1 //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements the RegBankSelect class. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 14 #include "llvm/ADT/PostOrderIterator.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 18 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 19 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 20 #include "llvm/CodeGen/GlobalISel/Utils.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 23 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineOperand.h" 27 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetOpcodes.h" 30 #include "llvm/CodeGen/TargetPassConfig.h" 31 #include "llvm/CodeGen/TargetRegisterInfo.h" 32 #include "llvm/CodeGen/TargetSubtargetInfo.h" 33 #include "llvm/Config/llvm-config.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/Pass.h" 37 #include "llvm/Support/BlockFrequency.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Compiler.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <algorithm> 44 #include <cassert> 45 #include <cstdint> 46 #include <limits> 47 #include <memory> 48 #include <utility> 49 50 #define DEBUG_TYPE "regbankselect" 51 52 using namespace llvm; 53 54 static cl::opt<RegBankSelect::Mode> RegBankSelectMode( 55 cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional, 56 cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast", 57 "Run the Fast mode (default mapping)"), 58 clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy", 59 "Use the Greedy mode (best local mapping)"))); 60 61 char RegBankSelect::ID = 0; 62 63 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE, 64 "Assign register bank of generic virtual registers", 65 false, false); 66 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 67 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 68 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 69 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, 70 "Assign register bank of generic virtual registers", false, 71 false) 72 73 RegBankSelect::RegBankSelect(Mode RunningMode) 74 : MachineFunctionPass(ID), OptMode(RunningMode) { 75 initializeRegBankSelectPass(*PassRegistry::getPassRegistry()); 76 if (RegBankSelectMode.getNumOccurrences() != 0) { 77 OptMode = RegBankSelectMode; 78 if (RegBankSelectMode != RunningMode) 79 LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n"); 80 } 81 } 82 83 void RegBankSelect::init(MachineFunction &MF) { 84 RBI = MF.getSubtarget().getRegBankInfo(); 85 assert(RBI && "Cannot work without RegisterBankInfo"); 86 MRI = &MF.getRegInfo(); 87 TRI = MF.getSubtarget().getRegisterInfo(); 88 TPC = &getAnalysis<TargetPassConfig>(); 89 if (OptMode != Mode::Fast) { 90 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 91 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 92 } else { 93 MBFI = nullptr; 94 MBPI = nullptr; 95 } 96 MIRBuilder.setMF(MF); 97 MORE = llvm::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI); 98 } 99 100 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const { 101 if (OptMode != Mode::Fast) { 102 // We could preserve the information from these two analysis but 103 // the APIs do not allow to do so yet. 104 AU.addRequired<MachineBlockFrequencyInfo>(); 105 AU.addRequired<MachineBranchProbabilityInfo>(); 106 } 107 AU.addRequired<TargetPassConfig>(); 108 MachineFunctionPass::getAnalysisUsage(AU); 109 } 110 111 bool RegBankSelect::assignmentMatch( 112 unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping, 113 bool &OnlyAssign) const { 114 // By default we assume we will have to repair something. 115 OnlyAssign = false; 116 // Each part of a break down needs to end up in a different register. 117 // In other word, Reg assignement does not match. 118 if (ValMapping.NumBreakDowns > 1) 119 return false; 120 121 const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI); 122 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank; 123 // Reg is free of assignment, a simple assignment will make the 124 // register bank to match. 125 OnlyAssign = CurRegBank == nullptr; 126 LLVM_DEBUG(dbgs() << "Does assignment already match: "; 127 if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none"; 128 dbgs() << " against "; 129 assert(DesiredRegBrank && "The mapping must be valid"); 130 dbgs() << *DesiredRegBrank << '\n';); 131 return CurRegBank == DesiredRegBrank; 132 } 133 134 bool RegBankSelect::repairReg( 135 MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping, 136 RegBankSelect::RepairingPlacement &RepairPt, 137 const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) { 138 if (ValMapping.NumBreakDowns != 1 && !TPC->isGlobalISelAbortEnabled()) 139 return false; 140 assert(ValMapping.NumBreakDowns == 1 && "Not yet implemented"); 141 // An empty range of new register means no repairing. 142 assert(NewVRegs.begin() != NewVRegs.end() && "We should not have to repair"); 143 144 // Assume we are repairing a use and thus, the original reg will be 145 // the source of the repairing. 