1 //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file implements the RegBankSelect class.
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
18 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
19 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
20 #include "llvm/CodeGen/GlobalISel/Utils.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
23 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetOpcodes.h"
30 #include "llvm/CodeGen/TargetPassConfig.h"
31 #include "llvm/CodeGen/TargetRegisterInfo.h"
32 #include "llvm/CodeGen/TargetSubtargetInfo.h"
33 #include "llvm/Config/llvm-config.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/BlockFrequency.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Compiler.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <cstdint>
46 #include <limits>
47 #include <memory>
48 #include <utility>
49 
50 #define DEBUG_TYPE "regbankselect"
51 
52 using namespace llvm;
53 
54 static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
55     cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
56     cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
57                           "Run the Fast mode (default mapping)"),
58                clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
59                           "Use the Greedy mode (best local mapping)")));
60 
61 char RegBankSelect::ID = 0;
62 
63 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
64                       "Assign register bank of generic virtual registers",
65                       false, false);
66 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
67 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
68 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
69 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
70                     "Assign register bank of generic virtual registers", false,
71                     false)
72 
73 RegBankSelect::RegBankSelect(Mode RunningMode)
74     : MachineFunctionPass(ID), OptMode(RunningMode) {
75   initializeRegBankSelectPass(*PassRegistry::getPassRegistry());
76   if (RegBankSelectMode.getNumOccurrences() != 0) {
77     OptMode = RegBankSelectMode;
78     if (RegBankSelectMode != RunningMode)
79       LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
80   }
81 }
82 
83 void RegBankSelect::init(MachineFunction &MF) {
84   RBI = MF.getSubtarget().getRegBankInfo();
85   assert(RBI && "Cannot work without RegisterBankInfo");
86   MRI = &MF.getRegInfo();
87   TRI = MF.getSubtarget().getRegisterInfo();
88   TPC = &getAnalysis<TargetPassConfig>();
89   if (OptMode != Mode::Fast) {
90     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
91     MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
92   } else {
93     MBFI = nullptr;
94     MBPI = nullptr;
95   }
96   MIRBuilder.setMF(MF);
97   MORE = llvm::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
98 }
99 
100 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
101   if (OptMode != Mode::Fast) {
102     // We could preserve the information from these two analysis but
103     // the APIs do not allow to do so yet.
104     AU.addRequired<MachineBlockFrequencyInfo>();
105     AU.addRequired<MachineBranchProbabilityInfo>();
106   }
107   AU.addRequired<TargetPassConfig>();
108   MachineFunctionPass::getAnalysisUsage(AU);
109 }
110 
111 bool RegBankSelect::assignmentMatch(
112     unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping,
113     bool &OnlyAssign) const {
114   // By default we assume we will have to repair something.
115   OnlyAssign = false;
116   // Each part of a break down needs to end up in a different register.
117   // In other word, Reg assignement does not match.
118   if (ValMapping.NumBreakDowns > 1)
119     return false;
120 
121   const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
122   const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
123   // Reg is free of assignment, a simple assignment will make the
124   // register bank to match.
125   OnlyAssign = CurRegBank == nullptr;
126   LLVM_DEBUG(dbgs() << "Does assignment already match: ";
127              if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
128              dbgs() << " against ";
129              assert(DesiredRegBrank && "The mapping must be valid");
130              dbgs() << *DesiredRegBrank << '\n';);
131   return CurRegBank == DesiredRegBrank;
132 }
133 
134 bool RegBankSelect::repairReg(
135     MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
136     RegBankSelect::RepairingPlacement &RepairPt,
137     const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) {
138   if (ValMapping.NumBreakDowns != 1 && !TPC->isGlobalISelAbortEnabled())
139     return false;
140   assert(ValMapping.NumBreakDowns == 1 && "Not yet implemented");
141   // An empty range of new register means no repairing.
142   assert(NewVRegs.begin() != NewVRegs.end() && "We should not have to repair");
143 
144   // Assume we are repairing a use and thus, the original reg will be
145   // the source of the repairing.
146   unsigned Src = MO.getReg();
147   unsigned Dst = *NewVRegs.begin();
148 
149   // If we repair a definition, swap the source and destination for
150   // the repairing.
