1 //===-- IfConversion.cpp - Machine code if conversion pass. ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the machine instruction level if-conversion pass, which 11 // tries to convert conditional branches into predicated instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/Passes.h" 16 #include "BranchFolding.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/ScopeExit.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/LivePhysRegs.h" 22 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 23 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetSchedule.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Target/TargetLowering.h" 35 #include "llvm/Target/TargetRegisterInfo.h" 36 #include "llvm/Target/TargetSubtargetInfo.h" 37 #include <algorithm> 38 #include <utility> 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "ifcvt" 43 44 // Hidden options for help debugging. 45 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden); 46 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden); 47 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden); 48 static cl::opt<bool> DisableSimple("disable-ifcvt-simple", 49 cl::init(false), cl::Hidden); 50 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false", 51 cl::init(false), cl::Hidden); 52 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle", 53 cl::init(false), cl::Hidden); 54 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev", 55 cl::init(false), cl::Hidden); 56 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false", 57 cl::init(false), cl::Hidden); 58 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev", 59 cl::init(false), cl::Hidden); 60 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond", 61 cl::init(false), cl::Hidden); 62 static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond", 63 cl::init(false), cl::Hidden); 64 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold", 65 cl::init(true), cl::Hidden); 66 67 STATISTIC(NumSimple, "Number of simple if-conversions performed"); 68 STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed"); 69 STATISTIC(NumTriangle, "Number of triangle if-conversions performed"); 70 STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed"); 71 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed"); 72 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed"); 73 STATISTIC(NumDiamonds, "Number of diamond if-conversions performed"); 74 STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed"); 75 STATISTIC(NumIfConvBBs, "Number of if-converted blocks"); 76 STATISTIC(NumDupBBs, "Number of duplicated blocks"); 77 STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated"); 78 79 namespace { 80 class IfConverter : public MachineFunctionPass { 81 enum IfcvtKind { 82 ICNotClassfied, // BB data valid, but not classified. 83 ICSimpleFalse, // Same as ICSimple, but on the false path. 84 ICSimple, // BB is entry of an one split, no rejoin sub-CFG. 85 ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition. 86 ICTriangleRev, // Same as ICTriangle, but true path rev condition. 87 ICTriangleFalse, // Same as ICTriangle, but on the false path. 88 ICTriangle, // BB is entry of a triangle sub-CFG. 89 ICDiamond, // BB is entry of a diamond sub-CFG. 90 ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a 91 // common tail that can be shared. 92 }; 93 94 /// One per MachineBasicBlock, this is used to cache the result 95 /// if-conversion feasibility analysis. This includes results from 96 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its 97 /// classification, and common tail block of its successors (if it's a 98 /// diamond shape), its size, whether it's predicable, and whether any 99 /// instruction can clobber the 'would-be' predicate. 100 /// 101 /// IsDone - True if BB is not to be considered for ifcvt. 102 /// IsBeingAnalyzed - True if BB is currently being analyzed. 103 /// IsAnalyzed - True if BB has been analyzed (info is still valid). 104 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed. 105 /// IsBrAnalyzable - True if analyzeBranch() returns false. 106 /// HasFallThrough - True if BB may fallthrough to the following BB. 107 /// IsUnpredicable - True if BB is known to be unpredicable. 108 /// ClobbersPred - True if BB could modify predicates (e.g. has 109 /// cmp, call, etc.) 110 /// NonPredSize - Number of non-predicated instructions. 111 /// ExtraCost - Extra cost for multi-cycle instructions. 112 /// ExtraCost2 - Some instructions are slower when predicated 113 /// BB - Corresponding MachineBasicBlock. 114 /// TrueBB / FalseBB- See analyzeBranch(). 115 /// BrCond - Conditions for end of block conditional branches. 116 /// Predicate - Predicate used in the BB. 117 struct BBInfo { 118 bool IsDone : 1; 119 bool IsBeingAnalyzed : 1; 120 bool IsAnalyzed : 1; 121 bool IsEnqueued : 1; 122 bool IsBrAnalyzable : 1; 123 bool IsBrReversible : 1; 124 bool HasFallThrough : 1; 125 bool IsUnpredicable : 1; 126 bool CannotBeCopied : 1; 127 bool ClobbersPred : 1; 128 unsigned NonPredSize; 129 unsigned ExtraCost; 130 unsigned ExtraCost2; 131 MachineBasicBlock *BB; 132 MachineBasicBlock *TrueBB; 133 MachineBasicBlock *FalseBB; 134 SmallVector<MachineOperand, 4> BrCond; 135 SmallVector<MachineOperand, 4> Predicate; 136 BBInfo() : IsDone(false), IsBeingAnalyzed(false), 137 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false), 138 IsBrReversible(false), HasFallThrough(false), 139 IsUnpredicable(false), CannotBeCopied(false), 140 ClobbersPred(false), NonPredSize(0), ExtraCost(0), 141 ExtraCost2(0), BB(nullptr), TrueBB(nullptr), 142 FalseBB(nullptr) {} 143 }; 144 145 /// Record information about pending if-conversions to attempt: 146 /// BBI - Corresponding BBInfo. 147 /// Kind - Type of block. See IfcvtKind. 148 /// NeedSubsumption - True if the to-be-predicated BB has already been 149 /// predicated. 150 /// NumDups - Number of instructions that would be duplicated due 151 /// to this if-conversion. (For diamonds, the number of 152 /// identical instructions at the beginnings of both 153 /// paths). 154 /// NumDups2 - For diamonds, the number of identical instructions 155 /// at the ends of both paths. 156 struct IfcvtToken { 157 BBInfo &BBI; 158 IfcvtKind Kind; 159 unsigned NumDups; 160 unsigned NumDups2; 161 bool NeedSubsumption : 1; 162 bool TClobbersPred : 1; 163 bool FClobbersPred : 1; 164 IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0, 165 bool tc = false, bool fc = false) 166 : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s), 167 TClobbersPred(tc), FClobbersPred(fc) {} 168 }; 169 170 /// Results of if-conversion feasibility analysis indexed by basic block 171 /// number. 172 std::vector<BBInfo> BBAnalysis; 173 TargetSchedModel SchedModel; 174 175 const TargetLoweringBase *TLI; 176 const TargetInstrInfo *TII; 177 const TargetRegisterInfo *TRI; 178 const MachineBranchProbabilityInfo *MBPI; 179 MachineRegisterInfo *MRI; 180 181 LivePhysRegs Redefs; 182 LivePhysRegs DontKill; 183 184 bool PreRegAlloc; 185 bool MadeChange; 186 int FnNum; 187 std::function<bool(const Function &)> PredicateFtor; 188 189 public: 190 static char ID; 191 IfConverter(std::function<bool(const Function &)> Ftor = nullptr) 192 : MachineFunctionPass(ID), FnNum(-1), PredicateFtor(std::move(Ftor)) { 193 initializeIfConverterPass(*PassRegistry::getPassRegistry()); 194 } 195 196 void getAnalysisUsage(AnalysisUsage &AU) const override { 197 AU.addRequired<MachineBlockFrequencyInfo>(); 198 AU.addRequired<MachineBranchProbabilityInfo>(); 199 MachineFunctionPass::getAnalysisUsage(AU); 200 } 201 202 bool runOnMachineFunction(MachineFunction &MF) override; 203 204 MachineFunctionProperties getRequiredProperties() const override { 205 return MachineFunctionProperties().set( 206 MachineFunctionProperties::Property::NoVRegs); 207 } 208 209 private: 210 bool reverseBranchCondition(BBInfo &BBI) const; 211 bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 212 BranchProbability Prediction) const; 213 bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 214 bool FalseBranch, unsigned &Dups, 215 BranchProbability Prediction) const; 216 bool CountDuplicatedInstructions( 217 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 218 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 219 unsigned &Dups1, unsigned &Dups2, 220 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 221 bool SkipUnconditionalBranches) const; 222 bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 223 unsigned &Dups1, unsigned &Dups2, 224 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 225 bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 226 unsigned &Dups1, unsigned &Dups2, 227 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 228 void AnalyzeBranches(BBInfo &BBI); 229 void ScanInstructions(BBInfo &BBI, 230 MachineBasicBlock::iterator &Begin, 231 MachineBasicBlock::iterator &End, 232 bool BranchUnpredicable = false) const; 233 bool RescanInstructions( 234 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 235 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 236 BBInfo &TrueBBI, BBInfo &FalseBBI) const; 237 void AnalyzeBlock(MachineBasicBlock &MBB, 238 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 239 bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Cond, 240 bool isTriangle = false, bool RevBranch = false, 241 bool hasCommonTail = false); 242 void AnalyzeBlocks(MachineFunction &MF, 243 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 244 void InvalidatePreds(MachineBasicBlock &MBB); 245 void RemoveExtraEdges(BBInfo &BBI); 246 bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind); 247 bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind); 248 bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 249 unsigned NumDups1, unsigned NumDups2, 250 bool TClobbersPred, bool FClobbersPred, 251 bool RemoveBranch, bool MergeAddEdges); 252 bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 253 unsigned NumDups1, unsigned NumDups2, 254 bool TClobbers, bool FClobbers); 255 bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind, 256 unsigned NumDups1, unsigned NumDups2, 257 bool TClobbers, bool FClobbers); 258 void PredicateBlock(BBInfo &BBI, 259 MachineBasicBlock::iterator E, 260 SmallVectorImpl<MachineOperand> &Cond, 261 SmallSet<unsigned, 4> *LaterRedefs = nullptr); 262 void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 263 SmallVectorImpl<MachineOperand> &Cond, 264 bool IgnoreBr = false); 265 void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true); 266 267 bool MeetIfcvtSizeLimit(MachineBasicBlock &BB, 268 unsigned Cycle, unsigned Extra, 269 BranchProbability Prediction) const { 270 return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra, 271 Prediction); 272 } 273 274 bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB, 275 unsigned TCycle, unsigned TExtra, 276 MachineBasicBlock &FBB, 277 unsigned FCycle, unsigned FExtra, 278 BranchProbability Prediction) const { 279 return TCycle > 0 && FCycle > 0 && 280 TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra, 281 Prediction); 282 } 283 284 /// Returns true if Block ends without a terminator. 