exit 940 // | 941 // FBB 942 Tokens.push_back( 943 llvm::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups)); 944 Enqueued = true; 945 } 946 947 if (CanRevCond) { 948 // Try the other path... 949 if (ValidTriangle(FalseBBI, TrueBBI, false, Dups, 950 Prediction.getCompl()) && 951 MeetIfcvtSizeLimit(*FalseBBI.BB, 952 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 953 FalseBBI.ExtraCost2, Prediction.getCompl()) && 954 FeasibilityAnalysis(FalseBBI, RevCond, true)) { 955 Tokens.push_back(llvm::make_unique<IfcvtToken>(BBI, ICTriangleFalse, 956 FNeedSub, Dups)); 957 Enqueued = true; 958 } 959 960 if (ValidTriangle(FalseBBI, TrueBBI, true, Dups, 961 Prediction.getCompl()) && 962 MeetIfcvtSizeLimit(*FalseBBI.BB, 963 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 964 FalseBBI.ExtraCost2, Prediction.getCompl()) && 965 FeasibilityAnalysis(FalseBBI, RevCond, true, true)) { 966 Tokens.push_back( 967 llvm::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups)); 968 Enqueued = true; 969 } 970 971 if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) && 972 MeetIfcvtSizeLimit(*FalseBBI.BB, 973 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 974 FalseBBI.ExtraCost2, Prediction.getCompl()) && 975 FeasibilityAnalysis(FalseBBI, RevCond)) { 976 Tokens.push_back( 977 llvm::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups)); 978 Enqueued = true; 979 } 980 } 981 982 BBI.IsEnqueued = Enqueued; 983 BBI.IsBeingAnalyzed = false; 984 BBI.IsAnalyzed = true; 985 BBStack.pop_back(); 986 } 987 } 988 989 /// AnalyzeBlocks - Analyze all blocks and find entries for all if-conversion 990 /// candidates. 991 void IfConverter::AnalyzeBlocks( 992 MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 993 for (auto &BB : MF) 994 AnalyzeBlock(&BB, Tokens); 995 996 // Sort to favor more complex ifcvt scheme. 997 std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp); 998 } 999 1000 /// canFallThroughTo - Returns true either if ToBB is the next block after BB or 1001 /// that all the intervening blocks are empty (given BB can fall through to its 1002 /// next block). 1003 static bool canFallThroughTo(MachineBasicBlock *BB, MachineBasicBlock *ToBB) { 1004 MachineFunction::iterator PI = BB->getIterator(); 1005 MachineFunction::iterator I = std::next(PI); 1006 MachineFunction::iterator TI = ToBB->getIterator(); 1007 MachineFunction::iterator E = BB->getParent()->end(); 1008 while (I != TI) { 1009 // Check isSuccessor to avoid case where the next block is empty, but 1010 // it's not a successor. 1011 if (I == E || !I->empty() || !PI->isSuccessor(&*I)) 1012 return false; 1013 PI = I++; 1014 } 1015 return true; 1016 } 1017 1018 /// InvalidatePreds - Invalidate predecessor BB info so it would be re-analyzed 1019 /// to determine if it can be if-converted. If predecessor is already enqueued, 1020 /// dequeue it! 1021 void IfConverter::InvalidatePreds(MachineBasicBlock *BB) { 1022 for (const auto &Predecessor : BB->predecessors()) { 1023 BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()]; 1024 if (PBBI.IsDone || PBBI.BB == BB) 1025 continue; 1026 PBBI.IsAnalyzed = false; 1027 PBBI.IsEnqueued = false; 1028 } 1029 } 1030 1031 /// InsertUncondBranch - Inserts an unconditional branch from BB to ToBB. 1032 /// 1033 static void InsertUncondBranch(MachineBasicBlock *BB, MachineBasicBlock *ToBB, 1034 const TargetInstrInfo *TII) { 1035 DebugLoc dl; // FIXME: this is nowhere 1036 SmallVector<MachineOperand, 0> NoCond; 1037 TII->InsertBranch(*BB, ToBB, nullptr, NoCond, dl); 1038 } 1039 1040 /// RemoveExtraEdges - Remove true / false edges if either / both are no longer 1041 /// successors. 1042 void IfConverter::RemoveExtraEdges(BBInfo &BBI) { 1043 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1044 SmallVector<MachineOperand, 4> Cond; 1045 if (!TII->AnalyzeBranch(*BBI.BB, TBB, FBB, Cond)) 1046 BBI.BB->CorrectExtraCFGEdges(TBB, FBB, !Cond.empty()); 1047 } 1048 1049 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all 1050 /// values defined in MI which are not live/used by MI. 1051 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) { 1052 SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Clobbers; 1053 Redefs.stepForward(MI, Clobbers); 1054 1055 // Now add the implicit uses for each of the clobbered values. 