1 //===-- IfConversion.cpp - Machine code if conversion pass. ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the machine instruction level if-conversion pass, which
11 // tries to convert conditional branches into predicated instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/Passes.h"
16 #include "BranchFolding.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/LivePhysRegs.h"
21 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
22 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetSchedule.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetLowering.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35 #include "llvm/Target/TargetSubtargetInfo.h"
36 #include <algorithm>
37 #include <utility>
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "ifcvt"
42 
43 // Hidden options for help debugging.
44 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
45 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
46 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
47 static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
48                                    cl::init(false), cl::Hidden);
49 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
50                                     cl::init(false), cl::Hidden);
51 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
52                                      cl::init(false), cl::Hidden);
53 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
54                                       cl::init(false), cl::Hidden);
55 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
56                                       cl::init(false), cl::Hidden);
57 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
58                                        cl::init(false), cl::Hidden);
59 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
60                                     cl::init(false), cl::Hidden);
61 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
62                                      cl::init(true), cl::Hidden);
63 
64 STATISTIC(NumSimple,       "Number of simple if-conversions performed");
65 STATISTIC(NumSimpleFalse,  "Number of simple (F) if-conversions performed");
66 STATISTIC(NumTriangle,     "Number of triangle if-conversions performed");
67 STATISTIC(NumTriangleRev,  "Number of triangle (R) if-conversions performed");
68 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
69 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
70 STATISTIC(NumDiamonds,     "Number of diamond if-conversions performed");
71 STATISTIC(NumIfConvBBs,    "Number of if-converted blocks");
72 STATISTIC(NumDupBBs,       "Number of duplicated blocks");
73 STATISTIC(NumUnpred,       "Number of true blocks of diamonds unpredicated");
74 
75 namespace {
76   class IfConverter : public MachineFunctionPass {
77     enum IfcvtKind {
78       ICNotClassfied,  // BB data valid, but not classified.
79       ICSimpleFalse,   // Same as ICSimple, but on the false path.
80       ICSimple,        // BB is entry of an one split, no rejoin sub-CFG.
81       ICTriangleFRev,  // Same as ICTriangleFalse, but false path rev condition.
82       ICTriangleRev,   // Same as ICTriangle, but true path rev condition.
83       ICTriangleFalse, // Same as ICTriangle, but on the false path.
84       ICTriangle,      // BB is entry of a triangle sub-CFG.
85       ICDiamond        // BB is entry of a diamond sub-CFG.
86     };
87 
88     /// BBInfo - One per MachineBasicBlock, this is used to cache the result
89     /// if-conversion feasibility analysis. This includes results from
90     /// TargetInstrInfo::AnalyzeBranch() (i.e. TBB, FBB, and Cond), and its
91     /// classification, and common tail block of its successors (if it's a
92     /// diamond shape), its size, whether it's predicable, and whether any
93     /// instruction can clobber the 'would-be' predicate.
94     ///
95     /// IsDone          - True if BB is not to be considered for ifcvt.
96     /// IsBeingAnalyzed - True if BB is currently being analyzed.
97     /// IsAnalyzed      - True if BB has been analyzed (info is still valid).
98     /// IsEnqueued      - True if BB has been enqueued to be ifcvt'ed.
99     /// IsBrAnalyzable  - True if AnalyzeBranch() returns false.
100     /// HasFallThrough  - True if BB may fallthrough to the following BB.
101     /// IsUnpredicable  - True if BB is known to be unpredicable.
102     /// ClobbersPred    - True if BB could modify predicates (e.g. has
103     ///                   cmp, call, etc.)
104     /// NonPredSize     - Number of non-predicated instructions.
105     /// ExtraCost       - Extra cost for multi-cycle instructions.
106     /// ExtraCost2      - Some instructions are slower when predicated
107     /// BB              - Corresponding MachineBasicBlock.
108     /// TrueBB / FalseBB- See AnalyzeBranch().
109     /// BrCond          - Conditions for end of block conditional branches.
110     /// Predicate       - Predicate used in the BB.
111     struct BBInfo {
112       bool IsDone          : 1;
113       bool IsBeingAnalyzed : 1;
114       bool IsAnalyzed      : 1;
115       bool IsEnqueued      : 1;
116       bool IsBrAnalyzable  : 1;
117       bool HasFallThrough  : 1;
118       bool IsUnpredicable  : 1;
119       bool CannotBeCopied  : 1;
120       bool ClobbersPred    : 1;
121       unsigned NonPredSize;
122       unsigned ExtraCost;
123       unsigned ExtraCost2;
124       MachineBasicBlock *BB;
125       MachineBasicBlock *TrueBB;
126       MachineBasicBlock *FalseBB;
127       SmallVector<MachineOperand, 4> BrCond;
128       SmallVector<MachineOperand, 4> Predicate;
129       BBInfo() : IsDone(false), IsBeingAnalyzed(false),
130                  IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
131                  HasFallThrough(false), IsUnpredicable(false),
132                  CannotBeCopied(false), ClobbersPred(false), NonPredSize(0),
133                  ExtraCost(0), ExtraCost2(0), BB(nullptr), TrueBB(nullptr),
134                  FalseBB(nullptr) {}
135     };
136 
137     /// IfcvtToken - Record information about pending if-conversions to attempt:
138     /// BBI             - Corresponding BBInfo.
139     /// Kind            - Type of block. See IfcvtKind.
140     /// NeedSubsumption - True if the to-be-predicated BB has already been
141     ///                   predicated.
142     /// NumDups      - Number of instructions that would be duplicated due
143     ///                   to this if-conversion. (For diamonds, the number of
144     ///                   identical instructions at the beginnings of both
145     ///                   paths).
146     /// NumDups2     - For diamonds, the number of identical instructions
147     ///                   at the ends of both paths.
148     struct IfcvtToken {
149       BBInfo &BBI;
150       IfcvtKind Kind;
151       bool NeedSubsumption;
152       unsigned NumDups;
153       unsigned NumDups2;
154       IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0)
155         : BBI(b), Kind(k), NeedSubsumption(s), NumDups(d), NumDups2(d2) {}
156     };
157 
158     /// BBAnalysis - Results of if-conversion feasibility analysis indexed by
159     /// basic block number.
160     std::vector<BBInfo> BBAnalysis;
161     TargetSchedModel SchedModel;
162 
163     const TargetLoweringBase *TLI;
164     const TargetInstrInfo *TII;
165     const TargetRegisterInfo *TRI;
166     const MachineBlockFrequencyInfo *MBFI;
167     const MachineBranchProbabilityInfo *MBPI;
168     MachineRegisterInfo *MRI;
169 
170     LivePhysRegs Redefs;
171     LivePhysRegs DontKill;
172 
173     bool PreRegAlloc;
174     bool MadeChange;
175     int FnNum;
176     std::function<bool(const Function &)> PredicateFtor;
177 
178   public:
179     static char ID;
180     IfConverter(std::function<bool(const Function &)> Ftor = nullptr)
181         : MachineFunctionPass(ID), FnNum(-1), PredicateFtor(std::move(Ftor)) {
182       initializeIfConverterPass(*PassRegistry::getPassRegistry());
183     }
184 
185     void getAnalysisUsage(AnalysisUsage &AU) const override {
186       AU.addRequired<MachineBlockFrequencyInfo>();
187       AU.addRequired<MachineBranchProbabilityInfo>();
188       MachineFunctionPass::getAnalysisUsage(AU);
189     }
190 
191     bool runOnMachineFunction(MachineFunction &MF) override;
192 
193     MachineFunctionProperties getRequiredProperties() const override {
194       return MachineFunctionProperties().set(
195           MachineFunctionProperties::Property::AllVRegsAllocated);
196     }
197 
198   private:
199     bool ReverseBranchCondition(BBInfo &BBI);
200     bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
201                      BranchProbability Prediction) const;
202     bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
203                        bool FalseBranch, unsigned &Dups,
204                        BranchProbability Prediction) const;
205     bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
206                       unsigned &Dups1, unsigned &Dups2) const;
207     void ScanInstructions(BBInfo &BBI);
208     void AnalyzeBlock(MachineBasicBlock *MBB,
209                       std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
210     bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Cond,
211                              bool isTriangle = false, bool RevBranch = false);
212     void AnalyzeBlocks(MachineFunction &MF,
213                        std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
214     void InvalidatePreds(MachineBasicBlock *BB);
215     void RemoveExtraEdges(BBInfo &BBI);
216     bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
217     bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
218     bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
219                           unsigned NumDups1, unsigned NumDups2);
220     void PredicateBlock(BBInfo &BBI,
221                         MachineBasicBlock::iterator E,
222                         SmallVectorImpl<MachineOperand> &Cond,
223                         SmallSet<unsigned, 4> *LaterRedefs = nullptr);
224     void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
225                                SmallVectorImpl<MachineOperand> &Cond,
226                                bool IgnoreBr = false);
227     void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
228 
229     bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
230                             unsigned Cycle, unsigned Extra,
231                             BranchProbability Prediction) const {
232       return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
233                                                    Prediction);
234     }
235 
236     bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB,
237                             unsigned TCycle, unsigned TExtra,
238                             MachineBasicBlock &FBB,
239                             unsigned FCycle, unsigned FExtra,
240                             BranchProbability Prediction) const {
241       return TCycle > 0 && FCycle > 0 &&
242         TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra,
243                                  Prediction);
244     }
245 
246     // blockAlwaysFallThrough - Block ends without a terminator.
