1 //===- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect -*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements the RegBankSelect class. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 14 #include "llvm/ADT/PostOrderIterator.h" 15 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 16 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 17 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 18 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetPassConfig.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/Support/BlockFrequency.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Target/TargetSubtargetInfo.h" 26 27 #define DEBUG_TYPE "regbankselect" 28 29 using namespace llvm; 30 31 static cl::opt<RegBankSelect::Mode> RegBankSelectMode( 32 cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional, 33 cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast", 34 "Run the Fast mode (default mapping)"), 35 clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy", 36 "Use the Greedy mode (best local mapping)"))); 37 38 char RegBankSelect::ID = 0; 39 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE, 40 "Assign register bank of generic virtual registers", 41 false, false); 42 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 43 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 44 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 45 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, 46 "Assign register bank of generic virtual registers", false, 47 false) 48 49 RegBankSelect::RegBankSelect(Mode RunningMode) 50 : MachineFunctionPass(ID), RBI(nullptr), MRI(nullptr), TRI(nullptr), 51 MBFI(nullptr), MBPI(nullptr), OptMode(RunningMode) { 52 initializeRegBankSelectPass(*PassRegistry::getPassRegistry()); 53 if (RegBankSelectMode.getNumOccurrences() != 0) { 54 OptMode = RegBankSelectMode; 55 if (RegBankSelectMode != RunningMode) 56 DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n"); 57 } 58 } 59 60 void RegBankSelect::init(MachineFunction &MF) { 61 RBI = MF.getSubtarget().getRegBankInfo(); 62 assert(RBI && "Cannot work without RegisterBankInfo"); 63 MRI = &MF.getRegInfo(); 64 TRI = MF.getSubtarget().getRegisterInfo(); 65 TPC = &getAnalysis<TargetPassConfig>(); 66 if (OptMode != Mode::Fast) { 67 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 68 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 69 } else { 70 MBFI = nullptr; 71 MBPI = nullptr; 72 } 73 MIRBuilder.setMF(MF); 74 } 75 76 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const { 77 if (OptMode != Mode::Fast) { 78 // We could preserve the information from these two analysis but 79 // the APIs do not allow to do so yet. 80 AU.addRequired<MachineBlockFrequencyInfo>(); 81 AU.addRequired<MachineBranchProbabilityInfo>(); 82 } 83 AU.addRequired<TargetPassConfig>(); 84 MachineFunctionPass::getAnalysisUsage(AU); 85 } 86 87 bool RegBankSelect::assignmentMatch( 88 unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping, 89 bool &OnlyAssign) const { 90 // By default we assume we will have to repair something. 91 OnlyAssign = false; 92 // Each part of a break down needs to end up in a different register. 93 // In other word, Reg assignement does not match. 94 if (ValMapping.NumBreakDowns > 1) 95 return false; 96 97 const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI); 98 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank; 99 // Reg is free of assignment, a simple assignment will make the 100 // register bank to match. 101 OnlyAssign = CurRegBank == nullptr; 102 DEBUG(dbgs() << "Does assignment already match: "; 103 if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none"; 104 dbgs() << " against "; 105 assert(DesiredRegBrank && "The mapping must be valid"); 106 dbgs() << *DesiredRegBrank << '\n';); 107 return CurRegBank == DesiredRegBrank; 108 } 109 110 bool RegBankSelect::repairReg( 111 MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping, 112 RegBankSelect::RepairingPlacement &RepairPt, 113 const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) { 114 if (ValMapping.NumBreakDowns != 1 && !TPC->isGlobalISelAbortEnabled()) 115 return false; 116 assert(ValMapping.NumBreakDowns == 1 && "Not yet implemented"); 117 // An empty range of new register means no repairing. 118 assert(NewVRegs.begin() != NewVRegs.end() && "We should not have to repair"); 119 120 // Assume we are repairing a use and thus, the original reg will be 121 // the source of the repairing. 122 unsigned Src = MO.getReg(); 123 unsigned Dst = *NewVRegs.begin(); 124 125 // If we repair a definition, swap the source and destination for 126 // the repairing. 127 if (MO.isDef()) 128 std::swap(Src, Dst); 129 130 assert((RepairPt.getNumInsertPoints() == 1 || 131 TargetRegisterInfo::isPhysicalRegister(Dst)) && 132 "We are about to create several defs for Dst"); 133 134 // Build the instruction used to repair, then clone it at the right places. 