1056 for (auto Reg : Clobbers) { 1057 // FIXME: Const cast here is nasty, but better than making StepForward 1058 // take a mutable instruction instead of const. 1059 MachineOperand &Op = const_cast<MachineOperand&>(*Reg.second); 1060 MachineInstr *OpMI = Op.getParent(); 1061 MachineInstrBuilder MIB(*OpMI->getParent()->getParent(), OpMI); 1062 if (Op.isRegMask()) { 1063 // First handle regmasks. They clobber any entries in the mask which 1064 // means that we need a def for those registers. 1065 MIB.addReg(Reg.first, RegState::Implicit | RegState::Undef); 1066 1067 // We also need to add an implicit def of this register for the later 1068 // use to read from. 1069 // For the register allocator to have allocated a register clobbered 1070 // by the call which is used later, it must be the case that 1071 // the call doesn't return. 1072 MIB.addReg(Reg.first, RegState::Implicit | RegState::Define); 1073 continue; 1074 } 1075 assert(Op.isReg() && "Register operand required"); 1076 if (Op.isDead()) { 1077 // If we found a dead def, but it needs to be live, then remove the dead 1078 // flag. 1079 if (Redefs.contains(Op.getReg())) 1080 Op.setIsDead(false); 1081 } 1082 MIB.addReg(Reg.first, RegState::Implicit | RegState::Undef); 1083 } 1084 } 1085 1086 /** 1087 * Remove kill flags from operands with a registers in the @p DontKill set. 1088 */ 1089 static void RemoveKills(MachineInstr &MI, const LivePhysRegs &DontKill) { 1090 for (MIBundleOperands O(MI); O.isValid(); ++O) { 1091 if (!O->isReg() || !O->isKill()) 1092 continue; 1093 if (DontKill.contains(O->getReg())) 1094 O->setIsKill(false); 1095 } 1096 } 1097 1098 /** 1099 * Walks a range of machine instructions and removes kill flags for registers 1100 * in the @p DontKill set. 1101 */ 1102 static void RemoveKills(MachineBasicBlock::iterator I, 1103 MachineBasicBlock::iterator E, 1104 const LivePhysRegs &DontKill, 1105 const MCRegisterInfo &MCRI) { 1106 for ( ; I != E; ++I) 1107 RemoveKills(*I, DontKill); 1108 } 1109 1110 /// IfConvertSimple - If convert a simple (split, no rejoin) sub-CFG. 1111 /// 1112 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) { 1113 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1114 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1115 BBInfo *CvtBBI = &TrueBBI; 1116 BBInfo *NextBBI = &FalseBBI; 1117 1118 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1119 if (Kind == ICSimpleFalse) 1120 std::swap(CvtBBI, NextBBI); 1121 1122 if (CvtBBI->IsDone || 1123 (CvtBBI->CannotBeCopied && CvtBBI->BB->pred_size() > 1)) { 1124 // Something has changed. It's no longer safe to predicate this block. 1125 BBI.IsAnalyzed = false; 1126 CvtBBI->IsAnalyzed = false; 1127 return false; 1128 } 1129 1130 if (CvtBBI->BB->hasAddressTaken()) 1131 // Conservatively abort if-conversion if BB's address is taken. 1132 return false; 1133 1134 if (Kind == ICSimpleFalse) 1135 if (TII->ReverseBranchCondition(Cond)) 1136 llvm_unreachable("Unable to reverse branch condition!"); 1137 1138 // Initialize liveins to the first BB. These are potentiall redefined by 1139 // predicated instructions. 1140 Redefs.init(TRI); 1141 Redefs.addLiveIns(*CvtBBI->BB); 1142 Redefs.addLiveIns(*NextBBI->BB); 1143 1144 // Compute a set of registers which must not be killed by instructions in 1145 // BB1: This is everything live-in to BB2. 1146 DontKill.init(TRI); 1147 DontKill.addLiveIns(*NextBBI->BB); 1148 1149 if (CvtBBI->BB->pred_size() > 1) { 1150 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); 1151 // Copy instructions in the true block, predicate them, and add them to 1152 // the entry block. 1153 CopyAndPredicateBlock(BBI, *CvtBBI, Cond); 1154 1155 // RemoveExtraEdges won't work if the block has an unanalyzable branch, so 1156 // explicitly remove CvtBBI as a successor. 1157 BBI.BB->removeSuccessor(CvtBBI->BB, true); 1158 } else { 1159 RemoveKills(CvtBBI->BB->begin(), CvtBBI->BB->end(), DontKill, *TRI); 1160 PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond); 1161 1162 // Merge converted block into entry block. 1163 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); 1164 MergeBlocks(BBI, *CvtBBI); 1165 } 1166 1167 bool IterIfcvt = true; 1168 if (!canFallThroughTo(BBI.BB, NextBBI->BB)) { 1169 InsertUncondBranch(BBI.BB, NextBBI->BB, TII); 1170 BBI.HasFallThrough = false; 1171 // Now ifcvt'd block will look like this: 1172 // BB: 1173 // ... 