247     bool blockAlwaysFallThrough(BBInfo &BBI) const {
248       return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
249     }
250 
251     // IfcvtTokenCmp - Used to sort if-conversion candidates.
252     static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
253                               const std::unique_ptr<IfcvtToken> &C2) {
254       int Incr1 = (C1->Kind == ICDiamond)
255         ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
256       int Incr2 = (C2->Kind == ICDiamond)
257         ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
258       if (Incr1 > Incr2)
259         return true;
260       else if (Incr1 == Incr2) {
261         // Favors subsumption.
262         if (!C1->NeedSubsumption && C2->NeedSubsumption)
263           return true;
264         else if (C1->NeedSubsumption == C2->NeedSubsumption) {
265           // Favors diamond over triangle, etc.
266           if ((unsigned)C1->Kind < (unsigned)C2->Kind)
267             return true;
268           else if (C1->Kind == C2->Kind)
269             return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
270         }
271       }
272       return false;
273     }
274   };
275 
276   char IfConverter::ID = 0;
277 }
278 
279 char &llvm::IfConverterID = IfConverter::ID;
280 
281 INITIALIZE_PASS_BEGIN(IfConverter, "if-converter", "If Converter", false, false)
282 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
283 INITIALIZE_PASS_END(IfConverter, "if-converter", "If Converter", false, false)
284 
285 bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
286   if (skipFunction(*MF.getFunction()) ||
287       (PredicateFtor && !PredicateFtor(*MF.getFunction())))
288     return false;
289 
290   const TargetSubtargetInfo &ST = MF.getSubtarget();
291   TLI = ST.getTargetLowering();
292   TII = ST.getInstrInfo();
293   TRI = ST.getRegisterInfo();
294   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
295   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
296   MRI = &MF.getRegInfo();
297   SchedModel.init(ST.getSchedModel(), &ST, TII);
298 
299   if (!TII) return false;
300 
301   PreRegAlloc = MRI->isSSA();
302 
303   bool BFChange = false;
304   if (!PreRegAlloc) {
305     // Tail merge tend to expose more if-conversion opportunities.
306     BranchFolder BF(true, false, *MBFI, *MBPI);
307     BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(),
308                                    getAnalysisIfAvailable<MachineModuleInfo>());
309   }
310 
311   DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum <<  ") \'"
312                << MF.getName() << "\'");
313 
314   if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
315     DEBUG(dbgs() << " skipped\n");
316     return false;
317   }
318   DEBUG(dbgs() << "\n");
319 
320   MF.RenumberBlocks();
321   BBAnalysis.resize(MF.getNumBlockIDs());
322 
323   std::vector<std::unique_ptr<IfcvtToken>> Tokens;
324   MadeChange = false;
325   unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
326     NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
327   while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
328     // Do an initial analysis for each basic block and find all the potential
329     // candidates to perform if-conversion.
330     bool Change = false;
331     AnalyzeBlocks(MF, Tokens);
332     while (!Tokens.empty()) {
333       std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
334       Tokens.pop_back();
335       BBInfo &BBI = Token->BBI;
336       IfcvtKind Kind = Token->Kind;
337       unsigned NumDups = Token->NumDups;
338       unsigned NumDups2 = Token->NumDups2;
339 
340       // If the block has been evicted out of the queue or it has already been
341       // marked dead (due to it being predicated), then skip it.
342       if (BBI.IsDone)
343         BBI.IsEnqueued = false;
344       if (!BBI.IsEnqueued)
345         continue;
346 
347       BBI.IsEnqueued = false;
348 
349       bool RetVal = false;
350       switch (Kind) {
351       default: llvm_unreachable("Unexpected!");
352       case ICSimple:
353       case ICSimpleFalse: {
354         bool isFalse = Kind == ICSimpleFalse;
355         if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
356         DEBUG(dbgs() << "Ifcvt (Simple" << (Kind == ICSimpleFalse ?
357                                             " false" : "")
358                      << "): BB#" << BBI.BB->getNumber() << " ("
359                      << ((Kind == ICSimpleFalse)
360                          ? BBI.FalseBB->getNumber()
361                          : BBI.TrueBB->getNumber()) << ") ");
362         RetVal = IfConvertSimple(BBI, Kind);
363         DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
364         if (RetVal) {
365           if (isFalse) ++NumSimpleFalse;
366           else         ++NumSimple;
367         }
368        break;
369       }
370       case ICTriangle:
371       case ICTriangleRev:
372       case ICTriangleFalse:
373       case ICTriangleFRev: {
374         bool isFalse = Kind == ICTriangleFalse;
375         bool isRev   = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
376         if (DisableTriangle && !isFalse && !isRev) break;
377         if (DisableTriangleR && !isFalse && isRev) break;
378         if (DisableTriangleF && isFalse && !isRev) break;
379         if (DisableTriangleFR && isFalse && isRev) break;
380         DEBUG(dbgs() << "Ifcvt (Triangle");
381         if (isFalse)
382           DEBUG(dbgs() << " false");
383         if (isRev)
384           DEBUG(dbgs() << " rev");
385         DEBUG(dbgs() << "): BB#" << BBI.BB->getNumber() << " (T:"
386                      << BBI.TrueBB->getNumber() << ",F:"
387                      << BBI.FalseBB->getNumber() << ") ");
388         RetVal = IfConvertTriangle(BBI, Kind);
389         DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
390         if (RetVal) {
391           if (isFalse) {
392             if (isRev) ++NumTriangleFRev;
393             else       ++NumTriangleFalse;
394           } else {
395             if (isRev) ++NumTriangleRev;
396             else       ++NumTriangle;
397           }
398         }
399         break;
400       }
401       case ICDiamond: {
402         if (DisableDiamond) break;
403         DEBUG(dbgs() << "Ifcvt (Diamond): BB#" << BBI.BB->getNumber() << " (T:"
404                      << BBI.TrueBB->getNumber() << ",F:"
405                      << BBI.FalseBB->getNumber() << ") ");
406         RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2);
407         DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
408         if (RetVal) ++NumDiamonds;
409         break;
410       }
411       }
412 
413       Change |= RetVal;
414 
415       NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
416         NumTriangleFalse + NumTriangleFRev + NumDiamonds;
417       if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
418         break;
419     }
420 
421     if (!Change)
422       break;
423     MadeChange |= Change;
424   }
425 
426   Tokens.clear();
427   BBAnalysis.clear();
428 
429   if (MadeChange && IfCvtBranchFold) {
430     BranchFolder BF(false, false, *MBFI, *MBPI);
431     BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
432                         getAnalysisIfAvailable<MachineModuleInfo>());
433   }
434 
435   MadeChange |= BFChange;
436   return MadeChange;
437 }
438 
439 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
440 /// its 'true' successor.
441 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
442                                          MachineBasicBlock *TrueBB) {
443   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
444          E = BB->succ_end(); SI != E; ++SI) {
445     MachineBasicBlock *SuccBB = *SI;
446     if (SuccBB != TrueBB)
447       return SuccBB;
448   }
449   return nullptr;
450 }
451 
452 /// ReverseBranchCondition - Reverse the condition of the end of the block
453 /// branch. Swap block's 'true' and 'false' successors.
454 bool IfConverter::ReverseBranchCondition(BBInfo &BBI) {
455   DebugLoc dl;  // FIXME: this is nowhere
456   if (!TII->ReverseBranchCondition(BBI.BrCond)) {
457     TII->RemoveBranch(*BBI.BB);
458     TII->InsertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
459     std::swap(BBI.TrueBB, BBI.FalseBB);
460     return true;
461   }
462   return false;
463 }
464 
465 /// getNextBlock - Returns the next block in the function blocks ordering. If
466 /// it is the end, returns NULL.
467 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock *BB) {
468   MachineFunction::iterator I = BB->getIterator();
469   MachineFunction::iterator E = BB->getParent()->end();
470   if (++I == E)
471     return nullptr;
472   return &*I;
473 }
474 
475 /// ValidSimple - Returns true if the 'true' block (along with its
476 /// predecessor) forms a valid simple shape for ifcvt. It also returns the
477 /// number of instructions that the ifcvt would need to duplicate if performed
478 /// in Dups.
479 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
480                               BranchProbability Prediction) const {
481   Dups = 0;
482   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
483     return false;
484 
485   if (TrueBBI.IsBrAnalyzable)
486     return false;
487 
488   if (TrueBBI.BB->pred_size() > 1) {
489     if (TrueBBI.CannotBeCopied ||
490         !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
491                                         Prediction))
492       return false;
493     Dups = TrueBBI.NonPredSize;
494   }
495 
496   return true;
497 }
498 
499 /// ValidTriangle - Returns true if the 'true' and 'false' blocks (along
500 /// with their common predecessor) forms a valid triangle shape for ifcvt.
