1 //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements the RegBankSelect class. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 14 #include "llvm/ADT/PostOrderIterator.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 18 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 19 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 20 #include "llvm/CodeGen/GlobalISel/Utils.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 23 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineOperand.h" 27 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetOpcodes.h" 30 #include "llvm/CodeGen/TargetPassConfig.h" 31 #include "llvm/CodeGen/TargetRegisterInfo.h" 32 #include "llvm/CodeGen/TargetSubtargetInfo.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/BlockFrequency.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Compiler.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <algorithm> 43 #include <cassert> 44 #include <cstdint> 45 #include <limits> 46 #include <memory> 47 #include <utility> 48 49 #define DEBUG_TYPE "regbankselect" 50 51 using namespace llvm; 52 53 static cl::opt<RegBankSelect::Mode> RegBankSelectMode( 54 cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional, 55 cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast", 56 "Run the Fast mode (default mapping)"), 57 clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy", 58 "Use the Greedy mode (best local mapping)"))); 59 60 char RegBankSelect::ID = 0; 61 62 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE, 63 "Assign register bank of generic virtual registers", 64 false, false); 65 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 66 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 67 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 68 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, 69 "Assign register bank of generic virtual registers", false, 70 false) 71 72 RegBankSelect::RegBankSelect(Mode RunningMode) 73 : MachineFunctionPass(ID), OptMode(RunningMode) { 74 initializeRegBankSelectPass(*PassRegistry::getPassRegistry()); 75 if (RegBankSelectMode.getNumOccurrences() != 0) { 76 OptMode = RegBankSelectMode; 77 if (RegBankSelectMode != RunningMode) 78 DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n"); 79 } 80 } 81 82 void RegBankSelect::init(MachineFunction &MF) { 83 RBI = MF.getSubtarget().getRegBankInfo(); 84 assert(RBI && "Cannot work without RegisterBankInfo"); 85 MRI = &MF.getRegInfo(); 86 TRI = MF.getSubtarget().getRegisterInfo(); 87 TPC = &getAnalysis<TargetPassConfig>(); 88 if (OptMode != Mode::Fast) { 89 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 90 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 91 } else { 92 MBFI = nullptr; 93 MBPI = nullptr; 94 } 95 MIRBuilder.setMF(MF); 96 MORE = llvm::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI); 97 } 98 99 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const { 100 if (OptMode != Mode::Fast) { 101 // We could preserve the information from these two analysis but 102 // the APIs do not allow to do so yet. 103 AU.addRequired<MachineBlockFrequencyInfo>(); 104 AU.addRequired<MachineBranchProbabilityInfo>(); 105 } 106 AU.addRequired<TargetPassConfig>(); 107 MachineFunctionPass::getAnalysisUsage(AU); 108 } 109 110 bool RegBankSelect::assignmentMatch( 111 unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping, 112 bool &OnlyAssign) const { 113 // By default we assume we will have to repair something. 114 OnlyAssign = false; 115 // Each part of a break down needs to end up in a different register. 116 // In other word, Reg assignement does not match. 117 if (ValMapping.NumBreakDowns > 1) 118 return false; 119 120 const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI); 121 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank; 122 // Reg is free of assignment, a simple assignment will make the 123 // register bank to match. 124 OnlyAssign = CurRegBank == nullptr; 125 DEBUG(dbgs() << "Does assignment already match: "; 126 if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none"; 127 dbgs() << " against "; 128 assert(DesiredRegBrank && "The mapping must be valid"); 129 dbgs() << *DesiredRegBrank << '\n';); 130 return CurRegBank == DesiredRegBrank; 131 } 132 133 bool RegBankSelect::repairReg( 134 MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping, 135 RegBankSelect::RepairingPlacement &RepairPt, 136 const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) { 137 if (ValMapping.NumBreakDowns != 1 && !TPC->isGlobalISelAbortEnabled()) 138 return false; 139 assert(ValMapping.NumBreakDowns == 1 && "Not yet implemented"); 140 // An empty range of new register means no repairing. 141 assert(NewVRegs.begin() != NewVRegs.end() && "We should not have to repair"); 142 143 // Assume we are repairing a use and thus, the original reg will be 144 // the source of the repairing. 