1 //===-- IfConversion.cpp - Machine code if conversion pass. ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the machine instruction level if-conversion pass, which 11 // tries to convert conditional branches into predicated instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "BranchFolding.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/LivePhysRegs.h" 21 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 22 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/CodeGen/TargetSchedule.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Target/TargetLowering.h" 35 #include "llvm/Target/TargetRegisterInfo.h" 36 #include "llvm/Target/TargetSubtargetInfo.h" 37 #include <algorithm> 38 #include <utility> 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "if-converter" 43 44 // Hidden options for help debugging. 45 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden); 46 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden); 47 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden); 48 static cl::opt<bool> DisableSimple("disable-ifcvt-simple", 49 cl::init(false), cl::Hidden); 50 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false", 51 cl::init(false), cl::Hidden); 52 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle", 53 cl::init(false), cl::Hidden); 54 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev", 55 cl::init(false), cl::Hidden); 56 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false", 57 cl::init(false), cl::Hidden); 58 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev", 59 cl::init(false), cl::Hidden); 60 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond", 61 cl::init(false), cl::Hidden); 62 static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond", 63 cl::init(false), cl::Hidden); 64 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold", 65 cl::init(true), cl::Hidden); 66 67 STATISTIC(NumSimple, "Number of simple if-conversions performed"); 68 STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed"); 69 STATISTIC(NumTriangle, "Number of triangle if-conversions performed"); 70 STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed"); 71 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed"); 72 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed"); 73 STATISTIC(NumDiamonds, "Number of diamond if-conversions performed"); 74 STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed"); 75 STATISTIC(NumIfConvBBs, "Number of if-converted blocks"); 76 STATISTIC(NumDupBBs, "Number of duplicated blocks"); 77 STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated"); 78 79 namespace { 80 class IfConverter : public MachineFunctionPass { 81 enum IfcvtKind { 82 ICNotClassfied, // BB data valid, but not classified. 83 ICSimpleFalse, // Same as ICSimple, but on the false path. 84 ICSimple, // BB is entry of an one split, no rejoin sub-CFG. 85 ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition. 86 ICTriangleRev, // Same as ICTriangle, but true path rev condition. 87 ICTriangleFalse, // Same as ICTriangle, but on the false path. 88 ICTriangle, // BB is entry of a triangle sub-CFG. 89 ICDiamond, // BB is entry of a diamond sub-CFG. 90 ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a 91 // common tail that can be shared. 92 }; 93 94 /// One per MachineBasicBlock, this is used to cache the result 95 /// if-conversion feasibility analysis. This includes results from 96 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its 97 /// classification, and common tail block of its successors (if it's a 98 /// diamond shape), its size, whether it's predicable, and whether any 99 /// instruction can clobber the 'would-be' predicate. 100 /// 101 /// IsDone - True if BB is not to be considered for ifcvt. 102 /// IsBeingAnalyzed - True if BB is currently being analyzed. 103 /// IsAnalyzed - True if BB has been analyzed (info is still valid). 104 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed. 105 /// IsBrAnalyzable - True if analyzeBranch() returns false. 106 /// HasFallThrough - True if BB may fallthrough to the following BB. 107 /// IsUnpredicable - True if BB is known to be unpredicable. 108 /// ClobbersPred - True if BB could modify predicates (e.g. has 109 /// cmp, call, etc.) 110 /// NonPredSize - Number of non-predicated instructions. 111 /// ExtraCost - Extra cost for multi-cycle instructions. 112 /// ExtraCost2 - Some instructions are slower when predicated 113 /// BB - Corresponding MachineBasicBlock. 114 /// TrueBB / FalseBB- See analyzeBranch(). 115 /// BrCond - Conditions for end of block conditional branches. 116 /// Predicate - Predicate used in the BB. 117 struct BBInfo { 118 bool IsDone : 1; 119 bool IsBeingAnalyzed : 1; 120 bool IsAnalyzed : 1; 121 bool IsEnqueued : 1; 122 bool IsBrAnalyzable : 1; 123 bool IsBrReversible : 1; 124 bool HasFallThrough : 1; 125 bool IsUnpredicable : 1; 126 bool CannotBeCopied : 1; 127 bool ClobbersPred : 1; 128 unsigned NonPredSize; 129 unsigned ExtraCost; 130 unsigned ExtraCost2; 131 MachineBasicBlock *BB; 132 MachineBasicBlock *TrueBB; 133 MachineBasicBlock *FalseBB; 134 SmallVector<MachineOperand, 4> BrCond; 135 SmallVector<MachineOperand, 4> Predicate; 136 BBInfo() : IsDone(false), IsBeingAnalyzed(false), 137 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false), 138 IsBrReversible(false), HasFallThrough(false), 139 IsUnpredicable(false), CannotBeCopied(false), 140 ClobbersPred(false), NonPredSize(0), ExtraCost(0), 141 ExtraCost2(0), BB(nullptr), TrueBB(nullptr), 142 FalseBB(nullptr) {} 143 }; 144 145 /// Record information about pending if-conversions to attempt: 146 /// BBI - Corresponding BBInfo. 147 /// Kind - Type of block. See IfcvtKind. 148 /// NeedSubsumption - True if the to-be-predicated BB has already been 149 /// predicated. 150 /// NumDups - Number of instructions that would be duplicated due 151 /// to this if-conversion. (For diamonds, the number of 152 /// identical instructions at the beginnings of both 153 /// paths). 154 /// NumDups2 - For diamonds, the number of identical instructions 155 /// at the ends of both paths. 156 struct IfcvtToken { 157 BBInfo &BBI; 158 IfcvtKind Kind; 159 unsigned NumDups; 160 unsigned NumDups2; 161 bool NeedSubsumption : 1; 162 bool TClobbersPred : 1; 163 bool FClobbersPred : 1; 164 IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0, 165 bool tc = false, bool fc = false) 166 : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s), 167 TClobbersPred(tc), FClobbersPred(fc) {} 168 }; 169 170 /// Results of if-conversion feasibility analysis indexed by basic block 171 /// number. 172 std::vector<BBInfo> BBAnalysis; 173 TargetSchedModel SchedModel; 174 175 const TargetLoweringBase *TLI; 176 const TargetInstrInfo *TII; 177 const TargetRegisterInfo *TRI; 178 const MachineBranchProbabilityInfo *MBPI; 179 MachineRegisterInfo *MRI; 180 181 LivePhysRegs Redefs; 182 LivePhysRegs DontKill; 183 184 bool PreRegAlloc; 185 bool MadeChange; 186 int FnNum; 187 std::function<bool(const MachineFunction &)> PredicateFtor; 188 189 public: 190 static char ID; 191 IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr) 192 : MachineFunctionPass(ID), FnNum(-1), PredicateFtor(std::move(Ftor)) { 193 initializeIfConverterPass(*PassRegistry::getPassRegistry()); 194 } 195 196 void getAnalysisUsage(AnalysisUsage &AU) const override { 197 AU.addRequired<MachineBlockFrequencyInfo>(); 198 AU.addRequired<MachineBranchProbabilityInfo>(); 199 MachineFunctionPass::getAnalysisUsage(AU); 200 } 201 202 bool runOnMachineFunction(MachineFunction &MF) override; 203 204 MachineFunctionProperties getRequiredProperties() const override { 205 return MachineFunctionProperties().set( 206 MachineFunctionProperties::Property::NoVRegs); 207 } 208 209 private: 210 bool reverseBranchCondition(BBInfo &BBI) const; 211 bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 212 BranchProbability Prediction) const; 213 bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 214 bool FalseBranch, unsigned &Dups, 215 BranchProbability Prediction) const; 216 bool CountDuplicatedInstructions( 217 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 218 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 219 unsigned &Dups1, unsigned &Dups2, 220 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 221 bool SkipUnconditionalBranches) const; 222 bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 223 unsigned &Dups1, unsigned &Dups2, 224 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 225 bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 226 unsigned &Dups1, unsigned &Dups2, 227 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 228 void AnalyzeBranches(BBInfo &BBI); 229 void ScanInstructions(BBInfo &BBI, 230 MachineBasicBlock::iterator &Begin, 231 MachineBasicBlock::iterator &End, 232 bool BranchUnpredicable = false) const; 233 bool RescanInstructions( 234 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 235 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 236 BBInfo &TrueBBI, BBInfo &FalseBBI) const; 237 void AnalyzeBlock(MachineBasicBlock &MBB, 238 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 239 bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Cond, 240 bool isTriangle = false, bool RevBranch = false, 241 bool hasCommonTail = false); 242 void AnalyzeBlocks(MachineFunction &MF, 243 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 244 void InvalidatePreds(MachineBasicBlock &MBB); 245 bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind); 246 bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind); 247 bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 248 unsigned NumDups1, unsigned NumDups2, 249 bool TClobbersPred, bool FClobbersPred, 250 bool RemoveBranch, bool MergeAddEdges); 251 bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 252 unsigned NumDups1, unsigned NumDups2, 253 bool TClobbers, bool FClobbers); 254 bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind, 255 unsigned NumDups1, unsigned NumDups2, 256 bool TClobbers, bool FClobbers); 257 void PredicateBlock(BBInfo &BBI, 258 MachineBasicBlock::iterator E, 259 SmallVectorImpl<MachineOperand> &Cond, 260 SmallSet<unsigned, 4> *LaterRedefs = nullptr); 261 void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 262 SmallVectorImpl<MachineOperand> &Cond, 263 bool IgnoreBr = false); 264 void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true); 265 266 bool MeetIfcvtSizeLimit(MachineBasicBlock &BB, 267 unsigned Cycle, unsigned Extra, 268 BranchProbability Prediction) const { 269 return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra, 270 Prediction); 271 } 272 273 bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB, 274 unsigned TCycle, unsigned TExtra, 275 MachineBasicBlock &FBB, 276 unsigned FCycle, unsigned FExtra, 277 BranchProbability Prediction) const { 278 return TCycle > 0 && FCycle > 0 && 279 TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra, 280 Prediction); 281 } 282 283 /// Returns true if Block ends without a terminator. 