1 //===- IfConversion.cpp - Machine code if conversion pass -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the machine instruction level if-conversion pass, which 10 // tries to convert conditional branches into predicated instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "BranchFolding.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/SparseSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/CodeGen/LivePhysRegs.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineFunctionPass.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/MBFIWrapper.h" 35 #include "llvm/CodeGen/TargetInstrInfo.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSchedule.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/MC/MCRegisterInfo.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/BranchProbability.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <functional> 53 #include <iterator> 54 #include <memory> 55 #include <utility> 56 #include <vector> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "if-converter" 61 62 // Hidden options for help debugging. 63 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden); 64 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden); 65 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden); 66 static cl::opt<bool> DisableSimple("disable-ifcvt-simple", 67 cl::init(false), cl::Hidden); 68 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false", 69 cl::init(false), cl::Hidden); 70 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle", 71 cl::init(false), cl::Hidden); 72 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev", 73 cl::init(false), cl::Hidden); 74 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false", 75 cl::init(false), cl::Hidden); 76 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev", 77 cl::init(false), cl::Hidden); 78 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond", 79 cl::init(false), cl::Hidden); 80 static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond", 81 cl::init(false), cl::Hidden); 82 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold", 83 cl::init(true), cl::Hidden); 84 85 STATISTIC(NumSimple, "Number of simple if-conversions performed"); 86 STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed"); 87 STATISTIC(NumTriangle, "Number of triangle if-conversions performed"); 88 STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed"); 89 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed"); 90 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed"); 91 STATISTIC(NumDiamonds, "Number of diamond if-conversions performed"); 92 STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed"); 93 STATISTIC(NumIfConvBBs, "Number of if-converted blocks"); 94 STATISTIC(NumDupBBs, "Number of duplicated blocks"); 95 STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated"); 96 97 namespace { 98 99 class IfConverter : public MachineFunctionPass { 100 enum IfcvtKind { 101 ICNotClassfied, // BB data valid, but not classified. 102 ICSimpleFalse, // Same as ICSimple, but on the false path. 103 ICSimple, // BB is entry of an one split, no rejoin sub-CFG. 104 ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition. 105 ICTriangleRev, // Same as ICTriangle, but true path rev condition. 106 ICTriangleFalse, // Same as ICTriangle, but on the false path. 107 ICTriangle, // BB is entry of a triangle sub-CFG. 108 ICDiamond, // BB is entry of a diamond sub-CFG. 109 ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a 110 // common tail that can be shared. 111 }; 112 113 /// One per MachineBasicBlock, this is used to cache the result 114 /// if-conversion feasibility analysis. This includes results from 115 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its 116 /// classification, and common tail block of its successors (if it's a 117 /// diamond shape), its size, whether it's predicable, and whether any 118 /// instruction can clobber the 'would-be' predicate. 119 /// 120 /// IsDone - True if BB is not to be considered for ifcvt. 121 /// IsBeingAnalyzed - True if BB is currently being analyzed. 122 /// IsAnalyzed - True if BB has been analyzed (info is still valid). 123 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed. 124 /// IsBrAnalyzable - True if analyzeBranch() returns false. 125 /// HasFallThrough - True if BB may fallthrough to the following BB. 126 /// IsUnpredicable - True if BB is known to be unpredicable. 127 /// ClobbersPred - True if BB could modify predicates (e.g. has 128 /// cmp, call, etc.) 129 /// NonPredSize - Number of non-predicated instructions. 130 /// ExtraCost - Extra cost for multi-cycle instructions. 131 /// ExtraCost2 - Some instructions are slower when predicated 132 /// BB - Corresponding MachineBasicBlock. 133 /// TrueBB / FalseBB- See analyzeBranch(). 134 /// BrCond - Conditions for end of block conditional branches. 135 /// Predicate - Predicate used in the BB. 136 struct BBInfo { 137 bool IsDone : 1; 138 bool IsBeingAnalyzed : 1; 139 bool IsAnalyzed : 1; 140 bool IsEnqueued : 1; 141 bool IsBrAnalyzable : 1; 142 bool IsBrReversible : 1; 143 bool HasFallThrough : 1; 144 bool IsUnpredicable : 1; 145 bool CannotBeCopied : 1; 146 bool ClobbersPred : 1; 147 unsigned NonPredSize = 0; 148 unsigned ExtraCost = 0; 149 unsigned ExtraCost2 = 0; 150 MachineBasicBlock *BB = nullptr; 151 MachineBasicBlock *TrueBB = nullptr; 152 MachineBasicBlock *FalseBB = nullptr; 153 SmallVector<MachineOperand, 4> BrCond; 154 SmallVector<MachineOperand, 4> Predicate; 155 156 BBInfo() : IsDone(false), IsBeingAnalyzed(false), 157 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false), 158 IsBrReversible(false), HasFallThrough(false), 159 IsUnpredicable(false), CannotBeCopied(false), 160 ClobbersPred(false) {} 161 }; 162 163 /// Record information about pending if-conversions to attempt: 164 /// BBI - Corresponding BBInfo. 165 /// Kind - Type of block. See IfcvtKind. 166 /// NeedSubsumption - True if the to-be-predicated BB has already been 167 /// predicated. 168 /// NumDups - Number of instructions that would be duplicated due 169 /// to this if-conversion. (For diamonds, the number of 170 /// identical instructions at the beginnings of both 171 /// paths). 172 /// NumDups2 - For diamonds, the number of identical instructions 173 /// at the ends of both paths. 174 struct IfcvtToken { 175 BBInfo &BBI; 176 IfcvtKind Kind; 177 unsigned NumDups; 178 unsigned NumDups2; 179 bool NeedSubsumption : 1; 180 bool TClobbersPred : 1; 181 bool FClobbersPred : 1; 182 183 IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0, 184 bool tc = false, bool fc = false) 185 : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s), 186 TClobbersPred(tc), FClobbersPred(fc) {} 187 }; 188 189 /// Results of if-conversion feasibility analysis indexed by basic block 190 /// number. 191 std::vector<BBInfo> BBAnalysis; 192 TargetSchedModel SchedModel; 193 194 const TargetLoweringBase *TLI; 195 const TargetInstrInfo *TII; 196 const TargetRegisterInfo *TRI; 197 const MachineBranchProbabilityInfo *MBPI; 198 MachineRegisterInfo *MRI; 199 200 LivePhysRegs Redefs; 201 202 bool PreRegAlloc; 203 bool MadeChange; 204 int FnNum = -1; 205 std::function<bool(const MachineFunction &)> PredicateFtor; 206 207 public: 208 static char ID; 209 210 IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr) 211 : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) { 212 initializeIfConverterPass(*PassRegistry::getPassRegistry()); 213 } 214 215 void getAnalysisUsage(AnalysisUsage &AU) const override { 216 AU.addRequired<MachineBlockFrequencyInfo>(); 217 AU.addRequired<MachineBranchProbabilityInfo>(); 218 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 219 MachineFunctionPass::getAnalysisUsage(AU); 220 } 221 222 bool runOnMachineFunction(MachineFunction &MF) override; 223 224 MachineFunctionProperties getRequiredProperties() const override { 225 return MachineFunctionProperties().set( 226 MachineFunctionProperties::Property::NoVRegs); 227 } 228 229 private: 230 bool reverseBranchCondition(BBInfo &BBI) const; 231 bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 232 BranchProbability Prediction) const; 233 bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 234 bool FalseBranch, unsigned &Dups, 235 BranchProbability Prediction) const; 236 bool CountDuplicatedInstructions( 237 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 238 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 239 unsigned &Dups1, unsigned &Dups2, 240 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 241 bool SkipUnconditionalBranches) const; 242 bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 243 unsigned &Dups1, unsigned &Dups2, 244 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 245 bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 246 unsigned &Dups1, unsigned &Dups2, 247 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 248 void AnalyzeBranches(BBInfo &BBI); 249 void ScanInstructions(BBInfo &BBI, 250 MachineBasicBlock::iterator &Begin, 251 MachineBasicBlock::iterator &End, 252 bool BranchUnpredicable = false) const; 253 bool RescanInstructions( 254 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 255 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 256 BBInfo &TrueBBI, BBInfo &FalseBBI) const; 257 void AnalyzeBlock(MachineBasicBlock &MBB, 258 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 259 bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred, 260 bool isTriangle = false, bool RevBranch = false, 261 bool hasCommonTail = false); 262 void AnalyzeBlocks(MachineFunction &MF, 263 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 264 void InvalidatePreds(MachineBasicBlock &MBB); 265 bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind); 266 bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind); 267 bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 268 unsigned NumDups1, unsigned NumDups2, 269 bool TClobbersPred, bool FClobbersPred, 270 bool RemoveBranch, bool MergeAddEdges); 271 bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 272 unsigned NumDups1, unsigned NumDups2, 273 bool TClobbers, bool FClobbers); 274 bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind, 275 unsigned NumDups1, unsigned NumDups2, 276 bool TClobbers, bool FClobbers); 277 void PredicateBlock(BBInfo &BBI, 278 MachineBasicBlock::iterator E, 279 SmallVectorImpl<MachineOperand> &Cond, 280 SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr); 281 void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 282 SmallVectorImpl<MachineOperand> &Cond, 283 bool IgnoreBr = false); 284 void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true); 285 286 bool MeetIfcvtSizeLimit(MachineBasicBlock &BB, 287 unsigned Cycle, unsigned Extra, 288 BranchProbability Prediction) const { 289 return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra, 290 Prediction); 291 } 292 293 bool MeetIfcvtSizeLimit(BBInfo &TBBInfo, BBInfo &FBBInfo, 294 MachineBasicBlock &CommBB, unsigned Dups, 295 BranchProbability Prediction, bool Forked) const { 296 const MachineFunction &MF = *TBBInfo.BB->getParent(); 297 if (MF.getFunction().hasMinSize()) { 298 MachineBasicBlock::iterator TIB = TBBInfo.BB->begin(); 299 MachineBasicBlock::iterator FIB = FBBInfo.BB->begin(); 300 MachineBasicBlock::iterator TIE = TBBInfo.BB->end(); 301 MachineBasicBlock::iterator FIE = FBBInfo.BB->end(); 302 303 unsigned Dups1, Dups2; 304 if (!