501 /// If 'FalseBranch' is true, it checks if 'true' block's false branch
502 /// branches to the 'false' block rather than the other way around. It also
503 /// returns the number of instructions that the ifcvt would need to duplicate
504 /// if performed in 'Dups'.
505 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
506                                 bool FalseBranch, unsigned &Dups,
507                                 BranchProbability Prediction) const {
508   Dups = 0;
509   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
510     return false;
511 
512   if (TrueBBI.BB->pred_size() > 1) {
513     if (TrueBBI.CannotBeCopied)
514       return false;
515 
516     unsigned Size = TrueBBI.NonPredSize;
517     if (TrueBBI.IsBrAnalyzable) {
518       if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
519         // Ends with an unconditional branch. It will be removed.
520         --Size;
521       else {
522         MachineBasicBlock *FExit = FalseBranch
523           ? TrueBBI.TrueBB : TrueBBI.FalseBB;
524         if (FExit)
525           // Require a conditional branch
526           ++Size;
527       }
528     }
529     if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
530       return false;
531     Dups = Size;
532   }
533 
534   MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
535   if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
536     MachineFunction::iterator I = TrueBBI.BB->getIterator();
537     if (++I == TrueBBI.BB->getParent()->end())
538       return false;
539     TExit = &*I;
540   }
541   return TExit && TExit == FalseBBI.BB;
542 }
543 
544 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
545 /// with their common predecessor) forms a valid diamond shape for ifcvt.
546 bool IfConverter::ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
547                                unsigned &Dups1, unsigned &Dups2) const {
548   Dups1 = Dups2 = 0;
549   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
550       FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
551     return false;
552 
553   MachineBasicBlock *TT = TrueBBI.TrueBB;
554   MachineBasicBlock *FT = FalseBBI.TrueBB;
555 
556   if (!TT && blockAlwaysFallThrough(TrueBBI))
557     TT = getNextBlock(TrueBBI.BB);
558   if (!FT && blockAlwaysFallThrough(FalseBBI))
559     FT = getNextBlock(FalseBBI.BB);
560   if (TT != FT)
561     return false;
562   if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
563     return false;
564   if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
565     return false;
566 
567   // FIXME: Allow true block to have an early exit?
568   if (TrueBBI.FalseBB || FalseBBI.FalseBB ||
569       (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred))
570     return false;
571 
572   // Count duplicate instructions at the beginning of the true and false blocks.
573   MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
574   MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
575   MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
576   MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
577   while (TIB != TIE && FIB != FIE) {
578     // Skip dbg_value instructions. These do not count.
579     if (TIB->isDebugValue()) {
580       while (TIB != TIE && TIB->isDebugValue())
581         ++TIB;
582       if (TIB == TIE)
583         break;
584     }
585     if (FIB->isDebugValue()) {
586       while (FIB != FIE && FIB->isDebugValue())
587         ++FIB;
588       if (FIB == FIE)
589         break;
590     }
591     if (!TIB->isIdenticalTo(*FIB))
592       break;
593     ++Dups1;
594     ++TIB;
595     ++FIB;
596   }
597 
598   // Now, in preparation for counting duplicate instructions at the ends of the
599   // blocks, move the end iterators up past any branch instructions.
600   // If both blocks are returning don't skip the branches, since they will
601   // likely be both identical return instructions. In such cases the return
602   // can be left unpredicated.
603   // Check for already containing all of the block.
604   if (TIB == TIE || FIB == FIE)
605     return true;
606   --TIE;
607   --FIE;
608   if (!TrueBBI.BB->succ_empty() || !FalseBBI.BB->succ_empty()) {
609     while (TIE != TIB && TIE->isBranch())
610       --TIE;
611     while (FIE != FIB && FIE->isBranch())
612       --FIE;
613   }
614 
615   // If Dups1 includes all of a block, then don't count duplicate
616   // instructions at the end of the blocks.
617   if (TIB == TIE || FIB == FIE)
618     return true;
619 
620   // Count duplicate instructions at the ends of the blocks.
621   while (TIE != TIB && FIE != FIB) {
622     // Skip dbg_value instructions. These do not count.
623     if (TIE->isDebugValue()) {
624       while (TIE != TIB && TIE->isDebugValue())
625         --TIE;
626       if (TIE == TIB)
627         break;
628     }
629     if (FIE->isDebugValue()) {
630       while (FIE != FIB && FIE->isDebugValue())
631         --FIE;
632       if (FIE == FIB)
633         break;
634     }
635     if (!TIE->isIdenticalTo(*FIE))
636       break;
637     ++Dups2;
638     --TIE;
639     --FIE;
640   }
641 
642   return true;
643 }
644 
645 /// ScanInstructions - Scan all the instructions in the block to determine if
646 /// the block is predicable. In most cases, that means all the instructions
647 /// in the block are isPredicable(). Also checks if the block contains any
648 /// instruction which can clobber a predicate (e.g. condition code register).
649 /// If so, the block is not predicable unless it's the last instruction.
650 void IfConverter::ScanInstructions(BBInfo &BBI) {
651   if (BBI.IsDone)
652     return;
653 
654   bool AlreadyPredicated = !BBI.Predicate.empty();
655   // First analyze the end of BB branches.
656   BBI.TrueBB = BBI.FalseBB = nullptr;
657   BBI.BrCond.clear();
658   BBI.IsBrAnalyzable =
659     !TII->AnalyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
660   BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
661 
662   if (BBI.BrCond.size()) {
663     // No false branch. This BB must end with a conditional branch and a
664     // fallthrough.
665     if (!BBI.FalseBB)
666       BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
667     if (!BBI.FalseBB) {
668       // Malformed bcc? True and false blocks are the same?
669       BBI.IsUnpredicable = true;
670       return;
671     }
672   }
673 
674   // Then scan all the instructions.
675   BBI.NonPredSize = 0;
676   BBI.ExtraCost = 0;
677   BBI.ExtraCost2 = 0;
678   BBI.ClobbersPred = false;
679   for (auto &MI : *BBI.BB) {
680     if (MI.isDebugValue())
681       continue;
682 
683     // It's unsafe to duplicate convergent instructions in this context, so set
684     // BBI.CannotBeCopied to true if MI is convergent.  To see why, consider the
685     // following CFG, which is subject to our "simple" transformation.
686     //
687     //    BB0     // if (c1) goto BB1; else goto BB2;
688     //   /   \
689     //  BB1   |
690     //   |   BB2  // if (c2) goto TBB; else goto FBB;
691     //   |   / |
692     //   |  /  |
693     //   TBB   |
694     //    |    |
695     //    |   FBB
696     //    |
697     //    exit
698     //
699     // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
700     // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
701     // TBB contains a convergent instruction.  This is safe iff doing so does
702     // not add a control-flow dependency to the convergent instruction -- i.e.,
703     // it's safe iff the set of control flows that leads us to the convergent
704     // instruction does not get smaller after the transformation.
705     //
706     // Originally we executed TBB if c1 || c2.  After the transformation, there
707     // are two copies of TBB's instructions.  We get to the first if c1, and we
708     // get to the second if !c1 && c2.
709     //
710     // There are clearly fewer ways to satisfy the condition "c1" than
711     // "c1 || c2".  Since we've shrunk the set of control flows which lead to
712     // our convergent instruction, the transformation is unsafe.
713     if (MI.isNotDuplicable() || MI.isConvergent())
714       BBI.CannotBeCopied = true;
715 
716     bool isPredicated = TII->isPredicated(MI);
717     bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();
718 
719     // A conditional branch is not predicable, but it may be eliminated.
720     if (isCondBr)
721       continue;
722 
723     if (!isPredicated) {
724       BBI.NonPredSize++;
725       unsigned ExtraPredCost = TII->getPredicationCost(MI);
726       unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
727       if (NumCycles > 1)
728         BBI.ExtraCost += NumCycles-1;
729       BBI.ExtraCost2 += ExtraPredCost;
730     } else if (!AlreadyPredicated) {
731       // FIXME: This instruction is already predicated before the
732       // if-conversion pass. It's probably something like a conditional move.
733       // Mark this block unpredicable for now.
734       BBI.IsUnpredicable = true;
735       return;
736     }
737 
738     if (BBI.ClobbersPred && !isPredicated) {
739       // Predicate modification instruction should end the block (except for
740       // already predicated instructions and end of block branches).
741       // Predicate may have been modified, the subsequent (currently)
742       // unpredicated instructions cannot be correctly predicated.
743       BBI.IsUnpredicable = true;
744       return;
745     }
746 
747     // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
748     // still potentially predicable.
