1 //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file implements the RegBankSelect class.
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
18 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
19 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
20 #include "llvm/CodeGen/GlobalISel/Utils.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
23 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetOpcodes.h"
30 #include "llvm/CodeGen/TargetPassConfig.h"
31 #include "llvm/CodeGen/TargetRegisterInfo.h"
32 #include "llvm/CodeGen/TargetSubtargetInfo.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/BlockFrequency.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstdint>
45 #include <limits>
46 #include <memory>
47 #include <utility>
48 
49 #define DEBUG_TYPE "regbankselect"
50 
51 using namespace llvm;
52 
53 static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
54     cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
55     cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
56                           "Run the Fast mode (default mapping)"),
57                clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
58                           "Use the Greedy mode (best local mapping)")));
59 
60 char RegBankSelect::ID = 0;
61 
62 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
63                       "Assign register bank of generic virtual registers",
64                       false, false);
65 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
66 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
67 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
68 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
69                     "Assign register bank of generic virtual registers", false,
70                     false)
71 
72 RegBankSelect::RegBankSelect(Mode RunningMode)
73     : MachineFunctionPass(ID), OptMode(RunningMode) {
74   initializeRegBankSelectPass(*PassRegistry::getPassRegistry());
75   if (RegBankSelectMode.getNumOccurrences() != 0) {
76     OptMode = RegBankSelectMode;
77     if (RegBankSelectMode != RunningMode)
78       DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
79   }
80 }
81 
82 void RegBankSelect::init(MachineFunction &MF) {
83   RBI = MF.getSubtarget().getRegBankInfo();
84   assert(RBI && "Cannot work without RegisterBankInfo");
85   MRI = &MF.getRegInfo();
86   TRI = MF.getSubtarget().getRegisterInfo();
87   TPC = &getAnalysis<TargetPassConfig>();
88   if (OptMode != Mode::Fast) {
89     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
90     MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
91   } else {
92     MBFI = nullptr;
93     MBPI = nullptr;
94   }
95   MIRBuilder.setMF(MF);
96   MORE = llvm::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
97 }
98 
99 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
100   if (OptMode != Mode::Fast) {
101     // We could preserve the information from these two analysis but
102     // the APIs do not allow to do so yet.
103     AU.addRequired<MachineBlockFrequencyInfo>();
104     AU.addRequired<MachineBranchProbabilityInfo>();
105   }
106   AU.addRequired<TargetPassConfig>();
107   MachineFunctionPass::getAnalysisUsage(AU);
108 }
109 
110 bool RegBankSelect::assignmentMatch(
111     unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping,
112     bool &OnlyAssign) const {
113   // By default we assume we will have to repair something.
114   OnlyAssign = false;
115   // Each part of a break down needs to end up in a different register.
116   // In other word, Reg assignement does not match.
117   if (ValMapping.NumBreakDowns > 1)
118     return false;
119 
120   const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
121   const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
122   // Reg is free of assignment, a simple assignment will make the
123   // register bank to match.
124   OnlyAssign = CurRegBank == nullptr;
125   DEBUG(dbgs() << "Does assignment already match: ";
126         if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
127         dbgs() << " against ";
128         assert(DesiredRegBrank && "The mapping must be valid");
129         dbgs() << *DesiredRegBrank << '\n';);
130   return CurRegBank == DesiredRegBrank;
131 }
132 
133 bool RegBankSelect::repairReg(
134     MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
135     RegBankSelect::RepairingPlacement &RepairPt,
136     const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) {
137   if (ValMapping.NumBreakDowns != 1 && !TPC->isGlobalISelAbortEnabled())
138     return false;
139   assert(ValMapping.NumBreakDowns == 1 && "Not yet implemented");
140   // An empty range of new register means no repairing.
141   assert(NewVRegs.begin() != NewVRegs.end() && "We should not have to repair");
142 
143   // Assume we are repairing a use and thus, the original reg will be
144   // the source of the repairing.
145   unsigned Src = MO.getReg();
146   unsigned Dst = *NewVRegs.begin();
147 
148   // If we repair a definition, swap the source and destination for
149   // the repairing.
