1 //===- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect -*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file implements the RegBankSelect class.
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/CodeGen/GlobalISel/MachineLegalizer.h"
16 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
17 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
18 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetPassConfig.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/Support/BlockFrequency.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Target/TargetSubtargetInfo.h"
26 
27 #define DEBUG_TYPE "regbankselect"
28 
29 using namespace llvm;
30 
31 static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
32     cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
33     cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
34                           "Run the Fast mode (default mapping)"),
35                clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
36                           "Use the Greedy mode (best local mapping)")));
37 
38 char RegBankSelect::ID = 0;
39 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
40                       "Assign register bank of generic virtual registers",
41                       false, false);
42 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
43 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
44 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
45 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
46                     "Assign register bank of generic virtual registers", false,
47                     false)
48 
49 RegBankSelect::RegBankSelect(Mode RunningMode)
50     : MachineFunctionPass(ID), RBI(nullptr), MRI(nullptr), TRI(nullptr),
51       MBFI(nullptr), MBPI(nullptr), OptMode(RunningMode) {
52   initializeRegBankSelectPass(*PassRegistry::getPassRegistry());
53   if (RegBankSelectMode.getNumOccurrences() != 0) {
54     OptMode = RegBankSelectMode;
55     if (RegBankSelectMode != RunningMode)
56       DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
57   }
58 }
59 
60 void RegBankSelect::init(MachineFunction &MF) {
61   RBI = MF.getSubtarget().getRegBankInfo();
62   assert(RBI && "Cannot work without RegisterBankInfo");
63   MRI = &MF.getRegInfo();
64   TRI = MF.getSubtarget().getRegisterInfo();
65   TPC = &getAnalysis<TargetPassConfig>();
66   if (OptMode != Mode::Fast) {
67     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
68     MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
69   } else {
70     MBFI = nullptr;
71     MBPI = nullptr;
72   }
73   MIRBuilder.setMF(MF);
74 }
75 
76 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
77   if (OptMode != Mode::Fast) {
78     // We could preserve the information from these two analysis but
79     // the APIs do not allow to do so yet.
80     AU.addRequired<MachineBlockFrequencyInfo>();
81     AU.addRequired<MachineBranchProbabilityInfo>();
82   }
83   AU.addRequired<TargetPassConfig>();
84   MachineFunctionPass::getAnalysisUsage(AU);
85 }
86 
87 bool RegBankSelect::assignmentMatch(
88     unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping,
89     bool &OnlyAssign) const {
90   // By default we assume we will have to repair something.
91   OnlyAssign = false;
92   // Each part of a break down needs to end up in a different register.
93   // In other word, Reg assignement does not match.
94   if (ValMapping.NumBreakDowns > 1)
95     return false;
96 
97   const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
98   const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
99   // Reg is free of assignment, a simple assignment will make the
100   // register bank to match.
101   OnlyAssign = CurRegBank == nullptr;
102   DEBUG(dbgs() << "Does assignment already match: ";
103         if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
104         dbgs() << " against ";
105         assert(DesiredRegBrank && "The mapping must be valid");
106         dbgs() << *DesiredRegBrank << '\n';);
107   return CurRegBank == DesiredRegBrank;
108 }
109 
110 bool RegBankSelect::repairReg(
111     MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
112     RegBankSelect::RepairingPlacement &RepairPt,
113     const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) {
114   if (ValMapping.NumBreakDowns != 1 && !TPC->isGlobalISelAbortEnabled())
115     return false;
116   assert(ValMapping.NumBreakDowns == 1 && "Not yet implemented");
117   // An empty range of new register means no repairing.
118   assert(NewVRegs.begin() != NewVRegs.end() && "We should not have to repair");
119 
120   // Assume we are repairing a use and thus, the original reg will be
121   // the source of the repairing.
122   unsigned Src = MO.getReg();
123   unsigned Dst = *NewVRegs.begin();
124 
125   // If we repair a definition, swap the source and destination for
126   // the repairing.
127   if (MO.isDef())
128     std::swap(Src, Dst);
129 
130   assert((RepairPt.getNumInsertPoints() == 1 ||
131           TargetRegisterInfo::isPhysicalRegister(Dst)) &&
132          "We are about to create several defs for Dst");
133 
134   // Build the instruction used to repair, then clone it at the right places.