284 bool blockAlwaysFallThrough(BBInfo &BBI) const { 285 return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr; 286 } 287 288 /// Used to sort if-conversion candidates. 289 static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1, 290 const std::unique_ptr<IfcvtToken> &C2) { 291 int Incr1 = (C1->Kind == ICDiamond) 292 ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups; 293 int Incr2 = (C2->Kind == ICDiamond) 294 ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups; 295 if (Incr1 > Incr2) 296 return true; 297 else if (Incr1 == Incr2) { 298 // Favors subsumption. 299 if (!C1->NeedSubsumption && C2->NeedSubsumption) 300 return true; 301 else if (C1->NeedSubsumption == C2->NeedSubsumption) { 302 // Favors diamond over triangle, etc. 303 if ((unsigned)C1->Kind < (unsigned)C2->Kind) 304 return true; 305 else if (C1->Kind == C2->Kind) 306 return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber(); 307 } 308 } 309 return false; 310 } 311 }; 312 313 char IfConverter::ID = 0; 314 } 315 316 char &llvm::IfConverterID = IfConverter::ID; 317 318 INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false) 319 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 320 INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false) 321 322 bool IfConverter::runOnMachineFunction(MachineFunction &MF) { 323 if (skipFunction(*MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF))) 324 return false; 325 326 const TargetSubtargetInfo &ST = MF.getSubtarget(); 327 TLI = ST.getTargetLowering(); 328 TII = ST.getInstrInfo(); 329 TRI = ST.getRegisterInfo(); 330 BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>()); 331 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 332 MRI = &MF.getRegInfo(); 333 SchedModel.init(ST.getSchedModel(), &ST, TII); 334 335 if (!TII) return false; 336 337 PreRegAlloc = MRI->isSSA(); 338 339 bool BFChange = false; 340 if (!PreRegAlloc) { 341 // Tail merge tend to expose more if-conversion opportunities. 342 BranchFolder BF(true, false, MBFI, *MBPI); 343 BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(), 344 getAnalysisIfAvailable<MachineModuleInfo>()); 345 } 346 347 DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'" 348 << MF.getName() << "\'"); 349 350 if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) { 351 DEBUG(dbgs() << " skipped\n"); 352 return false; 353 } 354 DEBUG(dbgs() << "\n"); 355 356 MF.RenumberBlocks(); 357 BBAnalysis.resize(MF.getNumBlockIDs()); 358 359 std::vector<std::unique_ptr<IfcvtToken>> Tokens; 360 MadeChange = false; 361 unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + 362 NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds; 363 while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) { 364 // Do an initial analysis for each basic block and find all the potential 365 // candidates to perform if-conversion. 366 bool Change = false; 367 AnalyzeBlocks(MF, Tokens); 368 while (!Tokens.empty()) { 369 std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back()); 370 Tokens.pop_back(); 371 BBInfo &BBI = Token->BBI; 372 IfcvtKind Kind = Token->Kind; 373 unsigned NumDups = Token->NumDups; 374 unsigned NumDups2 = Token->NumDups2; 375 376 // If the block has been evicted out of the queue or it has already been 377 // marked dead (due to it being predicated), then skip it. 378 if (BBI.IsDone) 379 BBI.IsEnqueued = false; 380 if (!BBI.IsEnqueued) 381 continue; 382 383 BBI.IsEnqueued = false; 384 385 bool RetVal = false; 386 switch (Kind) { 387 default: llvm_unreachable("Unexpected!"); 388 case ICSimple: 389 case ICSimpleFalse: { 390 bool isFalse = Kind == ICSimpleFalse; 391 if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break; 392 DEBUG(dbgs() << "Ifcvt (Simple" << (Kind == ICSimpleFalse ? 393 " false" : "") 394 << "): BB#" << BBI.BB->getNumber() << " (" 395 << ((Kind == ICSimpleFalse) 396 ? BBI.FalseBB->getNumber() 397 : BBI.TrueBB->getNumber()) << ") "); 398 RetVal = IfConvertSimple(BBI, Kind); 399 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 400 if (RetVal) { 401 if (isFalse) ++NumSimpleFalse; 402 else ++NumSimple; 403 } 404 break; 405 } 406 case ICTriangle: 407 case ICTriangleRev: 408 case ICTriangleFalse: 409 case ICTriangleFRev: { 410 bool isFalse = Kind == ICTriangleFalse; 411 bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev); 412 if (DisableTriangle && !isFalse && !isRev) break; 413 if (DisableTriangleR && !isFalse && isRev) break; 414 if (DisableTriangleF && isFalse && !isRev) break; 415 if (DisableTriangleFR && isFalse && isRev) break; 416 DEBUG(dbgs() << "Ifcvt (Triangle"); 417 if (isFalse) 418 DEBUG(dbgs() << " false"); 419 if (isRev) 420 DEBUG(dbgs() << " rev"); 421 DEBUG(dbgs() << "): BB#" << BBI.BB->getNumber() << " (T:" 422 << BBI.TrueBB->getNumber() << ",F:" 423 << BBI.FalseBB->getNumber() << ") "); 424 RetVal = IfConvertTriangle(BBI, Kind); 425 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 426 if (RetVal) { 427 if (isFalse) { 428 if (isRev) ++NumTriangleFRev; 429 else ++NumTriangleFalse; 430 } else { 431 if (isRev) ++NumTriangleRev; 432 else ++NumTriangle; 433 } 434 } 435 break; 436 } 437 case ICDiamond: { 438 if (DisableDiamond) break; 439 DEBUG(dbgs() << "Ifcvt (Diamond): BB#" << BBI.BB->getNumber() << " (T:" 440 << BBI.TrueBB->getNumber() << ",F:" 441 << BBI.FalseBB->getNumber() << ") "); 442 RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2, 443 Token->TClobbersPred, 444 Token->FClobbersPred); 445 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 446 if (RetVal) ++NumDiamonds; 447 break; 448 } 449 case ICForkedDiamond: { 450 if (DisableForkedDiamond) break; 451 DEBUG(dbgs() << "Ifcvt (Forked Diamond): BB#" 452 << BBI.BB->getNumber() << " (T:" 453 << BBI.TrueBB->getNumber() << ",F:" 454 << BBI.FalseBB->getNumber() << ") "); 455 RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2, 456 Token->TClobbersPred, 457 Token->FClobbersPred); 458 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 459 if (RetVal) ++NumForkedDiamonds; 460 break; 461 } 462 } 463 464 Change |= RetVal; 465 466 NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev + 467 NumTriangleFalse + NumTriangleFRev + NumDiamonds; 468 if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit) 469 break; 470 } 471 472 if (!Change) 473 break; 474 MadeChange |= Change; 475 } 476 477 Tokens.clear(); 478 BBAnalysis.clear(); 479 480 if (MadeChange && IfCvtBranchFold) { 481 BranchFolder BF(false, false, MBFI, *MBPI); 482 BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 483 getAnalysisIfAvailable<MachineModuleInfo>()); 484 } 485 486 MadeChange |= BFChange; 487 return MadeChange; 488 } 489 490 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor. 491 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 492 MachineBasicBlock *TrueBB) { 493 for (MachineBasicBlock *SuccBB : BB->successors()) { 494 if (SuccBB != TrueBB) 495 return SuccBB; 496 } 497 return nullptr; 498 } 499 500 /// Reverse the condition of the end of the block branch. Swap block's 'true' 501 /// and 'false' successors. 502 bool IfConverter::reverseBranchCondition(BBInfo &BBI) const { 503 DebugLoc dl; // FIXME: this is nowhere 504 if (!TII->reverseBranchCondition(BBI.BrCond)) { 505 TII->removeBranch(*BBI.BB); 506 TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl); 507 std::swap(BBI.TrueBB, BBI.FalseBB); 508 return true; 509 } 510 return false; 511 } 512 513 /// Returns the next block in the function blocks ordering. If it is the end, 514 /// returns NULL. 515 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) { 516 MachineFunction::iterator I = MBB.getIterator(); 517 MachineFunction::iterator E = MBB.getParent()->end(); 518 if (++I == E) 519 return nullptr; 520 return &*I; 521 } 522 523 /// Returns true if the 'true' block (along with its predecessor) forms a valid 524 /// simple shape for ifcvt. It also returns the number of instructions that the 525 /// ifcvt would need to duplicate if performed in Dups. 526 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 527 BranchProbability Prediction) const { 528 Dups = 0; 529 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 530 return false; 531 532 if (TrueBBI.IsBrAnalyzable) 533 return false; 534 535 if (TrueBBI.BB->pred_size() > 1) { 536 if (TrueBBI.CannotBeCopied || 537 !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize, 538 Prediction)) 539 return false; 540 Dups = TrueBBI.NonPredSize; 541 } 542 543 return true; 544 } 545 546 /// Returns true if the 'true' and 'false' blocks (along with their common 547 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is 548 /// true, it checks if 'true' block's false branch branches to the 'false' block 549 /// rather than the other way around. It also returns the number of instructions 550 /// that the ifcvt would need to duplicate if performed in 'Dups'. 551 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 552 bool FalseBranch, unsigned &Dups, 553 BranchProbability Prediction) const { 554 Dups = 0; 555 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 556 return false; 557 558 if (TrueBBI.BB->pred_size() > 1) { 559 if (TrueBBI.CannotBeCopied) 560 return false; 561 562 unsigned Size = TrueBBI.NonPredSize; 563 if (TrueBBI.IsBrAnalyzable) { 564 if (TrueBBI.TrueBB && TrueBBI.BrCond.empty()) 565 // Ends with an unconditional branch. It will be removed. 