150   if (MO.isDef())
151     std::swap(Src, Dst);
152 
153   assert((RepairPt.getNumInsertPoints() == 1 ||
154           TargetRegisterInfo::isPhysicalRegister(Dst)) &&
155          "We are about to create several defs for Dst");
156 
157   // Build the instruction used to repair, then clone it at the right
158   // places. Avoiding buildCopy bypasses the check that Src and Dst have the
159   // same types because the type is a placeholder when this function is called.
160   MachineInstr *MI =
161       MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY).addDef(Dst).addUse(Src);
162   DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst)
163                << '\n');
164   // TODO:
165   // Check if MI is legal. if not, we need to legalize all the
166   // instructions we are going to insert.
167   std::unique_ptr<MachineInstr *[]> NewInstrs(
168       new MachineInstr *[RepairPt.getNumInsertPoints()]);
169   bool IsFirst = true;
170   unsigned Idx = 0;
171   for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
172     MachineInstr *CurMI;
173     if (IsFirst)
174       CurMI = MI;
175     else
176       CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
177     InsertPt->insert(*CurMI);
178     NewInstrs[Idx++] = CurMI;
179     IsFirst = false;
180   }
181   // TODO:
182   // Legalize NewInstrs if need be.
183   return true;
184 }
185 
186 uint64_t RegBankSelect::getRepairCost(
187     const MachineOperand &MO,
188     const RegisterBankInfo::ValueMapping &ValMapping) const {
189   assert(MO.isReg() && "We should only repair register operand");
190   assert(ValMapping.NumBreakDowns && "Nothing to map??");
191 
192   bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
193   const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
194   // If MO does not have a register bank, we should have just been
195   // able to set one unless we have to break the value down.
196   assert((!IsSameNumOfValues || CurRegBank) && "We should not have to repair");
197   // Def: Val <- NewDefs
198   //     Same number of values: copy
199   //     Different number: Val = build_sequence Defs1, Defs2, ...
200   // Use: NewSources <- Val.
201   //     Same number of values: copy.
202   //     Different number: Src1, Src2, ... =
203   //           extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
204   // We should remember that this value is available somewhere else to
205   // coalesce the value.
206 
207   if (IsSameNumOfValues) {
208     const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
209     // If we repair a definition, swap the source and destination for
210     // the repairing.
211     if (MO.isDef())
212       std::swap(CurRegBank, DesiredRegBrank);
213     // TODO: It may be possible to actually avoid the copy.
214     // If we repair something where the source is defined by a copy
215     // and the source of that copy is on the right bank, we can reuse
216     // it for free.
217     // E.g.,
218     // RegToRepair<BankA> = copy AlternativeSrc<BankB>
219     // = op RegToRepair<BankA>
220     // We can simply propagate AlternativeSrc instead of copying RegToRepair
221     // into a new virtual register.
222     // We would also need to propagate this information in the
223     // repairing placement.
224     unsigned Cost = RBI->copyCost(*DesiredRegBrank, *CurRegBank,
225                                   RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
226     // TODO: use a dedicated constant for ImpossibleCost.
227     if (Cost != std::numeric_limits<unsigned>::max())
228       return Cost;
229     // Return the legalization cost of that repairing.
230   }
231   return std::numeric_limits<unsigned>::max();
232 }
233 
234 const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
235     MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
236     SmallVectorImpl<RepairingPlacement> &RepairPts) {
237   assert(!PossibleMappings.empty() &&
238          "Do not know how to map this instruction");
239 
240   const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
241   MappingCost Cost = MappingCost::ImpossibleCost();
242   SmallVector<RepairingPlacement, 4> LocalRepairPts;
243   for (const RegisterBankInfo::InstructionMapping *CurMapping :
244        PossibleMappings) {
245     MappingCost CurCost =
246         computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
247     if (CurCost < Cost) {
248       DEBUG(dbgs() << "New best: " << CurCost << '\n');
249       Cost = CurCost;
250       BestMapping = CurMapping;
251       RepairPts.clear();
252       for (RepairingPlacement &RepairPt : LocalRepairPts)
253         RepairPts.emplace_back(std::move(RepairPt));
254     }
255   }
256   if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
257     // If none of the mapping worked that means they are all impossible.
258     // Thus, pick the first one and set an impossible repairing point.
259     // It will trigger the failed isel mode.