135   MachineInstr *MI = MIRBuilder.buildCopy(Dst, Src);
136   MI->removeFromParent();
137   DEBUG(dbgs() << "Copy: " << PrintReg(Src) << " to: " << PrintReg(Dst)
138                << '\n');
139   // TODO:
140   // Check if MI is legal. if not, we need to legalize all the
141   // instructions we are going to insert.
142   std::unique_ptr<MachineInstr *[]> NewInstrs(
143       new MachineInstr *[RepairPt.getNumInsertPoints()]);
144   bool IsFirst = true;
145   unsigned Idx = 0;
146   for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
147     MachineInstr *CurMI;
148     if (IsFirst)
149       CurMI = MI;
150     else
151       CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
152     InsertPt->insert(*CurMI);
153     NewInstrs[Idx++] = CurMI;
154     IsFirst = false;
155   }
156   // TODO:
157   // Legalize NewInstrs if need be.
158   return true;
159 }
160 
161 uint64_t RegBankSelect::getRepairCost(
162     const MachineOperand &MO,
163     const RegisterBankInfo::ValueMapping &ValMapping) const {
164   assert(MO.isReg() && "We should only repair register operand");
165   assert(ValMapping.NumBreakDowns && "Nothing to map??");
166 
167   bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
168   const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
169   // If MO does not have a register bank, we should have just been
170   // able to set one unless we have to break the value down.
171   assert((!IsSameNumOfValues || CurRegBank) && "We should not have to repair");
172   // Def: Val <- NewDefs
173   //     Same number of values: copy
174   //     Different number: Val = build_sequence Defs1, Defs2, ...
175   // Use: NewSources <- Val.
176   //     Same number of values: copy.
177   //     Different number: Src1, Src2, ... =
178   //           extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
179   // We should remember that this value is available somewhere else to
180   // coalesce the value.
181 
182   if (IsSameNumOfValues) {
183     const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
184     // If we repair a definition, swap the source and destination for
185     // the repairing.
186     if (MO.isDef())
187       std::swap(CurRegBank, DesiredRegBrank);
188     // TODO: It may be possible to actually avoid the copy.
189     // If we repair something where the source is defined by a copy
190     // and the source of that copy is on the right bank, we can reuse
191     // it for free.
192     // E.g.,
193     // RegToRepair<BankA> = copy AlternativeSrc<BankB>
194     // = op RegToRepair<BankA>
195     // We can simply propagate AlternativeSrc instead of copying RegToRepair
196     // into a new virtual register.
197     // We would also need to propagate this information in the
198     // repairing placement.
199     unsigned Cost =
200         RBI->copyCost(*DesiredRegBrank, *CurRegBank,
201                       RegisterBankInfo::getSizeInBits(MO.getReg(), *MRI, *TRI));
202     // TODO: use a dedicated constant for ImpossibleCost.
203     if (Cost != UINT_MAX)
204       return Cost;
205     assert(!TPC->isGlobalISelAbortEnabled() &&
206            "Legalization not available yet");
207     // Return the legalization cost of that repairing.
208   }
209   assert(!TPC->isGlobalISelAbortEnabled() &&
210          "Complex repairing not implemented yet");
211   return UINT_MAX;
212 }
213 
214 RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
215     MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
216     SmallVectorImpl<RepairingPlacement> &RepairPts) {
217   assert(!PossibleMappings.empty() &&
218          "Do not know how to map this instruction");
219 
220   RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
221   MappingCost Cost = MappingCost::ImpossibleCost();
222   SmallVector<RepairingPlacement, 4> LocalRepairPts;
223   for (RegisterBankInfo::InstructionMapping &CurMapping : PossibleMappings) {
224     MappingCost CurCost = computeMapping(MI, CurMapping, LocalRepairPts, &Cost);
225     if (CurCost < Cost) {
226       Cost = CurCost;
227       BestMapping = &CurMapping;
228       RepairPts.clear();
229       for (RepairingPlacement &RepairPt : LocalRepairPts)
230         RepairPts.emplace_back(std::move(RepairPt));
231     }
232   }
233   if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
234     // If none of the mapping worked that means they are all impossible.
235     // Thus, pick the first one and set an impossible repairing point.
236     // It will trigger the failed isel mode.