146 unsigned Src = MO.getReg(); 147 unsigned Dst = *NewVRegs.begin(); 148 149 // If we repair a definition, swap the source and destination for 150 // the repairing. 151 if (MO.isDef()) 152 std::swap(Src, Dst); 153 154 assert((RepairPt.getNumInsertPoints() == 1 || 155 TargetRegisterInfo::isPhysicalRegister(Dst)) && 156 "We are about to create several defs for Dst"); 157 158 // Build the instruction used to repair, then clone it at the right 159 // places. Avoiding buildCopy bypasses the check that Src and Dst have the 160 // same types because the type is a placeholder when this function is called. 161 MachineInstr *MI = 162 MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY).addDef(Dst).addUse(Src); 163 LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst) 164 << '\n'); 165 // TODO: 166 // Check if MI is legal. if not, we need to legalize all the 167 // instructions we are going to insert. 168 std::unique_ptr<MachineInstr *[]> NewInstrs( 169 new MachineInstr *[RepairPt.getNumInsertPoints()]); 170 bool IsFirst = true; 171 unsigned Idx = 0; 172 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 173 MachineInstr *CurMI; 174 if (IsFirst) 175 CurMI = MI; 176 else 177 CurMI = MIRBuilder.getMF().CloneMachineInstr(MI); 178 InsertPt->insert(*CurMI); 179 NewInstrs[Idx++] = CurMI; 180 IsFirst = false; 181 } 182 // TODO: 183 // Legalize NewInstrs if need be. 184 return true; 185 } 186 187 uint64_t RegBankSelect::getRepairCost( 188 const MachineOperand &MO, 189 const RegisterBankInfo::ValueMapping &ValMapping) const { 190 assert(MO.isReg() && "We should only repair register operand"); 191 assert(ValMapping.NumBreakDowns && "Nothing to map??"); 192 193 bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1; 194 const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI); 195 // If MO does not have a register bank, we should have just been 196 // able to set one unless we have to break the value down. 197 assert((!IsSameNumOfValues || CurRegBank) && "We should not have to repair"); 198 // Def: Val <- NewDefs 199 // Same number of values: copy 200 // Different number: Val = build_sequence Defs1, Defs2, ... 201 // Use: NewSources <- Val. 202 // Same number of values: copy. 203 // Different number: Src1, Src2, ... = 204 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ... 205 // We should remember that this value is available somewhere else to 206 // coalesce the value. 207 208 if (IsSameNumOfValues) { 209 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank; 210 // If we repair a definition, swap the source and destination for 211 // the repairing. 212 if (MO.isDef()) 213 std::swap(CurRegBank, DesiredRegBrank); 214 // TODO: It may be possible to actually avoid the copy. 215 // If we repair something where the source is defined by a copy 216 // and the source of that copy is on the right bank, we can reuse 217 // it for free. 218 // E.g., 219 // RegToRepair<BankA> = copy AlternativeSrc<BankB> 220 // = op RegToRepair<BankA> 221 // We can simply propagate AlternativeSrc instead of copying RegToRepair 222 // into a new virtual register. 223 // We would also need to propagate this information in the 224 // repairing placement. 225 unsigned Cost = RBI->copyCost(*DesiredRegBrank, *CurRegBank, 226 RBI->getSizeInBits(MO.getReg(), *MRI, *TRI)); 227 // TODO: use a dedicated constant for ImpossibleCost. 228 if (Cost != std::numeric_limits<unsigned>::max()) 229 return Cost; 230 // Return the legalization cost of that repairing. 231 } 232 return std::numeric_limits<unsigned>::max(); 233 } 234 235 const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping( 236 MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings, 237 SmallVectorImpl<RepairingPlacement> &RepairPts) { 238 assert(!PossibleMappings.empty() && 239 "Do not know how to map this instruction"); 240 241 const RegisterBankInfo::InstructionMapping *BestMapping = nullptr; 242 MappingCost Cost = MappingCost::ImpossibleCost(); 243 SmallVector<RepairingPlacement, 4> LocalRepairPts; 244 for (const RegisterBankInfo::InstructionMapping *CurMapping : 245 PossibleMappings) { 246 MappingCost CurCost = 247 computeMapping(MI, *CurMapping, LocalRepairPts, &Cost); 248 if (CurCost < Cost) { 249 LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n'); 250 Cost = CurCost; 251 BestMapping = CurMapping; 252 RepairPts.clear(); 253 for (RepairingPlacement &RepairPt : LocalRepairPts) 254 RepairPts.emplace_back(std::move(RepairPt)); 255 } 256 } 257 if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) { 258 // If none of the mapping worked that means they are all impossible. 259 // Thus, pick the first one and set an impossible repairing point. 