285 bool blockAlwaysFallThrough(BBInfo &BBI) const { 286 return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr; 287 } 288 289 /// Used to sort if-conversion candidates. 290 static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1, 291 const std::unique_ptr<IfcvtToken> &C2) { 292 int Incr1 = (C1->Kind == ICDiamond) 293 ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups; 294 int Incr2 = (C2->Kind == ICDiamond) 295 ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups; 296 if (Incr1 > Incr2) 297 return true; 298 else if (Incr1 == Incr2) { 299 // Favors subsumption. 300 if (!C1->NeedSubsumption && C2->NeedSubsumption) 301 return true; 302 else if (C1->NeedSubsumption == C2->NeedSubsumption) { 303 // Favors diamond over triangle, etc. 304 if ((unsigned)C1->Kind < (unsigned)C2->Kind) 305 return true; 306 else if (C1->Kind == C2->Kind) 307 return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber(); 308 } 309 } 310 return false; 311 } 312 }; 313 314 char IfConverter::ID = 0; 315 } 316 317 char &llvm::IfConverterID = IfConverter::ID; 318 319 INITIALIZE_PASS_BEGIN(IfConverter, "if-converter", "If Converter", false, false) 320 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 321 INITIALIZE_PASS_END(IfConverter, "if-converter", "If Converter", false, false) 322 323 bool IfConverter::runOnMachineFunction(MachineFunction &MF) { 324 if (skipFunction(*MF.getFunction()) || 325 (PredicateFtor && !PredicateFtor(*MF.getFunction()))) 326 return false; 327 328 const TargetSubtargetInfo &ST = MF.getSubtarget(); 329 TLI = ST.getTargetLowering(); 330 TII = ST.getInstrInfo(); 331 TRI = ST.getRegisterInfo(); 332 BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>()); 333 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 334 MRI = &MF.getRegInfo(); 335 SchedModel.init(ST.getSchedModel(), &ST, TII); 336 337 if (!TII) return false; 338 339 PreRegAlloc = MRI->isSSA(); 340 341 bool BFChange = false; 342 if (!PreRegAlloc) { 343 // Tail merge tend to expose more if-conversion opportunities. 344 BranchFolder BF(true, false, MBFI, *MBPI); 345 BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(), 346 getAnalysisIfAvailable<MachineModuleInfo>()); 347 } 348 349 DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'" 350 << MF.getName() << "\'"); 351 352 if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) { 353 DEBUG(dbgs() << " skipped\n"); 354 return false; 355 } 356 DEBUG(dbgs() << "\n"); 357 358 MF.RenumberBlocks(); 359 BBAnalysis.resize(MF.getNumBlockIDs()); 360 361 std::vector<std::unique_ptr<IfcvtToken>> Tokens; 362 MadeChange = false; 363 unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + 364 NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds; 365 while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) { 366 // Do an initial analysis for each basic block and find all the potential 367 // candidates to perform if-conversion. 368 bool Change = false; 369 AnalyzeBlocks(MF, Tokens); 370 while (!Tokens.empty()) { 371 std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back()); 372 Tokens.pop_back(); 373 BBInfo &BBI = Token->BBI; 374 IfcvtKind Kind = Token->Kind; 375 unsigned NumDups = Token->NumDups; 376 unsigned NumDups2 = Token->NumDups2; 377 378 // If the block has been evicted out of the queue or it has already been 379 // marked dead (due to it being predicated), then skip it. 380 if (BBI.IsDone) 381 BBI.IsEnqueued = false; 382 if (!BBI.IsEnqueued) 383 continue; 384 385 BBI.IsEnqueued = false; 386 387 bool RetVal = false; 388 switch (Kind) { 389 default: llvm_unreachable("Unexpected!"); 390 case ICSimple: 391 case ICSimpleFalse: { 392 bool isFalse = Kind == ICSimpleFalse; 393 if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break; 394 DEBUG(dbgs() << "Ifcvt (Simple" << (Kind == ICSimpleFalse ? 395 " false" : "") 396 << "): BB#" << BBI.BB->getNumber() << " (" 397 << ((Kind == ICSimpleFalse) 398 ? BBI.FalseBB->getNumber() 399 : BBI.TrueBB->getNumber()) << ") "); 400 RetVal = IfConvertSimple(BBI, Kind); 401 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 402 if (RetVal) { 403 if (isFalse) ++NumSimpleFalse; 404 else ++NumSimple; 405 } 406 break; 407 } 408 case ICTriangle: 409 case ICTriangleRev: 410 case ICTriangleFalse: 411 case ICTriangleFRev: { 412 bool isFalse = Kind == ICTriangleFalse; 413 bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev); 414 if (DisableTriangle && !isFalse && !isRev) break; 415 if (DisableTriangleR && !isFalse && isRev) break; 416 if (DisableTriangleF && isFalse && !isRev) break; 417 if (DisableTriangleFR && isFalse && isRev) break; 418 DEBUG(dbgs() << "Ifcvt (Triangle"); 419 if (isFalse) 420 DEBUG(dbgs() << " false"); 421 if (isRev) 422 DEBUG(dbgs() << " rev"); 423 DEBUG(dbgs() << "): BB#" << BBI.BB->getNumber() << " (T:" 424 << BBI.TrueBB->getNumber() << ",F:" 425 << BBI.FalseBB->getNumber() << ") "); 426 RetVal = IfConvertTriangle(BBI, Kind); 427 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 428 if (RetVal) { 429 if (isFalse) { 430 if (isRev) ++NumTriangleFRev; 431 else ++NumTriangleFalse; 432 } else { 433 if (isRev) ++NumTriangleRev; 434 else ++NumTriangle; 435 } 436 } 437 break; 438 } 439 case ICDiamond: { 440 if (DisableDiamond) break; 441 DEBUG(dbgs() << "Ifcvt (Diamond): BB#" << BBI.BB->getNumber() << " (T:" 442 << BBI.TrueBB->getNumber() << ",F:" 443 << BBI.FalseBB->getNumber() << ") "); 444 RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2, 445 Token->TClobbersPred, 446 Token->FClobbersPred); 447 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 448 if (RetVal) ++NumDiamonds; 449 break; 450 } 451 case ICForkedDiamond: { 452 if (DisableForkedDiamond) break; 453 DEBUG(dbgs() << "Ifcvt (Forked Diamond): BB#" 454 << BBI.BB->getNumber() << " (T:" 455 << BBI.TrueBB->getNumber() << ",F:" 456 << BBI.FalseBB->getNumber() << ") "); 457 RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2, 458 Token->TClobbersPred, 459 Token->FClobbersPred); 460 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 461 if (RetVal) ++NumForkedDiamonds; 462 break; 463 } 464 } 465 466 Change |= RetVal; 467 468 NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev + 469 NumTriangleFalse + NumTriangleFRev + NumDiamonds; 470 if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit) 471 break; 472 } 473 474 if (!Change) 475 break; 476 MadeChange |= Change; 477 } 478 479 Tokens.clear(); 480 BBAnalysis.clear(); 481 482 if (MadeChange && IfCvtBranchFold) { 483 BranchFolder BF(false, false, MBFI, *MBPI); 484 BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 485 getAnalysisIfAvailable<MachineModuleInfo>()); 486 } 487 488 MadeChange |= BFChange; 489 return MadeChange; 490 } 491 492 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor. 493 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 494 MachineBasicBlock *TrueBB) { 495 for (MachineBasicBlock *SuccBB : BB->successors()) { 496 if (SuccBB != TrueBB) 497 return SuccBB; 498 } 499 return nullptr; 500 } 501 502 /// Reverse the condition of the end of the block branch. Swap block's 'true' 503 /// and 'false' successors. 504 bool IfConverter::reverseBranchCondition(BBInfo &BBI) const { 505 DebugLoc dl; // FIXME: this is nowhere 506 if (!TII->reverseBranchCondition(BBI.BrCond)) { 507 TII->removeBranch(*BBI.BB); 508 TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl); 509 std::swap(BBI.TrueBB, BBI.FalseBB); 510 return true; 511 } 512 return false; 513 } 514 515 /// Returns the next block in the function blocks ordering. If it is the end, 516 /// returns NULL. 517 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) { 518 MachineFunction::iterator I = MBB.getIterator(); 519 MachineFunction::iterator E = MBB.getParent()->end(); 520 if (++I == E) 521 return nullptr; 522 return &*I; 523 } 524 525 /// Returns true if the 'true' block (along with its predecessor) forms a valid 526 /// simple shape for ifcvt. It also returns the number of instructions that the 527 /// ifcvt would need to duplicate if performed in Dups. 528 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 529 BranchProbability Prediction) const { 530 Dups = 0; 531 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 532 return false; 533 534 if (TrueBBI.IsBrAnalyzable) 535 return false; 536 537 if (TrueBBI.BB->pred_size() > 1) { 538 if (TrueBBI.CannotBeCopied || 539 !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize, 540 Prediction)) 541 return false; 542 Dups = TrueBBI.NonPredSize; 543 } 544 545 return true; 546 } 547 548 /// Returns true if the 'true' and 'false' blocks (along with their common 549 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is 550 /// true, it checks if 'true' block's false branch branches to the 'false' block 551 /// rather than the other way around. It also returns the number of instructions 552 /// that the ifcvt would need to duplicate if performed in 'Dups'. 553 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 554 bool FalseBranch, unsigned &Dups, 555 BranchProbability Prediction) const { 556 Dups = 0; 557 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 558 return false; 559 560 if (TrueBBI.BB->pred_size() > 1) { 561 if (TrueBBI.CannotBeCopied) 562 return false; 563 564 unsigned Size = TrueBBI.NonPredSize; 565 if (TrueBBI.IsBrAnalyzable) { 566 if (TrueBBI.TrueBB && TrueBBI.BrCond.empty()) 567 // Ends with an unconditional branch. It will be removed. 568 --Size; 569 else { 570 MachineBasicBlock *FExit = FalseBranch 571 ? TrueBBI.TrueBB : TrueBBI.FalseBB; 572 if (FExit) 573 // Require a conditional branch 574 ++Size; 575 } 576 } 577 if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction)) 578 return false; 579 Dups = Size; 580 } 581 582 MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB; 583 if (!TExit && blockAlwaysFallThrough(TrueBBI)) { 584 MachineFunction::iterator I = TrueBBI.BB->getIterator(); 585 if (++I == TrueBBI.BB->getParent()->end()) 586 return false; 587 TExit = &*I; 588 } 589 return TExit && TExit == FalseBBI.BB; 590 } 591 592 /// Increment \p It until it points to a non-debug instruction or to \p End. 593 /// @param It Iterator to increment 594 /// @param End Iterator that points to end. Will be compared to It 595 /// @returns true if It == End, false otherwise. 