260     BestMapping = *PossibleMappings.begin();
261     RepairPts.emplace_back(
262         RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
263   } else
264     assert(BestMapping && "No suitable mapping for instruction");
265   return *BestMapping;
266 }
267 
268 void RegBankSelect::tryAvoidingSplit(
269     RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
270     const RegisterBankInfo::ValueMapping &ValMapping) const {
271   const MachineInstr &MI = *MO.getParent();
272   assert(RepairPt.hasSplit() && "We should not have to adjust for split");
273   // Splitting should only occur for PHIs or between terminators,
274   // because we only do local repairing.
275   assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
276 
277   assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
278          "Repairing placement does not match operand");
279 
280   // If we need splitting for phis, that means it is because we
281   // could not find an insertion point before the terminators of
282   // the predecessor block for this argument. In other words,
283   // the input value is defined by one of the terminators.
284   assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
285 
286   // We split to repair the use of a phi or a terminator.
287   if (!MO.isDef()) {
288     if (MI.isTerminator()) {
289       assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
290              "Need to split for the first terminator?!");
291     } else {
292       // For the PHI case, the split may not be actually required.
293       // In the copy case, a phi is already a copy on the incoming edge,
294       // therefore there is no need to split.
295       if (ValMapping.NumBreakDowns == 1)
296         // This is a already a copy, there is nothing to do.
297         RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
298     }
299     return;
300   }
301 
302   // At this point, we need to repair a defintion of a terminator.
303 
304   // Technically we need to fix the def of MI on all outgoing
305   // edges of MI to keep the repairing local. In other words, we
306   // will create several definitions of the same register. This
307   // does not work for SSA unless that definition is a physical
308   // register.
309   // However, there are other cases where we can get away with
310   // that while still keeping the repairing local.
311   assert(MI.isTerminator() && MO.isDef() &&
312          "This code is for the def of a terminator");
313 
314   // Since we use RPO traversal, if we need to repair a definition
315   // this means this definition could be:
316   // 1. Used by PHIs (i.e., this VReg has been visited as part of the
317   //    uses of a phi.), or
318   // 2. Part of a target specific instruction (i.e., the target applied
319   //    some register class constraints when creating the instruction.)
320   // If the constraints come for #2, the target said that another mapping
321   // is supported so we may just drop them. Indeed, if we do not change
322   // the number of registers holding that value, the uses will get fixed
323   // when we get to them.
324   // Uses in PHIs may have already been proceeded though.
325   // If the constraints come for #1, then, those are weak constraints and
326   // no actual uses may rely on them. However, the problem remains mainly
327   // the same as for #2. If the value stays in one register, we could
328   // just switch the register bank of the definition, but we would need to
329   // account for a repairing cost for each phi we silently change.
330   //
331   // In any case, if the value needs to be broken down into several
332   // registers, the repairing is not local anymore as we need to patch
333   // every uses to rebuild the value in just one register.
334   //
335   // To summarize:
336   // - If the value is in a physical register, we can do the split and
337   //   fix locally.
338   // Otherwise if the value is in a virtual register:
339   // - If the value remains in one register, we do not have to split
340   //   just switching the register bank would do, but we need to account
341   //   in the repairing cost all the phi we changed.
342   // - If the value spans several registers, then we cannot do a local
343   //   repairing.
344 
345   // Check if this is a physical or virtual register.
346   unsigned Reg = MO.getReg();
347   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
348     // We are going to split every outgoing edges.
349     // Check that this is possible.
350     // FIXME: The machine representation is currently broken
351     // since it also several terminators in one basic block.
352     // Because of that we would technically need a way to get
353     // the targets of just one terminator to know which edges
354     // we have to split.
355     // Assert that we do not hit the ill-formed representation.
356 
357     // If there are other terminators before that one, some of
358     // the outgoing edges may not be dominated by this definition.
359     assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
360            "Do not know which outgoing edges are relevant");
361     const MachineInstr *Next = MI.getNextNode();
362     assert((!Next || Next->isUnconditionalBranch()) &&
363            "Do not know where each terminator ends up");
364     if (Next)
365       // If the next terminator uses Reg, this means we have
366       // to split right after MI and thus we need a way to ask
367       // which outgoing edges are affected.
368       assert(!Next->readsRegister(Reg) && "Need to split between terminators");
369     // We will split all the edges and repair there.
370   } else {
371     // This is a virtual register defined by a terminator.