145 unsigned Src = MO.getReg(); 146 unsigned Dst = *NewVRegs.begin(); 147 148 // If we repair a definition, swap the source and destination for 149 // the repairing. 150 if (MO.isDef()) 151 std::swap(Src, Dst); 152 153 assert((RepairPt.getNumInsertPoints() == 1 || 154 TargetRegisterInfo::isPhysicalRegister(Dst)) && 155 "We are about to create several defs for Dst"); 156 157 // Build the instruction used to repair, then clone it at the right 158 // places. Avoiding buildCopy bypasses the check that Src and Dst have the 159 // same types because the type is a placeholder when this function is called. 160 MachineInstr *MI = 161 MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY).addDef(Dst).addUse(Src); 162 DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst) 163 << '\n'); 164 // TODO: 165 // Check if MI is legal. if not, we need to legalize all the 166 // instructions we are going to insert. 167 std::unique_ptr<MachineInstr *[]> NewInstrs( 168 new MachineInstr *[RepairPt.getNumInsertPoints()]); 169 bool IsFirst = true; 170 unsigned Idx = 0; 171 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 172 MachineInstr *CurMI; 173 if (IsFirst) 174 CurMI = MI; 175 else 176 CurMI = MIRBuilder.getMF().CloneMachineInstr(MI); 177 InsertPt->insert(*CurMI); 178 NewInstrs[Idx++] = CurMI; 179 IsFirst = false; 180 } 181 // TODO: 182 // Legalize NewInstrs if need be. 183 return true; 184 } 185 186 uint64_t RegBankSelect::getRepairCost( 187 const MachineOperand &MO, 188 const RegisterBankInfo::ValueMapping &ValMapping) const { 189 assert(MO.isReg() && "We should only repair register operand"); 190 assert(ValMapping.NumBreakDowns && "Nothing to map??"); 191 192 bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1; 193 const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI); 194 // If MO does not have a register bank, we should have just been 195 // able to set one unless we have to break the value down. 196 assert((!IsSameNumOfValues || CurRegBank) && "We should not have to repair"); 197 // Def: Val <- NewDefs 198 // Same number of values: copy 199 // Different number: Val = build_sequence Defs1, Defs2, ... 200 // Use: NewSources <- Val. 201 // Same number of values: copy. 202 // Different number: Src1, Src2, ... = 203 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ... 204 // We should remember that this value is available somewhere else to 205 // coalesce the value. 206 207 if (IsSameNumOfValues) { 208 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank; 209 // If we repair a definition, swap the source and destination for 210 // the repairing. 211 if (MO.isDef()) 212 std::swap(CurRegBank, DesiredRegBrank); 213 // TODO: It may be possible to actually avoid the copy. 214 // If we repair something where the source is defined by a copy 215 // and the source of that copy is on the right bank, we can reuse 216 // it for free. 217 // E.g., 218 // RegToRepair<BankA> = copy AlternativeSrc<BankB> 219 // = op RegToRepair<BankA> 220 // We can simply propagate AlternativeSrc instead of copying RegToRepair 221 // into a new virtual register. 222 // We would also need to propagate this information in the 223 // repairing placement. 224 unsigned Cost = RBI->copyCost(*DesiredRegBrank, *CurRegBank, 225 RBI->getSizeInBits(MO.getReg(), *MRI, *TRI)); 226 // TODO: use a dedicated constant for ImpossibleCost. 227 if (Cost != std::numeric_limits<unsigned>::max()) 228 return Cost; 229 // Return the legalization cost of that repairing. 230 } 231 return std::numeric_limits<unsigned>::max(); 232 } 233 234 const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping( 235 MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings, 236 SmallVectorImpl<RepairingPlacement> &RepairPts) { 237 assert(!PossibleMappings.empty() && 238 "Do not know how to map this instruction"); 239 240 const RegisterBankInfo::InstructionMapping *BestMapping = nullptr; 241 MappingCost Cost = MappingCost::ImpossibleCost(); 242 SmallVector<RepairingPlacement, 4> LocalRepairPts; 243 for (const RegisterBankInfo::InstructionMapping *CurMapping : 244 PossibleMappings) { 245 MappingCost CurCost = 246 computeMapping(MI, *CurMapping, LocalRepairPts, &Cost); 247 if (CurCost < Cost) { 248 DEBUG(dbgs() << "New best: " << CurCost << '\n'); 249 Cost = CurCost; 250 BestMapping = CurMapping; 251 RepairPts.clear(); 252 for (RepairingPlacement &RepairPt : LocalRepairPts) 253 RepairPts.emplace_back(std::move(RepairPt)); 254 } 255 } 256 if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) { 257 // If none of the mapping worked that means they are all impossible. 258 // Thus, pick the first one and set an impossible repairing point. 