596 static inline bool skipDebugInstructionsForward( 597 MachineBasicBlock::iterator &It, 598 MachineBasicBlock::iterator &End) { 599 while (It != End && It->isDebugValue()) 600 It++; 601 return It == End; 602 } 603 604 /// Shrink the provided inclusive range by one instruction. 605 /// If the range was one instruction (\p It == \p Begin), It is not modified, 606 /// but \p Empty is set to true. 607 static inline void shrinkInclusiveRange( 608 MachineBasicBlock::iterator &Begin, 609 MachineBasicBlock::iterator &It, 610 bool &Empty) { 611 if (It == Begin) 612 Empty = true; 613 else 614 It--; 615 } 616 617 /// Decrement \p It until it points to a non-debug instruction or the range is 618 /// empty. 619 /// @param It Iterator to decrement. 620 /// @param Begin Iterator that points to beginning. Will be compared to It 621 /// @param Empty Set to true if the resulting range is Empty 622 /// @returns the value of Empty as a convenience. 623 static inline bool skipDebugInstructionsBackward( 624 MachineBasicBlock::iterator &Begin, 625 MachineBasicBlock::iterator &It, 626 bool &Empty) { 627 while (!Empty && It->isDebugValue()) 628 shrinkInclusiveRange(Begin, It, Empty); 629 return Empty; 630 } 631 632 /// Count duplicated instructions and move the iterators to show where they 633 /// are. 634 /// @param TIB True Iterator Begin 635 /// @param FIB False Iterator Begin 636 /// These two iterators initially point to the first instruction of the two 637 /// blocks, and finally point to the first non-shared instruction. 638 /// @param TIE True Iterator End 639 /// @param FIE False Iterator End 640 /// These two iterators initially point to End() for the two blocks() and 641 /// finally point to the first shared instruction in the tail. 642 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of 643 /// two blocks. 644 /// @param Dups1 count of duplicated instructions at the beginning of the 2 645 /// blocks. 646 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks. 647 /// @param SkipUnconditionalBranches if true, Don't make sure that 648 /// unconditional branches at the end of the blocks are the same. True is 649 /// passed when the blocks are analyzable to allow for fallthrough to be 650 /// handled. 651 /// @return false if the shared portion prevents if conversion. 652 bool IfConverter::CountDuplicatedInstructions( 653 MachineBasicBlock::iterator &TIB, 654 MachineBasicBlock::iterator &FIB, 655 MachineBasicBlock::iterator &TIE, 656 MachineBasicBlock::iterator &FIE, 657 unsigned &Dups1, unsigned &Dups2, 658 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 659 bool SkipUnconditionalBranches) const { 660 661 while (TIB != TIE && FIB != FIE) { 662 // Skip dbg_value instructions. These do not count. 663 if(skipDebugInstructionsForward(TIB, TIE)) 664 break; 665 if(skipDebugInstructionsForward(FIB, FIE)) 666 break; 667 if (!TIB->isIdenticalTo(*FIB)) 668 break; 669 // A pred-clobbering instruction in the shared portion prevents 670 // if-conversion. 671 std::vector<MachineOperand> PredDefs; 672 if (TII->DefinesPredicate(*TIB, PredDefs)) 673 return false; 674 // If we get all the way to the branch instructions, don't count them. 675 if (!TIB->isBranch()) 676 ++Dups1; 677 ++TIB; 678 ++FIB; 679 } 680 681 // Check for already containing all of the block. 682 if (TIB == TIE || FIB == FIE) 683 return true; 684 // Now, in preparation for counting duplicate instructions at the ends of the 685 // blocks, move the end iterators up past any branch instructions. 686 --TIE; 687 --FIE; 688 689 // After this point TIB and TIE define an inclusive range, which means that 690 // TIB == TIE is true when there is one more instruction to consider, not at 691 // the end. Because we may not be able to go before TIB, we need a flag to 692 // indicate a completely empty range. 693 bool TEmpty = false, FEmpty = false; 694 695 // Upon exit TIE and FIE will both point at the last non-shared instruction. 696 // They need to be moved forward to point past the last non-shared 697 // instruction if the range they delimit is non-empty. 698 auto IncrementEndIteratorsOnExit = make_scope_exit([&]() { 699 if (!TEmpty) 700 ++TIE; 701 if (!FEmpty) 702 ++FIE; 703 }); 704 705 if (!TBB.succ_empty() || !FBB.succ_empty()) { 706 if (SkipUnconditionalBranches) { 707 while (!TEmpty && TIE->isUnconditionalBranch()) 708 shrinkInclusiveRange(TIB, TIE, TEmpty); 709 while (!FEmpty && FIE->isUnconditionalBranch()) 710 shrinkInclusiveRange(FIB, FIE, FEmpty); 711 } 712 } 713 714 // If Dups1 includes all of a block, then don't count duplicate 715 // instructions at the end of the blocks. 716 if (TEmpty || FEmpty) 717 return true; 718 719 // Count duplicate instructions at the ends of the blocks. 720 while (!TEmpty && !FEmpty) { 721 // Skip dbg_value instructions. These do not count. 722 if (skipDebugInstructionsBackward(TIB, TIE, TEmpty)) 723 break; 724 if (skipDebugInstructionsBackward(FIB, FIE, FEmpty)) 725 break; 726 if (!TIE->isIdenticalTo(*FIE)) 727 break; 728 // We have to verify that any branch instructions are the same, and then we 729 // don't count them toward the # of duplicate instructions. 730 if (!TIE->isBranch()) 731 ++Dups2; 732 shrinkInclusiveRange(TIB, TIE, TEmpty); 733 shrinkInclusiveRange(FIB, FIE, FEmpty); 734 } 735 return true; 736 } 737 738 /// RescanInstructions - Run ScanInstructions on a pair of blocks. 739 /// @param TIB - True Iterator Begin, points to first non-shared instruction 740 /// @param FIB - False Iterator Begin, points to first non-shared instruction 741 /// @param TIE - True Iterator End, points past last non-shared instruction 742 /// @param FIE - False Iterator End, points past last non-shared instruction 743 /// @param TrueBBI - BBInfo to update for the true block. 744 /// @param FalseBBI - BBInfo to update for the false block. 745 /// @returns - false if either block cannot be predicated or if both blocks end 746 /// with a predicate-clobbering instruction. 747 bool IfConverter::RescanInstructions( 748 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 749 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 750 BBInfo &TrueBBI, BBInfo &FalseBBI) const { 751 bool BranchUnpredicable = true; 752 TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false; 753 ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable); 754 if (TrueBBI.IsUnpredicable) 755 return false; 756 ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable); 757 if (FalseBBI.IsUnpredicable) 758 return false; 759 if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred) 760 return false; 761 return true; 762 } 763 764 #ifndef NDEBUG 765 static void verifySameBranchInstructions( 766 MachineBasicBlock *MBB1, 767 MachineBasicBlock *MBB2) { 768 MachineBasicBlock::iterator B1 = MBB1->begin(); 769 MachineBasicBlock::iterator B2 = MBB2->begin(); 770 MachineBasicBlock::iterator E1 = std::prev(MBB1->end()); 771 MachineBasicBlock::iterator E2 = std::prev(MBB2->end()); 772 bool Empty1 = false, Empty2 = false; 773 while (!Empty1 && !Empty2) { 774 skipDebugInstructionsBackward(B1, E1, Empty1); 775 skipDebugInstructionsBackward(B2, E2, Empty2); 776 if (Empty1 && Empty2) 777 break; 778 779 if (Empty1) { 780 assert(!E2->isBranch() && "Branch mis-match, one block is empty."); 781 break; 782 } 783 if (Empty2) { 784 assert(!E1->isBranch() && "Branch mis-match, one block is empty."); 785 break; 786 } 787 788 if (E1->isBranch() || E2->isBranch()) 789 assert(E1->isIdenticalTo(*E2) && 790 "Branch mis-match, branch instructions don't match."); 791 else 792 break; 793 shrinkInclusiveRange(B1, E1, Empty1); 794 shrinkInclusiveRange(B2, E2, Empty2); 795 } 796 } 797 #endif 798 799 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along 800 /// with their common predecessor) form a diamond if a common tail block is 801 /// extracted. 802 /// While not strictly a diamond, this pattern would form a diamond if 803 /// tail-merging had merged the shared tails. 804 /// EBB 805 /// _/ \_ 806 /// | | 807 /// TBB FBB 808 /// / \ / \ 809 /// FalseBB TrueBB FalseBB 810 /// Currently only handles analyzable branches. 811 /// Specifically excludes actual diamonds to avoid overlap. 812 bool IfConverter::ValidForkedDiamond( 813 BBInfo &TrueBBI, BBInfo &FalseBBI, 814 unsigned &Dups1, unsigned &Dups2, 815 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 816 Dups1 = Dups2 = 0; 817 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 818 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 819 return false; 820 821 if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable) 822 return false; 823 // Don't IfConvert blocks that can't be folded into their predecessor. 824 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 825 return false; 826 827 // This function is specifically looking for conditional tails, as 828 // unconditional tails are already handled by the standard diamond case. 829 if (TrueBBI.BrCond.size() == 0 || 830 FalseBBI.BrCond.size() == 0) 831 return false; 832 833 MachineBasicBlock *TT = TrueBBI.TrueBB; 834 MachineBasicBlock *TF = TrueBBI.FalseBB; 835 MachineBasicBlock *FT = FalseBBI.TrueBB; 836 MachineBasicBlock *FF = FalseBBI.FalseBB; 837 838 if (!TT) 839 TT = getNextBlock(*TrueBBI.BB); 840 if (!TF) 841 TF = getNextBlock(*TrueBBI.BB); 842 if (!FT) 843 FT = getNextBlock(*FalseBBI.BB); 844 if (!FF) 845 FF = getNextBlock(*FalseBBI.BB); 846 847 if (!TT || !TF) 848 return false; 849 850 // Check successors. If they don't match, bail. 851 if (!((TT == FT && TF == FF) || (TF == FT && TT == FF))) 852 return false; 853 854 bool FalseReversed = false; 855 if (TF == FT && TT == FF) { 856 // If the branches are opposing, but we can't reverse, don't do it. 857 if (!FalseBBI.IsBrReversible) 858 return false; 859 FalseReversed = true; 860 reverseBranchCondition(FalseBBI); 861 } 862 auto UnReverseOnExit = make_scope_exit([&]() { 863 if (FalseReversed) 864 reverseBranchCondition(FalseBBI); 865 }); 866 867 // Count duplicate instructions at the beginning of the true and false blocks. 