749     std::vector<MachineOperand> PredDefs;
750     if (TII->DefinesPredicate(MI, PredDefs))
751       BBI.ClobbersPred = true;
752 
753     if (!TII->isPredicable(MI)) {
754       BBI.IsUnpredicable = true;
755       return;
756     }
757   }
758 }
759 
760 /// FeasibilityAnalysis - Determine if the block is a suitable candidate to be
761 /// predicated by the specified predicate.
762 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
763                                       SmallVectorImpl<MachineOperand> &Pred,
764                                       bool isTriangle, bool RevBranch) {
765   // If the block is dead or unpredicable, then it cannot be predicated.
766   if (BBI.IsDone || BBI.IsUnpredicable)
767     return false;
768 
769   // If it is already predicated but we couldn't analyze its terminator, the
770   // latter might fallthrough, but we can't determine where to.
771   // Conservatively avoid if-converting again.
772   if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
773     return false;
774 
775   // If it is already predicated, check if the new predicate subsumes
776   // its predicate.
777   if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
778     return false;
779 
780   if (BBI.BrCond.size()) {
781     if (!isTriangle)
782       return false;
783 
784     // Test predicate subsumption.
785     SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
786     SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
787     if (RevBranch) {
788       if (TII->ReverseBranchCondition(Cond))
789         return false;
790     }
791     if (TII->ReverseBranchCondition(RevPred) ||
792         !TII->SubsumesPredicate(Cond, RevPred))
793       return false;
794   }
795 
796   return true;
797 }
798 
799 /// AnalyzeBlock - Analyze the structure of the sub-CFG starting from
800 /// the specified block. Record its successors and whether it looks like an
801 /// if-conversion candidate.
802 void IfConverter::AnalyzeBlock(
803     MachineBasicBlock *MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
804   struct BBState {
805     BBState(MachineBasicBlock *BB) : MBB(BB), SuccsAnalyzed(false) {}
806     MachineBasicBlock *MBB;
807 
808     /// This flag is true if MBB's successors have been analyzed.
809     bool SuccsAnalyzed;
810   };
811 
812   // Push MBB to the stack.
813   SmallVector<BBState, 16> BBStack(1, MBB);
814 
815   while (!BBStack.empty()) {
816     BBState &State = BBStack.back();
817     MachineBasicBlock *BB = State.MBB;
818     BBInfo &BBI = BBAnalysis[BB->getNumber()];
819 
820     if (!State.SuccsAnalyzed) {
821       if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
822         BBStack.pop_back();
823         continue;
824       }
825 
826       BBI.BB = BB;
827       BBI.IsBeingAnalyzed = true;
828 
829       ScanInstructions(BBI);
830 
831       // Unanalyzable or ends with fallthrough or unconditional branch, or if is
832       // not considered for ifcvt anymore.
833       if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
834         BBI.IsBeingAnalyzed = false;
835         BBI.IsAnalyzed = true;
836         BBStack.pop_back();
837         continue;
838       }
839 
840       // Do not ifcvt if either path is a back edge to the entry block.
841       if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
842         BBI.IsBeingAnalyzed = false;
843         BBI.IsAnalyzed = true;
844         BBStack.pop_back();
845         continue;
846       }
847 
848       // Do not ifcvt if true and false fallthrough blocks are the same.
849       if (!BBI.FalseBB) {
850         BBI.IsBeingAnalyzed = false;
851         BBI.IsAnalyzed = true;
852         BBStack.pop_back();
853         continue;
854       }
855 
856       // Push the False and True blocks to the stack.
857       State.SuccsAnalyzed = true;
858       BBStack.push_back(BBI.FalseBB);
859       BBStack.push_back(BBI.TrueBB);
860       continue;
861     }
862 
863     BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
864     BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
865 
866     if (TrueBBI.IsDone && FalseBBI.IsDone) {
867       BBI.IsBeingAnalyzed = false;
868       BBI.IsAnalyzed = true;
869       BBStack.pop_back();
870       continue;
871     }
872 
873     SmallVector<MachineOperand, 4>
874         RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
875     bool CanRevCond = !TII->ReverseBranchCondition(RevCond);
876 
877     unsigned Dups = 0;
878     unsigned Dups2 = 0;
879     bool TNeedSub = !TrueBBI.Predicate.empty();
880     bool FNeedSub = !FalseBBI.Predicate.empty();
881     bool Enqueued = false;
882 
883     BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
884 
885     if (CanRevCond && ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2) &&
886         MeetIfcvtSizeLimit(*TrueBBI.BB, (TrueBBI.NonPredSize - (Dups + Dups2) +
887                                          TrueBBI.ExtraCost), TrueBBI.ExtraCost2,
888                            *FalseBBI.BB, (FalseBBI.NonPredSize - (Dups + Dups2) +
889                                         FalseBBI.ExtraCost),FalseBBI.ExtraCost2,
890                          Prediction) &&
891         FeasibilityAnalysis(TrueBBI, BBI.BrCond) &&
892         FeasibilityAnalysis(FalseBBI, RevCond)) {
893       // Diamond:
894       //   EBB
895       //   / \_
896       //  |   |
897       // TBB FBB
898       //   \ /
899       //  TailBB
900       // Note TailBB can be empty.
901       Tokens.push_back(llvm::make_unique<IfcvtToken>(
902           BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2));
903       Enqueued = true;
904     }
905 
906     if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
907         MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
908                            TrueBBI.ExtraCost2, Prediction) &&
909         FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
910       // Triangle:
911       //   EBB
912       //   | \_
913       //   |  |
914       //   | TBB
915       //   |  /
916       //   FBB
917       Tokens.push_back(
918           llvm::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
919       Enqueued = true;
920     }
921 
922     if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
923         MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
924                            TrueBBI.ExtraCost2, Prediction) &&
925         FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
926       Tokens.push_back(
927           llvm::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
928       Enqueued = true;
929     }
930 
931     if (ValidSimple(TrueBBI, Dups, Prediction) &&
932         MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
933                            TrueBBI.ExtraCost2, Prediction) &&
934         FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
935       // Simple (split, no rejoin):
936       //   EBB
937       //   | \_
938       //   |  |
939       //   | TBB---> exit
940       //   |
941       //   FBB
942       Tokens.push_back(
943           llvm::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
944       Enqueued = true;
945     }
946 
947     if (CanRevCond) {
948       // Try the other path...
949       if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
950                         Prediction.getCompl()) &&
951           MeetIfcvtSizeLimit(*FalseBBI.BB,
952                              FalseBBI.NonPredSize + FalseBBI.ExtraCost,
953                              FalseBBI.ExtraCost2, Prediction.getCompl()) &&
954           FeasibilityAnalysis(FalseBBI, RevCond, true)) {
955         Tokens.push_back(llvm::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
956                                                        FNeedSub, Dups));
957         Enqueued = true;
958       }
959 
960       if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
961                         Prediction.getCompl()) &&
962           MeetIfcvtSizeLimit(*FalseBBI.BB,
963                              FalseBBI.NonPredSize + FalseBBI.ExtraCost,
964                            FalseBBI.ExtraCost2, Prediction.getCompl()) &&
965         FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
966         Tokens.push_back(
967             llvm::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
968         Enqueued = true;
969       }
970 
971       if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
972           MeetIfcvtSizeLimit(*FalseBBI.BB,
973                              FalseBBI.NonPredSize + FalseBBI.ExtraCost,
974                              FalseBBI.ExtraCost2, Prediction.getCompl()) &&
975           FeasibilityAnalysis(FalseBBI, RevCond)) {
976         Tokens.push_back(
977             llvm::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
978         Enqueued = true;
979       }
980     }
981 
982     BBI.IsEnqueued = Enqueued;
983     BBI.IsBeingAnalyzed = false;
984     BBI.IsAnalyzed = true;
985     BBStack.pop_back();
986   }
987 }
988 
989 /// AnalyzeBlocks - Analyze all blocks and find entries for all if-conversion
990 /// candidates.
991 void IfConverter::AnalyzeBlocks(
992     MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
993   for (auto &BB : MF)
994     AnalyzeBlock(&BB, Tokens);
995 
996   // Sort to favor more complex ifcvt scheme.
997   std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp);
998 }
999 
1000 /// canFallThroughTo - Returns true either if ToBB is the next block after BB or
1001 /// that all the intervening blocks are empty (given BB can fall through to its
1002 /// next block).
1003 static bool canFallThroughTo(MachineBasicBlock *BB, MachineBasicBlock *ToBB) {
1004   MachineFunction::iterator PI = BB->getIterator();
1005   MachineFunction::iterator I = std::next(PI);
1006   MachineFunction::iterator TI = ToBB->getIterator();
1007   MachineFunction::iterator E = BB->getParent()->end();
1008   while (I != TI) {
1009     // Check isSuccessor to avoid case where the next block is empty, but
1010     // it's not a successor.
1011     if (I == E || !I->empty() || !PI->isSuccessor(&*I))
1012       return false;
1013     PI = I++;
1014   }
1015   return true;
1016 }
1017 
1018 /// InvalidatePreds - Invalidate predecessor BB info so it would be re-analyzed
1019 /// to determine if it can be if-converted. If predecessor is already enqueued,
1020 /// dequeue it!