259 // It will trigger the failed isel mode. 260 BestMapping = *PossibleMappings.begin(); 261 RepairPts.emplace_back( 262 RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible)); 263 } else 264 assert(BestMapping && "No suitable mapping for instruction"); 265 return *BestMapping; 266 } 267 268 void RegBankSelect::tryAvoidingSplit( 269 RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO, 270 const RegisterBankInfo::ValueMapping &ValMapping) const { 271 const MachineInstr &MI = *MO.getParent(); 272 assert(RepairPt.hasSplit() && "We should not have to adjust for split"); 273 // Splitting should only occur for PHIs or between terminators, 274 // because we only do local repairing. 275 assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?"); 276 277 assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO && 278 "Repairing placement does not match operand"); 279 280 // If we need splitting for phis, that means it is because we 281 // could not find an insertion point before the terminators of 282 // the predecessor block for this argument. In other words, 283 // the input value is defined by one of the terminators. 284 assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?"); 285 286 // We split to repair the use of a phi or a terminator. 287 if (!MO.isDef()) { 288 if (MI.isTerminator()) { 289 assert(&MI != &(*MI.getParent()->getFirstTerminator()) && 290 "Need to split for the first terminator?!"); 291 } else { 292 // For the PHI case, the split may not be actually required. 293 // In the copy case, a phi is already a copy on the incoming edge, 294 // therefore there is no need to split. 295 if (ValMapping.NumBreakDowns == 1) 296 // This is a already a copy, there is nothing to do. 297 RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign); 298 } 299 return; 300 } 301 302 // At this point, we need to repair a defintion of a terminator. 303 304 // Technically we need to fix the def of MI on all outgoing 305 // edges of MI to keep the repairing local. In other words, we 306 // will create several definitions of the same register. This 307 // does not work for SSA unless that definition is a physical 308 // register. 309 // However, there are other cases where we can get away with 310 // that while still keeping the repairing local. 311 assert(MI.isTerminator() && MO.isDef() && 312 "This code is for the def of a terminator"); 313 314 // Since we use RPO traversal, if we need to repair a definition 315 // this means this definition could be: 316 // 1. Used by PHIs (i.e., this VReg has been visited as part of the 317 // uses of a phi.), or 318 // 2. Part of a target specific instruction (i.e., the target applied 319 // some register class constraints when creating the instruction.) 320 // If the constraints come for #2, the target said that another mapping 321 // is supported so we may just drop them. Indeed, if we do not change 322 // the number of registers holding that value, the uses will get fixed 323 // when we get to them. 324 // Uses in PHIs may have already been proceeded though. 325 // If the constraints come for #1, then, those are weak constraints and 326 // no actual uses may rely on them. However, the problem remains mainly 327 // the same as for #2. If the value stays in one register, we could 328 // just switch the register bank of the definition, but we would need to 329 // account for a repairing cost for each phi we silently change. 330 // 331 // In any case, if the value needs to be broken down into several 332 // registers, the repairing is not local anymore as we need to patch 333 // every uses to rebuild the value in just one register. 334 // 335 // To summarize: 336 // - If the value is in a physical register, we can do the split and 337 // fix locally. 338 // Otherwise if the value is in a virtual register: 339 // - If the value remains in one register, we do not have to split 340 // just switching the register bank would do, but we need to account 341 // in the repairing cost all the phi we changed. 342 // - If the value spans several registers, then we cannot do a local 343 // repairing. 344 345 // Check if this is a physical or virtual register. 346 unsigned Reg = MO.getReg(); 347 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 348 // We are going to split every outgoing edges. 349 // Check that this is possible. 350 // FIXME: The machine representation is currently broken 351 // since it also several terminators in one basic block. 352 // Because of that we would technically need a way to get 353 // the targets of just one terminator to know which edges 354 // we have to split. 355 // Assert that we do not hit the ill-formed representation. 356 357 // If there are other terminators before that one, some of 358 // the outgoing edges may not be dominated by this definition. 359 assert(&MI == &(*MI.getParent()->getFirstTerminator()) && 360 "Do not know which outgoing edges are relevant"); 361 const MachineInstr *Next = MI.getNextNode(); 362 assert((!Next || Next->isUnconditionalBranch()) && 363 "Do not know where each terminator ends up"); 364 if (Next) 365 // If the next terminator uses Reg, this means we have 366 // to split right after MI and thus we need a way to ask 367 // which outgoing edges are affected. 