151   if (MO.isDef())
152     std::swap(Src, Dst);
153 
154   assert((RepairPt.getNumInsertPoints() == 1 ||
155           TargetRegisterInfo::isPhysicalRegister(Dst)) &&
156          "We are about to create several defs for Dst");
157 
158   // Build the instruction used to repair, then clone it at the right
159   // places. Avoiding buildCopy bypasses the check that Src and Dst have the
160   // same types because the type is a placeholder when this function is called.
161   MachineInstr *MI =
162       MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY).addDef(Dst).addUse(Src);
163   LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst)
164                     << '\n');
165   // TODO:
166   // Check if MI is legal. if not, we need to legalize all the
167   // instructions we are going to insert.
168   std::unique_ptr<MachineInstr *[]> NewInstrs(
169       new MachineInstr *[RepairPt.getNumInsertPoints()]);
170   bool IsFirst = true;
171   unsigned Idx = 0;
172   for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
173     MachineInstr *CurMI;
174     if (IsFirst)
175       CurMI = MI;
176     else
177       CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
178     InsertPt->insert(*CurMI);
179     NewInstrs[Idx++] = CurMI;
180     IsFirst = false;
181   }
182   // TODO:
183   // Legalize NewInstrs if need be.
184   return true;
185 }
186 
187 uint64_t RegBankSelect::getRepairCost(
188     const MachineOperand &MO,
189     const RegisterBankInfo::ValueMapping &ValMapping) const {
190   assert(MO.isReg() && "We should only repair register operand");
191   assert(ValMapping.NumBreakDowns && "Nothing to map??");
192 
193   bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
194   const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
195   // If MO does not have a register bank, we should have just been
196   // able to set one unless we have to break the value down.
197   assert((!IsSameNumOfValues || CurRegBank) && "We should not have to repair");
198   // Def: Val <- NewDefs
199   //     Same number of values: copy
200   //     Different number: Val = build_sequence Defs1, Defs2, ...
201   // Use: NewSources <- Val.
202   //     Same number of values: copy.
203   //     Different number: Src1, Src2, ... =
204   //           extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
205   // We should remember that this value is available somewhere else to
206   // coalesce the value.
207 
208   if (IsSameNumOfValues) {
209     const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
210     // If we repair a definition, swap the source and destination for
211     // the repairing.
212     if (MO.isDef())
213       std::swap(CurRegBank, DesiredRegBrank);
214     // TODO: It may be possible to actually avoid the copy.
215     // If we repair something where the source is defined by a copy
216     // and the source of that copy is on the right bank, we can reuse
217     // it for free.
218     // E.g.,
219     // RegToRepair<BankA> = copy AlternativeSrc<BankB>
220     // = op RegToRepair<BankA>
221     // We can simply propagate AlternativeSrc instead of copying RegToRepair
222     // into a new virtual register.
223     // We would also need to propagate this information in the
224     // repairing placement.
225     unsigned Cost = RBI->copyCost(*DesiredRegBrank, *CurRegBank,
226                                   RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
227     // TODO: use a dedicated constant for ImpossibleCost.
228     if (Cost != std::numeric_limits<unsigned>::max())
229       return Cost;
230     // Return the legalization cost of that repairing.
231   }
232   return std::numeric_limits<unsigned>::max();
233 }
234 
235 const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
236     MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
237     SmallVectorImpl<RepairingPlacement> &RepairPts) {
238   assert(!PossibleMappings.empty() &&
239          "Do not know how to map this instruction");
240 
241   const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
242   MappingCost Cost = MappingCost::ImpossibleCost();
243   SmallVector<RepairingPlacement, 4> LocalRepairPts;
244   for (const RegisterBankInfo::InstructionMapping *CurMapping :
245        PossibleMappings) {
246     MappingCost CurCost =
247         computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
248     if (CurCost < Cost) {
249       LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');
250       Cost = CurCost;
251       BestMapping = CurMapping;
252       RepairPts.clear();
253       for (RepairingPlacement &RepairPt : LocalRepairPts)
254         RepairPts.emplace_back(std::move(RepairPt));
255     }
256   }
257   if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
258     // If none of the mapping worked that means they are all impossible.
259     // Thus, pick the first one and set an impossible repairing point.
260     // It will trigger the failed isel mode.