1021 void IfConverter::InvalidatePreds(MachineBasicBlock *BB) {
1022   for (const auto &Predecessor : BB->predecessors()) {
1023     BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
1024     if (PBBI.IsDone || PBBI.BB == BB)
1025       continue;
1026     PBBI.IsAnalyzed = false;
1027     PBBI.IsEnqueued = false;
1028   }
1029 }
1030 
1031 /// InsertUncondBranch - Inserts an unconditional branch from BB to ToBB.
1032 ///
1033 static void InsertUncondBranch(MachineBasicBlock *BB, MachineBasicBlock *ToBB,
1034                                const TargetInstrInfo *TII) {
1035   DebugLoc dl;  // FIXME: this is nowhere
1036   SmallVector<MachineOperand, 0> NoCond;
1037   TII->InsertBranch(*BB, ToBB, nullptr, NoCond, dl);
1038 }
1039 
1040 /// RemoveExtraEdges - Remove true / false edges if either / both are no longer
1041 /// successors.
1042 void IfConverter::RemoveExtraEdges(BBInfo &BBI) {
1043   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1044   SmallVector<MachineOperand, 4> Cond;
1045   if (!TII->AnalyzeBranch(*BBI.BB, TBB, FBB, Cond))
1046     BBI.BB->CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
1047 }
1048 
1049 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
1050 /// values defined in MI which are not live/used by MI.
1051 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
1052   SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Clobbers;
1053   Redefs.stepForward(MI, Clobbers);
1054 
1055   // Now add the implicit uses for each of the clobbered values.
1056   for (auto Reg : Clobbers) {
1057     // FIXME: Const cast here is nasty, but better than making StepForward
1058     // take a mutable instruction instead of const.
1059     MachineOperand &Op = const_cast<MachineOperand&>(*Reg.second);
1060     MachineInstr *OpMI = Op.getParent();
1061     MachineInstrBuilder MIB(*OpMI->getParent()->getParent(), OpMI);
1062     if (Op.isRegMask()) {
1063       // First handle regmasks.  They clobber any entries in the mask which
1064       // means that we need a def for those registers.
1065       MIB.addReg(Reg.first, RegState::Implicit | RegState::Undef);
1066 
1067       // We also need to add an implicit def of this register for the later
1068       // use to read from.
1069       // For the register allocator to have allocated a register clobbered
1070       // by the call which is used later, it must be the case that
1071       // the call doesn't return.
1072       MIB.addReg(Reg.first, RegState::Implicit | RegState::Define);
1073       continue;
1074     }
1075     assert(Op.isReg() && "Register operand required");
1076     if (Op.isDead()) {
1077       // If we found a dead def, but it needs to be live, then remove the dead
1078       // flag.
1079       if (Redefs.contains(Op.getReg()))
1080         Op.setIsDead(false);
1081     }
1082     MIB.addReg(Reg.first, RegState::Implicit | RegState::Undef);
1083   }
1084 }
1085 
1086 /**
1087  * Remove kill flags from operands with a registers in the @p DontKill set.
1088  */
1089 static void RemoveKills(MachineInstr &MI, const LivePhysRegs &DontKill) {
1090   for (MIBundleOperands O(MI); O.isValid(); ++O) {
1091     if (!O->isReg() || !O->isKill())
1092       continue;
1093     if (DontKill.contains(O->getReg()))
1094       O->setIsKill(false);
1095   }
1096 }
1097 
1098 /**
1099  * Walks a range of machine instructions and removes kill flags for registers
1100  * in the @p DontKill set.
1101  */
1102 static void RemoveKills(MachineBasicBlock::iterator I,
1103                         MachineBasicBlock::iterator E,
1104                         const LivePhysRegs &DontKill,
1105                         const MCRegisterInfo &MCRI) {
1106   for ( ; I != E; ++I)
1107     RemoveKills(*I, DontKill);
1108 }
1109 
1110 /// IfConvertSimple - If convert a simple (split, no rejoin) sub-CFG.
1111 ///
1112 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
1113   BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
1114   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1115   BBInfo *CvtBBI = &TrueBBI;
1116   BBInfo *NextBBI = &FalseBBI;
1117 
1118   SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1119   if (Kind == ICSimpleFalse)
1120     std::swap(CvtBBI, NextBBI);
1121 
1122   if (CvtBBI->IsDone ||
1123       (CvtBBI->CannotBeCopied && CvtBBI->BB->pred_size() > 1)) {
1124     // Something has changed. It's no longer safe to predicate this block.
1125     BBI.IsAnalyzed = false;
1126     CvtBBI->IsAnalyzed = false;
1127     return false;
1128   }
1129 
1130   if (CvtBBI->BB->hasAddressTaken())
1131     // Conservatively abort if-conversion if BB's address is taken.
1132     return false;
1133 
1134   if (Kind == ICSimpleFalse)
1135     if (TII->ReverseBranchCondition(Cond))
1136       llvm_unreachable("Unable to reverse branch condition!");
1137 
1138   // Initialize liveins to the first BB. These are potentiall redefined by
1139   // predicated instructions.
1140   Redefs.init(TRI);
1141   Redefs.addLiveIns(*CvtBBI->BB);
1142   Redefs.addLiveIns(*NextBBI->BB);
1143 
1144   // Compute a set of registers which must not be killed by instructions in
1145   // BB1: This is everything live-in to BB2.
1146   DontKill.init(TRI);
1147   DontKill.addLiveIns(*NextBBI->BB);
1148 
1149   if (CvtBBI->BB->pred_size() > 1) {
1150     BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
1151     // Copy instructions in the true block, predicate them, and add them to
1152     // the entry block.
1153     CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
1154 
1155     // RemoveExtraEdges won't work if the block has an unanalyzable branch, so
1156     // explicitly remove CvtBBI as a successor.
1157     BBI.BB->removeSuccessor(CvtBBI->BB, true);
1158   } else {
1159     RemoveKills(CvtBBI->BB->begin(), CvtBBI->BB->end(), DontKill, *TRI);
1160     PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond);
1161 
1162     // Merge converted block into entry block.
1163     BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
1164     MergeBlocks(BBI, *CvtBBI);
1165   }
1166 
1167   bool IterIfcvt = true;
1168   if (!canFallThroughTo(BBI.BB, NextBBI->BB)) {
1169     InsertUncondBranch(BBI.BB, NextBBI->BB, TII);
1170     BBI.HasFallThrough = false;
1171     // Now ifcvt'd block will look like this:
1172     // BB:
1173     // ...
1174     // t, f = cmp
1175     // if t op
1176     // b BBf
1177     //
1178     // We cannot further ifcvt this block because the unconditional branch
1179     // will have to be predicated on the new condition, that will not be
1180     // available if cmp executes.
1181     IterIfcvt = false;
1182   }
1183 
1184   RemoveExtraEdges(BBI);
1185 
1186   // Update block info. BB can be iteratively if-converted.
1187   if (!IterIfcvt)
1188     BBI.IsDone = true;
1189   InvalidatePreds(BBI.BB);
1190   CvtBBI->IsDone = true;
1191 
1192   // FIXME: Must maintain LiveIns.
1193   return true;
1194 }
1195 
1196 /// IfConvertTriangle - If convert a triangle sub-CFG.
1197 ///
1198 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
1199   BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1200   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1201   BBInfo *CvtBBI = &TrueBBI;
1202   BBInfo *NextBBI = &FalseBBI;
1203   DebugLoc dl;  // FIXME: this is nowhere
1204 
1205   SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1206   if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1207     std::swap(CvtBBI, NextBBI);
1208 
1209   if (CvtBBI->IsDone ||
1210       (CvtBBI->CannotBeCopied && CvtBBI->BB->pred_size() > 1)) {
1211     // Something has changed. It's no longer safe to predicate this block.
1212     BBI.IsAnalyzed = false;
1213     CvtBBI->IsAnalyzed = false;
1214     return false;
1215   }
1216 
1217   if (CvtBBI->BB->hasAddressTaken())
1218     // Conservatively abort if-conversion if BB's address is taken.
1219     return false;
1220 
1221   if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1222     if (TII->ReverseBranchCondition(Cond))
1223       llvm_unreachable("Unable to reverse branch condition!");
1224 
1225   if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
1226     if (ReverseBranchCondition(*CvtBBI)) {
1227       // BB has been changed, modify its predecessors (except for this
1228       // one) so they don't get ifcvt'ed based on bad intel.
1229       for (MachineBasicBlock::pred_iterator PI = CvtBBI->BB->pred_begin(),
1230              E = CvtBBI->BB->pred_end(); PI != E; ++PI) {
1231         MachineBasicBlock *PBB = *PI;
1232         if (PBB == BBI.BB)
1233           continue;
1234         BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
1235         if (PBBI.IsEnqueued) {
1236           PBBI.IsAnalyzed = false;
1237           PBBI.IsEnqueued = false;
1238         }
1239       }
1240     }
1241   }
1242 
1243   // Initialize liveins to the first BB. These are potentially redefined by
1244   // predicated instructions.