368 assert(!Next->readsRegister(Reg) && "Need to split between terminators"); 369 // We will split all the edges and repair there. 370 } else { 371 // This is a virtual register defined by a terminator. 372 if (ValMapping.NumBreakDowns == 1) { 373 // There is nothing to repair, but we may actually lie on 374 // the repairing cost because of the PHIs already proceeded 375 // as already stated. 376 // Though the code will be correct. 377 assert(false && "Repairing cost may not be accurate"); 378 } else { 379 // We need to do non-local repairing. Basically, patch all 380 // the uses (i.e., phis) that we already proceeded. 381 // For now, just say this mapping is not possible. 382 RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible); 383 } 384 } 385 } 386 387 RegBankSelect::MappingCost RegBankSelect::computeMapping( 388 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 389 SmallVectorImpl<RepairingPlacement> &RepairPts, 390 const RegBankSelect::MappingCost *BestCost) { 391 assert((MBFI || !BestCost) && "Costs comparison require MBFI"); 392 393 if (!InstrMapping.isValid()) 394 return MappingCost::ImpossibleCost(); 395 396 // If mapped with InstrMapping, MI will have the recorded cost. 397 MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1); 398 bool Saturated = Cost.addLocalCost(InstrMapping.getCost()); 399 assert(!Saturated && "Possible mapping saturated the cost"); 400 DEBUG(dbgs() << "Evaluating mapping cost for: " << MI); 401 DEBUG(dbgs() << "With: " << InstrMapping << '\n'); 402 RepairPts.clear(); 403 if (BestCost && Cost > *BestCost) { 404 DEBUG(dbgs() << "Mapping is too expensive from the start\n"); 405 return Cost; 406 } 407 408 // Moreover, to realize this mapping, the register bank of each operand must 409 // match this mapping. In other words, we may need to locally reassign the 410 // register banks. Account for that repairing cost as well. 411 // In this context, local means in the surrounding of MI. 412 for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands(); 413 OpIdx != EndOpIdx; ++OpIdx) { 414 const MachineOperand &MO = MI.getOperand(OpIdx); 415 if (!MO.isReg()) 416 continue; 417 unsigned Reg = MO.getReg(); 418 if (!Reg) 419 continue; 420 DEBUG(dbgs() << "Opd" << OpIdx << '\n'); 421 const RegisterBankInfo::ValueMapping &ValMapping = 422 InstrMapping.getOperandMapping(OpIdx); 423 // If Reg is already properly mapped, this is free. 424 bool Assign; 425 if (assignmentMatch(Reg, ValMapping, Assign)) { 426 DEBUG(dbgs() << "=> is free (match).\n"); 427 continue; 428 } 429 if (Assign) { 430 DEBUG(dbgs() << "=> is free (simple assignment).\n"); 431 RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this, 432 RepairingPlacement::Reassign)); 433 continue; 434 } 435 436 // Find the insertion point for the repairing code. 437 RepairPts.emplace_back( 438 RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert)); 439 RepairingPlacement &RepairPt = RepairPts.back(); 440 441 // If we need to split a basic block to materialize this insertion point, 442 // we may give a higher cost to this mapping. 443 // Nevertheless, we may get away with the split, so try that first. 444 if (RepairPt.hasSplit()) 445 tryAvoidingSplit(RepairPt, MO, ValMapping); 446 447 // Check that the materialization of the repairing is possible. 448 if (!RepairPt.canMaterialize()) { 449 DEBUG(dbgs() << "Mapping involves impossible repairing\n"); 450 return MappingCost::ImpossibleCost(); 451 } 452 453 // Account for the split cost and repair cost. 454 // Unless the cost is already saturated or we do not care about the cost. 455 if (!BestCost || Saturated) 456 continue; 457 458 // To get accurate information we need MBFI and MBPI. 459 // Thus, if we end up here this information should be here. 460 assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI"); 461 462 // FIXME: We will have to rework the repairing cost model. 463 // The repairing cost depends on the register bank that MO has. 464 // However, when we break down the value into different values, 465 // MO may not have a register bank while still needing repairing. 466 // For the fast mode, we don't compute the cost so that is fine, 467 // but still for the repairing code, we will have to make a choice. 468 // For the greedy mode, we should choose greedily what is the best 469 // choice based on the next use of MO. 470 471 // Sums up the repairing cost of MO at each insertion point. 472 uint64_t RepairCost = getRepairCost(MO, ValMapping); 473 474 // This is an impossible to repair cost. 475 if (RepairCost == std::numeric_limits<unsigned>::max()) 476 continue; 477 478 // Bias used for splitting: 5%. 