237     BestMapping = &(*PossibleMappings.begin());
238     RepairPts.emplace_back(
239         RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
240   } else
241     assert(BestMapping && "No suitable mapping for instruction");
242   return *BestMapping;
243 }
244 
245 void RegBankSelect::tryAvoidingSplit(
246     RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
247     const RegisterBankInfo::ValueMapping &ValMapping) const {
248   const MachineInstr &MI = *MO.getParent();
249   assert(RepairPt.hasSplit() && "We should not have to adjust for split");
250   // Splitting should only occur for PHIs or between terminators,
251   // because we only do local repairing.
252   assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
253 
254   assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
255          "Repairing placement does not match operand");
256 
257   // If we need splitting for phis, that means it is because we
258   // could not find an insertion point before the terminators of
259   // the predecessor block for this argument. In other words,
260   // the input value is defined by one of the terminators.
261   assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
262 
263   // We split to repair the use of a phi or a terminator.
264   if (!MO.isDef()) {
265     if (MI.isTerminator()) {
266       assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
267              "Need to split for the first terminator?!");
268     } else {
269       // For the PHI case, the split may not be actually required.
270       // In the copy case, a phi is already a copy on the incoming edge,
271       // therefore there is no need to split.
272       if (ValMapping.NumBreakDowns == 1)
273         // This is a already a copy, there is nothing to do.
274         RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
275     }
276     return;
277   }
278 
279   // At this point, we need to repair a defintion of a terminator.
280 
281   // Technically we need to fix the def of MI on all outgoing
282   // edges of MI to keep the repairing local. In other words, we
283   // will create several definitions of the same register. This
284   // does not work for SSA unless that definition is a physical
285   // register.
286   // However, there are other cases where we can get away with
287   // that while still keeping the repairing local.
288   assert(MI.isTerminator() && MO.isDef() &&
289          "This code is for the def of a terminator");
290 
291   // Since we use RPO traversal, if we need to repair a definition
292   // this means this definition could be:
293   // 1. Used by PHIs (i.e., this VReg has been visited as part of the
294   //    uses of a phi.), or
295   // 2. Part of a target specific instruction (i.e., the target applied
296   //    some register class constraints when creating the instruction.)
297   // If the constraints come for #2, the target said that another mapping
298   // is supported so we may just drop them. Indeed, if we do not change
299   // the number of registers holding that value, the uses will get fixed
300   // when we get to them.
301   // Uses in PHIs may have already been proceeded though.
302   // If the constraints come for #1, then, those are weak constraints and
303   // no actual uses may rely on them. However, the problem remains mainly
304   // the same as for #2. If the value stays in one register, we could
305   // just switch the register bank of the definition, but we would need to
306   // account for a repairing cost for each phi we silently change.
307   //
308   // In any case, if the value needs to be broken down into several
309   // registers, the repairing is not local anymore as we need to patch
310   // every uses to rebuild the value in just one register.
311   //
312   // To summarize:
313   // - If the value is in a physical register, we can do the split and
314   //   fix locally.
315   // Otherwise if the value is in a virtual register:
316   // - If the value remains in one register, we do not have to split
317   //   just switching the register bank would do, but we need to account
318   //   in the repairing cost all the phi we changed.
319   // - If the value spans several registers, then we cannot do a local
320   //   repairing.
321 
322   // Check if this is a physical or virtual register.
323   unsigned Reg = MO.getReg();
324   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
325     // We are going to split every outgoing edges.
326     // Check that this is possible.
327     // FIXME: The machine representation is currently broken
328     // since it also several terminators in one basic block.
329     // Because of that we would technically need a way to get
330     // the targets of just one terminator to know which edges
331     // we have to split.
332     // Assert that we do not hit the ill-formed representation.
333 
334     // If there are other terminators before that one, some of
335     // the outgoing edges may not be dominated by this definition.
336     assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
337            "Do not know which outgoing edges are relevant");
338     const MachineInstr *Next = MI.getNextNode();
339     assert((!Next || Next->isUnconditionalBranch()) &&
340            "Do not know where each terminator ends up");
341     if (Next)
342       // If the next terminator uses Reg, this means we have
343       // to split right after MI and thus we need a way to ask
344       // which outgoing edges are affected.
345       assert(!Next->readsRegister(Reg) && "Need to split between terminators");
346     // We will split all the edges and repair there.
347   } else {
348     // This is a virtual register defined by a terminator.
349     if (ValMapping.NumBreakDowns == 1) {
350       // There is nothing to repair, but we may actually lie on
351       // the repairing cost because of the PHIs already proceeded
352       // as already stated.