566 --Size; 567 else { 568 MachineBasicBlock *FExit = FalseBranch 569 ? TrueBBI.TrueBB : TrueBBI.FalseBB; 570 if (FExit) 571 // Require a conditional branch 572 ++Size; 573 } 574 } 575 if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction)) 576 return false; 577 Dups = Size; 578 } 579 580 MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB; 581 if (!TExit && blockAlwaysFallThrough(TrueBBI)) { 582 MachineFunction::iterator I = TrueBBI.BB->getIterator(); 583 if (++I == TrueBBI.BB->getParent()->end()) 584 return false; 585 TExit = &*I; 586 } 587 return TExit && TExit == FalseBBI.BB; 588 } 589 590 /// Count duplicated instructions and move the iterators to show where they 591 /// are. 592 /// @param TIB True Iterator Begin 593 /// @param FIB False Iterator Begin 594 /// These two iterators initially point to the first instruction of the two 595 /// blocks, and finally point to the first non-shared instruction. 596 /// @param TIE True Iterator End 597 /// @param FIE False Iterator End 598 /// These two iterators initially point to End() for the two blocks() and 599 /// finally point to the first shared instruction in the tail. 600 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of 601 /// two blocks. 602 /// @param Dups1 count of duplicated instructions at the beginning of the 2 603 /// blocks. 604 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks. 605 /// @param SkipUnconditionalBranches if true, Don't make sure that 606 /// unconditional branches at the end of the blocks are the same. True is 607 /// passed when the blocks are analyzable to allow for fallthrough to be 608 /// handled. 609 /// @return false if the shared portion prevents if conversion. 610 bool IfConverter::CountDuplicatedInstructions( 611 MachineBasicBlock::iterator &TIB, 612 MachineBasicBlock::iterator &FIB, 613 MachineBasicBlock::iterator &TIE, 614 MachineBasicBlock::iterator &FIE, 615 unsigned &Dups1, unsigned &Dups2, 616 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 617 bool SkipUnconditionalBranches) const { 618 619 while (TIB != TIE && FIB != FIE) { 620 // Skip dbg_value instructions. These do not count. 621 TIB = skipDebugInstructionsForward(TIB, TIE); 622 FIB = skipDebugInstructionsForward(FIB, FIE); 623 if (TIB == TIE || FIB == FIE) 624 break; 625 if (!TIB->isIdenticalTo(*FIB)) 626 break; 627 // A pred-clobbering instruction in the shared portion prevents 628 // if-conversion. 629 std::vector<MachineOperand> PredDefs; 630 if (TII->DefinesPredicate(*TIB, PredDefs)) 631 return false; 632 // If we get all the way to the branch instructions, don't count them. 633 if (!TIB->isBranch()) 634 ++Dups1; 635 ++TIB; 636 ++FIB; 637 } 638 639 // Check for already containing all of the block. 640 if (TIB == TIE || FIB == FIE) 641 return true; 642 // Now, in preparation for counting duplicate instructions at the ends of the 643 // blocks, switch to reverse_iterators. Note that getReverse() returns an 644 // iterator that points to the same instruction, unlike std::reverse_iterator. 645 // We have to do our own shifting so that we get the same range. 646 MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse()); 647 MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse()); 648 const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse()); 649 const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse()); 650 651 if (!TBB.succ_empty() || !FBB.succ_empty()) { 652 if (SkipUnconditionalBranches) { 653 while (RTIE != RTIB && RTIE->isUnconditionalBranch()) 654 ++RTIE; 655 while (RFIE != RFIB && RFIE->isUnconditionalBranch()) 656 ++RFIE; 657 } 658 } 659 660 // Count duplicate instructions at the ends of the blocks. 661 while (RTIE != RTIB && RFIE != RFIB) { 662 // Skip dbg_value instructions. These do not count. 663 // Note that these are reverse iterators going forward. 664 RTIE = skipDebugInstructionsForward(RTIE, RTIB); 665 RFIE = skipDebugInstructionsForward(RFIE, RFIB); 666 if (RTIE == RTIB || RFIE == RFIB) 667 break; 668 if (!RTIE->isIdenticalTo(*RFIE)) 669 break; 670 // We have to verify that any branch instructions are the same, and then we 671 // don't count them toward the # of duplicate instructions. 672 if (!RTIE->isBranch()) 673 ++Dups2; 674 ++RTIE; 675 ++RFIE; 676 } 677 TIE = std::next(RTIE.getReverse()); 678 FIE = std::next(RFIE.getReverse()); 679 return true; 680 } 681 682 /// RescanInstructions - Run ScanInstructions on a pair of blocks. 683 /// @param TIB - True Iterator Begin, points to first non-shared instruction 684 /// @param FIB - False Iterator Begin, points to first non-shared instruction 685 /// @param TIE - True Iterator End, points past last non-shared instruction 686 /// @param FIE - False Iterator End, points past last non-shared instruction 687 /// @param TrueBBI - BBInfo to update for the true block. 688 /// @param FalseBBI - BBInfo to update for the false block. 689 /// @returns - false if either block cannot be predicated or if both blocks end 690 /// with a predicate-clobbering instruction. 691 bool IfConverter::RescanInstructions( 692 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 693 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 694 BBInfo &TrueBBI, BBInfo &FalseBBI) const { 695 bool BranchUnpredicable = true; 696 TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false; 697 ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable); 698 if (TrueBBI.IsUnpredicable) 699 return false; 700 ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable); 701 if (FalseBBI.IsUnpredicable) 702 return false; 703 if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred) 704 return false; 705 return true; 706 } 707 708 #ifndef NDEBUG 709 static void verifySameBranchInstructions( 710 MachineBasicBlock *MBB1, 711 MachineBasicBlock *MBB2) { 712 const MachineBasicBlock::reverse_iterator B1 = MBB1->rend(); 713 const MachineBasicBlock::reverse_iterator B2 = MBB2->rend(); 714 MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin(); 715 MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin(); 716 while (E1 != B1 && E2 != B2) { 717 skipDebugInstructionsForward(E1, B1); 718 skipDebugInstructionsForward(E2, B2); 719 if (E1 == B1 && E2 == B2) 720 break; 721 722 if (E1 == B1) { 723 assert(!E2->isBranch() && "Branch mis-match, one block is empty."); 724 break; 725 } 726 if (E2 == B2) { 727 assert(!E1->isBranch() && "Branch mis-match, one block is empty."); 728 break; 729 } 730 731 if (E1->isBranch() || E2->isBranch()) 732 assert(E1->isIdenticalTo(*E2) && 733 "Branch mis-match, branch instructions don't match."); 734 else 735 break; 736 ++E1; 737 ++E2; 738 } 739 } 740 #endif 741 742 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along 743 /// with their common predecessor) form a diamond if a common tail block is 744 /// extracted. 745 /// While not strictly a diamond, this pattern would form a diamond if 746 /// tail-merging had merged the shared tails. 747 /// EBB 748 /// _/ \_ 749 /// | | 750 /// TBB FBB 751 /// / \ / \ 752 /// FalseBB TrueBB FalseBB 753 /// Currently only handles analyzable branches. 754 /// Specifically excludes actual diamonds to avoid overlap. 755 bool IfConverter::ValidForkedDiamond( 756 BBInfo &TrueBBI, BBInfo &FalseBBI, 757 unsigned &Dups1, unsigned &Dups2, 758 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 759 Dups1 = Dups2 = 0; 760 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 761 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 762 return false; 763 764 if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable) 765 return false; 766 // Don't IfConvert blocks that can't be folded into their predecessor. 767 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 768 return false; 769 770 // This function is specifically looking for conditional tails, as 771 // unconditional tails are already handled by the standard diamond case. 772 if (TrueBBI.BrCond.size() == 0 || 773 FalseBBI.BrCond.size() == 0) 774 return false; 775 776 MachineBasicBlock *TT = TrueBBI.TrueBB; 777 MachineBasicBlock *TF = TrueBBI.FalseBB; 778 MachineBasicBlock *FT = FalseBBI.TrueBB; 779 MachineBasicBlock *FF = FalseBBI.FalseBB; 780 781 if (!TT) 782 TT = getNextBlock(*TrueBBI.BB); 783 if (!TF) 784 TF = getNextBlock(*TrueBBI.BB); 785 if (!FT) 786 FT = getNextBlock(*FalseBBI.BB); 787 if (!FF) 788 FF = getNextBlock(*FalseBBI.BB); 789 790 if (!TT || !TF) 791 return false; 792 793 // Check successors. If they don't match, bail. 794 if (!((TT == FT && TF == FF) || (TF == FT && TT == FF))) 795 return false; 796 797 bool FalseReversed = false; 798 if (TF == FT && TT == FF) { 799 // If the branches are opposing, but we can't reverse, don't do it. 800 if (!FalseBBI.IsBrReversible) 801 return false; 802 FalseReversed = true; 803 reverseBranchCondition(FalseBBI); 804 } 805 auto UnReverseOnExit = make_scope_exit([&]() { 806 if (FalseReversed) 807 reverseBranchCondition(FalseBBI); 808 }); 809 810 // Count duplicate instructions at the beginning of the true and false blocks. 811 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 812 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 813 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 814 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 815 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 816 *TrueBBI.BB, *FalseBBI.BB, 817 /* SkipUnconditionalBranches */ true)) 818 return false; 819 820 TrueBBICalc.BB = TrueBBI.BB; 821 FalseBBICalc.BB = FalseBBI.BB; 822 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 823 return false; 824 825 // The size is used to decide whether to if-convert, and the shared portions 826 // are subtracted off. Because of the subtraction, we just use the size that 827 // was calculated by the original ScanInstructions, as it is correct. 828 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 829 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 830 return true; 831 } 832 833 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along 834 /// with their common predecessor) forms a valid diamond shape for ifcvt. 