135 MachineInstr *MI = MIRBuilder.buildCopy(Dst, Src); 136 MI->removeFromParent(); 137 DEBUG(dbgs() << "Copy: " << PrintReg(Src) << " to: " << PrintReg(Dst) 138 << '\n'); 139 // TODO: 140 // Check if MI is legal. if not, we need to legalize all the 141 // instructions we are going to insert. 142 std::unique_ptr<MachineInstr *[]> NewInstrs( 143 new MachineInstr *[RepairPt.getNumInsertPoints()]); 144 bool IsFirst = true; 145 unsigned Idx = 0; 146 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 147 MachineInstr *CurMI; 148 if (IsFirst) 149 CurMI = MI; 150 else 151 CurMI = MIRBuilder.getMF().CloneMachineInstr(MI); 152 InsertPt->insert(*CurMI); 153 NewInstrs[Idx++] = CurMI; 154 IsFirst = false; 155 } 156 // TODO: 157 // Legalize NewInstrs if need be. 158 return true; 159 } 160 161 uint64_t RegBankSelect::getRepairCost( 162 const MachineOperand &MO, 163 const RegisterBankInfo::ValueMapping &ValMapping) const { 164 assert(MO.isReg() && "We should only repair register operand"); 165 assert(ValMapping.NumBreakDowns && "Nothing to map??"); 166 167 bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1; 168 const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI); 169 // If MO does not have a register bank, we should have just been 170 // able to set one unless we have to break the value down. 171 assert((!IsSameNumOfValues || CurRegBank) && "We should not have to repair"); 172 // Def: Val <- NewDefs 173 // Same number of values: copy 174 // Different number: Val = build_sequence Defs1, Defs2, ... 175 // Use: NewSources <- Val. 176 // Same number of values: copy. 177 // Different number: Src1, Src2, ... = 178 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ... 179 // We should remember that this value is available somewhere else to 180 // coalesce the value. 181 182 if (IsSameNumOfValues) { 183 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank; 184 // If we repair a definition, swap the source and destination for 185 // the repairing. 186 if (MO.isDef()) 187 std::swap(CurRegBank, DesiredRegBrank); 188 // TODO: It may be possible to actually avoid the copy. 189 // If we repair something where the source is defined by a copy 190 // and the source of that copy is on the right bank, we can reuse 191 // it for free. 192 // E.g., 193 // RegToRepair<BankA> = copy AlternativeSrc<BankB> 194 // = op RegToRepair<BankA> 195 // We can simply propagate AlternativeSrc instead of copying RegToRepair 196 // into a new virtual register. 197 // We would also need to propagate this information in the 198 // repairing placement. 199 unsigned Cost = 200 RBI->copyCost(*DesiredRegBrank, *CurRegBank, 201 RegisterBankInfo::getSizeInBits(MO.getReg(), *MRI, *TRI)); 202 // TODO: use a dedicated constant for ImpossibleCost. 203 if (Cost != UINT_MAX) 204 return Cost; 205 assert(!TPC->isGlobalISelAbortEnabled() && 206 "Legalization not available yet"); 207 // Return the legalization cost of that repairing. 208 } 209 assert(!TPC->isGlobalISelAbortEnabled() && 210 "Complex repairing not implemented yet"); 211 return UINT_MAX; 212 } 213 214 RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping( 215 MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings, 216 SmallVectorImpl<RepairingPlacement> &RepairPts) { 217 assert(!PossibleMappings.empty() && 218 "Do not know how to map this instruction"); 219 220 RegisterBankInfo::InstructionMapping *BestMapping = nullptr; 221 MappingCost Cost = MappingCost::ImpossibleCost(); 222 SmallVector<RepairingPlacement, 4> LocalRepairPts; 223 for (RegisterBankInfo::InstructionMapping &CurMapping : PossibleMappings) { 224 MappingCost CurCost = computeMapping(MI, CurMapping, LocalRepairPts, &Cost); 225 if (CurCost < Cost) { 226 DEBUG(dbgs() << "New best: " << CurCost << '\n'); 227 Cost = CurCost; 228 BestMapping = &CurMapping; 229 RepairPts.clear(); 230 for (RepairingPlacement &RepairPt : LocalRepairPts) 231 RepairPts.emplace_back(std::move(RepairPt)); 232 } 233 } 234 if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) { 235 // If none of the mapping worked that means they are all impossible. 236 // Thus, pick the first one and set an impossible repairing point. 237 // It will trigger the failed isel mode. 238 BestMapping = &(*PossibleMappings.begin()); 239 RepairPts.emplace_back( 240 RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible)); 241 } else 242 assert(BestMapping && "No suitable mapping for instruction"); 243 return *BestMapping; 244 } 245 246 void RegBankSelect::tryAvoidingSplit( 247 RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO, 248 const RegisterBankInfo::ValueMapping &ValMapping) const { 249 const MachineInstr &MI = *MO.getParent(); 250 assert(RepairPt.hasSplit() && "We should not have to adjust for split"); 251 // Splitting should only occur for PHIs or between terminators, 252 // because we only do local repairing. 