1 //===- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect -*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements the RegBankSelect class. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 14 #include "llvm/ADT/PostOrderIterator.h" 15 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 16 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 17 #include "llvm/CodeGen/GlobalISel/Utils.h" 18 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 19 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetPassConfig.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/Support/BlockFrequency.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Target/TargetSubtargetInfo.h" 27 28 #define DEBUG_TYPE "regbankselect" 29 30 using namespace llvm; 31 32 static cl::opt<RegBankSelect::Mode> RegBankSelectMode( 33 cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional, 34 cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast", 35 "Run the Fast mode (default mapping)"), 36 clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy", 37 "Use the Greedy mode (best local mapping)"))); 38 39 char RegBankSelect::ID = 0; 40 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE, 41 "Assign register bank of generic virtual registers", 42 false, false); 43 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 44 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 45 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 46 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, 47 "Assign register bank of generic virtual registers", false, 48 false) 49 50 RegBankSelect::RegBankSelect(Mode RunningMode) 51 : MachineFunctionPass(ID), RBI(nullptr), MRI(nullptr), TRI(nullptr), 52 MBFI(nullptr), MBPI(nullptr), OptMode(RunningMode) { 53 initializeRegBankSelectPass(*PassRegistry::getPassRegistry()); 54 if (RegBankSelectMode.getNumOccurrences() != 0) { 55 OptMode = RegBankSelectMode; 56 if (RegBankSelectMode != RunningMode) 57 DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n"); 58 } 59 } 60 61 void RegBankSelect::init(MachineFunction &MF) { 62 RBI = MF.getSubtarget().getRegBankInfo(); 63 assert(RBI && "Cannot work without RegisterBankInfo"); 64 MRI = &MF.getRegInfo(); 65 TRI = MF.getSubtarget().getRegisterInfo(); 66 TPC = &getAnalysis<TargetPassConfig>(); 67 if (OptMode != Mode::Fast) { 68 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 69 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 70 } else { 71 MBFI = nullptr; 72 MBPI = nullptr; 73 } 74 MIRBuilder.setMF(MF); 75 MORE = make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI); 76 } 77 78 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const { 79 if (OptMode != Mode::Fast) { 80 // We could preserve the information from these two analysis but 81 // the APIs do not allow to do so yet. 82 AU.addRequired<MachineBlockFrequencyInfo>(); 83 AU.addRequired<MachineBranchProbabilityInfo>(); 84 } 85 AU.addRequired<TargetPassConfig>(); 86 MachineFunctionPass::getAnalysisUsage(AU); 87 } 88 89 bool RegBankSelect::assignmentMatch( 90 unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping, 91 bool &OnlyAssign) const { 92 // By default we assume we will have to repair something. 93 OnlyAssign = false; 94 // Each part of a break down needs to end up in a different register. 95 // In other word, Reg assignement does not match. 96 if (ValMapping.NumBreakDowns > 1) 97 return false; 98 99 const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI); 100 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank; 101 // Reg is free of assignment, a simple assignment will make the 102 // register bank to match. 103 OnlyAssign = CurRegBank == nullptr; 104 DEBUG(dbgs() << "Does assignment already match: "; 105 if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none"; 106 dbgs() << " against "; 107 assert(DesiredRegBrank && "The mapping must be valid"); 108 dbgs() << *DesiredRegBrank << '\n';); 109 return CurRegBank == DesiredRegBrank; 110 } 111 112 bool RegBankSelect::repairReg( 113 MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping, 114 RegBankSelect::RepairingPlacement &RepairPt, 115 const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) { 116 if (ValMapping.NumBreakDowns != 1 && !TPC->isGlobalISelAbortEnabled()) 117 return false; 118 assert(ValMapping.NumBreakDowns == 1 && "Not yet implemented"); 119 // An empty range of new register means no repairing. 120 assert(NewVRegs.begin() != NewVRegs.end() && "We should not have to repair"); 121 122 // Assume we are repairing a use and thus, the original reg will be 123 // the source of the repairing. 124 unsigned Src = MO.getReg(); 125 unsigned Dst = *NewVRegs.begin(); 126 127 // If we repair a definition, swap the source and destination for 128 // the repairing. 