353       // Though the code will be correct.
354       assert(0 && "Repairing cost may not be accurate");
355     } else {
356       // We need to do non-local repairing. Basically, patch all
357       // the uses (i.e., phis) that we already proceeded.
358       // For now, just say this mapping is not possible.
359       RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
360     }
361   }
362 }
363 
364 RegBankSelect::MappingCost RegBankSelect::computeMapping(
365     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
366     SmallVectorImpl<RepairingPlacement> &RepairPts,
367     const RegBankSelect::MappingCost *BestCost) {
368   assert((MBFI || !BestCost) && "Costs comparison require MBFI");
369 
370   // If mapped with InstrMapping, MI will have the recorded cost.
371   MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
372   bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
373   assert(!Saturated && "Possible mapping saturated the cost");
374   DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
375   DEBUG(dbgs() << "With: " << InstrMapping << '\n');
376   RepairPts.clear();
377   if (BestCost && Cost > *BestCost)
378     return Cost;
379 
380   // Moreover, to realize this mapping, the register bank of each operand must
381   // match this mapping. In other words, we may need to locally reassign the
382   // register banks. Account for that repairing cost as well.
383   // In this context, local means in the surrounding of MI.
384   for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
385        OpIdx != EndOpIdx; ++OpIdx) {
386     const MachineOperand &MO = MI.getOperand(OpIdx);
387     if (!MO.isReg())
388       continue;
389     unsigned Reg = MO.getReg();
390     if (!Reg)
391       continue;
392     DEBUG(dbgs() << "Opd" << OpIdx);
393     const RegisterBankInfo::ValueMapping &ValMapping =
394         InstrMapping.getOperandMapping(OpIdx);
395     // If Reg is already properly mapped, this is free.
396     bool Assign;
397     if (assignmentMatch(Reg, ValMapping, Assign)) {
398       DEBUG(dbgs() << " is free (match).\n");
399       continue;
400     }
401     if (Assign) {
402       DEBUG(dbgs() << " is free (simple assignment).\n");
403       RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
404                                                 RepairingPlacement::Reassign));
405       continue;
406     }
407 
408     // Find the insertion point for the repairing code.
409     RepairPts.emplace_back(
410         RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
411     RepairingPlacement &RepairPt = RepairPts.back();
412 
413     // If we need to split a basic block to materialize this insertion point,
414     // we may give a higher cost to this mapping.
415     // Nevertheless, we may get away with the split, so try that first.
416     if (RepairPt.hasSplit())
417       tryAvoidingSplit(RepairPt, MO, ValMapping);
418 
419     // Check that the materialization of the repairing is possible.
420     if (!RepairPt.canMaterialize())
421       return MappingCost::ImpossibleCost();
422 
423     // Account for the split cost and repair cost.
424     // Unless the cost is already saturated or we do not care about the cost.
425     if (!BestCost || Saturated)
426       continue;
427 
428     // To get accurate information we need MBFI and MBPI.
429     // Thus, if we end up here this information should be here.
430     assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
431 
432     // FIXME: We will have to rework the repairing cost model.
433     // The repairing cost depends on the register bank that MO has.
434     // However, when we break down the value into different values,
435     // MO may not have a register bank while still needing repairing.
436     // For the fast mode, we don't compute the cost so that is fine,
437     // but still for the repairing code, we will have to make a choice.
438     // For the greedy mode, we should choose greedily what is the best
439     // choice based on the next use of MO.
440 
441     // Sums up the repairing cost of MO at each insertion point.
442     uint64_t RepairCost = getRepairCost(MO, ValMapping);
443     // Bias used for splitting: 5%.
444     const uint64_t PercentageForBias = 5;
445     uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
446     // We should not need more than a couple of instructions to repair
447     // an assignment. In other words, the computation should not
448     // overflow because the repairing cost is free of basic block
449     // frequency.
450     assert(((RepairCost < RepairCost * PercentageForBias) &&
451             (RepairCost * PercentageForBias <
452              RepairCost * PercentageForBias + 99)) &&
453            "Repairing involves more than a billion of instructions?!");
454     for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
455       assert(InsertPt->canMaterialize() && "We should not have made it here");
456       // We will applied some basic block frequency and those uses uint64_t.