835 bool IfConverter::ValidDiamond( 836 BBInfo &TrueBBI, BBInfo &FalseBBI, 837 unsigned &Dups1, unsigned &Dups2, 838 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 839 Dups1 = Dups2 = 0; 840 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 841 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 842 return false; 843 844 MachineBasicBlock *TT = TrueBBI.TrueBB; 845 MachineBasicBlock *FT = FalseBBI.TrueBB; 846 847 if (!TT && blockAlwaysFallThrough(TrueBBI)) 848 TT = getNextBlock(*TrueBBI.BB); 849 if (!FT && blockAlwaysFallThrough(FalseBBI)) 850 FT = getNextBlock(*FalseBBI.BB); 851 if (TT != FT) 852 return false; 853 if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable)) 854 return false; 855 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 856 return false; 857 858 // FIXME: Allow true block to have an early exit? 859 if (TrueBBI.FalseBB || FalseBBI.FalseBB) 860 return false; 861 862 // Count duplicate instructions at the beginning and end of the true and 863 // false blocks. 864 // Skip unconditional branches only if we are considering an analyzable 865 // diamond. Otherwise the branches must be the same. 866 bool SkipUnconditionalBranches = 867 TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable; 868 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 869 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 870 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 871 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 872 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 873 *TrueBBI.BB, *FalseBBI.BB, 874 SkipUnconditionalBranches)) 875 return false; 876 877 TrueBBICalc.BB = TrueBBI.BB; 878 FalseBBICalc.BB = FalseBBI.BB; 879 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 880 return false; 881 // The size is used to decide whether to if-convert, and the shared portions 882 // are subtracted off. Because of the subtraction, we just use the size that 883 // was calculated by the original ScanInstructions, as it is correct. 884 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 885 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 886 return true; 887 } 888 889 /// AnalyzeBranches - Look at the branches at the end of a block to determine if 890 /// the block is predicable. 891 void IfConverter::AnalyzeBranches(BBInfo &BBI) { 892 if (BBI.IsDone) 893 return; 894 895 BBI.TrueBB = BBI.FalseBB = nullptr; 896 BBI.BrCond.clear(); 897 BBI.IsBrAnalyzable = 898 !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond); 899 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 900 BBI.IsBrReversible = (RevCond.size() == 0) || 901 !TII->reverseBranchCondition(RevCond); 902 BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr; 903 904 if (BBI.BrCond.size()) { 905 // No false branch. This BB must end with a conditional branch and a 906 // fallthrough. 907 if (!BBI.FalseBB) 908 BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB); 909 if (!BBI.FalseBB) { 910 // Malformed bcc? True and false blocks are the same? 911 BBI.IsUnpredicable = true; 912 } 913 } 914 } 915 916 /// ScanInstructions - Scan all the instructions in the block to determine if 917 /// the block is predicable. In most cases, that means all the instructions 918 /// in the block are isPredicable(). Also checks if the block contains any 919 /// instruction which can clobber a predicate (e.g. condition code register). 920 /// If so, the block is not predicable unless it's the last instruction. 921 void IfConverter::ScanInstructions(BBInfo &BBI, 922 MachineBasicBlock::iterator &Begin, 923 MachineBasicBlock::iterator &End, 924 bool BranchUnpredicable) const { 925 if (BBI.IsDone || BBI.IsUnpredicable) 926 return; 927 928 bool AlreadyPredicated = !BBI.Predicate.empty(); 929 930 BBI.NonPredSize = 0; 931 BBI.ExtraCost = 0; 932 BBI.ExtraCost2 = 0; 933 BBI.ClobbersPred = false; 934 for (MachineInstr &MI : make_range(Begin, End)) { 935 if (MI.isDebugValue()) 936 continue; 937 938 // It's unsafe to duplicate convergent instructions in this context, so set 939 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the 940 // following CFG, which is subject to our "simple" transformation. 941 // 942 // BB0 // if (c1) goto BB1; else goto BB2; 943 // / \ 944 // BB1 | 945 // | BB2 // if (c2) goto TBB; else goto FBB; 946 // | / | 947 // | / | 948 // TBB | 949 // | | 950 // | FBB 951 // | 952 // exit 953 // 954 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd 955 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose 956 // TBB contains a convergent instruction. This is safe iff doing so does 957 // not add a control-flow dependency to the convergent instruction -- i.e., 958 // it's safe iff the set of control flows that leads us to the convergent 959 // instruction does not get smaller after the transformation. 960 // 961 // Originally we executed TBB if c1 || c2. After the transformation, there 962 // are two copies of TBB's instructions. We get to the first if c1, and we 963 // get to the second if !c1 && c2. 964 // 965 // There are clearly fewer ways to satisfy the condition "c1" than 966 // "c1 || c2". Since we've shrunk the set of control flows which lead to 967 // our convergent instruction, the transformation is unsafe. 968 if (MI.isNotDuplicable() || MI.isConvergent()) 969 BBI.CannotBeCopied = true; 970 971 bool isPredicated = TII->isPredicated(MI); 972 bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch(); 973 974 if (BranchUnpredicable && MI.isBranch()) { 975 BBI.IsUnpredicable = true; 976 return; 977 } 978 979 // A conditional branch is not predicable, but it may be eliminated. 980 if (isCondBr) 981 continue; 982 983 if (!isPredicated) { 984 BBI.NonPredSize++; 985 unsigned ExtraPredCost = TII->getPredicationCost(MI); 986 unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false); 987 if (NumCycles > 1) 988 BBI.ExtraCost += NumCycles-1; 989 BBI.ExtraCost2 += ExtraPredCost; 990 } else if (!AlreadyPredicated) { 991 // FIXME: This instruction is already predicated before the 992 // if-conversion pass. It's probably something like a conditional move. 993 // Mark this block unpredicable for now. 994 BBI.IsUnpredicable = true; 995 return; 996 } 997 998 if (BBI.ClobbersPred && !isPredicated) { 999 // Predicate modification instruction should end the block (except for 1000 // already predicated instructions and end of block branches). 1001 // Predicate may have been modified, the subsequent (currently) 1002 // unpredicated instructions cannot be correctly predicated. 1003 BBI.IsUnpredicable = true; 1004 return; 1005 } 1006 1007 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are 1008 // still potentially predicable. 1009 std::vector<MachineOperand> PredDefs; 1010 if (TII->DefinesPredicate(MI, PredDefs)) 1011 BBI.ClobbersPred = true; 1012 1013 if (!TII->isPredicable(MI)) { 1014 BBI.IsUnpredicable = true; 1015 return; 1016 } 1017 } 1018 } 1019 1020 /// Determine if the block is a suitable candidate to be predicated by the 1021 /// specified predicate. 1022 /// @param BBI BBInfo for the block to check 1023 /// @param Pred Predicate array for the branch that leads to BBI 1024 /// @param isTriangle true if the Analysis is for a triangle 1025 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false 1026 /// case 1027 /// @param hasCommonTail true if BBI shares a tail with a sibling block that 1028 /// contains any instruction that would make the block unpredicable. 1029 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI, 1030 SmallVectorImpl<MachineOperand> &Pred, 1031 bool isTriangle, bool RevBranch, 1032 bool hasCommonTail) { 1033 // If the block is dead or unpredicable, then it cannot be predicated. 1034 // Two blocks may share a common unpredicable tail, but this doesn't prevent 1035 // them from being if-converted. The non-shared portion is assumed to have 1036 // been checked 1037 if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail)) 1038 return false; 1039 1040 // If it is already predicated but we couldn't analyze its terminator, the 1041 // latter might fallthrough, but we can't determine where to. 1042 // Conservatively avoid if-converting again. 1043 if (BBI.Predicate.size() && !BBI.IsBrAnalyzable) 1044 return false; 1045 1046 // If it is already predicated, check if the new predicate subsumes 1047 // its predicate. 1048 if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate)) 1049 return false; 1050 1051 if (!hasCommonTail && BBI.BrCond.size()) { 1052 if (!isTriangle) 1053 return false; 1054 1055 // Test predicate subsumption. 1056 SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end()); 1057 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1058 if (RevBranch) { 1059 if (TII->reverseBranchCondition(Cond)) 1060 return false; 1061 } 1062 if (TII->reverseBranchCondition(RevPred) || 1063 !TII->SubsumesPredicate(Cond, RevPred)) 1064 return false; 1065 } 1066 1067 return true; 1068 } 1069 1070 /// Analyze the structure of the sub-CFG starting from the specified block. 1071 /// Record its successors and whether it looks like an if-conversion candidate. 1072 void IfConverter::AnalyzeBlock( 1073 MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1074 struct BBState { 1075 BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {} 1076 MachineBasicBlock *MBB; 1077 1078 /// This flag is true if MBB's successors have been analyzed. 1079 bool SuccsAnalyzed; 1080 }; 1081 1082 // Push MBB to the stack. 1083 SmallVector<BBState, 16> BBStack(1, MBB); 1084 1085 while (!BBStack.empty()) { 1086 BBState &State = BBStack.back(); 1087 MachineBasicBlock *BB = State.MBB; 1088 BBInfo &BBI = BBAnalysis[BB->getNumber()]; 1089 1090 if (!State.SuccsAnalyzed) { 1091 if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) { 1092 BBStack.pop_back(); 1093 continue; 1094 } 1095 1096 BBI.BB = BB; 1097 BBI.IsBeingAnalyzed = true; 1098 1099 AnalyzeBranches(BBI); 1100 MachineBasicBlock::iterator Begin = BBI.BB->begin(); 1101 MachineBasicBlock::iterator End = BBI.BB->end(); 1102 ScanInstructions(BBI, Begin, End); 1103 1104 // Unanalyzable or ends with fallthrough or unconditional branch, or if is 1105 // not considered for ifcvt anymore. 1106 if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) { 1107 BBI.IsBeingAnalyzed = false; 1108 BBI.IsAnalyzed = true; 1109 BBStack.pop_back(); 1110 continue; 1111 } 1112 1113 // Do not ifcvt if either path is a back edge to the entry block. 1114 if (BBI.TrueBB == BB || BBI.FalseBB == BB) { 1115 BBI.IsBeingAnalyzed = false; 1116 BBI.IsAnalyzed = true; 1117 BBStack.pop_back(); 1118 continue; 1119 } 1120 1121 // Do not ifcvt if true and false fallthrough blocks are the same. 1122 if (!BBI.FalseBB) { 1123 BBI.IsBeingAnalyzed = false; 1124 BBI.IsAnalyzed = true; 1125 BBStack.pop_back(); 1126 continue; 1127 } 1128 1129 // Push the False and True blocks to the stack. 