129 if (MO.isDef()) 130 std::swap(Src, Dst); 131 132 assert((RepairPt.getNumInsertPoints() == 1 || 133 TargetRegisterInfo::isPhysicalRegister(Dst)) && 134 "We are about to create several defs for Dst"); 135 136 // Build the instruction used to repair, then clone it at the right places. 137 MachineInstr *MI = MIRBuilder.buildCopy(Dst, Src); 138 MI->removeFromParent(); 139 DEBUG(dbgs() << "Copy: " << PrintReg(Src) << " to: " << PrintReg(Dst) 140 << '\n'); 141 // TODO: 142 // Check if MI is legal. if not, we need to legalize all the 143 // instructions we are going to insert. 144 std::unique_ptr<MachineInstr *[]> NewInstrs( 145 new MachineInstr *[RepairPt.getNumInsertPoints()]); 146 bool IsFirst = true; 147 unsigned Idx = 0; 148 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 149 MachineInstr *CurMI; 150 if (IsFirst) 151 CurMI = MI; 152 else 153 CurMI = MIRBuilder.getMF().CloneMachineInstr(MI); 154 InsertPt->insert(*CurMI); 155 NewInstrs[Idx++] = CurMI; 156 IsFirst = false; 157 } 158 // TODO: 159 // Legalize NewInstrs if need be. 160 return true; 161 } 162 163 uint64_t RegBankSelect::getRepairCost( 164 const MachineOperand &MO, 165 const RegisterBankInfo::ValueMapping &ValMapping) const { 166 assert(MO.isReg() && "We should only repair register operand"); 167 assert(ValMapping.NumBreakDowns && "Nothing to map??"); 168 169 bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1; 170 const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI); 171 // If MO does not have a register bank, we should have just been 172 // able to set one unless we have to break the value down. 173 assert((!IsSameNumOfValues || CurRegBank) && "We should not have to repair"); 174 // Def: Val <- NewDefs 175 // Same number of values: copy 176 // Different number: Val = build_sequence Defs1, Defs2, ... 177 // Use: NewSources <- Val. 178 // Same number of values: copy. 179 // Different number: Src1, Src2, ... = 180 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ... 181 // We should remember that this value is available somewhere else to 182 // coalesce the value. 183 184 if (IsSameNumOfValues) { 185 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank; 186 // If we repair a definition, swap the source and destination for 187 // the repairing. 188 if (MO.isDef()) 189 std::swap(CurRegBank, DesiredRegBrank); 190 // TODO: It may be possible to actually avoid the copy. 191 // If we repair something where the source is defined by a copy 192 // and the source of that copy is on the right bank, we can reuse 193 // it for free. 194 // E.g., 195 // RegToRepair<BankA> = copy AlternativeSrc<BankB> 196 // = op RegToRepair<BankA> 197 // We can simply propagate AlternativeSrc instead of copying RegToRepair 198 // into a new virtual register. 199 // We would also need to propagate this information in the 200 // repairing placement. 201 unsigned Cost = 202 RBI->copyCost(*DesiredRegBrank, *CurRegBank, 203 RegisterBankInfo::getSizeInBits(MO.getReg(), *MRI, *TRI)); 204 // TODO: use a dedicated constant for ImpossibleCost. 205 if (Cost != UINT_MAX) 206 return Cost; 207 assert(!TPC->isGlobalISelAbortEnabled() && 208 "Legalization not available yet"); 209 // Return the legalization cost of that repairing. 210 } 211 assert(!TPC->isGlobalISelAbortEnabled() && 212 "Complex repairing not implemented yet"); 213 return UINT_MAX; 214 } 215 216 RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping( 217 MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings, 218 SmallVectorImpl<RepairingPlacement> &RepairPts) { 219 assert(!PossibleMappings.empty() && 220 "Do not know how to map this instruction"); 221 222 RegisterBankInfo::InstructionMapping *BestMapping = nullptr; 223 MappingCost Cost = MappingCost::ImpossibleCost(); 224 SmallVector<RepairingPlacement, 4> LocalRepairPts; 225 for (RegisterBankInfo::InstructionMapping &CurMapping : PossibleMappings) { 226 MappingCost CurCost = computeMapping(MI, CurMapping, LocalRepairPts, &Cost); 227 if (CurCost < Cost) { 228 DEBUG(dbgs() << "New best: " << CurCost << '\n'); 229 Cost = CurCost; 230 BestMapping = &CurMapping; 231 RepairPts.clear(); 232 for (RepairingPlacement &RepairPt : LocalRepairPts) 233 RepairPts.emplace_back(std::move(RepairPt)); 234 } 235 } 236 if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) { 237 // If none of the mapping worked that means they are all impossible. 238 // Thus, pick the first one and set an impossible repairing point. 239 // It will trigger the failed isel mode. 240 BestMapping = &(*PossibleMappings.begin()); 241 RepairPts.emplace_back( 242 RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible)); 243 } else 244 assert(BestMapping && "No suitable mapping for instruction"); 245 return *BestMapping; 246 } 247 248 void RegBankSelect::tryAvoidingSplit( 249 RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO, 250 const RegisterBankInfo::ValueMapping &ValMapping) const { 251 const MachineInstr &MI = *MO.getParent(); 252 assert(RepairPt.hasSplit() && "We should not have to adjust for split"); 253 // Splitting should only occur for PHIs or between terminators, 254 // because we only do local repairing. 