253 assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?"); 254 255 assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO && 256 "Repairing placement does not match operand"); 257 258 // If we need splitting for phis, that means it is because we 259 // could not find an insertion point before the terminators of 260 // the predecessor block for this argument. In other words, 261 // the input value is defined by one of the terminators. 262 assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?"); 263 264 // We split to repair the use of a phi or a terminator. 265 if (!MO.isDef()) { 266 if (MI.isTerminator()) { 267 assert(&MI != &(*MI.getParent()->getFirstTerminator()) && 268 "Need to split for the first terminator?!"); 269 } else { 270 // For the PHI case, the split may not be actually required. 271 // In the copy case, a phi is already a copy on the incoming edge, 272 // therefore there is no need to split. 273 if (ValMapping.NumBreakDowns == 1) 274 // This is a already a copy, there is nothing to do. 275 RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign); 276 } 277 return; 278 } 279 280 // At this point, we need to repair a defintion of a terminator. 281 282 // Technically we need to fix the def of MI on all outgoing 283 // edges of MI to keep the repairing local. In other words, we 284 // will create several definitions of the same register. This 285 // does not work for SSA unless that definition is a physical 286 // register. 287 // However, there are other cases where we can get away with 288 // that while still keeping the repairing local. 289 assert(MI.isTerminator() && MO.isDef() && 290 "This code is for the def of a terminator"); 291 292 // Since we use RPO traversal, if we need to repair a definition 293 // this means this definition could be: 294 // 1. Used by PHIs (i.e., this VReg has been visited as part of the 295 // uses of a phi.), or 296 // 2. Part of a target specific instruction (i.e., the target applied 297 // some register class constraints when creating the instruction.) 298 // If the constraints come for #2, the target said that another mapping 299 // is supported so we may just drop them. Indeed, if we do not change 300 // the number of registers holding that value, the uses will get fixed 301 // when we get to them. 302 // Uses in PHIs may have already been proceeded though. 303 // If the constraints come for #1, then, those are weak constraints and 304 // no actual uses may rely on them. However, the problem remains mainly 305 // the same as for #2. If the value stays in one register, we could 306 // just switch the register bank of the definition, but we would need to 307 // account for a repairing cost for each phi we silently change. 308 // 309 // In any case, if the value needs to be broken down into several 310 // registers, the repairing is not local anymore as we need to patch 311 // every uses to rebuild the value in just one register. 312 // 313 // To summarize: 314 // - If the value is in a physical register, we can do the split and 315 // fix locally. 316 // Otherwise if the value is in a virtual register: 317 // - If the value remains in one register, we do not have to split 318 // just switching the register bank would do, but we need to account 319 // in the repairing cost all the phi we changed. 320 // - If the value spans several registers, then we cannot do a local 321 // repairing. 322 323 // Check if this is a physical or virtual register. 324 unsigned Reg = MO.getReg(); 325 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 326 // We are going to split every outgoing edges. 327 // Check that this is possible. 328 // FIXME: The machine representation is currently broken 329 // since it also several terminators in one basic block. 330 // Because of that we would technically need a way to get 331 // the targets of just one terminator to know which edges 332 // we have to split. 333 // Assert that we do not hit the ill-formed representation. 334 335 // If there are other terminators before that one, some of 336 // the outgoing edges may not be dominated by this definition. 337 assert(&MI == &(*MI.getParent()->getFirstTerminator()) && 338 "Do not know which outgoing edges are relevant"); 339 const MachineInstr *Next = MI.getNextNode(); 340 assert((!Next || Next->isUnconditionalBranch()) && 341 "Do not know where each terminator ends up"); 342 if (Next) 343 // If the next terminator uses Reg, this means we have 344 // to split right after MI and thus we need a way to ask 345 // which outgoing edges are affected. 346 assert(!Next->readsRegister(Reg) && "Need to split between terminators"); 347 // We will split all the edges and repair there. 348 } else { 349 // This is a virtual register defined by a terminator. 