260 // It will trigger the failed isel mode. 261 BestMapping = *PossibleMappings.begin(); 262 RepairPts.emplace_back( 263 RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible)); 264 } else 265 assert(BestMapping && "No suitable mapping for instruction"); 266 return *BestMapping; 267 } 268 269 void RegBankSelect::tryAvoidingSplit( 270 RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO, 271 const RegisterBankInfo::ValueMapping &ValMapping) const { 272 const MachineInstr &MI = *MO.getParent(); 273 assert(RepairPt.hasSplit() && "We should not have to adjust for split"); 274 // Splitting should only occur for PHIs or between terminators, 275 // because we only do local repairing. 276 assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?"); 277 278 assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO && 279 "Repairing placement does not match operand"); 280 281 // If we need splitting for phis, that means it is because we 282 // could not find an insertion point before the terminators of 283 // the predecessor block for this argument. In other words, 284 // the input value is defined by one of the terminators. 285 assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?"); 286 287 // We split to repair the use of a phi or a terminator. 288 if (!MO.isDef()) { 289 if (MI.isTerminator()) { 290 assert(&MI != &(*MI.getParent()->getFirstTerminator()) && 291 "Need to split for the first terminator?!"); 292 } else { 293 // For the PHI case, the split may not be actually required. 294 // In the copy case, a phi is already a copy on the incoming edge, 295 // therefore there is no need to split. 296 if (ValMapping.NumBreakDowns == 1) 297 // This is a already a copy, there is nothing to do. 298 RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign); 299 } 300 return; 301 } 302 303 // At this point, we need to repair a defintion of a terminator. 304 305 // Technically we need to fix the def of MI on all outgoing 306 // edges of MI to keep the repairing local. In other words, we 307 // will create several definitions of the same register. This 308 // does not work for SSA unless that definition is a physical 309 // register. 310 // However, there are other cases where we can get away with 311 // that while still keeping the repairing local. 312 assert(MI.isTerminator() && MO.isDef() && 313 "This code is for the def of a terminator"); 314 315 // Since we use RPO traversal, if we need to repair a definition 316 // this means this definition could be: 317 // 1. Used by PHIs (i.e., this VReg has been visited as part of the 318 // uses of a phi.), or 319 // 2. Part of a target specific instruction (i.e., the target applied 320 // some register class constraints when creating the instruction.) 321 // If the constraints come for #2, the target said that another mapping 322 // is supported so we may just drop them. Indeed, if we do not change 323 // the number of registers holding that value, the uses will get fixed 324 // when we get to them. 325 // Uses in PHIs may have already been proceeded though. 326 // If the constraints come for #1, then, those are weak constraints and 327 // no actual uses may rely on them. However, the problem remains mainly 328 // the same as for #2. If the value stays in one register, we could 329 // just switch the register bank of the definition, but we would need to 330 // account for a repairing cost for each phi we silently change. 331 // 332 // In any case, if the value needs to be broken down into several 333 // registers, the repairing is not local anymore as we need to patch 334 // every uses to rebuild the value in just one register. 335 // 336 // To summarize: 337 // - If the value is in a physical register, we can do the split and 338 // fix locally. 339 // Otherwise if the value is in a virtual register: 340 // - If the value remains in one register, we do not have to split 341 // just switching the register bank would do, but we need to account 342 // in the repairing cost all the phi we changed. 343 // - If the value spans several registers, then we cannot do a local 344 // repairing. 345 346 // Check if this is a physical or virtual register. 347 unsigned Reg = MO.getReg(); 348 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 349 // We are going to split every outgoing edges. 350 // Check that this is possible. 351 // FIXME: The machine representation is currently broken 352 // since it also several terminators in one basic block. 353 // Because of that we would technically need a way to get 354 // the targets of just one terminator to know which edges 355 // we have to split. 356 // Assert that we do not hit the ill-formed representation. 357 358 // If there are other terminators before that one, some of 359 // the outgoing edges may not be dominated by this definition. 