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 305 *TBBInfo.BB, *FBBInfo.BB, 306 /*SkipUnconditionalBranches*/ true)) 307 llvm_unreachable("should already have been checked by ValidDiamond"); 308 309 unsigned BranchBytes = 0; 310 unsigned CommonBytes = 0; 311 312 // Count common instructions at the start of the true and false blocks. 313 for (auto &I : make_range(TBBInfo.BB->begin(), TIB)) { 314 LLVM_DEBUG(dbgs() << "Common inst: " << I); 315 CommonBytes += TII->getInstSizeInBytes(I); 316 } 317 for (auto &I : make_range(FBBInfo.BB->begin(), FIB)) { 318 LLVM_DEBUG(dbgs() << "Common inst: " << I); 319 CommonBytes += TII->getInstSizeInBytes(I); 320 } 321 322 // Count instructions at the end of the true and false blocks, after 323 // the ones we plan to predicate. Analyzable branches will be removed 324 // (unless this is a forked diamond), and all other instructions are 325 // common between the two blocks. 326 for (auto &I : make_range(TIE, TBBInfo.BB->end())) { 327 if (I.isBranch() && TBBInfo.IsBrAnalyzable && !Forked) { 328 LLVM_DEBUG(dbgs() << "Saving branch: " << I); 329 BranchBytes += TII->predictBranchSizeForIfCvt(I); 330 } else { 331 LLVM_DEBUG(dbgs() << "Common inst: " << I); 332 CommonBytes += TII->getInstSizeInBytes(I); 333 } 334 } 335 for (auto &I : make_range(FIE, FBBInfo.BB->end())) { 336 if (I.isBranch() && FBBInfo.IsBrAnalyzable && !Forked) { 337 LLVM_DEBUG(dbgs() << "Saving branch: " << I); 338 BranchBytes += TII->predictBranchSizeForIfCvt(I); 339 } else { 340 LLVM_DEBUG(dbgs() << "Common inst: " << I); 341 CommonBytes += TII->getInstSizeInBytes(I); 342 } 343 } 344 for (auto &I : CommBB.terminators()) { 345 if (I.isBranch()) { 346 LLVM_DEBUG(dbgs() << "Saving branch: " << I); 347 BranchBytes += TII->predictBranchSizeForIfCvt(I); 348 } 349 } 350 351 // The common instructions in one branch will be eliminated, halving 352 // their code size. 353 CommonBytes /= 2; 354 355 // Count the instructions which we need to predicate. 356 unsigned NumPredicatedInstructions = 0; 357 for (auto &I : make_range(TIB, TIE)) { 358 if (!I.isDebugInstr()) { 359 LLVM_DEBUG(dbgs() << "Predicating: " << I); 360 NumPredicatedInstructions++; 361 } 362 } 363 for (auto &I : make_range(FIB, FIE)) { 364 if (!I.isDebugInstr()) { 365 LLVM_DEBUG(dbgs() << "Predicating: " << I); 366 NumPredicatedInstructions++; 367 } 368 } 369 370 // Even though we're optimising for size at the expense of performance, 371 // avoid creating really long predicated blocks. 372 if (NumPredicatedInstructions > 15) 373 return false; 374 375 // Some targets (e.g. Thumb2) need to insert extra instructions to 376 // start predicated blocks. 377 unsigned ExtraPredicateBytes = TII->extraSizeToPredicateInstructions( 378 MF, NumPredicatedInstructions); 379 380 LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(BranchBytes=" << BranchBytes 381 << ", CommonBytes=" << CommonBytes 382 << ", NumPredicatedInstructions=" 383 << NumPredicatedInstructions 384 << ", ExtraPredicateBytes=" << ExtraPredicateBytes 385 << ")\n"); 386 return (BranchBytes + CommonBytes) > ExtraPredicateBytes; 387 } else { 388 unsigned TCycle = TBBInfo.NonPredSize + TBBInfo.ExtraCost - Dups; 389 unsigned FCycle = FBBInfo.NonPredSize + FBBInfo.ExtraCost - Dups; 390 bool Res = TCycle > 0 && FCycle > 0 && 391 TII->isProfitableToIfCvt( 392 *TBBInfo.BB, TCycle, TBBInfo.ExtraCost2, *FBBInfo.BB, 393 FCycle, FBBInfo.ExtraCost2, Prediction); 394 LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(TCycle=" << TCycle 395 << ", FCycle=" << FCycle 396 << ", TExtra=" << TBBInfo.ExtraCost2 << ", FExtra=" 397 << FBBInfo.ExtraCost2 << ") = " << Res << "\n"); 398 return Res; 399 } 400 } 401 402 /// Returns true if Block ends without a terminator. 403 bool blockAlwaysFallThrough(BBInfo &BBI) const { 404 return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr; 405 } 406 407 /// Used to sort if-conversion candidates. 408 static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1, 409 const std::unique_ptr<IfcvtToken> &C2) { 410 int Incr1 = (C1->Kind == ICDiamond) 411 ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups; 412 int Incr2 = (C2->Kind == ICDiamond) 413 ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups; 414 if (Incr1 > Incr2) 415 return true; 416 else if (Incr1 == Incr2) { 417 // Favors subsumption. 418 if (!C1->NeedSubsumption && C2->NeedSubsumption) 419 return true; 420 else if (C1->NeedSubsumption == C2->NeedSubsumption) { 421 // Favors diamond over triangle, etc. 422 if ((unsigned)C1->Kind < (unsigned)C2->Kind) 423 return true; 424 else if (C1->Kind == C2->Kind) 425 return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber(); 426 } 427 } 428 return false; 429 } 430 }; 431 432 } // end anonymous namespace 433 434 char IfConverter::ID = 0; 435 436 char &llvm::IfConverterID = IfConverter::ID; 437 438 INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false) 439 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 440 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 441 INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false) 442 443 bool IfConverter::runOnMachineFunction(MachineFunction &MF) { 444 if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF))) 445 return false; 446 447 const TargetSubtargetInfo &ST = MF.getSubtarget(); 448 TLI = ST.getTargetLowering(); 449 TII = ST.getInstrInfo(); 450 TRI = ST.getRegisterInfo(); 451 MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>()); 452 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 453 ProfileSummaryInfo *PSI = 454 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 455 MRI = &MF.getRegInfo(); 456 SchedModel.init(&ST); 457 458 if (!TII) return false; 459 460 PreRegAlloc = MRI->isSSA(); 461 462 bool BFChange = false; 463 if (!PreRegAlloc) { 464 // Tail merge tend to expose more if-conversion opportunities. 465 BranchFolder BF(true, false, MBFI, *MBPI, PSI); 466 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 467 BFChange = BF.OptimizeFunction( 468 MF, TII, ST.getRegisterInfo(), 469 MMIWP ? &MMIWP->getMMI() : nullptr); 470 } 471 472 LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'" 473 << MF.getName() << "\'"); 474 475 if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) { 476 LLVM_DEBUG(dbgs() << " skipped\n"); 477 return false; 478 } 479 LLVM_DEBUG(dbgs() << "\n"); 480 481 MF.RenumberBlocks(); 482 BBAnalysis.resize(MF.getNumBlockIDs()); 483 484 std::vector<std::unique_ptr<IfcvtToken>> Tokens; 485 MadeChange = false; 486 unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + 487 NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds; 488 while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) { 489 // Do an initial analysis for each basic block and find all the potential 490 // candidates to perform if-conversion. 491 bool Change = false; 492 AnalyzeBlocks(MF, Tokens); 493 while (!Tokens.empty()) { 494 std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back()); 495 Tokens.pop_back(); 496 BBInfo &BBI = Token->BBI; 497 IfcvtKind Kind = Token->Kind; 498 unsigned NumDups = Token->NumDups; 499 unsigned NumDups2 = Token->NumDups2; 500 501 // If the block has been evicted out of the queue or it has already been 502 // marked dead (due to it being predicated), then skip it. 503 if (BBI.IsDone) 504 BBI.IsEnqueued = false; 505 if (!BBI.IsEnqueued) 506 continue; 507 508 BBI.IsEnqueued = false; 509 510 bool RetVal = false; 511 switch (Kind) { 512 default: llvm_unreachable("Unexpected!"); 513 case ICSimple: 514 case ICSimpleFalse: { 515 bool isFalse = Kind == ICSimpleFalse; 516 if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break; 517 LLVM_DEBUG(dbgs() << "Ifcvt (Simple" 518 << (Kind == ICSimpleFalse ? " false" : "") 519 << "): " << printMBBReference(*BBI.BB) << " (" 520 << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber() 521 : BBI.TrueBB->getNumber()) 522 << ") "); 523 RetVal = IfConvertSimple(BBI, Kind); 524 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 525 if (RetVal) { 526 if (isFalse) ++NumSimpleFalse; 527 else ++NumSimple; 528 } 529 break; 530 } 531 case ICTriangle: 532 case ICTriangleRev: 533 case ICTriangleFalse: 534 case ICTriangleFRev: { 535 bool isFalse = Kind == ICTriangleFalse; 536 bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev); 537 if (DisableTriangle && !isFalse && !isRev) break; 538 if (DisableTriangleR && !isFalse && isRev) break; 539 if (DisableTriangleF && isFalse && !isRev) break; 540 if (DisableTriangleFR && isFalse && isRev) break; 541 LLVM_DEBUG(dbgs() << "Ifcvt (Triangle"); 542 if (isFalse) 543 LLVM_DEBUG(dbgs() << " false"); 544 if (isRev) 545 LLVM_DEBUG(dbgs() << " rev"); 546 LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB) 547 << " (T:" << BBI.TrueBB->getNumber() 548 << ",F:" << BBI.FalseBB->getNumber() << ") "); 549 RetVal = IfConvertTriangle(BBI, Kind); 550 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 551 if (RetVal) { 552 if (isFalse) { 553 if (isRev) ++NumTriangleFRev; 554 else ++NumTriangleFalse; 555 } else { 556 if (isRev) ++NumTriangleRev; 557 else ++NumTriangle; 558 } 559 } 560 break; 561 } 562 case ICDiamond: 563 if (DisableDiamond) break; 564 LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB) 565 << " (T:" << BBI.TrueBB->getNumber() 566 << ",F:" << BBI.FalseBB->getNumber() << ") "); 567 RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2, 568 Token->TClobbersPred, 569 Token->FClobbersPred); 570 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 571 if (RetVal) ++NumDiamonds; 572 break; 573 case ICForkedDiamond: 574 if (DisableForkedDiamond) break; 575 LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): " 576 << printMBBReference(*BBI.BB) 577 << " (T:" << BBI.TrueBB->getNumber() 578 << ",F:" << BBI.FalseBB->getNumber() << ") "); 579 RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2, 580 Token->TClobbersPred, 581 Token->FClobbersPred); 582 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 583 if (RetVal) ++NumForkedDiamonds; 584 break; 585 } 586 587 if (RetVal && MRI->tracksLiveness()) 588 recomputeLivenessFlags(*BBI.BB); 589 590 Change |= RetVal; 591 592 NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev + 593 NumTriangleFalse + NumTriangleFRev + NumDiamonds; 594 if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit) 595 break; 596 } 597 598 if (!Change) 599 break; 600 MadeChange |= Change; 601 } 602 603 Tokens.clear(); 604 BBAnalysis.clear(); 605 606 if (MadeChange && IfCvtBranchFold) { 607 BranchFolder BF(false, false, MBFI, *MBPI, PSI); 608 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 609 BF.OptimizeFunction( 610 MF, TII, MF.getSubtarget().getRegisterInfo(), 611 MMIWP ? &MMIWP->getMMI() : nullptr); 612 } 613 614 MadeChange |= BFChange; 615 return MadeChange; 616 } 617 618 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor. 619 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 620 MachineBasicBlock *TrueBB) { 621 for (MachineBasicBlock *SuccBB : BB->successors()) { 622 if (SuccBB != TrueBB) 623 return SuccBB; 624 } 625 return nullptr; 626 } 627 628 /// Reverse the condition of the end of the block branch. Swap block's 'true' 629 /// and 'false' successors. 