372     if (ValMapping.NumBreakDowns == 1) {
373       // There is nothing to repair, but we may actually lie on
374       // the repairing cost because of the PHIs already proceeded
375       // as already stated.
376       // Though the code will be correct.
377       assert(false && "Repairing cost may not be accurate");
378     } else {
379       // We need to do non-local repairing. Basically, patch all
380       // the uses (i.e., phis) that we already proceeded.
381       // For now, just say this mapping is not possible.
382       RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
383     }
384   }
385 }
386 
387 RegBankSelect::MappingCost RegBankSelect::computeMapping(
388     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
389     SmallVectorImpl<RepairingPlacement> &RepairPts,
390     const RegBankSelect::MappingCost *BestCost) {
391   assert((MBFI || !BestCost) && "Costs comparison require MBFI");
392 
393   if (!InstrMapping.isValid())
394     return MappingCost::ImpossibleCost();
395 
396   // If mapped with InstrMapping, MI will have the recorded cost.
397   MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
398   bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
399   assert(!Saturated && "Possible mapping saturated the cost");
400   DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
401   DEBUG(dbgs() << "With: " << InstrMapping << '\n');
402   RepairPts.clear();
403   if (BestCost && Cost > *BestCost) {
404     DEBUG(dbgs() << "Mapping is too expensive from the start\n");
405     return Cost;
406   }
407 
408   // Moreover, to realize this mapping, the register bank of each operand must
409   // match this mapping. In other words, we may need to locally reassign the
410   // register banks. Account for that repairing cost as well.
411   // In this context, local means in the surrounding of MI.
412   for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
413        OpIdx != EndOpIdx; ++OpIdx) {
414     const MachineOperand &MO = MI.getOperand(OpIdx);
415     if (!MO.isReg())
416       continue;
417     unsigned Reg = MO.getReg();
418     if (!Reg)
419       continue;
420     DEBUG(dbgs() << "Opd" << OpIdx << '\n');
421     const RegisterBankInfo::ValueMapping &ValMapping =
422         InstrMapping.getOperandMapping(OpIdx);
423     // If Reg is already properly mapped, this is free.
424     bool Assign;
425     if (assignmentMatch(Reg, ValMapping, Assign)) {
426       DEBUG(dbgs() << "=> is free (match).\n");
427       continue;
428     }
429     if (Assign) {
430       DEBUG(dbgs() << "=> is free (simple assignment).\n");
431       RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
432                                                 RepairingPlacement::Reassign));
433       continue;
434     }
435 
436     // Find the insertion point for the repairing code.
437     RepairPts.emplace_back(
438         RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
439     RepairingPlacement &RepairPt = RepairPts.back();
440 
441     // If we need to split a basic block to materialize this insertion point,
442     // we may give a higher cost to this mapping.
443     // Nevertheless, we may get away with the split, so try that first.
444     if (RepairPt.hasSplit())
445       tryAvoidingSplit(RepairPt, MO, ValMapping);
446 
447     // Check that the materialization of the repairing is possible.
448     if (!RepairPt.canMaterialize()) {
449       DEBUG(dbgs() << "Mapping involves impossible repairing\n");
450       return MappingCost::ImpossibleCost();
451     }
452 
453     // Account for the split cost and repair cost.
454     // Unless the cost is already saturated or we do not care about the cost.
455     if (!BestCost || Saturated)
456       continue;
457 
458     // To get accurate information we need MBFI and MBPI.
459     // Thus, if we end up here this information should be here.
460     assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
461 
462     // FIXME: We will have to rework the repairing cost model.
463     // The repairing cost depends on the register bank that MO has.
464     // However, when we break down the value into different values,
465     // MO may not have a register bank while still needing repairing.
466     // For the fast mode, we don't compute the cost so that is fine,
467     // but still for the repairing code, we will have to make a choice.
468     // For the greedy mode, we should choose greedily what is the best
469     // choice based on the next use of MO.
470 
471     // Sums up the repairing cost of MO at each insertion point.
472     uint64_t RepairCost = getRepairCost(MO, ValMapping);
473 
474     // This is an impossible to repair cost.
475     if (RepairCost == std::numeric_limits<unsigned>::max())
476       continue;
477 
478     // Bias used for splitting: 5%.
