1 //===- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect -*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements the RegBankSelect class. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 14 #include "llvm/ADT/PostOrderIterator.h" 15 #include "llvm/CodeGen/GlobalISel/MachineLegalizer.h" 16 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 17 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 18 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetPassConfig.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/Support/BlockFrequency.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Target/TargetSubtargetInfo.h" 26 27 #define DEBUG_TYPE "regbankselect" 28 29 using namespace llvm; 30 31 static cl::opt<RegBankSelect::Mode> RegBankSelectMode( 32 cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional, 33 cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast", 34 "Run the Fast mode (default mapping)"), 35 clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy", 36 "Use the Greedy mode (best local mapping)"))); 37 38 char RegBankSelect::ID = 0; 39 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE, 40 "Assign register bank of generic virtual registers", 41 false, false); 42 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 43 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 44 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 45 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, 46 "Assign register bank of generic virtual registers", false, 47 false) 48 49 RegBankSelect::RegBankSelect(Mode RunningMode) 50 : MachineFunctionPass(ID), RBI(nullptr), MRI(nullptr), TRI(nullptr), 51 MBFI(nullptr), MBPI(nullptr), OptMode(RunningMode) { 52 initializeRegBankSelectPass(*PassRegistry::getPassRegistry()); 53 if (RegBankSelectMode.getNumOccurrences() != 0) { 54 OptMode = RegBankSelectMode; 55 if (RegBankSelectMode != RunningMode) 56 DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n"); 57 } 58 } 59 60 void RegBankSelect::init(MachineFunction &MF) { 61 RBI = MF.getSubtarget().getRegBankInfo(); 62 assert(RBI && "Cannot work without RegisterBankInfo"); 63 MRI = &MF.getRegInfo(); 64 TRI = MF.getSubtarget().getRegisterInfo(); 65 TPC = &getAnalysis<TargetPassConfig>(); 66 if (OptMode != Mode::Fast) { 67 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 68 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 69 } else { 70 MBFI = nullptr; 71 MBPI = nullptr; 72 } 73 MIRBuilder.setMF(MF); 74 } 75 76 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const { 77 if (OptMode != Mode::Fast) { 78 // We could preserve the information from these two analysis but 79 // the APIs do not allow to do so yet. 80 AU.addRequired<MachineBlockFrequencyInfo>(); 81 AU.addRequired<MachineBranchProbabilityInfo>(); 82 } 83 AU.addRequired<TargetPassConfig>(); 84 MachineFunctionPass::getAnalysisUsage(AU); 85 } 86 87 bool RegBankSelect::assignmentMatch( 88 unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping, 89 bool &OnlyAssign) const { 90 // By default we assume we will have to repair something. 91 OnlyAssign = false; 92 // Each part of a break down needs to end up in a different register. 93 // In other word, Reg assignement does not match. 94 if (ValMapping.NumBreakDowns > 1) 95 return false; 96 97 const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI); 98 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank; 99 // Reg is free of assignment, a simple assignment will make the 100 // register bank to match. 101 OnlyAssign = CurRegBank == nullptr; 102 DEBUG(dbgs() << "Does assignment already match: "; 103 if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none"; 104 dbgs() << " against "; 105 assert(DesiredRegBrank && "The mapping must be valid"); 106 dbgs() << *DesiredRegBrank << '\n';); 107 return CurRegBank == DesiredRegBrank; 108 } 109 110 bool RegBankSelect::repairReg( 111 MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping, 112 RegBankSelect::RepairingPlacement &RepairPt, 113 const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) { 114 if (ValMapping.NumBreakDowns != 1 && !TPC->isGlobalISelAbortEnabled()) 115 return false; 116 assert(ValMapping.NumBreakDowns == 1 && "Not yet implemented"); 117 // An empty range of new register means no repairing. 118 assert(NewVRegs.begin() != NewVRegs.end() && "We should not have to repair"); 119 120 // Assume we are repairing a use and thus, the original reg will be 121 // the source of the repairing. 122 unsigned Src = MO.getReg(); 123 unsigned Dst = *NewVRegs.begin(); 124 125 // If we repair a definition, swap the source and destination for 126 // the repairing. 