360 assert(&MI == &(*MI.getParent()->getFirstTerminator()) && 361 "Do not know which outgoing edges are relevant"); 362 const MachineInstr *Next = MI.getNextNode(); 363 assert((!Next || Next->isUnconditionalBranch()) && 364 "Do not know where each terminator ends up"); 365 if (Next) 366 // If the next terminator uses Reg, this means we have 367 // to split right after MI and thus we need a way to ask 368 // which outgoing edges are affected. 369 assert(!Next->readsRegister(Reg) && "Need to split between terminators"); 370 // We will split all the edges and repair there. 371 } else { 372 // This is a virtual register defined by a terminator. 373 if (ValMapping.NumBreakDowns == 1) { 374 // There is nothing to repair, but we may actually lie on 375 // the repairing cost because of the PHIs already proceeded 376 // as already stated. 377 // Though the code will be correct. 378 assert(false && "Repairing cost may not be accurate"); 379 } else { 380 // We need to do non-local repairing. Basically, patch all 381 // the uses (i.e., phis) that we already proceeded. 382 // For now, just say this mapping is not possible. 383 RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible); 384 } 385 } 386 } 387 388 RegBankSelect::MappingCost RegBankSelect::computeMapping( 389 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 390 SmallVectorImpl<RepairingPlacement> &RepairPts, 391 const RegBankSelect::MappingCost *BestCost) { 392 assert((MBFI || !BestCost) && "Costs comparison require MBFI"); 393 394 if (!InstrMapping.isValid()) 395 return MappingCost::ImpossibleCost(); 396 397 // If mapped with InstrMapping, MI will have the recorded cost. 398 MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1); 399 bool Saturated = Cost.addLocalCost(InstrMapping.getCost()); 400 assert(!Saturated && "Possible mapping saturated the cost"); 401 LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI); 402 LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n'); 403 RepairPts.clear(); 404 if (BestCost && Cost > *BestCost) { 405 LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n"); 406 return Cost; 407 } 408 409 // Moreover, to realize this mapping, the register bank of each operand must 410 // match this mapping. In other words, we may need to locally reassign the 411 // register banks. Account for that repairing cost as well. 412 // In this context, local means in the surrounding of MI. 413 for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands(); 414 OpIdx != EndOpIdx; ++OpIdx) { 415 const MachineOperand &MO = MI.getOperand(OpIdx); 416 if (!MO.isReg()) 417 continue; 418 unsigned Reg = MO.getReg(); 419 if (!Reg) 420 continue; 421 LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n'); 422 const RegisterBankInfo::ValueMapping &ValMapping = 423 InstrMapping.getOperandMapping(OpIdx); 424 // If Reg is already properly mapped, this is free. 425 bool Assign; 426 if (assignmentMatch(Reg, ValMapping, Assign)) { 427 LLVM_DEBUG(dbgs() << "=> is free (match).\n"); 428 continue; 429 } 430 if (Assign) { 431 LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n"); 432 RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this, 433 RepairingPlacement::Reassign)); 434 continue; 435 } 436 437 // Find the insertion point for the repairing code. 438 RepairPts.emplace_back( 439 RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert)); 440 RepairingPlacement &RepairPt = RepairPts.back(); 441 442 // If we need to split a basic block to materialize this insertion point, 443 // we may give a higher cost to this mapping. 444 // Nevertheless, we may get away with the split, so try that first. 445 if (RepairPt.hasSplit()) 446 tryAvoidingSplit(RepairPt, MO, ValMapping); 447 448 // Check that the materialization of the repairing is possible. 449 if (!RepairPt.canMaterialize()) { 450 LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n"); 451 return MappingCost::ImpossibleCost(); 452 } 453 454 // Account for the split cost and repair cost. 455 // Unless the cost is already saturated or we do not care about the cost. 456 if (!BestCost || Saturated) 457 continue; 458 459 // To get accurate information we need MBFI and MBPI. 460 // Thus, if we end up here this information should be here. 461 assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI"); 462 463 // FIXME: We will have to rework the repairing cost model. 464 // The repairing cost depends on the register bank that MO has. 465 // However, when we break down the value into different values, 466 // MO may not have a register bank while still needing repairing. 467 // For the fast mode, we don't compute the cost so that is fine, 468 // but still for the repairing code, we will have to make a choice. 469 // For the greedy mode, we should choose greedily what is the best 470 // choice based on the next use of MO. 471 472 // Sums up the repairing cost of MO at each insertion point. 473 uint64_t RepairCost = getRepairCost(MO, ValMapping); 474 475 // This is an impossible to repair cost. 476 if (RepairCost == std::numeric_limits<unsigned>::max()) 477 continue; 478 479 // Bias used for splitting: 5%. 