1 //===- IfConversion.cpp - Machine code if conversion pass -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the machine instruction level if-conversion pass, which 10 // tries to convert conditional branches into predicated instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "BranchFolding.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/SparseSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/CodeGen/LivePhysRegs.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 25 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineModuleInfo.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSchedule.h" 37 #include "llvm/CodeGen/TargetSubtargetInfo.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/InitializePasses.h" 41 #include "llvm/MC/MCRegisterInfo.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/BranchProbability.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <functional> 51 #include <iterator> 52 #include <memory> 53 #include <utility> 54 #include <vector> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "if-converter" 59 60 // Hidden options for help debugging. 61 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden); 62 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden); 63 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden); 64 static cl::opt<bool> DisableSimple("disable-ifcvt-simple", 65 cl::init(false), cl::Hidden); 66 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false", 67 cl::init(false), cl::Hidden); 68 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle", 69 cl::init(false), cl::Hidden); 70 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev", 71 cl::init(false), cl::Hidden); 72 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false", 73 cl::init(false), cl::Hidden); 74 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev", 75 cl::init(false), cl::Hidden); 76 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond", 77 cl::init(false), cl::Hidden); 78 static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond", 79 cl::init(false), cl::Hidden); 80 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold", 81 cl::init(true), cl::Hidden); 82 83 STATISTIC(NumSimple, "Number of simple if-conversions performed"); 84 STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed"); 85 STATISTIC(NumTriangle, "Number of triangle if-conversions performed"); 86 STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed"); 87 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed"); 88 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed"); 89 STATISTIC(NumDiamonds, "Number of diamond if-conversions performed"); 90 STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed"); 91 STATISTIC(NumIfConvBBs, "Number of if-converted blocks"); 92 STATISTIC(NumDupBBs, "Number of duplicated blocks"); 93 STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated"); 94 95 namespace { 96 97 class IfConverter : public MachineFunctionPass { 98 enum IfcvtKind { 99 ICNotClassfied, // BB data valid, but not classified. 100 ICSimpleFalse, // Same as ICSimple, but on the false path. 101 ICSimple, // BB is entry of an one split, no rejoin sub-CFG. 102 ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition. 103 ICTriangleRev, // Same as ICTriangle, but true path rev condition. 104 ICTriangleFalse, // Same as ICTriangle, but on the false path. 105 ICTriangle, // BB is entry of a triangle sub-CFG. 106 ICDiamond, // BB is entry of a diamond sub-CFG. 107 ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a 108 // common tail that can be shared. 109 }; 110 111 /// One per MachineBasicBlock, this is used to cache the result 112 /// if-conversion feasibility analysis. This includes results from 113 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its 114 /// classification, and common tail block of its successors (if it's a 115 /// diamond shape), its size, whether it's predicable, and whether any 116 /// instruction can clobber the 'would-be' predicate. 117 /// 118 /// IsDone - True if BB is not to be considered for ifcvt. 119 /// IsBeingAnalyzed - True if BB is currently being analyzed. 120 /// IsAnalyzed - True if BB has been analyzed (info is still valid). 121 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed. 122 /// IsBrAnalyzable - True if analyzeBranch() returns false. 123 /// HasFallThrough - True if BB may fallthrough to the following BB. 124 /// IsUnpredicable - True if BB is known to be unpredicable. 125 /// ClobbersPred - True if BB could modify predicates (e.g. has 126 /// cmp, call, etc.) 127 /// NonPredSize - Number of non-predicated instructions. 128 /// ExtraCost - Extra cost for multi-cycle instructions. 129 /// ExtraCost2 - Some instructions are slower when predicated 130 /// BB - Corresponding MachineBasicBlock. 131 /// TrueBB / FalseBB- See analyzeBranch(). 132 /// BrCond - Conditions for end of block conditional branches. 133 /// Predicate - Predicate used in the BB. 134 struct BBInfo { 135 bool IsDone : 1; 136 bool IsBeingAnalyzed : 1; 137 bool IsAnalyzed : 1; 138 bool IsEnqueued : 1; 139 bool IsBrAnalyzable : 1; 140 bool IsBrReversible : 1; 141 bool HasFallThrough : 1; 142 bool IsUnpredicable : 1; 143 bool CannotBeCopied : 1; 144 bool ClobbersPred : 1; 145 unsigned NonPredSize = 0; 146 unsigned ExtraCost = 0; 147 unsigned ExtraCost2 = 0; 148 MachineBasicBlock *BB = nullptr; 149 MachineBasicBlock *TrueBB = nullptr; 150 MachineBasicBlock *FalseBB = nullptr; 151 SmallVector<MachineOperand, 4> BrCond; 152 SmallVector<MachineOperand, 4> Predicate; 153 154 BBInfo() : IsDone(false), IsBeingAnalyzed(false), 155 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false), 156 IsBrReversible(false), HasFallThrough(false), 157 IsUnpredicable(false), CannotBeCopied(false), 158 ClobbersPred(false) {} 159 }; 160 161 /// Record information about pending if-conversions to attempt: 162 /// BBI - Corresponding BBInfo. 163 /// Kind - Type of block. See IfcvtKind. 164 /// NeedSubsumption - True if the to-be-predicated BB has already been 165 /// predicated. 166 /// NumDups - Number of instructions that would be duplicated due 167 /// to this if-conversion. (For diamonds, the number of 168 /// identical instructions at the beginnings of both 169 /// paths). 170 /// NumDups2 - For diamonds, the number of identical instructions 171 /// at the ends of both paths. 172 struct IfcvtToken { 173 BBInfo &BBI; 174 IfcvtKind Kind; 175 unsigned NumDups; 176 unsigned NumDups2; 177 bool NeedSubsumption : 1; 178 bool TClobbersPred : 1; 179 bool FClobbersPred : 1; 180 181 IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0, 182 bool tc = false, bool fc = false) 183 : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s), 184 TClobbersPred(tc), FClobbersPred(fc) {} 185 }; 186 187 /// Results of if-conversion feasibility analysis indexed by basic block 188 /// number. 189 std::vector<BBInfo> BBAnalysis; 190 TargetSchedModel SchedModel; 191 192 const TargetLoweringBase *TLI; 193 const TargetInstrInfo *TII; 194 const TargetRegisterInfo *TRI; 195 const MachineBranchProbabilityInfo *MBPI; 196 MachineRegisterInfo *MRI; 197 198 LivePhysRegs Redefs; 199 200 bool PreRegAlloc; 201 bool MadeChange; 202 int FnNum = -1; 203 std::function<bool(const MachineFunction &)> PredicateFtor; 204 205 public: 206 static char ID; 207 208 IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr) 209 : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) { 210 initializeIfConverterPass(*PassRegistry::getPassRegistry()); 211 } 212 213 void getAnalysisUsage(AnalysisUsage &AU) const override { 214 AU.addRequired<MachineBlockFrequencyInfo>(); 215 AU.addRequired<MachineBranchProbabilityInfo>(); 216 MachineFunctionPass::getAnalysisUsage(AU); 217 } 218 219 bool runOnMachineFunction(MachineFunction &MF) override; 220 221 MachineFunctionProperties getRequiredProperties() const override { 222 return MachineFunctionProperties().set( 223 MachineFunctionProperties::Property::NoVRegs); 224 } 225 226 private: 227 bool reverseBranchCondition(BBInfo &BBI) const; 228 bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 229 BranchProbability Prediction) const; 230 bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 231 bool FalseBranch, unsigned &Dups, 232 BranchProbability Prediction) const; 233 bool CountDuplicatedInstructions( 234 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 235 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 236 unsigned &Dups1, unsigned &Dups2, 237 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 238 bool SkipUnconditionalBranches) const; 239 bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 240 unsigned &Dups1, unsigned &Dups2, 241 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 242 bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 243 unsigned &Dups1, unsigned &Dups2, 244 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 245 void AnalyzeBranches(BBInfo &BBI); 246 void ScanInstructions(BBInfo &BBI, 247 MachineBasicBlock::iterator &Begin, 248 MachineBasicBlock::iterator &End, 249 bool BranchUnpredicable = false) const; 250 bool RescanInstructions( 251 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 252 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 253 BBInfo &TrueBBI, BBInfo &FalseBBI) const; 254 void AnalyzeBlock(MachineBasicBlock &MBB, 255 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 256 bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred, 257 bool isTriangle = false, bool RevBranch = false, 258 bool hasCommonTail = false); 259 void AnalyzeBlocks(MachineFunction &MF, 260 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 261 void InvalidatePreds(MachineBasicBlock &MBB); 262 bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind); 263 bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind); 264 bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 265 unsigned NumDups1, unsigned NumDups2, 266 bool TClobbersPred, bool FClobbersPred, 267 bool RemoveBranch, bool MergeAddEdges); 268 bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 269 unsigned NumDups1, unsigned NumDups2, 270 bool TClobbers, bool FClobbers); 271 bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind, 272 unsigned NumDups1, unsigned NumDups2, 273 bool TClobbers, bool FClobbers); 274 void PredicateBlock(BBInfo &BBI, 275 MachineBasicBlock::iterator E, 276 SmallVectorImpl<MachineOperand> &Cond, 277 SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr); 278 void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 279 SmallVectorImpl<MachineOperand> &Cond, 280 bool IgnoreBr = false); 281 void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true); 282 283 bool MeetIfcvtSizeLimit(MachineBasicBlock &BB, 284 unsigned Cycle, unsigned Extra, 285 BranchProbability Prediction) const { 286 return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra, 287 Prediction); 288 } 289 290 bool MeetIfcvtSizeLimit(BBInfo &TBBInfo, BBInfo &FBBInfo, 291 MachineBasicBlock &CommBB, unsigned Dups, 292 BranchProbability Prediction, bool Forked) const { 293 const MachineFunction &MF = *TBBInfo.BB->getParent(); 294 if (MF.getFunction().hasMinSize()) { 295 MachineBasicBlock::iterator TIB = TBBInfo.BB->begin(); 296 MachineBasicBlock::iterator FIB = FBBInfo.BB->begin(); 297 MachineBasicBlock::iterator TIE = TBBInfo.BB->end(); 298 MachineBasicBlock::iterator FIE = FBBInfo.BB->end(); 299 300 unsigned Dups1, Dups2; 301 if (!