1174 // t, f = cmp 1175 // if t op 1176 // b BBf 1177 // 1178 // We cannot further ifcvt this block because the unconditional branch 1179 // will have to be predicated on the new condition, that will not be 1180 // available if cmp executes. 1181 IterIfcvt = false; 1182 } 1183 1184 RemoveExtraEdges(BBI); 1185 1186 // Update block info. BB can be iteratively if-converted. 1187 if (!IterIfcvt) 1188 BBI.IsDone = true; 1189 InvalidatePreds(BBI.BB); 1190 CvtBBI->IsDone = true; 1191 1192 // FIXME: Must maintain LiveIns. 1193 return true; 1194 } 1195 1196 /// IfConvertTriangle - If convert a triangle sub-CFG. 1197 /// 1198 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) { 1199 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1200 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1201 BBInfo *CvtBBI = &TrueBBI; 1202 BBInfo *NextBBI = &FalseBBI; 1203 DebugLoc dl; // FIXME: this is nowhere 1204 1205 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1206 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1207 std::swap(CvtBBI, NextBBI); 1208 1209 if (CvtBBI->IsDone || 1210 (CvtBBI->CannotBeCopied && CvtBBI->BB->pred_size() > 1)) { 1211 // Something has changed. It's no longer safe to predicate this block. 1212 BBI.IsAnalyzed = false; 1213 CvtBBI->IsAnalyzed = false; 1214 return false; 1215 } 1216 1217 if (CvtBBI->BB->hasAddressTaken()) 1218 // Conservatively abort if-conversion if BB's address is taken. 1219 return false; 1220 1221 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1222 if (TII->ReverseBranchCondition(Cond)) 1223 llvm_unreachable("Unable to reverse branch condition!"); 1224 1225 if (Kind == ICTriangleRev || Kind == ICTriangleFRev) { 1226 if (ReverseBranchCondition(*CvtBBI)) { 1227 // BB has been changed, modify its predecessors (except for this 1228 // one) so they don't get ifcvt'ed based on bad intel. 1229 for (MachineBasicBlock::pred_iterator PI = CvtBBI->BB->pred_begin(), 1230 E = CvtBBI->BB->pred_end(); PI != E; ++PI) { 1231 MachineBasicBlock *PBB = *PI; 1232 if (PBB == BBI.BB) 1233 continue; 1234 BBInfo &PBBI = BBAnalysis[PBB->getNumber()]; 1235 if (PBBI.IsEnqueued) { 1236 PBBI.IsAnalyzed = false; 1237 PBBI.IsEnqueued = false; 1238 } 1239 } 1240 } 1241 } 1242 1243 // Initialize liveins to the first BB. These are potentially redefined by 1244 // predicated instructions. 1245 Redefs.init(TRI); 1246 Redefs.addLiveIns(*CvtBBI->BB); 1247 Redefs.addLiveIns(*NextBBI->BB); 1248 1249 DontKill.clear(); 1250 1251 bool HasEarlyExit = CvtBBI->FalseBB != nullptr; 1252 BranchProbability CvtNext, CvtFalse, BBNext, BBCvt; 1253 1254 if (HasEarlyExit) { 1255 // Get probabilities before modifying CvtBBI->BB and BBI.BB. 1256 CvtNext = MBPI->getEdgeProbability(CvtBBI->BB, NextBBI->BB); 1257 CvtFalse = MBPI->getEdgeProbability(CvtBBI->BB, CvtBBI->FalseBB); 1258 BBNext = MBPI->getEdgeProbability(BBI.BB, NextBBI->BB); 1259 BBCvt = MBPI->getEdgeProbability(BBI.BB, CvtBBI->BB); 1260 } 1261 1262 if (CvtBBI->BB->pred_size() > 1) { 1263 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); 1264 // Copy instructions in the true block, predicate them, and add them to 1265 // the entry block. 1266 CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true); 1267 1268 // RemoveExtraEdges won't work if the block has an unanalyzable branch, so 1269 // explicitly remove CvtBBI as a successor. 1270 BBI.BB->removeSuccessor(CvtBBI->BB, true); 1271 } else { 1272 // Predicate the 'true' block after removing its branch. 1273 CvtBBI->NonPredSize -= TII->RemoveBranch(*CvtBBI->BB); 1274 PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond); 1275 1276 // Now merge the entry of the triangle with the true block. 1277 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); 1278 MergeBlocks(BBI, *CvtBBI, false); 1279 } 1280 1281 // If 'true' block has a 'false' successor, add an exit branch to it. 1282 if (HasEarlyExit) { 1283 SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(), 1284 CvtBBI->BrCond.end()); 1285 if (TII->ReverseBranchCondition(RevCond)) 1286 llvm_unreachable("Unable to reverse branch condition!"); 1287 1288 // Update the edge probability for both CvtBBI->FalseBB and NextBBI. 