868 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 869 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 870 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 871 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 872 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 873 *TrueBBI.BB, *FalseBBI.BB, 874 /* SkipUnconditionalBranches */ true)) 875 return false; 876 877 TrueBBICalc.BB = TrueBBI.BB; 878 FalseBBICalc.BB = FalseBBI.BB; 879 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 880 return false; 881 882 // The size is used to decide whether to if-convert, and the shared portions 883 // are subtracted off. Because of the subtraction, we just use the size that 884 // was calculated by the original ScanInstructions, as it is correct. 885 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 886 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 887 return true; 888 } 889 890 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along 891 /// with their common predecessor) forms a valid diamond shape for ifcvt. 892 bool IfConverter::ValidDiamond( 893 BBInfo &TrueBBI, BBInfo &FalseBBI, 894 unsigned &Dups1, unsigned &Dups2, 895 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 896 Dups1 = Dups2 = 0; 897 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 898 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 899 return false; 900 901 MachineBasicBlock *TT = TrueBBI.TrueBB; 902 MachineBasicBlock *FT = FalseBBI.TrueBB; 903 904 if (!TT && blockAlwaysFallThrough(TrueBBI)) 905 TT = getNextBlock(*TrueBBI.BB); 906 if (!FT && blockAlwaysFallThrough(FalseBBI)) 907 FT = getNextBlock(*FalseBBI.BB); 908 if (TT != FT) 909 return false; 910 if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable)) 911 return false; 912 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 913 return false; 914 915 // FIXME: Allow true block to have an early exit? 916 if (TrueBBI.FalseBB || FalseBBI.FalseBB) 917 return false; 918 919 // Count duplicate instructions at the beginning and end of the true and 920 // false blocks. 921 // Skip unconditional branches only if we are considering an analyzable 922 // diamond. Otherwise the branches must be the same. 923 bool SkipUnconditionalBranches = 924 TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable; 925 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 926 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 927 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 928 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 929 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 930 *TrueBBI.BB, *FalseBBI.BB, 931 SkipUnconditionalBranches)) 932 return false; 933 934 TrueBBICalc.BB = TrueBBI.BB; 935 FalseBBICalc.BB = FalseBBI.BB; 936 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 937 return false; 938 // The size is used to decide whether to if-convert, and the shared portions 939 // are subtracted off. Because of the subtraction, we just use the size that 940 // was calculated by the original ScanInstructions, as it is correct. 941 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 942 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 943 return true; 944 } 945 946 /// AnalyzeBranches - Look at the branches at the end of a block to determine if 947 /// the block is predicable. 948 void IfConverter::AnalyzeBranches(BBInfo &BBI) { 949 if (BBI.IsDone) 950 return; 951 952 BBI.TrueBB = BBI.FalseBB = nullptr; 953 BBI.BrCond.clear(); 954 BBI.IsBrAnalyzable = 955 !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond); 956 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 957 BBI.IsBrReversible = (RevCond.size() == 0) || 958 !TII->reverseBranchCondition(RevCond); 959 BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr; 960 961 if (BBI.BrCond.size()) { 962 // No false branch. This BB must end with a conditional branch and a 963 // fallthrough. 964 if (!BBI.FalseBB) 965 BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB); 966 if (!BBI.FalseBB) { 967 // Malformed bcc? True and false blocks are the same? 968 BBI.IsUnpredicable = true; 969 } 970 } 971 } 972 973 /// ScanInstructions - Scan all the instructions in the block to determine if 974 /// the block is predicable. In most cases, that means all the instructions 975 /// in the block are isPredicable(). Also checks if the block contains any 976 /// instruction which can clobber a predicate (e.g. condition code register). 977 /// If so, the block is not predicable unless it's the last instruction. 978 void IfConverter::ScanInstructions(BBInfo &BBI, 979 MachineBasicBlock::iterator &Begin, 980 MachineBasicBlock::iterator &End, 981 bool BranchUnpredicable) const { 982 if (BBI.IsDone || BBI.IsUnpredicable) 983 return; 984 985 bool AlreadyPredicated = !BBI.Predicate.empty(); 986 987 BBI.NonPredSize = 0; 988 BBI.ExtraCost = 0; 989 BBI.ExtraCost2 = 0; 990 BBI.ClobbersPred = false; 991 for (MachineInstr &MI : make_range(Begin, End)) { 992 if (MI.isDebugValue()) 993 continue; 994 995 // It's unsafe to duplicate convergent instructions in this context, so set 996 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the 997 // following CFG, which is subject to our "simple" transformation. 998 // 999 // BB0 // if (c1) goto BB1; else goto BB2; 1000 // / \ 1001 // BB1 | 1002 // | BB2 // if (c2) goto TBB; else goto FBB; 1003 // | / | 1004 // | / | 1005 // TBB | 1006 // | | 1007 // | FBB 1008 // | 1009 // exit 1010 // 1011 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd 1012 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose 1013 // TBB contains a convergent instruction. This is safe iff doing so does 1014 // not add a control-flow dependency to the convergent instruction -- i.e., 1015 // it's safe iff the set of control flows that leads us to the convergent 1016 // instruction does not get smaller after the transformation. 1017 // 1018 // Originally we executed TBB if c1 || c2. After the transformation, there 1019 // are two copies of TBB's instructions. We get to the first if c1, and we 1020 // get to the second if !c1 && c2. 1021 // 1022 // There are clearly fewer ways to satisfy the condition "c1" than 1023 // "c1 || c2". Since we've shrunk the set of control flows which lead to 1024 // our convergent instruction, the transformation is unsafe. 1025 if (MI.isNotDuplicable() || MI.isConvergent()) 1026 BBI.CannotBeCopied = true; 1027 1028 bool isPredicated = TII->isPredicated(MI); 1029 bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch(); 1030 1031 if (BranchUnpredicable && MI.isBranch()) { 1032 BBI.IsUnpredicable = true; 1033 return; 1034 } 1035 1036 // A conditional branch is not predicable, but it may be eliminated. 1037 if (isCondBr) 1038 continue; 1039 1040 if (!isPredicated) { 1041 BBI.NonPredSize++; 1042 unsigned ExtraPredCost = TII->getPredicationCost(MI); 1043 unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false); 1044 if (NumCycles > 1) 1045 BBI.ExtraCost += NumCycles-1; 1046 BBI.ExtraCost2 += ExtraPredCost; 1047 } else if (!AlreadyPredicated) { 1048 // FIXME: This instruction is already predicated before the 1049 // if-conversion pass. It's probably something like a conditional move. 1050 // Mark this block unpredicable for now. 1051 BBI.IsUnpredicable = true; 1052 return; 1053 } 1054 1055 if (BBI.ClobbersPred && !isPredicated) { 1056 // Predicate modification instruction should end the block (except for 1057 // already predicated instructions and end of block branches). 1058 // Predicate may have been modified, the subsequent (currently) 1059 // unpredicated instructions cannot be correctly predicated. 1060 BBI.IsUnpredicable = true; 1061 return; 1062 } 1063 1064 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are 1065 // still potentially predicable. 1066 std::vector<MachineOperand> PredDefs; 1067 if (TII->DefinesPredicate(MI, PredDefs)) 1068 BBI.ClobbersPred = true; 1069 1070 if (!TII->isPredicable(MI)) { 1071 BBI.IsUnpredicable = true; 1072 return; 1073 } 1074 } 1075 } 1076 1077 /// Determine if the block is a suitable candidate to be predicated by the 1078 /// specified predicate. 1079 /// @param BBI BBInfo for the block to check 1080 /// @param Pred Predicate array for the branch that leads to BBI 1081 /// @param isTriangle true if the Analysis is for a triangle 1082 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false 1083 /// case 1084 /// @param hasCommonTail true if BBI shares a tail with a sibling block that 1085 /// contains any instruction that would make the block unpredicable. 1086 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI, 1087 SmallVectorImpl<MachineOperand> &Pred, 1088 bool isTriangle, bool RevBranch, 1089 bool hasCommonTail) { 1090 // If the block is dead or unpredicable, then it cannot be predicated. 1091 // Two blocks may share a common unpredicable tail, but this doesn't prevent 1092 // them from being if-converted. The non-shared portion is assumed to have 1093 // been checked 1094 if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail)) 1095 return false; 1096 1097 // If it is already predicated but we couldn't analyze its terminator, the 1098 // latter might fallthrough, but we can't determine where to. 1099 // Conservatively avoid if-converting again. 1100 if (BBI.Predicate.size() && !BBI.IsBrAnalyzable) 1101 return false; 1102 1103 // If it is already predicated, check if the new predicate subsumes 1104 // its predicate. 1105 if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate)) 1106 return false; 1107 1108 if (!hasCommonTail && BBI.BrCond.size()) { 1109 if (!isTriangle) 1110 return false; 1111 1112 // Test predicate subsumption. 1113 SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end()); 1114 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1115 if (RevBranch) { 1116 if (TII->reverseBranchCondition(Cond)) 1117 return false; 1118 } 1119 if (TII->reverseBranchCondition(RevPred) || 1120 !TII->SubsumesPredicate(Cond, RevPred)) 1121 return false; 1122 } 1123 1124 return true; 1125 } 1126 1127 /// Analyze the structure of the sub-CFG starting from the specified block. 1128 /// Record its successors and whether it looks like an if-conversion candidate. 1129 void IfConverter::AnalyzeBlock( 1130 MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1131 struct BBState { 1132 BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {} 1133 MachineBasicBlock *MBB; 1134 1135 /// This flag is true if MBB's successors have been analyzed. 1136 bool SuccsAnalyzed; 1137 }; 1138 1139 // Push MBB to the stack. 