127 if (MO.isDef()) 128 std::swap(Src, Dst); 129 130 assert((RepairPt.getNumInsertPoints() == 1 || 131 TargetRegisterInfo::isPhysicalRegister(Dst)) && 132 "We are about to create several defs for Dst"); 133 134 // Build the instruction used to repair, then clone it at the right places. 135 MachineInstr *MI = MIRBuilder.buildCopy(Dst, Src); 136 MI->removeFromParent(); 137 DEBUG(dbgs() << "Copy: " << PrintReg(Src) << " to: " << PrintReg(Dst) 138 << '\n'); 139 // TODO: 140 // Check if MI is legal. if not, we need to legalize all the 141 // instructions we are going to insert. 142 std::unique_ptr<MachineInstr *[]> NewInstrs( 143 new MachineInstr *[RepairPt.getNumInsertPoints()]); 144 bool IsFirst = true; 145 unsigned Idx = 0; 146 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 147 MachineInstr *CurMI; 148 if (IsFirst) 149 CurMI = MI; 150 else 151 CurMI = MIRBuilder.getMF().CloneMachineInstr(MI); 152 InsertPt->insert(*CurMI); 153 NewInstrs[Idx++] = CurMI; 154 IsFirst = false; 155 } 156 // TODO: 157 // Legalize NewInstrs if need be. 158 return true; 159 } 160 161 uint64_t RegBankSelect::getRepairCost( 162 const MachineOperand &MO, 163 const RegisterBankInfo::ValueMapping &ValMapping) const { 164 assert(MO.isReg() && "We should only repair register operand"); 165 assert(ValMapping.NumBreakDowns && "Nothing to map??"); 166 167 bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1; 168 const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI); 169 // If MO does not have a register bank, we should have just been 170 // able to set one unless we have to break the value down. 171 assert((!IsSameNumOfValues || CurRegBank) && "We should not have to repair"); 172 // Def: Val <- NewDefs 173 // Same number of values: copy 174 // Different number: Val = build_sequence Defs1, Defs2, ... 175 // Use: NewSources <- Val. 176 // Same number of values: copy. 177 // Different number: Src1, Src2, ... = 178 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ... 179 // We should remember that this value is available somewhere else to 180 // coalesce the value. 181 182 if (IsSameNumOfValues) { 183 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank; 184 // If we repair a definition, swap the source and destination for 185 // the repairing. 186 if (MO.isDef()) 187 std::swap(CurRegBank, DesiredRegBrank); 188 // TODO: It may be possible to actually avoid the copy. 189 // If we repair something where the source is defined by a copy 190 // and the source of that copy is on the right bank, we can reuse 191 // it for free. 192 // E.g., 193 // RegToRepair<BankA> = copy AlternativeSrc<BankB> 194 // = op RegToRepair<BankA> 195 // We can simply propagate AlternativeSrc instead of copying RegToRepair 196 // into a new virtual register. 197 // We would also need to propagate this information in the 198 // repairing placement. 199 unsigned Cost = 200 RBI->copyCost(*DesiredRegBrank, *CurRegBank, 201 RegisterBankInfo::getSizeInBits(MO.getReg(), *MRI, *TRI)); 202 // TODO: use a dedicated constant for ImpossibleCost. 203 if (Cost != UINT_MAX) 204 return Cost; 205 assert(!TPC->isGlobalISelAbortEnabled() && 206 "Legalization not available yet"); 207 // Return the legalization cost of that repairing. 208 } 209 assert(!TPC->isGlobalISelAbortEnabled() && 210 "Complex repairing not implemented yet"); 211 return UINT_MAX; 212 } 213 214 RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping( 215 MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings, 216 SmallVectorImpl<RepairingPlacement> &RepairPts) { 217 assert(!PossibleMappings.empty() && 218 "Do not know how to map this instruction"); 219 220 RegisterBankInfo::InstructionMapping *BestMapping = nullptr; 221 MappingCost Cost = MappingCost::ImpossibleCost(); 222 SmallVector<RepairingPlacement, 4> LocalRepairPts; 223 for (RegisterBankInfo::InstructionMapping &CurMapping : PossibleMappings) { 224 MappingCost CurCost = computeMapping(MI, CurMapping, LocalRepairPts, &Cost); 225 if (CurCost < Cost) { 226 Cost = CurCost; 227 BestMapping = &CurMapping; 228 RepairPts.clear(); 229 for (RepairingPlacement &RepairPt : LocalRepairPts) 230 RepairPts.emplace_back(std::move(RepairPt)); 231 } 232 } 233 if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) { 234 // If none of the mapping worked that means they are all impossible. 235 // Thus, pick the first one and set an impossible repairing point. 236 // It will trigger the failed isel mode. 237 BestMapping = &(*PossibleMappings.begin()); 238 RepairPts.emplace_back( 239 RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible)); 240 } else 241 assert(BestMapping && "No suitable mapping for instruction"); 242 return *BestMapping; 243 } 244 245 void RegBankSelect::tryAvoidingSplit( 246 RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO, 247 const RegisterBankInfo::ValueMapping &ValMapping) const { 248 const MachineInstr &MI = *MO.getParent(); 249 assert(RepairPt.hasSplit() && "We should not have to adjust for split"); 250 // Splitting should only occur for PHIs or between terminators, 251 // because we only do local repairing. 