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 302 *TBBInfo.BB, *FBBInfo.BB, 303 /*SkipUnconditionalBranches*/ true)) 304 llvm_unreachable("should already have been checked by ValidDiamond"); 305 306 unsigned BranchBytes = 0; 307 unsigned CommonBytes = 0; 308 309 // Count common instructions at the start of the true and false blocks. 310 for (auto &I : make_range(TBBInfo.BB->begin(), TIB)) { 311 LLVM_DEBUG(dbgs() << "Common inst: " << I); 312 CommonBytes += TII->getInstSizeInBytes(I); 313 } 314 for (auto &I : make_range(FBBInfo.BB->begin(), FIB)) { 315 LLVM_DEBUG(dbgs() << "Common inst: " << I); 316 CommonBytes += TII->getInstSizeInBytes(I); 317 } 318 319 // Count instructions at the end of the true and false blocks, after 320 // the ones we plan to predicate. Analyzable branches will be removed 321 // (unless this is a forked diamond), and all other instructions are 322 // common between the two blocks. 323 for (auto &I : make_range(TIE, TBBInfo.BB->end())) { 324 if (I.isBranch() && TBBInfo.IsBrAnalyzable && !Forked) { 325 LLVM_DEBUG(dbgs() << "Saving branch: " << I); 326 BranchBytes += TII->predictBranchSizeForIfCvt(I); 327 } else { 328 LLVM_DEBUG(dbgs() << "Common inst: " << I); 329 CommonBytes += TII->getInstSizeInBytes(I); 330 } 331 } 332 for (auto &I : make_range(FIE, FBBInfo.BB->end())) { 333 if (I.isBranch() && FBBInfo.IsBrAnalyzable && !Forked) { 334 LLVM_DEBUG(dbgs() << "Saving branch: " << I); 335 BranchBytes += TII->predictBranchSizeForIfCvt(I); 336 } else { 337 LLVM_DEBUG(dbgs() << "Common inst: " << I); 338 CommonBytes += TII->getInstSizeInBytes(I); 339 } 340 } 341 for (auto &I : CommBB.terminators()) { 342 if (I.isBranch()) { 343 LLVM_DEBUG(dbgs() << "Saving branch: " << I); 344 BranchBytes += TII->predictBranchSizeForIfCvt(I); 345 } 346 } 347 348 // The common instructions in one branch will be eliminated, halving 349 // their code size. 350 CommonBytes /= 2; 351 352 // Count the instructions which we need to predicate. 353 unsigned NumPredicatedInstructions = 0; 354 for (auto &I : make_range(TIB, TIE)) { 355 if (!I.isDebugInstr()) { 356 LLVM_DEBUG(dbgs() << "Predicating: " << I); 357 NumPredicatedInstructions++; 358 } 359 } 360 for (auto &I : make_range(FIB, FIE)) { 361 if (!I.isDebugInstr()) { 362 LLVM_DEBUG(dbgs() << "Predicating: " << I); 363 NumPredicatedInstructions++; 364 } 365 } 366 367 // Even though we're optimising for size at the expense of performance, 368 // avoid creating really long predicated blocks. 369 if (NumPredicatedInstructions > 15) 370 return false; 371 372 // Some targets (e.g. Thumb2) need to insert extra instructions to 373 // start predicated blocks. 374 unsigned ExtraPredicateBytes = TII->extraSizeToPredicateInstructions( 375 MF, NumPredicatedInstructions); 376 377 LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(BranchBytes=" << BranchBytes 378 << ", CommonBytes=" << CommonBytes 379 << ", NumPredicatedInstructions=" 380 << NumPredicatedInstructions 381 << ", ExtraPredicateBytes=" << ExtraPredicateBytes 382 << ")\n"); 383 return (BranchBytes + CommonBytes) > ExtraPredicateBytes; 384 } else { 385 unsigned TCycle = TBBInfo.NonPredSize + TBBInfo.ExtraCost - Dups; 386 unsigned FCycle = FBBInfo.NonPredSize + FBBInfo.ExtraCost - Dups; 387 bool Res = TCycle > 0 && FCycle > 0 && 388 TII->isProfitableToIfCvt( 389 *TBBInfo.BB, TCycle, TBBInfo.ExtraCost2, *FBBInfo.BB, 390 FCycle, FBBInfo.ExtraCost2, Prediction); 391 LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(TCycle=" << TCycle 392 << ", FCycle=" << FCycle 393 << ", TExtra=" << TBBInfo.ExtraCost2 << ", FExtra=" 394 << FBBInfo.ExtraCost2 << ") = " << Res << "\n"); 395 return Res; 396 } 397 } 398 399 /// Returns true if Block ends without a terminator. 400 bool blockAlwaysFallThrough(BBInfo &BBI) const { 401 return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr; 402 } 403 404 /// Used to sort if-conversion candidates. 405 static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1, 406 const std::unique_ptr<IfcvtToken> &C2) { 407 int Incr1 = (C1->Kind == ICDiamond) 408 ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups; 409 int Incr2 = (C2->Kind == ICDiamond) 410 ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups; 411 if (Incr1 > Incr2) 412 return true; 413 else if (Incr1 == Incr2) { 414 // Favors subsumption. 415 if (!C1->NeedSubsumption && C2->NeedSubsumption) 416 return true; 417 else if (C1->NeedSubsumption == C2->NeedSubsumption) { 418 // Favors diamond over triangle, etc. 419 if ((unsigned)C1->Kind < (unsigned)C2->Kind) 420 return true; 421 else if (C1->Kind == C2->Kind) 422 return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber(); 423 } 424 } 425 return false; 426 } 427 }; 428 429 } // end anonymous namespace 430 431 char IfConverter::ID = 0; 432 433 char &llvm::IfConverterID = IfConverter::ID; 434 435 INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false) 436 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 437 INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false) 438 439 bool IfConverter::runOnMachineFunction(MachineFunction &MF) { 440 if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF))) 441 return false; 442 443 const TargetSubtargetInfo &ST = MF.getSubtarget(); 444 TLI = ST.getTargetLowering(); 445 TII = ST.getInstrInfo(); 446 TRI = ST.getRegisterInfo(); 447 BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>()); 448 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 449 MRI = &MF.getRegInfo(); 450 SchedModel.init(&ST); 451 452 if (!TII) return false; 453 454 PreRegAlloc = MRI->isSSA(); 455 456 bool BFChange = false; 457 if (!PreRegAlloc) { 458 // Tail merge tend to expose more if-conversion opportunities. 459 BranchFolder BF(true, false, MBFI, *MBPI); 460 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 461 BFChange = BF.OptimizeFunction( 462 MF, TII, ST.getRegisterInfo(), 463 MMIWP ? &MMIWP->getMMI() : nullptr); 464 } 465 466 LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'" 467 << MF.getName() << "\'"); 468 469 if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) { 470 LLVM_DEBUG(dbgs() << " skipped\n"); 471 return false; 472 } 473 LLVM_DEBUG(dbgs() << "\n"); 474 475 MF.RenumberBlocks(); 476 BBAnalysis.resize(MF.getNumBlockIDs()); 477 478 std::vector<std::unique_ptr<IfcvtToken>> Tokens; 479 MadeChange = false; 480 unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + 481 NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds; 482 while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) { 483 // Do an initial analysis for each basic block and find all the potential 484 // candidates to perform if-conversion. 485 bool Change = false; 486 AnalyzeBlocks(MF, Tokens); 487 while (!Tokens.empty()) { 488 std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back()); 489 Tokens.pop_back(); 490 BBInfo &BBI = Token->BBI; 491 IfcvtKind Kind = Token->Kind; 492 unsigned NumDups = Token->NumDups; 493 unsigned NumDups2 = Token->NumDups2; 494 495 // If the block has been evicted out of the queue or it has already been 496 // marked dead (due to it being predicated), then skip it. 497 if (BBI.IsDone) 498 BBI.IsEnqueued = false; 499 if (!BBI.IsEnqueued) 500 continue; 501 502 BBI.IsEnqueued = false; 503 504 bool RetVal = false; 505 switch (Kind) { 506 default: llvm_unreachable("Unexpected!"); 507 case ICSimple: 508 case ICSimpleFalse: { 509 bool isFalse = Kind == ICSimpleFalse; 510 if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break; 511 LLVM_DEBUG(dbgs() << "Ifcvt (Simple" 512 << (Kind == ICSimpleFalse ? " false" : "") 513 << "): " << printMBBReference(*BBI.BB) << " (" 514 << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber() 515 : BBI.TrueBB->getNumber()) 516 << ") "); 517 RetVal = IfConvertSimple(BBI, Kind); 518 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 519 if (RetVal) { 520 if (isFalse) ++NumSimpleFalse; 521 else ++NumSimple; 522 } 523 break; 524 } 525 case ICTriangle: 526 case ICTriangleRev: 527 case ICTriangleFalse: 528 case ICTriangleFRev: { 529 bool isFalse = Kind == ICTriangleFalse; 530 bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev); 531 if (DisableTriangle && !isFalse && !isRev) break; 532 if (DisableTriangleR && !isFalse && isRev) break; 533 if (DisableTriangleF && isFalse && !isRev) break; 534 if (DisableTriangleFR && isFalse && isRev) break; 535 LLVM_DEBUG(dbgs() << "Ifcvt (Triangle"); 536 if (isFalse) 537 LLVM_DEBUG(dbgs() << " false"); 538 if (isRev) 539 LLVM_DEBUG(dbgs() << " rev"); 540 LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB) 541 << " (T:" << BBI.TrueBB->getNumber() 542 << ",F:" << BBI.FalseBB->getNumber() << ") "); 543 RetVal = IfConvertTriangle(BBI, Kind); 544 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 545 if (RetVal) { 546 if (isFalse) { 547 if (isRev) ++NumTriangleFRev; 548 else ++NumTriangleFalse; 549 } else { 550 if (isRev) ++NumTriangleRev; 551 else ++NumTriangle; 552 } 553 } 554 break; 555 } 556 case ICDiamond: 557 if (DisableDiamond) break; 558 LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB) 559 << " (T:" << BBI.TrueBB->getNumber() 560 << ",F:" << BBI.FalseBB->getNumber() << ") "); 561 RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2, 562 Token->TClobbersPred, 563 Token->FClobbersPred); 564 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 565 if (RetVal) ++NumDiamonds; 566 break; 567 case ICForkedDiamond: 568 if (DisableForkedDiamond) break; 569 LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): " 570 << printMBBReference(*BBI.BB) 571 << " (T:" << BBI.TrueBB->getNumber() 572 << ",F:" << BBI.FalseBB->getNumber() << ") "); 573 RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2, 574 Token->TClobbersPred, 575 Token->FClobbersPred); 576 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 577 if (RetVal) ++NumForkedDiamonds; 578 break; 579 } 580 581 if (RetVal && MRI->tracksLiveness()) 582 recomputeLivenessFlags(*BBI.BB); 583 584 Change |= RetVal; 585 586 NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev + 587 NumTriangleFalse + NumTriangleFRev + NumDiamonds; 588 if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit) 589 break; 590 } 591 592 if (!Change) 593 break; 594 MadeChange |= Change; 595 } 596 597 Tokens.clear(); 598 BBAnalysis.clear(); 599 600 if (MadeChange && IfCvtBranchFold) { 601 BranchFolder BF(false, false, MBFI, *MBPI); 602 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 603 BF.OptimizeFunction( 604 MF, TII, MF.getSubtarget().getRegisterInfo(), 605 MMIWP ? &MMIWP->getMMI() : nullptr); 606 } 607 608 MadeChange |= BFChange; 609 return MadeChange; 610 } 611 612 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor. 613 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 614 MachineBasicBlock *TrueBB) { 615 for (MachineBasicBlock *SuccBB : BB->successors()) { 616 if (SuccBB != TrueBB) 617 return SuccBB; 618 } 619 return nullptr; 620 } 621 622 /// Reverse the condition of the end of the block branch. Swap block's 'true' 623 /// and 'false' successors. 