630 bool IfConverter::reverseBranchCondition(BBInfo &BBI) const { 631 DebugLoc dl; // FIXME: this is nowhere 632 if (!TII->reverseBranchCondition(BBI.BrCond)) { 633 TII->removeBranch(*BBI.BB); 634 TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl); 635 std::swap(BBI.TrueBB, BBI.FalseBB); 636 return true; 637 } 638 return false; 639 } 640 641 /// Returns the next block in the function blocks ordering. If it is the end, 642 /// returns NULL. 643 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) { 644 MachineFunction::iterator I = MBB.getIterator(); 645 MachineFunction::iterator E = MBB.getParent()->end(); 646 if (++I == E) 647 return nullptr; 648 return &*I; 649 } 650 651 /// Returns true if the 'true' block (along with its predecessor) forms a valid 652 /// simple shape for ifcvt. It also returns the number of instructions that the 653 /// ifcvt would need to duplicate if performed in Dups. 654 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 655 BranchProbability Prediction) const { 656 Dups = 0; 657 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 658 return false; 659 660 if (TrueBBI.IsBrAnalyzable) 661 return false; 662 663 if (TrueBBI.BB->pred_size() > 1) { 664 if (TrueBBI.CannotBeCopied || 665 !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize, 666 Prediction)) 667 return false; 668 Dups = TrueBBI.NonPredSize; 669 } 670 671 return true; 672 } 673 674 /// Returns true if the 'true' and 'false' blocks (along with their common 675 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is 676 /// true, it checks if 'true' block's false branch branches to the 'false' block 677 /// rather than the other way around. It also returns the number of instructions 678 /// that the ifcvt would need to duplicate if performed in 'Dups'. 679 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 680 bool FalseBranch, unsigned &Dups, 681 BranchProbability Prediction) const { 682 Dups = 0; 683 if (TrueBBI.BB == FalseBBI.BB) 684 return false; 685 686 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 687 return false; 688 689 if (TrueBBI.BB->pred_size() > 1) { 690 if (TrueBBI.CannotBeCopied) 691 return false; 692 693 unsigned Size = TrueBBI.NonPredSize; 694 if (TrueBBI.IsBrAnalyzable) { 695 if (TrueBBI.TrueBB && TrueBBI.BrCond.empty()) 696 // Ends with an unconditional branch. It will be removed. 697 --Size; 698 else { 699 MachineBasicBlock *FExit = FalseBranch 700 ? TrueBBI.TrueBB : TrueBBI.FalseBB; 701 if (FExit) 702 // Require a conditional branch 703 ++Size; 704 } 705 } 706 if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction)) 707 return false; 708 Dups = Size; 709 } 710 711 MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB; 712 if (!TExit && blockAlwaysFallThrough(TrueBBI)) { 713 MachineFunction::iterator I = TrueBBI.BB->getIterator(); 714 if (++I == TrueBBI.BB->getParent()->end()) 715 return false; 716 TExit = &*I; 717 } 718 return TExit && TExit == FalseBBI.BB; 719 } 720 721 /// Count duplicated instructions and move the iterators to show where they 722 /// are. 723 /// @param TIB True Iterator Begin 724 /// @param FIB False Iterator Begin 725 /// These two iterators initially point to the first instruction of the two 726 /// blocks, and finally point to the first non-shared instruction. 727 /// @param TIE True Iterator End 728 /// @param FIE False Iterator End 729 /// These two iterators initially point to End() for the two blocks() and 730 /// finally point to the first shared instruction in the tail. 731 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of 732 /// two blocks. 733 /// @param Dups1 count of duplicated instructions at the beginning of the 2 734 /// blocks. 735 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks. 736 /// @param SkipUnconditionalBranches if true, Don't make sure that 737 /// unconditional branches at the end of the blocks are the same. True is 738 /// passed when the blocks are analyzable to allow for fallthrough to be 739 /// handled. 740 /// @return false if the shared portion prevents if conversion. 741 bool IfConverter::CountDuplicatedInstructions( 742 MachineBasicBlock::iterator &TIB, 743 MachineBasicBlock::iterator &FIB, 744 MachineBasicBlock::iterator &TIE, 745 MachineBasicBlock::iterator &FIE, 746 unsigned &Dups1, unsigned &Dups2, 747 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 748 bool SkipUnconditionalBranches) const { 749 while (TIB != TIE && FIB != FIE) { 750 // Skip dbg_value instructions. These do not count. 751 TIB = skipDebugInstructionsForward(TIB, TIE); 752 FIB = skipDebugInstructionsForward(FIB, FIE); 753 if (TIB == TIE || FIB == FIE) 754 break; 755 if (!TIB->isIdenticalTo(*FIB)) 756 break; 757 // A pred-clobbering instruction in the shared portion prevents 758 // if-conversion. 759 std::vector<MachineOperand> PredDefs; 760 if (TII->DefinesPredicate(*TIB, PredDefs)) 761 return false; 762 // If we get all the way to the branch instructions, don't count them. 763 if (!TIB->isBranch()) 764 ++Dups1; 765 ++TIB; 766 ++FIB; 767 } 768 769 // Check for already containing all of the block. 770 if (TIB == TIE || FIB == FIE) 771 return true; 772 // Now, in preparation for counting duplicate instructions at the ends of the 773 // blocks, switch to reverse_iterators. Note that getReverse() returns an 774 // iterator that points to the same instruction, unlike std::reverse_iterator. 775 // We have to do our own shifting so that we get the same range. 776 MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse()); 777 MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse()); 778 const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse()); 779 const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse()); 780 781 if (!TBB.succ_empty() || !FBB.succ_empty()) { 782 if (SkipUnconditionalBranches) { 783 while (RTIE != RTIB && RTIE->isUnconditionalBranch()) 784 ++RTIE; 785 while (RFIE != RFIB && RFIE->isUnconditionalBranch()) 786 ++RFIE; 787 } 788 } 789 790 // Count duplicate instructions at the ends of the blocks. 791 while (RTIE != RTIB && RFIE != RFIB) { 792 // Skip dbg_value instructions. These do not count. 793 // Note that these are reverse iterators going forward. 794 RTIE = skipDebugInstructionsForward(RTIE, RTIB); 795 RFIE = skipDebugInstructionsForward(RFIE, RFIB); 796 if (RTIE == RTIB || RFIE == RFIB) 797 break; 798 if (!RTIE->isIdenticalTo(*RFIE)) 799 break; 800 // We have to verify that any branch instructions are the same, and then we 801 // don't count them toward the # of duplicate instructions. 802 if (!RTIE->isBranch()) 803 ++Dups2; 804 ++RTIE; 805 ++RFIE; 806 } 807 TIE = std::next(RTIE.getReverse()); 808 FIE = std::next(RFIE.getReverse()); 809 return true; 810 } 811 812 /// RescanInstructions - Run ScanInstructions on a pair of blocks. 813 /// @param TIB - True Iterator Begin, points to first non-shared instruction 814 /// @param FIB - False Iterator Begin, points to first non-shared instruction 815 /// @param TIE - True Iterator End, points past last non-shared instruction 816 /// @param FIE - False Iterator End, points past last non-shared instruction 817 /// @param TrueBBI - BBInfo to update for the true block. 818 /// @param FalseBBI - BBInfo to update for the false block. 819 /// @returns - false if either block cannot be predicated or if both blocks end 820 /// with a predicate-clobbering instruction. 821 bool IfConverter::RescanInstructions( 822 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 823 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 824 BBInfo &TrueBBI, BBInfo &FalseBBI) const { 825 bool BranchUnpredicable = true; 826 TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false; 827 ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable); 828 if (TrueBBI.IsUnpredicable) 829 return false; 830 ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable); 831 if (FalseBBI.IsUnpredicable) 832 return false; 833 if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred) 834 return false; 835 return true; 836 } 837 838 #ifndef NDEBUG 839 static void verifySameBranchInstructions( 840 MachineBasicBlock *MBB1, 841 MachineBasicBlock *MBB2) { 842 const MachineBasicBlock::reverse_iterator B1 = MBB1->rend(); 843 const MachineBasicBlock::reverse_iterator B2 = MBB2->rend(); 844 MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin(); 845 MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin(); 846 while (E1 != B1 && E2 != B2) { 847 skipDebugInstructionsForward(E1, B1); 848 skipDebugInstructionsForward(E2, B2); 849 if (E1 == B1 && E2 == B2) 850 break; 851 852 if (E1 == B1) { 853 assert(!E2->isBranch() && "Branch mis-match, one block is empty."); 854 break; 855 } 856 if (E2 == B2) { 857 assert(!E1->isBranch() && "Branch mis-match, one block is empty."); 858 break; 859 } 860 861 if (E1->isBranch() || E2->isBranch()) 862 assert(E1->isIdenticalTo(*E2) && 863 "Branch mis-match, branch instructions don't match."); 864 else 865 break; 866 ++E1; 867 ++E2; 868 } 869 } 870 #endif 871 872 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along 873 /// with their common predecessor) form a diamond if a common tail block is 874 /// extracted. 875 /// While not strictly a diamond, this pattern would form a diamond if 876 /// tail-merging had merged the shared tails. 877 /// EBB 878 /// _/ \_ 879 /// | | 880 /// TBB FBB 881 /// / \ / \ 882 /// FalseBB TrueBB FalseBB 883 /// Currently only handles analyzable branches. 884 /// Specifically excludes actual diamonds to avoid overlap. 885 bool IfConverter::ValidForkedDiamond( 886 BBInfo &TrueBBI, BBInfo &FalseBBI, 887 unsigned &Dups1, unsigned &Dups2, 888 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 889 Dups1 = Dups2 = 0; 890 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 891 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 892 return false; 893 894 if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable) 895 return false; 896 // Don't IfConvert blocks that can't be folded into their predecessor. 