255 assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?"); 256 257 assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO && 258 "Repairing placement does not match operand"); 259 260 // If we need splitting for phis, that means it is because we 261 // could not find an insertion point before the terminators of 262 // the predecessor block for this argument. In other words, 263 // the input value is defined by one of the terminators. 264 assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?"); 265 266 // We split to repair the use of a phi or a terminator. 267 if (!MO.isDef()) { 268 if (MI.isTerminator()) { 269 assert(&MI != &(*MI.getParent()->getFirstTerminator()) && 270 "Need to split for the first terminator?!"); 271 } else { 272 // For the PHI case, the split may not be actually required. 273 // In the copy case, a phi is already a copy on the incoming edge, 274 // therefore there is no need to split. 275 if (ValMapping.NumBreakDowns == 1) 276 // This is a already a copy, there is nothing to do. 277 RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign); 278 } 279 return; 280 } 281 282 // At this point, we need to repair a defintion of a terminator. 283 284 // Technically we need to fix the def of MI on all outgoing 285 // edges of MI to keep the repairing local. In other words, we 286 // will create several definitions of the same register. This 287 // does not work for SSA unless that definition is a physical 288 // register. 289 // However, there are other cases where we can get away with 290 // that while still keeping the repairing local. 291 assert(MI.isTerminator() && MO.isDef() && 292 "This code is for the def of a terminator"); 293 294 // Since we use RPO traversal, if we need to repair a definition 295 // this means this definition could be: 296 // 1. Used by PHIs (i.e., this VReg has been visited as part of the 297 // uses of a phi.), or 298 // 2. Part of a target specific instruction (i.e., the target applied 299 // some register class constraints when creating the instruction.) 300 // If the constraints come for #2, the target said that another mapping 301 // is supported so we may just drop them. Indeed, if we do not change 302 // the number of registers holding that value, the uses will get fixed 303 // when we get to them. 304 // Uses in PHIs may have already been proceeded though. 305 // If the constraints come for #1, then, those are weak constraints and 306 // no actual uses may rely on them. However, the problem remains mainly 307 // the same as for #2. If the value stays in one register, we could 308 // just switch the register bank of the definition, but we would need to 309 // account for a repairing cost for each phi we silently change. 310 // 311 // In any case, if the value needs to be broken down into several 312 // registers, the repairing is not local anymore as we need to patch 313 // every uses to rebuild the value in just one register. 314 // 315 // To summarize: 316 // - If the value is in a physical register, we can do the split and 317 // fix locally. 318 // Otherwise if the value is in a virtual register: 319 // - If the value remains in one register, we do not have to split 320 // just switching the register bank would do, but we need to account 321 // in the repairing cost all the phi we changed. 322 // - If the value spans several registers, then we cannot do a local 323 // repairing. 324 325 // Check if this is a physical or virtual register. 326 unsigned Reg = MO.getReg(); 327 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 328 // We are going to split every outgoing edges. 329 // Check that this is possible. 330 // FIXME: The machine representation is currently broken 331 // since it also several terminators in one basic block. 332 // Because of that we would technically need a way to get 333 // the targets of just one terminator to know which edges 334 // we have to split. 335 // Assert that we do not hit the ill-formed representation. 336 337 // If there are other terminators before that one, some of 338 // the outgoing edges may not be dominated by this definition. 339 assert(&MI == &(*MI.getParent()->getFirstTerminator()) && 340 "Do not know which outgoing edges are relevant"); 341 const MachineInstr *Next = MI.getNextNode(); 342 assert((!Next || Next->isUnconditionalBranch()) && 343 "Do not know where each terminator ends up"); 344 if (Next) 345 // If the next terminator uses Reg, this means we have 346 // to split right after MI and thus we need a way to ask 347 // which outgoing edges are affected. 348 assert(!Next->readsRegister(Reg) && "Need to split between terminators"); 349 // We will split all the edges and repair there. 