350 if (ValMapping.NumBreakDowns == 1) { 351 // There is nothing to repair, but we may actually lie on 352 // the repairing cost because of the PHIs already proceeded 353 // as already stated. 354 // Though the code will be correct. 355 assert(0 && "Repairing cost may not be accurate"); 356 } else { 357 // We need to do non-local repairing. Basically, patch all 358 // the uses (i.e., phis) that we already proceeded. 359 // For now, just say this mapping is not possible. 360 RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible); 361 } 362 } 363 } 364 365 RegBankSelect::MappingCost RegBankSelect::computeMapping( 366 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 367 SmallVectorImpl<RepairingPlacement> &RepairPts, 368 const RegBankSelect::MappingCost *BestCost) { 369 assert((MBFI || !BestCost) && "Costs comparison require MBFI"); 370 371 if (!InstrMapping.isValid()) 372 return MappingCost::ImpossibleCost(); 373 374 // If mapped with InstrMapping, MI will have the recorded cost. 375 MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1); 376 bool Saturated = Cost.addLocalCost(InstrMapping.getCost()); 377 assert(!Saturated && "Possible mapping saturated the cost"); 378 DEBUG(dbgs() << "Evaluating mapping cost for: " << MI); 379 DEBUG(dbgs() << "With: " << InstrMapping << '\n'); 380 RepairPts.clear(); 381 if (BestCost && Cost > *BestCost) { 382 DEBUG(dbgs() << "Mapping is too expensive from the start\n"); 383 return Cost; 384 } 385 386 // Moreover, to realize this mapping, the register bank of each operand must 387 // match this mapping. In other words, we may need to locally reassign the 388 // register banks. Account for that repairing cost as well. 389 // In this context, local means in the surrounding of MI. 390 for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands(); 391 OpIdx != EndOpIdx; ++OpIdx) { 392 const MachineOperand &MO = MI.getOperand(OpIdx); 393 if (!MO.isReg()) 394 continue; 395 unsigned Reg = MO.getReg(); 396 if (!Reg) 397 continue; 398 DEBUG(dbgs() << "Opd" << OpIdx << '\n'); 399 const RegisterBankInfo::ValueMapping &ValMapping = 400 InstrMapping.getOperandMapping(OpIdx); 401 // If Reg is already properly mapped, this is free. 402 bool Assign; 403 if (assignmentMatch(Reg, ValMapping, Assign)) { 404 DEBUG(dbgs() << "=> is free (match).\n"); 405 continue; 406 } 407 if (Assign) { 408 DEBUG(dbgs() << "=> is free (simple assignment).\n"); 409 RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this, 410 RepairingPlacement::Reassign)); 411 continue; 412 } 413 414 // Find the insertion point for the repairing code. 415 RepairPts.emplace_back( 416 RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert)); 417 RepairingPlacement &RepairPt = RepairPts.back(); 418 419 // If we need to split a basic block to materialize this insertion point, 420 // we may give a higher cost to this mapping. 421 // Nevertheless, we may get away with the split, so try that first. 422 if (RepairPt.hasSplit()) 423 tryAvoidingSplit(RepairPt, MO, ValMapping); 424 425 // Check that the materialization of the repairing is possible. 426 if (!RepairPt.canMaterialize()) { 427 DEBUG(dbgs() << "Mapping involves impossible repairing\n"); 428 return MappingCost::ImpossibleCost(); 429 } 430 431 // Account for the split cost and repair cost. 432 // Unless the cost is already saturated or we do not care about the cost. 433 if (!BestCost || Saturated) 434 continue; 435 436 // To get accurate information we need MBFI and MBPI. 437 // Thus, if we end up here this information should be here. 438 assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI"); 439 440 // FIXME: We will have to rework the repairing cost model. 441 // The repairing cost depends on the register bank that MO has. 442 // However, when we break down the value into different values, 443 // MO may not have a register bank while still needing repairing. 444 // For the fast mode, we don't compute the cost so that is fine, 445 // but still for the repairing code, we will have to make a choice. 446 // For the greedy mode, we should choose greedily what is the best 447 // choice based on the next use of MO. 448 449 // Sums up the repairing cost of MO at each insertion point. 450 uint64_t RepairCost = getRepairCost(MO, ValMapping); 451 // Bias used for splitting: 5%. 452 const uint64_t PercentageForBias = 5; 453 uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100; 454 // We should not need more than a couple of instructions to repair 455 // an assignment. In other words, the computation should not 456 // overflow because the repairing cost is free of basic block 457 // frequency. 