1289 // NewNext = New_Prob(BBI.BB, NextBBI->BB) = 1290 // Prob(BBI.BB, NextBBI->BB) + 1291 // Prob(BBI.BB, CvtBBI->BB) * Prob(CvtBBI->BB, NextBBI->BB) 1292 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) = 1293 // Prob(BBI.BB, CvtBBI->BB) * Prob(CvtBBI->BB, CvtBBI->FalseBB) 1294 auto NewTrueBB = getNextBlock(BBI.BB); 1295 auto NewNext = BBNext + BBCvt * CvtNext; 1296 auto NewTrueBBIter = 1297 std::find(BBI.BB->succ_begin(), BBI.BB->succ_end(), NewTrueBB); 1298 if (NewTrueBBIter != BBI.BB->succ_end()) 1299 BBI.BB->setSuccProbability(NewTrueBBIter, NewNext); 1300 1301 auto NewFalse = BBCvt * CvtFalse; 1302 TII->InsertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl); 1303 BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse); 1304 } 1305 1306 // Merge in the 'false' block if the 'false' block has no other 1307 // predecessors. Otherwise, add an unconditional branch to 'false'. 1308 bool FalseBBDead = false; 1309 bool IterIfcvt = true; 1310 bool isFallThrough = canFallThroughTo(BBI.BB, NextBBI->BB); 1311 if (!isFallThrough) { 1312 // Only merge them if the true block does not fallthrough to the false 1313 // block. By not merging them, we make it possible to iteratively 1314 // ifcvt the blocks. 1315 if (!HasEarlyExit && 1316 NextBBI->BB->pred_size() == 1 && !NextBBI->HasFallThrough && 1317 !NextBBI->BB->hasAddressTaken()) { 1318 MergeBlocks(BBI, *NextBBI); 1319 FalseBBDead = true; 1320 } else { 1321 InsertUncondBranch(BBI.BB, NextBBI->BB, TII); 1322 BBI.HasFallThrough = false; 1323 } 1324 // Mixed predicated and unpredicated code. This cannot be iteratively 1325 // predicated. 1326 IterIfcvt = false; 1327 } 1328 1329 RemoveExtraEdges(BBI); 1330 1331 // Update block info. BB can be iteratively if-converted. 1332 if (!IterIfcvt) 1333 BBI.IsDone = true; 1334 InvalidatePreds(BBI.BB); 1335 CvtBBI->IsDone = true; 1336 if (FalseBBDead) 1337 NextBBI->IsDone = true; 1338 1339 // FIXME: Must maintain LiveIns. 1340 return true; 1341 } 1342 1343 /// IfConvertDiamond - If convert a diamond sub-CFG. 1344 /// 1345 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 1346 unsigned NumDups1, unsigned NumDups2) { 1347 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1348 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1349 MachineBasicBlock *TailBB = TrueBBI.TrueBB; 1350 // True block must fall through or end with an unanalyzable terminator. 1351 if (!TailBB) { 1352 if (blockAlwaysFallThrough(TrueBBI)) 1353 TailBB = FalseBBI.TrueBB; 1354 assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!"); 1355 } 1356 1357 if (TrueBBI.IsDone || FalseBBI.IsDone || 1358 TrueBBI.BB->pred_size() > 1 || 1359 FalseBBI.BB->pred_size() > 1) { 1360 // Something has changed. It's no longer safe to predicate these blocks. 1361 BBI.IsAnalyzed = false; 1362 TrueBBI.IsAnalyzed = false; 1363 FalseBBI.IsAnalyzed = false; 1364 return false; 1365 } 1366 1367 if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken()) 1368 // Conservatively abort if-conversion if either BB has its address taken. 1369 return false; 1370 1371 // Put the predicated instructions from the 'true' block before the 1372 // instructions from the 'false' block, unless the true block would clobber 1373 // the predicate, in which case, do the opposite. 1374 BBInfo *BBI1 = &TrueBBI; 1375 BBInfo *BBI2 = &FalseBBI; 1376 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1377 if (TII->ReverseBranchCondition(RevCond)) 1378 llvm_unreachable("Unable to reverse branch condition!"); 1379 SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond; 1380 SmallVector<MachineOperand, 4> *Cond2 = &RevCond; 1381 1382 // Figure out the more profitable ordering. 1383 bool DoSwap = false; 1384 if (TrueBBI.ClobbersPred && !FalseBBI.ClobbersPred) 1385 DoSwap = true; 1386 else if (TrueBBI.ClobbersPred == FalseBBI.ClobbersPred) { 1387 if (TrueBBI.NonPredSize > FalseBBI.NonPredSize) 1388 DoSwap = true; 1389 } 1390 if (DoSwap) { 1391 std::swap(BBI1, BBI2); 1392 std::swap(Cond1, Cond2); 1393 } 1394 1395 // Remove the conditional branch from entry to the blocks. 1396 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); 1397 1398 // Initialize liveins to the first BB. These are potentially redefined by 1399 // predicated instructions. 