350 } else { 351 // This is a virtual register defined by a terminator. 352 if (ValMapping.NumBreakDowns == 1) { 353 // There is nothing to repair, but we may actually lie on 354 // the repairing cost because of the PHIs already proceeded 355 // as already stated. 356 // Though the code will be correct. 357 assert(0 && "Repairing cost may not be accurate"); 358 } else { 359 // We need to do non-local repairing. Basically, patch all 360 // the uses (i.e., phis) that we already proceeded. 361 // For now, just say this mapping is not possible. 362 RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible); 363 } 364 } 365 } 366 367 RegBankSelect::MappingCost RegBankSelect::computeMapping( 368 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 369 SmallVectorImpl<RepairingPlacement> &RepairPts, 370 const RegBankSelect::MappingCost *BestCost) { 371 assert((MBFI || !BestCost) && "Costs comparison require MBFI"); 372 373 if (!InstrMapping.isValid()) 374 return MappingCost::ImpossibleCost(); 375 376 // If mapped with InstrMapping, MI will have the recorded cost. 377 MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1); 378 bool Saturated = Cost.addLocalCost(InstrMapping.getCost()); 379 assert(!Saturated && "Possible mapping saturated the cost"); 380 DEBUG(dbgs() << "Evaluating mapping cost for: " << MI); 381 DEBUG(dbgs() << "With: " << InstrMapping << '\n'); 382 RepairPts.clear(); 383 if (BestCost && Cost > *BestCost) { 384 DEBUG(dbgs() << "Mapping is too expensive from the start\n"); 385 return Cost; 386 } 387 388 // Moreover, to realize this mapping, the register bank of each operand must 389 // match this mapping. In other words, we may need to locally reassign the 390 // register banks. Account for that repairing cost as well. 391 // In this context, local means in the surrounding of MI. 392 for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands(); 393 OpIdx != EndOpIdx; ++OpIdx) { 394 const MachineOperand &MO = MI.getOperand(OpIdx); 395 if (!MO.isReg()) 396 continue; 397 unsigned Reg = MO.getReg(); 398 if (!Reg) 399 continue; 400 DEBUG(dbgs() << "Opd" << OpIdx << '\n'); 401 const RegisterBankInfo::ValueMapping &ValMapping = 402 InstrMapping.getOperandMapping(OpIdx); 403 // If Reg is already properly mapped, this is free. 404 bool Assign; 405 if (assignmentMatch(Reg, ValMapping, Assign)) { 406 DEBUG(dbgs() << "=> is free (match).\n"); 407 continue; 408 } 409 if (Assign) { 410 DEBUG(dbgs() << "=> is free (simple assignment).\n"); 411 RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this, 412 RepairingPlacement::Reassign)); 413 continue; 414 } 415 416 // Find the insertion point for the repairing code. 417 RepairPts.emplace_back( 418 RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert)); 419 RepairingPlacement &RepairPt = RepairPts.back(); 420 421 // If we need to split a basic block to materialize this insertion point, 422 // we may give a higher cost to this mapping. 423 // Nevertheless, we may get away with the split, so try that first. 424 if (RepairPt.hasSplit()) 425 tryAvoidingSplit(RepairPt, MO, ValMapping); 426 427 // Check that the materialization of the repairing is possible. 428 if (!RepairPt.canMaterialize()) { 429 DEBUG(dbgs() << "Mapping involves impossible repairing\n"); 430 return MappingCost::ImpossibleCost(); 431 } 432 433 // Account for the split cost and repair cost. 434 // Unless the cost is already saturated or we do not care about the cost. 435 if (!BestCost || Saturated) 436 continue; 437 438 // To get accurate information we need MBFI and MBPI. 439 // Thus, if we end up here this information should be here. 440 assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI"); 441 442 // FIXME: We will have to rework the repairing cost model. 443 // The repairing cost depends on the register bank that MO has. 444 // However, when we break down the value into different values, 445 // MO may not have a register bank while still needing repairing. 446 // For the fast mode, we don't compute the cost so that is fine, 447 // but still for the repairing code, we will have to make a choice. 448 // For the greedy mode, we should choose greedily what is the best 449 // choice based on the next use of MO. 450 451 // Sums up the repairing cost of MO at each insertion point. 452 uint64_t RepairCost = getRepairCost(MO, ValMapping); 453 // Bias used for splitting: 5%. 454 const uint64_t PercentageForBias = 5; 455 uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100; 456 // We should not need more than a couple of instructions to repair 457 // an assignment. In other words, the computation should not 458 // overflow because the repairing cost is free of basic block 459 // frequency. 