479 const uint64_t PercentageForBias = 5; 480 uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100; 481 // We should not need more than a couple of instructions to repair 482 // an assignment. In other words, the computation should not 483 // overflow because the repairing cost is free of basic block 484 // frequency. 485 assert(((RepairCost < RepairCost * PercentageForBias) && 486 (RepairCost * PercentageForBias < 487 RepairCost * PercentageForBias + 99)) && 488 "Repairing involves more than a billion of instructions?!"); 489 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 490 assert(InsertPt->canMaterialize() && "We should not have made it here"); 491 // We will applied some basic block frequency and those uses uint64_t. 492 if (!InsertPt->isSplit()) 493 Saturated = Cost.addLocalCost(RepairCost); 494 else { 495 uint64_t CostForInsertPt = RepairCost; 496 // Again we shouldn't overflow here givent that 497 // CostForInsertPt is frequency free at this point. 498 assert(CostForInsertPt + Bias > CostForInsertPt && 499 "Repairing + split bias overflows"); 500 CostForInsertPt += Bias; 501 uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt; 502 // Check if we just overflowed. 503 if ((Saturated = PtCost < CostForInsertPt)) 504 Cost.saturate(); 505 else 506 Saturated = Cost.addNonLocalCost(PtCost); 507 } 508 509 // Stop looking into what it takes to repair, this is already 510 // too expensive. 511 if (BestCost && Cost > *BestCost) { 512 DEBUG(dbgs() << "Mapping is too expensive, stop processing\n"); 513 return Cost; 514 } 515 516 // No need to accumulate more cost information. 517 // We need to still gather the repairing information though. 518 if (Saturated) 519 break; 520 } 521 } 522 DEBUG(dbgs() << "Total cost is: " << Cost << "\n"); 523 return Cost; 524 } 525 526 bool RegBankSelect::applyMapping( 527 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 528 SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) { 529 // OpdMapper will hold all the information needed for the rewritting. 530 RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI); 531 532 // First, place the repairing code. 533 for (RepairingPlacement &RepairPt : RepairPts) { 534 if (!RepairPt.canMaterialize() || 535 RepairPt.getKind() == RepairingPlacement::Impossible) 536 return false; 537 assert(RepairPt.getKind() != RepairingPlacement::None && 538 "This should not make its way in the list"); 539 unsigned OpIdx = RepairPt.getOpIdx(); 540 MachineOperand &MO = MI.getOperand(OpIdx); 541 const RegisterBankInfo::ValueMapping &ValMapping = 542 InstrMapping.getOperandMapping(OpIdx); 543 unsigned Reg = MO.getReg(); 544 545 switch (RepairPt.getKind()) { 546 case RepairingPlacement::Reassign: 547 assert(ValMapping.NumBreakDowns == 1 && 548 "Reassignment should only be for simple mapping"); 549 MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank); 550 break; 551 case RepairingPlacement::Insert: 552 OpdMapper.createVRegs(OpIdx); 553 if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx))) 554 return false; 555 break; 556 default: 557 llvm_unreachable("Other kind should not happen"); 558 } 559 } 560 561 // Second, rewrite the instruction. 562 DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n'); 563 RBI->applyMapping(OpdMapper); 564 565 return true; 566 } 567 568 bool RegBankSelect::assignInstr(MachineInstr &MI) { 569 DEBUG(dbgs() << "Assign: " << MI); 570 // Remember the repairing placement for all the operands. 571 SmallVector<RepairingPlacement, 4> RepairPts; 572 573 const RegisterBankInfo::InstructionMapping *BestMapping; 574 if (OptMode == RegBankSelect::Mode::Fast) { 575 BestMapping = &RBI->getInstrMapping(MI); 576 MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts); 577 (void)DefaultCost; 578 if (DefaultCost == MappingCost::ImpossibleCost()) 579 return false; 580 } else { 581 RegisterBankInfo::InstructionMappings PossibleMappings = 582 RBI->getInstrPossibleMappings(MI); 583 if (PossibleMappings.empty()) 584 return false; 585 BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts); 586 } 587 // Make sure the mapping is valid for MI. 588 assert(BestMapping->verify(MI) && "Invalid instruction mapping"); 589 590 DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n'); 591 592 // After this call, MI may not be valid anymore. 593 // Do not use it. 594 return applyMapping(MI, *BestMapping, RepairPts); 595 } 596 597 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) { 598 // If the ISel pipeline failed, do not bother running that pass. 599 if (MF.getProperties().hasProperty( 600 MachineFunctionProperties::Property::FailedISel)) 601 return false; 602 603 DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n'); 604 const Function &F = MF.getFunction(); 605 Mode SaveOptMode = OptMode; 606 if (F.hasFnAttribute(Attribute::OptimizeNone)) 607 OptMode = Mode::Fast; 608 init(MF); 609 610 #ifndef NDEBUG 611 // Check that our input is fully legal: we require the function to have the 612 // Legalized property, so it should be. 613 // FIXME: This should be in the MachineVerifier. 