261     BestMapping = *PossibleMappings.begin();
262     RepairPts.emplace_back(
263         RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
264   } else
265     assert(BestMapping && "No suitable mapping for instruction");
266   return *BestMapping;
267 }
268 
269 void RegBankSelect::tryAvoidingSplit(
270     RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
271     const RegisterBankInfo::ValueMapping &ValMapping) const {
272   const MachineInstr &MI = *MO.getParent();
273   assert(RepairPt.hasSplit() && "We should not have to adjust for split");
274   // Splitting should only occur for PHIs or between terminators,
275   // because we only do local repairing.
276   assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
277 
278   assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
279          "Repairing placement does not match operand");
280 
281   // If we need splitting for phis, that means it is because we
282   // could not find an insertion point before the terminators of
283   // the predecessor block for this argument. In other words,
284   // the input value is defined by one of the terminators.
285   assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
286 
287   // We split to repair the use of a phi or a terminator.
288   if (!MO.isDef()) {
289     if (MI.isTerminator()) {
290       assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
291              "Need to split for the first terminator?!");
292     } else {
293       // For the PHI case, the split may not be actually required.
294       // In the copy case, a phi is already a copy on the incoming edge,
295       // therefore there is no need to split.
296       if (ValMapping.NumBreakDowns == 1)
297         // This is a already a copy, there is nothing to do.
298         RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
299     }
300     return;
301   }
302 
303   // At this point, we need to repair a defintion of a terminator.
304 
305   // Technically we need to fix the def of MI on all outgoing
306   // edges of MI to keep the repairing local. In other words, we
307   // will create several definitions of the same register. This
308   // does not work for SSA unless that definition is a physical
309   // register.
310   // However, there are other cases where we can get away with
311   // that while still keeping the repairing local.
312   assert(MI.isTerminator() && MO.isDef() &&
313          "This code is for the def of a terminator");
314 
315   // Since we use RPO traversal, if we need to repair a definition
316   // this means this definition could be:
317   // 1. Used by PHIs (i.e., this VReg has been visited as part of the
318   //    uses of a phi.), or
319   // 2. Part of a target specific instruction (i.e., the target applied
320   //    some register class constraints when creating the instruction.)
321   // If the constraints come for #2, the target said that another mapping
322   // is supported so we may just drop them. Indeed, if we do not change
323   // the number of registers holding that value, the uses will get fixed
324   // when we get to them.
325   // Uses in PHIs may have already been proceeded though.
326   // If the constraints come for #1, then, those are weak constraints and
327   // no actual uses may rely on them. However, the problem remains mainly
328   // the same as for #2. If the value stays in one register, we could
329   // just switch the register bank of the definition, but we would need to
330   // account for a repairing cost for each phi we silently change.
331   //
332   // In any case, if the value needs to be broken down into several
333   // registers, the repairing is not local anymore as we need to patch
334   // every uses to rebuild the value in just one register.
335   //
336   // To summarize:
337   // - If the value is in a physical register, we can do the split and
338   //   fix locally.
339   // Otherwise if the value is in a virtual register:
340   // - If the value remains in one register, we do not have to split
341   //   just switching the register bank would do, but we need to account
342   //   in the repairing cost all the phi we changed.
343   // - If the value spans several registers, then we cannot do a local
344   //   repairing.
345 
346   // Check if this is a physical or virtual register.
347   unsigned Reg = MO.getReg();
348   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
349     // We are going to split every outgoing edges.
350     // Check that this is possible.
351     // FIXME: The machine representation is currently broken
352     // since it also several terminators in one basic block.
353     // Because of that we would technically need a way to get
354     // the targets of just one terminator to know which edges
355     // we have to split.
356     // Assert that we do not hit the ill-formed representation.
357 
358     // If there are other terminators before that one, some of
359     // the outgoing edges may not be dominated by this definition.
360     assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
361            "Do not know which outgoing edges are relevant");
362     const MachineInstr *Next = MI.getNextNode();
363     assert((!Next || Next->isUnconditionalBranch()) &&
364            "Do not know where each terminator ends up");
365     if (Next)
366       // If the next terminator uses Reg, this means we have
367       // to split right after MI and thus we need a way to ask
368       // which outgoing edges are affected.
369       assert(!Next->readsRegister(Reg) && "Need to split between terminators");
370     // We will split all the edges and repair there.