480 const uint64_t PercentageForBias = 5; 481 uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100; 482 // We should not need more than a couple of instructions to repair 483 // an assignment. In other words, the computation should not 484 // overflow because the repairing cost is free of basic block 485 // frequency. 486 assert(((RepairCost < RepairCost * PercentageForBias) && 487 (RepairCost * PercentageForBias < 488 RepairCost * PercentageForBias + 99)) && 489 "Repairing involves more than a billion of instructions?!"); 490 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 491 assert(InsertPt->canMaterialize() && "We should not have made it here"); 492 // We will applied some basic block frequency and those uses uint64_t. 493 if (!InsertPt->isSplit()) 494 Saturated = Cost.addLocalCost(RepairCost); 495 else { 496 uint64_t CostForInsertPt = RepairCost; 497 // Again we shouldn't overflow here givent that 498 // CostForInsertPt is frequency free at this point. 499 assert(CostForInsertPt + Bias > CostForInsertPt && 500 "Repairing + split bias overflows"); 501 CostForInsertPt += Bias; 502 uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt; 503 // Check if we just overflowed. 504 if ((Saturated = PtCost < CostForInsertPt)) 505 Cost.saturate(); 506 else 507 Saturated = Cost.addNonLocalCost(PtCost); 508 } 509 510 // Stop looking into what it takes to repair, this is already 511 // too expensive. 512 if (BestCost && Cost > *BestCost) { 513 LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n"); 514 return Cost; 515 } 516 517 // No need to accumulate more cost information. 518 // We need to still gather the repairing information though. 519 if (Saturated) 520 break; 521 } 522 } 523 LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n"); 524 return Cost; 525 } 526 527 bool RegBankSelect::applyMapping( 528 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 529 SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) { 530 // OpdMapper will hold all the information needed for the rewritting. 531 RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI); 532 533 // First, place the repairing code. 534 for (RepairingPlacement &RepairPt : RepairPts) { 535 if (!RepairPt.canMaterialize() || 536 RepairPt.getKind() == RepairingPlacement::Impossible) 537 return false; 538 assert(RepairPt.getKind() != RepairingPlacement::None && 539 "This should not make its way in the list"); 540 unsigned OpIdx = RepairPt.getOpIdx(); 541 MachineOperand &MO = MI.getOperand(OpIdx); 542 const RegisterBankInfo::ValueMapping &ValMapping = 543 InstrMapping.getOperandMapping(OpIdx); 544 unsigned Reg = MO.getReg(); 545 546 switch (RepairPt.getKind()) { 547 case RepairingPlacement::Reassign: 548 assert(ValMapping.NumBreakDowns == 1 && 549 "Reassignment should only be for simple mapping"); 550 MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank); 551 break; 552 case RepairingPlacement::Insert: 553 OpdMapper.createVRegs(OpIdx); 554 if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx))) 555 return false; 556 break; 557 default: 558 llvm_unreachable("Other kind should not happen"); 559 } 560 } 561 562 // Second, rewrite the instruction. 563 LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n'); 564 RBI->applyMapping(OpdMapper); 565 566 return true; 567 } 568 569 bool RegBankSelect::assignInstr(MachineInstr &MI) { 570 LLVM_DEBUG(dbgs() << "Assign: " << MI); 571 // Remember the repairing placement for all the operands. 572 SmallVector<RepairingPlacement, 4> RepairPts; 573 574 const RegisterBankInfo::InstructionMapping *BestMapping; 575 if (OptMode == RegBankSelect::Mode::Fast) { 576 BestMapping = &RBI->getInstrMapping(MI); 577 MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts); 578 (void)DefaultCost; 579 if (DefaultCost == MappingCost::ImpossibleCost()) 580 return false; 581 } else { 582 RegisterBankInfo::InstructionMappings PossibleMappings = 583 RBI->getInstrPossibleMappings(MI); 584 if (PossibleMappings.empty()) 585 return false; 586 BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts); 587 } 588 // Make sure the mapping is valid for MI. 589 assert(BestMapping->verify(MI) && "Invalid instruction mapping"); 590 591 LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n'); 592 593 // After this call, MI may not be valid anymore. 594 // Do not use it. 595 return applyMapping(MI, *BestMapping, RepairPts); 596 } 597 598 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) { 599 // If the ISel pipeline failed, do not bother running that pass. 600 if (MF.getProperties().hasProperty( 601 MachineFunctionProperties::Property::FailedISel)) 602 return false; 603 604 LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n'); 605 const Function &F = MF.getFunction(); 606 Mode SaveOptMode = OptMode; 607 if (F.hasFnAttribute(Attribute::OptimizeNone)) 608 OptMode = Mode::Fast; 609 init(MF); 610 611 #ifndef NDEBUG 612 // Check that our input is fully legal: we require the function to have the 613 // Legalized property, so it should be. 614 // FIXME: This should be in the MachineVerifier. 