460 assert(((RepairCost < RepairCost * PercentageForBias) && 461 (RepairCost * PercentageForBias < 462 RepairCost * PercentageForBias + 99)) && 463 "Repairing involves more than a billion of instructions?!"); 464 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 465 assert(InsertPt->canMaterialize() && "We should not have made it here"); 466 // We will applied some basic block frequency and those uses uint64_t. 467 if (!InsertPt->isSplit()) 468 Saturated = Cost.addLocalCost(RepairCost); 469 else { 470 uint64_t CostForInsertPt = RepairCost; 471 // Again we shouldn't overflow here givent that 472 // CostForInsertPt is frequency free at this point. 473 assert(CostForInsertPt + Bias > CostForInsertPt && 474 "Repairing + split bias overflows"); 475 CostForInsertPt += Bias; 476 uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt; 477 // Check if we just overflowed. 478 if ((Saturated = PtCost < CostForInsertPt)) 479 Cost.saturate(); 480 else 481 Saturated = Cost.addNonLocalCost(PtCost); 482 } 483 484 // Stop looking into what it takes to repair, this is already 485 // too expensive. 486 if (BestCost && Cost > *BestCost) { 487 DEBUG(dbgs() << "Mapping is too expensive, stop processing\n"); 488 return Cost; 489 } 490 491 // No need to accumulate more cost information. 492 // We need to still gather the repairing information though. 493 if (Saturated) 494 break; 495 } 496 } 497 DEBUG(dbgs() << "Total cost is: " << Cost << "\n"); 498 return Cost; 499 } 500 501 bool RegBankSelect::applyMapping( 502 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 503 SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) { 504 // OpdMapper will hold all the information needed for the rewritting. 505 RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI); 506 507 // First, place the repairing code. 508 for (RepairingPlacement &RepairPt : RepairPts) { 509 if (!RepairPt.canMaterialize() || 510 RepairPt.getKind() == RepairingPlacement::Impossible) 511 return false; 512 assert(RepairPt.getKind() != RepairingPlacement::None && 513 "This should not make its way in the list"); 514 unsigned OpIdx = RepairPt.getOpIdx(); 515 MachineOperand &MO = MI.getOperand(OpIdx); 516 const RegisterBankInfo::ValueMapping &ValMapping = 517 InstrMapping.getOperandMapping(OpIdx); 518 unsigned Reg = MO.getReg(); 519 520 switch (RepairPt.getKind()) { 521 case RepairingPlacement::Reassign: 522 assert(ValMapping.NumBreakDowns == 1 && 523 "Reassignment should only be for simple mapping"); 524 MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank); 525 break; 526 case RepairingPlacement::Insert: 527 OpdMapper.createVRegs(OpIdx); 528 if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx))) 529 return false; 530 break; 531 default: 532 llvm_unreachable("Other kind should not happen"); 533 } 534 } 535 // Second, rewrite the instruction. 536 DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n'); 537 RBI->applyMapping(OpdMapper); 538 return true; 539 } 540 541 bool RegBankSelect::assignInstr(MachineInstr &MI) { 542 DEBUG(dbgs() << "Assign: " << MI); 543 // Remember the repairing placement for all the operands. 544 SmallVector<RepairingPlacement, 4> RepairPts; 545 546 RegisterBankInfo::InstructionMapping BestMapping; 547 if (OptMode == RegBankSelect::Mode::Fast) { 548 BestMapping = RBI->getInstrMapping(MI); 549 MappingCost DefaultCost = computeMapping(MI, BestMapping, RepairPts); 550 (void)DefaultCost; 551 if (DefaultCost == MappingCost::ImpossibleCost()) 552 return false; 553 } else { 554 RegisterBankInfo::InstructionMappings PossibleMappings = 555 RBI->getInstrPossibleMappings(MI); 556 if (PossibleMappings.empty()) 557 return false; 558 BestMapping = std::move(findBestMapping(MI, PossibleMappings, RepairPts)); 559 } 560 // Make sure the mapping is valid for MI. 561 assert(BestMapping.verify(MI) && "Invalid instruction mapping"); 562 563 DEBUG(dbgs() << "Best Mapping: " << BestMapping << '\n'); 564 565 // After this call, MI may not be valid anymore. 566 // Do not use it. 567 return applyMapping(MI, BestMapping, RepairPts); 568 } 569 570 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) { 571 // If the ISel pipeline failed, do not bother running that pass. 572 if (MF.getProperties().hasProperty( 573 MachineFunctionProperties::Property::FailedISel)) 574 return false; 575 576 DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n'); 577 const Function *F = MF.getFunction(); 578 Mode SaveOptMode = OptMode; 579 if (F->hasFnAttribute(Attribute::OptimizeNone)) 580 OptMode = Mode::Fast; 581 init(MF); 582 583 #ifndef NDEBUG 584 // Check that our input is fully legal: we require the function to have the 585 // Legalized property, so it should be. 586 // FIXME: This should be in the MachineVerifier, but it can't use the 587 // LegalizerInfo as it's currently in the separate GlobalISel library. 