624 bool IfConverter::reverseBranchCondition(BBInfo &BBI) const { 625 DebugLoc dl; // FIXME: this is nowhere 626 if (!TII->reverseBranchCondition(BBI.BrCond)) { 627 TII->removeBranch(*BBI.BB); 628 TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl); 629 std::swap(BBI.TrueBB, BBI.FalseBB); 630 return true; 631 } 632 return false; 633 } 634 635 /// Returns the next block in the function blocks ordering. If it is the end, 636 /// returns NULL. 637 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) { 638 MachineFunction::iterator I = MBB.getIterator(); 639 MachineFunction::iterator E = MBB.getParent()->end(); 640 if (++I == E) 641 return nullptr; 642 return &*I; 643 } 644 645 /// Returns true if the 'true' block (along with its predecessor) forms a valid 646 /// simple shape for ifcvt. It also returns the number of instructions that the 647 /// ifcvt would need to duplicate if performed in Dups. 648 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 649 BranchProbability Prediction) const { 650 Dups = 0; 651 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 652 return false; 653 654 if (TrueBBI.IsBrAnalyzable) 655 return false; 656 657 if (TrueBBI.BB->pred_size() > 1) { 658 if (TrueBBI.CannotBeCopied || 659 !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize, 660 Prediction)) 661 return false; 662 Dups = TrueBBI.NonPredSize; 663 } 664 665 return true; 666 } 667 668 /// Returns true if the 'true' and 'false' blocks (along with their common 669 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is 670 /// true, it checks if 'true' block's false branch branches to the 'false' block 671 /// rather than the other way around. It also returns the number of instructions 672 /// that the ifcvt would need to duplicate if performed in 'Dups'. 673 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 674 bool FalseBranch, unsigned &Dups, 675 BranchProbability Prediction) const { 676 Dups = 0; 677 if (TrueBBI.BB == FalseBBI.BB) 678 return false; 679 680 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 681 return false; 682 683 if (TrueBBI.BB->pred_size() > 1) { 684 if (TrueBBI.CannotBeCopied) 685 return false; 686 687 unsigned Size = TrueBBI.NonPredSize; 688 if (TrueBBI.IsBrAnalyzable) { 689 if (TrueBBI.TrueBB && TrueBBI.BrCond.empty()) 690 // Ends with an unconditional branch. It will be removed. 691 --Size; 692 else { 693 MachineBasicBlock *FExit = FalseBranch 694 ? TrueBBI.TrueBB : TrueBBI.FalseBB; 695 if (FExit) 696 // Require a conditional branch 697 ++Size; 698 } 699 } 700 if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction)) 701 return false; 702 Dups = Size; 703 } 704 705 MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB; 706 if (!TExit && blockAlwaysFallThrough(TrueBBI)) { 707 MachineFunction::iterator I = TrueBBI.BB->getIterator(); 708 if (++I == TrueBBI.BB->getParent()->end()) 709 return false; 710 TExit = &*I; 711 } 712 return TExit && TExit == FalseBBI.BB; 713 } 714 715 /// Count duplicated instructions and move the iterators to show where they 716 /// are. 717 /// @param TIB True Iterator Begin 718 /// @param FIB False Iterator Begin 719 /// These two iterators initially point to the first instruction of the two 720 /// blocks, and finally point to the first non-shared instruction. 721 /// @param TIE True Iterator End 722 /// @param FIE False Iterator End 723 /// These two iterators initially point to End() for the two blocks() and 724 /// finally point to the first shared instruction in the tail. 725 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of 726 /// two blocks. 727 /// @param Dups1 count of duplicated instructions at the beginning of the 2 728 /// blocks. 729 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks. 730 /// @param SkipUnconditionalBranches if true, Don't make sure that 731 /// unconditional branches at the end of the blocks are the same. True is 732 /// passed when the blocks are analyzable to allow for fallthrough to be 733 /// handled. 734 /// @return false if the shared portion prevents if conversion. 735 bool IfConverter::CountDuplicatedInstructions( 736 MachineBasicBlock::iterator &TIB, 737 MachineBasicBlock::iterator &FIB, 738 MachineBasicBlock::iterator &TIE, 739 MachineBasicBlock::iterator &FIE, 740 unsigned &Dups1, unsigned &Dups2, 741 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 742 bool SkipUnconditionalBranches) const { 743 while (TIB != TIE && FIB != FIE) { 744 // Skip dbg_value instructions. These do not count. 745 TIB = skipDebugInstructionsForward(TIB, TIE); 746 FIB = skipDebugInstructionsForward(FIB, FIE); 747 if (TIB == TIE || FIB == FIE) 748 break; 749 if (!TIB->isIdenticalTo(*FIB)) 750 break; 751 // A pred-clobbering instruction in the shared portion prevents 752 // if-conversion. 753 std::vector<MachineOperand> PredDefs; 754 if (TII->DefinesPredicate(*TIB, PredDefs)) 755 return false; 756 // If we get all the way to the branch instructions, don't count them. 757 if (!TIB->isBranch()) 758 ++Dups1; 759 ++TIB; 760 ++FIB; 761 } 762 763 // Check for already containing all of the block. 764 if (TIB == TIE || FIB == FIE) 765 return true; 766 // Now, in preparation for counting duplicate instructions at the ends of the 767 // blocks, switch to reverse_iterators. Note that getReverse() returns an 768 // iterator that points to the same instruction, unlike std::reverse_iterator. 769 // We have to do our own shifting so that we get the same range. 770 MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse()); 771 MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse()); 772 const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse()); 773 const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse()); 774 775 if (!TBB.succ_empty() || !FBB.succ_empty()) { 776 if (SkipUnconditionalBranches) { 777 while (RTIE != RTIB && RTIE->isUnconditionalBranch()) 778 ++RTIE; 779 while (RFIE != RFIB && RFIE->isUnconditionalBranch()) 780 ++RFIE; 781 } 782 } 783 784 // Count duplicate instructions at the ends of the blocks. 785 while (RTIE != RTIB && RFIE != RFIB) { 786 // Skip dbg_value instructions. These do not count. 787 // Note that these are reverse iterators going forward. 788 RTIE = skipDebugInstructionsForward(RTIE, RTIB); 789 RFIE = skipDebugInstructionsForward(RFIE, RFIB); 790 if (RTIE == RTIB || RFIE == RFIB) 791 break; 792 if (!RTIE->isIdenticalTo(*RFIE)) 793 break; 794 // We have to verify that any branch instructions are the same, and then we 795 // don't count them toward the # of duplicate instructions. 796 if (!RTIE->isBranch()) 797 ++Dups2; 798 ++RTIE; 799 ++RFIE; 800 } 801 TIE = std::next(RTIE.getReverse()); 802 FIE = std::next(RFIE.getReverse()); 803 return true; 804 } 805 806 /// RescanInstructions - Run ScanInstructions on a pair of blocks. 807 /// @param TIB - True Iterator Begin, points to first non-shared instruction 808 /// @param FIB - False Iterator Begin, points to first non-shared instruction 809 /// @param TIE - True Iterator End, points past last non-shared instruction 810 /// @param FIE - False Iterator End, points past last non-shared instruction 811 /// @param TrueBBI - BBInfo to update for the true block. 812 /// @param FalseBBI - BBInfo to update for the false block. 813 /// @returns - false if either block cannot be predicated or if both blocks end 814 /// with a predicate-clobbering instruction. 815 bool IfConverter::RescanInstructions( 816 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 817 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 818 BBInfo &TrueBBI, BBInfo &FalseBBI) const { 819 bool BranchUnpredicable = true; 820 TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false; 821 ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable); 822 if (TrueBBI.IsUnpredicable) 823 return false; 824 ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable); 825 if (FalseBBI.IsUnpredicable) 826 return false; 827 if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred) 828 return false; 829 return true; 830 } 831 832 #ifndef NDEBUG 833 static void verifySameBranchInstructions( 834 MachineBasicBlock *MBB1, 835 MachineBasicBlock *MBB2) { 836 const MachineBasicBlock::reverse_iterator B1 = MBB1->rend(); 837 const MachineBasicBlock::reverse_iterator B2 = MBB2->rend(); 838 MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin(); 839 MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin(); 840 while (E1 != B1 && E2 != B2) { 841 skipDebugInstructionsForward(E1, B1); 842 skipDebugInstructionsForward(E2, B2); 843 if (E1 == B1 && E2 == B2) 844 break; 845 846 if (E1 == B1) { 847 assert(!E2->isBranch() && "Branch mis-match, one block is empty."); 848 break; 849 } 850 if (E2 == B2) { 851 assert(!E1->isBranch() && "Branch mis-match, one block is empty."); 852 break; 853 } 854 855 if (E1->isBranch() || E2->isBranch()) 856 assert(E1->isIdenticalTo(*E2) && 857 "Branch mis-match, branch instructions don't match."); 858 else 859 break; 860 ++E1; 861 ++E2; 862 } 863 } 864 #endif 865 866 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along 867 /// with their common predecessor) form a diamond if a common tail block is 868 /// extracted. 869 /// While not strictly a diamond, this pattern would form a diamond if 870 /// tail-merging had merged the shared tails. 871 /// EBB 872 /// _/ \_ 873 /// | | 874 /// TBB FBB 875 /// / \ / \ 876 /// FalseBB TrueBB FalseBB 877 /// Currently only handles analyzable branches. 878 /// Specifically excludes actual diamonds to avoid overlap. 879 bool IfConverter::ValidForkedDiamond( 880 BBInfo &TrueBBI, BBInfo &FalseBBI, 881 unsigned &Dups1, unsigned &Dups2, 882 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 883 Dups1 = Dups2 = 0; 884 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 885 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 886 return false; 887 888 if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable) 889 return false; 890 // Don't IfConvert blocks that can't be folded into their predecessor. 