457       if (!InsertPt->isSplit())
458         Saturated = Cost.addLocalCost(RepairCost);
459       else {
460         uint64_t CostForInsertPt = RepairCost;
461         // Again we shouldn't overflow here givent that
462         // CostForInsertPt is frequency free at this point.
463         assert(CostForInsertPt + Bias > CostForInsertPt &&
464                "Repairing + split bias overflows");
465         CostForInsertPt += Bias;
466         uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
467         // Check if we just overflowed.
468         if ((Saturated = PtCost < CostForInsertPt))
469           Cost.saturate();
470         else
471           Saturated = Cost.addNonLocalCost(PtCost);
472       }
473 
474       // Stop looking into what it takes to repair, this is already
475       // too expensive.
476       if (BestCost && Cost > *BestCost)
477         return Cost;
478 
479       // No need to accumulate more cost information.
480       // We need to still gather the repairing information though.
481       if (Saturated)
482         break;
483     }
484   }
485   return Cost;
486 }
487 
488 bool RegBankSelect::applyMapping(
489     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
490     SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
491   // OpdMapper will hold all the information needed for the rewritting.
492   RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
493 
494   // First, place the repairing code.
495   for (RepairingPlacement &RepairPt : RepairPts) {
496     if (!RepairPt.canMaterialize() ||
497         RepairPt.getKind() == RepairingPlacement::Impossible)
498       return false;
499     assert(RepairPt.getKind() != RepairingPlacement::None &&
500            "This should not make its way in the list");
501     unsigned OpIdx = RepairPt.getOpIdx();
502     MachineOperand &MO = MI.getOperand(OpIdx);
503     const RegisterBankInfo::ValueMapping &ValMapping =
504         InstrMapping.getOperandMapping(OpIdx);
505     unsigned Reg = MO.getReg();
506 
507     switch (RepairPt.getKind()) {
508     case RepairingPlacement::Reassign:
509       assert(ValMapping.NumBreakDowns == 1 &&
510              "Reassignment should only be for simple mapping");
511       MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
512       break;
513     case RepairingPlacement::Insert:
514       OpdMapper.createVRegs(OpIdx);
515       if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
516         return false;
517       break;
518     default:
519       llvm_unreachable("Other kind should not happen");
520     }
521   }
522   // Second, rewrite the instruction.
523   DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
524   RBI->applyMapping(OpdMapper);
525   return true;
526 }
527 
528 bool RegBankSelect::assignInstr(MachineInstr &MI) {
529   DEBUG(dbgs() << "Assign: " << MI);
530   // Remember the repairing placement for all the operands.
531   SmallVector<RepairingPlacement, 4> RepairPts;
532 
533   RegisterBankInfo::InstructionMapping BestMapping;
534   if (OptMode == RegBankSelect::Mode::Fast) {
535     BestMapping = RBI->getInstrMapping(MI);
536     MappingCost DefaultCost = computeMapping(MI, BestMapping, RepairPts);
537     (void)DefaultCost;
538     if (DefaultCost == MappingCost::ImpossibleCost())
539       return false;
540   } else {
541     RegisterBankInfo::InstructionMappings PossibleMappings =
542         RBI->getInstrPossibleMappings(MI);
543     if (PossibleMappings.empty())
544       return false;
545     BestMapping = std::move(findBestMapping(MI, PossibleMappings, RepairPts));
546   }
547   // Make sure the mapping is valid for MI.
548   assert(BestMapping.verify(MI) && "Invalid instruction mapping");
549 
550   DEBUG(dbgs() << "Mapping: " << BestMapping << '\n');
551 
552   // After this call, MI may not be valid anymore.
553   // Do not use it.
554   return applyMapping(MI, BestMapping, RepairPts);
555 }
556 
557 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
558   // If the ISel pipeline failed, do not bother running that pass.
559   if (MF.getProperties().hasProperty(
560           MachineFunctionProperties::Property::FailedISel))
561     return false;
562 
563   DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
564   const Function *F = MF.getFunction();
565   Mode SaveOptMode = OptMode;
566   if (F->hasFnAttribute(Attribute::OptimizeNone))
567     OptMode = Mode::Fast;
568   init(MF);
569 
570 #ifndef NDEBUG
571   // Check that our input is fully legal: we require the function to have the
572   // Legalized property, so it should be.
573   // FIXME: This should be in the MachineVerifier, but it can't use the
574   // MachineLegalizer as it's currently in the separate GlobalISel library.