252 assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?"); 253 254 assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO && 255 "Repairing placement does not match operand"); 256 257 // If we need splitting for phis, that means it is because we 258 // could not find an insertion point before the terminators of 259 // the predecessor block for this argument. In other words, 260 // the input value is defined by one of the terminators. 261 assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?"); 262 263 // We split to repair the use of a phi or a terminator. 264 if (!MO.isDef()) { 265 if (MI.isTerminator()) { 266 assert(&MI != &(*MI.getParent()->getFirstTerminator()) && 267 "Need to split for the first terminator?!"); 268 } else { 269 // For the PHI case, the split may not be actually required. 270 // In the copy case, a phi is already a copy on the incoming edge, 271 // therefore there is no need to split. 272 if (ValMapping.NumBreakDowns == 1) 273 // This is a already a copy, there is nothing to do. 274 RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign); 275 } 276 return; 277 } 278 279 // At this point, we need to repair a defintion of a terminator. 280 281 // Technically we need to fix the def of MI on all outgoing 282 // edges of MI to keep the repairing local. In other words, we 283 // will create several definitions of the same register. This 284 // does not work for SSA unless that definition is a physical 285 // register. 286 // However, there are other cases where we can get away with 287 // that while still keeping the repairing local. 288 assert(MI.isTerminator() && MO.isDef() && 289 "This code is for the def of a terminator"); 290 291 // Since we use RPO traversal, if we need to repair a definition 292 // this means this definition could be: 293 // 1. Used by PHIs (i.e., this VReg has been visited as part of the 294 // uses of a phi.), or 295 // 2. Part of a target specific instruction (i.e., the target applied 296 // some register class constraints when creating the instruction.) 297 // If the constraints come for #2, the target said that another mapping 298 // is supported so we may just drop them. Indeed, if we do not change 299 // the number of registers holding that value, the uses will get fixed 300 // when we get to them. 301 // Uses in PHIs may have already been proceeded though. 302 // If the constraints come for #1, then, those are weak constraints and 303 // no actual uses may rely on them. However, the problem remains mainly 304 // the same as for #2. If the value stays in one register, we could 305 // just switch the register bank of the definition, but we would need to 306 // account for a repairing cost for each phi we silently change. 307 // 308 // In any case, if the value needs to be broken down into several 309 // registers, the repairing is not local anymore as we need to patch 310 // every uses to rebuild the value in just one register. 311 // 312 // To summarize: 313 // - If the value is in a physical register, we can do the split and 314 // fix locally. 315 // Otherwise if the value is in a virtual register: 316 // - If the value remains in one register, we do not have to split 317 // just switching the register bank would do, but we need to account 318 // in the repairing cost all the phi we changed. 319 // - If the value spans several registers, then we cannot do a local 320 // repairing. 321 322 // Check if this is a physical or virtual register. 323 unsigned Reg = MO.getReg(); 324 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 325 // We are going to split every outgoing edges. 326 // Check that this is possible. 327 // FIXME: The machine representation is currently broken 328 // since it also several terminators in one basic block. 329 // Because of that we would technically need a way to get 330 // the targets of just one terminator to know which edges 331 // we have to split. 332 // Assert that we do not hit the ill-formed representation. 333 334 // If there are other terminators before that one, some of 335 // the outgoing edges may not be dominated by this definition. 336 assert(&MI == &(*MI.getParent()->getFirstTerminator()) && 337 "Do not know which outgoing edges are relevant"); 338 const MachineInstr *Next = MI.getNextNode(); 339 assert((!Next || Next->isUnconditionalBranch()) && 340 "Do not know where each terminator ends up"); 341 if (Next) 342 // If the next terminator uses Reg, this means we have 343 // to split right after MI and thus we need a way to ask 344 // which outgoing edges are affected. 