479     const uint64_t PercentageForBias = 5;
480     uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
481     // We should not need more than a couple of instructions to repair
482     // an assignment. In other words, the computation should not
483     // overflow because the repairing cost is free of basic block
484     // frequency.
485     assert(((RepairCost < RepairCost * PercentageForBias) &&
486             (RepairCost * PercentageForBias <
487              RepairCost * PercentageForBias + 99)) &&
488            "Repairing involves more than a billion of instructions?!");
489     for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
490       assert(InsertPt->canMaterialize() && "We should not have made it here");
491       // We will applied some basic block frequency and those uses uint64_t.
492       if (!InsertPt->isSplit())
493         Saturated = Cost.addLocalCost(RepairCost);
494       else {
495         uint64_t CostForInsertPt = RepairCost;
496         // Again we shouldn't overflow here givent that
497         // CostForInsertPt is frequency free at this point.
498         assert(CostForInsertPt + Bias > CostForInsertPt &&
499                "Repairing + split bias overflows");
500         CostForInsertPt += Bias;
501         uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
502         // Check if we just overflowed.
503         if ((Saturated = PtCost < CostForInsertPt))
504           Cost.saturate();
505         else
506           Saturated = Cost.addNonLocalCost(PtCost);
507       }
508 
509       // Stop looking into what it takes to repair, this is already
510       // too expensive.
511       if (BestCost && Cost > *BestCost) {
512         DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
513         return Cost;
514       }
515 
516       // No need to accumulate more cost information.
517       // We need to still gather the repairing information though.
518       if (Saturated)
519         break;
520     }
521   }
522   DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
523   return Cost;
524 }
525 
526 bool RegBankSelect::applyMapping(
527     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
528     SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
529   // OpdMapper will hold all the information needed for the rewritting.
530   RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
531 
532   // First, place the repairing code.
533   for (RepairingPlacement &RepairPt : RepairPts) {
534     if (!RepairPt.canMaterialize() ||
535         RepairPt.getKind() == RepairingPlacement::Impossible)
536       return false;
537     assert(RepairPt.getKind() != RepairingPlacement::None &&
538            "This should not make its way in the list");
539     unsigned OpIdx = RepairPt.getOpIdx();
540     MachineOperand &MO = MI.getOperand(OpIdx);
541     const RegisterBankInfo::ValueMapping &ValMapping =
542         InstrMapping.getOperandMapping(OpIdx);
543     unsigned Reg = MO.getReg();
544 
545     switch (RepairPt.getKind()) {
546     case RepairingPlacement::Reassign:
547       assert(ValMapping.NumBreakDowns == 1 &&
548              "Reassignment should only be for simple mapping");
549       MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
550       break;
551     case RepairingPlacement::Insert:
552       OpdMapper.createVRegs(OpIdx);
553       if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
554         return false;
555       break;
556     default:
557       llvm_unreachable("Other kind should not happen");
558     }
559   }
560 
561   // Second, rewrite the instruction.
562   DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
563   RBI->applyMapping(OpdMapper);
564 
565   return true;
566 }
567 
568 bool RegBankSelect::assignInstr(MachineInstr &MI) {
569   DEBUG(dbgs() << "Assign: " << MI);
570   // Remember the repairing placement for all the operands.
571   SmallVector<RepairingPlacement, 4> RepairPts;
572 
573   const RegisterBankInfo::InstructionMapping *BestMapping;
574   if (OptMode == RegBankSelect::Mode::Fast) {
575     BestMapping = &RBI->getInstrMapping(MI);
576     MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
577     (void)DefaultCost;
578     if (DefaultCost == MappingCost::ImpossibleCost())
579       return false;
580   } else {
581     RegisterBankInfo::InstructionMappings PossibleMappings =
582         RBI->getInstrPossibleMappings(MI);
583     if (PossibleMappings.empty())
584       return false;
585     BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
586   }
587   // Make sure the mapping is valid for MI.
588   assert(BestMapping->verify(MI) && "Invalid instruction mapping");
589 
590   DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
591 
592   // After this call, MI may not be valid anymore.
593   // Do not use it.
594   return applyMapping(MI, *BestMapping, RepairPts);
595 }
596 
597 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
598   // If the ISel pipeline failed, do not bother running that pass.