615 if (!DisableGISelLegalityCheck) 616 if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) { 617 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", 618 "instruction is not legal", *MI); 619 return false; 620 } 621 #endif 622 623 // Walk the function and assign register banks to all operands. 624 // Use a RPOT to make sure all registers are assigned before we choose 625 // the best mapping of the current instruction. 626 ReversePostOrderTraversal<MachineFunction*> RPOT(&MF); 627 for (MachineBasicBlock *MBB : RPOT) { 628 // Set a sensible insertion point so that subsequent calls to 629 // MIRBuilder. 630 MIRBuilder.setMBB(*MBB); 631 for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end(); 632 MII != End;) { 633 // MI might be invalidated by the assignment, so move the 634 // iterator before hand. 635 MachineInstr &MI = *MII++; 636 637 // Ignore target-specific instructions: they should use proper regclasses. 638 if (isTargetSpecificOpcode(MI.getOpcode())) 639 continue; 640 641 if (!assignInstr(MI)) { 642 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", 643 "unable to map instruction", MI); 644 return false; 645 } 646 } 647 } 648 OptMode = SaveOptMode; 649 return false; 650 } 651 652 //------------------------------------------------------------------------------ 653 // Helper Classes Implementation 654 //------------------------------------------------------------------------------ 655 RegBankSelect::RepairingPlacement::RepairingPlacement( 656 MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P, 657 RepairingPlacement::RepairingKind Kind) 658 // Default is, we are going to insert code to repair OpIdx. 659 : Kind(Kind), OpIdx(OpIdx), 660 CanMaterialize(Kind != RepairingKind::Impossible), P(P) { 661 const MachineOperand &MO = MI.getOperand(OpIdx); 662 assert(MO.isReg() && "Trying to repair a non-reg operand"); 663 664 if (Kind != RepairingKind::Insert) 665 return; 666 667 // Repairings for definitions happen after MI, uses happen before. 668 bool Before = !MO.isDef(); 669 670 // Check if we are done with MI. 671 if (!MI.isPHI() && !MI.isTerminator()) { 672 addInsertPoint(MI, Before); 673 // We are done with the initialization. 674 return; 675 } 676 677 // Now, look for the special cases. 678 if (MI.isPHI()) { 679 // - PHI must be the first instructions: 680 // * Before, we have to split the related incoming edge. 681 // * After, move the insertion point past the last phi. 682 if (!Before) { 683 MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI(); 684 if (It != MI.getParent()->end()) 685 addInsertPoint(*It, /*Before*/ true); 686 else 687 addInsertPoint(*(--It), /*Before*/ false); 688 return; 689 } 690 // We repair a use of a phi, we may need to split the related edge. 691 MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB(); 692 // Check if we can move the insertion point prior to the 693 // terminators of the predecessor. 694 unsigned Reg = MO.getReg(); 695 MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr(); 696 for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It) 697 if (It->modifiesRegister(Reg, &TRI)) { 698 // We cannot hoist the repairing code in the predecessor. 699 // Split the edge. 700 addInsertPoint(Pred, *MI.getParent()); 701 return; 702 } 703 // At this point, we can insert in Pred. 704 705 // - If It is invalid, Pred is empty and we can insert in Pred 706 // wherever we want. 707 // - If It is valid, It is the first non-terminator, insert after It. 708 if (It == Pred.end()) 709 addInsertPoint(Pred, /*Beginning*/ false); 710 else 711 addInsertPoint(*It, /*Before*/ false); 712 } else { 713 // - Terminators must be the last instructions: 714 // * Before, move the insert point before the first terminator. 715 // * After, we have to split the outcoming edges. 716 unsigned Reg = MO.getReg(); 717 if (Before) { 718 // Check whether Reg is defined by any terminator. 719 MachineBasicBlock::iterator It = MI; 720 for (auto Begin = MI.getParent()->begin(); 721 --It != Begin && It->isTerminator();) 722 if (It->modifiesRegister(Reg, &TRI)) { 723 // Insert the repairing code right after the definition. 724 addInsertPoint(*It, /*Before*/ false); 725 return; 726 } 727 addInsertPoint(*It, /*Before*/ true); 728 return; 729 } 730 // Make sure Reg is not redefined by other terminators, otherwise 731 // we do not know how to split. 732 for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end(); 733 ++It != End;) 734 // The machine verifier should reject this kind of code. 735 assert(It->modifiesRegister(Reg, &TRI) && "Do not know where to split"); 736 // Split each outcoming edges. 