897 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 898 return false; 899 900 // This function is specifically looking for conditional tails, as 901 // unconditional tails are already handled by the standard diamond case. 902 if (TrueBBI.BrCond.size() == 0 || 903 FalseBBI.BrCond.size() == 0) 904 return false; 905 906 MachineBasicBlock *TT = TrueBBI.TrueBB; 907 MachineBasicBlock *TF = TrueBBI.FalseBB; 908 MachineBasicBlock *FT = FalseBBI.TrueBB; 909 MachineBasicBlock *FF = FalseBBI.FalseBB; 910 911 if (!TT) 912 TT = getNextBlock(*TrueBBI.BB); 913 if (!TF) 914 TF = getNextBlock(*TrueBBI.BB); 915 if (!FT) 916 FT = getNextBlock(*FalseBBI.BB); 917 if (!FF) 918 FF = getNextBlock(*FalseBBI.BB); 919 920 if (!TT || !TF) 921 return false; 922 923 // Check successors. If they don't match, bail. 924 if (!((TT == FT && TF == FF) || (TF == FT && TT == FF))) 925 return false; 926 927 bool FalseReversed = false; 928 if (TF == FT && TT == FF) { 929 // If the branches are opposing, but we can't reverse, don't do it. 930 if (!FalseBBI.IsBrReversible) 931 return false; 932 FalseReversed = true; 933 reverseBranchCondition(FalseBBI); 934 } 935 auto UnReverseOnExit = make_scope_exit([&]() { 936 if (FalseReversed) 937 reverseBranchCondition(FalseBBI); 938 }); 939 940 // Count duplicate instructions at the beginning of the true and false blocks. 941 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 942 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 943 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 944 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 945 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 946 *TrueBBI.BB, *FalseBBI.BB, 947 /* SkipUnconditionalBranches */ true)) 948 return false; 949 950 TrueBBICalc.BB = TrueBBI.BB; 951 FalseBBICalc.BB = FalseBBI.BB; 952 TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable; 953 FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable; 954 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 955 return false; 956 957 // The size is used to decide whether to if-convert, and the shared portions 958 // are subtracted off. Because of the subtraction, we just use the size that 959 // was calculated by the original ScanInstructions, as it is correct. 960 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 961 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 962 return true; 963 } 964 965 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along 966 /// with their common predecessor) forms a valid diamond shape for ifcvt. 967 bool IfConverter::ValidDiamond( 968 BBInfo &TrueBBI, BBInfo &FalseBBI, 969 unsigned &Dups1, unsigned &Dups2, 970 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 971 Dups1 = Dups2 = 0; 972 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 973 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 974 return false; 975 976 // If the True and False BBs are equal we're dealing with a degenerate case 977 // that we don't treat as a diamond. 978 if (TrueBBI.BB == FalseBBI.BB) 979 return false; 980 981 MachineBasicBlock *TT = TrueBBI.TrueBB; 982 MachineBasicBlock *FT = FalseBBI.TrueBB; 983 984 if (!TT && blockAlwaysFallThrough(TrueBBI)) 985 TT = getNextBlock(*TrueBBI.BB); 986 if (!FT && blockAlwaysFallThrough(FalseBBI)) 987 FT = getNextBlock(*FalseBBI.BB); 988 if (TT != FT) 989 return false; 990 if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable)) 991 return false; 992 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 993 return false; 994 995 // FIXME: Allow true block to have an early exit? 996 if (TrueBBI.FalseBB || FalseBBI.FalseBB) 997 return false; 998 999 // Count duplicate instructions at the beginning and end of the true and 1000 // false blocks. 1001 // Skip unconditional branches only if we are considering an analyzable 1002 // diamond. Otherwise the branches must be the same. 1003 bool SkipUnconditionalBranches = 1004 TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable; 1005 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 1006 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 1007 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 1008 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 1009 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 1010 *TrueBBI.BB, *FalseBBI.BB, 1011 SkipUnconditionalBranches)) 1012 return false; 1013 1014 TrueBBICalc.BB = TrueBBI.BB; 1015 FalseBBICalc.BB = FalseBBI.BB; 1016 TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable; 1017 FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable; 1018 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 1019 return false; 1020 // The size is used to decide whether to if-convert, and the shared portions 1021 // are subtracted off. Because of the subtraction, we just use the size that 1022 // was calculated by the original ScanInstructions, as it is correct. 1023 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 1024 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 1025 return true; 1026 } 1027 1028 /// AnalyzeBranches - Look at the branches at the end of a block to determine if 1029 /// the block is predicable. 1030 void IfConverter::AnalyzeBranches(BBInfo &BBI) { 1031 if (BBI.IsDone) 1032 return; 1033 1034 BBI.TrueBB = BBI.FalseBB = nullptr; 1035 BBI.BrCond.clear(); 1036 BBI.IsBrAnalyzable = 1037 !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond); 1038 if (!BBI.IsBrAnalyzable) { 1039 BBI.TrueBB = nullptr; 1040 BBI.FalseBB = nullptr; 1041 BBI.BrCond.clear(); 1042 } 1043 1044 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1045 BBI.IsBrReversible = (RevCond.size() == 0) || 1046 !TII->reverseBranchCondition(RevCond); 1047 BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr; 1048 1049 if (BBI.BrCond.size()) { 1050 // No false branch. This BB must end with a conditional branch and a 1051 // fallthrough. 1052 if (!BBI.FalseBB) 1053 BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB); 1054 if (!BBI.FalseBB) { 1055 // Malformed bcc? True and false blocks are the same? 1056 BBI.IsUnpredicable = true; 1057 } 1058 } 1059 } 1060 1061 /// ScanInstructions - Scan all the instructions in the block to determine if 1062 /// the block is predicable. In most cases, that means all the instructions 1063 /// in the block are isPredicable(). Also checks if the block contains any 1064 /// instruction which can clobber a predicate (e.g. condition code register). 1065 /// If so, the block is not predicable unless it's the last instruction. 1066 void IfConverter::ScanInstructions(BBInfo &BBI, 1067 MachineBasicBlock::iterator &Begin, 1068 MachineBasicBlock::iterator &End, 1069 bool BranchUnpredicable) const { 1070 if (BBI.IsDone || BBI.IsUnpredicable) 1071 return; 1072 1073 bool AlreadyPredicated = !BBI.Predicate.empty(); 1074 1075 BBI.NonPredSize = 0; 1076 BBI.ExtraCost = 0; 1077 BBI.ExtraCost2 = 0; 1078 BBI.ClobbersPred = false; 1079 for (MachineInstr &MI : make_range(Begin, End)) { 1080 if (MI.isDebugInstr()) 1081 continue; 1082 1083 // It's unsafe to duplicate convergent instructions in this context, so set 1084 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the 1085 // following CFG, which is subject to our "simple" transformation. 1086 // 1087 // BB0 // if (c1) goto BB1; else goto BB2; 1088 // / \ 1089 // BB1 | 1090 // | BB2 // if (c2) goto TBB; else goto FBB; 1091 // | / | 1092 // | / | 1093 // TBB | 1094 // | | 1095 // | FBB 1096 // | 1097 // exit 1098 // 1099 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd 1100 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose 1101 // TBB contains a convergent instruction. This is safe iff doing so does 1102 // not add a control-flow dependency to the convergent instruction -- i.e., 1103 // it's safe iff the set of control flows that leads us to the convergent 1104 // instruction does not get smaller after the transformation. 1105 // 1106 // Originally we executed TBB if c1 || c2. After the transformation, there 1107 // are two copies of TBB's instructions. We get to the first if c1, and we 1108 // get to the second if !c1 && c2. 1109 // 1110 // There are clearly fewer ways to satisfy the condition "c1" than 1111 // "c1 || c2". Since we've shrunk the set of control flows which lead to 1112 // our convergent instruction, the transformation is unsafe. 1113 if (MI.isNotDuplicable() || MI.isConvergent()) 1114 BBI.CannotBeCopied = true; 1115 1116 bool isPredicated = TII->isPredicated(MI); 1117 bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch(); 1118 1119 if (BranchUnpredicable && MI.isBranch()) { 1120 BBI.IsUnpredicable = true; 1121 return; 1122 } 1123 1124 // A conditional branch is not predicable, but it may be eliminated. 1125 if (isCondBr) 1126 continue; 1127 1128 if (!isPredicated) { 1129 BBI.NonPredSize++; 1130 unsigned ExtraPredCost = TII->getPredicationCost(MI); 1131 unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false); 1132 if (NumCycles > 1) 1133 BBI.ExtraCost += NumCycles-1; 1134 BBI.ExtraCost2 += ExtraPredCost; 1135 } else if (!AlreadyPredicated) { 1136 // FIXME: This instruction is already predicated before the 1137 // if-conversion pass. It's probably something like a conditional move. 1138 // Mark this block unpredicable for now. 1139 BBI.IsUnpredicable = true; 1140 return; 1141 } 1142 1143 if (BBI.ClobbersPred && !isPredicated) { 1144 // Predicate modification instruction should end the block (except for 1145 // already predicated instructions and end of block branches). 1146 // Predicate may have been modified, the subsequent (currently) 1147 // unpredicated instructions cannot be correctly predicated. 1148 BBI.IsUnpredicable = true; 1149 return; 1150 } 1151 1152 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are 1153 // still potentially predicable. 1154 std::vector<MachineOperand> PredDefs; 1155 if (TII->DefinesPredicate(MI, PredDefs)) 1156 BBI.ClobbersPred = true; 1157 1158 if (!TII->isPredicable(MI)) { 1159 BBI.IsUnpredicable = true; 1160 return; 1161 } 1162 } 1163 } 1164 1165 /// Determine if the block is a suitable candidate to be predicated by the 1166 /// specified predicate. 1167 /// @param BBI BBInfo for the block to check 1168 /// @param Pred Predicate array for the branch that leads to BBI 1169 /// @param isTriangle true if the Analysis is for a triangle 1170 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false 1171 /// case 1172 /// @param hasCommonTail true if BBI shares a tail with a sibling block that 1173 /// contains any instruction that would make the block unpredicable. 1174 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI, 1175 SmallVectorImpl<MachineOperand> &Pred, 1176 bool isTriangle, bool RevBranch, 1177 bool hasCommonTail) { 1178 // If the block is dead or unpredicable, then it cannot be predicated. 