458 assert(((RepairCost < RepairCost * PercentageForBias) && 459 (RepairCost * PercentageForBias < 460 RepairCost * PercentageForBias + 99)) && 461 "Repairing involves more than a billion of instructions?!"); 462 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 463 assert(InsertPt->canMaterialize() && "We should not have made it here"); 464 // We will applied some basic block frequency and those uses uint64_t. 465 if (!InsertPt->isSplit()) 466 Saturated = Cost.addLocalCost(RepairCost); 467 else { 468 uint64_t CostForInsertPt = RepairCost; 469 // Again we shouldn't overflow here givent that 470 // CostForInsertPt is frequency free at this point. 471 assert(CostForInsertPt + Bias > CostForInsertPt && 472 "Repairing + split bias overflows"); 473 CostForInsertPt += Bias; 474 uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt; 475 // Check if we just overflowed. 476 if ((Saturated = PtCost < CostForInsertPt)) 477 Cost.saturate(); 478 else 479 Saturated = Cost.addNonLocalCost(PtCost); 480 } 481 482 // Stop looking into what it takes to repair, this is already 483 // too expensive. 484 if (BestCost && Cost > *BestCost) { 485 DEBUG(dbgs() << "Mapping is too expensive, stop processing\n"); 486 return Cost; 487 } 488 489 // No need to accumulate more cost information. 490 // We need to still gather the repairing information though. 491 if (Saturated) 492 break; 493 } 494 } 495 DEBUG(dbgs() << "Total cost is: " << Cost << "\n"); 496 return Cost; 497 } 498 499 bool RegBankSelect::applyMapping( 500 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 501 SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) { 502 // OpdMapper will hold all the information needed for the rewritting. 503 RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI); 504 505 // First, place the repairing code. 506 for (RepairingPlacement &RepairPt : RepairPts) { 507 if (!RepairPt.canMaterialize() || 508 RepairPt.getKind() == RepairingPlacement::Impossible) 509 return false; 510 assert(RepairPt.getKind() != RepairingPlacement::None && 511 "This should not make its way in the list"); 512 unsigned OpIdx = RepairPt.getOpIdx(); 513 MachineOperand &MO = MI.getOperand(OpIdx); 514 const RegisterBankInfo::ValueMapping &ValMapping = 515 InstrMapping.getOperandMapping(OpIdx); 516 unsigned Reg = MO.getReg(); 517 518 switch (RepairPt.getKind()) { 519 case RepairingPlacement::Reassign: 520 assert(ValMapping.NumBreakDowns == 1 && 521 "Reassignment should only be for simple mapping"); 522 MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank); 523 break; 524 case RepairingPlacement::Insert: 525 OpdMapper.createVRegs(OpIdx); 526 if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx))) 527 return false; 528 break; 529 default: 530 llvm_unreachable("Other kind should not happen"); 531 } 532 } 533 // Second, rewrite the instruction. 534 DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n'); 535 RBI->applyMapping(OpdMapper); 536 return true; 537 } 538 539 bool RegBankSelect::assignInstr(MachineInstr &MI) { 540 DEBUG(dbgs() << "Assign: " << MI); 541 // Remember the repairing placement for all the operands. 542 SmallVector<RepairingPlacement, 4> RepairPts; 543 544 RegisterBankInfo::InstructionMapping BestMapping; 545 if (OptMode == RegBankSelect::Mode::Fast) { 546 BestMapping = RBI->getInstrMapping(MI); 547 MappingCost DefaultCost = computeMapping(MI, BestMapping, RepairPts); 548 (void)DefaultCost; 549 if (DefaultCost == MappingCost::ImpossibleCost()) 550 return false; 551 } else { 552 RegisterBankInfo::InstructionMappings PossibleMappings = 553 RBI->getInstrPossibleMappings(MI); 554 if (PossibleMappings.empty()) 555 return false; 556 BestMapping = std::move(findBestMapping(MI, PossibleMappings, RepairPts)); 557 } 558 // Make sure the mapping is valid for MI. 559 assert(BestMapping.verify(MI) && "Invalid instruction mapping"); 560 561 DEBUG(dbgs() << "Best Mapping: " << BestMapping << '\n'); 562 563 // After this call, MI may not be valid anymore. 564 // Do not use it. 565 return applyMapping(MI, BestMapping, RepairPts); 566 } 567 568 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) { 569 // If the ISel pipeline failed, do not bother running that pass. 570 if (MF.getProperties().hasProperty( 571 MachineFunctionProperties::Property::FailedISel)) 572 return false; 573 574 DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n'); 575 const Function *F = MF.getFunction(); 576 Mode SaveOptMode = OptMode; 577 if (F->hasFnAttribute(Attribute::OptimizeNone)) 578 OptMode = Mode::Fast; 579 init(MF); 580 581 #ifndef NDEBUG 582 // Check that our input is fully legal: we require the function to have the 583 // Legalized property, so it should be. 584 // FIXME: This should be in the MachineVerifier, but it can't use the 585 // LegalizerInfo as it's currently in the separate GlobalISel library. 