575   const MachineRegisterInfo &MRI = MF.getRegInfo();
576   if (const MachineLegalizer *MLI = MF.getSubtarget().getMachineLegalizer()) {
577     for (const MachineBasicBlock &MBB : MF) {
578       for (const MachineInstr &MI : MBB) {
579         if (isPreISelGenericOpcode(MI.getOpcode()) && !MLI->isLegal(MI, MRI)) {
580           if (!TPC->isGlobalISelAbortEnabled()) {
581             MF.getProperties().set(
582                 MachineFunctionProperties::Property::FailedISel);
583             return false;
584           }
585           std::string ErrStorage;
586           raw_string_ostream Err(ErrStorage);
587           Err << "Instruction is not legal: " << MI << '\n';
588           report_fatal_error(Err.str());
589         }
590       }
591     }
592   }
593 #endif
594 
595   // Walk the function and assign register banks to all operands.
596   // Use a RPOT to make sure all registers are assigned before we choose
597   // the best mapping of the current instruction.
598   ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
599   for (MachineBasicBlock *MBB : RPOT) {
600     // Set a sensible insertion point so that subsequent calls to
601     // MIRBuilder.
602     MIRBuilder.setMBB(*MBB);
603     for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end();
604          MII != End;) {
605       // MI might be invalidated by the assignment, so move the
606       // iterator before hand.
607       MachineInstr &MI = *MII++;
608 
609       // Ignore target-specific instructions: they should use proper regclasses.
610       if (isTargetSpecificOpcode(MI.getOpcode()))
611         continue;
612 
613       if (!assignInstr(MI)) {
614         if (TPC->isGlobalISelAbortEnabled())
615           report_fatal_error("Unable to map instruction");
616         MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
617         return false;
618       }
619     }
620   }
621   OptMode = SaveOptMode;
622   return false;
623 }
624 
625 //------------------------------------------------------------------------------
626 //                  Helper Classes Implementation
627 //------------------------------------------------------------------------------
628 RegBankSelect::RepairingPlacement::RepairingPlacement(
629     MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
630     RepairingPlacement::RepairingKind Kind)
631     // Default is, we are going to insert code to repair OpIdx.
632     : Kind(Kind),
633       OpIdx(OpIdx),
634       CanMaterialize(Kind != RepairingKind::Impossible),
635       HasSplit(false),
636       P(P) {
637   const MachineOperand &MO = MI.getOperand(OpIdx);
638   assert(MO.isReg() && "Trying to repair a non-reg operand");
639 
640   if (Kind != RepairingKind::Insert)
641     return;
642 
643   // Repairings for definitions happen after MI, uses happen before.
644   bool Before = !MO.isDef();
645 
646   // Check if we are done with MI.
647   if (!MI.isPHI() && !MI.isTerminator()) {
648     addInsertPoint(MI, Before);
649     // We are done with the initialization.
650     return;
651   }
652 
653   // Now, look for the special cases.
654   if (MI.isPHI()) {
655     // - PHI must be the first instructions:
656     //   * Before, we have to split the related incoming edge.
657     //   * After, move the insertion point past the last phi.
658     if (!Before) {
659       MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
660       if (It != MI.getParent()->end())
661         addInsertPoint(*It, /*Before*/ true);
662       else
663         addInsertPoint(*(--It), /*Before*/ false);
664       return;
665     }
666     // We repair a use of a phi, we may need to split the related edge.
667     MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
668     // Check if we can move the insertion point prior to the
669     // terminators of the predecessor.
670     unsigned Reg = MO.getReg();
671     MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
672     for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
673       if (It->modifiesRegister(Reg, &TRI)) {
674         // We cannot hoist the repairing code in the predecessor.
675         // Split the edge.
676         addInsertPoint(Pred, *MI.getParent());
677         return;
678       }
679     // At this point, we can insert in Pred.
680 
681     // - If It is invalid, Pred is empty and we can insert in Pred
682     //   wherever we want.
683     // - If It is valid, It is the first non-terminator, insert after It.
684     if (It == Pred.end())
685       addInsertPoint(Pred, /*Beginning*/ false);
686     else
687       addInsertPoint(*It, /*Before*/ false);
688   } else {
689     // - Terminators must be the last instructions:
690     //   * Before, move the insert point before the first terminator.
691     //   * After, we have to split the outcoming edges.