737 MachineBasicBlock &Src = *MI.getParent(); 738 for (auto &Succ : Src.successors()) 739 addInsertPoint(Src, Succ); 740 } 741 } 742 743 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI, 744 bool Before) { 745 addInsertPoint(*new InstrInsertPoint(MI, Before)); 746 } 747 748 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB, 749 bool Beginning) { 750 addInsertPoint(*new MBBInsertPoint(MBB, Beginning)); 751 } 752 753 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src, 754 MachineBasicBlock &Dst) { 755 addInsertPoint(*new EdgeInsertPoint(Src, Dst, P)); 756 } 757 758 void RegBankSelect::RepairingPlacement::addInsertPoint( 759 RegBankSelect::InsertPoint &Point) { 760 CanMaterialize &= Point.canMaterialize(); 761 HasSplit |= Point.isSplit(); 762 InsertPoints.emplace_back(&Point); 763 } 764 765 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr, 766 bool Before) 767 : InsertPoint(), Instr(Instr), Before(Before) { 768 // Since we do not support splitting, we do not need to update 769 // liveness and such, so do not do anything with P. 770 assert((!Before || !Instr.isPHI()) && 771 "Splitting before phis requires more points"); 772 assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) && 773 "Splitting between phis does not make sense"); 774 } 775 776 void RegBankSelect::InstrInsertPoint::materialize() { 777 if (isSplit()) { 778 // Slice and return the beginning of the new block. 779 // If we need to split between the terminators, we theoritically 780 // need to know where the first and second set of terminators end 781 // to update the successors properly. 782 // Now, in pratice, we should have a maximum of 2 branch 783 // instructions; one conditional and one unconditional. Therefore 784 // we know how to update the successor by looking at the target of 785 // the unconditional branch. 786 // If we end up splitting at some point, then, we should update 787 // the liveness information and such. I.e., we would need to 788 // access P here. 789 // The machine verifier should actually make sure such cases 790 // cannot happen. 791 llvm_unreachable("Not yet implemented"); 792 } 793 // Otherwise the insertion point is just the current or next 794 // instruction depending on Before. I.e., there is nothing to do 795 // here. 796 } 797 798 bool RegBankSelect::InstrInsertPoint::isSplit() const { 799 // If the insertion point is after a terminator, we need to split. 800 if (!Before) 801 return Instr.isTerminator(); 802 // If we insert before an instruction that is after a terminator, 803 // we are still after a terminator. 804 return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator(); 805 } 806 807 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const { 808 // Even if we need to split, because we insert between terminators, 809 // this split has actually the same frequency as the instruction. 810 const MachineBlockFrequencyInfo *MBFI = 811 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 812 if (!MBFI) 813 return 1; 814 return MBFI->getBlockFreq(Instr.getParent()).getFrequency(); 815 } 816 817 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const { 818 const MachineBlockFrequencyInfo *MBFI = 819 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 820 if (!MBFI) 821 return 1; 822 return MBFI->getBlockFreq(&MBB).getFrequency(); 823 } 824 825 void RegBankSelect::EdgeInsertPoint::materialize() { 826 // If we end up repairing twice at the same place before materializing the 827 // insertion point, we may think we have to split an edge twice. 828 // We should have a factory for the insert point such that identical points 829 // are the same instance. 830 assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) && 831 "This point has already been split"); 832 MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P); 833 assert(NewBB && "Invalid call to materialize"); 834 // We reuse the destination block to hold the information of the new block. 835 DstOrSplit = NewBB; 836 } 837 838 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const { 839 const MachineBlockFrequencyInfo *MBFI = 840 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 841 if (!MBFI) 842 return 1; 843 if (WasMaterialized) 844 return MBFI->getBlockFreq(DstOrSplit).getFrequency(); 845 846 const MachineBranchProbabilityInfo *MBPI = 847 P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>(); 848 if (!MBPI) 849 return 1; 850 // The basic block will be on the edge. 851 return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit)) 852 .getFrequency(); 853 } 854 855 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const { 856 // If this is not a critical edge, we should not have used this insert 857 // point. Indeed, either the successor or the predecessor should 858 // have do. 859 assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 && 860 "Edge is not critical"); 861 return Src.canSplitCriticalEdge(DstOrSplit); 862 } 863 864 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq) 865 : LocalFreq(LocalFreq.getFrequency()) {} 866 867 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) { 868 // Check if this overflows. 