1400 Redefs.init(TRI); 1401 Redefs.addLiveIns(*BBI1->BB); 1402 1403 // Remove the duplicated instructions at the beginnings of both paths. 1404 // Skip dbg_value instructions 1405 MachineBasicBlock::iterator DI1 = BBI1->BB->getFirstNonDebugInstr(); 1406 MachineBasicBlock::iterator DI2 = BBI2->BB->getFirstNonDebugInstr(); 1407 BBI1->NonPredSize -= NumDups1; 1408 BBI2->NonPredSize -= NumDups1; 1409 1410 // Skip past the dups on each side separately since there may be 1411 // differing dbg_value entries. 1412 for (unsigned i = 0; i < NumDups1; ++DI1) { 1413 if (!DI1->isDebugValue()) 1414 ++i; 1415 } 1416 while (NumDups1 != 0) { 1417 ++DI2; 1418 if (!DI2->isDebugValue()) 1419 --NumDups1; 1420 } 1421 1422 // Compute a set of registers which must not be killed by instructions in BB1: 1423 // This is everything used+live in BB2 after the duplicated instructions. We 1424 // can compute this set by simulating liveness backwards from the end of BB2. 1425 DontKill.init(TRI); 1426 for (MachineBasicBlock::reverse_iterator I = BBI2->BB->rbegin(), 1427 E = MachineBasicBlock::reverse_iterator(DI2); I != E; ++I) { 1428 DontKill.stepBackward(*I); 1429 } 1430 1431 for (MachineBasicBlock::const_iterator I = BBI1->BB->begin(), E = DI1; I != E; 1432 ++I) { 1433 SmallVector<std::pair<unsigned, const MachineOperand*>, 4> IgnoredClobbers; 1434 Redefs.stepForward(*I, IgnoredClobbers); 1435 } 1436 BBI.BB->splice(BBI.BB->end(), BBI1->BB, BBI1->BB->begin(), DI1); 1437 BBI2->BB->erase(BBI2->BB->begin(), DI2); 1438 1439 // Remove branch from the 'true' block, unless it was not analyzable. 1440 // Non-analyzable branches need to be preserved, since in such cases, 1441 // the CFG structure is not an actual diamond (the join block may not 1442 // be present). 1443 if (BBI1->IsBrAnalyzable) 1444 BBI1->NonPredSize -= TII->RemoveBranch(*BBI1->BB); 1445 // Remove duplicated instructions. 1446 DI1 = BBI1->BB->end(); 1447 for (unsigned i = 0; i != NumDups2; ) { 1448 // NumDups2 only counted non-dbg_value instructions, so this won't 1449 // run off the head of the list. 1450 assert (DI1 != BBI1->BB->begin()); 1451 --DI1; 1452 // skip dbg_value instructions 1453 if (!DI1->isDebugValue()) 1454 ++i; 1455 } 1456 BBI1->BB->erase(DI1, BBI1->BB->end()); 1457 1458 // Kill flags in the true block for registers living into the false block 1459 // must be removed. 1460 RemoveKills(BBI1->BB->begin(), BBI1->BB->end(), DontKill, *TRI); 1461 1462 // Remove 'false' block branch (unless it was not analyzable), and find 1463 // the last instruction to predicate. 1464 if (BBI2->IsBrAnalyzable) 1465 BBI2->NonPredSize -= TII->RemoveBranch(*BBI2->BB); 1466 DI2 = BBI2->BB->end(); 1467 while (NumDups2 != 0) { 1468 // NumDups2 only counted non-dbg_value instructions, so this won't 1469 // run off the head of the list. 1470 assert (DI2 != BBI2->BB->begin()); 1471 --DI2; 1472 // skip dbg_value instructions 1473 if (!DI2->isDebugValue()) 1474 --NumDups2; 1475 } 1476 1477 // Remember which registers would later be defined by the false block. 1478 // This allows us not to predicate instructions in the true block that would 1479 // later be re-defined. That is, rather than 1480 // subeq r0, r1, #1 1481 // addne r0, r1, #1 1482 // generate: 1483 // sub r0, r1, #1 1484 // addne r0, r1, #1 1485 SmallSet<unsigned, 4> RedefsByFalse; 1486 SmallSet<unsigned, 4> ExtUses; 1487 if (TII->isProfitableToUnpredicate(*BBI1->BB, *BBI2->BB)) { 1488 for (MachineBasicBlock::iterator FI = BBI2->BB->begin(); FI != DI2; ++FI) { 1489 if (FI->isDebugValue()) 1490 continue; 1491 SmallVector<unsigned, 4> Defs; 1492 for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) { 1493 const MachineOperand &MO = FI->getOperand(i); 1494 if (!MO.isReg()) 1495 continue; 1496 unsigned Reg = MO.getReg(); 1497 if (!Reg) 1498 continue; 1499 if (MO.isDef()) { 1500 Defs.push_back(Reg); 1501 } else if (!RedefsByFalse.count(Reg)) { 1502 // These are defined before ctrl flow reach the 'false' instructions. 1503 // They cannot be modified by the 'true' instructions. 1504 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1505 SubRegs.isValid(); ++SubRegs) 1506 ExtUses.insert(*SubRegs); 1507 } 1508 } 1509 1510 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1511 unsigned Reg = Defs[i]; 1512 if (!ExtUses.count(Reg)) { 1513 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1514 SubRegs.isValid(); ++SubRegs) 1515 RedefsByFalse.insert(*SubRegs); 1516 } 1517 } 1518 } 1519 } 1520 1521 // Predicate the 'true' block. 