692     unsigned Reg = MO.getReg();
693     if (Before) {
694       // Check whether Reg is defined by any terminator.
695       MachineBasicBlock::iterator It = MI;
696       for (auto Begin = MI.getParent()->begin();
697            --It != Begin && It->isTerminator();)
698         if (It->modifiesRegister(Reg, &TRI)) {
699           // Insert the repairing code right after the definition.
700           addInsertPoint(*It, /*Before*/ false);
701           return;
702         }
703       addInsertPoint(*It, /*Before*/ true);
704       return;
705     }
706     // Make sure Reg is not redefined by other terminators, otherwise
707     // we do not know how to split.
708     for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
709          ++It != End;)
710       // The machine verifier should reject this kind of code.
711       assert(It->modifiesRegister(Reg, &TRI) && "Do not know where to split");
712     // Split each outcoming edges.
713     MachineBasicBlock &Src = *MI.getParent();
714     for (auto &Succ : Src.successors())
715       addInsertPoint(Src, Succ);
716   }
717 }
718 
719 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
720                                                        bool Before) {
721   addInsertPoint(*new InstrInsertPoint(MI, Before));
722 }
723 
724 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
725                                                        bool Beginning) {
726   addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
727 }
728 
729 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
730                                                        MachineBasicBlock &Dst) {
731   addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
732 }
733 
734 void RegBankSelect::RepairingPlacement::addInsertPoint(
735     RegBankSelect::InsertPoint &Point) {
736   CanMaterialize &= Point.canMaterialize();
737   HasSplit |= Point.isSplit();
738   InsertPoints.emplace_back(&Point);
739 }
740 
741 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
742                                                   bool Before)
743     : InsertPoint(), Instr(Instr), Before(Before) {
744   // Since we do not support splitting, we do not need to update
745   // liveness and such, so do not do anything with P.
746   assert((!Before || !Instr.isPHI()) &&
747          "Splitting before phis requires more points");
748   assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
749          "Splitting between phis does not make sense");
750 }
751 
752 void RegBankSelect::InstrInsertPoint::materialize() {
753   if (isSplit()) {
754     // Slice and return the beginning of the new block.
755     // If we need to split between the terminators, we theoritically
756     // need to know where the first and second set of terminators end
757     // to update the successors properly.
758     // Now, in pratice, we should have a maximum of 2 branch
759     // instructions; one conditional and one unconditional. Therefore
760     // we know how to update the successor by looking at the target of
761     // the unconditional branch.
762     // If we end up splitting at some point, then, we should update
763     // the liveness information and such. I.e., we would need to
764     // access P here.
765     // The machine verifier should actually make sure such cases
766     // cannot happen.
767     llvm_unreachable("Not yet implemented");
768   }
769   // Otherwise the insertion point is just the current or next
770   // instruction depending on Before. I.e., there is nothing to do
771   // here.
772 }
773 
774 bool RegBankSelect::InstrInsertPoint::isSplit() const {
775   // If the insertion point is after a terminator, we need to split.
776   if (!Before)
777     return Instr.isTerminator();
778   // If we insert before an instruction that is after a terminator,
779   // we are still after a terminator.
780   return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
781 }
782 
783 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
784   // Even if we need to split, because we insert between terminators,
785   // this split has actually the same frequency as the instruction.
786   const MachineBlockFrequencyInfo *MBFI =
787       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
788   if (!MBFI)
789     return 1;
790   return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
791 }
792 
793 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
794   const MachineBlockFrequencyInfo *MBFI =
795       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
796   if (!MBFI)
797     return 1;
798   return MBFI->getBlockFreq(&MBB).getFrequency();
799 }
800 
801 void RegBankSelect::EdgeInsertPoint::materialize() {
802   // If we end up repairing twice at the same place before materializing the
803   // insertion point, we may think we have to split an edge twice.
804   // We should have a factory for the insert point such that identical points
805   // are the same instance.
806   assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
807          "This point has already been split");
808   MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
809   assert(NewBB && "Invalid call to materialize");
810   // We reuse the destination block to hold the information of the new block.
811   DstOrSplit = NewBB;
812 }
813 
814 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
815   const MachineBlockFrequencyInfo *MBFI =
816       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
817   if (!MBFI)
818     return 1;
819   if (WasMaterialized)
820     return MBFI->getBlockFreq(DstOrSplit).getFrequency();
821 
822   const MachineBranchProbabilityInfo *MBPI =
823       P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
824   if (!MBPI)
825     return 1;
826   // The basic block will be on the edge.