869 if (LocalCost + Cost < LocalCost) { 870 saturate(); 871 return true; 872 } 873 LocalCost += Cost; 874 return isSaturated(); 875 } 876 877 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) { 878 // Check if this overflows. 879 if (NonLocalCost + Cost < NonLocalCost) { 880 saturate(); 881 return true; 882 } 883 NonLocalCost += Cost; 884 return isSaturated(); 885 } 886 887 bool RegBankSelect::MappingCost::isSaturated() const { 888 return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX && 889 LocalFreq == UINT64_MAX; 890 } 891 892 void RegBankSelect::MappingCost::saturate() { 893 *this = ImpossibleCost(); 894 --LocalCost; 895 } 896 897 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() { 898 return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX); 899 } 900 901 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const { 902 // Sort out the easy cases. 903 if (*this == Cost) 904 return false; 905 // If one is impossible to realize the other is cheaper unless it is 906 // impossible as well. 907 if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost())) 908 return (*this == ImpossibleCost()) < (Cost == ImpossibleCost()); 909 // If one is saturated the other is cheaper, unless it is saturated 910 // as well. 911 if (isSaturated() || Cost.isSaturated()) 912 return isSaturated() < Cost.isSaturated(); 913 // At this point we know both costs hold sensible values. 914 915 // If both values have a different base frequency, there is no much 916 // we can do but to scale everything. 917 // However, if they have the same base frequency we can avoid making 918 // complicated computation. 919 uint64_t ThisLocalAdjust; 920 uint64_t OtherLocalAdjust; 921 if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) { 922 923 // At this point, we know the local costs are comparable. 924 // Do the case that do not involve potential overflow first. 925 if (NonLocalCost == Cost.NonLocalCost) 926 // Since the non-local costs do not discriminate on the result, 927 // just compare the local costs. 928 return LocalCost < Cost.LocalCost; 929 930 // The base costs are comparable so we may only keep the relative 931 // value to increase our chances of avoiding overflows. 932 ThisLocalAdjust = 0; 933 OtherLocalAdjust = 0; 934 if (LocalCost < Cost.LocalCost) 935 OtherLocalAdjust = Cost.LocalCost - LocalCost; 936 else 937 ThisLocalAdjust = LocalCost - Cost.LocalCost; 938 } else { 939 ThisLocalAdjust = LocalCost; 940 OtherLocalAdjust = Cost.LocalCost; 941 } 942 943 // The non-local costs are comparable, just keep the relative value. 944 uint64_t ThisNonLocalAdjust = 0; 945 uint64_t OtherNonLocalAdjust = 0; 946 if (NonLocalCost < Cost.NonLocalCost) 947 OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost; 948 else 949 ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost; 950 // Scale everything to make them comparable. 951 uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq; 952 // Check for overflow on that operation. 953 bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust || 954 ThisScaledCost < LocalFreq); 955 uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq; 956 // Check for overflow on the last operation. 957 bool OtherOverflows = 958 OtherLocalAdjust && 959 (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq); 960 // Add the non-local costs. 961 ThisOverflows |= ThisNonLocalAdjust && 962 ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust; 963 ThisScaledCost += ThisNonLocalAdjust; 964 OtherOverflows |= OtherNonLocalAdjust && 965 OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust; 966 OtherScaledCost += OtherNonLocalAdjust; 967 // If both overflows, we cannot compare without additional 968 // precision, e.g., APInt. Just give up on that case. 969 if (ThisOverflows && OtherOverflows) 970 return false; 971 // If one overflows but not the other, we can still compare. 972 if (ThisOverflows || OtherOverflows) 973 return ThisOverflows < OtherOverflows; 974 // Otherwise, just compare the values. 975 return ThisScaledCost < OtherScaledCost; 976 } 977 978 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const { 979 return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost && 980 LocalFreq == Cost.LocalFreq; 981 } 982 983 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 984 LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const { 985 print(dbgs()); 986 dbgs() << '\n'; 987 } 988 #endif 989 990 void RegBankSelect::MappingCost::print(raw_ostream &OS) const { 991 if (*this == ImpossibleCost()) { 992 OS << "impossible"; 993 return; 994 } 995 if (isSaturated()) { 996 OS << "saturated"; 997 return; 998 } 999 OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost; 1000 } 1001