1140 SmallVector<BBState, 16> BBStack(1, MBB); 1141 1142 while (!BBStack.empty()) { 1143 BBState &State = BBStack.back(); 1144 MachineBasicBlock *BB = State.MBB; 1145 BBInfo &BBI = BBAnalysis[BB->getNumber()]; 1146 1147 if (!State.SuccsAnalyzed) { 1148 if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) { 1149 BBStack.pop_back(); 1150 continue; 1151 } 1152 1153 BBI.BB = BB; 1154 BBI.IsBeingAnalyzed = true; 1155 1156 AnalyzeBranches(BBI); 1157 MachineBasicBlock::iterator Begin = BBI.BB->begin(); 1158 MachineBasicBlock::iterator End = BBI.BB->end(); 1159 ScanInstructions(BBI, Begin, End); 1160 1161 // Unanalyzable or ends with fallthrough or unconditional branch, or if is 1162 // not considered for ifcvt anymore. 1163 if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) { 1164 BBI.IsBeingAnalyzed = false; 1165 BBI.IsAnalyzed = true; 1166 BBStack.pop_back(); 1167 continue; 1168 } 1169 1170 // Do not ifcvt if either path is a back edge to the entry block. 1171 if (BBI.TrueBB == BB || BBI.FalseBB == BB) { 1172 BBI.IsBeingAnalyzed = false; 1173 BBI.IsAnalyzed = true; 1174 BBStack.pop_back(); 1175 continue; 1176 } 1177 1178 // Do not ifcvt if true and false fallthrough blocks are the same. 1179 if (!BBI.FalseBB) { 1180 BBI.IsBeingAnalyzed = false; 1181 BBI.IsAnalyzed = true; 1182 BBStack.pop_back(); 1183 continue; 1184 } 1185 1186 // Push the False and True blocks to the stack. 1187 State.SuccsAnalyzed = true; 1188 BBStack.push_back(*BBI.FalseBB); 1189 BBStack.push_back(*BBI.TrueBB); 1190 continue; 1191 } 1192 1193 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1194 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1195 1196 if (TrueBBI.IsDone && FalseBBI.IsDone) { 1197 BBI.IsBeingAnalyzed = false; 1198 BBI.IsAnalyzed = true; 1199 BBStack.pop_back(); 1200 continue; 1201 } 1202 1203 SmallVector<MachineOperand, 4> 1204 RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1205 bool CanRevCond = !TII->reverseBranchCondition(RevCond); 1206 1207 unsigned Dups = 0; 1208 unsigned Dups2 = 0; 1209 bool TNeedSub = !TrueBBI.Predicate.empty(); 1210 bool FNeedSub = !FalseBBI.Predicate.empty(); 1211 bool Enqueued = false; 1212 1213 BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB); 1214 1215 if (CanRevCond) { 1216 BBInfo TrueBBICalc, FalseBBICalc; 1217 auto feasibleDiamond = [&]() { 1218 bool MeetsSize = MeetIfcvtSizeLimit( 1219 *TrueBBI.BB, (TrueBBICalc.NonPredSize - (Dups + Dups2) + 1220 TrueBBICalc.ExtraCost), TrueBBICalc.ExtraCost2, 1221 *FalseBBI.BB, (FalseBBICalc.NonPredSize - (Dups + Dups2) + 1222 FalseBBICalc.ExtraCost), FalseBBICalc.ExtraCost2, 1223 Prediction); 1224 bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond, 1225 /* IsTriangle */ false, /* RevCond */ false, 1226 /* hasCommonTail */ true); 1227 bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond, 1228 /* IsTriangle */ false, /* RevCond */ false, 1229 /* hasCommonTail */ true); 1230 return MeetsSize && TrueFeasible && FalseFeasible; 1231 }; 1232 1233 if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1234 TrueBBICalc, FalseBBICalc)) { 1235 if (feasibleDiamond()) { 1236 // Diamond: 1237 // EBB 1238 // / \_ 1239 // | | 1240 // TBB FBB 1241 // \ / 1242 // TailBB 1243 // Note TailBB can be empty. 1244 Tokens.push_back(llvm::make_unique<IfcvtToken>( 1245 BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1246 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1247 Enqueued = true; 1248 } 1249 } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1250 TrueBBICalc, FalseBBICalc)) { 1251 if (feasibleDiamond()) { 1252 // ForkedDiamond: 1253 // if TBB and FBB have a common tail that includes their conditional 1254 // branch instructions, then we can If Convert this pattern. 1255 // EBB 1256 // _/ \_ 1257 // | | 1258 // TBB FBB 1259 // / \ / \ 1260 // FalseBB TrueBB FalseBB 1261 // 1262 Tokens.push_back(llvm::make_unique<IfcvtToken>( 1263 BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1264 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1265 Enqueued = true; 1266 } 1267 } 1268 } 1269 1270 if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) && 1271 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1272 TrueBBI.ExtraCost2, Prediction) && 1273 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) { 1274 // Triangle: 1275 // EBB 1276 // | \_ 1277 // | | 1278 // | TBB 1279 // | / 1280 // FBB 1281 Tokens.push_back( 1282 llvm::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups)); 1283 Enqueued = true; 1284 } 1285 1286 if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) && 1287 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1288 TrueBBI.ExtraCost2, Prediction) && 1289 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) { 1290 Tokens.push_back( 1291 llvm::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups)); 1292 Enqueued = true; 1293 } 1294 1295 if (ValidSimple(TrueBBI, Dups, Prediction) && 1296 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1297 TrueBBI.ExtraCost2, Prediction) && 1298 FeasibilityAnalysis(TrueBBI, BBI.BrCond)) { 1299 // Simple (split, no rejoin): 1300 // EBB 1301 // | \_ 1302 // | | 1303 // | TBB---> exit 1304 // | 1305 // FBB 1306 Tokens.push_back( 1307 llvm::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups)); 1308 Enqueued = true; 1309 } 1310 1311 if (CanRevCond) { 1312 // Try the other path... 1313 if (ValidTriangle(FalseBBI, TrueBBI, false, Dups, 1314 Prediction.getCompl()) && 1315 MeetIfcvtSizeLimit(*FalseBBI.BB, 1316 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1317 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1318 FeasibilityAnalysis(FalseBBI, RevCond, true)) { 1319 Tokens.push_back(llvm::make_unique<IfcvtToken>(BBI, ICTriangleFalse, 1320 FNeedSub, Dups)); 1321 Enqueued = true; 1322 } 1323 1324 if (ValidTriangle(FalseBBI, TrueBBI, true, Dups, 1325 Prediction.getCompl()) && 1326 MeetIfcvtSizeLimit(*FalseBBI.BB, 1327 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1328 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1329 FeasibilityAnalysis(FalseBBI, RevCond, true, true)) { 1330 Tokens.push_back( 1331 llvm::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups)); 1332 Enqueued = true; 1333 } 1334 1335 if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) && 1336 MeetIfcvtSizeLimit(*FalseBBI.BB, 1337 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1338 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1339 FeasibilityAnalysis(FalseBBI, RevCond)) { 1340 Tokens.push_back( 1341 llvm::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups)); 1342 Enqueued = true; 1343 } 1344 } 1345 1346 BBI.IsEnqueued = Enqueued; 1347 BBI.IsBeingAnalyzed = false; 1348 BBI.IsAnalyzed = true; 1349 BBStack.pop_back(); 1350 } 1351 } 1352 1353 /// Analyze all blocks and find entries for all if-conversion candidates. 1354 void IfConverter::AnalyzeBlocks( 1355 MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1356 for (MachineBasicBlock &MBB : MF) 1357 AnalyzeBlock(MBB, Tokens); 1358 1359 // Sort to favor more complex ifcvt scheme. 1360 std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp); 1361 } 1362 1363 /// Returns true either if ToMBB is the next block after MBB or that all the 1364 /// intervening blocks are empty (given MBB can fall through to its next block). 1365 static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) { 1366 MachineFunction::iterator PI = MBB.getIterator(); 1367 MachineFunction::iterator I = std::next(PI); 1368 MachineFunction::iterator TI = ToMBB.getIterator(); 1369 MachineFunction::iterator E = MBB.getParent()->end(); 1370 while (I != TI) { 1371 // Check isSuccessor to avoid case where the next block is empty, but 1372 // it's not a successor. 1373 if (I == E || !I->empty() || !PI->isSuccessor(&*I)) 1374 return false; 1375 PI = I++; 1376 } 1377 return true; 1378 } 1379 1380 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it 1381 /// can be if-converted. If predecessor is already enqueued, dequeue it! 1382 void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) { 1383 for (const MachineBasicBlock *Predecessor : MBB.predecessors()) { 1384 BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()]; 1385 if (PBBI.IsDone || PBBI.BB == &MBB) 1386 continue; 1387 PBBI.IsAnalyzed = false; 1388 PBBI.IsEnqueued = false; 1389 } 1390 } 1391 1392 /// Inserts an unconditional branch from \p MBB to \p ToMBB. 1393 static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB, 1394 const TargetInstrInfo *TII) { 1395 DebugLoc dl; // FIXME: this is nowhere 1396 SmallVector<MachineOperand, 0> NoCond; 1397 TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl); 1398 } 1399 1400 /// Remove true / false edges if either / both are no longer successors. 1401 void IfConverter::RemoveExtraEdges(BBInfo &BBI) { 1402 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1403 SmallVector<MachineOperand, 4> Cond; 1404 if (!TII->analyzeBranch(*BBI.BB, TBB, FBB, Cond)) 1405 BBI.BB->CorrectExtraCFGEdges(TBB, FBB, !Cond.empty()); 1406 } 1407 1408 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all 1409 /// values defined in MI which are also live/used by MI. 1410 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) { 1411 const TargetRegisterInfo *TRI = MI.getParent()->getParent() 1412 ->getSubtarget().getRegisterInfo(); 1413 1414 // Before stepping forward past MI, remember which regs were live 1415 // before MI. This is needed to set the Undef flag only when reg is 1416 // dead. 1417 SparseSet<unsigned> LiveBeforeMI; 1418 LiveBeforeMI.setUniverse(TRI->getNumRegs()); 1419 for (unsigned Reg : Redefs) 1420 LiveBeforeMI.insert(Reg); 1421 1422 SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Clobbers; 1423 Redefs.stepForward(MI, Clobbers); 1424 1425 // Now add the implicit uses for each of the clobbered values. 1426 for (auto Clobber : Clobbers) { 1427 // FIXME: Const cast here is nasty, but better than making StepForward 1428 // take a mutable instruction instead of const. 1429 unsigned Reg = Clobber.first; 1430 MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second); 1431 MachineInstr *OpMI = Op.getParent(); 1432 MachineInstrBuilder MIB(*OpMI->getParent()->getParent(), OpMI); 1433 if (Op.isRegMask()) { 1434 // First handle regmasks. They clobber any entries in the mask which 1435 // means that we need a def for those registers. 1436 if (LiveBeforeMI.count(Reg)) 1437 MIB.addReg(Reg, RegState::Implicit); 1438 1439 // We also need to add an implicit def of this register for the later 1440 // use to read from. 1441 // For the register allocator to have allocated a register clobbered 1442 // by the call which is used later, it must be the case that 1443 // the call doesn't return. 