614 if (!DisableGISelLegalityCheck) 615 if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) { 616 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", 617 "instruction is not legal", *MI); 618 return false; 619 } 620 #endif 621 622 // Walk the function and assign register banks to all operands. 623 // Use a RPOT to make sure all registers are assigned before we choose 624 // the best mapping of the current instruction. 625 ReversePostOrderTraversal<MachineFunction*> RPOT(&MF); 626 for (MachineBasicBlock *MBB : RPOT) { 627 // Set a sensible insertion point so that subsequent calls to 628 // MIRBuilder. 629 MIRBuilder.setMBB(*MBB); 630 for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end(); 631 MII != End;) { 632 // MI might be invalidated by the assignment, so move the 633 // iterator before hand. 634 MachineInstr &MI = *MII++; 635 636 // Ignore target-specific instructions: they should use proper regclasses. 637 if (isTargetSpecificOpcode(MI.getOpcode())) 638 continue; 639 640 if (!assignInstr(MI)) { 641 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", 642 "unable to map instruction", MI); 643 return false; 644 } 645 } 646 } 647 OptMode = SaveOptMode; 648 return false; 649 } 650 651 //------------------------------------------------------------------------------ 652 // Helper Classes Implementation 653 //------------------------------------------------------------------------------ 654 RegBankSelect::RepairingPlacement::RepairingPlacement( 655 MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P, 656 RepairingPlacement::RepairingKind Kind) 657 // Default is, we are going to insert code to repair OpIdx. 658 : Kind(Kind), OpIdx(OpIdx), 659 CanMaterialize(Kind != RepairingKind::Impossible), P(P) { 660 const MachineOperand &MO = MI.getOperand(OpIdx); 661 assert(MO.isReg() && "Trying to repair a non-reg operand"); 662 663 if (Kind != RepairingKind::Insert) 664 return; 665 666 // Repairings for definitions happen after MI, uses happen before. 667 bool Before = !MO.isDef(); 668 669 // Check if we are done with MI. 670 if (!MI.isPHI() && !MI.isTerminator()) { 671 addInsertPoint(MI, Before); 672 // We are done with the initialization. 673 return; 674 } 675 676 // Now, look for the special cases. 677 if (MI.isPHI()) { 678 // - PHI must be the first instructions: 679 // * Before, we have to split the related incoming edge. 680 // * After, move the insertion point past the last phi. 681 if (!Before) { 682 MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI(); 683 if (It != MI.getParent()->end()) 684 addInsertPoint(*It, /*Before*/ true); 685 else 686 addInsertPoint(*(--It), /*Before*/ false); 687 return; 688 } 689 // We repair a use of a phi, we may need to split the related edge. 690 MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB(); 691 // Check if we can move the insertion point prior to the 692 // terminators of the predecessor. 693 unsigned Reg = MO.getReg(); 694 MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr(); 695 for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It) 696 if (It->modifiesRegister(Reg, &TRI)) { 697 // We cannot hoist the repairing code in the predecessor. 698 // Split the edge. 699 addInsertPoint(Pred, *MI.getParent()); 700 return; 701 } 702 // At this point, we can insert in Pred. 703 704 // - If It is invalid, Pred is empty and we can insert in Pred 705 // wherever we want. 706 // - If It is valid, It is the first non-terminator, insert after It. 707 if (It == Pred.end()) 708 addInsertPoint(Pred, /*Beginning*/ false); 709 else 710 addInsertPoint(*It, /*Before*/ false); 711 } else { 712 // - Terminators must be the last instructions: 713 // * Before, move the insert point before the first terminator. 714 // * After, we have to split the outcoming edges. 715 unsigned Reg = MO.getReg(); 716 if (Before) { 717 // Check whether Reg is defined by any terminator. 718 MachineBasicBlock::iterator It = MI; 719 for (auto Begin = MI.getParent()->begin(); 720 --It != Begin && It->isTerminator();) 721 if (It->modifiesRegister(Reg, &TRI)) { 722 // Insert the repairing code right after the definition. 723 addInsertPoint(*It, /*Before*/ false); 724 return; 725 } 726 addInsertPoint(*It, /*Before*/ true); 727 return; 728 } 729 // Make sure Reg is not redefined by other terminators, otherwise 730 // we do not know how to split. 731 for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end(); 732 ++It != End;) 733 // The machine verifier should reject this kind of code. 734 assert(It->modifiesRegister(Reg, &TRI) && "Do not know where to split"); 735 // Split each outcoming edges. 