588 const MachineRegisterInfo &MRI = MF.getRegInfo(); 589 if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo()) { 590 for (MachineBasicBlock &MBB : MF) { 591 for (MachineInstr &MI : MBB) { 592 if (isPreISelGenericOpcode(MI.getOpcode()) && !MLI->isLegal(MI, MRI)) { 593 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", 594 "instruction is not legal", MI); 595 return false; 596 } 597 } 598 } 599 } 600 #endif 601 602 // Walk the function and assign register banks to all operands. 603 // Use a RPOT to make sure all registers are assigned before we choose 604 // the best mapping of the current instruction. 605 ReversePostOrderTraversal<MachineFunction*> RPOT(&MF); 606 for (MachineBasicBlock *MBB : RPOT) { 607 // Set a sensible insertion point so that subsequent calls to 608 // MIRBuilder. 609 MIRBuilder.setMBB(*MBB); 610 for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end(); 611 MII != End;) { 612 // MI might be invalidated by the assignment, so move the 613 // iterator before hand. 614 MachineInstr &MI = *MII++; 615 616 // Ignore target-specific instructions: they should use proper regclasses. 617 if (isTargetSpecificOpcode(MI.getOpcode())) 618 continue; 619 620 if (!assignInstr(MI)) { 621 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", 622 "unable to map instruction", MI); 623 return false; 624 } 625 } 626 } 627 OptMode = SaveOptMode; 628 return false; 629 } 630 631 //------------------------------------------------------------------------------ 632 // Helper Classes Implementation 633 //------------------------------------------------------------------------------ 634 RegBankSelect::RepairingPlacement::RepairingPlacement( 635 MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P, 636 RepairingPlacement::RepairingKind Kind) 637 // Default is, we are going to insert code to repair OpIdx. 638 : Kind(Kind), 639 OpIdx(OpIdx), 640 CanMaterialize(Kind != RepairingKind::Impossible), 641 HasSplit(false), 642 P(P) { 643 const MachineOperand &MO = MI.getOperand(OpIdx); 644 assert(MO.isReg() && "Trying to repair a non-reg operand"); 645 646 if (Kind != RepairingKind::Insert) 647 return; 648 649 // Repairings for definitions happen after MI, uses happen before. 650 bool Before = !MO.isDef(); 651 652 // Check if we are done with MI. 653 if (!MI.isPHI() && !MI.isTerminator()) { 654 addInsertPoint(MI, Before); 655 // We are done with the initialization. 656 return; 657 } 658 659 // Now, look for the special cases. 660 if (MI.isPHI()) { 661 // - PHI must be the first instructions: 662 // * Before, we have to split the related incoming edge. 663 // * After, move the insertion point past the last phi. 664 if (!Before) { 665 MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI(); 666 if (It != MI.getParent()->end()) 667 addInsertPoint(*It, /*Before*/ true); 668 else 669 addInsertPoint(*(--It), /*Before*/ false); 670 return; 671 } 672 // We repair a use of a phi, we may need to split the related edge. 673 MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB(); 674 // Check if we can move the insertion point prior to the 675 // terminators of the predecessor. 676 unsigned Reg = MO.getReg(); 677 MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr(); 678 for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It) 679 if (It->modifiesRegister(Reg, &TRI)) { 680 // We cannot hoist the repairing code in the predecessor. 681 // Split the edge. 682 addInsertPoint(Pred, *MI.getParent()); 683 return; 684 } 685 // At this point, we can insert in Pred. 686 687 // - If It is invalid, Pred is empty and we can insert in Pred 688 // wherever we want. 689 // - If It is valid, It is the first non-terminator, insert after It. 690 if (It == Pred.end()) 691 addInsertPoint(Pred, /*Beginning*/ false); 692 else 693 addInsertPoint(*It, /*Before*/ false); 694 } else { 695 // - Terminators must be the last instructions: 696 // * Before, move the insert point before the first terminator. 697 // * After, we have to split the outcoming edges. 698 unsigned Reg = MO.getReg(); 699 if (Before) { 700 // Check whether Reg is defined by any terminator. 701 MachineBasicBlock::iterator It = MI; 702 for (auto Begin = MI.getParent()->begin(); 703 --It != Begin && It->isTerminator();) 704 if (It->modifiesRegister(Reg, &TRI)) { 705 // Insert the repairing code right after the definition. 706 addInsertPoint(*It, /*Before*/ false); 707 return; 708 } 709 addInsertPoint(*It, /*Before*/ true); 710 return; 711 } 712 // Make sure Reg is not redefined by other terminators, otherwise 713 // we do not know how to split. 714 for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end(); 715 ++It != End;) 716 // The machine verifier should reject this kind of code. 717 assert(It->modifiesRegister(Reg, &TRI) && "Do not know where to split"); 718 // Split each outcoming edges. 