1522 PredicateBlock(*BBI1, BBI1->BB->end(), *Cond1, &RedefsByFalse); 1523 1524 // After predicating BBI1, if there is a predicated terminator in BBI1 and 1525 // a non-predicated in BBI2, then we don't want to predicate the one from 1526 // BBI2. The reason is that if we merged these blocks, we would end up with 1527 // two predicated terminators in the same block. 1528 if (!BBI2->BB->empty() && (DI2 == BBI2->BB->end())) { 1529 MachineBasicBlock::iterator BBI1T = BBI1->BB->getFirstTerminator(); 1530 MachineBasicBlock::iterator BBI2T = BBI2->BB->getFirstTerminator(); 1531 if (BBI1T != BBI1->BB->end() && TII->isPredicated(*BBI1T) && 1532 BBI2T != BBI2->BB->end() && !TII->isPredicated(*BBI2T)) 1533 --DI2; 1534 } 1535 1536 // Predicate the 'false' block. 1537 PredicateBlock(*BBI2, DI2, *Cond2); 1538 1539 // Merge the true block into the entry of the diamond. 1540 MergeBlocks(BBI, *BBI1, TailBB == nullptr); 1541 MergeBlocks(BBI, *BBI2, TailBB == nullptr); 1542 1543 // If the if-converted block falls through or unconditionally branches into 1544 // the tail block, and the tail block does not have other predecessors, then 1545 // fold the tail block in as well. Otherwise, unless it falls through to the 1546 // tail, add a unconditional branch to it. 1547 if (TailBB) { 1548 BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()]; 1549 bool CanMergeTail = !TailBBI.HasFallThrough && 1550 !TailBBI.BB->hasAddressTaken(); 1551 // The if-converted block can still have a predicated terminator 1552 // (e.g. a predicated return). If that is the case, we cannot merge 1553 // it with the tail block. 1554 MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator(); 1555 if (TI != BBI.BB->end() && TII->isPredicated(*TI)) 1556 CanMergeTail = false; 1557 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB; 1558 // check if there are any other predecessors besides those. 1559 unsigned NumPreds = TailBB->pred_size(); 1560 if (NumPreds > 1) 1561 CanMergeTail = false; 1562 else if (NumPreds == 1 && CanMergeTail) { 1563 MachineBasicBlock::pred_iterator PI = TailBB->pred_begin(); 1564 if (*PI != BBI1->BB && *PI != BBI2->BB) 1565 CanMergeTail = false; 1566 } 1567 if (CanMergeTail) { 1568 MergeBlocks(BBI, TailBBI); 1569 TailBBI.IsDone = true; 1570 } else { 1571 BBI.BB->addSuccessor(TailBB, BranchProbability::getOne()); 1572 InsertUncondBranch(BBI.BB, TailBB, TII); 1573 BBI.HasFallThrough = false; 1574 } 1575 } 1576 1577 // RemoveExtraEdges won't work if the block has an unanalyzable branch, 1578 // which can happen here if TailBB is unanalyzable and is merged, so 1579 // explicitly remove BBI1 and BBI2 as successors. 1580 BBI.BB->removeSuccessor(BBI1->BB); 1581 BBI.BB->removeSuccessor(BBI2->BB, true); 1582 RemoveExtraEdges(BBI); 1583 1584 // Update block info. 1585 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 1586 InvalidatePreds(BBI.BB); 1587 1588 // FIXME: Must maintain LiveIns. 1589 return true; 1590 } 1591 1592 static bool MaySpeculate(const MachineInstr *MI, 1593 SmallSet<unsigned, 4> &LaterRedefs) { 1594 bool SawStore = true; 1595 if (!MI->isSafeToMove(nullptr, SawStore)) 1596 return false; 1597 1598 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1599 const MachineOperand &MO = MI->getOperand(i); 1600 if (!MO.isReg()) 1601 continue; 1602 unsigned Reg = MO.getReg(); 1603 if (!Reg) 1604 continue; 1605 if (MO.isDef() && !LaterRedefs.count(Reg)) 1606 return false; 1607 } 1608 1609 return true; 1610 } 1611 1612 /// PredicateBlock - Predicate instructions from the start of the block to the 1613 /// specified end with the specified condition. 1614 void IfConverter::PredicateBlock(BBInfo &BBI, 1615 MachineBasicBlock::iterator E, 1616 SmallVectorImpl<MachineOperand> &Cond, 1617 SmallSet<unsigned, 4> *LaterRedefs) { 1618 bool AnyUnpred = false; 1619 bool MaySpec = LaterRedefs != nullptr; 1620 for (MachineBasicBlock::iterator I = BBI.BB->begin(); I != E; ++I) { 1621 if (I->isDebugValue() || TII->isPredicated(*I)) 1622 continue; 1623 // It may be possible not to predicate an instruction if it's the 'true' 1624 // side of a diamond and the 'false' side may re-define the instruction's 1625 // defs. 1626 if (MaySpec && MaySpeculate(I, *LaterRedefs)) { 1627 AnyUnpred = true; 1628 continue; 1629 } 1630 // If any instruction is predicated, then every instruction after it must 1631 // be predicated. 