586 const MachineRegisterInfo &MRI = MF.getRegInfo(); 587 if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo()) { 588 for (const MachineBasicBlock &MBB : MF) { 589 for (const MachineInstr &MI : MBB) { 590 if (isPreISelGenericOpcode(MI.getOpcode()) && !MLI->isLegal(MI, MRI)) { 591 if (!TPC->isGlobalISelAbortEnabled()) { 592 MF.getProperties().set( 593 MachineFunctionProperties::Property::FailedISel); 594 return false; 595 } 596 std::string ErrStorage; 597 raw_string_ostream Err(ErrStorage); 598 Err << "Instruction is not legal: " << MI << '\n'; 599 report_fatal_error(Err.str()); 600 } 601 } 602 } 603 } 604 #endif 605 606 // Walk the function and assign register banks to all operands. 607 // Use a RPOT to make sure all registers are assigned before we choose 608 // the best mapping of the current instruction. 609 ReversePostOrderTraversal<MachineFunction*> RPOT(&MF); 610 for (MachineBasicBlock *MBB : RPOT) { 611 // Set a sensible insertion point so that subsequent calls to 612 // MIRBuilder. 613 MIRBuilder.setMBB(*MBB); 614 for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end(); 615 MII != End;) { 616 // MI might be invalidated by the assignment, so move the 617 // iterator before hand. 618 MachineInstr &MI = *MII++; 619 620 // Ignore target-specific instructions: they should use proper regclasses. 621 if (isTargetSpecificOpcode(MI.getOpcode())) 622 continue; 623 624 if (!assignInstr(MI)) { 625 if (TPC->isGlobalISelAbortEnabled()) 626 report_fatal_error("Unable to map instruction"); 627 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 628 return false; 629 } 630 } 631 } 632 OptMode = SaveOptMode; 633 return false; 634 } 635 636 //------------------------------------------------------------------------------ 637 // Helper Classes Implementation 638 //------------------------------------------------------------------------------ 639 RegBankSelect::RepairingPlacement::RepairingPlacement( 640 MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P, 641 RepairingPlacement::RepairingKind Kind) 642 // Default is, we are going to insert code to repair OpIdx. 643 : Kind(Kind), 644 OpIdx(OpIdx), 645 CanMaterialize(Kind != RepairingKind::Impossible), 646 HasSplit(false), 647 P(P) { 648 const MachineOperand &MO = MI.getOperand(OpIdx); 649 assert(MO.isReg() && "Trying to repair a non-reg operand"); 650 651 if (Kind != RepairingKind::Insert) 652 return; 653 654 // Repairings for definitions happen after MI, uses happen before. 655 bool Before = !MO.isDef(); 656 657 // Check if we are done with MI. 658 if (!MI.isPHI() && !MI.isTerminator()) { 659 addInsertPoint(MI, Before); 660 // We are done with the initialization. 661 return; 662 } 663 664 // Now, look for the special cases. 665 if (MI.isPHI()) { 666 // - PHI must be the first instructions: 667 // * Before, we have to split the related incoming edge. 668 // * After, move the insertion point past the last phi. 669 if (!Before) { 670 MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI(); 671 if (It != MI.getParent()->end()) 672 addInsertPoint(*It, /*Before*/ true); 673 else 674 addInsertPoint(*(--It), /*Before*/ false); 675 return; 676 } 677 // We repair a use of a phi, we may need to split the related edge. 678 MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB(); 679 // Check if we can move the insertion point prior to the 680 // terminators of the predecessor. 681 unsigned Reg = MO.getReg(); 682 MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr(); 683 for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It) 684 if (It->modifiesRegister(Reg, &TRI)) { 685 // We cannot hoist the repairing code in the predecessor. 686 // Split the edge. 687 addInsertPoint(Pred, *MI.getParent()); 688 return; 689 } 690 // At this point, we can insert in Pred. 691 692 // - If It is invalid, Pred is empty and we can insert in Pred 693 // wherever we want. 694 // - If It is valid, It is the first non-terminator, insert after It. 695 if (It == Pred.end()) 696 addInsertPoint(Pred, /*Beginning*/ false); 697 else 698 addInsertPoint(*It, /*Before*/ false); 699 } else { 700 // - Terminators must be the last instructions: 701 // * Before, move the insert point before the first terminator. 702 // * After, we have to split the outcoming edges. 703 unsigned Reg = MO.getReg(); 704 if (Before) { 705 // Check whether Reg is defined by any terminator. 706 MachineBasicBlock::iterator It = MI; 707 for (auto Begin = MI.getParent()->begin(); 708 --It != Begin && It->isTerminator();) 709 if (It->modifiesRegister(Reg, &TRI)) { 710 // Insert the repairing code right after the definition. 711 addInsertPoint(*It, /*Before*/ false); 712 return; 713 } 714 addInsertPoint(*It, /*Before*/ true); 715 return; 716 } 717 // Make sure Reg is not redefined by other terminators, otherwise 718 // we do not know how to split. 719 for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end(); 720 ++It != End;) 721 // The machine verifier should reject this kind of code. 722 assert(It->modifiesRegister(Reg, &TRI) && "Do not know where to split"); 723 // Split each outcoming edges. 