1444 MIB.addReg(Reg, RegState::Implicit | RegState::Define); 1445 continue; 1446 } 1447 assert(Op.isReg() && "Register operand required"); 1448 if (Op.isDead()) { 1449 // If we found a dead def, but it needs to be live, then remove the dead 1450 // flag. 1451 if (Redefs.contains(Op.getReg())) 1452 Op.setIsDead(false); 1453 } 1454 if (LiveBeforeMI.count(Reg)) 1455 MIB.addReg(Reg, RegState::Implicit); 1456 else { 1457 bool HasLiveSubReg = false; 1458 for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) { 1459 if (!LiveBeforeMI.count(*S)) 1460 continue; 1461 HasLiveSubReg = true; 1462 break; 1463 } 1464 if (HasLiveSubReg) 1465 MIB.addReg(Reg, RegState::Implicit); 1466 } 1467 } 1468 } 1469 1470 /// Remove kill flags from operands with a registers in the \p DontKill set. 1471 static void RemoveKills(MachineInstr &MI, const LivePhysRegs &DontKill) { 1472 for (MIBundleOperands O(MI); O.isValid(); ++O) { 1473 if (!O->isReg() || !O->isKill()) 1474 continue; 1475 if (DontKill.contains(O->getReg())) 1476 O->setIsKill(false); 1477 } 1478 } 1479 1480 /// Walks a range of machine instructions and removes kill flags for registers 1481 /// in the \p DontKill set. 1482 static void RemoveKills(MachineBasicBlock::iterator I, 1483 MachineBasicBlock::iterator E, 1484 const LivePhysRegs &DontKill, 1485 const MCRegisterInfo &MCRI) { 1486 for (MachineInstr &MI : make_range(I, E)) 1487 RemoveKills(MI, DontKill); 1488 } 1489 1490 /// If convert a simple (split, no rejoin) sub-CFG. 1491 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) { 1492 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1493 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1494 BBInfo *CvtBBI = &TrueBBI; 1495 BBInfo *NextBBI = &FalseBBI; 1496 1497 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1498 if (Kind == ICSimpleFalse) 1499 std::swap(CvtBBI, NextBBI); 1500 1501 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1502 MachineBasicBlock &NextMBB = *NextBBI->BB; 1503 if (CvtBBI->IsDone || 1504 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1505 // Something has changed. It's no longer safe to predicate this block. 1506 BBI.IsAnalyzed = false; 1507 CvtBBI->IsAnalyzed = false; 1508 return false; 1509 } 1510 1511 if (CvtMBB.hasAddressTaken()) 1512 // Conservatively abort if-conversion if BB's address is taken. 1513 return false; 1514 1515 if (Kind == ICSimpleFalse) 1516 if (TII->reverseBranchCondition(Cond)) 1517 llvm_unreachable("Unable to reverse branch condition!"); 1518 1519 // Initialize liveins to the first BB. These are potentiall redefined by 1520 // predicated instructions. 1521 Redefs.init(TRI); 1522 Redefs.addLiveIns(CvtMBB); 1523 Redefs.addLiveIns(NextMBB); 1524 1525 // Compute a set of registers which must not be killed by instructions in 1526 // BB1: This is everything live-in to BB2. 1527 DontKill.init(TRI); 1528 DontKill.addLiveIns(NextMBB); 1529 1530 if (CvtMBB.pred_size() > 1) { 1531 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1532 // Copy instructions in the true block, predicate them, and add them to 1533 // the entry block. 1534 CopyAndPredicateBlock(BBI, *CvtBBI, Cond); 1535 1536 // RemoveExtraEdges won't work if the block has an unanalyzable branch, so 1537 // explicitly remove CvtBBI as a successor. 1538 BBI.BB->removeSuccessor(&CvtMBB, true); 1539 } else { 1540 RemoveKills(CvtMBB.begin(), CvtMBB.end(), DontKill, *TRI); 1541 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1542 1543 // Merge converted block into entry block. 1544 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1545 MergeBlocks(BBI, *CvtBBI); 1546 } 1547 1548 bool IterIfcvt = true; 1549 if (!canFallThroughTo(*BBI.BB, NextMBB)) { 1550 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1551 BBI.HasFallThrough = false; 1552 // Now ifcvt'd block will look like this: 1553 // BB: 1554 // ... 1555 // t, f = cmp 1556 // if t op 1557 // b BBf 1558 // 1559 // We cannot further ifcvt this block because the unconditional branch 1560 // will have to be predicated on the new condition, that will not be 1561 // available if cmp executes. 1562 IterIfcvt = false; 1563 } 1564 1565 RemoveExtraEdges(BBI); 1566 1567 // Update block info. BB can be iteratively if-converted. 1568 if (!IterIfcvt) 1569 BBI.IsDone = true; 1570 InvalidatePreds(*BBI.BB); 1571 CvtBBI->IsDone = true; 1572 1573 // FIXME: Must maintain LiveIns. 1574 return true; 1575 } 1576 1577 /// If convert a triangle sub-CFG. 1578 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) { 1579 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1580 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1581 BBInfo *CvtBBI = &TrueBBI; 1582 BBInfo *NextBBI = &FalseBBI; 1583 DebugLoc dl; // FIXME: this is nowhere 1584 1585 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1586 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1587 std::swap(CvtBBI, NextBBI); 1588 1589 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1590 MachineBasicBlock &NextMBB = *NextBBI->BB; 1591 if (CvtBBI->IsDone || 1592 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1593 // Something has changed. It's no longer safe to predicate this block. 1594 BBI.IsAnalyzed = false; 1595 CvtBBI->IsAnalyzed = false; 1596 return false; 1597 } 1598 1599 if (CvtMBB.hasAddressTaken()) 1600 // Conservatively abort if-conversion if BB's address is taken. 1601 return false; 1602 1603 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1604 if (TII->reverseBranchCondition(Cond)) 1605 llvm_unreachable("Unable to reverse branch condition!"); 1606 1607 if (Kind == ICTriangleRev || Kind == ICTriangleFRev) { 1608 if (reverseBranchCondition(*CvtBBI)) { 1609 // BB has been changed, modify its predecessors (except for this 1610 // one) so they don't get ifcvt'ed based on bad intel. 1611 for (MachineBasicBlock *PBB : CvtMBB.predecessors()) { 1612 if (PBB == BBI.BB) 1613 continue; 1614 BBInfo &PBBI = BBAnalysis[PBB->getNumber()]; 1615 if (PBBI.IsEnqueued) { 1616 PBBI.IsAnalyzed = false; 1617 PBBI.IsEnqueued = false; 1618 } 1619 } 1620 } 1621 } 1622 1623 // Initialize liveins to the first BB. These are potentially redefined by 1624 // predicated instructions. 1625 Redefs.init(TRI); 1626 Redefs.addLiveIns(CvtMBB); 1627 Redefs.addLiveIns(NextMBB); 1628 1629 DontKill.clear(); 1630 1631 bool HasEarlyExit = CvtBBI->FalseBB != nullptr; 1632 BranchProbability CvtNext, CvtFalse, BBNext, BBCvt; 1633 1634 if (HasEarlyExit) { 1635 // Get probabilities before modifying CvtMBB and BBI.BB. 1636 CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB); 1637 CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB); 1638 BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB); 1639 BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB); 1640 } 1641 1642 if (CvtMBB.pred_size() > 1) { 1643 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1644 // Copy instructions in the true block, predicate them, and add them to 1645 // the entry block. 1646 CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true); 1647 1648 // RemoveExtraEdges won't work if the block has an unanalyzable branch, so 1649 // explicitly remove CvtBBI as a successor. 1650 BBI.BB->removeSuccessor(&CvtMBB, true); 1651 } else { 1652 // Predicate the 'true' block after removing its branch. 1653 CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB); 1654 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1655 1656 // Now merge the entry of the triangle with the true block. 1657 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1658 MergeBlocks(BBI, *CvtBBI, false); 1659 } 1660 1661 // If 'true' block has a 'false' successor, add an exit branch to it. 1662 if (HasEarlyExit) { 1663 SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(), 1664 CvtBBI->BrCond.end()); 1665 if (TII->reverseBranchCondition(RevCond)) 1666 llvm_unreachable("Unable to reverse branch condition!"); 1667 1668 // Update the edge probability for both CvtBBI->FalseBB and NextBBI. 1669 // NewNext = New_Prob(BBI.BB, NextMBB) = 1670 // Prob(BBI.BB, NextMBB) + 1671 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB) 1672 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) = 1673 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB) 1674 auto NewTrueBB = getNextBlock(*BBI.BB); 1675 auto NewNext = BBNext + BBCvt * CvtNext; 1676 auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB); 1677 if (NewTrueBBIter != BBI.BB->succ_end()) 1678 BBI.BB->setSuccProbability(NewTrueBBIter, NewNext); 1679 1680 auto NewFalse = BBCvt * CvtFalse; 1681 TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl); 1682 BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse); 1683 } 1684 1685 // Merge in the 'false' block if the 'false' block has no other 1686 // predecessors. Otherwise, add an unconditional branch to 'false'. 1687 bool FalseBBDead = false; 1688 bool IterIfcvt = true; 1689 bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB); 1690 if (!isFallThrough) { 1691 // Only merge them if the true block does not fallthrough to the false 1692 // block. By not merging them, we make it possible to iteratively 1693 // ifcvt the blocks. 1694 if (!HasEarlyExit && 1695 NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough && 1696 !NextMBB.hasAddressTaken()) { 1697 MergeBlocks(BBI, *NextBBI); 1698 FalseBBDead = true; 1699 } else { 1700 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1701 BBI.HasFallThrough = false; 1702 } 1703 // Mixed predicated and unpredicated code. This cannot be iteratively 1704 // predicated. 1705 IterIfcvt = false; 1706 } 1707 1708 RemoveExtraEdges(BBI); 1709 1710 // Update block info. BB can be iteratively if-converted. 1711 if (!IterIfcvt) 1712 BBI.IsDone = true; 1713 InvalidatePreds(*BBI.BB); 1714 CvtBBI->IsDone = true; 1715 if (FalseBBDead) 1716 NextBBI->IsDone = true; 1717 1718 // FIXME: Must maintain LiveIns. 1719 return true; 1720 } 1721 1722 /// Common code shared between diamond conversions. 1723 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape. 1724 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI 1725 /// and FalseBBI 1726 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI 1727 /// and \p FalseBBI 1728 /// \p RemoveBranch - Remove the common branch of the two blocks before 1729 /// predicating. Only false for unanalyzable fallthrough 1730 /// cases. The caller will replace the branch if necessary. 1731 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for 1732 /// unanalyzable fallthrough 1733 bool IfConverter::IfConvertDiamondCommon( 1734 BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 1735 unsigned NumDups1, unsigned NumDups2, 1736 bool TClobbersPred, bool FClobbersPred, 1737 bool RemoveBranch, bool MergeAddEdges) { 1738 1739 if (TrueBBI.IsDone || FalseBBI.IsDone || 1740 TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) { 1741 // Something has changed. It's no longer safe to predicate these blocks. 