1179 // Two blocks may share a common unpredicable tail, but this doesn't prevent 1180 // them from being if-converted. The non-shared portion is assumed to have 1181 // been checked 1182 if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail)) 1183 return false; 1184 1185 // If it is already predicated but we couldn't analyze its terminator, the 1186 // latter might fallthrough, but we can't determine where to. 1187 // Conservatively avoid if-converting again. 1188 if (BBI.Predicate.size() && !BBI.IsBrAnalyzable) 1189 return false; 1190 1191 // If it is already predicated, check if the new predicate subsumes 1192 // its predicate. 1193 if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate)) 1194 return false; 1195 1196 if (!hasCommonTail && BBI.BrCond.size()) { 1197 if (!isTriangle) 1198 return false; 1199 1200 // Test predicate subsumption. 1201 SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end()); 1202 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1203 if (RevBranch) { 1204 if (TII->reverseBranchCondition(Cond)) 1205 return false; 1206 } 1207 if (TII->reverseBranchCondition(RevPred) || 1208 !TII->SubsumesPredicate(Cond, RevPred)) 1209 return false; 1210 } 1211 1212 return true; 1213 } 1214 1215 /// Analyze the structure of the sub-CFG starting from the specified block. 1216 /// Record its successors and whether it looks like an if-conversion candidate. 1217 void IfConverter::AnalyzeBlock( 1218 MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1219 struct BBState { 1220 BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {} 1221 MachineBasicBlock *MBB; 1222 1223 /// This flag is true if MBB's successors have been analyzed. 1224 bool SuccsAnalyzed; 1225 }; 1226 1227 // Push MBB to the stack. 1228 SmallVector<BBState, 16> BBStack(1, MBB); 1229 1230 while (!BBStack.empty()) { 1231 BBState &State = BBStack.back(); 1232 MachineBasicBlock *BB = State.MBB; 1233 BBInfo &BBI = BBAnalysis[BB->getNumber()]; 1234 1235 if (!State.SuccsAnalyzed) { 1236 if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) { 1237 BBStack.pop_back(); 1238 continue; 1239 } 1240 1241 BBI.BB = BB; 1242 BBI.IsBeingAnalyzed = true; 1243 1244 AnalyzeBranches(BBI); 1245 MachineBasicBlock::iterator Begin = BBI.BB->begin(); 1246 MachineBasicBlock::iterator End = BBI.BB->end(); 1247 ScanInstructions(BBI, Begin, End); 1248 1249 // Unanalyzable or ends with fallthrough or unconditional branch, or if is 1250 // not considered for ifcvt anymore. 1251 if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) { 1252 BBI.IsBeingAnalyzed = false; 1253 BBI.IsAnalyzed = true; 1254 BBStack.pop_back(); 1255 continue; 1256 } 1257 1258 // Do not ifcvt if either path is a back edge to the entry block. 1259 if (BBI.TrueBB == BB || BBI.FalseBB == BB) { 1260 BBI.IsBeingAnalyzed = false; 1261 BBI.IsAnalyzed = true; 1262 BBStack.pop_back(); 1263 continue; 1264 } 1265 1266 // Do not ifcvt if true and false fallthrough blocks are the same. 1267 if (!BBI.FalseBB) { 1268 BBI.IsBeingAnalyzed = false; 1269 BBI.IsAnalyzed = true; 1270 BBStack.pop_back(); 1271 continue; 1272 } 1273 1274 // Push the False and True blocks to the stack. 1275 State.SuccsAnalyzed = true; 1276 BBStack.push_back(*BBI.FalseBB); 1277 BBStack.push_back(*BBI.TrueBB); 1278 continue; 1279 } 1280 1281 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1282 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1283 1284 if (TrueBBI.IsDone && FalseBBI.IsDone) { 1285 BBI.IsBeingAnalyzed = false; 1286 BBI.IsAnalyzed = true; 1287 BBStack.pop_back(); 1288 continue; 1289 } 1290 1291 SmallVector<MachineOperand, 4> 1292 RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1293 bool CanRevCond = !TII->reverseBranchCondition(RevCond); 1294 1295 unsigned Dups = 0; 1296 unsigned Dups2 = 0; 1297 bool TNeedSub = !TrueBBI.Predicate.empty(); 1298 bool FNeedSub = !FalseBBI.Predicate.empty(); 1299 bool Enqueued = false; 1300 1301 BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB); 1302 1303 if (CanRevCond) { 1304 BBInfo TrueBBICalc, FalseBBICalc; 1305 auto feasibleDiamond = [&](bool Forked) { 1306 bool MeetsSize = MeetIfcvtSizeLimit(TrueBBICalc, FalseBBICalc, *BB, 1307 Dups + Dups2, Prediction, Forked); 1308 bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond, 1309 /* IsTriangle */ false, /* RevCond */ false, 1310 /* hasCommonTail */ true); 1311 bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond, 1312 /* IsTriangle */ false, /* RevCond */ false, 1313 /* hasCommonTail */ true); 1314 return MeetsSize && TrueFeasible && FalseFeasible; 1315 }; 1316 1317 if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1318 TrueBBICalc, FalseBBICalc)) { 1319 if (feasibleDiamond(false)) { 1320 // Diamond: 1321 // EBB 1322 // / \_ 1323 // | | 1324 // TBB FBB 1325 // \ / 1326 // TailBB 1327 // Note TailBB can be empty. 1328 Tokens.push_back(std::make_unique<IfcvtToken>( 1329 BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1330 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1331 Enqueued = true; 1332 } 1333 } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1334 TrueBBICalc, FalseBBICalc)) { 1335 if (feasibleDiamond(true)) { 1336 // ForkedDiamond: 1337 // if TBB and FBB have a common tail that includes their conditional 1338 // branch instructions, then we can If Convert this pattern. 1339 // EBB 1340 // _/ \_ 1341 // | | 1342 // TBB FBB 1343 // / \ / \ 1344 // FalseBB TrueBB FalseBB 1345 // 1346 Tokens.push_back(std::make_unique<IfcvtToken>( 1347 BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1348 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1349 Enqueued = true; 1350 } 1351 } 1352 } 1353 1354 if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) && 1355 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1356 TrueBBI.ExtraCost2, Prediction) && 1357 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) { 1358 // Triangle: 1359 // EBB 1360 // | \_ 1361 // | | 1362 // | TBB 1363 // | / 1364 // FBB 1365 Tokens.push_back( 1366 std::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups)); 1367 Enqueued = true; 1368 } 1369 1370 if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) && 1371 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1372 TrueBBI.ExtraCost2, Prediction) && 1373 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) { 1374 Tokens.push_back( 1375 std::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups)); 1376 Enqueued = true; 1377 } 1378 1379 if (ValidSimple(TrueBBI, Dups, Prediction) && 1380 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1381 TrueBBI.ExtraCost2, Prediction) && 1382 FeasibilityAnalysis(TrueBBI, BBI.BrCond)) { 1383 // Simple (split, no rejoin): 1384 // EBB 1385 // | \_ 1386 // | | 1387 // | TBB---> exit 1388 // | 1389 // FBB 1390 Tokens.push_back( 1391 std::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups)); 1392 Enqueued = true; 1393 } 1394 1395 if (CanRevCond) { 1396 // Try the other path... 1397 if (ValidTriangle(FalseBBI, TrueBBI, false, Dups, 1398 Prediction.getCompl()) && 1399 MeetIfcvtSizeLimit(*FalseBBI.BB, 1400 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1401 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1402 FeasibilityAnalysis(FalseBBI, RevCond, true)) { 1403 Tokens.push_back(std::make_unique<IfcvtToken>(BBI, ICTriangleFalse, 1404 FNeedSub, Dups)); 1405 Enqueued = true; 1406 } 1407 1408 if (ValidTriangle(FalseBBI, TrueBBI, true, Dups, 1409 Prediction.getCompl()) && 1410 MeetIfcvtSizeLimit(*FalseBBI.BB, 1411 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1412 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1413 FeasibilityAnalysis(FalseBBI, RevCond, true, true)) { 1414 Tokens.push_back( 1415 std::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups)); 1416 Enqueued = true; 1417 } 1418 1419 if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) && 1420 MeetIfcvtSizeLimit(*FalseBBI.BB, 1421 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1422 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1423 FeasibilityAnalysis(FalseBBI, RevCond)) { 1424 Tokens.push_back( 1425 std::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups)); 1426 Enqueued = true; 1427 } 1428 } 1429 1430 BBI.IsEnqueued = Enqueued; 1431 BBI.IsBeingAnalyzed = false; 1432 BBI.IsAnalyzed = true; 1433 BBStack.pop_back(); 1434 } 1435 } 1436 1437 /// Analyze all blocks and find entries for all if-conversion candidates. 1438 void IfConverter::AnalyzeBlocks( 1439 MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1440 for (MachineBasicBlock &MBB : MF) 1441 AnalyzeBlock(MBB, Tokens); 1442 1443 // Sort to favor more complex ifcvt scheme. 1444 llvm::stable_sort(Tokens, IfcvtTokenCmp); 1445 } 1446 1447 /// Returns true either if ToMBB is the next block after MBB or that all the 1448 /// intervening blocks are empty (given MBB can fall through to its next block). 1449 static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) { 1450 MachineFunction::iterator PI = MBB.getIterator(); 1451 MachineFunction::iterator I = std::next(PI); 1452 MachineFunction::iterator TI = ToMBB.getIterator(); 1453 MachineFunction::iterator E = MBB.getParent()->end(); 1454 while (I != TI) { 1455 // Check isSuccessor to avoid case where the next block is empty, but 1456 // it's not a successor. 1457 if (I == E || !I->empty() || !PI->isSuccessor(&*I)) 1458 return false; 1459 PI = I++; 1460 } 1461 // Finally see if the last I is indeed a successor to PI. 1462 return PI->isSuccessor(&*I); 1463 } 1464 1465 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it 1466 /// can be if-converted. If predecessor is already enqueued, dequeue it! 1467 void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) { 1468 for (const MachineBasicBlock *Predecessor : MBB.predecessors()) { 1469 BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()]; 1470 if (PBBI.IsDone || PBBI.BB == &MBB) 1471 continue; 1472 PBBI.IsAnalyzed = false; 1473 PBBI.IsEnqueued = false; 1474 } 1475 } 1476 1477 /// Inserts an unconditional branch from \p MBB to \p ToMBB. 1478 static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB, 1479 const TargetInstrInfo *TII) { 1480 DebugLoc dl; // FIXME: this is nowhere 1481 SmallVector<MachineOperand, 0> NoCond; 1482 TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl); 1483 } 1484 1485 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all 1486 /// values defined in MI which are also live/used by MI. 1487 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) { 1488 const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo(); 1489 1490 // Before stepping forward past MI, remember which regs were live 1491 // before MI. This is needed to set the Undef flag only when reg is 1492 // dead. 1493 SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI; 1494 LiveBeforeMI.setUniverse(TRI->getNumRegs()); 1495 for (unsigned Reg : Redefs) 1496 LiveBeforeMI.insert(Reg); 1497 1498 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers; 1499 Redefs.stepForward(MI, Clobbers); 1500 1501 // Now add the implicit uses for each of the clobbered values. 