599   if (MF.getProperties().hasProperty(
600           MachineFunctionProperties::Property::FailedISel))
601     return false;
602 
603   DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
604   const Function &F = MF.getFunction();
605   Mode SaveOptMode = OptMode;
606   if (F.hasFnAttribute(Attribute::OptimizeNone))
607     OptMode = Mode::Fast;
608   init(MF);
609 
610 #ifndef NDEBUG
611   // Check that our input is fully legal: we require the function to have the
612   // Legalized property, so it should be.
613   // FIXME: This should be in the MachineVerifier.
614   if (!DisableGISelLegalityCheck)
615     if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
616       reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
617                          "instruction is not legal", *MI);
618       return false;
619     }
620 #endif
621 
622   // Walk the function and assign register banks to all operands.
623   // Use a RPOT to make sure all registers are assigned before we choose
624   // the best mapping of the current instruction.
625   ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
626   for (MachineBasicBlock *MBB : RPOT) {
627     // Set a sensible insertion point so that subsequent calls to
628     // MIRBuilder.
629     MIRBuilder.setMBB(*MBB);
630     for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end();
631          MII != End;) {
632       // MI might be invalidated by the assignment, so move the
633       // iterator before hand.
634       MachineInstr &MI = *MII++;
635 
636       // Ignore target-specific instructions: they should use proper regclasses.
637       if (isTargetSpecificOpcode(MI.getOpcode()))
638         continue;
639 
640       if (!assignInstr(MI)) {
641         reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
642                            "unable to map instruction", MI);
643         return false;
644       }
645     }
646   }
647   OptMode = SaveOptMode;
648   return false;
649 }
650 
651 //------------------------------------------------------------------------------
652 //                  Helper Classes Implementation
653 //------------------------------------------------------------------------------
654 RegBankSelect::RepairingPlacement::RepairingPlacement(
655     MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
656     RepairingPlacement::RepairingKind Kind)
657     // Default is, we are going to insert code to repair OpIdx.
658     : Kind(Kind), OpIdx(OpIdx),
659       CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
660   const MachineOperand &MO = MI.getOperand(OpIdx);
661   assert(MO.isReg() && "Trying to repair a non-reg operand");
662 
663   if (Kind != RepairingKind::Insert)
664     return;
665 
666   // Repairings for definitions happen after MI, uses happen before.
667   bool Before = !MO.isDef();
668 
669   // Check if we are done with MI.
670   if (!MI.isPHI() && !MI.isTerminator()) {
671     addInsertPoint(MI, Before);
672     // We are done with the initialization.
673     return;
674   }
675 
676   // Now, look for the special cases.
677   if (MI.isPHI()) {
678     // - PHI must be the first instructions:
679     //   * Before, we have to split the related incoming edge.
680     //   * After, move the insertion point past the last phi.
681     if (!Before) {
682       MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
683       if (It != MI.getParent()->end())
684         addInsertPoint(*It, /*Before*/ true);
685       else
686         addInsertPoint(*(--It), /*Before*/ false);
687       return;
688     }
689     // We repair a use of a phi, we may need to split the related edge.
690     MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
691     // Check if we can move the insertion point prior to the
692     // terminators of the predecessor.
693     unsigned Reg = MO.getReg();
694     MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
695     for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
696       if (It->modifiesRegister(Reg, &TRI)) {
697         // We cannot hoist the repairing code in the predecessor.
698         // Split the edge.
699         addInsertPoint(Pred, *MI.getParent());
700         return;
701       }
702     // At this point, we can insert in Pred.
703 
704     // - If It is invalid, Pred is empty and we can insert in Pred
705     //   wherever we want.
706     // - If It is valid, It is the first non-terminator, insert after It.
707     if (It == Pred.end())
708       addInsertPoint(Pred, /*Beginning*/ false);
709     else
710       addInsertPoint(*It, /*Before*/ false);
711   } else {
712     // - Terminators must be the last instructions:
713     //   * Before, move the insert point before the first terminator.
714     //   * After, we have to split the outcoming edges.
715     unsigned Reg = MO.getReg();
716     if (Before) {
717       // Check whether Reg is defined by any terminator.
718       MachineBasicBlock::iterator It = MI;
719       for (auto Begin = MI.getParent()->begin();
720            --It != Begin && It->isTerminator();)
721         if (It->modifiesRegister(Reg, &TRI)) {
722           // Insert the repairing code right after the definition.