371   } else {
372     // This is a virtual register defined by a terminator.
373     if (ValMapping.NumBreakDowns == 1) {
374       // There is nothing to repair, but we may actually lie on
375       // the repairing cost because of the PHIs already proceeded
376       // as already stated.
377       // Though the code will be correct.
378       assert(false && "Repairing cost may not be accurate");
379     } else {
380       // We need to do non-local repairing. Basically, patch all
381       // the uses (i.e., phis) that we already proceeded.
382       // For now, just say this mapping is not possible.
383       RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
384     }
385   }
386 }
387 
388 RegBankSelect::MappingCost RegBankSelect::computeMapping(
389     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
390     SmallVectorImpl<RepairingPlacement> &RepairPts,
391     const RegBankSelect::MappingCost *BestCost) {
392   assert((MBFI || !BestCost) && "Costs comparison require MBFI");
393 
394   if (!InstrMapping.isValid())
395     return MappingCost::ImpossibleCost();
396 
397   // If mapped with InstrMapping, MI will have the recorded cost.
398   MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
399   bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
400   assert(!Saturated && "Possible mapping saturated the cost");
401   LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
402   LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');
403   RepairPts.clear();
404   if (BestCost && Cost > *BestCost) {
405     LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
406     return Cost;
407   }
408 
409   // Moreover, to realize this mapping, the register bank of each operand must
410   // match this mapping. In other words, we may need to locally reassign the
411   // register banks. Account for that repairing cost as well.
412   // In this context, local means in the surrounding of MI.
413   for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
414        OpIdx != EndOpIdx; ++OpIdx) {
415     const MachineOperand &MO = MI.getOperand(OpIdx);
416     if (!MO.isReg())
417       continue;
418     unsigned Reg = MO.getReg();
419     if (!Reg)
420       continue;
421     LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n');
422     const RegisterBankInfo::ValueMapping &ValMapping =
423         InstrMapping.getOperandMapping(OpIdx);
424     // If Reg is already properly mapped, this is free.
425     bool Assign;
426     if (assignmentMatch(Reg, ValMapping, Assign)) {
427       LLVM_DEBUG(dbgs() << "=> is free (match).\n");
428       continue;
429     }
430     if (Assign) {
431       LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
432       RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
433                                                 RepairingPlacement::Reassign));
434       continue;
435     }
436 
437     // Find the insertion point for the repairing code.
438     RepairPts.emplace_back(
439         RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
440     RepairingPlacement &RepairPt = RepairPts.back();
441 
442     // If we need to split a basic block to materialize this insertion point,
443     // we may give a higher cost to this mapping.
444     // Nevertheless, we may get away with the split, so try that first.
445     if (RepairPt.hasSplit())
446       tryAvoidingSplit(RepairPt, MO, ValMapping);
447 
448     // Check that the materialization of the repairing is possible.
449     if (!RepairPt.canMaterialize()) {
450       LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
451       return MappingCost::ImpossibleCost();
452     }
453 
454     // Account for the split cost and repair cost.
455     // Unless the cost is already saturated or we do not care about the cost.
456     if (!BestCost || Saturated)
457       continue;
458 
459     // To get accurate information we need MBFI and MBPI.
460     // Thus, if we end up here this information should be here.
461     assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
462 
463     // FIXME: We will have to rework the repairing cost model.
464     // The repairing cost depends on the register bank that MO has.
465     // However, when we break down the value into different values,
466     // MO may not have a register bank while still needing repairing.
467     // For the fast mode, we don't compute the cost so that is fine,
468     // but still for the repairing code, we will have to make a choice.
469     // For the greedy mode, we should choose greedily what is the best
470     // choice based on the next use of MO.
471 
472     // Sums up the repairing cost of MO at each insertion point.
473     uint64_t RepairCost = getRepairCost(MO, ValMapping);
474 
475     // This is an impossible to repair cost.
476     if (RepairCost == std::numeric_limits<unsigned>::max())
477       continue;
478 
479     // Bias used for splitting: 5%.
480     const uint64_t PercentageForBias = 5;
481     uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
482     // We should not need more than a couple of instructions to repair
483     // an assignment. In other words, the computation should not
484     // overflow because the repairing cost is free of basic block
485     // frequency.