1245   Redefs.init(TRI);
1246   Redefs.addLiveIns(*CvtBBI->BB);
1247   Redefs.addLiveIns(*NextBBI->BB);
1248 
1249   DontKill.clear();
1250 
1251   bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
1252   BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
1253 
1254   if (HasEarlyExit) {
1255     // Get probabilities before modifying CvtBBI->BB and BBI.BB.
1256     CvtNext = MBPI->getEdgeProbability(CvtBBI->BB, NextBBI->BB);
1257     CvtFalse = MBPI->getEdgeProbability(CvtBBI->BB, CvtBBI->FalseBB);
1258     BBNext = MBPI->getEdgeProbability(BBI.BB, NextBBI->BB);
1259     BBCvt = MBPI->getEdgeProbability(BBI.BB, CvtBBI->BB);
1260   }
1261 
1262   if (CvtBBI->BB->pred_size() > 1) {
1263     BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
1264     // Copy instructions in the true block, predicate them, and add them to
1265     // the entry block.
1266     CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
1267 
1268     // RemoveExtraEdges won't work if the block has an unanalyzable branch, so
1269     // explicitly remove CvtBBI as a successor.
1270     BBI.BB->removeSuccessor(CvtBBI->BB, true);
1271   } else {
1272     // Predicate the 'true' block after removing its branch.
1273     CvtBBI->NonPredSize -= TII->RemoveBranch(*CvtBBI->BB);
1274     PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond);
1275 
1276     // Now merge the entry of the triangle with the true block.
1277     BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
1278     MergeBlocks(BBI, *CvtBBI, false);
1279   }
1280 
1281   // If 'true' block has a 'false' successor, add an exit branch to it.
1282   if (HasEarlyExit) {
1283     SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
1284                                            CvtBBI->BrCond.end());
1285     if (TII->ReverseBranchCondition(RevCond))
1286       llvm_unreachable("Unable to reverse branch condition!");
1287 
1288     // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
1289     // NewNext = New_Prob(BBI.BB, NextBBI->BB) =
1290     //   Prob(BBI.BB, NextBBI->BB) +
1291     //   Prob(BBI.BB, CvtBBI->BB) * Prob(CvtBBI->BB, NextBBI->BB)
1292     // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
1293     //   Prob(BBI.BB, CvtBBI->BB) * Prob(CvtBBI->BB, CvtBBI->FalseBB)
1294     auto NewTrueBB = getNextBlock(BBI.BB);
1295     auto NewNext = BBNext + BBCvt * CvtNext;
1296     auto NewTrueBBIter =
1297         std::find(BBI.BB->succ_begin(), BBI.BB->succ_end(), NewTrueBB);
1298     if (NewTrueBBIter != BBI.BB->succ_end())
1299       BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
1300 
1301     auto NewFalse = BBCvt * CvtFalse;
1302     TII->InsertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
1303     BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
1304   }
1305 
1306   // Merge in the 'false' block if the 'false' block has no other
1307   // predecessors. Otherwise, add an unconditional branch to 'false'.
1308   bool FalseBBDead = false;
1309   bool IterIfcvt = true;
1310   bool isFallThrough = canFallThroughTo(BBI.BB, NextBBI->BB);
1311   if (!isFallThrough) {
1312     // Only merge them if the true block does not fallthrough to the false
1313     // block. By not merging them, we make it possible to iteratively
1314     // ifcvt the blocks.
1315     if (!HasEarlyExit &&
1316         NextBBI->BB->pred_size() == 1 && !NextBBI->HasFallThrough &&
1317         !NextBBI->BB->hasAddressTaken()) {
1318       MergeBlocks(BBI, *NextBBI);
1319       FalseBBDead = true;
1320     } else {
1321       InsertUncondBranch(BBI.BB, NextBBI->BB, TII);
1322       BBI.HasFallThrough = false;
1323     }
1324     // Mixed predicated and unpredicated code. This cannot be iteratively
1325     // predicated.
1326     IterIfcvt = false;
1327   }
1328 
1329   RemoveExtraEdges(BBI);
1330 
1331   // Update block info. BB can be iteratively if-converted.
1332   if (!IterIfcvt)
1333     BBI.IsDone = true;
1334   InvalidatePreds(BBI.BB);
1335   CvtBBI->IsDone = true;
1336   if (FalseBBDead)
1337     NextBBI->IsDone = true;
1338 
1339   // FIXME: Must maintain LiveIns.
1340   return true;
1341 }
1342 
1343 /// IfConvertDiamond - If convert a diamond sub-CFG.
1344 ///
1345 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
1346                                    unsigned NumDups1, unsigned NumDups2) {
1347   BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
1348   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1349   MachineBasicBlock *TailBB = TrueBBI.TrueBB;
1350   // True block must fall through or end with an unanalyzable terminator.
1351   if (!TailBB) {
1352     if (blockAlwaysFallThrough(TrueBBI))
1353       TailBB = FalseBBI.TrueBB;
1354     assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
1355   }
1356 
1357   if (TrueBBI.IsDone || FalseBBI.IsDone ||
1358       TrueBBI.BB->pred_size() > 1 ||
1359       FalseBBI.BB->pred_size() > 1) {
1360     // Something has changed. It's no longer safe to predicate these blocks.
1361     BBI.IsAnalyzed = false;
1362     TrueBBI.IsAnalyzed = false;
1363     FalseBBI.IsAnalyzed = false;
1364     return false;
1365   }
1366 
1367   if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
1368     // Conservatively abort if-conversion if either BB has its address taken.
1369     return false;
1370 
1371   // Put the predicated instructions from the 'true' block before the
1372   // instructions from the 'false' block, unless the true block would clobber
1373   // the predicate, in which case, do the opposite.
1374   BBInfo *BBI1 = &TrueBBI;
1375   BBInfo *BBI2 = &FalseBBI;
1376   SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1377   if (TII->ReverseBranchCondition(RevCond))
1378     llvm_unreachable("Unable to reverse branch condition!");
1379   SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
1380   SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
1381 
1382   // Figure out the more profitable ordering.
1383   bool DoSwap = false;
1384   if (TrueBBI.ClobbersPred && !FalseBBI.ClobbersPred)
1385     DoSwap = true;
1386   else if (TrueBBI.ClobbersPred == FalseBBI.ClobbersPred) {
1387     if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
1388       DoSwap = true;
1389   }
1390   if (DoSwap) {
1391     std::swap(BBI1, BBI2);
1392     std::swap(Cond1, Cond2);
1393   }
1394 
1395   // Remove the conditional branch from entry to the blocks.
1396   BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
1397 
1398   // Initialize liveins to the first BB. These are potentially redefined by
1399   // predicated instructions.
1400   Redefs.init(TRI);
1401   Redefs.addLiveIns(*BBI1->BB);
1402 
1403   // Remove the duplicated instructions at the beginnings of both paths.
1404   // Skip dbg_value instructions
1405   MachineBasicBlock::iterator DI1 = BBI1->BB->getFirstNonDebugInstr();
1406   MachineBasicBlock::iterator DI2 = BBI2->BB->getFirstNonDebugInstr();
1407   BBI1->NonPredSize -= NumDups1;
1408   BBI2->NonPredSize -= NumDups1;
1409 
1410   // Skip past the dups on each side separately since there may be
1411   // differing dbg_value entries.
1412   for (unsigned i = 0; i < NumDups1; ++DI1) {
1413     if (!DI1->isDebugValue())
1414       ++i;
1415   }
1416   while (NumDups1 != 0) {
1417     ++DI2;
1418     if (!DI2->isDebugValue())
1419       --NumDups1;
1420   }
1421 
1422   // Compute a set of registers which must not be killed by instructions in BB1:
1423   // This is everything used+live in BB2 after the duplicated instructions. We
1424   // can compute this set by simulating liveness backwards from the end of BB2.
1425   DontKill.init(TRI);
1426   for (MachineBasicBlock::reverse_iterator I = BBI2->BB->rbegin(),
1427        E = MachineBasicBlock::reverse_iterator(DI2); I != E; ++I) {
1428     DontKill.stepBackward(*I);
1429   }
1430 
1431   for (MachineBasicBlock::const_iterator I = BBI1->BB->begin(), E = DI1; I != E;
1432        ++I) {
1433     SmallVector<std::pair<unsigned, const MachineOperand*>, 4> IgnoredClobbers;
1434     Redefs.stepForward(*I, IgnoredClobbers);
1435   }
1436   BBI.BB->splice(BBI.BB->end(), BBI1->BB, BBI1->BB->begin(), DI1);
1437   BBI2->BB->erase(BBI2->BB->begin(), DI2);
1438 
1439   // Remove branch from the 'true' block, unless it was not analyzable.
1440   // Non-analyzable branches need to be preserved, since in such cases,
1441   // the CFG structure is not an actual diamond (the join block may not
1442   // be present).