1632 MaySpec = false; 1633 if (!TII->PredicateInstruction(*I, Cond)) { 1634 #ifndef NDEBUG 1635 dbgs() << "Unable to predicate " << *I << "!\n"; 1636 #endif 1637 llvm_unreachable(nullptr); 1638 } 1639 1640 // If the predicated instruction now redefines a register as the result of 1641 // if-conversion, add an implicit kill. 1642 UpdatePredRedefs(*I, Redefs); 1643 } 1644 1645 BBI.Predicate.append(Cond.begin(), Cond.end()); 1646 1647 BBI.IsAnalyzed = false; 1648 BBI.NonPredSize = 0; 1649 1650 ++NumIfConvBBs; 1651 if (AnyUnpred) 1652 ++NumUnpred; 1653 } 1654 1655 /// CopyAndPredicateBlock - Copy and predicate instructions from source BB to 1656 /// the destination block. Skip end of block branches if IgnoreBr is true. 1657 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 1658 SmallVectorImpl<MachineOperand> &Cond, 1659 bool IgnoreBr) { 1660 MachineFunction &MF = *ToBBI.BB->getParent(); 1661 1662 for (auto &I : *FromBBI.BB) { 1663 // Do not copy the end of the block branches. 1664 if (IgnoreBr && I.isBranch()) 1665 break; 1666 1667 MachineInstr *MI = MF.CloneMachineInstr(&I); 1668 ToBBI.BB->insert(ToBBI.BB->end(), MI); 1669 ToBBI.NonPredSize++; 1670 unsigned ExtraPredCost = TII->getPredicationCost(I); 1671 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); 1672 if (NumCycles > 1) 1673 ToBBI.ExtraCost += NumCycles-1; 1674 ToBBI.ExtraCost2 += ExtraPredCost; 1675 1676 if (!TII->isPredicated(I) && !MI->isDebugValue()) { 1677 if (!TII->PredicateInstruction(*MI, Cond)) { 1678 #ifndef NDEBUG 1679 dbgs() << "Unable to predicate " << I << "!\n"; 1680 #endif 1681 llvm_unreachable(nullptr); 1682 } 1683 } 1684 1685 // If the predicated instruction now redefines a register as the result of 1686 // if-conversion, add an implicit kill. 1687 UpdatePredRedefs(*MI, Redefs); 1688 1689 // Some kill flags may not be correct anymore. 1690 if (!DontKill.empty()) 1691 RemoveKills(*MI, DontKill); 1692 } 1693 1694 if (!IgnoreBr) { 1695 std::vector<MachineBasicBlock *> Succs(FromBBI.BB->succ_begin(), 1696 FromBBI.BB->succ_end()); 1697 MachineBasicBlock *NBB = getNextBlock(FromBBI.BB); 1698 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 1699 1700 for (unsigned i = 0, e = Succs.size(); i != e; ++i) { 1701 MachineBasicBlock *Succ = Succs[i]; 1702 // Fallthrough edge can't be transferred. 1703 if (Succ == FallThrough) 1704 continue; 1705 ToBBI.BB->addSuccessor(Succ); 1706 } 1707 } 1708 1709 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 1710 ToBBI.Predicate.append(Cond.begin(), Cond.end()); 1711 1712 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 1713 ToBBI.IsAnalyzed = false; 1714 1715 ++NumDupBBs; 1716 } 1717 1718 /// MergeBlocks - Move all instructions from FromBB to the end of ToBB. 1719 /// This will leave FromBB as an empty block, so remove all of its 1720 /// successor edges except for the fall-through edge. If AddEdges is true, 1721 /// i.e., when FromBBI's branch is being moved, add those successor edges to 1722 /// ToBBI. 1723 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) { 1724 assert(!FromBBI.BB->hasAddressTaken() && 1725 "Removing a BB whose address is taken!"); 1726 1727 // In case FromBBI.BB contains terminators (e.g. return instruction), 1728 // first move the non-terminator instructions, then the terminators. 1729 MachineBasicBlock::iterator FromTI = FromBBI.BB->getFirstTerminator(); 1730 MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator(); 1731 ToBBI.BB->splice(ToTI, FromBBI.BB, FromBBI.BB->begin(), FromTI); 1732 1733 // If FromBB has non-predicated terminator we should copy it at the end. 1734 if (FromTI != FromBBI.BB->end() && !TII->isPredicated(*FromTI)) 1735 ToTI = ToBBI.BB->end(); 1736 ToBBI.BB->splice(ToTI, FromBBI.BB, FromTI, FromBBI.BB->end()); 1737 1738 // Force normalizing the successors' probabilities of ToBBI.BB to convert all 1739 // unknown probabilities into known ones. 1740 // FIXME: This usage is too tricky and in the future we would like to 1741 // eliminate all unknown probabilities in MBB. 1742 ToBBI.BB->normalizeSuccProbs(); 1743 1744 