1130 State.SuccsAnalyzed = true; 1131 BBStack.push_back(*BBI.FalseBB); 1132 BBStack.push_back(*BBI.TrueBB); 1133 continue; 1134 } 1135 1136 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1137 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1138 1139 if (TrueBBI.IsDone && FalseBBI.IsDone) { 1140 BBI.IsBeingAnalyzed = false; 1141 BBI.IsAnalyzed = true; 1142 BBStack.pop_back(); 1143 continue; 1144 } 1145 1146 SmallVector<MachineOperand, 4> 1147 RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1148 bool CanRevCond = !TII->reverseBranchCondition(RevCond); 1149 1150 unsigned Dups = 0; 1151 unsigned Dups2 = 0; 1152 bool TNeedSub = !TrueBBI.Predicate.empty(); 1153 bool FNeedSub = !FalseBBI.Predicate.empty(); 1154 bool Enqueued = false; 1155 1156 BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB); 1157 1158 if (CanRevCond) { 1159 BBInfo TrueBBICalc, FalseBBICalc; 1160 auto feasibleDiamond = [&]() { 1161 bool MeetsSize = MeetIfcvtSizeLimit( 1162 *TrueBBI.BB, (TrueBBICalc.NonPredSize - (Dups + Dups2) + 1163 TrueBBICalc.ExtraCost), TrueBBICalc.ExtraCost2, 1164 *FalseBBI.BB, (FalseBBICalc.NonPredSize - (Dups + Dups2) + 1165 FalseBBICalc.ExtraCost), FalseBBICalc.ExtraCost2, 1166 Prediction); 1167 bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond, 1168 /* IsTriangle */ false, /* RevCond */ false, 1169 /* hasCommonTail */ true); 1170 bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond, 1171 /* IsTriangle */ false, /* RevCond */ false, 1172 /* hasCommonTail */ true); 1173 return MeetsSize && TrueFeasible && FalseFeasible; 1174 }; 1175 1176 if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1177 TrueBBICalc, FalseBBICalc)) { 1178 if (feasibleDiamond()) { 1179 // Diamond: 1180 // EBB 1181 // / \_ 1182 // | | 1183 // TBB FBB 1184 // \ / 1185 // TailBB 1186 // Note TailBB can be empty. 1187 Tokens.push_back(llvm::make_unique<IfcvtToken>( 1188 BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1189 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1190 Enqueued = true; 1191 } 1192 } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1193 TrueBBICalc, FalseBBICalc)) { 1194 if (feasibleDiamond()) { 1195 // ForkedDiamond: 1196 // if TBB and FBB have a common tail that includes their conditional 1197 // branch instructions, then we can If Convert this pattern. 1198 // EBB 1199 // _/ \_ 1200 // | | 1201 // TBB FBB 1202 // / \ / \ 1203 // FalseBB TrueBB FalseBB 1204 // 1205 Tokens.push_back(llvm::make_unique<IfcvtToken>( 1206 BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1207 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1208 Enqueued = true; 1209 } 1210 } 1211 } 1212 1213 if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) && 1214 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1215 TrueBBI.ExtraCost2, Prediction) && 1216 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) { 1217 // Triangle: 1218 // EBB 1219 // | \_ 1220 // | | 1221 // | TBB 1222 // | / 1223 // FBB 1224 Tokens.push_back( 1225 llvm::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups)); 1226 Enqueued = true; 1227 } 1228 1229 if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) && 1230 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1231 TrueBBI.ExtraCost2, Prediction) && 1232 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) { 1233 Tokens.push_back( 1234 llvm::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups)); 1235 Enqueued = true; 1236 } 1237 1238 if (ValidSimple(TrueBBI, Dups, Prediction) && 1239 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1240 TrueBBI.ExtraCost2, Prediction) && 1241 FeasibilityAnalysis(TrueBBI, BBI.BrCond)) { 1242 // Simple (split, no rejoin): 1243 // EBB 1244 // | \_ 1245 // | | 1246 // | TBB---> exit 1247 // | 1248 // FBB 1249 Tokens.push_back( 1250 llvm::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups)); 1251 Enqueued = true; 1252 } 1253 1254 if (CanRevCond) { 1255 // Try the other path... 1256 if (ValidTriangle(FalseBBI, TrueBBI, false, Dups, 1257 Prediction.getCompl()) && 1258 MeetIfcvtSizeLimit(*FalseBBI.BB, 1259 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1260 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1261 FeasibilityAnalysis(FalseBBI, RevCond, true)) { 1262 Tokens.push_back(llvm::make_unique<IfcvtToken>(BBI, ICTriangleFalse, 1263 FNeedSub, Dups)); 1264 Enqueued = true; 1265 } 1266 1267 if (ValidTriangle(FalseBBI, TrueBBI, true, Dups, 1268 Prediction.getCompl()) && 1269 MeetIfcvtSizeLimit(*FalseBBI.BB, 1270 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1271 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1272 FeasibilityAnalysis(FalseBBI, RevCond, true, true)) { 1273 Tokens.push_back( 1274 llvm::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups)); 1275 Enqueued = true; 1276 } 1277 1278 if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) && 1279 MeetIfcvtSizeLimit(*FalseBBI.BB, 1280 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1281 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1282 FeasibilityAnalysis(FalseBBI, RevCond)) { 1283 Tokens.push_back( 1284 llvm::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups)); 1285 Enqueued = true; 1286 } 1287 } 1288 1289 BBI.IsEnqueued = Enqueued; 1290 BBI.IsBeingAnalyzed = false; 1291 BBI.IsAnalyzed = true; 1292 BBStack.pop_back(); 1293 } 1294 } 1295 1296 /// Analyze all blocks and find entries for all if-conversion candidates. 1297 void IfConverter::AnalyzeBlocks( 1298 MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1299 for (MachineBasicBlock &MBB : MF) 1300 AnalyzeBlock(MBB, Tokens); 1301 1302 // Sort to favor more complex ifcvt scheme. 1303 std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp); 1304 } 1305 1306 /// Returns true either if ToMBB is the next block after MBB or that all the 1307 /// intervening blocks are empty (given MBB can fall through to its next block). 1308 static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) { 1309 MachineFunction::iterator PI = MBB.getIterator(); 1310 MachineFunction::iterator I = std::next(PI); 1311 MachineFunction::iterator TI = ToMBB.getIterator(); 1312 MachineFunction::iterator E = MBB.getParent()->end(); 1313 while (I != TI) { 1314 // Check isSuccessor to avoid case where the next block is empty, but 1315 // it's not a successor. 1316 if (I == E || !I->empty() || !PI->isSuccessor(&*I)) 1317 return false; 1318 PI = I++; 1319 } 1320 // Finally see if the last I is indeed a successor to PI. 1321 return PI->isSuccessor(&*I); 1322 } 1323 1324 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it 1325 /// can be if-converted. If predecessor is already enqueued, dequeue it! 1326 void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) { 1327 for (const MachineBasicBlock *Predecessor : MBB.predecessors()) { 1328 BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()]; 1329 if (PBBI.IsDone || PBBI.BB == &MBB) 1330 continue; 1331 PBBI.IsAnalyzed = false; 1332 PBBI.IsEnqueued = false; 1333 } 1334 } 1335 1336 /// Inserts an unconditional branch from \p MBB to \p ToMBB. 1337 static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB, 1338 const TargetInstrInfo *TII) { 1339 DebugLoc dl; // FIXME: this is nowhere 1340 SmallVector<MachineOperand, 0> NoCond; 1341 TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl); 1342 } 1343 1344 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all 1345 /// values defined in MI which are also live/used by MI. 1346 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) { 1347 const TargetRegisterInfo *TRI = MI.getParent()->getParent() 1348 ->getSubtarget().getRegisterInfo(); 1349 1350 // Before stepping forward past MI, remember which regs were live 1351 // before MI. This is needed to set the Undef flag only when reg is 1352 // dead. 1353 SparseSet<unsigned> LiveBeforeMI; 1354 LiveBeforeMI.setUniverse(TRI->getNumRegs()); 1355 for (unsigned Reg : Redefs) 1356 LiveBeforeMI.insert(Reg); 1357 1358 SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Clobbers; 1359 Redefs.stepForward(MI, Clobbers); 1360 1361 // Now add the implicit uses for each of the clobbered values. 1362 for (auto Clobber : Clobbers) { 1363 // FIXME: Const cast here is nasty, but better than making StepForward 1364 // take a mutable instruction instead of const. 1365 unsigned Reg = Clobber.first; 1366 MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second); 1367 MachineInstr *OpMI = Op.getParent(); 1368 MachineInstrBuilder MIB(*OpMI->getParent()->getParent(), OpMI); 1369 if (Op.isRegMask()) { 1370 // First handle regmasks. They clobber any entries in the mask which 1371 // means that we need a def for those registers. 1372 if (LiveBeforeMI.count(Reg)) 1373 MIB.addReg(Reg, RegState::Implicit); 1374 1375 // We also need to add an implicit def of this register for the later 1376 // use to read from. 1377 // For the register allocator to have allocated a register clobbered 1378 // by the call which is used later, it must be the case that 1379 // the call doesn't return. 1380 MIB.addReg(Reg, RegState::Implicit | RegState::Define); 1381 continue; 1382 } 1383 assert(Op.isReg() && "Register operand required"); 1384 if (Op.isDead()) { 1385 // If we found a dead def, but it needs to be live, then remove the dead 1386 // flag. 1387 if (Redefs.contains(Op.getReg())) 1388 Op.setIsDead(false); 1389 } 1390 if (LiveBeforeMI.count(Reg)) 1391 MIB.addReg(Reg, RegState::Implicit); 1392 else { 1393 bool HasLiveSubReg = false; 1394 for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) { 1395 if (!LiveBeforeMI.count(*S)) 1396 continue; 1397 HasLiveSubReg = true; 1398 break; 1399 } 1400 if (HasLiveSubReg) 1401 MIB.addReg(Reg, RegState::Implicit); 1402 } 1403 } 1404 } 1405 1406 /// Remove kill flags from operands with a registers in the \p DontKill set. 1407 static void RemoveKills(MachineInstr &MI, const LivePhysRegs &DontKill) { 1408 for (MIBundleOperands O(MI); O.isValid(); ++O) { 1409 if (!O->isReg() || !O->isKill()) 1410 continue; 1411 if (DontKill.contains(O->getReg())) 1412 O->setIsKill(false); 1413 } 1414 } 1415 1416 /// Walks a range of machine instructions and removes kill flags for registers 1417 /// in the \p DontKill set. 1418 static void RemoveKills(MachineBasicBlock::iterator I, 1419 MachineBasicBlock::iterator E, 1420 const LivePhysRegs &DontKill, 1421 const MCRegisterInfo &MCRI) { 1422 for (MachineInstr &MI : make_range(I, E)) 1423 RemoveKills(MI, DontKill); 1424 } 1425 1426 /// If convert a simple (split, no rejoin) sub-CFG. 1427 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) { 1428 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1429 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1430 BBInfo *CvtBBI = &TrueBBI; 1431 BBInfo *NextBBI = &FalseBBI; 1432 1433 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1434 if (Kind == ICSimpleFalse) 1435 std::swap(CvtBBI, NextBBI); 1436 1437 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1438 MachineBasicBlock &NextMBB = *NextBBI->BB; 1439 if (CvtBBI->IsDone || 1440 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1441 // Something has changed. It's no longer safe to predicate this block. 