486     assert(((RepairCost < RepairCost * PercentageForBias) &&
487             (RepairCost * PercentageForBias <
488              RepairCost * PercentageForBias + 99)) &&
489            "Repairing involves more than a billion of instructions?!");
490     for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
491       assert(InsertPt->canMaterialize() && "We should not have made it here");
492       // We will applied some basic block frequency and those uses uint64_t.
493       if (!InsertPt->isSplit())
494         Saturated = Cost.addLocalCost(RepairCost);
495       else {
496         uint64_t CostForInsertPt = RepairCost;
497         // Again we shouldn't overflow here givent that
498         // CostForInsertPt is frequency free at this point.
499         assert(CostForInsertPt + Bias > CostForInsertPt &&
500                "Repairing + split bias overflows");
501         CostForInsertPt += Bias;
502         uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
503         // Check if we just overflowed.
504         if ((Saturated = PtCost < CostForInsertPt))
505           Cost.saturate();
506         else
507           Saturated = Cost.addNonLocalCost(PtCost);
508       }
509 
510       // Stop looking into what it takes to repair, this is already
511       // too expensive.
512       if (BestCost && Cost > *BestCost) {
513         LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
514         return Cost;
515       }
516 
517       // No need to accumulate more cost information.
518       // We need to still gather the repairing information though.
519       if (Saturated)
520         break;
521     }
522   }
523   LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
524   return Cost;
525 }
526 
527 bool RegBankSelect::applyMapping(
528     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
529     SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
530   // OpdMapper will hold all the information needed for the rewritting.
531   RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
532 
533   // First, place the repairing code.
534   for (RepairingPlacement &RepairPt : RepairPts) {
535     if (!RepairPt.canMaterialize() ||
536         RepairPt.getKind() == RepairingPlacement::Impossible)
537       return false;
538     assert(RepairPt.getKind() != RepairingPlacement::None &&
539            "This should not make its way in the list");
540     unsigned OpIdx = RepairPt.getOpIdx();
541     MachineOperand &MO = MI.getOperand(OpIdx);
542     const RegisterBankInfo::ValueMapping &ValMapping =
543         InstrMapping.getOperandMapping(OpIdx);
544     unsigned Reg = MO.getReg();
545 
546     switch (RepairPt.getKind()) {
547     case RepairingPlacement::Reassign:
548       assert(ValMapping.NumBreakDowns == 1 &&
549              "Reassignment should only be for simple mapping");
550       MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
551       break;
552     case RepairingPlacement::Insert:
553       OpdMapper.createVRegs(OpIdx);
554       if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
555         return false;
556       break;
557     default:
558       llvm_unreachable("Other kind should not happen");
559     }
560   }
561 
562   // Second, rewrite the instruction.
563   LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
564   RBI->applyMapping(OpdMapper);
565 
566   return true;
567 }
568 
569 bool RegBankSelect::assignInstr(MachineInstr &MI) {
570   LLVM_DEBUG(dbgs() << "Assign: " << MI);
571   // Remember the repairing placement for all the operands.
572   SmallVector<RepairingPlacement, 4> RepairPts;
573 
574   const RegisterBankInfo::InstructionMapping *BestMapping;
575   if (OptMode == RegBankSelect::Mode::Fast) {
576     BestMapping = &RBI->getInstrMapping(MI);
577     MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
578     (void)DefaultCost;
579     if (DefaultCost == MappingCost::ImpossibleCost())
580       return false;
581   } else {
582     RegisterBankInfo::InstructionMappings PossibleMappings =
583         RBI->getInstrPossibleMappings(MI);
584     if (PossibleMappings.empty())
585       return false;
586     BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
587   }
588   // Make sure the mapping is valid for MI.
589   assert(BestMapping->verify(MI) && "Invalid instruction mapping");
590 
591   LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
592 
593   // After this call, MI may not be valid anymore.
594   // Do not use it.
595   return applyMapping(MI, *BestMapping, RepairPts);
596 }
597 
598 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
599   // If the ISel pipeline failed, do not bother running that pass.