1443   if (BBI1->IsBrAnalyzable)
1444     BBI1->NonPredSize -= TII->RemoveBranch(*BBI1->BB);
1445   // Remove duplicated instructions.
1446   DI1 = BBI1->BB->end();
1447   for (unsigned i = 0; i != NumDups2; ) {
1448     // NumDups2 only counted non-dbg_value instructions, so this won't
1449     // run off the head of the list.
1450     assert (DI1 != BBI1->BB->begin());
1451     --DI1;
1452     // skip dbg_value instructions
1453     if (!DI1->isDebugValue())
1454       ++i;
1455   }
1456   BBI1->BB->erase(DI1, BBI1->BB->end());
1457 
1458   // Kill flags in the true block for registers living into the false block
1459   // must be removed.
1460   RemoveKills(BBI1->BB->begin(), BBI1->BB->end(), DontKill, *TRI);
1461 
1462   // Remove 'false' block branch (unless it was not analyzable), and find
1463   // the last instruction to predicate.
1464   if (BBI2->IsBrAnalyzable)
1465     BBI2->NonPredSize -= TII->RemoveBranch(*BBI2->BB);
1466   DI2 = BBI2->BB->end();
1467   while (NumDups2 != 0) {
1468     // NumDups2 only counted non-dbg_value instructions, so this won't
1469     // run off the head of the list.
1470     assert (DI2 != BBI2->BB->begin());
1471     --DI2;
1472     // skip dbg_value instructions
1473     if (!DI2->isDebugValue())
1474       --NumDups2;
1475   }
1476 
1477   // Remember which registers would later be defined by the false block.
1478   // This allows us not to predicate instructions in the true block that would
1479   // later be re-defined. That is, rather than
1480   //   subeq  r0, r1, #1
1481   //   addne  r0, r1, #1
1482   // generate:
1483   //   sub    r0, r1, #1
1484   //   addne  r0, r1, #1
1485   SmallSet<unsigned, 4> RedefsByFalse;
1486   SmallSet<unsigned, 4> ExtUses;
1487   if (TII->isProfitableToUnpredicate(*BBI1->BB, *BBI2->BB)) {
1488     for (MachineBasicBlock::iterator FI = BBI2->BB->begin(); FI != DI2; ++FI) {
1489       if (FI->isDebugValue())
1490         continue;
1491       SmallVector<unsigned, 4> Defs;
1492       for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) {
1493         const MachineOperand &MO = FI->getOperand(i);
1494         if (!MO.isReg())
1495           continue;
1496         unsigned Reg = MO.getReg();
1497         if (!Reg)
1498           continue;
1499         if (MO.isDef()) {
1500           Defs.push_back(Reg);
1501         } else if (!RedefsByFalse.count(Reg)) {
1502           // These are defined before ctrl flow reach the 'false' instructions.
1503           // They cannot be modified by the 'true' instructions.
1504           for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1505                SubRegs.isValid(); ++SubRegs)
1506             ExtUses.insert(*SubRegs);
1507         }
1508       }
1509 
1510       for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1511         unsigned Reg = Defs[i];
1512         if (!ExtUses.count(Reg)) {
1513           for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1514                SubRegs.isValid(); ++SubRegs)
1515             RedefsByFalse.insert(*SubRegs);
1516         }
1517       }
1518     }
1519   }
1520 
1521   // Predicate the 'true' block.
1522   PredicateBlock(*BBI1, BBI1->BB->end(), *Cond1, &RedefsByFalse);
1523 
1524   // After predicating BBI1, if there is a predicated terminator in BBI1 and
1525   // a non-predicated in BBI2, then we don't want to predicate the one from
1526   // BBI2. The reason is that if we merged these blocks, we would end up with
1527   // two predicated terminators in the same block.
1528   if (!BBI2->BB->empty() && (DI2 == BBI2->BB->end())) {
1529     MachineBasicBlock::iterator BBI1T = BBI1->BB->getFirstTerminator();
1530     MachineBasicBlock::iterator BBI2T = BBI2->BB->getFirstTerminator();
1531     if (BBI1T != BBI1->BB->end() && TII->isPredicated(*BBI1T) &&
1532         BBI2T != BBI2->BB->end() && !TII->isPredicated(*BBI2T))
1533       --DI2;
1534   }
1535 
1536   // Predicate the 'false' block.
1537   PredicateBlock(*BBI2, DI2, *Cond2);
1538 
1539   // Merge the true block into the entry of the diamond.
1540   MergeBlocks(BBI, *BBI1, TailBB == nullptr);
1541   MergeBlocks(BBI, *BBI2, TailBB == nullptr);
1542 
1543   // If the if-converted block falls through or unconditionally branches into
1544   // the tail block, and the tail block does not have other predecessors, then
1545   // fold the tail block in as well. Otherwise, unless it falls through to the
1546   // tail, add a unconditional branch to it.
1547   if (TailBB) {
1548     BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
1549     bool CanMergeTail = !TailBBI.HasFallThrough &&
1550       !TailBBI.BB->hasAddressTaken();
1551     // The if-converted block can still have a predicated terminator
1552     // (e.g. a predicated return). If that is the case, we cannot merge
1553     // it with the tail block.
1554     MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
1555     if (TI != BBI.BB->end() && TII->isPredicated(*TI))
1556       CanMergeTail = false;
1557     // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
1558     // check if there are any other predecessors besides those.
1559     unsigned NumPreds = TailBB->pred_size();
1560     if (NumPreds > 1)
1561       CanMergeTail = false;
1562     else if (NumPreds == 1 && CanMergeTail) {
1563       MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
1564       if (*PI != BBI1->BB && *PI != BBI2->BB)
1565         CanMergeTail = false;
1566     }
1567     if (CanMergeTail) {
1568       MergeBlocks(BBI, TailBBI);
1569       TailBBI.IsDone = true;
1570     } else {
1571       BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
1572       InsertUncondBranch(BBI.BB, TailBB, TII);
1573       BBI.HasFallThrough = false;
1574     }
1575   }
1576 
1577   // RemoveExtraEdges won't work if the block has an unanalyzable branch,
1578   // which can happen here if TailBB is unanalyzable and is merged, so
1579   // explicitly remove BBI1 and BBI2 as successors.
1580   BBI.BB->removeSuccessor(BBI1->BB);
1581   BBI.BB->removeSuccessor(BBI2->BB, true);
1582   RemoveExtraEdges(BBI);
1583 
1584   // Update block info.
1585   BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
1586   InvalidatePreds(BBI.BB);
1587 
1588   // FIXME: Must maintain LiveIns.
1589   return true;
1590 }
1591 
1592 static bool MaySpeculate(const MachineInstr *MI,
1593                          SmallSet<unsigned, 4> &LaterRedefs) {
1594   bool SawStore = true;
1595   if (!MI->isSafeToMove(nullptr, SawStore))
1596     return false;
1597 
1598   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1599     const MachineOperand &MO = MI->getOperand(i);
1600     if (!MO.isReg())
1601       continue;
1602     unsigned Reg = MO.getReg();
1603     if (!Reg)
1604       continue;
1605     if (MO.isDef() && !LaterRedefs.count(Reg))
1606       return false;
1607   }
1608 
1609   return true;
1610 }
1611 
1612 /// PredicateBlock - Predicate instructions from the start of the block to the
1613 /// specified end with the specified condition.
1614 void IfConverter::PredicateBlock(BBInfo &BBI,
1615                                  MachineBasicBlock::iterator E,
1616                                  SmallVectorImpl<MachineOperand> &Cond,
1617                                  SmallSet<unsigned, 4> *LaterRedefs) {
1618   bool AnyUnpred = false;
1619   bool MaySpec = LaterRedefs != nullptr;
1620   for (MachineBasicBlock::iterator I = BBI.BB->begin(); I != E; ++I) {
1621     if (I->isDebugValue() || TII->isPredicated(*I))
1622       continue;
1623     // It may be possible not to predicate an instruction if it's the 'true'
1624     // side of a diamond and the 'false' side may re-define the instruction's
1625     // defs.
1626     if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
1627       AnyUnpred = true;
1628       continue;
1629     }
1630     // If any instruction is predicated, then every instruction after it must
1631     // be predicated.
1632     MaySpec = false;
1633     if (!TII->PredicateInstruction(*I, Cond)) {
1634 #ifndef NDEBUG
1635       dbgs() << "Unable to predicate " << *I << "!\n";
1636 #endif
1637       llvm_unreachable(nullptr);
1638     }
1639 
1640     // If the predicated instruction now redefines a register as the result of
1641     // if-conversion, add an implicit kill.
1642     UpdatePredRedefs(*I, Redefs);
1643   }
1644 
1645   BBI.Predicate.append(Cond.begin(), Cond.end());
1646 
1647   BBI.IsAnalyzed = false;
1648   BBI.NonPredSize = 0;
1649 
1650   ++NumIfConvBBs;
1651   if (AnyUnpred)
1652     ++NumUnpred;
1653 }
1654 
1655 /// CopyAndPredicateBlock - Copy and predicate instructions from source BB to
1656 /// the destination block. Skip end of block branches if IgnoreBr is true.