345 assert(!Next->readsRegister(Reg) && "Need to split between terminators"); 346 // We will split all the edges and repair there. 347 } else { 348 // This is a virtual register defined by a terminator. 349 if (ValMapping.NumBreakDowns == 1) { 350 // There is nothing to repair, but we may actually lie on 351 // the repairing cost because of the PHIs already proceeded 352 // as already stated. 353 // Though the code will be correct. 354 assert(0 && "Repairing cost may not be accurate"); 355 } else { 356 // We need to do non-local repairing. Basically, patch all 357 // the uses (i.e., phis) that we already proceeded. 358 // For now, just say this mapping is not possible. 359 RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible); 360 } 361 } 362 } 363 364 RegBankSelect::MappingCost RegBankSelect::computeMapping( 365 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 366 SmallVectorImpl<RepairingPlacement> &RepairPts, 367 const RegBankSelect::MappingCost *BestCost) { 368 assert((MBFI || !BestCost) && "Costs comparison require MBFI"); 369 370 // If mapped with InstrMapping, MI will have the recorded cost. 371 MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1); 372 bool Saturated = Cost.addLocalCost(InstrMapping.getCost()); 373 assert(!Saturated && "Possible mapping saturated the cost"); 374 DEBUG(dbgs() << "Evaluating mapping cost for: " << MI); 375 DEBUG(dbgs() << "With: " << InstrMapping << '\n'); 376 RepairPts.clear(); 377 if (BestCost && Cost > *BestCost) 378 return Cost; 379 380 // Moreover, to realize this mapping, the register bank of each operand must 381 // match this mapping. In other words, we may need to locally reassign the 382 // register banks. Account for that repairing cost as well. 383 // In this context, local means in the surrounding of MI. 384 for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands(); 385 OpIdx != EndOpIdx; ++OpIdx) { 386 const MachineOperand &MO = MI.getOperand(OpIdx); 387 if (!MO.isReg()) 388 continue; 389 unsigned Reg = MO.getReg(); 390 if (!Reg) 391 continue; 392 DEBUG(dbgs() << "Opd" << OpIdx); 393 const RegisterBankInfo::ValueMapping &ValMapping = 394 InstrMapping.getOperandMapping(OpIdx); 395 // If Reg is already properly mapped, this is free. 396 bool Assign; 397 if (assignmentMatch(Reg, ValMapping, Assign)) { 398 DEBUG(dbgs() << " is free (match).\n"); 399 continue; 400 } 401 if (Assign) { 402 DEBUG(dbgs() << " is free (simple assignment).\n"); 403 RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this, 404 RepairingPlacement::Reassign)); 405 continue; 406 } 407 408 // Find the insertion point for the repairing code. 409 RepairPts.emplace_back( 410 RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert)); 411 RepairingPlacement &RepairPt = RepairPts.back(); 412 413 // If we need to split a basic block to materialize this insertion point, 414 // we may give a higher cost to this mapping. 415 // Nevertheless, we may get away with the split, so try that first. 416 if (RepairPt.hasSplit()) 417 tryAvoidingSplit(RepairPt, MO, ValMapping); 418 419 // Check that the materialization of the repairing is possible. 420 if (!RepairPt.canMaterialize()) 421 return MappingCost::ImpossibleCost(); 422 423 // Account for the split cost and repair cost. 424 // Unless the cost is already saturated or we do not care about the cost. 425 if (!BestCost || Saturated) 426 continue; 427 428 // To get accurate information we need MBFI and MBPI. 429 // Thus, if we end up here this information should be here. 430 assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI"); 431 432 // FIXME: We will have to rework the repairing cost model. 433 // The repairing cost depends on the register bank that MO has. 434 // However, when we break down the value into different values, 435 // MO may not have a register bank while still needing repairing. 436 // For the fast mode, we don't compute the cost so that is fine, 437 // but still for the repairing code, we will have to make a choice. 438 // For the greedy mode, we should choose greedily what is the best 439 // choice based on the next use of MO. 440 441 // Sums up the repairing cost of MO at each insertion point. 442 uint64_t RepairCost = getRepairCost(MO, ValMapping); 443 // Bias used for splitting: 5%. 444 const uint64_t PercentageForBias = 5; 445 uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100; 446 // We should not need more than a couple of instructions to repair 447 // an assignment. In other words, the computation should not 448 // overflow because the repairing cost is free of basic block 449 // frequency. 