600   if (MF.getProperties().hasProperty(
601           MachineFunctionProperties::Property::FailedISel))
602     return false;
603 
604   LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
605   const Function &F = MF.getFunction();
606   Mode SaveOptMode = OptMode;
607   if (F.hasFnAttribute(Attribute::OptimizeNone))
608     OptMode = Mode::Fast;
609   init(MF);
610 
611 #ifndef NDEBUG
612   // Check that our input is fully legal: we require the function to have the
613   // Legalized property, so it should be.
614   // FIXME: This should be in the MachineVerifier.
615   if (!DisableGISelLegalityCheck)
616     if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
617       reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
618                          "instruction is not legal", *MI);
619       return false;
620     }
621 #endif
622 
623   // Walk the function and assign register banks to all operands.
624   // Use a RPOT to make sure all registers are assigned before we choose
625   // the best mapping of the current instruction.
626   ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
627   for (MachineBasicBlock *MBB : RPOT) {
628     // Set a sensible insertion point so that subsequent calls to
629     // MIRBuilder.
630     MIRBuilder.setMBB(*MBB);
631     for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end();
632          MII != End;) {
633       // MI might be invalidated by the assignment, so move the
634       // iterator before hand.
635       MachineInstr &MI = *MII++;
636 
637       // Ignore target-specific instructions: they should use proper regclasses.
638       if (isTargetSpecificOpcode(MI.getOpcode()))
639         continue;
640 
641       if (!assignInstr(MI)) {
642         reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
643                            "unable to map instruction", MI);
644         return false;
645       }
646     }
647   }
648   OptMode = SaveOptMode;
649   return false;
650 }
651 
652 //------------------------------------------------------------------------------
653 //                  Helper Classes Implementation
654 //------------------------------------------------------------------------------
655 RegBankSelect::RepairingPlacement::RepairingPlacement(
656     MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
657     RepairingPlacement::RepairingKind Kind)
658     // Default is, we are going to insert code to repair OpIdx.
659     : Kind(Kind), OpIdx(OpIdx),
660       CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
661   const MachineOperand &MO = MI.getOperand(OpIdx);
662   assert(MO.isReg() && "Trying to repair a non-reg operand");
663 
664   if (Kind != RepairingKind::Insert)
665     return;
666 
667   // Repairings for definitions happen after MI, uses happen before.
668   bool Before = !MO.isDef();
669 
670   // Check if we are done with MI.
671   if (!MI.isPHI() && !MI.isTerminator()) {
672     addInsertPoint(MI, Before);
673     // We are done with the initialization.
674     return;
675   }
676 
677   // Now, look for the special cases.
678   if (MI.isPHI()) {
679     // - PHI must be the first instructions:
680     //   * Before, we have to split the related incoming edge.
681     //   * After, move the insertion point past the last phi.
682     if (!Before) {
683       MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
684       if (It != MI.getParent()->end())
685         addInsertPoint(*It, /*Before*/ true);
686       else
687         addInsertPoint(*(--It), /*Before*/ false);
688       return;
689     }
690     // We repair a use of a phi, we may need to split the related edge.
691     MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
692     // Check if we can move the insertion point prior to the
693     // terminators of the predecessor.
694     unsigned Reg = MO.getReg();
695     MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
696     for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
697       if (It->modifiesRegister(Reg, &TRI)) {
698         // We cannot hoist the repairing code in the predecessor.
699         // Split the edge.
700         addInsertPoint(Pred, *MI.getParent());
701         return;
702       }
703     // At this point, we can insert in Pred.
704 
705     // - If It is invalid, Pred is empty and we can insert in Pred
706     //   wherever we want.
707     // - If It is valid, It is the first non-terminator, insert after It.
708     if (It == Pred.end())
709       addInsertPoint(Pred, /*Beginning*/ false);
710     else
711       addInsertPoint(*It, /*Before*/ false);
712   } else {
713     // - Terminators must be the last instructions:
714     //   * Before, move the insert point before the first terminator.
715     //   * After, we have to split the outcoming edges.
716     unsigned Reg = MO.getReg();
717     if (Before) {
718       // Check whether Reg is defined by any terminator.
719       MachineBasicBlock::iterator It = MI;
720       for (auto Begin = MI.getParent()->begin();
721            --It != Begin && It->isTerminator();)
722         if (It->modifiesRegister(Reg, &TRI)) {
723           // Insert the repairing code right after the definition.