891 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 892 return false; 893 894 // This function is specifically looking for conditional tails, as 895 // unconditional tails are already handled by the standard diamond case. 896 if (TrueBBI.BrCond.size() == 0 || 897 FalseBBI.BrCond.size() == 0) 898 return false; 899 900 MachineBasicBlock *TT = TrueBBI.TrueBB; 901 MachineBasicBlock *TF = TrueBBI.FalseBB; 902 MachineBasicBlock *FT = FalseBBI.TrueBB; 903 MachineBasicBlock *FF = FalseBBI.FalseBB; 904 905 if (!TT) 906 TT = getNextBlock(*TrueBBI.BB); 907 if (!TF) 908 TF = getNextBlock(*TrueBBI.BB); 909 if (!FT) 910 FT = getNextBlock(*FalseBBI.BB); 911 if (!FF) 912 FF = getNextBlock(*FalseBBI.BB); 913 914 if (!TT || !TF) 915 return false; 916 917 // Check successors. If they don't match, bail. 918 if (!((TT == FT && TF == FF) || (TF == FT && TT == FF))) 919 return false; 920 921 bool FalseReversed = false; 922 if (TF == FT && TT == FF) { 923 // If the branches are opposing, but we can't reverse, don't do it. 924 if (!FalseBBI.IsBrReversible) 925 return false; 926 FalseReversed = true; 927 reverseBranchCondition(FalseBBI); 928 } 929 auto UnReverseOnExit = make_scope_exit([&]() { 930 if (FalseReversed) 931 reverseBranchCondition(FalseBBI); 932 }); 933 934 // Count duplicate instructions at the beginning of the true and false blocks. 935 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 936 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 937 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 938 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 939 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 940 *TrueBBI.BB, *FalseBBI.BB, 941 /* SkipUnconditionalBranches */ true)) 942 return false; 943 944 TrueBBICalc.BB = TrueBBI.BB; 945 FalseBBICalc.BB = FalseBBI.BB; 946 TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable; 947 FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable; 948 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 949 return false; 950 951 // The size is used to decide whether to if-convert, and the shared portions 952 // are subtracted off. Because of the subtraction, we just use the size that 953 // was calculated by the original ScanInstructions, as it is correct. 954 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 955 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 956 return true; 957 } 958 959 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along 960 /// with their common predecessor) forms a valid diamond shape for ifcvt. 961 bool IfConverter::ValidDiamond( 962 BBInfo &TrueBBI, BBInfo &FalseBBI, 963 unsigned &Dups1, unsigned &Dups2, 964 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 965 Dups1 = Dups2 = 0; 966 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 967 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 968 return false; 969 970 MachineBasicBlock *TT = TrueBBI.TrueBB; 971 MachineBasicBlock *FT = FalseBBI.TrueBB; 972 973 if (!TT && blockAlwaysFallThrough(TrueBBI)) 974 TT = getNextBlock(*TrueBBI.BB); 975 if (!FT && blockAlwaysFallThrough(FalseBBI)) 976 FT = getNextBlock(*FalseBBI.BB); 977 if (TT != FT) 978 return false; 979 if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable)) 980 return false; 981 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 982 return false; 983 984 // FIXME: Allow true block to have an early exit? 985 if (TrueBBI.FalseBB || FalseBBI.FalseBB) 986 return false; 987 988 // Count duplicate instructions at the beginning and end of the true and 989 // false blocks. 990 // Skip unconditional branches only if we are considering an analyzable 991 // diamond. Otherwise the branches must be the same. 992 bool SkipUnconditionalBranches = 993 TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable; 994 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 995 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 996 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 997 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 998 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 999 *TrueBBI.BB, *FalseBBI.BB, 1000 SkipUnconditionalBranches)) 1001 return false; 1002 1003 TrueBBICalc.BB = TrueBBI.BB; 1004 FalseBBICalc.BB = FalseBBI.BB; 1005 TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable; 1006 FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable; 1007 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 1008 return false; 1009 // The size is used to decide whether to if-convert, and the shared portions 1010 // are subtracted off. Because of the subtraction, we just use the size that 1011 // was calculated by the original ScanInstructions, as it is correct. 1012 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 1013 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 1014 return true; 1015 } 1016 1017 /// AnalyzeBranches - Look at the branches at the end of a block to determine if 1018 /// the block is predicable. 1019 void IfConverter::AnalyzeBranches(BBInfo &BBI) { 1020 if (BBI.IsDone) 1021 return; 1022 1023 BBI.TrueBB = BBI.FalseBB = nullptr; 1024 BBI.BrCond.clear(); 1025 BBI.IsBrAnalyzable = 1026 !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond); 1027 if (!BBI.IsBrAnalyzable) { 1028 BBI.TrueBB = nullptr; 1029 BBI.FalseBB = nullptr; 1030 BBI.BrCond.clear(); 1031 } 1032 1033 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1034 BBI.IsBrReversible = (RevCond.size() == 0) || 1035 !TII->reverseBranchCondition(RevCond); 1036 BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr; 1037 1038 if (BBI.BrCond.size()) { 1039 // No false branch. This BB must end with a conditional branch and a 1040 // fallthrough. 1041 if (!BBI.FalseBB) 1042 BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB); 1043 if (!BBI.FalseBB) { 1044 // Malformed bcc? True and false blocks are the same? 1045 BBI.IsUnpredicable = true; 1046 } 1047 } 1048 } 1049 1050 /// ScanInstructions - Scan all the instructions in the block to determine if 1051 /// the block is predicable. In most cases, that means all the instructions 1052 /// in the block are isPredicable(). Also checks if the block contains any 1053 /// instruction which can clobber a predicate (e.g. condition code register). 1054 /// If so, the block is not predicable unless it's the last instruction. 1055 void IfConverter::ScanInstructions(BBInfo &BBI, 1056 MachineBasicBlock::iterator &Begin, 1057 MachineBasicBlock::iterator &End, 1058 bool BranchUnpredicable) const { 1059 if (BBI.IsDone || BBI.IsUnpredicable) 1060 return; 1061 1062 bool AlreadyPredicated = !BBI.Predicate.empty(); 1063 1064 BBI.NonPredSize = 0; 1065 BBI.ExtraCost = 0; 1066 BBI.ExtraCost2 = 0; 1067 BBI.ClobbersPred = false; 1068 for (MachineInstr &MI : make_range(Begin, End)) { 1069 if (MI.isDebugInstr()) 1070 continue; 1071 1072 // It's unsafe to duplicate convergent instructions in this context, so set 1073 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the 1074 // following CFG, which is subject to our "simple" transformation. 1075 // 1076 // BB0 // if (c1) goto BB1; else goto BB2; 1077 // / \ 1078 // BB1 | 1079 // | BB2 // if (c2) goto TBB; else goto FBB; 1080 // | / | 1081 // | / | 1082 // TBB | 1083 // | | 1084 // | FBB 1085 // | 1086 // exit 1087 // 1088 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd 1089 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose 1090 // TBB contains a convergent instruction. This is safe iff doing so does 1091 // not add a control-flow dependency to the convergent instruction -- i.e., 1092 // it's safe iff the set of control flows that leads us to the convergent 1093 // instruction does not get smaller after the transformation. 1094 // 1095 // Originally we executed TBB if c1 || c2. After the transformation, there 1096 // are two copies of TBB's instructions. We get to the first if c1, and we 1097 // get to the second if !c1 && c2. 1098 // 1099 // There are clearly fewer ways to satisfy the condition "c1" than 1100 // "c1 || c2". Since we've shrunk the set of control flows which lead to 1101 // our convergent instruction, the transformation is unsafe. 1102 if (MI.isNotDuplicable() || MI.isConvergent()) 1103 BBI.CannotBeCopied = true; 1104 1105 bool isPredicated = TII->isPredicated(MI); 1106 bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch(); 1107 1108 if (BranchUnpredicable && MI.isBranch()) { 1109 BBI.IsUnpredicable = true; 1110 return; 1111 } 1112 1113 // A conditional branch is not predicable, but it may be eliminated. 1114 if (isCondBr) 1115 continue; 1116 1117 if (!isPredicated) { 1118 BBI.NonPredSize++; 1119 unsigned ExtraPredCost = TII->getPredicationCost(MI); 1120 unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false); 1121 if (NumCycles > 1) 1122 BBI.ExtraCost += NumCycles-1; 1123 BBI.ExtraCost2 += ExtraPredCost; 1124 } else if (!AlreadyPredicated) { 1125 // FIXME: This instruction is already predicated before the 1126 // if-conversion pass. It's probably something like a conditional move. 1127 // Mark this block unpredicable for now. 1128 BBI.IsUnpredicable = true; 1129 return; 1130 } 1131 1132 if (BBI.ClobbersPred && !isPredicated) { 1133 // Predicate modification instruction should end the block (except for 1134 // already predicated instructions and end of block branches). 1135 // Predicate may have been modified, the subsequent (currently) 1136 // unpredicated instructions cannot be correctly predicated. 1137 BBI.IsUnpredicable = true; 1138 return; 1139 } 1140 1141 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are 1142 // still potentially predicable. 1143 std::vector<MachineOperand> PredDefs; 1144 if (TII->DefinesPredicate(MI, PredDefs)) 1145 BBI.ClobbersPred = true; 1146 1147 if (!TII->isPredicable(MI)) { 1148 BBI.IsUnpredicable = true; 1149 return; 1150 } 1151 } 1152 } 1153 1154 /// Determine if the block is a suitable candidate to be predicated by the 1155 /// specified predicate. 1156 /// @param BBI BBInfo for the block to check 1157 /// @param Pred Predicate array for the branch that leads to BBI 1158 /// @param isTriangle true if the Analysis is for a triangle 1159 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false 1160 /// case 1161 /// @param hasCommonTail true if BBI shares a tail with a sibling block that 1162 /// contains any instruction that would make the block unpredicable. 1163 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI, 1164 SmallVectorImpl<MachineOperand> &Pred, 1165 bool isTriangle, bool RevBranch, 1166 bool hasCommonTail) { 1167 // If the block is dead or unpredicable, then it cannot be predicated. 1168 // Two blocks may share a common unpredicable tail, but this doesn't prevent 1169 // them from being if-converted. The non-shared portion is assumed to have 1170 // been checked 1171 if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail)) 1172 return false; 1173 1174 // If it is already predicated but we couldn't analyze its terminator, the 1175 // latter might fallthrough, but we can't determine where to. 1176 // Conservatively avoid if-converting again. 