719 MachineBasicBlock &Src = *MI.getParent(); 720 for (auto &Succ : Src.successors()) 721 addInsertPoint(Src, Succ); 722 } 723 } 724 725 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI, 726 bool Before) { 727 addInsertPoint(*new InstrInsertPoint(MI, Before)); 728 } 729 730 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB, 731 bool Beginning) { 732 addInsertPoint(*new MBBInsertPoint(MBB, Beginning)); 733 } 734 735 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src, 736 MachineBasicBlock &Dst) { 737 addInsertPoint(*new EdgeInsertPoint(Src, Dst, P)); 738 } 739 740 void RegBankSelect::RepairingPlacement::addInsertPoint( 741 RegBankSelect::InsertPoint &Point) { 742 CanMaterialize &= Point.canMaterialize(); 743 HasSplit |= Point.isSplit(); 744 InsertPoints.emplace_back(&Point); 745 } 746 747 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr, 748 bool Before) 749 : InsertPoint(), Instr(Instr), Before(Before) { 750 // Since we do not support splitting, we do not need to update 751 // liveness and such, so do not do anything with P. 752 assert((!Before || !Instr.isPHI()) && 753 "Splitting before phis requires more points"); 754 assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) && 755 "Splitting between phis does not make sense"); 756 } 757 758 void RegBankSelect::InstrInsertPoint::materialize() { 759 if (isSplit()) { 760 // Slice and return the beginning of the new block. 761 // If we need to split between the terminators, we theoritically 762 // need to know where the first and second set of terminators end 763 // to update the successors properly. 764 // Now, in pratice, we should have a maximum of 2 branch 765 // instructions; one conditional and one unconditional. Therefore 766 // we know how to update the successor by looking at the target of 767 // the unconditional branch. 768 // If we end up splitting at some point, then, we should update 769 // the liveness information and such. I.e., we would need to 770 // access P here. 771 // The machine verifier should actually make sure such cases 772 // cannot happen. 773 llvm_unreachable("Not yet implemented"); 774 } 775 // Otherwise the insertion point is just the current or next 776 // instruction depending on Before. I.e., there is nothing to do 777 // here. 778 } 779 780 bool RegBankSelect::InstrInsertPoint::isSplit() const { 781 // If the insertion point is after a terminator, we need to split. 782 if (!Before) 783 return Instr.isTerminator(); 784 // If we insert before an instruction that is after a terminator, 785 // we are still after a terminator. 786 return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator(); 787 } 788 789 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const { 790 // Even if we need to split, because we insert between terminators, 791 // this split has actually the same frequency as the instruction. 792 const MachineBlockFrequencyInfo *MBFI = 793 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 794 if (!MBFI) 795 return 1; 796 return MBFI->getBlockFreq(Instr.getParent()).getFrequency(); 797 } 798 799 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const { 800 const MachineBlockFrequencyInfo *MBFI = 801 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 802 if (!MBFI) 803 return 1; 804 return MBFI->getBlockFreq(&MBB).getFrequency(); 805 } 806 807 void RegBankSelect::EdgeInsertPoint::materialize() { 808 // If we end up repairing twice at the same place before materializing the 809 // insertion point, we may think we have to split an edge twice. 810 // We should have a factory for the insert point such that identical points 811 // are the same instance. 812 assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) && 813 "This point has already been split"); 814 MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P); 815 assert(NewBB && "Invalid call to materialize"); 816 // We reuse the destination block to hold the information of the new block. 817 DstOrSplit = NewBB; 818 } 819 820 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const { 821 const MachineBlockFrequencyInfo *MBFI = 822 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 823 if (!MBFI) 824 return 1; 825 if (WasMaterialized) 826 return MBFI->getBlockFreq(DstOrSplit).getFrequency(); 827 828 const MachineBranchProbabilityInfo *MBPI = 829 P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>(); 830 if (!MBPI) 831 return 1; 832 // The basic block will be on the edge. 833 return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit)) 834 .getFrequency(); 835 } 836 837 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const { 838 // If this is not a critical edge, we should not have used this insert 839 // point. Indeed, either the successor or the predecessor should 840 // have do. 841 assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 && 842 "Edge is not critical"); 843 return Src.canSplitCriticalEdge(DstOrSplit); 844 } 845 846 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq) 847 : LocalCost(0), NonLocalCost(0), LocalFreq(LocalFreq.getFrequency()) {} 848 849 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) { 850 // Check if this overflows. 