SmallVector<MachineBasicBlock *, 4> FromSuccs(FromBBI.BB->succ_begin(), 1745 FromBBI.BB->succ_end()); 1746 MachineBasicBlock *NBB = getNextBlock(FromBBI.BB); 1747 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 1748 // The edge probability from ToBBI.BB to FromBBI.BB, which is only needed when 1749 // AddEdges is true and FromBBI.BB is a successor of ToBBI.BB. 1750 auto To2FromProb = BranchProbability::getZero(); 1751 if (AddEdges && ToBBI.BB->isSuccessor(FromBBI.BB)) { 1752 To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, FromBBI.BB); 1753 // Set the edge probability from ToBBI.BB to FromBBI.BB to zero to avoid the 1754 // edge probability being merged to other edges when this edge is removed 1755 // later. 1756 ToBBI.BB->setSuccProbability( 1757 std::find(ToBBI.BB->succ_begin(), ToBBI.BB->succ_end(), FromBBI.BB), 1758 BranchProbability::getZero()); 1759 } 1760 1761 for (unsigned i = 0, e = FromSuccs.size(); i != e; ++i) { 1762 MachineBasicBlock *Succ = FromSuccs[i]; 1763 // Fallthrough edge can't be transferred. 1764 if (Succ == FallThrough) 1765 continue; 1766 1767 auto NewProb = BranchProbability::getZero(); 1768 if (AddEdges) { 1769 // Calculate the edge probability for the edge from ToBBI.BB to Succ, 1770 // which is a portion of the edge probability from FromBBI.BB to Succ. The 1771 // portion ratio is the edge probability from ToBBI.BB to FromBBI.BB (if 1772 // FromBBI is a successor of ToBBI.BB. See comment below for excepion). 1773 NewProb = MBPI->getEdgeProbability(FromBBI.BB, Succ); 1774 1775 // To2FromProb is 0 when FromBBI.BB is not a successor of ToBBI.BB. This 1776 // only happens when if-converting a diamond CFG and FromBBI.BB is the 1777 // tail BB. In this case FromBBI.BB post-dominates ToBBI.BB and hence we 1778 // could just use the probabilities on FromBBI.BB's out-edges when adding 1779 // new successors. 1780 if (!To2FromProb.isZero()) 1781 NewProb *= To2FromProb; 1782 } 1783 1784 FromBBI.BB->removeSuccessor(Succ); 1785 1786 if (AddEdges) { 1787 // If the edge from ToBBI.BB to Succ already exists, update the 1788 // probability of this edge by adding NewProb to it. An example is shown 1789 // below, in which A is ToBBI.BB and B is FromBBI.BB. In this case we 1790 // don't have to set C as A's successor as it already is. We only need to 1791 // update the edge probability on A->C. Note that B will not be 1792 // immediately removed from A's successors. It is possible that B->D is 1793 // not removed either if D is a fallthrough of B. Later the edge A->D 1794 // (generated here) and B->D will be combined into one edge. To maintain 1795 // correct edge probability of this combined edge, we need to set the edge 1796 // probability of A->B to zero, which is already done above. The edge 1797 // probability on A->D is calculated by scaling the original probability 1798 // on A->B by the probability of B->D. 1799 // 1800 // Before ifcvt: After ifcvt (assume B->D is kept): 1801 // 1802 // A A 1803 // /| /|\ 1804 // / B / B| 1805 // | /| | || 1806 // |/ | | |/ 1807 // C D C D 1808 // 1809 if (ToBBI.BB->isSuccessor(Succ)) 1810 ToBBI.BB->setSuccProbability( 1811 std::find(ToBBI.BB->succ_begin(), ToBBI.BB->succ_end(), Succ), 1812 MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb); 1813 else 1814 ToBBI.BB->addSuccessor(Succ, NewProb); 1815 } 1816 } 1817 1818 // Now FromBBI always falls through to the next block! 1819 if (NBB && !FromBBI.BB->isSuccessor(NBB)) 1820 FromBBI.BB->addSuccessor(NBB); 1821 1822 // Normalize the probabilities of ToBBI.BB's successors with all adjustment 1823 // we've done above. 1824 ToBBI.BB->normalizeSuccProbs(); 1825 1826 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 1827 FromBBI.Predicate.clear(); 1828 1829 ToBBI.NonPredSize += FromBBI.NonPredSize; 1830 ToBBI.ExtraCost += FromBBI.ExtraCost; 1831 ToBBI.ExtraCost2 += FromBBI.ExtraCost2; 1832 FromBBI.NonPredSize = 0; 1833 FromBBI.ExtraCost = 0; 1834 FromBBI.ExtraCost2 = 0; 1835 1836 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 1837 ToBBI.HasFallThrough = FromBBI.HasFallThrough; 1838 ToBBI.IsAnalyzed = false; 1839 FromBBI.IsAnalyzed = false; 1840 } 1841 1842 FunctionPass * 1843 llvm::createIfConverter(std::function<bool(const Function &)> Ftor) { 1844 return new IfConverter(Ftor); 1845 } 1846