450 assert(((RepairCost < RepairCost * PercentageForBias) && 451 (RepairCost * PercentageForBias < 452 RepairCost * PercentageForBias + 99)) && 453 "Repairing involves more than a billion of instructions?!"); 454 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 455 assert(InsertPt->canMaterialize() && "We should not have made it here"); 456 // We will applied some basic block frequency and those uses uint64_t. 457 if (!InsertPt->isSplit()) 458 Saturated = Cost.addLocalCost(RepairCost); 459 else { 460 uint64_t CostForInsertPt = RepairCost; 461 // Again we shouldn't overflow here givent that 462 // CostForInsertPt is frequency free at this point. 463 assert(CostForInsertPt + Bias > CostForInsertPt && 464 "Repairing + split bias overflows"); 465 CostForInsertPt += Bias; 466 uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt; 467 // Check if we just overflowed. 468 if ((Saturated = PtCost < CostForInsertPt)) 469 Cost.saturate(); 470 else 471 Saturated = Cost.addNonLocalCost(PtCost); 472 } 473 474 // Stop looking into what it takes to repair, this is already 475 // too expensive. 476 if (BestCost && Cost > *BestCost) 477 return Cost; 478 479 // No need to accumulate more cost information. 480 // We need to still gather the repairing information though. 481 if (Saturated) 482 break; 483 } 484 } 485 return Cost; 486 } 487 488 bool RegBankSelect::applyMapping( 489 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 490 SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) { 491 // OpdMapper will hold all the information needed for the rewritting. 492 RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI); 493 494 // First, place the repairing code. 495 for (RepairingPlacement &RepairPt : RepairPts) { 496 if (!RepairPt.canMaterialize() || 497 RepairPt.getKind() == RepairingPlacement::Impossible) 498 return false; 499 assert(RepairPt.getKind() != RepairingPlacement::None && 500 "This should not make its way in the list"); 501 unsigned OpIdx = RepairPt.getOpIdx(); 502 MachineOperand &MO = MI.getOperand(OpIdx); 503 const RegisterBankInfo::ValueMapping &ValMapping = 504 InstrMapping.getOperandMapping(OpIdx); 505 unsigned Reg = MO.getReg(); 506 507 switch (RepairPt.getKind()) { 508 case RepairingPlacement::Reassign: 509 assert(ValMapping.NumBreakDowns == 1 && 510 "Reassignment should only be for simple mapping"); 511 MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank); 512 break; 513 case RepairingPlacement::Insert: 514 OpdMapper.createVRegs(OpIdx); 515 if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx))) 516 return false; 517 break; 518 default: 519 llvm_unreachable("Other kind should not happen"); 520 } 521 } 522 // Second, rewrite the instruction. 523 DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n'); 524 RBI->applyMapping(OpdMapper); 525 return true; 526 } 527 528 bool RegBankSelect::assignInstr(MachineInstr &MI) { 529 DEBUG(dbgs() << "Assign: " << MI); 530 // Remember the repairing placement for all the operands. 531 SmallVector<RepairingPlacement, 4> RepairPts; 532 533 RegisterBankInfo::InstructionMapping BestMapping; 534 if (OptMode == RegBankSelect::Mode::Fast) { 535 BestMapping = RBI->getInstrMapping(MI); 536 MappingCost DefaultCost = computeMapping(MI, BestMapping, RepairPts); 537 (void)DefaultCost; 538 if (DefaultCost == MappingCost::ImpossibleCost()) 539 return false; 540 } else { 541 RegisterBankInfo::InstructionMappings PossibleMappings = 542 RBI->getInstrPossibleMappings(MI); 543 if (PossibleMappings.empty()) 544 return false; 545 BestMapping = std::move(findBestMapping(MI, PossibleMappings, RepairPts)); 546 } 547 // Make sure the mapping is valid for MI. 548 assert(BestMapping.verify(MI) && "Invalid instruction mapping"); 549 550 DEBUG(dbgs() << "Mapping: " << BestMapping << '\n'); 551 552 // After this call, MI may not be valid anymore. 553 // Do not use it. 554 return applyMapping(MI, BestMapping, RepairPts); 555 } 556 557 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) { 558 // If the ISel pipeline failed, do not bother running that pass. 559 if (MF.getProperties().hasProperty( 560 MachineFunctionProperties::Property::FailedISel)) 561 return false; 562 563 DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n'); 564 const Function *F = MF.getFunction(); 565 Mode SaveOptMode = OptMode; 566 if (F->hasFnAttribute(Attribute::OptimizeNone)) 567 OptMode = Mode::Fast; 568 init(MF); 569 570 #ifndef NDEBUG 571 // Check that our input is fully legal: we require the function to have the 572 // Legalized property, so it should be. 573 // FIXME: This should be in the MachineVerifier, but it can't use the 574 // MachineLegalizer as it's currently in the separate GlobalISel library. 