724 MachineBasicBlock &Src = *MI.getParent(); 725 for (auto &Succ : Src.successors()) 726 addInsertPoint(Src, Succ); 727 } 728 } 729 730 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI, 731 bool Before) { 732 addInsertPoint(*new InstrInsertPoint(MI, Before)); 733 } 734 735 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB, 736 bool Beginning) { 737 addInsertPoint(*new MBBInsertPoint(MBB, Beginning)); 738 } 739 740 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src, 741 MachineBasicBlock &Dst) { 742 addInsertPoint(*new EdgeInsertPoint(Src, Dst, P)); 743 } 744 745 void RegBankSelect::RepairingPlacement::addInsertPoint( 746 RegBankSelect::InsertPoint &Point) { 747 CanMaterialize &= Point.canMaterialize(); 748 HasSplit |= Point.isSplit(); 749 InsertPoints.emplace_back(&Point); 750 } 751 752 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr, 753 bool Before) 754 : InsertPoint(), Instr(Instr), Before(Before) { 755 // Since we do not support splitting, we do not need to update 756 // liveness and such, so do not do anything with P. 757 assert((!Before || !Instr.isPHI()) && 758 "Splitting before phis requires more points"); 759 assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) && 760 "Splitting between phis does not make sense"); 761 } 762 763 void RegBankSelect::InstrInsertPoint::materialize() { 764 if (isSplit()) { 765 // Slice and return the beginning of the new block. 766 // If we need to split between the terminators, we theoritically 767 // need to know where the first and second set of terminators end 768 // to update the successors properly. 769 // Now, in pratice, we should have a maximum of 2 branch 770 // instructions; one conditional and one unconditional. Therefore 771 // we know how to update the successor by looking at the target of 772 // the unconditional branch. 773 // If we end up splitting at some point, then, we should update 774 // the liveness information and such. I.e., we would need to 775 // access P here. 776 // The machine verifier should actually make sure such cases 777 // cannot happen. 778 llvm_unreachable("Not yet implemented"); 779 } 780 // Otherwise the insertion point is just the current or next 781 // instruction depending on Before. I.e., there is nothing to do 782 // here. 783 } 784 785 bool RegBankSelect::InstrInsertPoint::isSplit() const { 786 // If the insertion point is after a terminator, we need to split. 787 if (!Before) 788 return Instr.isTerminator(); 789 // If we insert before an instruction that is after a terminator, 790 // we are still after a terminator. 791 return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator(); 792 } 793 794 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const { 795 // Even if we need to split, because we insert between terminators, 796 // this split has actually the same frequency as the instruction. 797 const MachineBlockFrequencyInfo *MBFI = 798 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 799 if (!MBFI) 800 return 1; 801 return MBFI->getBlockFreq(Instr.getParent()).getFrequency(); 802 } 803 804 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const { 805 const MachineBlockFrequencyInfo *MBFI = 806 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 807 if (!MBFI) 808 return 1; 809 return MBFI->getBlockFreq(&MBB).getFrequency(); 810 } 811 812 void RegBankSelect::EdgeInsertPoint::materialize() { 813 // If we end up repairing twice at the same place before materializing the 814 // insertion point, we may think we have to split an edge twice. 815 // We should have a factory for the insert point such that identical points 816 // are the same instance. 817 assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) && 818 "This point has already been split"); 819 MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P); 820 assert(NewBB && "Invalid call to materialize"); 821 // We reuse the destination block to hold the information of the new block. 822 DstOrSplit = NewBB; 823 } 824 825 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const { 826 const MachineBlockFrequencyInfo *MBFI = 827 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 828 if (!MBFI) 829 return 1; 830 if (WasMaterialized) 831 return MBFI->getBlockFreq(DstOrSplit).getFrequency(); 832 833 const MachineBranchProbabilityInfo *MBPI = 834 P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>(); 835 if (!MBPI) 836 return 1; 837 // The basic block will be on the edge. 838 return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit)) 839 .getFrequency(); 840 } 841 842 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const { 843 // If this is not a critical edge, we should not have used this insert 844 // point. Indeed, either the successor or the predecessor should 845 // have do. 846 assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 && 847 "Edge is not critical"); 848 return Src.canSplitCriticalEdge(DstOrSplit); 849 } 850 851 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq) 852 : LocalCost(0), NonLocalCost(0), LocalFreq(LocalFreq.getFrequency()) {} 853 854 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) { 855 // Check if this overflows. 