1502 for (auto Clobber : Clobbers) { 1503 // FIXME: Const cast here is nasty, but better than making StepForward 1504 // take a mutable instruction instead of const. 1505 unsigned Reg = Clobber.first; 1506 MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second); 1507 MachineInstr *OpMI = Op.getParent(); 1508 MachineInstrBuilder MIB(*OpMI->getMF(), OpMI); 1509 if (Op.isRegMask()) { 1510 // First handle regmasks. They clobber any entries in the mask which 1511 // means that we need a def for those registers. 1512 if (LiveBeforeMI.count(Reg)) 1513 MIB.addReg(Reg, RegState::Implicit); 1514 1515 // We also need to add an implicit def of this register for the later 1516 // use to read from. 1517 // For the register allocator to have allocated a register clobbered 1518 // by the call which is used later, it must be the case that 1519 // the call doesn't return. 1520 MIB.addReg(Reg, RegState::Implicit | RegState::Define); 1521 continue; 1522 } 1523 if (LiveBeforeMI.count(Reg)) 1524 MIB.addReg(Reg, RegState::Implicit); 1525 else { 1526 bool HasLiveSubReg = false; 1527 for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) { 1528 if (!LiveBeforeMI.count(*S)) 1529 continue; 1530 HasLiveSubReg = true; 1531 break; 1532 } 1533 if (HasLiveSubReg) 1534 MIB.addReg(Reg, RegState::Implicit); 1535 } 1536 } 1537 } 1538 1539 /// If convert a simple (split, no rejoin) sub-CFG. 1540 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) { 1541 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1542 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1543 BBInfo *CvtBBI = &TrueBBI; 1544 BBInfo *NextBBI = &FalseBBI; 1545 1546 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1547 if (Kind == ICSimpleFalse) 1548 std::swap(CvtBBI, NextBBI); 1549 1550 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1551 MachineBasicBlock &NextMBB = *NextBBI->BB; 1552 if (CvtBBI->IsDone || 1553 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1554 // Something has changed. It's no longer safe to predicate this block. 1555 BBI.IsAnalyzed = false; 1556 CvtBBI->IsAnalyzed = false; 1557 return false; 1558 } 1559 1560 if (CvtMBB.hasAddressTaken()) 1561 // Conservatively abort if-conversion if BB's address is taken. 1562 return false; 1563 1564 if (Kind == ICSimpleFalse) 1565 if (TII->reverseBranchCondition(Cond)) 1566 llvm_unreachable("Unable to reverse branch condition!"); 1567 1568 Redefs.init(*TRI); 1569 1570 if (MRI->tracksLiveness()) { 1571 // Initialize liveins to the first BB. These are potentially redefined by 1572 // predicated instructions. 1573 Redefs.addLiveIns(CvtMBB); 1574 Redefs.addLiveIns(NextMBB); 1575 } 1576 1577 // Remove the branches from the entry so we can add the contents of the true 1578 // block to it. 1579 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1580 1581 if (CvtMBB.pred_size() > 1) { 1582 // Copy instructions in the true block, predicate them, and add them to 1583 // the entry block. 1584 CopyAndPredicateBlock(BBI, *CvtBBI, Cond); 1585 1586 // Keep the CFG updated. 1587 BBI.BB->removeSuccessor(&CvtMBB, true); 1588 } else { 1589 // Predicate the instructions in the true block. 1590 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1591 1592 // Merge converted block into entry block. The BB to Cvt edge is removed 1593 // by MergeBlocks. 1594 MergeBlocks(BBI, *CvtBBI); 1595 } 1596 1597 bool IterIfcvt = true; 1598 if (!canFallThroughTo(*BBI.BB, NextMBB)) { 1599 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1600 BBI.HasFallThrough = false; 1601 // Now ifcvt'd block will look like this: 1602 // BB: 1603 // ... 1604 // t, f = cmp 1605 // if t op 1606 // b BBf 1607 // 1608 // We cannot further ifcvt this block because the unconditional branch 1609 // will have to be predicated on the new condition, that will not be 1610 // available if cmp executes. 1611 IterIfcvt = false; 1612 } 1613 1614 // Update block info. BB can be iteratively if-converted. 1615 if (!IterIfcvt) 1616 BBI.IsDone = true; 1617 InvalidatePreds(*BBI.BB); 1618 CvtBBI->IsDone = true; 1619 1620 // FIXME: Must maintain LiveIns. 1621 return true; 1622 } 1623 1624 /// If convert a triangle sub-CFG. 1625 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) { 1626 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1627 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1628 BBInfo *CvtBBI = &TrueBBI; 1629 BBInfo *NextBBI = &FalseBBI; 1630 DebugLoc dl; // FIXME: this is nowhere 1631 1632 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1633 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1634 std::swap(CvtBBI, NextBBI); 1635 1636 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1637 MachineBasicBlock &NextMBB = *NextBBI->BB; 1638 if (CvtBBI->IsDone || 1639 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1640 // Something has changed. It's no longer safe to predicate this block. 1641 BBI.IsAnalyzed = false; 1642 CvtBBI->IsAnalyzed = false; 1643 return false; 1644 } 1645 1646 if (CvtMBB.hasAddressTaken()) 1647 // Conservatively abort if-conversion if BB's address is taken. 1648 return false; 1649 1650 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1651 if (TII->reverseBranchCondition(Cond)) 1652 llvm_unreachable("Unable to reverse branch condition!"); 1653 1654 if (Kind == ICTriangleRev || Kind == ICTriangleFRev) { 1655 if (reverseBranchCondition(*CvtBBI)) { 1656 // BB has been changed, modify its predecessors (except for this 1657 // one) so they don't get ifcvt'ed based on bad intel. 1658 for (MachineBasicBlock *PBB : CvtMBB.predecessors()) { 1659 if (PBB == BBI.BB) 1660 continue; 1661 BBInfo &PBBI = BBAnalysis[PBB->getNumber()]; 1662 if (PBBI.IsEnqueued) { 1663 PBBI.IsAnalyzed = false; 1664 PBBI.IsEnqueued = false; 1665 } 1666 } 1667 } 1668 } 1669 1670 // Initialize liveins to the first BB. These are potentially redefined by 1671 // predicated instructions. 1672 Redefs.init(*TRI); 1673 if (MRI->tracksLiveness()) { 1674 Redefs.addLiveIns(CvtMBB); 1675 Redefs.addLiveIns(NextMBB); 1676 } 1677 1678 bool HasEarlyExit = CvtBBI->FalseBB != nullptr; 1679 BranchProbability CvtNext, CvtFalse, BBNext, BBCvt; 1680 1681 if (HasEarlyExit) { 1682 // Get probabilities before modifying CvtMBB and BBI.BB. 1683 CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB); 1684 CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB); 1685 BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB); 1686 BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB); 1687 } 1688 1689 // Remove the branches from the entry so we can add the contents of the true 1690 // block to it. 1691 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1692 1693 if (CvtMBB.pred_size() > 1) { 1694 // Copy instructions in the true block, predicate them, and add them to 1695 // the entry block. 1696 CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true); 1697 } else { 1698 // Predicate the 'true' block after removing its branch. 1699 CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB); 1700 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1701 1702 // Now merge the entry of the triangle with the true block. 1703 MergeBlocks(BBI, *CvtBBI, false); 1704 } 1705 1706 // Keep the CFG updated. 1707 BBI.BB->removeSuccessor(&CvtMBB, true); 1708 1709 // If 'true' block has a 'false' successor, add an exit branch to it. 1710 if (HasEarlyExit) { 1711 SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(), 1712 CvtBBI->BrCond.end()); 1713 if (TII->reverseBranchCondition(RevCond)) 1714 llvm_unreachable("Unable to reverse branch condition!"); 1715 1716 // Update the edge probability for both CvtBBI->FalseBB and NextBBI. 1717 // NewNext = New_Prob(BBI.BB, NextMBB) = 1718 // Prob(BBI.BB, NextMBB) + 1719 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB) 1720 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) = 1721 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB) 1722 auto NewTrueBB = getNextBlock(*BBI.BB); 1723 auto NewNext = BBNext + BBCvt * CvtNext; 1724 auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB); 1725 if (NewTrueBBIter != BBI.BB->succ_end()) 1726 BBI.BB->setSuccProbability(NewTrueBBIter, NewNext); 1727 1728 auto NewFalse = BBCvt * CvtFalse; 1729 TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl); 1730 BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse); 1731 } 1732 1733 // Merge in the 'false' block if the 'false' block has no other 1734 // predecessors. Otherwise, add an unconditional branch to 'false'. 1735 bool FalseBBDead = false; 1736 bool IterIfcvt = true; 1737 bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB); 1738 if (!isFallThrough) { 1739 // Only merge them if the true block does not fallthrough to the false 1740 // block. By not merging them, we make it possible to iteratively 1741 // ifcvt the blocks. 1742 if (!HasEarlyExit && 1743 NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough && 1744 !NextMBB.hasAddressTaken()) { 1745 MergeBlocks(BBI, *NextBBI); 1746 FalseBBDead = true; 1747 } else { 1748 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1749 BBI.HasFallThrough = false; 1750 } 1751 // Mixed predicated and unpredicated code. This cannot be iteratively 1752 // predicated. 1753 IterIfcvt = false; 1754 } 1755 1756 // Update block info. BB can be iteratively if-converted. 1757 if (!IterIfcvt) 1758 BBI.IsDone = true; 1759 InvalidatePreds(*BBI.BB); 1760 CvtBBI->IsDone = true; 1761 if (FalseBBDead) 1762 NextBBI->IsDone = true; 1763 1764 // FIXME: Must maintain LiveIns. 1765 return true; 1766 } 1767 1768 /// Common code shared between diamond conversions. 1769 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape. 1770 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI 1771 /// and FalseBBI 1772 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI 1773 /// and \p FalseBBI 1774 /// \p RemoveBranch - Remove the common branch of the two blocks before 1775 /// predicating. Only false for unanalyzable fallthrough 1776 /// cases. The caller will replace the branch if necessary. 1777 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for 1778 /// unanalyzable fallthrough 1779 bool IfConverter::IfConvertDiamondCommon( 1780 BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 1781 unsigned NumDups1, unsigned NumDups2, 1782 bool TClobbersPred, bool FClobbersPred, 1783 bool RemoveBranch, bool MergeAddEdges) { 1784 1785 if (TrueBBI.IsDone || FalseBBI.IsDone || 1786 TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) { 1787 // Something has changed. It's no longer safe to predicate these blocks. 1788 BBI.IsAnalyzed = false; 1789 TrueBBI.IsAnalyzed = false; 1790 FalseBBI.IsAnalyzed = false; 1791 return false; 1792 } 1793 1794 if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken()) 1795 // Conservatively abort if-conversion if either BB has its address taken. 