724           addInsertPoint(*It, /*Before*/ false);
725           return;
726         }
727       addInsertPoint(*It, /*Before*/ true);
728       return;
729     }
730     // Make sure Reg is not redefined by other terminators, otherwise
731     // we do not know how to split.
732     for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
733          ++It != End;)
734       // The machine verifier should reject this kind of code.
735       assert(It->modifiesRegister(Reg, &TRI) && "Do not know where to split");
736     // Split each outcoming edges.
737     MachineBasicBlock &Src = *MI.getParent();
738     for (auto &Succ : Src.successors())
739       addInsertPoint(Src, Succ);
740   }
741 }
742 
743 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
744                                                        bool Before) {
745   addInsertPoint(*new InstrInsertPoint(MI, Before));
746 }
747 
748 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
749                                                        bool Beginning) {
750   addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
751 }
752 
753 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
754                                                        MachineBasicBlock &Dst) {
755   addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
756 }
757 
758 void RegBankSelect::RepairingPlacement::addInsertPoint(
759     RegBankSelect::InsertPoint &Point) {
760   CanMaterialize &= Point.canMaterialize();
761   HasSplit |= Point.isSplit();
762   InsertPoints.emplace_back(&Point);
763 }
764 
765 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
766                                                   bool Before)
767     : InsertPoint(), Instr(Instr), Before(Before) {
768   // Since we do not support splitting, we do not need to update
769   // liveness and such, so do not do anything with P.
770   assert((!Before || !Instr.isPHI()) &&
771          "Splitting before phis requires more points");
772   assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
773          "Splitting between phis does not make sense");
774 }
775 
776 void RegBankSelect::InstrInsertPoint::materialize() {
777   if (isSplit()) {
778     // Slice and return the beginning of the new block.
779     // If we need to split between the terminators, we theoritically
780     // need to know where the first and second set of terminators end
781     // to update the successors properly.
782     // Now, in pratice, we should have a maximum of 2 branch
783     // instructions; one conditional and one unconditional. Therefore
784     // we know how to update the successor by looking at the target of
785     // the unconditional branch.
786     // If we end up splitting at some point, then, we should update
787     // the liveness information and such. I.e., we would need to
788     // access P here.
789     // The machine verifier should actually make sure such cases
790     // cannot happen.
791     llvm_unreachable("Not yet implemented");
792   }
793   // Otherwise the insertion point is just the current or next
794   // instruction depending on Before. I.e., there is nothing to do
795   // here.
796 }
797 
798 bool RegBankSelect::InstrInsertPoint::isSplit() const {
799   // If the insertion point is after a terminator, we need to split.
800   if (!Before)
801     return Instr.isTerminator();
802   // If we insert before an instruction that is after a terminator,
803   // we are still after a terminator.
804   return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
805 }
806 
807 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
808   // Even if we need to split, because we insert between terminators,
809   // this split has actually the same frequency as the instruction.
810   const MachineBlockFrequencyInfo *MBFI =
811       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
812   if (!MBFI)
813     return 1;
814   return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
815 }
816 
817 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
818   const MachineBlockFrequencyInfo *MBFI =
819       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
820   if (!MBFI)
821     return 1;
822   return MBFI->getBlockFreq(&MBB).getFrequency();
823 }
824 
825 void RegBankSelect::EdgeInsertPoint::materialize() {
826   // If we end up repairing twice at the same place before materializing the
827   // insertion point, we may think we have to split an edge twice.
828   // We should have a factory for the insert point such that identical points
829   // are the same instance.
830   assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
831          "This point has already been split");
832   MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
833   assert(NewBB && "Invalid call to materialize");
834   // We reuse the destination block to hold the information of the new block.
835   DstOrSplit = NewBB;
836 }
837 
838 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
839   const MachineBlockFrequencyInfo *MBFI =
840       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
841   if (!MBFI)
842     return 1;
843   if (WasMaterialized)
844     return MBFI->getBlockFreq(DstOrSplit).getFrequency();
845 
846   const MachineBranchProbabilityInfo *MBPI =
847       P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
848   if (!MBPI)
849     return 1;
850   // The basic block will be on the edge.
851   return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
852       .getFrequency();
853 }
854 
855 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
856   // If this is not a critical edge, we should not have used this insert
857   // point. Indeed, either the successor or the predecessor should
858   // have do.