1442 BBI.IsAnalyzed = false; 1443 CvtBBI->IsAnalyzed = false; 1444 return false; 1445 } 1446 1447 if (CvtMBB.hasAddressTaken()) 1448 // Conservatively abort if-conversion if BB's address is taken. 1449 return false; 1450 1451 if (Kind == ICSimpleFalse) 1452 if (TII->reverseBranchCondition(Cond)) 1453 llvm_unreachable("Unable to reverse branch condition!"); 1454 1455 Redefs.init(*TRI); 1456 DontKill.init(*TRI); 1457 1458 if (MRI->tracksLiveness()) { 1459 // Initialize liveins to the first BB. These are potentiall redefined by 1460 // predicated instructions. 1461 Redefs.addLiveIns(CvtMBB); 1462 Redefs.addLiveIns(NextMBB); 1463 // Compute a set of registers which must not be killed by instructions in 1464 // BB1: This is everything live-in to BB2. 1465 DontKill.addLiveIns(NextMBB); 1466 } 1467 1468 // Remove the branches from the entry so we can add the contents of the true 1469 // block to it. 1470 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1471 1472 if (CvtMBB.pred_size() > 1) { 1473 // Copy instructions in the true block, predicate them, and add them to 1474 // the entry block. 1475 CopyAndPredicateBlock(BBI, *CvtBBI, Cond); 1476 1477 // Keep the CFG updated. 1478 BBI.BB->removeSuccessor(&CvtMBB, true); 1479 } else { 1480 // Predicate the instructions in the true block. 1481 RemoveKills(CvtMBB.begin(), CvtMBB.end(), DontKill, *TRI); 1482 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1483 1484 // Merge converted block into entry block. The BB to Cvt edge is removed 1485 // by MergeBlocks. 1486 MergeBlocks(BBI, *CvtBBI); 1487 } 1488 1489 bool IterIfcvt = true; 1490 if (!canFallThroughTo(*BBI.BB, NextMBB)) { 1491 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1492 BBI.HasFallThrough = false; 1493 // Now ifcvt'd block will look like this: 1494 // BB: 1495 // ... 1496 // t, f = cmp 1497 // if t op 1498 // b BBf 1499 // 1500 // We cannot further ifcvt this block because the unconditional branch 1501 // will have to be predicated on the new condition, that will not be 1502 // available if cmp executes. 1503 IterIfcvt = false; 1504 } 1505 1506 // Update block info. BB can be iteratively if-converted. 1507 if (!IterIfcvt) 1508 BBI.IsDone = true; 1509 InvalidatePreds(*BBI.BB); 1510 CvtBBI->IsDone = true; 1511 1512 // FIXME: Must maintain LiveIns. 1513 return true; 1514 } 1515 1516 /// If convert a triangle sub-CFG. 1517 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) { 1518 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1519 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1520 BBInfo *CvtBBI = &TrueBBI; 1521 BBInfo *NextBBI = &FalseBBI; 1522 DebugLoc dl; // FIXME: this is nowhere 1523 1524 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1525 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1526 std::swap(CvtBBI, NextBBI); 1527 1528 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1529 MachineBasicBlock &NextMBB = *NextBBI->BB; 1530 if (CvtBBI->IsDone || 1531 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1532 // Something has changed. It's no longer safe to predicate this block. 1533 BBI.IsAnalyzed = false; 1534 CvtBBI->IsAnalyzed = false; 1535 return false; 1536 } 1537 1538 if (CvtMBB.hasAddressTaken()) 1539 // Conservatively abort if-conversion if BB's address is taken. 1540 return false; 1541 1542 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1543 if (TII->reverseBranchCondition(Cond)) 1544 llvm_unreachable("Unable to reverse branch condition!"); 1545 1546 if (Kind == ICTriangleRev || Kind == ICTriangleFRev) { 1547 if (reverseBranchCondition(*CvtBBI)) { 1548 // BB has been changed, modify its predecessors (except for this 1549 // one) so they don't get ifcvt'ed based on bad intel. 1550 for (MachineBasicBlock *PBB : CvtMBB.predecessors()) { 1551 if (PBB == BBI.BB) 1552 continue; 1553 BBInfo &PBBI = BBAnalysis[PBB->getNumber()]; 1554 if (PBBI.IsEnqueued) { 1555 PBBI.IsAnalyzed = false; 1556 PBBI.IsEnqueued = false; 1557 } 1558 } 1559 } 1560 } 1561 1562 // Initialize liveins to the first BB. These are potentially redefined by 1563 // predicated instructions. 1564 Redefs.init(*TRI); 1565 if (MRI->tracksLiveness()) { 1566 Redefs.addLiveIns(CvtMBB); 1567 Redefs.addLiveIns(NextMBB); 1568 } 1569 1570 DontKill.clear(); 1571 1572 bool HasEarlyExit = CvtBBI->FalseBB != nullptr; 1573 BranchProbability CvtNext, CvtFalse, BBNext, BBCvt; 1574 1575 if (HasEarlyExit) { 1576 // Get probabilities before modifying CvtMBB and BBI.BB. 1577 CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB); 1578 CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB); 1579 BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB); 1580 BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB); 1581 } 1582 1583 // Remove the branches from the entry so we can add the contents of the true 1584 // block to it. 1585 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1586 1587 if (CvtMBB.pred_size() > 1) { 1588 // Copy instructions in the true block, predicate them, and add them to 1589 // the entry block. 1590 CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true); 1591 } else { 1592 // Predicate the 'true' block after removing its branch. 1593 CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB); 1594 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1595 1596 // Now merge the entry of the triangle with the true block. 1597 MergeBlocks(BBI, *CvtBBI, false); 1598 } 1599 1600 // Keep the CFG updated. 1601 BBI.BB->removeSuccessor(&CvtMBB, true); 1602 1603 // If 'true' block has a 'false' successor, add an exit branch to it. 1604 if (HasEarlyExit) { 1605 SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(), 1606 CvtBBI->BrCond.end()); 1607 if (TII->reverseBranchCondition(RevCond)) 1608 llvm_unreachable("Unable to reverse branch condition!"); 1609 1610 // Update the edge probability for both CvtBBI->FalseBB and NextBBI. 1611 // NewNext = New_Prob(BBI.BB, NextMBB) = 1612 // Prob(BBI.BB, NextMBB) + 1613 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB) 1614 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) = 1615 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB) 1616 auto NewTrueBB = getNextBlock(*BBI.BB); 1617 auto NewNext = BBNext + BBCvt * CvtNext; 1618 auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB); 1619 if (NewTrueBBIter != BBI.BB->succ_end()) 1620 BBI.BB->setSuccProbability(NewTrueBBIter, NewNext); 1621 1622 auto NewFalse = BBCvt * CvtFalse; 1623 TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl); 1624 BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse); 1625 } 1626 1627 // Merge in the 'false' block if the 'false' block has no other 1628 // predecessors. Otherwise, add an unconditional branch to 'false'. 1629 bool FalseBBDead = false; 1630 bool IterIfcvt = true; 1631 bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB); 1632 if (!isFallThrough) { 1633 // Only merge them if the true block does not fallthrough to the false 1634 // block. By not merging them, we make it possible to iteratively 1635 // ifcvt the blocks. 1636 if (!HasEarlyExit && 1637 NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough && 1638 !NextMBB.hasAddressTaken()) { 1639 MergeBlocks(BBI, *NextBBI); 1640 FalseBBDead = true; 1641 } else { 1642 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1643 BBI.HasFallThrough = false; 1644 } 1645 // Mixed predicated and unpredicated code. This cannot be iteratively 1646 // predicated. 1647 IterIfcvt = false; 1648 } 1649 1650 // Update block info. BB can be iteratively if-converted. 1651 if (!IterIfcvt) 1652 BBI.IsDone = true; 1653 InvalidatePreds(*BBI.BB); 1654 CvtBBI->IsDone = true; 1655 if (FalseBBDead) 1656 NextBBI->IsDone = true; 1657 1658 // FIXME: Must maintain LiveIns. 1659 return true; 1660 } 1661 1662 /// Common code shared between diamond conversions. 1663 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape. 1664 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI 1665 /// and FalseBBI 1666 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI 1667 /// and \p FalseBBI 1668 /// \p RemoveBranch - Remove the common branch of the two blocks before 1669 /// predicating. Only false for unanalyzable fallthrough 1670 /// cases. The caller will replace the branch if necessary. 1671 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for 1672 /// unanalyzable fallthrough 1673 bool IfConverter::IfConvertDiamondCommon( 1674 BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 1675 unsigned NumDups1, unsigned NumDups2, 1676 bool TClobbersPred, bool FClobbersPred, 1677 bool RemoveBranch, bool MergeAddEdges) { 1678 1679 if (TrueBBI.IsDone || FalseBBI.IsDone || 1680 TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) { 1681 // Something has changed. It's no longer safe to predicate these blocks. 1682 BBI.IsAnalyzed = false; 1683 TrueBBI.IsAnalyzed = false; 1684 FalseBBI.IsAnalyzed = false; 1685 return false; 1686 } 1687 1688 if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken()) 1689 // Conservatively abort if-conversion if either BB has its address taken. 1690 return false; 1691 1692 // Put the predicated instructions from the 'true' block before the 1693 // instructions from the 'false' block, unless the true block would clobber 1694 // the predicate, in which case, do the opposite. 