723           addInsertPoint(*It, /*Before*/ false);
724           return;
725         }
726       addInsertPoint(*It, /*Before*/ true);
727       return;
728     }
729     // Make sure Reg is not redefined by other terminators, otherwise
730     // we do not know how to split.
731     for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
732          ++It != End;)
733       // The machine verifier should reject this kind of code.
734       assert(It->modifiesRegister(Reg, &TRI) && "Do not know where to split");
735     // Split each outcoming edges.
736     MachineBasicBlock &Src = *MI.getParent();
737     for (auto &Succ : Src.successors())
738       addInsertPoint(Src, Succ);
739   }
740 }
741 
742 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
743                                                        bool Before) {
744   addInsertPoint(*new InstrInsertPoint(MI, Before));
745 }
746 
747 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
748                                                        bool Beginning) {
749   addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
750 }
751 
752 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
753                                                        MachineBasicBlock &Dst) {
754   addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
755 }
756 
757 void RegBankSelect::RepairingPlacement::addInsertPoint(
758     RegBankSelect::InsertPoint &Point) {
759   CanMaterialize &= Point.canMaterialize();
760   HasSplit |= Point.isSplit();
761   InsertPoints.emplace_back(&Point);
762 }
763 
764 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
765                                                   bool Before)
766     : InsertPoint(), Instr(Instr), Before(Before) {
767   // Since we do not support splitting, we do not need to update
768   // liveness and such, so do not do anything with P.
769   assert((!Before || !Instr.isPHI()) &&
770          "Splitting before phis requires more points");
771   assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
772          "Splitting between phis does not make sense");
773 }
774 
775 void RegBankSelect::InstrInsertPoint::materialize() {
776   if (isSplit()) {
777     // Slice and return the beginning of the new block.
778     // If we need to split between the terminators, we theoritically
779     // need to know where the first and second set of terminators end
780     // to update the successors properly.
781     // Now, in pratice, we should have a maximum of 2 branch
782     // instructions; one conditional and one unconditional. Therefore
783     // we know how to update the successor by looking at the target of
784     // the unconditional branch.
785     // If we end up splitting at some point, then, we should update
786     // the liveness information and such. I.e., we would need to
787     // access P here.
788     // The machine verifier should actually make sure such cases
789     // cannot happen.
790     llvm_unreachable("Not yet implemented");
791   }
792   // Otherwise the insertion point is just the current or next
793   // instruction depending on Before. I.e., there is nothing to do
794   // here.
795 }
796 
797 bool RegBankSelect::InstrInsertPoint::isSplit() const {
798   // If the insertion point is after a terminator, we need to split.
799   if (!Before)
800     return Instr.isTerminator();
801   // If we insert before an instruction that is after a terminator,
802   // we are still after a terminator.
803   return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
804 }
805 
806 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
807   // Even if we need to split, because we insert between terminators,
808   // this split has actually the same frequency as the instruction.
809   const MachineBlockFrequencyInfo *MBFI =
810       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
811   if (!MBFI)
812     return 1;
813   return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
814 }
815 
816 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
817   const MachineBlockFrequencyInfo *MBFI =
818       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
819   if (!MBFI)
820     return 1;
821   return MBFI->getBlockFreq(&MBB).getFrequency();
822 }
823 
824 void RegBankSelect::EdgeInsertPoint::materialize() {
825   // If we end up repairing twice at the same place before materializing the
826   // insertion point, we may think we have to split an edge twice.
827   // We should have a factory for the insert point such that identical points
828   // are the same instance.
829   assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
830          "This point has already been split");
831   MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
832   assert(NewBB && "Invalid call to materialize");
833   // We reuse the destination block to hold the information of the new block.
834   DstOrSplit = NewBB;
835 }
836 
837 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
838   const MachineBlockFrequencyInfo *MBFI =
839       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
840   if (!MBFI)
841     return 1;
842   if (WasMaterialized)
843     return MBFI->getBlockFreq(DstOrSplit).getFrequency();
844 
845   const MachineBranchProbabilityInfo *MBPI =
846       P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
847   if (!MBPI)
848     return 1;
849   // The basic block will be on the edge.
850   return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
851       .getFrequency();
852 }
853 
854 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
855   // If this is not a critical edge, we should not have used this insert
856   // point. Indeed, either the successor or the predecessor should
857   // have do.