851 if (LocalCost + Cost < LocalCost) { 852 saturate(); 853 return true; 854 } 855 LocalCost += Cost; 856 return isSaturated(); 857 } 858 859 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) { 860 // Check if this overflows. 861 if (NonLocalCost + Cost < NonLocalCost) { 862 saturate(); 863 return true; 864 } 865 NonLocalCost += Cost; 866 return isSaturated(); 867 } 868 869 bool RegBankSelect::MappingCost::isSaturated() const { 870 return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX && 871 LocalFreq == UINT64_MAX; 872 } 873 874 void RegBankSelect::MappingCost::saturate() { 875 *this = ImpossibleCost(); 876 --LocalCost; 877 } 878 879 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() { 880 return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX); 881 } 882 883 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const { 884 // Sort out the easy cases. 885 if (*this == Cost) 886 return false; 887 // If one is impossible to realize the other is cheaper unless it is 888 // impossible as well. 889 if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost())) 890 return (*this == ImpossibleCost()) < (Cost == ImpossibleCost()); 891 // If one is saturated the other is cheaper, unless it is saturated 892 // as well. 893 if (isSaturated() || Cost.isSaturated()) 894 return isSaturated() < Cost.isSaturated(); 895 // At this point we know both costs hold sensible values. 896 897 // If both values have a different base frequency, there is no much 898 // we can do but to scale everything. 899 // However, if they have the same base frequency we can avoid making 900 // complicated computation. 901 uint64_t ThisLocalAdjust; 902 uint64_t OtherLocalAdjust; 903 if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) { 904 905 // At this point, we know the local costs are comparable. 906 // Do the case that do not involve potential overflow first. 907 if (NonLocalCost == Cost.NonLocalCost) 908 // Since the non-local costs do not discriminate on the result, 909 // just compare the local costs. 910 return LocalCost < Cost.LocalCost; 911 912 // The base costs are comparable so we may only keep the relative 913 // value to increase our chances of avoiding overflows. 914 ThisLocalAdjust = 0; 915 OtherLocalAdjust = 0; 916 if (LocalCost < Cost.LocalCost) 917 OtherLocalAdjust = Cost.LocalCost - LocalCost; 918 else 919 ThisLocalAdjust = LocalCost - Cost.LocalCost; 920 921 } else { 922 ThisLocalAdjust = LocalCost; 923 OtherLocalAdjust = Cost.LocalCost; 924 } 925 926 // The non-local costs are comparable, just keep the relative value. 927 uint64_t ThisNonLocalAdjust = 0; 928 uint64_t OtherNonLocalAdjust = 0; 929 if (NonLocalCost < Cost.NonLocalCost) 930 OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost; 931 else 932 ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost; 933 // Scale everything to make them comparable. 934 uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq; 935 // Check for overflow on that operation. 936 bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust || 937 ThisScaledCost < LocalFreq); 938 uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq; 939 // Check for overflow on the last operation. 940 bool OtherOverflows = 941 OtherLocalAdjust && 942 (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq); 943 // Add the non-local costs. 944 ThisOverflows |= ThisNonLocalAdjust && 945 ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust; 946 ThisScaledCost += ThisNonLocalAdjust; 947 OtherOverflows |= OtherNonLocalAdjust && 948 OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust; 949 OtherScaledCost += OtherNonLocalAdjust; 950 // If both overflows, we cannot compare without additional 951 // precision, e.g., APInt. Just give up on that case. 952 if (ThisOverflows && OtherOverflows) 953 return false; 954 // If one overflows but not the other, we can still compare. 955 if (ThisOverflows || OtherOverflows) 956 return ThisOverflows < OtherOverflows; 957 // Otherwise, just compare the values. 958 return ThisScaledCost < OtherScaledCost; 959 } 960 961 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const { 962 return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost && 963 LocalFreq == Cost.LocalFreq; 964 } 965 966 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 967 LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const { 968 print(dbgs()); 969 dbgs() << '\n'; 970 } 971 #endif 972 973 void RegBankSelect::MappingCost::print(raw_ostream &OS) const { 974 if (*this == ImpossibleCost()) { 975 OS << "impossible"; 976 return; 977 } 978 if (isSaturated()) { 979 OS << "saturated"; 980 return; 981 } 982 OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost; 983 } 984