575 const MachineRegisterInfo &MRI = MF.getRegInfo(); 576 if (const MachineLegalizer *MLI = MF.getSubtarget().getMachineLegalizer()) { 577 for (const MachineBasicBlock &MBB : MF) { 578 for (const MachineInstr &MI : MBB) { 579 if (isPreISelGenericOpcode(MI.getOpcode()) && !MLI->isLegal(MI, MRI)) { 580 if (!TPC->isGlobalISelAbortEnabled()) { 581 MF.getProperties().set( 582 MachineFunctionProperties::Property::FailedISel); 583 return false; 584 } 585 std::string ErrStorage; 586 raw_string_ostream Err(ErrStorage); 587 Err << "Instruction is not legal: " << MI << '\n'; 588 report_fatal_error(Err.str()); 589 } 590 } 591 } 592 } 593 #endif 594 595 // Walk the function and assign register banks to all operands. 596 // Use a RPOT to make sure all registers are assigned before we choose 597 // the best mapping of the current instruction. 598 ReversePostOrderTraversal<MachineFunction*> RPOT(&MF); 599 for (MachineBasicBlock *MBB : RPOT) { 600 // Set a sensible insertion point so that subsequent calls to 601 // MIRBuilder. 602 MIRBuilder.setMBB(*MBB); 603 for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end(); 604 MII != End;) { 605 // MI might be invalidated by the assignment, so move the 606 // iterator before hand. 607 MachineInstr &MI = *MII++; 608 609 // Ignore target-specific instructions: they should use proper regclasses. 610 if (isTargetSpecificOpcode(MI.getOpcode())) 611 continue; 612 613 if (!assignInstr(MI)) { 614 if (TPC->isGlobalISelAbortEnabled()) 615 report_fatal_error("Unable to map instruction"); 616 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 617 return false; 618 } 619 } 620 } 621 OptMode = SaveOptMode; 622 return false; 623 } 624 625 //------------------------------------------------------------------------------ 626 // Helper Classes Implementation 627 //------------------------------------------------------------------------------ 628 RegBankSelect::RepairingPlacement::RepairingPlacement( 629 MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P, 630 RepairingPlacement::RepairingKind Kind) 631 // Default is, we are going to insert code to repair OpIdx. 632 : Kind(Kind), 633 OpIdx(OpIdx), 634 CanMaterialize(Kind != RepairingKind::Impossible), 635 HasSplit(false), 636 P(P) { 637 const MachineOperand &MO = MI.getOperand(OpIdx); 638 assert(MO.isReg() && "Trying to repair a non-reg operand"); 639 640 if (Kind != RepairingKind::Insert) 641 return; 642 643 // Repairings for definitions happen after MI, uses happen before. 644 bool Before = !MO.isDef(); 645 646 // Check if we are done with MI. 647 if (!MI.isPHI() && !MI.isTerminator()) { 648 addInsertPoint(MI, Before); 649 // We are done with the initialization. 650 return; 651 } 652 653 // Now, look for the special cases. 654 if (MI.isPHI()) { 655 // - PHI must be the first instructions: 656 // * Before, we have to split the related incoming edge. 657 // * After, move the insertion point past the last phi. 658 if (!Before) { 659 MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI(); 660 if (It != MI.getParent()->end()) 661 addInsertPoint(*It, /*Before*/ true); 662 else 663 addInsertPoint(*(--It), /*Before*/ false); 664 return; 665 } 666 // We repair a use of a phi, we may need to split the related edge. 667 MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB(); 668 // Check if we can move the insertion point prior to the 669 // terminators of the predecessor. 670 unsigned Reg = MO.getReg(); 671 MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr(); 672 for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It) 673 if (It->modifiesRegister(Reg, &TRI)) { 674 // We cannot hoist the repairing code in the predecessor. 675 // Split the edge. 676 addInsertPoint(Pred, *MI.getParent()); 677 return; 678 } 679 // At this point, we can insert in Pred. 680 681 // - If It is invalid, Pred is empty and we can insert in Pred 682 // wherever we want. 683 // - If It is valid, It is the first non-terminator, insert after It. 684 if (It == Pred.end()) 685 addInsertPoint(Pred, /*Beginning*/ false); 686 else 687 addInsertPoint(*It, /*Before*/ false); 688 } else { 689 // - Terminators must be the last instructions: 690 // * Before, move the insert point before the first terminator. 691 // * After, we have to split the outcoming edges. 692 unsigned Reg = MO.getReg(); 693 if (Before) { 694 // Check whether Reg is defined by any terminator. 695 MachineBasicBlock::iterator It = MI; 696 for (auto Begin = MI.getParent()->begin(); 697 --It != Begin && It->isTerminator();) 698 if (It->modifiesRegister(Reg, &TRI)) { 699 // Insert the repairing code right after the definition. 700 addInsertPoint(*It, /*Before*/ false); 701 return; 702 } 703 addInsertPoint(*It, /*Before*/ true); 704 return; 705 } 706 // Make sure Reg is not redefined by other terminators, otherwise 707 // we do not know how to split. 