1177 if (BBI.Predicate.size() && !BBI.IsBrAnalyzable) 1178 return false; 1179 1180 // If it is already predicated, check if the new predicate subsumes 1181 // its predicate. 1182 if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate)) 1183 return false; 1184 1185 if (!hasCommonTail && BBI.BrCond.size()) { 1186 if (!isTriangle) 1187 return false; 1188 1189 // Test predicate subsumption. 1190 SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end()); 1191 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1192 if (RevBranch) { 1193 if (TII->reverseBranchCondition(Cond)) 1194 return false; 1195 } 1196 if (TII->reverseBranchCondition(RevPred) || 1197 !TII->SubsumesPredicate(Cond, RevPred)) 1198 return false; 1199 } 1200 1201 return true; 1202 } 1203 1204 /// Analyze the structure of the sub-CFG starting from the specified block. 1205 /// Record its successors and whether it looks like an if-conversion candidate. 1206 void IfConverter::AnalyzeBlock( 1207 MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1208 struct BBState { 1209 BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {} 1210 MachineBasicBlock *MBB; 1211 1212 /// This flag is true if MBB's successors have been analyzed. 1213 bool SuccsAnalyzed; 1214 }; 1215 1216 // Push MBB to the stack. 1217 SmallVector<BBState, 16> BBStack(1, MBB); 1218 1219 while (!BBStack.empty()) { 1220 BBState &State = BBStack.back(); 1221 MachineBasicBlock *BB = State.MBB; 1222 BBInfo &BBI = BBAnalysis[BB->getNumber()]; 1223 1224 if (!State.SuccsAnalyzed) { 1225 if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) { 1226 BBStack.pop_back(); 1227 continue; 1228 } 1229 1230 BBI.BB = BB; 1231 BBI.IsBeingAnalyzed = true; 1232 1233 AnalyzeBranches(BBI); 1234 MachineBasicBlock::iterator Begin = BBI.BB->begin(); 1235 MachineBasicBlock::iterator End = BBI.BB->end(); 1236 ScanInstructions(BBI, Begin, End); 1237 1238 // Unanalyzable or ends with fallthrough or unconditional branch, or if is 1239 // not considered for ifcvt anymore. 1240 if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) { 1241 BBI.IsBeingAnalyzed = false; 1242 BBI.IsAnalyzed = true; 1243 BBStack.pop_back(); 1244 continue; 1245 } 1246 1247 // Do not ifcvt if either path is a back edge to the entry block. 1248 if (BBI.TrueBB == BB || BBI.FalseBB == BB) { 1249 BBI.IsBeingAnalyzed = false; 1250 BBI.IsAnalyzed = true; 1251 BBStack.pop_back(); 1252 continue; 1253 } 1254 1255 // Do not ifcvt if true and false fallthrough blocks are the same. 1256 if (!BBI.FalseBB) { 1257 BBI.IsBeingAnalyzed = false; 1258 BBI.IsAnalyzed = true; 1259 BBStack.pop_back(); 1260 continue; 1261 } 1262 1263 // Push the False and True blocks to the stack. 1264 State.SuccsAnalyzed = true; 1265 BBStack.push_back(*BBI.FalseBB); 1266 BBStack.push_back(*BBI.TrueBB); 1267 continue; 1268 } 1269 1270 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1271 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1272 1273 if (TrueBBI.IsDone && FalseBBI.IsDone) { 1274 BBI.IsBeingAnalyzed = false; 1275 BBI.IsAnalyzed = true; 1276 BBStack.pop_back(); 1277 continue; 1278 } 1279 1280 SmallVector<MachineOperand, 4> 1281 RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1282 bool CanRevCond = !TII->reverseBranchCondition(RevCond); 1283 1284 unsigned Dups = 0; 1285 unsigned Dups2 = 0; 1286 bool TNeedSub = !TrueBBI.Predicate.empty(); 1287 bool FNeedSub = !FalseBBI.Predicate.empty(); 1288 bool Enqueued = false; 1289 1290 BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB); 1291 1292 if (CanRevCond) { 1293 BBInfo TrueBBICalc, FalseBBICalc; 1294 auto feasibleDiamond = [&](bool Forked) { 1295 bool MeetsSize = MeetIfcvtSizeLimit(TrueBBICalc, FalseBBICalc, *BB, 1296 Dups + Dups2, Prediction, Forked); 1297 bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond, 1298 /* IsTriangle */ false, /* RevCond */ false, 1299 /* hasCommonTail */ true); 1300 bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond, 1301 /* IsTriangle */ false, /* RevCond */ false, 1302 /* hasCommonTail */ true); 1303 return MeetsSize && TrueFeasible && FalseFeasible; 1304 }; 1305 1306 if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1307 TrueBBICalc, FalseBBICalc)) { 1308 if (feasibleDiamond(false)) { 1309 // Diamond: 1310 // EBB 1311 // / \_ 1312 // | | 1313 // TBB FBB 1314 // \ / 1315 // TailBB 1316 // Note TailBB can be empty. 1317 Tokens.push_back(std::make_unique<IfcvtToken>( 1318 BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1319 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1320 Enqueued = true; 1321 } 1322 } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1323 TrueBBICalc, FalseBBICalc)) { 1324 if (feasibleDiamond(true)) { 1325 // ForkedDiamond: 1326 // if TBB and FBB have a common tail that includes their conditional 1327 // branch instructions, then we can If Convert this pattern. 1328 // EBB 1329 // _/ \_ 1330 // | | 1331 // TBB FBB 1332 // / \ / \ 1333 // FalseBB TrueBB FalseBB 1334 // 1335 Tokens.push_back(std::make_unique<IfcvtToken>( 1336 BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1337 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1338 Enqueued = true; 1339 } 1340 } 1341 } 1342 1343 if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) && 1344 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1345 TrueBBI.ExtraCost2, Prediction) && 1346 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) { 1347 // Triangle: 1348 // EBB 1349 // | \_ 1350 // | | 1351 // | TBB 1352 // | / 1353 // FBB 1354 Tokens.push_back( 1355 std::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups)); 1356 Enqueued = true; 1357 } 1358 1359 if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) && 1360 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1361 TrueBBI.ExtraCost2, Prediction) && 1362 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) { 1363 Tokens.push_back( 1364 std::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups)); 1365 Enqueued = true; 1366 } 1367 1368 if (ValidSimple(TrueBBI, Dups, Prediction) && 1369 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1370 TrueBBI.ExtraCost2, Prediction) && 1371 FeasibilityAnalysis(TrueBBI, BBI.BrCond)) { 1372 // Simple (split, no rejoin): 1373 // EBB 1374 // | \_ 1375 // | | 1376 // | TBB---> exit 1377 // | 1378 // FBB 1379 Tokens.push_back( 1380 std::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups)); 1381 Enqueued = true; 1382 } 1383 1384 if (CanRevCond) { 1385 // Try the other path... 1386 if (ValidTriangle(FalseBBI, TrueBBI, false, Dups, 1387 Prediction.getCompl()) && 1388 MeetIfcvtSizeLimit(*FalseBBI.BB, 1389 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1390 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1391 FeasibilityAnalysis(FalseBBI, RevCond, true)) { 1392 Tokens.push_back(std::make_unique<IfcvtToken>(BBI, ICTriangleFalse, 1393 FNeedSub, Dups)); 1394 Enqueued = true; 1395 } 1396 1397 if (ValidTriangle(FalseBBI, TrueBBI, true, Dups, 1398 Prediction.getCompl()) && 1399 MeetIfcvtSizeLimit(*FalseBBI.BB, 1400 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1401 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1402 FeasibilityAnalysis(FalseBBI, RevCond, true, true)) { 1403 Tokens.push_back( 1404 std::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups)); 1405 Enqueued = true; 1406 } 1407 1408 if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) && 1409 MeetIfcvtSizeLimit(*FalseBBI.BB, 1410 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1411 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1412 FeasibilityAnalysis(FalseBBI, RevCond)) { 1413 Tokens.push_back( 1414 std::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups)); 1415 Enqueued = true; 1416 } 1417 } 1418 1419 BBI.IsEnqueued = Enqueued; 1420 BBI.IsBeingAnalyzed = false; 1421 BBI.IsAnalyzed = true; 1422 BBStack.pop_back(); 1423 } 1424 } 1425 1426 /// Analyze all blocks and find entries for all if-conversion candidates. 1427 void IfConverter::AnalyzeBlocks( 1428 MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1429 for (MachineBasicBlock &MBB : MF) 1430 AnalyzeBlock(MBB, Tokens); 1431 1432 // Sort to favor more complex ifcvt scheme. 1433 llvm::stable_sort(Tokens, IfcvtTokenCmp); 1434 } 1435 1436 /// Returns true either if ToMBB is the next block after MBB or that all the 1437 /// intervening blocks are empty (given MBB can fall through to its next block). 1438 static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) { 1439 MachineFunction::iterator PI = MBB.getIterator(); 1440 MachineFunction::iterator I = std::next(PI); 1441 MachineFunction::iterator TI = ToMBB.getIterator(); 1442 MachineFunction::iterator E = MBB.getParent()->end(); 1443 while (I != TI) { 1444 // Check isSuccessor to avoid case where the next block is empty, but 1445 // it's not a successor. 1446 if (I == E || !I->empty() || !PI->isSuccessor(&*I)) 1447 return false; 1448 PI = I++; 1449 } 1450 // Finally see if the last I is indeed a successor to PI. 1451 return PI->isSuccessor(&*I); 1452 } 1453 1454 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it 1455 /// can be if-converted. If predecessor is already enqueued, dequeue it! 1456 void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) { 1457 for (const MachineBasicBlock *Predecessor : MBB.predecessors()) { 1458 BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()]; 1459 if (PBBI.IsDone || PBBI.BB == &MBB) 1460 continue; 1461 PBBI.IsAnalyzed = false; 1462 PBBI.IsEnqueued = false; 1463 } 1464 } 1465 1466 /// Inserts an unconditional branch from \p MBB to \p ToMBB. 1467 static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB, 1468 const TargetInstrInfo *TII) { 1469 DebugLoc dl; // FIXME: this is nowhere 1470 SmallVector<MachineOperand, 0> NoCond; 1471 TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl); 1472 } 1473 1474 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all 1475 /// values defined in MI which are also live/used by MI. 1476 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) { 1477 const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo(); 1478 1479 // Before stepping forward past MI, remember which regs were live 1480 // before MI. This is needed to set the Undef flag only when reg is 1481 // dead. 1482 SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI; 1483 LiveBeforeMI.setUniverse(TRI->getNumRegs()); 1484 for (unsigned Reg : Redefs) 1485 LiveBeforeMI.insert(Reg); 1486 1487 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers; 1488 Redefs.stepForward(MI, Clobbers); 1489 1490 // Now add the implicit uses for each of the clobbered values. 1491 for (auto Clobber : Clobbers) { 1492 // FIXME: Const cast here is nasty, but better than making StepForward 1493 // take a mutable instruction instead of const. 