858   assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
859          "Edge is not critical");
860   return Src.canSplitCriticalEdge(DstOrSplit);
861 }
862 
863 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
864     : LocalFreq(LocalFreq.getFrequency()) {}
865 
866 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
867   // Check if this overflows.
868   if (LocalCost + Cost < LocalCost) {
869     saturate();
870     return true;
871   }
872   LocalCost += Cost;
873   return isSaturated();
874 }
875 
876 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
877   // Check if this overflows.
878   if (NonLocalCost + Cost < NonLocalCost) {
879     saturate();
880     return true;
881   }
882   NonLocalCost += Cost;
883   return isSaturated();
884 }
885 
886 bool RegBankSelect::MappingCost::isSaturated() const {
887   return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
888          LocalFreq == UINT64_MAX;
889 }
890 
891 void RegBankSelect::MappingCost::saturate() {
892   *this = ImpossibleCost();
893   --LocalCost;
894 }
895 
896 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
897   return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
898 }
899 
900 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
901   // Sort out the easy cases.
902   if (*this == Cost)
903     return false;
904   // If one is impossible to realize the other is cheaper unless it is
905   // impossible as well.
906   if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
907     return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
908   // If one is saturated the other is cheaper, unless it is saturated
909   // as well.
910   if (isSaturated() || Cost.isSaturated())
911     return isSaturated() < Cost.isSaturated();
912   // At this point we know both costs hold sensible values.
913 
914   // If both values have a different base frequency, there is no much
915   // we can do but to scale everything.
916   // However, if they have the same base frequency we can avoid making
917   // complicated computation.
918   uint64_t ThisLocalAdjust;
919   uint64_t OtherLocalAdjust;
920   if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
921 
922     // At this point, we know the local costs are comparable.
923     // Do the case that do not involve potential overflow first.
924     if (NonLocalCost == Cost.NonLocalCost)
925       // Since the non-local costs do not discriminate on the result,
926       // just compare the local costs.
927       return LocalCost < Cost.LocalCost;
928 
929     // The base costs are comparable so we may only keep the relative
930     // value to increase our chances of avoiding overflows.
931     ThisLocalAdjust = 0;
932     OtherLocalAdjust = 0;
933     if (LocalCost < Cost.LocalCost)
934       OtherLocalAdjust = Cost.LocalCost - LocalCost;
935     else
936       ThisLocalAdjust = LocalCost - Cost.LocalCost;
937   } else {
938     ThisLocalAdjust = LocalCost;
939     OtherLocalAdjust = Cost.LocalCost;
940   }
941 
942   // The non-local costs are comparable, just keep the relative value.
943   uint64_t ThisNonLocalAdjust = 0;
944   uint64_t OtherNonLocalAdjust = 0;
945   if (NonLocalCost < Cost.NonLocalCost)
946     OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
947   else
948     ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
949   // Scale everything to make them comparable.
950   uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
951   // Check for overflow on that operation.
952   bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
953                                            ThisScaledCost < LocalFreq);
954   uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
955   // Check for overflow on the last operation.
956   bool OtherOverflows =
957       OtherLocalAdjust &&
958       (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
959   // Add the non-local costs.
960   ThisOverflows |= ThisNonLocalAdjust &&
961                    ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
962   ThisScaledCost += ThisNonLocalAdjust;
963   OtherOverflows |= OtherNonLocalAdjust &&
964                     OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
965   OtherScaledCost += OtherNonLocalAdjust;
966   // If both overflows, we cannot compare without additional
967   // precision, e.g., APInt. Just give up on that case.
968   if (ThisOverflows && OtherOverflows)
969     return false;
970   // If one overflows but not the other, we can still compare.
971   if (ThisOverflows || OtherOverflows)
972     return ThisOverflows < OtherOverflows;
973   // Otherwise, just compare the values.
974   return ThisScaledCost < OtherScaledCost;
975 }
976 
977 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
978   return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
979          LocalFreq == Cost.LocalFreq;
980 }
981 
982 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
983 LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
984   print(dbgs());
985   dbgs() << '\n';
986 }
987 #endif
988 
989 void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
990   if (*this == ImpossibleCost()) {
991     OS << "impossible";
992     return;
993   }
994   if (isSaturated()) {
995     OS << "saturated";
996     return;
997   }
998   OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;
999 }
1000