1 //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the RegBankSelect class.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
17 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
18 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
19 #include "llvm/CodeGen/GlobalISel/Utils.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
22 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "llvm/CodeGen/TargetRegisterInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/BlockFrequency.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstdint>
45 #include <limits>
46 #include <memory>
47 #include <utility>
48 
49 #define DEBUG_TYPE "regbankselect"
50 
51 using namespace llvm;
52 
53 static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
54     cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
55     cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
56                           "Run the Fast mode (default mapping)"),
57                clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
58                           "Use the Greedy mode (best local mapping)")));
59 
60 char RegBankSelect::ID = 0;
61 
62 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
63                       "Assign register bank of generic virtual registers",
64                       false, false);
65 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
66 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
67 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
68 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
69                     "Assign register bank of generic virtual registers", false,
70                     false)
71 
72 RegBankSelect::RegBankSelect(Mode RunningMode)
73     : MachineFunctionPass(ID), OptMode(RunningMode) {
74   initializeRegBankSelectPass(*PassRegistry::getPassRegistry());
75   if (RegBankSelectMode.getNumOccurrences() != 0) {
76     OptMode = RegBankSelectMode;
77     if (RegBankSelectMode != RunningMode)
78       LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
79   }
80 }
81 
82 void RegBankSelect::init(MachineFunction &MF) {
83   RBI = MF.getSubtarget().getRegBankInfo();
84   assert(RBI && "Cannot work without RegisterBankInfo");
85   MRI = &MF.getRegInfo();
86   TRI = MF.getSubtarget().getRegisterInfo();
87   TPC = &getAnalysis<TargetPassConfig>();
88   if (OptMode != Mode::Fast) {
89     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
90     MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
91   } else {
92     MBFI = nullptr;
93     MBPI = nullptr;
94   }
95   MIRBuilder.setMF(MF);
96   MORE = llvm::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
97 }
98 
99 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
100   if (OptMode != Mode::Fast) {
101     // We could preserve the information from these two analysis but
102     // the APIs do not allow to do so yet.
103     AU.addRequired<MachineBlockFrequencyInfo>();
104     AU.addRequired<MachineBranchProbabilityInfo>();
105   }
106   AU.addRequired<TargetPassConfig>();
107   getSelectionDAGFallbackAnalysisUsage(AU);
108   MachineFunctionPass::getAnalysisUsage(AU);
109 }
110 
111 bool RegBankSelect::assignmentMatch(
112     unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping,
113     bool &OnlyAssign) const {
114   // By default we assume we will have to repair something.
115   OnlyAssign = false;
116   // Each part of a break down needs to end up in a different register.
117   // In other word, Reg assignment does not match.
118   if (ValMapping.NumBreakDowns != 1)
119     return false;
120 
121   const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
122   const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
123   // Reg is free of assignment, a simple assignment will make the
124   // register bank to match.
125   OnlyAssign = CurRegBank == nullptr;
126   LLVM_DEBUG(dbgs() << "Does assignment already match: ";
127              if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
128              dbgs() << " against ";
129              assert(DesiredRegBrank && "The mapping must be valid");
130              dbgs() << *DesiredRegBrank << '\n';);
131   return CurRegBank == DesiredRegBrank;
132 }
133 
134 bool RegBankSelect::repairReg(
135     MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
136     RegBankSelect::RepairingPlacement &RepairPt,
137     const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) {
138 
139   assert(ValMapping.NumBreakDowns == size(NewVRegs) && "need new vreg for each breakdown");
140 
141   // An empty range of new register means no repairing.
142   assert(!empty(NewVRegs) && "We should not have to repair");
143 
144   MachineInstr *MI;
145   if (ValMapping.NumBreakDowns == 1) {
146     // Assume we are repairing a use and thus, the original reg will be
147     // the source of the repairing.
148     unsigned Src = MO.getReg();
149     unsigned Dst = *NewVRegs.begin();
150 
151     // If we repair a definition, swap the source and destination for
152     // the repairing.
153     if (MO.isDef())
154       std::swap(Src, Dst);
155 
156     assert((RepairPt.getNumInsertPoints() == 1 ||
157             TargetRegisterInfo::isPhysicalRegister(Dst)) &&
158            "We are about to create several defs for Dst");
159 
160     // Build the instruction used to repair, then clone it at the right
161     // places. Avoiding buildCopy bypasses the check that Src and Dst have the
162     // same types because the type is a placeholder when this function is called.
163     MI = MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY)
164       .addDef(Dst)
165       .addUse(Src);
166     LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst)
167                << '\n');
168   } else {
169     // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT
170     // sequence.