1494 unsigned Reg = Clobber.first; 1495 MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second); 1496 MachineInstr *OpMI = Op.getParent(); 1497 MachineInstrBuilder MIB(*OpMI->getMF(), OpMI); 1498 if (Op.isRegMask()) { 1499 // First handle regmasks. They clobber any entries in the mask which 1500 // means that we need a def for those registers. 1501 if (LiveBeforeMI.count(Reg)) 1502 MIB.addReg(Reg, RegState::Implicit); 1503 1504 // We also need to add an implicit def of this register for the later 1505 // use to read from. 1506 // For the register allocator to have allocated a register clobbered 1507 // by the call which is used later, it must be the case that 1508 // the call doesn't return. 1509 MIB.addReg(Reg, RegState::Implicit | RegState::Define); 1510 continue; 1511 } 1512 if (LiveBeforeMI.count(Reg)) 1513 MIB.addReg(Reg, RegState::Implicit); 1514 else { 1515 bool HasLiveSubReg = false; 1516 for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) { 1517 if (!LiveBeforeMI.count(*S)) 1518 continue; 1519 HasLiveSubReg = true; 1520 break; 1521 } 1522 if (HasLiveSubReg) 1523 MIB.addReg(Reg, RegState::Implicit); 1524 } 1525 } 1526 } 1527 1528 /// If convert a simple (split, no rejoin) sub-CFG. 1529 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) { 1530 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1531 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1532 BBInfo *CvtBBI = &TrueBBI; 1533 BBInfo *NextBBI = &FalseBBI; 1534 1535 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1536 if (Kind == ICSimpleFalse) 1537 std::swap(CvtBBI, NextBBI); 1538 1539 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1540 MachineBasicBlock &NextMBB = *NextBBI->BB; 1541 if (CvtBBI->IsDone || 1542 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1543 // Something has changed. It's no longer safe to predicate this block. 1544 BBI.IsAnalyzed = false; 1545 CvtBBI->IsAnalyzed = false; 1546 return false; 1547 } 1548 1549 if (CvtMBB.hasAddressTaken()) 1550 // Conservatively abort if-conversion if BB's address is taken. 1551 return false; 1552 1553 if (Kind == ICSimpleFalse) 1554 if (TII->reverseBranchCondition(Cond)) 1555 llvm_unreachable("Unable to reverse branch condition!"); 1556 1557 Redefs.init(*TRI); 1558 1559 if (MRI->tracksLiveness()) { 1560 // Initialize liveins to the first BB. These are potentially redefined by 1561 // predicated instructions. 1562 Redefs.addLiveIns(CvtMBB); 1563 Redefs.addLiveIns(NextMBB); 1564 } 1565 1566 // Remove the branches from the entry so we can add the contents of the true 1567 // block to it. 1568 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1569 1570 if (CvtMBB.pred_size() > 1) { 1571 // Copy instructions in the true block, predicate them, and add them to 1572 // the entry block. 1573 CopyAndPredicateBlock(BBI, *CvtBBI, Cond); 1574 1575 // Keep the CFG updated. 1576 BBI.BB->removeSuccessor(&CvtMBB, true); 1577 } else { 1578 // Predicate the instructions in the true block. 1579 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1580 1581 // Merge converted block into entry block. The BB to Cvt edge is removed 1582 // by MergeBlocks. 1583 MergeBlocks(BBI, *CvtBBI); 1584 } 1585 1586 bool IterIfcvt = true; 1587 if (!canFallThroughTo(*BBI.BB, NextMBB)) { 1588 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1589 BBI.HasFallThrough = false; 1590 // Now ifcvt'd block will look like this: 1591 // BB: 1592 // ... 1593 // t, f = cmp 1594 // if t op 1595 // b BBf 1596 // 1597 // We cannot further ifcvt this block because the unconditional branch 1598 // will have to be predicated on the new condition, that will not be 1599 // available if cmp executes. 1600 IterIfcvt = false; 1601 } 1602 1603 // Update block info. BB can be iteratively if-converted. 1604 if (!IterIfcvt) 1605 BBI.IsDone = true; 1606 InvalidatePreds(*BBI.BB); 1607 CvtBBI->IsDone = true; 1608 1609 // FIXME: Must maintain LiveIns. 1610 return true; 1611 } 1612 1613 /// If convert a triangle sub-CFG. 1614 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) { 1615 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1616 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1617 BBInfo *CvtBBI = &TrueBBI; 1618 BBInfo *NextBBI = &FalseBBI; 1619 DebugLoc dl; // FIXME: this is nowhere 1620 1621 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1622 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1623 std::swap(CvtBBI, NextBBI); 1624 1625 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1626 MachineBasicBlock &NextMBB = *NextBBI->BB; 1627 if (CvtBBI->IsDone || 1628 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1629 // Something has changed. It's no longer safe to predicate this block. 1630 BBI.IsAnalyzed = false; 1631 CvtBBI->IsAnalyzed = false; 1632 return false; 1633 } 1634 1635 if (CvtMBB.hasAddressTaken()) 1636 // Conservatively abort if-conversion if BB's address is taken. 1637 return false; 1638 1639 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1640 if (TII->reverseBranchCondition(Cond)) 1641 llvm_unreachable("Unable to reverse branch condition!"); 1642 1643 if (Kind == ICTriangleRev || Kind == ICTriangleFRev) { 1644 if (reverseBranchCondition(*CvtBBI)) { 1645 // BB has been changed, modify its predecessors (except for this 1646 // one) so they don't get ifcvt'ed based on bad intel. 1647 for (MachineBasicBlock *PBB : CvtMBB.predecessors()) { 1648 if (PBB == BBI.BB) 1649 continue; 1650 BBInfo &PBBI = BBAnalysis[PBB->getNumber()]; 1651 if (PBBI.IsEnqueued) { 1652 PBBI.IsAnalyzed = false; 1653 PBBI.IsEnqueued = false; 1654 } 1655 } 1656 } 1657 } 1658 1659 // Initialize liveins to the first BB. These are potentially redefined by 1660 // predicated instructions. 1661 Redefs.init(*TRI); 1662 if (MRI->tracksLiveness()) { 1663 Redefs.addLiveIns(CvtMBB); 1664 Redefs.addLiveIns(NextMBB); 1665 } 1666 1667 bool HasEarlyExit = CvtBBI->FalseBB != nullptr; 1668 BranchProbability CvtNext, CvtFalse, BBNext, BBCvt; 1669 1670 if (HasEarlyExit) { 1671 // Get probabilities before modifying CvtMBB and BBI.BB. 1672 CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB); 1673 CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB); 1674 BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB); 1675 BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB); 1676 } 1677 1678 // Remove the branches from the entry so we can add the contents of the true 1679 // block to it. 1680 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1681 1682 if (CvtMBB.pred_size() > 1) { 1683 // Copy instructions in the true block, predicate them, and add them to 1684 // the entry block. 1685 CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true); 1686 } else { 1687 // Predicate the 'true' block after removing its branch. 1688 CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB); 1689 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1690 1691 // Now merge the entry of the triangle with the true block. 1692 MergeBlocks(BBI, *CvtBBI, false); 1693 } 1694 1695 // Keep the CFG updated. 1696 BBI.BB->removeSuccessor(&CvtMBB, true); 1697 1698 // If 'true' block has a 'false' successor, add an exit branch to it. 1699 if (HasEarlyExit) { 1700 SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(), 1701 CvtBBI->BrCond.end()); 1702 if (TII->reverseBranchCondition(RevCond)) 1703 llvm_unreachable("Unable to reverse branch condition!"); 1704 1705 // Update the edge probability for both CvtBBI->FalseBB and NextBBI. 1706 // NewNext = New_Prob(BBI.BB, NextMBB) = 1707 // Prob(BBI.BB, NextMBB) + 1708 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB) 1709 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) = 1710 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB) 1711 auto NewTrueBB = getNextBlock(*BBI.BB); 1712 auto NewNext = BBNext + BBCvt * CvtNext; 1713 auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB); 1714 if (NewTrueBBIter != BBI.BB->succ_end()) 1715 BBI.BB->setSuccProbability(NewTrueBBIter, NewNext); 1716 1717 auto NewFalse = BBCvt * CvtFalse; 1718 TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl); 1719 BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse); 1720 } 1721 1722 // Merge in the 'false' block if the 'false' block has no other 1723 // predecessors. Otherwise, add an unconditional branch to 'false'. 1724 bool FalseBBDead = false; 1725 bool IterIfcvt = true; 1726 bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB); 1727 if (!isFallThrough) { 1728 // Only merge them if the true block does not fallthrough to the false 1729 // block. By not merging them, we make it possible to iteratively 1730 // ifcvt the blocks. 1731 if (!HasEarlyExit && 1732 NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough && 1733 !NextMBB.hasAddressTaken()) { 1734 MergeBlocks(BBI, *NextBBI); 1735 FalseBBDead = true; 1736 } else { 1737 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1738 BBI.HasFallThrough = false; 1739 } 1740 // Mixed predicated and unpredicated code. This cannot be iteratively 1741 // predicated. 1742 IterIfcvt = false; 1743 } 1744 1745 // Update block info. BB can be iteratively if-converted. 1746 if (!IterIfcvt) 1747 BBI.IsDone = true; 1748 InvalidatePreds(*BBI.BB); 1749 CvtBBI->IsDone = true; 1750 if (FalseBBDead) 1751 NextBBI->IsDone = true; 1752 1753 // FIXME: Must maintain LiveIns. 1754 return true; 1755 } 1756 1757 /// Common code shared between diamond conversions. 1758 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape. 1759 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI 1760 /// and FalseBBI 1761 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI 1762 /// and \p FalseBBI 1763 /// \p RemoveBranch - Remove the common branch of the two blocks before 1764 /// predicating. Only false for unanalyzable fallthrough 1765 /// cases. The caller will replace the branch if necessary. 1766 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for 1767 /// unanalyzable fallthrough 1768 bool IfConverter::IfConvertDiamondCommon( 1769 BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 1770 unsigned NumDups1, unsigned NumDups2, 1771 bool TClobbersPred, bool FClobbersPred, 1772 bool RemoveBranch, bool MergeAddEdges) { 1773 1774 if (TrueBBI.IsDone || FalseBBI.IsDone || 1775 TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) { 1776 // Something has changed. It's no longer safe to predicate these blocks. 1777 BBI.IsAnalyzed = false; 1778 TrueBBI.IsAnalyzed = false; 1779 FalseBBI.IsAnalyzed = false; 1780 return false; 1781 } 1782 1783 if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken()) 1784 // Conservatively abort if-conversion if either BB has its address taken. 1785 return false; 1786 1787 // Put the predicated instructions from the 'true' block before the 1788 // instructions from the 'false' block, unless the true block would clobber 1789 // the predicate, in which case, do the opposite. 