859   assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
860          "Edge is not critical");
861   return Src.canSplitCriticalEdge(DstOrSplit);
862 }
863 
864 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
865     : LocalFreq(LocalFreq.getFrequency()) {}
866 
867 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
868   // Check if this overflows.
869   if (LocalCost + Cost < LocalCost) {
870     saturate();
871     return true;
872   }
873   LocalCost += Cost;
874   return isSaturated();
875 }
876 
877 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
878   // Check if this overflows.
879   if (NonLocalCost + Cost < NonLocalCost) {
880     saturate();
881     return true;
882   }
883   NonLocalCost += Cost;
884   return isSaturated();
885 }
886 
887 bool RegBankSelect::MappingCost::isSaturated() const {
888   return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
889          LocalFreq == UINT64_MAX;
890 }
891 
892 void RegBankSelect::MappingCost::saturate() {
893   *this = ImpossibleCost();
894   --LocalCost;
895 }
896 
897 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
898   return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
899 }
900 
901 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
902   // Sort out the easy cases.
903   if (*this == Cost)
904     return false;
905   // If one is impossible to realize the other is cheaper unless it is
906   // impossible as well.
907   if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
908     return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
909   // If one is saturated the other is cheaper, unless it is saturated
910   // as well.
911   if (isSaturated() || Cost.isSaturated())
912     return isSaturated() < Cost.isSaturated();
913   // At this point we know both costs hold sensible values.
914 
915   // If both values have a different base frequency, there is no much
916   // we can do but to scale everything.
917   // However, if they have the same base frequency we can avoid making
918   // complicated computation.
919   uint64_t ThisLocalAdjust;
920   uint64_t OtherLocalAdjust;
921   if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
922 
923     // At this point, we know the local costs are comparable.
924     // Do the case that do not involve potential overflow first.
925     if (NonLocalCost == Cost.NonLocalCost)
926       // Since the non-local costs do not discriminate on the result,
927       // just compare the local costs.
928       return LocalCost < Cost.LocalCost;
929 
930     // The base costs are comparable so we may only keep the relative
931     // value to increase our chances of avoiding overflows.
932     ThisLocalAdjust = 0;
933     OtherLocalAdjust = 0;
934     if (LocalCost < Cost.LocalCost)
935       OtherLocalAdjust = Cost.LocalCost - LocalCost;
936     else
937       ThisLocalAdjust = LocalCost - Cost.LocalCost;
938   } else {
939     ThisLocalAdjust = LocalCost;
940     OtherLocalAdjust = Cost.LocalCost;
941   }
942 
943   // The non-local costs are comparable, just keep the relative value.
944   uint64_t ThisNonLocalAdjust = 0;
945   uint64_t OtherNonLocalAdjust = 0;
946   if (NonLocalCost < Cost.NonLocalCost)
947     OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
948   else
949     ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
950   // Scale everything to make them comparable.
951   uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
952   // Check for overflow on that operation.
953   bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
954                                            ThisScaledCost < LocalFreq);
955   uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
956   // Check for overflow on the last operation.
957   bool OtherOverflows =
958       OtherLocalAdjust &&
959       (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
960   // Add the non-local costs.
961   ThisOverflows |= ThisNonLocalAdjust &&
962                    ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
963   ThisScaledCost += ThisNonLocalAdjust;
964   OtherOverflows |= OtherNonLocalAdjust &&
965                     OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
966   OtherScaledCost += OtherNonLocalAdjust;
967   // If both overflows, we cannot compare without additional
968   // precision, e.g., APInt. Just give up on that case.
969   if (ThisOverflows && OtherOverflows)
970     return false;
971   // If one overflows but not the other, we can still compare.
972   if (ThisOverflows || OtherOverflows)
973     return ThisOverflows < OtherOverflows;
974   // Otherwise, just compare the values.
975   return ThisScaledCost < OtherScaledCost;
976 }
977 
978 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
979   return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
980          LocalFreq == Cost.LocalFreq;
981 }
982 
983 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
984 LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
985   print(dbgs());
986   dbgs() << '\n';
987 }
988 #endif
989 
990 void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
991   if (*this == ImpossibleCost()) {
992     OS << "impossible";
993     return;
994   }
995   if (isSaturated()) {
996     OS << "saturated";
997     return;
998   }
999   OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;
1000 }
1001