736 MachineBasicBlock &Src = *MI.getParent(); 737 for (auto &Succ : Src.successors()) 738 addInsertPoint(Src, Succ); 739 } 740 } 741 742 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI, 743 bool Before) { 744 addInsertPoint(*new InstrInsertPoint(MI, Before)); 745 } 746 747 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB, 748 bool Beginning) { 749 addInsertPoint(*new MBBInsertPoint(MBB, Beginning)); 750 } 751 752 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src, 753 MachineBasicBlock &Dst) { 754 addInsertPoint(*new EdgeInsertPoint(Src, Dst, P)); 755 } 756 757 void RegBankSelect::RepairingPlacement::addInsertPoint( 758 RegBankSelect::InsertPoint &Point) { 759 CanMaterialize &= Point.canMaterialize(); 760 HasSplit |= Point.isSplit(); 761 InsertPoints.emplace_back(&Point); 762 } 763 764 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr, 765 bool Before) 766 : InsertPoint(), Instr(Instr), Before(Before) { 767 // Since we do not support splitting, we do not need to update 768 // liveness and such, so do not do anything with P. 769 assert((!Before || !Instr.isPHI()) && 770 "Splitting before phis requires more points"); 771 assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) && 772 "Splitting between phis does not make sense"); 773 } 774 775 void RegBankSelect::InstrInsertPoint::materialize() { 776 if (isSplit()) { 777 // Slice and return the beginning of the new block. 778 // If we need to split between the terminators, we theoritically 779 // need to know where the first and second set of terminators end 780 // to update the successors properly. 781 // Now, in pratice, we should have a maximum of 2 branch 782 // instructions; one conditional and one unconditional. Therefore 783 // we know how to update the successor by looking at the target of 784 // the unconditional branch. 785 // If we end up splitting at some point, then, we should update 786 // the liveness information and such. I.e., we would need to 787 // access P here. 788 // The machine verifier should actually make sure such cases 789 // cannot happen. 790 llvm_unreachable("Not yet implemented"); 791 } 792 // Otherwise the insertion point is just the current or next 793 // instruction depending on Before. I.e., there is nothing to do 794 // here. 795 } 796 797 bool RegBankSelect::InstrInsertPoint::isSplit() const { 798 // If the insertion point is after a terminator, we need to split. 799 if (!Before) 800 return Instr.isTerminator(); 801 // If we insert before an instruction that is after a terminator, 802 // we are still after a terminator. 803 return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator(); 804 } 805 806 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const { 807 // Even if we need to split, because we insert between terminators, 808 // this split has actually the same frequency as the instruction. 809 const MachineBlockFrequencyInfo *MBFI = 810 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 811 if (!MBFI) 812 return 1; 813 return MBFI->getBlockFreq(Instr.getParent()).getFrequency(); 814 } 815 816 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const { 817 const MachineBlockFrequencyInfo *MBFI = 818 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 819 if (!MBFI) 820 return 1; 821 return MBFI->getBlockFreq(&MBB).getFrequency(); 822 } 823 824 void RegBankSelect::EdgeInsertPoint::materialize() { 825 // If we end up repairing twice at the same place before materializing the 826 // insertion point, we may think we have to split an edge twice. 827 // We should have a factory for the insert point such that identical points 828 // are the same instance. 829 assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) && 830 "This point has already been split"); 831 MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P); 832 assert(NewBB && "Invalid call to materialize"); 833 // We reuse the destination block to hold the information of the new block. 834 DstOrSplit = NewBB; 835 } 836 837 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const { 838 const MachineBlockFrequencyInfo *MBFI = 839 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 840 if (!MBFI) 841 return 1; 842 if (WasMaterialized) 843 return MBFI->getBlockFreq(DstOrSplit).getFrequency(); 844 845 const MachineBranchProbabilityInfo *MBPI = 846 P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>(); 847 if (!MBPI) 848 return 1; 849 // The basic block will be on the edge. 850 return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit)) 851 .getFrequency(); 852 } 853 854 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const { 855 // If this is not a critical edge, we should not have used this insert 856 // point. Indeed, either the successor or the predecessor should 857 // have do. 858 assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 && 859 "Edge is not critical"); 860 return Src.canSplitCriticalEdge(DstOrSplit); 861 } 862 863 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq) 864 : LocalFreq(LocalFreq.getFrequency()) {} 865 866 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) { 867 // Check if this overflows. 