1790 BBInfo *BBI1 = &TrueBBI; 1791 BBInfo *BBI2 = &FalseBBI; 1792 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1793 if (TII->reverseBranchCondition(RevCond)) 1794 llvm_unreachable("Unable to reverse branch condition!"); 1795 SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond; 1796 SmallVector<MachineOperand, 4> *Cond2 = &RevCond; 1797 1798 // Figure out the more profitable ordering. 1799 bool DoSwap = false; 1800 if (TClobbersPred && !FClobbersPred) 1801 DoSwap = true; 1802 else if (!TClobbersPred && !FClobbersPred) { 1803 if (TrueBBI.NonPredSize > FalseBBI.NonPredSize) 1804 DoSwap = true; 1805 } else if (TClobbersPred && FClobbersPred) 1806 llvm_unreachable("Predicate info cannot be clobbered by both sides."); 1807 if (DoSwap) { 1808 std::swap(BBI1, BBI2); 1809 std::swap(Cond1, Cond2); 1810 } 1811 1812 // Remove the conditional branch from entry to the blocks. 1813 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1814 1815 MachineBasicBlock &MBB1 = *BBI1->BB; 1816 MachineBasicBlock &MBB2 = *BBI2->BB; 1817 1818 // Initialize the Redefs: 1819 // - BB2 live-in regs need implicit uses before being redefined by BB1 1820 // instructions. 1821 // - BB1 live-out regs need implicit uses before being redefined by BB2 1822 // instructions. We start with BB1 live-ins so we have the live-out regs 1823 // after tracking the BB1 instructions. 1824 Redefs.init(*TRI); 1825 if (MRI->tracksLiveness()) { 1826 Redefs.addLiveIns(MBB1); 1827 Redefs.addLiveIns(MBB2); 1828 } 1829 1830 // Remove the duplicated instructions at the beginnings of both paths. 1831 // Skip dbg_value instructions. 1832 MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr(); 1833 MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr(); 1834 BBI1->NonPredSize -= NumDups1; 1835 BBI2->NonPredSize -= NumDups1; 1836 1837 // Skip past the dups on each side separately since there may be 1838 // differing dbg_value entries. NumDups1 can include a "return" 1839 // instruction, if it's not marked as "branch". 1840 for (unsigned i = 0; i < NumDups1; ++DI1) { 1841 if (DI1 == MBB1.end()) 1842 break; 1843 if (!DI1->isDebugInstr()) 1844 ++i; 1845 } 1846 while (NumDups1 != 0) { 1847 // Since this instruction is going to be deleted, update call 1848 // site info state if the instruction is call instruction. 1849 if (DI2->isCall(MachineInstr::IgnoreBundle)) 1850 MBB2.getParent()->eraseCallSiteInfo(&*DI2); 1851 1852 ++DI2; 1853 if (DI2 == MBB2.end()) 1854 break; 1855 if (!DI2->isDebugInstr()) 1856 --NumDups1; 1857 } 1858 1859 if (MRI->tracksLiveness()) { 1860 for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) { 1861 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy; 1862 Redefs.stepForward(MI, Dummy); 1863 } 1864 } 1865 1866 BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1); 1867 MBB2.erase(MBB2.begin(), DI2); 1868 1869 // The branches have been checked to match, so it is safe to remove the 1870 // branch in BB1 and rely on the copy in BB2. The complication is that 1871 // the blocks may end with a return instruction, which may or may not 1872 // be marked as "branch". If it's not, then it could be included in 1873 // "dups1", leaving the blocks potentially empty after moving the common 1874 // duplicates. 1875 #ifndef NDEBUG 1876 // Unanalyzable branches must match exactly. Check that now. 1877 if (!BBI1->IsBrAnalyzable) 1878 verifySameBranchInstructions(&MBB1, &MBB2); 1879 #endif 1880 // Remove duplicated instructions from the tail of MBB1: any branch 1881 // instructions, and the common instructions counted by NumDups2. 1882 DI1 = MBB1.end(); 1883 while (DI1 != MBB1.begin()) { 1884 MachineBasicBlock::iterator Prev = std::prev(DI1); 1885 if (!Prev->isBranch() && !Prev->isDebugInstr()) 1886 break; 1887 DI1 = Prev; 1888 } 1889 for (unsigned i = 0; i != NumDups2; ) { 1890 // NumDups2 only counted non-dbg_value instructions, so this won't 1891 // run off the head of the list. 1892 assert(DI1 != MBB1.begin()); 1893 1894 --DI1; 1895 1896 // Since this instruction is going to be deleted, update call 1897 // site info state if the instruction is call instruction. 1898 if (DI1->isCall(MachineInstr::IgnoreBundle)) 1899 MBB1.getParent()->eraseCallSiteInfo(&*DI1); 1900 1901 // skip dbg_value instructions 1902 if (!DI1->isDebugInstr()) 1903 ++i; 1904 } 1905 MBB1.erase(DI1, MBB1.end()); 1906 1907 DI2 = BBI2->BB->end(); 1908 // The branches have been checked to match. Skip over the branch in the false 1909 // block so that we don't try to predicate it. 1910 if (RemoveBranch) 1911 BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB); 1912 else { 1913 // Make DI2 point to the end of the range where the common "tail" 1914 // instructions could be found. 1915 while (DI2 != MBB2.begin()) { 1916 MachineBasicBlock::iterator Prev = std::prev(DI2); 1917 if (!Prev->isBranch() && !Prev->isDebugInstr()) 1918 break; 1919 DI2 = Prev; 1920 } 1921 } 1922 while (NumDups2 != 0) { 1923 // NumDups2 only counted non-dbg_value instructions, so this won't 1924 // run off the head of the list. 1925 assert(DI2 != MBB2.begin()); 1926 --DI2; 1927 // skip dbg_value instructions 1928 if (!DI2->isDebugInstr()) 1929 --NumDups2; 1930 } 1931 1932 // Remember which registers would later be defined by the false block. 1933 // This allows us not to predicate instructions in the true block that would 1934 // later be re-defined. That is, rather than 1935 // subeq r0, r1, #1 1936 // addne r0, r1, #1 1937 // generate: 1938 // sub r0, r1, #1 1939 // addne r0, r1, #1 1940 SmallSet<MCPhysReg, 4> RedefsByFalse; 1941 SmallSet<MCPhysReg, 4> ExtUses; 1942 if (TII->isProfitableToUnpredicate(MBB1, MBB2)) { 1943 for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) { 1944 if (FI.isDebugInstr()) 1945 continue; 1946 SmallVector<MCPhysReg, 4> Defs; 1947 for (const MachineOperand &MO : FI.operands()) { 1948 if (!MO.isReg()) 1949 continue; 1950 Register Reg = MO.getReg(); 1951 if (!Reg) 1952 continue; 1953 if (MO.isDef()) { 1954 Defs.push_back(Reg); 1955 } else if (!RedefsByFalse.count(Reg)) { 1956 // These are defined before ctrl flow reach the 'false' instructions. 1957 // They cannot be modified by the 'true' instructions. 1958 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1959 SubRegs.isValid(); ++SubRegs) 1960 ExtUses.insert(*SubRegs); 1961 } 1962 } 1963 1964 for (MCPhysReg Reg : Defs) { 1965 if (!ExtUses.count(Reg)) { 1966 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1967 SubRegs.isValid(); ++SubRegs) 1968 RedefsByFalse.insert(*SubRegs); 1969 } 1970 } 1971 } 1972 } 1973 1974 // Predicate the 'true' block. 1975 PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse); 1976 1977 // After predicating BBI1, if there is a predicated terminator in BBI1 and 1978 // a non-predicated in BBI2, then we don't want to predicate the one from 1979 // BBI2. The reason is that if we merged these blocks, we would end up with 1980 // two predicated terminators in the same block. 1981 // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't 1982 // predicate them either. They were checked to be identical, and so the 1983 // same branch would happen regardless of which path was taken. 1984 if (!MBB2.empty() && (DI2 == MBB2.end())) { 1985 MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator(); 1986 MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator(); 1987 bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T); 1988 bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T); 1989 if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable)) 1990 --DI2; 1991 } 1992 1993 // Predicate the 'false' block. 1994 PredicateBlock(*BBI2, DI2, *Cond2); 1995 1996 // Merge the true block into the entry of the diamond. 1997 MergeBlocks(BBI, *BBI1, MergeAddEdges); 1998 MergeBlocks(BBI, *BBI2, MergeAddEdges); 1999 return true; 2000 } 2001 2002 /// If convert an almost-diamond sub-CFG where the true 2003 /// and false blocks share a common tail. 2004 bool IfConverter::IfConvertForkedDiamond( 2005 BBInfo &BBI, IfcvtKind Kind, 2006 unsigned NumDups1, unsigned NumDups2, 2007 bool TClobbersPred, bool FClobbersPred) { 2008 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 2009 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 2010 2011 // Save the debug location for later. 2012 DebugLoc dl; 2013 MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator(); 2014 if (TIE != TrueBBI.BB->end()) 2015 dl = TIE->getDebugLoc(); 2016 // Removing branches from both blocks is safe, because we have already 2017 // determined that both blocks have the same branch instructions. The branch 2018 // will be added back at the end, unpredicated. 2019 if (!IfConvertDiamondCommon( 2020 BBI, TrueBBI, FalseBBI, 2021 NumDups1, NumDups2, 2022 TClobbersPred, FClobbersPred, 2023 /* RemoveBranch */ true, /* MergeAddEdges */ true)) 2024 return false; 2025 2026 // Add back the branch. 2027 // Debug location saved above when removing the branch from BBI2 2028 TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB, 2029 TrueBBI.BrCond, dl); 2030 2031 // Update block info. 2032 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 2033 InvalidatePreds(*BBI.BB); 2034 2035 // FIXME: Must maintain LiveIns. 2036 return true; 2037 } 2038 2039 /// If convert a diamond sub-CFG. 2040 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 2041 unsigned NumDups1, unsigned NumDups2, 2042 bool TClobbersPred, bool FClobbersPred) { 2043 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 2044 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 2045 MachineBasicBlock *TailBB = TrueBBI.TrueBB; 2046 2047 // True block must fall through or end with an unanalyzable terminator. 2048 if (!TailBB) { 2049 if (blockAlwaysFallThrough(TrueBBI)) 2050 TailBB = FalseBBI.TrueBB; 2051 assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!"); 2052 } 2053 2054 if (!IfConvertDiamondCommon( 2055 BBI, TrueBBI, FalseBBI, 2056 NumDups1, NumDups2, 2057 TClobbersPred, FClobbersPred, 2058 /* RemoveBranch */ TrueBBI.IsBrAnalyzable, 2059 /* MergeAddEdges */ TailBB == nullptr)) 2060 return false; 2061 2062 // If the if-converted block falls through or unconditionally branches into 2063 // the tail block, and the tail block does not have other predecessors, then 2064 // fold the tail block in as well. Otherwise, unless it falls through to the 2065 // tail, add a unconditional branch to it. 2066 if (TailBB) { 2067 // We need to remove the edges to the true and false blocks manually since 2068 // we didn't let IfConvertDiamondCommon update the CFG. 2069 BBI.BB->removeSuccessor(TrueBBI.BB); 2070 BBI.BB->removeSuccessor(FalseBBI.BB, true); 2071 2072 BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()]; 2073 bool CanMergeTail = !TailBBI.HasFallThrough && 2074 !TailBBI.BB->hasAddressTaken(); 2075 // The if-converted block can still have a predicated terminator 2076 // (e.g. a predicated return). If that is the case, we cannot merge 2077 // it with the tail block. 