1796 return false; 1797 1798 // Put the predicated instructions from the 'true' block before the 1799 // instructions from the 'false' block, unless the true block would clobber 1800 // the predicate, in which case, do the opposite. 1801 BBInfo *BBI1 = &TrueBBI; 1802 BBInfo *BBI2 = &FalseBBI; 1803 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1804 if (TII->reverseBranchCondition(RevCond)) 1805 llvm_unreachable("Unable to reverse branch condition!"); 1806 SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond; 1807 SmallVector<MachineOperand, 4> *Cond2 = &RevCond; 1808 1809 // Figure out the more profitable ordering. 1810 bool DoSwap = false; 1811 if (TClobbersPred && !FClobbersPred) 1812 DoSwap = true; 1813 else if (!TClobbersPred && !FClobbersPred) { 1814 if (TrueBBI.NonPredSize > FalseBBI.NonPredSize) 1815 DoSwap = true; 1816 } else if (TClobbersPred && FClobbersPred) 1817 llvm_unreachable("Predicate info cannot be clobbered by both sides."); 1818 if (DoSwap) { 1819 std::swap(BBI1, BBI2); 1820 std::swap(Cond1, Cond2); 1821 } 1822 1823 // Remove the conditional branch from entry to the blocks. 1824 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1825 1826 MachineBasicBlock &MBB1 = *BBI1->BB; 1827 MachineBasicBlock &MBB2 = *BBI2->BB; 1828 1829 // Initialize the Redefs: 1830 // - BB2 live-in regs need implicit uses before being redefined by BB1 1831 // instructions. 1832 // - BB1 live-out regs need implicit uses before being redefined by BB2 1833 // instructions. We start with BB1 live-ins so we have the live-out regs 1834 // after tracking the BB1 instructions. 1835 Redefs.init(*TRI); 1836 if (MRI->tracksLiveness()) { 1837 Redefs.addLiveIns(MBB1); 1838 Redefs.addLiveIns(MBB2); 1839 } 1840 1841 // Remove the duplicated instructions at the beginnings of both paths. 1842 // Skip dbg_value instructions. 1843 MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr(); 1844 MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr(); 1845 BBI1->NonPredSize -= NumDups1; 1846 BBI2->NonPredSize -= NumDups1; 1847 1848 // Skip past the dups on each side separately since there may be 1849 // differing dbg_value entries. NumDups1 can include a "return" 1850 // instruction, if it's not marked as "branch". 1851 for (unsigned i = 0; i < NumDups1; ++DI1) { 1852 if (DI1 == MBB1.end()) 1853 break; 1854 if (!DI1->isDebugInstr()) 1855 ++i; 1856 } 1857 while (NumDups1 != 0) { 1858 // Since this instruction is going to be deleted, update call 1859 // site info state if the instruction is call instruction. 1860 if (DI2->shouldUpdateCallSiteInfo()) 1861 MBB2.getParent()->eraseCallSiteInfo(&*DI2); 1862 1863 ++DI2; 1864 if (DI2 == MBB2.end()) 1865 break; 1866 if (!DI2->isDebugInstr()) 1867 --NumDups1; 1868 } 1869 1870 if (MRI->tracksLiveness()) { 1871 for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) { 1872 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy; 1873 Redefs.stepForward(MI, Dummy); 1874 } 1875 } 1876 1877 BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1); 1878 MBB2.erase(MBB2.begin(), DI2); 1879 1880 // The branches have been checked to match, so it is safe to remove the 1881 // branch in BB1 and rely on the copy in BB2. The complication is that 1882 // the blocks may end with a return instruction, which may or may not 1883 // be marked as "branch". If it's not, then it could be included in 1884 // "dups1", leaving the blocks potentially empty after moving the common 1885 // duplicates. 1886 #ifndef NDEBUG 1887 // Unanalyzable branches must match exactly. Check that now. 1888 if (!BBI1->IsBrAnalyzable) 1889 verifySameBranchInstructions(&MBB1, &MBB2); 1890 #endif 1891 // Remove duplicated instructions from the tail of MBB1: any branch 1892 // instructions, and the common instructions counted by NumDups2. 1893 DI1 = MBB1.end(); 1894 while (DI1 != MBB1.begin()) { 1895 MachineBasicBlock::iterator Prev = std::prev(DI1); 1896 if (!Prev->isBranch() && !Prev->isDebugInstr()) 1897 break; 1898 DI1 = Prev; 1899 } 1900 for (unsigned i = 0; i != NumDups2; ) { 1901 // NumDups2 only counted non-dbg_value instructions, so this won't 1902 // run off the head of the list. 1903 assert(DI1 != MBB1.begin()); 1904 1905 --DI1; 1906 1907 // Since this instruction is going to be deleted, update call 1908 // site info state if the instruction is call instruction. 1909 if (DI1->shouldUpdateCallSiteInfo()) 1910 MBB1.getParent()->eraseCallSiteInfo(&*DI1); 1911 1912 // skip dbg_value instructions 1913 if (!DI1->isDebugInstr()) 1914 ++i; 1915 } 1916 MBB1.erase(DI1, MBB1.end()); 1917 1918 DI2 = BBI2->BB->end(); 1919 // The branches have been checked to match. Skip over the branch in the false 1920 // block so that we don't try to predicate it. 1921 if (RemoveBranch) 1922 BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB); 1923 else { 1924 // Make DI2 point to the end of the range where the common "tail" 1925 // instructions could be found. 1926 while (DI2 != MBB2.begin()) { 1927 MachineBasicBlock::iterator Prev = std::prev(DI2); 1928 if (!Prev->isBranch() && !Prev->isDebugInstr()) 1929 break; 1930 DI2 = Prev; 1931 } 1932 } 1933 while (NumDups2 != 0) { 1934 // NumDups2 only counted non-dbg_value instructions, so this won't 1935 // run off the head of the list. 1936 assert(DI2 != MBB2.begin()); 1937 --DI2; 1938 // skip dbg_value instructions 1939 if (!DI2->isDebugInstr()) 1940 --NumDups2; 1941 } 1942 1943 // Remember which registers would later be defined by the false block. 1944 // This allows us not to predicate instructions in the true block that would 1945 // later be re-defined. That is, rather than 1946 // subeq r0, r1, #1 1947 // addne r0, r1, #1 1948 // generate: 1949 // sub r0, r1, #1 1950 // addne r0, r1, #1 1951 SmallSet<MCPhysReg, 4> RedefsByFalse; 1952 SmallSet<MCPhysReg, 4> ExtUses; 1953 if (TII->isProfitableToUnpredicate(MBB1, MBB2)) { 1954 for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) { 1955 if (FI.isDebugInstr()) 1956 continue; 1957 SmallVector<MCPhysReg, 4> Defs; 1958 for (const MachineOperand &MO : FI.operands()) { 1959 if (!MO.isReg()) 1960 continue; 1961 Register Reg = MO.getReg(); 1962 if (!Reg) 1963 continue; 1964 if (MO.isDef()) { 1965 Defs.push_back(Reg); 1966 } else if (!RedefsByFalse.count(Reg)) { 1967 // These are defined before ctrl flow reach the 'false' instructions. 1968 // They cannot be modified by the 'true' instructions. 1969 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1970 SubRegs.isValid(); ++SubRegs) 1971 ExtUses.insert(*SubRegs); 1972 } 1973 } 1974 1975 for (MCPhysReg Reg : Defs) { 1976 if (!ExtUses.count(Reg)) { 1977 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1978 SubRegs.isValid(); ++SubRegs) 1979 RedefsByFalse.insert(*SubRegs); 1980 } 1981 } 1982 } 1983 } 1984 1985 // Predicate the 'true' block. 1986 PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse); 1987 1988 // After predicating BBI1, if there is a predicated terminator in BBI1 and 1989 // a non-predicated in BBI2, then we don't want to predicate the one from 1990 // BBI2. The reason is that if we merged these blocks, we would end up with 1991 // two predicated terminators in the same block. 1992 // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't 1993 // predicate them either. They were checked to be identical, and so the 1994 // same branch would happen regardless of which path was taken. 1995 if (!MBB2.empty() && (DI2 == MBB2.end())) { 1996 MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator(); 1997 MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator(); 1998 bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T); 1999 bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T); 2000 if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable)) 2001 --DI2; 2002 } 2003 2004 // Predicate the 'false' block. 2005 PredicateBlock(*BBI2, DI2, *Cond2); 2006 2007 // Merge the true block into the entry of the diamond. 2008 MergeBlocks(BBI, *BBI1, MergeAddEdges); 2009 MergeBlocks(BBI, *BBI2, MergeAddEdges); 2010 return true; 2011 } 2012 2013 /// If convert an almost-diamond sub-CFG where the true 2014 /// and false blocks share a common tail. 2015 bool IfConverter::IfConvertForkedDiamond( 2016 BBInfo &BBI, IfcvtKind Kind, 2017 unsigned NumDups1, unsigned NumDups2, 2018 bool TClobbersPred, bool FClobbersPred) { 2019 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 2020 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 2021 2022 // Save the debug location for later. 2023 DebugLoc dl; 2024 MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator(); 2025 if (TIE != TrueBBI.BB->end()) 2026 dl = TIE->getDebugLoc(); 2027 // Removing branches from both blocks is safe, because we have already 2028 // determined that both blocks have the same branch instructions. The branch 2029 // will be added back at the end, unpredicated. 2030 if (!IfConvertDiamondCommon( 2031 BBI, TrueBBI, FalseBBI, 2032 NumDups1, NumDups2, 2033 TClobbersPred, FClobbersPred, 2034 /* RemoveBranch */ true, /* MergeAddEdges */ true)) 2035 return false; 2036 2037 // Add back the branch. 2038 // Debug location saved above when removing the branch from BBI2 2039 TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB, 2040 TrueBBI.BrCond, dl); 2041 2042 // Update block info. 2043 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 2044 InvalidatePreds(*BBI.BB); 2045 2046 // FIXME: Must maintain LiveIns. 2047 return true; 2048 } 2049 2050 /// If convert a diamond sub-CFG. 2051 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 2052 unsigned NumDups1, unsigned NumDups2, 2053 bool TClobbersPred, bool FClobbersPred) { 2054 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 2055 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 2056 MachineBasicBlock *TailBB = TrueBBI.TrueBB; 2057 2058 // True block must fall through or end with an unanalyzable terminator. 2059 if (!TailBB) { 2060 if (blockAlwaysFallThrough(TrueBBI)) 2061 TailBB = FalseBBI.TrueBB; 2062 assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!"); 2063 } 2064 2065 if (!IfConvertDiamondCommon( 2066 BBI, TrueBBI, FalseBBI, 2067 NumDups1, NumDups2, 2068 TClobbersPred, FClobbersPred, 2069 /* RemoveBranch */ TrueBBI.IsBrAnalyzable, 2070 /* MergeAddEdges */ TailBB == nullptr)) 2071 return false; 2072 2073 // If the if-converted block falls through or unconditionally branches into 2074 // the tail block, and the tail block does not have other predecessors, then 2075 // fold the tail block in as well. Otherwise, unless it falls through to the 2076 // tail, add a unconditional branch to it. 2077 if (TailBB) { 2078 // We need to remove the edges to the true and false blocks manually since 2079 // we didn't let IfConvertDiamondCommon update the CFG. 2080 BBI.BB->removeSuccessor(TrueBBI.BB); 2081 BBI.BB->removeSuccessor(FalseBBI.BB, true); 2082 2083 BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()]; 2084 bool CanMergeTail = !TailBBI.HasFallThrough && 2085 !TailBBI.BB->hasAddressTaken(); 2086 // The if-converted block can still have a predicated terminator 2087 // (e.g. a predicated return). If that is the case, we cannot merge 2088 // it with the tail block. 