1742 BBI.IsAnalyzed = false; 1743 TrueBBI.IsAnalyzed = false; 1744 FalseBBI.IsAnalyzed = false; 1745 return false; 1746 } 1747 1748 if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken()) 1749 // Conservatively abort if-conversion if either BB has its address taken. 1750 return false; 1751 1752 // Put the predicated instructions from the 'true' block before the 1753 // instructions from the 'false' block, unless the true block would clobber 1754 // the predicate, in which case, do the opposite. 1755 BBInfo *BBI1 = &TrueBBI; 1756 BBInfo *BBI2 = &FalseBBI; 1757 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1758 if (TII->reverseBranchCondition(RevCond)) 1759 llvm_unreachable("Unable to reverse branch condition!"); 1760 SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond; 1761 SmallVector<MachineOperand, 4> *Cond2 = &RevCond; 1762 1763 // Figure out the more profitable ordering. 1764 bool DoSwap = false; 1765 if (TClobbersPred && !FClobbersPred) 1766 DoSwap = true; 1767 else if (!TClobbersPred && !FClobbersPred) { 1768 if (TrueBBI.NonPredSize > FalseBBI.NonPredSize) 1769 DoSwap = true; 1770 } else if (TClobbersPred && FClobbersPred) 1771 llvm_unreachable("Predicate info cannot be clobbered by both sides."); 1772 if (DoSwap) { 1773 std::swap(BBI1, BBI2); 1774 std::swap(Cond1, Cond2); 1775 } 1776 1777 // Remove the conditional branch from entry to the blocks. 1778 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1779 1780 MachineBasicBlock &MBB1 = *BBI1->BB; 1781 MachineBasicBlock &MBB2 = *BBI2->BB; 1782 1783 // Initialize the Redefs: 1784 // - BB2 live-in regs need implicit uses before being redefined by BB1 1785 // instructions. 1786 // - BB1 live-out regs need implicit uses before being redefined by BB2 1787 // instructions. We start with BB1 live-ins so we have the live-out regs 1788 // after tracking the BB1 instructions. 1789 Redefs.init(TRI); 1790 Redefs.addLiveIns(MBB1); 1791 Redefs.addLiveIns(MBB2); 1792 1793 // Remove the duplicated instructions at the beginnings of both paths. 1794 // Skip dbg_value instructions 1795 MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr(); 1796 MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr(); 1797 BBI1->NonPredSize -= NumDups1; 1798 BBI2->NonPredSize -= NumDups1; 1799 1800 // Skip past the dups on each side separately since there may be 1801 // differing dbg_value entries. 1802 for (unsigned i = 0; i < NumDups1; ++DI1) { 1803 if (!DI1->isDebugValue()) 1804 ++i; 1805 } 1806 while (NumDups1 != 0) { 1807 ++DI2; 1808 if (!DI2->isDebugValue()) 1809 --NumDups1; 1810 } 1811 1812 // Compute a set of registers which must not be killed by instructions in BB1: 1813 // This is everything used+live in BB2 after the duplicated instructions. We 1814 // can compute this set by simulating liveness backwards from the end of BB2. 1815 DontKill.init(TRI); 1816 for (const MachineInstr &MI : make_range(MBB2.rbegin(), ++DI2.getReverse())) 1817 DontKill.stepBackward(MI); 1818 1819 for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) { 1820 SmallVector<std::pair<unsigned, const MachineOperand*>, 4> IgnoredClobbers; 1821 Redefs.stepForward(MI, IgnoredClobbers); 1822 } 1823 BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1); 1824 MBB2.erase(MBB2.begin(), DI2); 1825 1826 // The branches have been checked to match, so it is safe to remove the branch 1827 // in BB1 and rely on the copy in BB2 1828 #ifndef NDEBUG 1829 // Unanalyzable branches must match exactly. Check that now. 1830 if (!BBI1->IsBrAnalyzable) 1831 verifySameBranchInstructions(&MBB1, &MBB2); 1832 #endif 1833 BBI1->NonPredSize -= TII->removeBranch(*BBI1->BB); 1834 // Remove duplicated instructions. 1835 DI1 = MBB1.end(); 1836 for (unsigned i = 0; i != NumDups2; ) { 1837 // NumDups2 only counted non-dbg_value instructions, so this won't 1838 // run off the head of the list. 1839 assert(DI1 != MBB1.begin()); 1840 --DI1; 1841 // skip dbg_value instructions 1842 if (!DI1->isDebugValue()) 1843 ++i; 1844 } 1845 MBB1.erase(DI1, MBB1.end()); 1846 1847 // Kill flags in the true block for registers living into the false block 1848 // must be removed. 1849 RemoveKills(MBB1.begin(), MBB1.end(), DontKill, *TRI); 1850 1851 DI2 = BBI2->BB->end(); 1852 // The branches have been checked to match. Skip over the branch in the false 1853 // block so that we don't try to predicate it. 1854 if (RemoveBranch) 1855 BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB); 1856 else { 1857 do { 1858 assert(DI2 != MBB2.begin()); 1859 DI2--; 1860 } while (DI2->isBranch() || DI2->isDebugValue()); 1861 DI2++; 1862 } 1863 while (NumDups2 != 0) { 1864 // NumDups2 only counted non-dbg_value instructions, so this won't 1865 // run off the head of the list. 1866 assert(DI2 != MBB2.begin()); 1867 --DI2; 1868 // skip dbg_value instructions 1869 if (!DI2->isDebugValue()) 1870 --NumDups2; 1871 } 1872 1873 // Remember which registers would later be defined by the false block. 1874 // This allows us not to predicate instructions in the true block that would 1875 // later be re-defined. That is, rather than 1876 // subeq r0, r1, #1 1877 // addne r0, r1, #1 1878 // generate: 1879 // sub r0, r1, #1 1880 // addne r0, r1, #1 1881 SmallSet<unsigned, 4> RedefsByFalse; 1882 SmallSet<unsigned, 4> ExtUses; 1883 if (TII->isProfitableToUnpredicate(MBB1, MBB2)) { 1884 for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) { 1885 if (FI.isDebugValue()) 1886 continue; 1887 SmallVector<unsigned, 4> Defs; 1888 for (const MachineOperand &MO : FI.operands()) { 1889 if (!MO.isReg()) 1890 continue; 1891 unsigned Reg = MO.getReg(); 1892 if (!Reg) 1893 continue; 1894 if (MO.isDef()) { 1895 Defs.push_back(Reg); 1896 } else if (!RedefsByFalse.count(Reg)) { 1897 // These are defined before ctrl flow reach the 'false' instructions. 1898 // They cannot be modified by the 'true' instructions. 1899 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1900 SubRegs.isValid(); ++SubRegs) 1901 ExtUses.insert(*SubRegs); 1902 } 1903 } 1904 1905 for (unsigned Reg : Defs) { 1906 if (!ExtUses.count(Reg)) { 1907 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1908 SubRegs.isValid(); ++SubRegs) 1909 RedefsByFalse.insert(*SubRegs); 1910 } 1911 } 1912 } 1913 } 1914 1915 // Predicate the 'true' block. 1916 PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse); 1917 1918 // After predicating BBI1, if there is a predicated terminator in BBI1 and 1919 // a non-predicated in BBI2, then we don't want to predicate the one from 1920 // BBI2. The reason is that if we merged these blocks, we would end up with 1921 // two predicated terminators in the same block. 1922 if (!MBB2.empty() && (DI2 == MBB2.end())) { 1923 MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator(); 1924 MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator(); 1925 if (BBI1T != MBB1.end() && TII->isPredicated(*BBI1T) && 1926 BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T)) 1927 --DI2; 1928 } 1929 1930 // Predicate the 'false' block. 1931 PredicateBlock(*BBI2, DI2, *Cond2); 1932 1933 // Merge the true block into the entry of the diamond. 1934 MergeBlocks(BBI, *BBI1, MergeAddEdges); 1935 MergeBlocks(BBI, *BBI2, MergeAddEdges); 1936 return true; 1937 } 1938 1939 /// If convert an almost-diamond sub-CFG where the true 1940 /// and false blocks share a common tail. 1941 bool IfConverter::IfConvertForkedDiamond( 1942 BBInfo &BBI, IfcvtKind Kind, 1943 unsigned NumDups1, unsigned NumDups2, 1944 bool TClobbersPred, bool FClobbersPred) { 1945 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1946 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1947 1948 // Save the debug location for later. 1949 DebugLoc dl; 1950 MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator(); 1951 if (TIE != TrueBBI.BB->end()) 1952 dl = TIE->getDebugLoc(); 1953 // Removing branches from both blocks is safe, because we have already 1954 // determined that both blocks have the same branch instructions. The branch 1955 // will be added back at the end, unpredicated. 1956 if (!IfConvertDiamondCommon( 1957 BBI, TrueBBI, FalseBBI, 1958 NumDups1, NumDups2, 1959 TClobbersPred, FClobbersPred, 1960 /* RemoveBranch */ true, /* MergeAddEdges */ true)) 1961 return false; 1962 1963 // Add back the branch. 1964 // Debug location saved above when removing the branch from BBI2 1965 TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB, 1966 TrueBBI.BrCond, dl); 1967 1968 RemoveExtraEdges(BBI); 1969 1970 // Update block info. 1971 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 1972 InvalidatePreds(*BBI.BB); 1973 1974 // FIXME: Must maintain LiveIns. 1975 return true; 1976 } 1977 1978 /// If convert a diamond sub-CFG. 1979 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 1980 unsigned NumDups1, unsigned NumDups2, 1981 bool TClobbersPred, bool FClobbersPred) { 1982 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1983 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1984 MachineBasicBlock *TailBB = TrueBBI.TrueBB; 1985 1986 // True block must fall through or end with an unanalyzable terminator. 1987 if (!TailBB) { 1988 if (blockAlwaysFallThrough(TrueBBI)) 1989 TailBB = FalseBBI.TrueBB; 1990 assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!"); 1991 } 1992 1993 if (!IfConvertDiamondCommon( 1994 BBI, TrueBBI, FalseBBI, 1995 NumDups1, NumDups2, 1996 TClobbersPred, FClobbersPred, 1997 /* RemoveBranch */ TrueBBI.IsBrAnalyzable, 1998 /* MergeAddEdges */ TailBB == nullptr)) 1999 return false; 2000 2001 // If the if-converted block falls through or unconditionally branches into 2002 // the tail block, and the tail block does not have other predecessors, then 2003 // fold the tail block in as well. Otherwise, unless it falls through to the 2004 // tail, add a unconditional branch to it. 2005 if (TailBB) { 2006 BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()]; 2007 bool CanMergeTail = !TailBBI.HasFallThrough && 2008 !TailBBI.BB->hasAddressTaken(); 2009 // The if-converted block can still have a predicated terminator 2010 // (e.g. a predicated return). If that is the case, we cannot merge 2011 // it with the tail block. 2012 MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator(); 2013 if (TI != BBI.BB->end() && TII->isPredicated(*TI)) 2014 CanMergeTail = false; 2015 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB; 2016 // check if there are any other predecessors besides those. 