827   return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
828       .getFrequency();
829 }
830 
831 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
832   // If this is not a critical edge, we should not have used this insert
833   // point. Indeed, either the successor or the predecessor should
834   // have do.
835   assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
836          "Edge is not critical");
837   return Src.canSplitCriticalEdge(DstOrSplit);
838 }
839 
840 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
841     : LocalCost(0), NonLocalCost(0), LocalFreq(LocalFreq.getFrequency()) {}
842 
843 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
844   // Check if this overflows.
845   if (LocalCost + Cost < LocalCost) {
846     saturate();
847     return true;
848   }
849   LocalCost += Cost;
850   return isSaturated();
851 }
852 
853 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
854   // Check if this overflows.
855   if (NonLocalCost + Cost < NonLocalCost) {
856     saturate();
857     return true;
858   }
859   NonLocalCost += Cost;
860   return isSaturated();
861 }
862 
863 bool RegBankSelect::MappingCost::isSaturated() const {
864   return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
865          LocalFreq == UINT64_MAX;
866 }
867 
868 void RegBankSelect::MappingCost::saturate() {
869   *this = ImpossibleCost();
870   --LocalCost;
871 }
872 
873 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
874   return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
875 }
876 
877 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
878   // Sort out the easy cases.
879   if (*this == Cost)
880     return false;
881   // If one is impossible to realize the other is cheaper unless it is
882   // impossible as well.
883   if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
884     return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
885   // If one is saturated the other is cheaper, unless it is saturated
886   // as well.
887   if (isSaturated() || Cost.isSaturated())
888     return isSaturated() < Cost.isSaturated();
889   // At this point we know both costs hold sensible values.
890 
891   // If both values have a different base frequency, there is no much
892   // we can do but to scale everything.
893   // However, if they have the same base frequency we can avoid making
894   // complicated computation.
895   uint64_t ThisLocalAdjust;
896   uint64_t OtherLocalAdjust;
897   if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
898 
899     // At this point, we know the local costs are comparable.
900     // Do the case that do not involve potential overflow first.
901     if (NonLocalCost == Cost.NonLocalCost)
902       // Since the non-local costs do not discriminate on the result,
903       // just compare the local costs.
904       return LocalCost < Cost.LocalCost;
905 
906     // The base costs are comparable so we may only keep the relative
907     // value to increase our chances of avoiding overflows.
908     ThisLocalAdjust = 0;
909     OtherLocalAdjust = 0;
910     if (LocalCost < Cost.LocalCost)
911       OtherLocalAdjust = Cost.LocalCost - LocalCost;
912     else
913       ThisLocalAdjust = LocalCost - Cost.LocalCost;
914 
915   } else {
916     ThisLocalAdjust = LocalCost;
917     OtherLocalAdjust = Cost.LocalCost;
918   }
919 
920   // The non-local costs are comparable, just keep the relative value.
921   uint64_t ThisNonLocalAdjust = 0;
922   uint64_t OtherNonLocalAdjust = 0;
923   if (NonLocalCost < Cost.NonLocalCost)
924     OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
925   else
926     ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
927   // Scale everything to make them comparable.
928   uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
929   // Check for overflow on that operation.
930   bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
931                                            ThisScaledCost < LocalFreq);
932   uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
933   // Check for overflow on the last operation.
934   bool OtherOverflows =
935       OtherLocalAdjust &&
936       (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
937   // Add the non-local costs.
938   ThisOverflows |= ThisNonLocalAdjust &&
939                    ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
940   ThisScaledCost += ThisNonLocalAdjust;
941   OtherOverflows |= OtherNonLocalAdjust &&
942                     OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
943   OtherScaledCost += OtherNonLocalAdjust;
944   // If both overflows, we cannot compare without additional
945   // precision, e.g., APInt. Just give up on that case.
946   if (ThisOverflows && OtherOverflows)
947     return false;
948   // If one overflows but not the other, we can still compare.
949   if (ThisOverflows || OtherOverflows)
950     return ThisOverflows < OtherOverflows;
951   // Otherwise, just compare the values.
952   return ThisScaledCost < OtherScaledCost;
953 }
954 
955 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
956   return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
957          LocalFreq == Cost.LocalFreq;
958 }
959