708 for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end(); 709 ++It != End;) 710 // The machine verifier should reject this kind of code. 711 assert(It->modifiesRegister(Reg, &TRI) && "Do not know where to split"); 712 // Split each outcoming edges. 713 MachineBasicBlock &Src = *MI.getParent(); 714 for (auto &Succ : Src.successors()) 715 addInsertPoint(Src, Succ); 716 } 717 } 718 719 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI, 720 bool Before) { 721 addInsertPoint(*new InstrInsertPoint(MI, Before)); 722 } 723 724 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB, 725 bool Beginning) { 726 addInsertPoint(*new MBBInsertPoint(MBB, Beginning)); 727 } 728 729 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src, 730 MachineBasicBlock &Dst) { 731 addInsertPoint(*new EdgeInsertPoint(Src, Dst, P)); 732 } 733 734 void RegBankSelect::RepairingPlacement::addInsertPoint( 735 RegBankSelect::InsertPoint &Point) { 736 CanMaterialize &= Point.canMaterialize(); 737 HasSplit |= Point.isSplit(); 738 InsertPoints.emplace_back(&Point); 739 } 740 741 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr, 742 bool Before) 743 : InsertPoint(), Instr(Instr), Before(Before) { 744 // Since we do not support splitting, we do not need to update 745 // liveness and such, so do not do anything with P. 746 assert((!Before || !Instr.isPHI()) && 747 "Splitting before phis requires more points"); 748 assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) && 749 "Splitting between phis does not make sense"); 750 } 751 752 void RegBankSelect::InstrInsertPoint::materialize() { 753 if (isSplit()) { 754 // Slice and return the beginning of the new block. 755 // If we need to split between the terminators, we theoritically 756 // need to know where the first and second set of terminators end 757 // to update the successors properly. 758 // Now, in pratice, we should have a maximum of 2 branch 759 // instructions; one conditional and one unconditional. Therefore 760 // we know how to update the successor by looking at the target of 761 // the unconditional branch. 762 // If we end up splitting at some point, then, we should update 763 // the liveness information and such. I.e., we would need to 764 // access P here. 765 // The machine verifier should actually make sure such cases 766 // cannot happen. 767 llvm_unreachable("Not yet implemented"); 768 } 769 // Otherwise the insertion point is just the current or next 770 // instruction depending on Before. I.e., there is nothing to do 771 // here. 772 } 773 774 bool RegBankSelect::InstrInsertPoint::isSplit() const { 775 // If the insertion point is after a terminator, we need to split. 776 if (!Before) 777 return Instr.isTerminator(); 778 // If we insert before an instruction that is after a terminator, 779 // we are still after a terminator. 780 return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator(); 781 } 782 783 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const { 784 // Even if we need to split, because we insert between terminators, 785 // this split has actually the same frequency as the instruction. 786 const MachineBlockFrequencyInfo *MBFI = 787 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 788 if (!MBFI) 789 return 1; 790 return MBFI->getBlockFreq(Instr.getParent()).getFrequency(); 791 } 792 793 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const { 794 const MachineBlockFrequencyInfo *MBFI = 795 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 796 if (!MBFI) 797 return 1; 798 return MBFI->getBlockFreq(&MBB).getFrequency(); 799 } 800 801 void RegBankSelect::EdgeInsertPoint::materialize() { 802 // If we end up repairing twice at the same place before materializing the 803 // insertion point, we may think we have to split an edge twice. 804 // We should have a factory for the insert point such that identical points 805 // are the same instance. 806 assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) && 807 "This point has already been split"); 808 MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P); 809 assert(NewBB && "Invalid call to materialize"); 810 // We reuse the destination block to hold the information of the new block. 811 DstOrSplit = NewBB; 812 } 813 814 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const { 815 const MachineBlockFrequencyInfo *MBFI = 816 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 817 if (!MBFI) 818 return 1; 819 if (WasMaterialized) 820 return MBFI->getBlockFreq(DstOrSplit).getFrequency(); 821 822 const MachineBranchProbabilityInfo *MBPI = 823 P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>(); 824 if (!MBPI) 825 return 1; 826 // The basic block will be on the edge. 827 return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit)) 828 .getFrequency(); 829 } 830 831 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const { 832 // If this is not a critical edge, we should not have used this insert 833 // point. Indeed, either the successor or the predecessor should 834 // have do. 835 assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 && 836 "Edge is not critical"); 837 return Src.canSplitCriticalEdge(DstOrSplit); 838 } 839 840 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq) 841 : LocalCost(0), NonLocalCost(0), LocalFreq(LocalFreq.getFrequency()) {} 842 843 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) { 844 // Check if this overflows. 