2078 MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator(); 2079 if (TI != BBI.BB->end() && TII->isPredicated(*TI)) 2080 CanMergeTail = false; 2081 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB; 2082 // check if there are any other predecessors besides those. 2083 unsigned NumPreds = TailBB->pred_size(); 2084 if (NumPreds > 1) 2085 CanMergeTail = false; 2086 else if (NumPreds == 1 && CanMergeTail) { 2087 MachineBasicBlock::pred_iterator PI = TailBB->pred_begin(); 2088 if (*PI != TrueBBI.BB && *PI != FalseBBI.BB) 2089 CanMergeTail = false; 2090 } 2091 if (CanMergeTail) { 2092 MergeBlocks(BBI, TailBBI); 2093 TailBBI.IsDone = true; 2094 } else { 2095 BBI.BB->addSuccessor(TailBB, BranchProbability::getOne()); 2096 InsertUncondBranch(*BBI.BB, *TailBB, TII); 2097 BBI.HasFallThrough = false; 2098 } 2099 } 2100 2101 // Update block info. 2102 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 2103 InvalidatePreds(*BBI.BB); 2104 2105 // FIXME: Must maintain LiveIns. 2106 return true; 2107 } 2108 2109 static bool MaySpeculate(const MachineInstr &MI, 2110 SmallSet<MCPhysReg, 4> &LaterRedefs) { 2111 bool SawStore = true; 2112 if (!MI.isSafeToMove(nullptr, SawStore)) 2113 return false; 2114 2115 for (const MachineOperand &MO : MI.operands()) { 2116 if (!MO.isReg()) 2117 continue; 2118 Register Reg = MO.getReg(); 2119 if (!Reg) 2120 continue; 2121 if (MO.isDef() && !LaterRedefs.count(Reg)) 2122 return false; 2123 } 2124 2125 return true; 2126 } 2127 2128 /// Predicate instructions from the start of the block to the specified end with 2129 /// the specified condition. 2130 void IfConverter::PredicateBlock(BBInfo &BBI, 2131 MachineBasicBlock::iterator E, 2132 SmallVectorImpl<MachineOperand> &Cond, 2133 SmallSet<MCPhysReg, 4> *LaterRedefs) { 2134 bool AnyUnpred = false; 2135 bool MaySpec = LaterRedefs != nullptr; 2136 for (MachineInstr &I : make_range(BBI.BB->begin(), E)) { 2137 if (I.isDebugInstr() || TII->isPredicated(I)) 2138 continue; 2139 // It may be possible not to predicate an instruction if it's the 'true' 2140 // side of a diamond and the 'false' side may re-define the instruction's 2141 // defs. 2142 if (MaySpec && MaySpeculate(I, *LaterRedefs)) { 2143 AnyUnpred = true; 2144 continue; 2145 } 2146 // If any instruction is predicated, then every instruction after it must 2147 // be predicated. 2148 MaySpec = false; 2149 if (!TII->PredicateInstruction(I, Cond)) { 2150 #ifndef NDEBUG 2151 dbgs() << "Unable to predicate " << I << "!\n"; 2152 #endif 2153 llvm_unreachable(nullptr); 2154 } 2155 2156 // If the predicated instruction now redefines a register as the result of 2157 // if-conversion, add an implicit kill. 2158 UpdatePredRedefs(I, Redefs); 2159 } 2160 2161 BBI.Predicate.append(Cond.begin(), Cond.end()); 2162 2163 BBI.IsAnalyzed = false; 2164 BBI.NonPredSize = 0; 2165 2166 ++NumIfConvBBs; 2167 if (AnyUnpred) 2168 ++NumUnpred; 2169 } 2170 2171 /// Copy and predicate instructions from source BB to the destination block. 2172 /// Skip end of block branches if IgnoreBr is true. 2173 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 2174 SmallVectorImpl<MachineOperand> &Cond, 2175 bool IgnoreBr) { 2176 MachineFunction &MF = *ToBBI.BB->getParent(); 2177 2178 MachineBasicBlock &FromMBB = *FromBBI.BB; 2179 for (MachineInstr &I : FromMBB) { 2180 // Do not copy the end of the block branches. 2181 if (IgnoreBr && I.isBranch()) 2182 break; 2183 2184 MachineInstr *MI = MF.CloneMachineInstr(&I); 2185 // Make a copy of the call site info. 2186 if (MI->isCall(MachineInstr::IgnoreBundle)) 2187 MF.copyCallSiteInfo(&I,MI); 2188 2189 ToBBI.BB->insert(ToBBI.BB->end(), MI); 2190 ToBBI.NonPredSize++; 2191 unsigned ExtraPredCost = TII->getPredicationCost(I); 2192 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); 2193 if (NumCycles > 1) 2194 ToBBI.ExtraCost += NumCycles-1; 2195 ToBBI.ExtraCost2 += ExtraPredCost; 2196 2197 if (!TII->isPredicated(I) && !MI->isDebugInstr()) { 2198 if (!TII->PredicateInstruction(*MI, Cond)) { 2199 #ifndef NDEBUG 2200 dbgs() << "Unable to predicate " << I << "!\n"; 2201 #endif 2202 llvm_unreachable(nullptr); 2203 } 2204 } 2205 2206 // If the predicated instruction now redefines a register as the result of 2207 // if-conversion, add an implicit kill. 2208 UpdatePredRedefs(*MI, Redefs); 2209 } 2210 2211 if (!IgnoreBr) { 2212 std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(), 2213 FromMBB.succ_end()); 2214 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2215 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2216 2217 for (MachineBasicBlock *Succ : Succs) { 2218 // Fallthrough edge can't be transferred. 2219 if (Succ == FallThrough) 2220 continue; 2221 ToBBI.BB->addSuccessor(Succ); 2222 } 2223 } 2224 2225 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2226 ToBBI.Predicate.append(Cond.begin(), Cond.end()); 2227 2228 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2229 ToBBI.IsAnalyzed = false; 2230 2231 ++NumDupBBs; 2232 } 2233 2234 /// Move all instructions from FromBB to the end of ToBB. This will leave 2235 /// FromBB as an empty block, so remove all of its successor edges except for 2236 /// the fall-through edge. If AddEdges is true, i.e., when FromBBI's branch is 2237 /// being moved, add those successor edges to ToBBI and remove the old edge 2238 /// from ToBBI to FromBBI. 2239 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) { 2240 MachineBasicBlock &FromMBB = *FromBBI.BB; 2241 assert(!FromMBB.hasAddressTaken() && 2242 "Removing a BB whose address is taken!"); 2243 2244 // In case FromMBB contains terminators (e.g. return instruction), 2245 // first move the non-terminator instructions, then the terminators. 2246 MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator(); 2247 MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator(); 2248 ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI); 2249 2250 // If FromBB has non-predicated terminator we should copy it at the end. 2251 if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI)) 2252 ToTI = ToBBI.BB->end(); 2253 ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end()); 2254 2255 // Force normalizing the successors' probabilities of ToBBI.BB to convert all 2256 // unknown probabilities into known ones. 2257 // FIXME: This usage is too tricky and in the future we would like to 2258 // eliminate all unknown probabilities in MBB. 2259 if (ToBBI.IsBrAnalyzable) 2260 ToBBI.BB->normalizeSuccProbs(); 2261 2262 SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(), 2263 FromMBB.succ_end()); 2264 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2265 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2266 // The edge probability from ToBBI.BB to FromMBB, which is only needed when 2267 // AddEdges is true and FromMBB is a successor of ToBBI.BB. 2268 auto To2FromProb = BranchProbability::getZero(); 2269 if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) { 2270 // Remove the old edge but remember the edge probability so we can calculate 2271 // the correct weights on the new edges being added further down. 2272 To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB); 2273 ToBBI.BB->removeSuccessor(&FromMBB); 2274 } 2275 2276 for (MachineBasicBlock *Succ : FromSuccs) { 2277 // Fallthrough edge can't be transferred. 2278 if (Succ == FallThrough) 2279 continue; 2280 2281 auto NewProb = BranchProbability::getZero(); 2282 if (AddEdges) { 2283 // Calculate the edge probability for the edge from ToBBI.BB to Succ, 2284 // which is a portion of the edge probability from FromMBB to Succ. The 2285 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if 2286 // FromBBI is a successor of ToBBI.BB. See comment below for exception). 2287 NewProb = MBPI->getEdgeProbability(&FromMBB, Succ); 2288 2289 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This 2290 // only happens when if-converting a diamond CFG and FromMBB is the 2291 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we 2292 // could just use the probabilities on FromMBB's out-edges when adding 2293 // new successors. 2294 if (!To2FromProb.isZero()) 2295 NewProb *= To2FromProb; 2296 } 2297 2298 FromMBB.removeSuccessor(Succ); 2299 2300 if (AddEdges) { 2301 // If the edge from ToBBI.BB to Succ already exists, update the 2302 // probability of this edge by adding NewProb to it. An example is shown 2303 // below, in which A is ToBBI.BB and B is FromMBB. In this case we 2304 // don't have to set C as A's successor as it already is. We only need to 2305 // update the edge probability on A->C. Note that B will not be 2306 // immediately removed from A's successors. It is possible that B->D is 2307 // not removed either if D is a fallthrough of B. Later the edge A->D 2308 // (generated here) and B->D will be combined into one edge. To maintain 2309 // correct edge probability of this combined edge, we need to set the edge 2310 // probability of A->B to zero, which is already done above. The edge 2311 // probability on A->D is calculated by scaling the original probability 2312 // on A->B by the probability of B->D. 2313 // 2314 // Before ifcvt: After ifcvt (assume B->D is kept): 2315 // 2316 // A A 2317 // /| /|\ 2318 // / B / B| 2319 // | /| | || 2320 // |/ | | |/ 2321 // C D C D 2322 // 2323 if (ToBBI.BB->isSuccessor(Succ)) 2324 ToBBI.BB->setSuccProbability( 2325 find(ToBBI.BB->successors(), Succ), 2326 MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb); 2327 else 2328 ToBBI.BB->addSuccessor(Succ, NewProb); 2329 } 2330 } 2331 2332 // Move the now empty FromMBB out of the way to the end of the function so 2333 // it doesn't interfere with fallthrough checks done by canFallThroughTo(). 2334 MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin(); 2335 if (Last != &FromMBB) 2336 FromMBB.moveAfter(Last); 2337 2338 // Normalize the probabilities of ToBBI.BB's successors with all adjustment 2339 // we've done above. 2340 if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable) 2341 ToBBI.BB->normalizeSuccProbs(); 2342 2343 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2344 FromBBI.Predicate.clear(); 2345 2346 ToBBI.NonPredSize += FromBBI.NonPredSize; 2347 ToBBI.ExtraCost += FromBBI.ExtraCost; 2348 ToBBI.ExtraCost2 += FromBBI.ExtraCost2; 2349 FromBBI.NonPredSize = 0; 2350 FromBBI.ExtraCost = 0; 2351 FromBBI.ExtraCost2 = 0; 2352 2353 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2354 ToBBI.HasFallThrough = FromBBI.HasFallThrough; 2355 ToBBI.IsAnalyzed = false; 2356 FromBBI.IsAnalyzed = false; 2357 } 2358 2359 FunctionPass * 2360 llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) { 2361 return new IfConverter(std::move(Ftor)); 2362 } 2363