2089 MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator(); 2090 if (TI != BBI.BB->end() && TII->isPredicated(*TI)) 2091 CanMergeTail = false; 2092 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB; 2093 // check if there are any other predecessors besides those. 2094 unsigned NumPreds = TailBB->pred_size(); 2095 if (NumPreds > 1) 2096 CanMergeTail = false; 2097 else if (NumPreds == 1 && CanMergeTail) { 2098 MachineBasicBlock::pred_iterator PI = TailBB->pred_begin(); 2099 if (*PI != TrueBBI.BB && *PI != FalseBBI.BB) 2100 CanMergeTail = false; 2101 } 2102 if (CanMergeTail) { 2103 MergeBlocks(BBI, TailBBI); 2104 TailBBI.IsDone = true; 2105 } else { 2106 BBI.BB->addSuccessor(TailBB, BranchProbability::getOne()); 2107 InsertUncondBranch(*BBI.BB, *TailBB, TII); 2108 BBI.HasFallThrough = false; 2109 } 2110 } 2111 2112 // Update block info. 2113 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 2114 InvalidatePreds(*BBI.BB); 2115 2116 // FIXME: Must maintain LiveIns. 2117 return true; 2118 } 2119 2120 static bool MaySpeculate(const MachineInstr &MI, 2121 SmallSet<MCPhysReg, 4> &LaterRedefs) { 2122 bool SawStore = true; 2123 if (!MI.isSafeToMove(nullptr, SawStore)) 2124 return false; 2125 2126 for (const MachineOperand &MO : MI.operands()) { 2127 if (!MO.isReg()) 2128 continue; 2129 Register Reg = MO.getReg(); 2130 if (!Reg) 2131 continue; 2132 if (MO.isDef() && !LaterRedefs.count(Reg)) 2133 return false; 2134 } 2135 2136 return true; 2137 } 2138 2139 /// Predicate instructions from the start of the block to the specified end with 2140 /// the specified condition. 2141 void IfConverter::PredicateBlock(BBInfo &BBI, 2142 MachineBasicBlock::iterator E, 2143 SmallVectorImpl<MachineOperand> &Cond, 2144 SmallSet<MCPhysReg, 4> *LaterRedefs) { 2145 bool AnyUnpred = false; 2146 bool MaySpec = LaterRedefs != nullptr; 2147 for (MachineInstr &I : make_range(BBI.BB->begin(), E)) { 2148 if (I.isDebugInstr() || TII->isPredicated(I)) 2149 continue; 2150 // It may be possible not to predicate an instruction if it's the 'true' 2151 // side of a diamond and the 'false' side may re-define the instruction's 2152 // defs. 2153 if (MaySpec && MaySpeculate(I, *LaterRedefs)) { 2154 AnyUnpred = true; 2155 continue; 2156 } 2157 // If any instruction is predicated, then every instruction after it must 2158 // be predicated. 2159 MaySpec = false; 2160 if (!TII->PredicateInstruction(I, Cond)) { 2161 #ifndef NDEBUG 2162 dbgs() << "Unable to predicate " << I << "!\n"; 2163 #endif 2164 llvm_unreachable(nullptr); 2165 } 2166 2167 // If the predicated instruction now redefines a register as the result of 2168 // if-conversion, add an implicit kill. 2169 UpdatePredRedefs(I, Redefs); 2170 } 2171 2172 BBI.Predicate.append(Cond.begin(), Cond.end()); 2173 2174 BBI.IsAnalyzed = false; 2175 BBI.NonPredSize = 0; 2176 2177 ++NumIfConvBBs; 2178 if (AnyUnpred) 2179 ++NumUnpred; 2180 } 2181 2182 /// Copy and predicate instructions from source BB to the destination block. 2183 /// Skip end of block branches if IgnoreBr is true. 2184 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 2185 SmallVectorImpl<MachineOperand> &Cond, 2186 bool IgnoreBr) { 2187 MachineFunction &MF = *ToBBI.BB->getParent(); 2188 2189 MachineBasicBlock &FromMBB = *FromBBI.BB; 2190 for (MachineInstr &I : FromMBB) { 2191 // Do not copy the end of the block branches. 2192 if (IgnoreBr && I.isBranch()) 2193 break; 2194 2195 MachineInstr *MI = MF.CloneMachineInstr(&I); 2196 // Make a copy of the call site info. 2197 if (I.isCandidateForCallSiteEntry()) 2198 MF.copyCallSiteInfo(&I, MI); 2199 2200 ToBBI.BB->insert(ToBBI.BB->end(), MI); 2201 ToBBI.NonPredSize++; 2202 unsigned ExtraPredCost = TII->getPredicationCost(I); 2203 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); 2204 if (NumCycles > 1) 2205 ToBBI.ExtraCost += NumCycles-1; 2206 ToBBI.ExtraCost2 += ExtraPredCost; 2207 2208 if (!TII->isPredicated(I) && !MI->isDebugInstr()) { 2209 if (!TII->PredicateInstruction(*MI, Cond)) { 2210 #ifndef NDEBUG 2211 dbgs() << "Unable to predicate " << I << "!\n"; 2212 #endif 2213 llvm_unreachable(nullptr); 2214 } 2215 } 2216 2217 // If the predicated instruction now redefines a register as the result of 2218 // if-conversion, add an implicit kill. 2219 UpdatePredRedefs(*MI, Redefs); 2220 } 2221 2222 if (!IgnoreBr) { 2223 std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(), 2224 FromMBB.succ_end()); 2225 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2226 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2227 2228 for (MachineBasicBlock *Succ : Succs) { 2229 // Fallthrough edge can't be transferred. 2230 if (Succ == FallThrough) 2231 continue; 2232 ToBBI.BB->addSuccessor(Succ); 2233 } 2234 } 2235 2236 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2237 ToBBI.Predicate.append(Cond.begin(), Cond.end()); 2238 2239 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2240 ToBBI.IsAnalyzed = false; 2241 2242 ++NumDupBBs; 2243 } 2244 2245 /// Move all instructions from FromBB to the end of ToBB. This will leave 2246 /// FromBB as an empty block, so remove all of its successor edges and move it 2247 /// to the end of the function. If AddEdges is true, i.e., when FromBBI's 2248 /// branch is being moved, add those successor edges to ToBBI and remove the old 2249 /// edge from ToBBI to FromBBI. 2250 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) { 2251 MachineBasicBlock &FromMBB = *FromBBI.BB; 2252 assert(!FromMBB.hasAddressTaken() && 2253 "Removing a BB whose address is taken!"); 2254 2255 // In case FromMBB contains terminators (e.g. return instruction), 2256 // first move the non-terminator instructions, then the terminators. 2257 MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator(); 2258 MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator(); 2259 ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI); 2260 2261 // If FromBB has non-predicated terminator we should copy it at the end. 2262 if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI)) 2263 ToTI = ToBBI.BB->end(); 2264 ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end()); 2265 2266 // Force normalizing the successors' probabilities of ToBBI.BB to convert all 2267 // unknown probabilities into known ones. 2268 // FIXME: This usage is too tricky and in the future we would like to 2269 // eliminate all unknown probabilities in MBB. 2270 if (ToBBI.IsBrAnalyzable) 2271 ToBBI.BB->normalizeSuccProbs(); 2272 2273 SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(), 2274 FromMBB.succ_end()); 2275 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2276 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2277 // The edge probability from ToBBI.BB to FromMBB, which is only needed when 2278 // AddEdges is true and FromMBB is a successor of ToBBI.BB. 2279 auto To2FromProb = BranchProbability::getZero(); 2280 if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) { 2281 // Remove the old edge but remember the edge probability so we can calculate 2282 // the correct weights on the new edges being added further down. 2283 To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB); 2284 ToBBI.BB->removeSuccessor(&FromMBB); 2285 } 2286 2287 for (MachineBasicBlock *Succ : FromSuccs) { 2288 // Fallthrough edge can't be transferred. 2289 if (Succ == FallThrough) { 2290 FromMBB.removeSuccessor(Succ); 2291 continue; 2292 } 2293 2294 auto NewProb = BranchProbability::getZero(); 2295 if (AddEdges) { 2296 // Calculate the edge probability for the edge from ToBBI.BB to Succ, 2297 // which is a portion of the edge probability from FromMBB to Succ. The 2298 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if 2299 // FromBBI is a successor of ToBBI.BB. See comment below for exception). 2300 NewProb = MBPI->getEdgeProbability(&FromMBB, Succ); 2301 2302 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This 2303 // only happens when if-converting a diamond CFG and FromMBB is the 2304 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we 2305 // could just use the probabilities on FromMBB's out-edges when adding 2306 // new successors. 2307 if (!To2FromProb.isZero()) 2308 NewProb *= To2FromProb; 2309 } 2310 2311 FromMBB.removeSuccessor(Succ); 2312 2313 if (AddEdges) { 2314 // If the edge from ToBBI.BB to Succ already exists, update the 2315 // probability of this edge by adding NewProb to it. An example is shown 2316 // below, in which A is ToBBI.BB and B is FromMBB. In this case we 2317 // don't have to set C as A's successor as it already is. We only need to 2318 // update the edge probability on A->C. Note that B will not be 2319 // immediately removed from A's successors. It is possible that B->D is 2320 // not removed either if D is a fallthrough of B. Later the edge A->D 2321 // (generated here) and B->D will be combined into one edge. To maintain 2322 // correct edge probability of this combined edge, we need to set the edge 2323 // probability of A->B to zero, which is already done above. The edge 2324 // probability on A->D is calculated by scaling the original probability 2325 // on A->B by the probability of B->D. 2326 // 2327 // Before ifcvt: After ifcvt (assume B->D is kept): 2328 // 2329 // A A 2330 // /| /|\ 2331 // / B / B| 2332 // | /| | || 2333 // |/ | | |/ 2334 // C D C D 2335 // 2336 if (ToBBI.BB->isSuccessor(Succ)) 2337 ToBBI.BB->setSuccProbability( 2338 find(ToBBI.BB->successors(), Succ), 2339 MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb); 2340 else 2341 ToBBI.BB->addSuccessor(Succ, NewProb); 2342 } 2343 } 2344 2345 // Move the now empty FromMBB out of the way to the end of the function so 2346 // it doesn't interfere with fallthrough checks done by canFallThroughTo(). 2347 MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin(); 2348 if (Last != &FromMBB) 2349 FromMBB.moveAfter(Last); 2350 2351 // Normalize the probabilities of ToBBI.BB's successors with all adjustment 2352 // we've done above. 2353 if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable) 2354 ToBBI.BB->normalizeSuccProbs(); 2355 2356 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2357 FromBBI.Predicate.clear(); 2358 2359 ToBBI.NonPredSize += FromBBI.NonPredSize; 2360 ToBBI.ExtraCost += FromBBI.ExtraCost; 2361 ToBBI.ExtraCost2 += FromBBI.ExtraCost2; 2362 FromBBI.NonPredSize = 0; 2363 FromBBI.ExtraCost = 0; 2364 FromBBI.ExtraCost2 = 0; 2365 2366 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2367 ToBBI.HasFallThrough = FromBBI.HasFallThrough; 2368 ToBBI.IsAnalyzed = false; 2369 FromBBI.IsAnalyzed = false; 2370 } 2371 2372 FunctionPass * 2373 llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) { 2374 return new IfConverter(std::move(Ftor)); 2375 } 2376