1695 BBInfo *BBI1 = &TrueBBI; 1696 BBInfo *BBI2 = &FalseBBI; 1697 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1698 if (TII->reverseBranchCondition(RevCond)) 1699 llvm_unreachable("Unable to reverse branch condition!"); 1700 SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond; 1701 SmallVector<MachineOperand, 4> *Cond2 = &RevCond; 1702 1703 // Figure out the more profitable ordering. 1704 bool DoSwap = false; 1705 if (TClobbersPred && !FClobbersPred) 1706 DoSwap = true; 1707 else if (!TClobbersPred && !FClobbersPred) { 1708 if (TrueBBI.NonPredSize > FalseBBI.NonPredSize) 1709 DoSwap = true; 1710 } else if (TClobbersPred && FClobbersPred) 1711 llvm_unreachable("Predicate info cannot be clobbered by both sides."); 1712 if (DoSwap) { 1713 std::swap(BBI1, BBI2); 1714 std::swap(Cond1, Cond2); 1715 } 1716 1717 // Remove the conditional branch from entry to the blocks. 1718 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1719 1720 MachineBasicBlock &MBB1 = *BBI1->BB; 1721 MachineBasicBlock &MBB2 = *BBI2->BB; 1722 1723 // Initialize the Redefs: 1724 // - BB2 live-in regs need implicit uses before being redefined by BB1 1725 // instructions. 1726 // - BB1 live-out regs need implicit uses before being redefined by BB2 1727 // instructions. We start with BB1 live-ins so we have the live-out regs 1728 // after tracking the BB1 instructions. 1729 Redefs.init(*TRI); 1730 if (MRI->tracksLiveness()) { 1731 Redefs.addLiveIns(MBB1); 1732 Redefs.addLiveIns(MBB2); 1733 } 1734 1735 // Remove the duplicated instructions at the beginnings of both paths. 1736 // Skip dbg_value instructions 1737 MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr(); 1738 MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr(); 1739 BBI1->NonPredSize -= NumDups1; 1740 BBI2->NonPredSize -= NumDups1; 1741 1742 // Skip past the dups on each side separately since there may be 1743 // differing dbg_value entries. 1744 for (unsigned i = 0; i < NumDups1; ++DI1) { 1745 if (!DI1->isDebugValue()) 1746 ++i; 1747 } 1748 while (NumDups1 != 0) { 1749 ++DI2; 1750 if (!DI2->isDebugValue()) 1751 --NumDups1; 1752 } 1753 1754 // Compute a set of registers which must not be killed by instructions in BB1: 1755 // This is everything used+live in BB2 after the duplicated instructions. We 1756 // can compute this set by simulating liveness backwards from the end of BB2. 1757 DontKill.init(*TRI); 1758 if (MRI->tracksLiveness()) { 1759 for (const MachineInstr &MI : make_range(MBB2.rbegin(), ++DI2.getReverse())) 1760 DontKill.stepBackward(MI); 1761 1762 for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) { 1763 SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Dummy; 1764 Redefs.stepForward(MI, Dummy); 1765 } 1766 } 1767 // Kill flags in the true block for registers living into the false block 1768 // must be removed. This should be done before extracting the common 1769 // instructions from the beginning of the MBB1, since these instructions 1770 // can actually differ between MBB1 and MBB2 in terms of <kill> flags. 1771 RemoveKills(MBB1.begin(), MBB1.end(), DontKill, *TRI); 1772 1773 BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1); 1774 MBB2.erase(MBB2.begin(), DI2); 1775 1776 // The branches have been checked to match, so it is safe to remove the branch 1777 // in BB1 and rely on the copy in BB2 1778 #ifndef NDEBUG 1779 // Unanalyzable branches must match exactly. Check that now. 1780 if (!BBI1->IsBrAnalyzable) 1781 verifySameBranchInstructions(&MBB1, &MBB2); 1782 #endif 1783 BBI1->NonPredSize -= TII->removeBranch(*BBI1->BB); 1784 // Remove duplicated instructions. 1785 DI1 = MBB1.end(); 1786 for (unsigned i = 0; i != NumDups2; ) { 1787 // NumDups2 only counted non-dbg_value instructions, so this won't 1788 // run off the head of the list. 1789 assert(DI1 != MBB1.begin()); 1790 --DI1; 1791 // skip dbg_value instructions 1792 if (!DI1->isDebugValue()) 1793 ++i; 1794 } 1795 MBB1.erase(DI1, MBB1.end()); 1796 1797 DI2 = BBI2->BB->end(); 1798 // The branches have been checked to match. Skip over the branch in the false 1799 // block so that we don't try to predicate it. 1800 if (RemoveBranch) 1801 BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB); 1802 else { 1803 do { 1804 assert(DI2 != MBB2.begin()); 1805 DI2--; 1806 } while (DI2->isBranch() || DI2->isDebugValue()); 1807 DI2++; 1808 } 1809 while (NumDups2 != 0) { 1810 // NumDups2 only counted non-dbg_value instructions, so this won't 1811 // run off the head of the list. 1812 assert(DI2 != MBB2.begin()); 1813 --DI2; 1814 // skip dbg_value instructions 1815 if (!DI2->isDebugValue()) 1816 --NumDups2; 1817 } 1818 1819 // Remember which registers would later be defined by the false block. 1820 // This allows us not to predicate instructions in the true block that would 1821 // later be re-defined. That is, rather than 1822 // subeq r0, r1, #1 1823 // addne r0, r1, #1 1824 // generate: 1825 // sub r0, r1, #1 1826 // addne r0, r1, #1 1827 SmallSet<unsigned, 4> RedefsByFalse; 1828 SmallSet<unsigned, 4> ExtUses; 1829 if (TII->isProfitableToUnpredicate(MBB1, MBB2)) { 1830 for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) { 1831 if (FI.isDebugValue()) 1832 continue; 1833 SmallVector<unsigned, 4> Defs; 1834 for (const MachineOperand &MO : FI.operands()) { 1835 if (!MO.isReg()) 1836 continue; 1837 unsigned Reg = MO.getReg(); 1838 if (!Reg) 1839 continue; 1840 if (MO.isDef()) { 1841 Defs.push_back(Reg); 1842 } else if (!RedefsByFalse.count(Reg)) { 1843 // These are defined before ctrl flow reach the 'false' instructions. 1844 // They cannot be modified by the 'true' instructions. 1845 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1846 SubRegs.isValid(); ++SubRegs) 1847 ExtUses.insert(*SubRegs); 1848 } 1849 } 1850 1851 for (unsigned Reg : Defs) { 1852 if (!ExtUses.count(Reg)) { 1853 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1854 SubRegs.isValid(); ++SubRegs) 1855 RedefsByFalse.insert(*SubRegs); 1856 } 1857 } 1858 } 1859 } 1860 1861 // Predicate the 'true' block. 1862 PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse); 1863 1864 // After predicating BBI1, if there is a predicated terminator in BBI1 and 1865 // a non-predicated in BBI2, then we don't want to predicate the one from 1866 // BBI2. The reason is that if we merged these blocks, we would end up with 1867 // two predicated terminators in the same block. 1868 if (!MBB2.empty() && (DI2 == MBB2.end())) { 1869 MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator(); 1870 MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator(); 1871 if (BBI1T != MBB1.end() && TII->isPredicated(*BBI1T) && 1872 BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T)) 1873 --DI2; 1874 } 1875 1876 // Predicate the 'false' block. 1877 PredicateBlock(*BBI2, DI2, *Cond2); 1878 1879 // Merge the true block into the entry of the diamond. 1880 MergeBlocks(BBI, *BBI1, MergeAddEdges); 1881 MergeBlocks(BBI, *BBI2, MergeAddEdges); 1882 return true; 1883 } 1884 1885 /// If convert an almost-diamond sub-CFG where the true 1886 /// and false blocks share a common tail. 1887 bool IfConverter::IfConvertForkedDiamond( 1888 BBInfo &BBI, IfcvtKind Kind, 1889 unsigned NumDups1, unsigned NumDups2, 1890 bool TClobbersPred, bool FClobbersPred) { 1891 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1892 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1893 1894 // Save the debug location for later. 1895 DebugLoc dl; 1896 MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator(); 1897 if (TIE != TrueBBI.BB->end()) 1898 dl = TIE->getDebugLoc(); 1899 // Removing branches from both blocks is safe, because we have already 1900 // determined that both blocks have the same branch instructions. The branch 1901 // will be added back at the end, unpredicated. 1902 if (!IfConvertDiamondCommon( 1903 BBI, TrueBBI, FalseBBI, 1904 NumDups1, NumDups2, 1905 TClobbersPred, FClobbersPred, 1906 /* RemoveBranch */ true, /* MergeAddEdges */ true)) 1907 return false; 1908 1909 // Add back the branch. 1910 // Debug location saved above when removing the branch from BBI2 1911 TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB, 1912 TrueBBI.BrCond, dl); 1913 1914 // Update block info. 1915 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 1916 InvalidatePreds(*BBI.BB); 1917 1918 // FIXME: Must maintain LiveIns. 1919 return true; 1920 } 1921 1922 /// If convert a diamond sub-CFG. 1923 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 1924 unsigned NumDups1, unsigned NumDups2, 1925 bool TClobbersPred, bool FClobbersPred) { 1926 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1927 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1928 MachineBasicBlock *TailBB = TrueBBI.TrueBB; 1929 1930 // True block must fall through or end with an unanalyzable terminator. 1931 if (!TailBB) { 1932 if (blockAlwaysFallThrough(TrueBBI)) 1933 TailBB = FalseBBI.TrueBB; 1934 assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!"); 1935 } 1936 1937 if (!IfConvertDiamondCommon( 1938 BBI, TrueBBI, FalseBBI, 1939 NumDups1, NumDups2, 1940 TClobbersPred, FClobbersPred, 1941 /* RemoveBranch */ TrueBBI.IsBrAnalyzable, 1942 /* MergeAddEdges */ TailBB == nullptr)) 1943 return false; 1944 1945 // If the if-converted block falls through or unconditionally branches into 1946 // the tail block, and the tail block does not have other predecessors, then 1947 // fold the tail block in as well. Otherwise, unless it falls through to the 1948 // tail, add a unconditional branch to it. 1949 if (TailBB) { 1950 // We need to remove the edges to the true and false blocks manually since 1951 // we didn't let IfConvertDiamondCommon update the CFG. 1952 BBI.BB->removeSuccessor(TrueBBI.BB); 1953 BBI.BB->removeSuccessor(FalseBBI.BB, true); 1954 1955 BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()]; 1956 bool CanMergeTail = !TailBBI.HasFallThrough && 1957 !TailBBI.BB->hasAddressTaken(); 1958 // The if-converted block can still have a predicated terminator 1959 // (e.g. a predicated return). If that is the case, we cannot merge 1960 // it with the tail block. 1961 MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator(); 1962 if (TI != BBI.BB->end() && TII->isPredicated(*TI)) 1963 CanMergeTail = false; 1964 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB; 1965 // check if there are any other predecessors besides those. 