845 if (LocalCost + Cost < LocalCost) { 846 saturate(); 847 return true; 848 } 849 LocalCost += Cost; 850 return isSaturated(); 851 } 852 853 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) { 854 // Check if this overflows. 855 if (NonLocalCost + Cost < NonLocalCost) { 856 saturate(); 857 return true; 858 } 859 NonLocalCost += Cost; 860 return isSaturated(); 861 } 862 863 bool RegBankSelect::MappingCost::isSaturated() const { 864 return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX && 865 LocalFreq == UINT64_MAX; 866 } 867 868 void RegBankSelect::MappingCost::saturate() { 869 *this = ImpossibleCost(); 870 --LocalCost; 871 } 872 873 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() { 874 return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX); 875 } 876 877 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const { 878 // Sort out the easy cases. 879 if (*this == Cost) 880 return false; 881 // If one is impossible to realize the other is cheaper unless it is 882 // impossible as well. 883 if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost())) 884 return (*this == ImpossibleCost()) < (Cost == ImpossibleCost()); 885 // If one is saturated the other is cheaper, unless it is saturated 886 // as well. 887 if (isSaturated() || Cost.isSaturated()) 888 return isSaturated() < Cost.isSaturated(); 889 // At this point we know both costs hold sensible values. 890 891 // If both values have a different base frequency, there is no much 892 // we can do but to scale everything. 893 // However, if they have the same base frequency we can avoid making 894 // complicated computation. 895 uint64_t ThisLocalAdjust; 896 uint64_t OtherLocalAdjust; 897 if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) { 898 899 // At this point, we know the local costs are comparable. 900 // Do the case that do not involve potential overflow first. 901 if (NonLocalCost == Cost.NonLocalCost) 902 // Since the non-local costs do not discriminate on the result, 903 // just compare the local costs. 904 return LocalCost < Cost.LocalCost; 905 906 // The base costs are comparable so we may only keep the relative 907 // value to increase our chances of avoiding overflows. 908 ThisLocalAdjust = 0; 909 OtherLocalAdjust = 0; 910 if (LocalCost < Cost.LocalCost) 911 OtherLocalAdjust = Cost.LocalCost - LocalCost; 912 else 913 ThisLocalAdjust = LocalCost - Cost.LocalCost; 914 915 } else { 916 ThisLocalAdjust = LocalCost; 917 OtherLocalAdjust = Cost.LocalCost; 918 } 919 920 // The non-local costs are comparable, just keep the relative value. 921 uint64_t ThisNonLocalAdjust = 0; 922 uint64_t OtherNonLocalAdjust = 0; 923 if (NonLocalCost < Cost.NonLocalCost) 924 OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost; 925 else 926 ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost; 927 // Scale everything to make them comparable. 928 uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq; 929 // Check for overflow on that operation. 930 bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust || 931 ThisScaledCost < LocalFreq); 932 uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq; 933 // Check for overflow on the last operation. 934 bool OtherOverflows = 935 OtherLocalAdjust && 936 (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq); 937 // Add the non-local costs. 938 ThisOverflows |= ThisNonLocalAdjust && 939 ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust; 940 ThisScaledCost += ThisNonLocalAdjust; 941 OtherOverflows |= OtherNonLocalAdjust && 942 OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust; 943 OtherScaledCost += OtherNonLocalAdjust; 944 // If both overflows, we cannot compare without additional 945 // precision, e.g., APInt. Just give up on that case. 946 if (ThisOverflows && OtherOverflows) 947 return false; 948 // If one overflows but not the other, we can still compare. 949 if (ThisOverflows || OtherOverflows) 950 return ThisOverflows < OtherOverflows; 951 // Otherwise, just compare the values. 952 return ThisScaledCost < OtherScaledCost; 953 } 954 955 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const { 956 return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost && 957 LocalFreq == Cost.LocalFreq; 958 } 959