2017 unsigned NumPreds = TailBB->pred_size(); 2018 if (NumPreds > 1) 2019 CanMergeTail = false; 2020 else if (NumPreds == 1 && CanMergeTail) { 2021 MachineBasicBlock::pred_iterator PI = TailBB->pred_begin(); 2022 if (*PI != TrueBBI.BB && *PI != FalseBBI.BB) 2023 CanMergeTail = false; 2024 } 2025 if (CanMergeTail) { 2026 MergeBlocks(BBI, TailBBI); 2027 TailBBI.IsDone = true; 2028 } else { 2029 BBI.BB->addSuccessor(TailBB, BranchProbability::getOne()); 2030 InsertUncondBranch(*BBI.BB, *TailBB, TII); 2031 BBI.HasFallThrough = false; 2032 } 2033 } 2034 2035 // RemoveExtraEdges won't work if the block has an unanalyzable branch, 2036 // which can happen here if TailBB is unanalyzable and is merged, so 2037 // explicitly remove BBI1 and BBI2 as successors. 2038 BBI.BB->removeSuccessor(TrueBBI.BB); 2039 BBI.BB->removeSuccessor(FalseBBI.BB, /* NormalizeSuccessProbs */ true); 2040 RemoveExtraEdges(BBI); 2041 2042 // Update block info. 2043 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 2044 InvalidatePreds(*BBI.BB); 2045 2046 // FIXME: Must maintain LiveIns. 2047 return true; 2048 } 2049 2050 static bool MaySpeculate(const MachineInstr &MI, 2051 SmallSet<unsigned, 4> &LaterRedefs) { 2052 bool SawStore = true; 2053 if (!MI.isSafeToMove(nullptr, SawStore)) 2054 return false; 2055 2056 for (const MachineOperand &MO : MI.operands()) { 2057 if (!MO.isReg()) 2058 continue; 2059 unsigned Reg = MO.getReg(); 2060 if (!Reg) 2061 continue; 2062 if (MO.isDef() && !LaterRedefs.count(Reg)) 2063 return false; 2064 } 2065 2066 return true; 2067 } 2068 2069 /// Predicate instructions from the start of the block to the specified end with 2070 /// the specified condition. 2071 void IfConverter::PredicateBlock(BBInfo &BBI, 2072 MachineBasicBlock::iterator E, 2073 SmallVectorImpl<MachineOperand> &Cond, 2074 SmallSet<unsigned, 4> *LaterRedefs) { 2075 bool AnyUnpred = false; 2076 bool MaySpec = LaterRedefs != nullptr; 2077 for (MachineInstr &I : make_range(BBI.BB->begin(), E)) { 2078 if (I.isDebugValue() || TII->isPredicated(I)) 2079 continue; 2080 // It may be possible not to predicate an instruction if it's the 'true' 2081 // side of a diamond and the 'false' side may re-define the instruction's 2082 // defs. 2083 if (MaySpec && MaySpeculate(I, *LaterRedefs)) { 2084 AnyUnpred = true; 2085 continue; 2086 } 2087 // If any instruction is predicated, then every instruction after it must 2088 // be predicated. 2089 MaySpec = false; 2090 if (!TII->PredicateInstruction(I, Cond)) { 2091 #ifndef NDEBUG 2092 dbgs() << "Unable to predicate " << I << "!\n"; 2093 #endif 2094 llvm_unreachable(nullptr); 2095 } 2096 2097 // If the predicated instruction now redefines a register as the result of 2098 // if-conversion, add an implicit kill. 2099 UpdatePredRedefs(I, Redefs); 2100 } 2101 2102 BBI.Predicate.append(Cond.begin(), Cond.end()); 2103 2104 BBI.IsAnalyzed = false; 2105 BBI.NonPredSize = 0; 2106 2107 ++NumIfConvBBs; 2108 if (AnyUnpred) 2109 ++NumUnpred; 2110 } 2111 2112 /// Copy and predicate instructions from source BB to the destination block. 2113 /// Skip end of block branches if IgnoreBr is true. 2114 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 2115 SmallVectorImpl<MachineOperand> &Cond, 2116 bool IgnoreBr) { 2117 MachineFunction &MF = *ToBBI.BB->getParent(); 2118 2119 MachineBasicBlock &FromMBB = *FromBBI.BB; 2120 for (MachineInstr &I : FromMBB) { 2121 // Do not copy the end of the block branches. 2122 if (IgnoreBr && I.isBranch()) 2123 break; 2124 2125 MachineInstr *MI = MF.CloneMachineInstr(&I); 2126 ToBBI.BB->insert(ToBBI.BB->end(), MI); 2127 ToBBI.NonPredSize++; 2128 unsigned ExtraPredCost = TII->getPredicationCost(I); 2129 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); 2130 if (NumCycles > 1) 2131 ToBBI.ExtraCost += NumCycles-1; 2132 ToBBI.ExtraCost2 += ExtraPredCost; 2133 2134 if (!TII->isPredicated(I) && !MI->isDebugValue()) { 2135 if (!TII->PredicateInstruction(*MI, Cond)) { 2136 #ifndef NDEBUG 2137 dbgs() << "Unable to predicate " << I << "!\n"; 2138 #endif 2139 llvm_unreachable(nullptr); 2140 } 2141 } 2142 2143 // If the predicated instruction now redefines a register as the result of 2144 // if-conversion, add an implicit kill. 2145 UpdatePredRedefs(*MI, Redefs); 2146 2147 // Some kill flags may not be correct anymore. 2148 if (!DontKill.empty()) 2149 RemoveKills(*MI, DontKill); 2150 } 2151 2152 if (!IgnoreBr) { 2153 std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(), 2154 FromMBB.succ_end()); 2155 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2156 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2157 2158 for (MachineBasicBlock *Succ : Succs) { 2159 // Fallthrough edge can't be transferred. 2160 if (Succ == FallThrough) 2161 continue; 2162 ToBBI.BB->addSuccessor(Succ); 2163 } 2164 } 2165 2166 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2167 ToBBI.Predicate.append(Cond.begin(), Cond.end()); 2168 2169 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2170 ToBBI.IsAnalyzed = false; 2171 2172 ++NumDupBBs; 2173 } 2174 2175 /// Move all instructions from FromBB to the end of ToBB. This will leave 2176 /// FromBB as an empty block, so remove all of its successor edges except for 2177 /// the fall-through edge. If AddEdges is true, i.e., when FromBBI's branch is 2178 /// being moved, add those successor edges to ToBBI. 2179 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) { 2180 MachineBasicBlock &FromMBB = *FromBBI.BB; 2181 assert(!FromMBB.hasAddressTaken() && 2182 "Removing a BB whose address is taken!"); 2183 2184 // In case FromMBB contains terminators (e.g. return instruction), 2185 // first move the non-terminator instructions, then the terminators. 2186 MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator(); 2187 MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator(); 2188 ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI); 2189 2190 // If FromBB has non-predicated terminator we should copy it at the end. 2191 if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI)) 2192 ToTI = ToBBI.BB->end(); 2193 ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end()); 2194 2195 // Force normalizing the successors' probabilities of ToBBI.BB to convert all 2196 // unknown probabilities into known ones. 2197 // FIXME: This usage is too tricky and in the future we would like to 2198 // eliminate all unknown probabilities in MBB. 2199 ToBBI.BB->normalizeSuccProbs(); 2200 2201 SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(), 2202 FromMBB.succ_end()); 2203 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2204 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2205 // The edge probability from ToBBI.BB to FromMBB, which is only needed when 2206 // AddEdges is true and FromMBB is a successor of ToBBI.BB. 2207 auto To2FromProb = BranchProbability::getZero(); 2208 if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) { 2209 To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB); 2210 // Set the edge probability from ToBBI.BB to FromMBB to zero to avoid the 2211 // edge probability being merged to other edges when this edge is removed 2212 // later. 2213 ToBBI.BB->setSuccProbability(find(ToBBI.BB->successors(), &FromMBB), 2214 BranchProbability::getZero()); 2215 } 2216 2217 for (MachineBasicBlock *Succ : FromSuccs) { 2218 // Fallthrough edge can't be transferred. 2219 if (Succ == FallThrough) 2220 continue; 2221 2222 auto NewProb = BranchProbability::getZero(); 2223 if (AddEdges) { 2224 // Calculate the edge probability for the edge from ToBBI.BB to Succ, 2225 // which is a portion of the edge probability from FromMBB to Succ. The 2226 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if 2227 // FromBBI is a successor of ToBBI.BB. See comment below for excepion). 2228 NewProb = MBPI->getEdgeProbability(&FromMBB, Succ); 2229 2230 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This 2231 // only happens when if-converting a diamond CFG and FromMBB is the 2232 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we 2233 // could just use the probabilities on FromMBB's out-edges when adding 2234 // new successors. 2235 if (!To2FromProb.isZero()) 2236 NewProb *= To2FromProb; 2237 } 2238 2239 FromMBB.removeSuccessor(Succ); 2240 2241 if (AddEdges) { 2242 // If the edge from ToBBI.BB to Succ already exists, update the 2243 // probability of this edge by adding NewProb to it. An example is shown 2244 // below, in which A is ToBBI.BB and B is FromMBB. In this case we 2245 // don't have to set C as A's successor as it already is. We only need to 2246 // update the edge probability on A->C. Note that B will not be 2247 // immediately removed from A's successors. It is possible that B->D is 2248 // not removed either if D is a fallthrough of B. Later the edge A->D 2249 // (generated here) and B->D will be combined into one edge. To maintain 2250 // correct edge probability of this combined edge, we need to set the edge 2251 // probability of A->B to zero, which is already done above. The edge 2252 // probability on A->D is calculated by scaling the original probability 2253 // on A->B by the probability of B->D. 2254 // 2255 // Before ifcvt: After ifcvt (assume B->D is kept): 2256 // 2257 // A A 2258 // /| /|\ 2259 // / B / B| 2260 // | /| | || 2261 // |/ | | |/ 2262 // C D C D 2263 // 2264 if (ToBBI.BB->isSuccessor(Succ)) 2265 ToBBI.BB->setSuccProbability( 2266 find(ToBBI.BB->successors(), Succ), 2267 MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb); 2268 else 2269 ToBBI.BB->addSuccessor(Succ, NewProb); 2270 } 2271 } 2272 2273 // Now FromBBI always falls through to the next block! 2274 if (NBB && !FromMBB.isSuccessor(NBB)) 2275 FromMBB.addSuccessor(NBB); 2276 2277 // Normalize the probabilities of ToBBI.BB's successors with all adjustment 2278 // we've done above. 2279 ToBBI.BB->normalizeSuccProbs(); 2280 2281 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2282 FromBBI.Predicate.clear(); 2283 2284 ToBBI.NonPredSize += FromBBI.NonPredSize; 2285 ToBBI.ExtraCost += FromBBI.ExtraCost; 2286 ToBBI.ExtraCost2 += FromBBI.ExtraCost2; 2287 FromBBI.NonPredSize = 0; 2288 FromBBI.ExtraCost = 0; 2289 FromBBI.ExtraCost2 = 0; 2290 2291 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2292 ToBBI.HasFallThrough = FromBBI.HasFallThrough; 2293 ToBBI.IsAnalyzed = false; 2294 FromBBI.IsAnalyzed = false; 2295 } 2296 2297 FunctionPass * 2298 llvm::createIfConverter(std::function<bool(const Function &)> Ftor) { 2299 return new IfConverter(std::move(Ftor)); 2300 } 2301