868 if (LocalCost + Cost < LocalCost) { 869 saturate(); 870 return true; 871 } 872 LocalCost += Cost; 873 return isSaturated(); 874 } 875 876 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) { 877 // Check if this overflows. 878 if (NonLocalCost + Cost < NonLocalCost) { 879 saturate(); 880 return true; 881 } 882 NonLocalCost += Cost; 883 return isSaturated(); 884 } 885 886 bool RegBankSelect::MappingCost::isSaturated() const { 887 return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX && 888 LocalFreq == UINT64_MAX; 889 } 890 891 void RegBankSelect::MappingCost::saturate() { 892 *this = ImpossibleCost(); 893 --LocalCost; 894 } 895 896 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() { 897 return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX); 898 } 899 900 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const { 901 // Sort out the easy cases. 902 if (*this == Cost) 903 return false; 904 // If one is impossible to realize the other is cheaper unless it is 905 // impossible as well. 906 if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost())) 907 return (*this == ImpossibleCost()) < (Cost == ImpossibleCost()); 908 // If one is saturated the other is cheaper, unless it is saturated 909 // as well. 910 if (isSaturated() || Cost.isSaturated()) 911 return isSaturated() < Cost.isSaturated(); 912 // At this point we know both costs hold sensible values. 913 914 // If both values have a different base frequency, there is no much 915 // we can do but to scale everything. 916 // However, if they have the same base frequency we can avoid making 917 // complicated computation. 918 uint64_t ThisLocalAdjust; 919 uint64_t OtherLocalAdjust; 920 if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) { 921 922 // At this point, we know the local costs are comparable. 923 // Do the case that do not involve potential overflow first. 924 if (NonLocalCost == Cost.NonLocalCost) 925 // Since the non-local costs do not discriminate on the result, 926 // just compare the local costs. 927 return LocalCost < Cost.LocalCost; 928 929 // The base costs are comparable so we may only keep the relative 930 // value to increase our chances of avoiding overflows. 931 ThisLocalAdjust = 0; 932 OtherLocalAdjust = 0; 933 if (LocalCost < Cost.LocalCost) 934 OtherLocalAdjust = Cost.LocalCost - LocalCost; 935 else 936 ThisLocalAdjust = LocalCost - Cost.LocalCost; 937 } else { 938 ThisLocalAdjust = LocalCost; 939 OtherLocalAdjust = Cost.LocalCost; 940 } 941 942 // The non-local costs are comparable, just keep the relative value. 943 uint64_t ThisNonLocalAdjust = 0; 944 uint64_t OtherNonLocalAdjust = 0; 945 if (NonLocalCost < Cost.NonLocalCost) 946 OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost; 947 else 948 ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost; 949 // Scale everything to make them comparable. 950 uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq; 951 // Check for overflow on that operation. 952 bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust || 953 ThisScaledCost < LocalFreq); 954 uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq; 955 // Check for overflow on the last operation. 956 bool OtherOverflows = 957 OtherLocalAdjust && 958 (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq); 959 // Add the non-local costs. 960 ThisOverflows |= ThisNonLocalAdjust && 961 ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust; 962 ThisScaledCost += ThisNonLocalAdjust; 963 OtherOverflows |= OtherNonLocalAdjust && 964 OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust; 965 OtherScaledCost += OtherNonLocalAdjust; 966 // If both overflows, we cannot compare without additional 967 // precision, e.g., APInt. Just give up on that case. 968 if (ThisOverflows && OtherOverflows) 969 return false; 970 // If one overflows but not the other, we can still compare. 971 if (ThisOverflows || OtherOverflows) 972 return ThisOverflows < OtherOverflows; 973 // Otherwise, just compare the values. 974 return ThisScaledCost < OtherScaledCost; 975 } 976 977 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const { 978 return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost && 979 LocalFreq == Cost.LocalFreq; 980 } 981 982 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 983 LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const { 984 print(dbgs()); 985 dbgs() << '\n'; 986 } 987 #endif 988 989 void RegBankSelect::MappingCost::print(raw_ostream &OS) const { 990 if (*this == ImpossibleCost()) { 991 OS << "impossible"; 992 return; 993 } 994 if (isSaturated()) { 995 OS << "saturated"; 996 return; 997 } 998 OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost; 999 } 1000