1966 unsigned NumPreds = TailBB->pred_size(); 1967 if (NumPreds > 1) 1968 CanMergeTail = false; 1969 else if (NumPreds == 1 && CanMergeTail) { 1970 MachineBasicBlock::pred_iterator PI = TailBB->pred_begin(); 1971 if (*PI != TrueBBI.BB && *PI != FalseBBI.BB) 1972 CanMergeTail = false; 1973 } 1974 if (CanMergeTail) { 1975 MergeBlocks(BBI, TailBBI); 1976 TailBBI.IsDone = true; 1977 } else { 1978 BBI.BB->addSuccessor(TailBB, BranchProbability::getOne()); 1979 InsertUncondBranch(*BBI.BB, *TailBB, TII); 1980 BBI.HasFallThrough = false; 1981 } 1982 } 1983 1984 // Update block info. 1985 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 1986 InvalidatePreds(*BBI.BB); 1987 1988 // FIXME: Must maintain LiveIns. 1989 return true; 1990 } 1991 1992 static bool MaySpeculate(const MachineInstr &MI, 1993 SmallSet<unsigned, 4> &LaterRedefs) { 1994 bool SawStore = true; 1995 if (!MI.isSafeToMove(nullptr, SawStore)) 1996 return false; 1997 1998 for (const MachineOperand &MO : MI.operands()) { 1999 if (!MO.isReg()) 2000 continue; 2001 unsigned Reg = MO.getReg(); 2002 if (!Reg) 2003 continue; 2004 if (MO.isDef() && !LaterRedefs.count(Reg)) 2005 return false; 2006 } 2007 2008 return true; 2009 } 2010 2011 /// Predicate instructions from the start of the block to the specified end with 2012 /// the specified condition. 2013 void IfConverter::PredicateBlock(BBInfo &BBI, 2014 MachineBasicBlock::iterator E, 2015 SmallVectorImpl<MachineOperand> &Cond, 2016 SmallSet<unsigned, 4> *LaterRedefs) { 2017 bool AnyUnpred = false; 2018 bool MaySpec = LaterRedefs != nullptr; 2019 for (MachineInstr &I : make_range(BBI.BB->begin(), E)) { 2020 if (I.isDebugValue() || TII->isPredicated(I)) 2021 continue; 2022 // It may be possible not to predicate an instruction if it's the 'true' 2023 // side of a diamond and the 'false' side may re-define the instruction's 2024 // defs. 2025 if (MaySpec && MaySpeculate(I, *LaterRedefs)) { 2026 AnyUnpred = true; 2027 continue; 2028 } 2029 // If any instruction is predicated, then every instruction after it must 2030 // be predicated. 2031 MaySpec = false; 2032 if (!TII->PredicateInstruction(I, Cond)) { 2033 #ifndef NDEBUG 2034 dbgs() << "Unable to predicate " << I << "!\n"; 2035 #endif 2036 llvm_unreachable(nullptr); 2037 } 2038 2039 // If the predicated instruction now redefines a register as the result of 2040 // if-conversion, add an implicit kill. 2041 UpdatePredRedefs(I, Redefs); 2042 } 2043 2044 BBI.Predicate.append(Cond.begin(), Cond.end()); 2045 2046 BBI.IsAnalyzed = false; 2047 BBI.NonPredSize = 0; 2048 2049 ++NumIfConvBBs; 2050 if (AnyUnpred) 2051 ++NumUnpred; 2052 } 2053 2054 /// Copy and predicate instructions from source BB to the destination block. 2055 /// Skip end of block branches if IgnoreBr is true. 2056 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 2057 SmallVectorImpl<MachineOperand> &Cond, 2058 bool IgnoreBr) { 2059 MachineFunction &MF = *ToBBI.BB->getParent(); 2060 2061 MachineBasicBlock &FromMBB = *FromBBI.BB; 2062 for (MachineInstr &I : FromMBB) { 2063 // Do not copy the end of the block branches. 2064 if (IgnoreBr && I.isBranch()) 2065 break; 2066 2067 MachineInstr *MI = MF.CloneMachineInstr(&I); 2068 ToBBI.BB->insert(ToBBI.BB->end(), MI); 2069 ToBBI.NonPredSize++; 2070 unsigned ExtraPredCost = TII->getPredicationCost(I); 2071 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); 2072 if (NumCycles > 1) 2073 ToBBI.ExtraCost += NumCycles-1; 2074 ToBBI.ExtraCost2 += ExtraPredCost; 2075 2076 if (!TII->isPredicated(I) && !MI->isDebugValue()) { 2077 if (!TII->PredicateInstruction(*MI, Cond)) { 2078 #ifndef NDEBUG 2079 dbgs() << "Unable to predicate " << I << "!\n"; 2080 #endif 2081 llvm_unreachable(nullptr); 2082 } 2083 } 2084 2085 // If the predicated instruction now redefines a register as the result of 2086 // if-conversion, add an implicit kill. 2087 UpdatePredRedefs(*MI, Redefs); 2088 2089 // Some kill flags may not be correct anymore. 2090 if (!DontKill.empty()) 2091 RemoveKills(*MI, DontKill); 2092 } 2093 2094 if (!IgnoreBr) { 2095 std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(), 2096 FromMBB.succ_end()); 2097 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2098 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2099 2100 for (MachineBasicBlock *Succ : Succs) { 2101 // Fallthrough edge can't be transferred. 2102 if (Succ == FallThrough) 2103 continue; 2104 ToBBI.BB->addSuccessor(Succ); 2105 } 2106 } 2107 2108 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2109 ToBBI.Predicate.append(Cond.begin(), Cond.end()); 2110 2111 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2112 ToBBI.IsAnalyzed = false; 2113 2114 ++NumDupBBs; 2115 } 2116 2117 /// Move all instructions from FromBB to the end of ToBB. This will leave 2118 /// FromBB as an empty block, so remove all of its successor edges except for 2119 /// the fall-through edge. If AddEdges is true, i.e., when FromBBI's branch is 2120 /// being moved, add those successor edges to ToBBI and remove the old edge 2121 /// from ToBBI to FromBBI. 2122 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) { 2123 MachineBasicBlock &FromMBB = *FromBBI.BB; 2124 assert(!FromMBB.hasAddressTaken() && 2125 "Removing a BB whose address is taken!"); 2126 2127 // In case FromMBB contains terminators (e.g. return instruction), 2128 // first move the non-terminator instructions, then the terminators. 2129 MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator(); 2130 MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator(); 2131 ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI); 2132 2133 // If FromBB has non-predicated terminator we should copy it at the end. 2134 if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI)) 2135 ToTI = ToBBI.BB->end(); 2136 ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end()); 2137 2138 // Force normalizing the successors' probabilities of ToBBI.BB to convert all 2139 // unknown probabilities into known ones. 2140 // FIXME: This usage is too tricky and in the future we would like to 2141 // eliminate all unknown probabilities in MBB. 2142 if (ToBBI.IsBrAnalyzable) 2143 ToBBI.BB->normalizeSuccProbs(); 2144 2145 SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(), 2146 FromMBB.succ_end()); 2147 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2148 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2149 // The edge probability from ToBBI.BB to FromMBB, which is only needed when 2150 // AddEdges is true and FromMBB is a successor of ToBBI.BB. 2151 auto To2FromProb = BranchProbability::getZero(); 2152 if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) { 2153 // Remove the old edge but remember the edge probability so we can calculate 2154 // the correct weights on the new edges being added further down. 2155 To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB); 2156 ToBBI.BB->removeSuccessor(&FromMBB); 2157 } 2158 2159 for (MachineBasicBlock *Succ : FromSuccs) { 2160 // Fallthrough edge can't be transferred. 2161 if (Succ == FallThrough) 2162 continue; 2163 2164 auto NewProb = BranchProbability::getZero(); 2165 if (AddEdges) { 2166 // Calculate the edge probability for the edge from ToBBI.BB to Succ, 2167 // which is a portion of the edge probability from FromMBB to Succ. The 2168 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if 2169 // FromBBI is a successor of ToBBI.BB. See comment below for excepion). 2170 NewProb = MBPI->getEdgeProbability(&FromMBB, Succ); 2171 2172 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This 2173 // only happens when if-converting a diamond CFG and FromMBB is the 2174 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we 2175 // could just use the probabilities on FromMBB's out-edges when adding 2176 // new successors. 2177 if (!To2FromProb.isZero()) 2178 NewProb *= To2FromProb; 2179 } 2180 2181 FromMBB.removeSuccessor(Succ); 2182 2183 if (AddEdges) { 2184 // If the edge from ToBBI.BB to Succ already exists, update the 2185 // probability of this edge by adding NewProb to it. An example is shown 2186 // below, in which A is ToBBI.BB and B is FromMBB. In this case we 2187 // don't have to set C as A's successor as it already is. We only need to 2188 // update the edge probability on A->C. Note that B will not be 2189 // immediately removed from A's successors. It is possible that B->D is 2190 // not removed either if D is a fallthrough of B. Later the edge A->D 2191 // (generated here) and B->D will be combined into one edge. To maintain 2192 // correct edge probability of this combined edge, we need to set the edge 2193 // probability of A->B to zero, which is already done above. The edge 2194 // probability on A->D is calculated by scaling the original probability 2195 // on A->B by the probability of B->D. 2196 // 2197 // Before ifcvt: After ifcvt (assume B->D is kept): 2198 // 2199 // A A 2200 // /| /|\ 2201 // / B / B| 2202 // | /| | || 2203 // |/ | | |/ 2204 // C D C D 2205 // 2206 if (ToBBI.BB->isSuccessor(Succ)) 2207 ToBBI.BB->setSuccProbability( 2208 find(ToBBI.BB->successors(), Succ), 2209 MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb); 2210 else 2211 ToBBI.BB->addSuccessor(Succ, NewProb); 2212 } 2213 } 2214 2215 // Move the now empty FromMBB out of the way to the end of the function so 2216 // it doesn't interfere with fallthrough checks done by canFallThroughTo(). 2217 MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin(); 2218 if (Last != &FromMBB) 2219 FromMBB.moveAfter(Last); 2220 2221 // Normalize the probabilities of ToBBI.BB's successors with all adjustment 2222 // we've done above. 2223 if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable) 2224 ToBBI.BB->normalizeSuccProbs(); 2225 2226 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2227 FromBBI.Predicate.clear(); 2228 2229 ToBBI.NonPredSize += FromBBI.NonPredSize; 2230 ToBBI.ExtraCost += FromBBI.ExtraCost; 2231 ToBBI.ExtraCost2 += FromBBI.ExtraCost2; 2232 FromBBI.NonPredSize = 0; 2233 FromBBI.ExtraCost = 0; 2234 FromBBI.ExtraCost2 = 0; 2235 2236 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2237 ToBBI.HasFallThrough = FromBBI.HasFallThrough; 2238 ToBBI.IsAnalyzed = false; 2239 FromBBI.IsAnalyzed = false; 2240 } 2241 2242 FunctionPass * 2243 llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) { 2244 return new IfConverter(std::move(Ftor)); 2245 } 2246