1657 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
1658                                         SmallVectorImpl<MachineOperand> &Cond,
1659                                         bool IgnoreBr) {
1660   MachineFunction &MF = *ToBBI.BB->getParent();
1661 
1662   for (auto &I : *FromBBI.BB) {
1663     // Do not copy the end of the block branches.
1664     if (IgnoreBr && I.isBranch())
1665       break;
1666 
1667     MachineInstr *MI = MF.CloneMachineInstr(&I);
1668     ToBBI.BB->insert(ToBBI.BB->end(), MI);
1669     ToBBI.NonPredSize++;
1670     unsigned ExtraPredCost = TII->getPredicationCost(I);
1671     unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
1672     if (NumCycles > 1)
1673       ToBBI.ExtraCost += NumCycles-1;
1674     ToBBI.ExtraCost2 += ExtraPredCost;
1675 
1676     if (!TII->isPredicated(I) && !MI->isDebugValue()) {
1677       if (!TII->PredicateInstruction(*MI, Cond)) {
1678 #ifndef NDEBUG
1679         dbgs() << "Unable to predicate " << I << "!\n";
1680 #endif
1681         llvm_unreachable(nullptr);
1682       }
1683     }
1684 
1685     // If the predicated instruction now redefines a register as the result of
1686     // if-conversion, add an implicit kill.
1687     UpdatePredRedefs(*MI, Redefs);
1688 
1689     // Some kill flags may not be correct anymore.
1690     if (!DontKill.empty())
1691       RemoveKills(*MI, DontKill);
1692   }
1693 
1694   if (!IgnoreBr) {
1695     std::vector<MachineBasicBlock *> Succs(FromBBI.BB->succ_begin(),
1696                                            FromBBI.BB->succ_end());
1697     MachineBasicBlock *NBB = getNextBlock(FromBBI.BB);
1698     MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
1699 
1700     for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1701       MachineBasicBlock *Succ = Succs[i];
1702       // Fallthrough edge can't be transferred.
1703       if (Succ == FallThrough)
1704         continue;
1705       ToBBI.BB->addSuccessor(Succ);
1706     }
1707   }
1708 
1709   ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
1710   ToBBI.Predicate.append(Cond.begin(), Cond.end());
1711 
1712   ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
1713   ToBBI.IsAnalyzed = false;
1714 
1715   ++NumDupBBs;
1716 }
1717 
1718 /// MergeBlocks - Move all instructions from FromBB to the end of ToBB.
1719 /// This will leave FromBB as an empty block, so remove all of its
1720 /// successor edges except for the fall-through edge.  If AddEdges is true,
1721 /// i.e., when FromBBI's branch is being moved, add those successor edges to
1722 /// ToBBI.
1723 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
1724   assert(!FromBBI.BB->hasAddressTaken() &&
1725          "Removing a BB whose address is taken!");
1726 
1727   // In case FromBBI.BB contains terminators (e.g. return instruction),
1728   // first move the non-terminator instructions, then the terminators.
1729   MachineBasicBlock::iterator FromTI = FromBBI.BB->getFirstTerminator();
1730   MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
1731   ToBBI.BB->splice(ToTI, FromBBI.BB, FromBBI.BB->begin(), FromTI);
1732 
1733   // If FromBB has non-predicated terminator we should copy it at the end.
1734   if (FromTI != FromBBI.BB->end() && !TII->isPredicated(*FromTI))
1735     ToTI = ToBBI.BB->end();
1736   ToBBI.BB->splice(ToTI, FromBBI.BB, FromTI, FromBBI.BB->end());
1737 
1738   // Force normalizing the successors' probabilities of ToBBI.BB to convert all
1739   // unknown probabilities into known ones.
1740   // FIXME: This usage is too tricky and in the future we would like to
1741   // eliminate all unknown probabilities in MBB.
1742   ToBBI.BB->normalizeSuccProbs();
1743 
1744   SmallVector<MachineBasicBlock *, 4> FromSuccs(FromBBI.BB->succ_begin(),
1745                                                 FromBBI.BB->succ_end());
1746   MachineBasicBlock *NBB = getNextBlock(FromBBI.BB);
1747   MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
1748   // The edge probability from ToBBI.BB to FromBBI.BB, which is only needed when
1749   // AddEdges is true and FromBBI.BB is a successor of ToBBI.BB.
1750   auto To2FromProb = BranchProbability::getZero();
1751   if (AddEdges && ToBBI.BB->isSuccessor(FromBBI.BB)) {
1752     To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, FromBBI.BB);
1753     // Set the edge probability from ToBBI.BB to FromBBI.BB to zero to avoid the
1754     // edge probability being merged to other edges when this edge is removed
1755     // later.
1756     ToBBI.BB->setSuccProbability(
1757         std::find(ToBBI.BB->succ_begin(), ToBBI.BB->succ_end(), FromBBI.BB),
1758         BranchProbability::getZero());
1759   }
1760 
1761   for (unsigned i = 0, e = FromSuccs.size(); i != e; ++i) {
1762     MachineBasicBlock *Succ = FromSuccs[i];
1763     // Fallthrough edge can't be transferred.
1764     if (Succ == FallThrough)
1765       continue;
1766 
1767     auto NewProb = BranchProbability::getZero();
1768     if (AddEdges) {
1769       // Calculate the edge probability for the edge from ToBBI.BB to Succ,
1770       // which is a portion of the edge probability from FromBBI.BB to Succ. The
1771       // portion ratio is the edge probability from ToBBI.BB to FromBBI.BB (if
1772       // FromBBI is a successor of ToBBI.BB. See comment below for excepion).
1773       NewProb = MBPI->getEdgeProbability(FromBBI.BB, Succ);
1774 
1775       // To2FromProb is 0 when FromBBI.BB is not a successor of ToBBI.BB. This
1776       // only happens when if-converting a diamond CFG and FromBBI.BB is the
1777       // tail BB.  In this case FromBBI.BB post-dominates ToBBI.BB and hence we
1778       // could just use the probabilities on FromBBI.BB's out-edges when adding
1779       // new successors.
1780       if (!To2FromProb.isZero())
1781         NewProb *= To2FromProb;
1782     }
1783 
1784     FromBBI.BB->removeSuccessor(Succ);
1785 
1786     if (AddEdges) {
1787       // If the edge from ToBBI.BB to Succ already exists, update the
1788       // probability of this edge by adding NewProb to it. An example is shown
1789       // below, in which A is ToBBI.BB and B is FromBBI.BB. In this case we
1790       // don't have to set C as A's successor as it already is. We only need to
1791       // update the edge probability on A->C. Note that B will not be
1792       // immediately removed from A's successors. It is possible that B->D is
1793       // not removed either if D is a fallthrough of B. Later the edge A->D
1794       // (generated here) and B->D will be combined into one edge. To maintain
1795       // correct edge probability of this combined edge, we need to set the edge
1796       // probability of A->B to zero, which is already done above. The edge
1797       // probability on A->D is calculated by scaling the original probability
1798       // on A->B by the probability of B->D.
1799       //
1800       // Before ifcvt:      After ifcvt (assume B->D is kept):
1801       //
1802       //       A                A
1803       //      /|               /|\
1804       //     / B              / B|
1805       //    | /|             |  ||
1806       //    |/ |             |  |/
1807       //    C  D             C  D
1808       //
1809       if (ToBBI.BB->isSuccessor(Succ))
1810         ToBBI.BB->setSuccProbability(
1811             std::find(ToBBI.BB->succ_begin(), ToBBI.BB->succ_end(), Succ),
1812             MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
1813       else
1814         ToBBI.BB->addSuccessor(Succ, NewProb);
1815     }
1816   }
1817 
1818   // Now FromBBI always falls through to the next block!
1819   if (NBB && !FromBBI.BB->isSuccessor(NBB))
1820     FromBBI.BB->addSuccessor(NBB);
1821 
1822   // Normalize the probabilities of ToBBI.BB's successors with all adjustment
1823   // we've done above.
1824   ToBBI.BB->normalizeSuccProbs();
1825 
1826   ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
1827   FromBBI.Predicate.clear();
1828 
1829   ToBBI.NonPredSize += FromBBI.NonPredSize;
1830   ToBBI.ExtraCost += FromBBI.ExtraCost;
1831   ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
1832   FromBBI.NonPredSize = 0;
1833   FromBBI.ExtraCost = 0;
1834   FromBBI.ExtraCost2 = 0;
1835 
1836   ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
1837   ToBBI.HasFallThrough = FromBBI.HasFallThrough;
1838   ToBBI.IsAnalyzed = false;
1839   FromBBI.IsAnalyzed = false;
1840 }
1841 
1842 FunctionPass *
1843 llvm::createIfConverter(std::function<bool(const Function &)> Ftor) {
1844   return new IfConverter(Ftor);
1845 }
1846