856 if (LocalCost + Cost < LocalCost) { 857 saturate(); 858 return true; 859 } 860 LocalCost += Cost; 861 return isSaturated(); 862 } 863 864 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) { 865 // Check if this overflows. 866 if (NonLocalCost + Cost < NonLocalCost) { 867 saturate(); 868 return true; 869 } 870 NonLocalCost += Cost; 871 return isSaturated(); 872 } 873 874 bool RegBankSelect::MappingCost::isSaturated() const { 875 return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX && 876 LocalFreq == UINT64_MAX; 877 } 878 879 void RegBankSelect::MappingCost::saturate() { 880 *this = ImpossibleCost(); 881 --LocalCost; 882 } 883 884 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() { 885 return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX); 886 } 887 888 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const { 889 // Sort out the easy cases. 890 if (*this == Cost) 891 return false; 892 // If one is impossible to realize the other is cheaper unless it is 893 // impossible as well. 894 if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost())) 895 return (*this == ImpossibleCost()) < (Cost == ImpossibleCost()); 896 // If one is saturated the other is cheaper, unless it is saturated 897 // as well. 898 if (isSaturated() || Cost.isSaturated()) 899 return isSaturated() < Cost.isSaturated(); 900 // At this point we know both costs hold sensible values. 901 902 // If both values have a different base frequency, there is no much 903 // we can do but to scale everything. 904 // However, if they have the same base frequency we can avoid making 905 // complicated computation. 906 uint64_t ThisLocalAdjust; 907 uint64_t OtherLocalAdjust; 908 if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) { 909 910 // At this point, we know the local costs are comparable. 911 // Do the case that do not involve potential overflow first. 912 if (NonLocalCost == Cost.NonLocalCost) 913 // Since the non-local costs do not discriminate on the result, 914 // just compare the local costs. 915 return LocalCost < Cost.LocalCost; 916 917 // The base costs are comparable so we may only keep the relative 918 // value to increase our chances of avoiding overflows. 919 ThisLocalAdjust = 0; 920 OtherLocalAdjust = 0; 921 if (LocalCost < Cost.LocalCost) 922 OtherLocalAdjust = Cost.LocalCost - LocalCost; 923 else 924 ThisLocalAdjust = LocalCost - Cost.LocalCost; 925 926 } else { 927 ThisLocalAdjust = LocalCost; 928 OtherLocalAdjust = Cost.LocalCost; 929 } 930 931 // The non-local costs are comparable, just keep the relative value. 932 uint64_t ThisNonLocalAdjust = 0; 933 uint64_t OtherNonLocalAdjust = 0; 934 if (NonLocalCost < Cost.NonLocalCost) 935 OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost; 936 else 937 ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost; 938 // Scale everything to make them comparable. 939 uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq; 940 // Check for overflow on that operation. 941 bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust || 942 ThisScaledCost < LocalFreq); 943 uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq; 944 // Check for overflow on the last operation. 945 bool OtherOverflows = 946 OtherLocalAdjust && 947 (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq); 948 // Add the non-local costs. 949 ThisOverflows |= ThisNonLocalAdjust && 950 ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust; 951 ThisScaledCost += ThisNonLocalAdjust; 952 OtherOverflows |= OtherNonLocalAdjust && 953 OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust; 954 OtherScaledCost += OtherNonLocalAdjust; 955 // If both overflows, we cannot compare without additional 956 // precision, e.g., APInt. Just give up on that case. 957 if (ThisOverflows && OtherOverflows) 958 return false; 959 // If one overflows but not the other, we can still compare. 960 if (ThisOverflows || OtherOverflows) 961 return ThisOverflows < OtherOverflows; 962 // Otherwise, just compare the values. 963 return ThisScaledCost < OtherScaledCost; 964 } 965 966 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const { 967 return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost && 968 LocalFreq == Cost.LocalFreq; 969 } 970 971 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 972 LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const { 973 print(dbgs()); 974 dbgs() << '\n'; 975 } 976 #endif 977 978 void RegBankSelect::MappingCost::print(raw_ostream &OS) const { 979 if (*this == ImpossibleCost()) { 980 OS << "impossible"; 981 return; 982 } 983 if (isSaturated()) { 984 OS << "saturated"; 985 return; 986 } 987 OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost; 988 } 989