171     assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported");
172 
173     LLT RegTy = MRI->getType(MO.getReg());
174     assert(!RegTy.isPointer() && "not implemented");
175 
176     // FIXME: We could handle split vectors with concat_vectors easily, but this
177     // would require an agreement on the type of registers with the
178     // target. Currently createVRegs just uses scalar types, and expects the
179     // target code to replace this type (which we won't know about here)
180     assert((RegTy.isScalar() ||
181             RegTy.getNumElements() == ValMapping.NumBreakDowns) &&
182            "only basic vector breakdowns currently supported");
183 
184     if (MO.isDef()) {
185       unsigned MergeOp = RegTy.isScalar() ?
186         TargetOpcode::G_MERGE_VALUES : TargetOpcode::G_BUILD_VECTOR;
187 
188       auto MergeBuilder =
189         MIRBuilder.buildInstrNoInsert(MergeOp)
190         .addDef(MO.getReg());
191 
192       for (unsigned SrcReg : NewVRegs)
193         MergeBuilder.addUse(SrcReg);
194 
195       MI = MergeBuilder;
196     } else {
197       MachineInstrBuilder UnMergeBuilder =
198         MIRBuilder.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES);
199       for (unsigned DefReg : NewVRegs)
200         UnMergeBuilder.addDef(DefReg);
201 
202       UnMergeBuilder.addUse(MO.getReg());
203       MI = UnMergeBuilder;
204     }
205   }
206 
207   if (RepairPt.getNumInsertPoints() != 1)
208     report_fatal_error("need testcase to support multiple insertion points");
209 
210   // TODO:
211   // Check if MI is legal. if not, we need to legalize all the
212   // instructions we are going to insert.
213   std::unique_ptr<MachineInstr *[]> NewInstrs(
214       new MachineInstr *[RepairPt.getNumInsertPoints()]);
215   bool IsFirst = true;
216   unsigned Idx = 0;
217   for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
218     MachineInstr *CurMI;
219     if (IsFirst)
220       CurMI = MI;
221     else
222       CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
223     InsertPt->insert(*CurMI);
224     NewInstrs[Idx++] = CurMI;
225     IsFirst = false;
226   }
227   // TODO:
228   // Legalize NewInstrs if need be.
229   return true;
230 }
231 
232 uint64_t RegBankSelect::getRepairCost(
233     const MachineOperand &MO,
234     const RegisterBankInfo::ValueMapping &ValMapping) const {
235   assert(MO.isReg() && "We should only repair register operand");
236   assert(ValMapping.NumBreakDowns && "Nothing to map??");
237 
238   bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
239   const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
240   // If MO does not have a register bank, we should have just been
241   // able to set one unless we have to break the value down.
242   assert(CurRegBank || MO.isDef());
243 
244   // Def: Val <- NewDefs
245   //     Same number of values: copy
246   //     Different number: Val = build_sequence Defs1, Defs2, ...
247   // Use: NewSources <- Val.
248   //     Same number of values: copy.
249   //     Different number: Src1, Src2, ... =
250   //           extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
251   // We should remember that this value is available somewhere else to
252   // coalesce the value.
253 
254   if (ValMapping.NumBreakDowns != 1)
255     return RBI->getBreakDownCost(ValMapping, CurRegBank);
256 
257   if (IsSameNumOfValues) {
258     const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
259     // If we repair a definition, swap the source and destination for
260     // the repairing.
261     if (MO.isDef())
262       std::swap(CurRegBank, DesiredRegBrank);
263     // TODO: It may be possible to actually avoid the copy.
264     // If we repair something where the source is defined by a copy
265     // and the source of that copy is on the right bank, we can reuse
266     // it for free.
267     // E.g.,
268     // RegToRepair<BankA> = copy AlternativeSrc<BankB>
269     // = op RegToRepair<BankA>
270     // We can simply propagate AlternativeSrc instead of copying RegToRepair
271     // into a new virtual register.
272     // We would also need to propagate this information in the
273     // repairing placement.
274     unsigned Cost = RBI->copyCost(*DesiredRegBrank, *CurRegBank,
275                                   RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
276     // TODO: use a dedicated constant for ImpossibleCost.
277     if (Cost != std::numeric_limits<unsigned>::max())
278       return Cost;
279     // Return the legalization cost of that repairing.
280   }
281   return std::numeric_limits<unsigned>::max();
282 }
283 
284 const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
285     MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
286     SmallVectorImpl<RepairingPlacement> &RepairPts) {
287   assert(!PossibleMappings.empty() &&
288          "Do not know how to map this instruction");
289 
290   const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
291   MappingCost Cost = MappingCost::ImpossibleCost();
292   SmallVector<RepairingPlacement, 4> LocalRepairPts;
293   for (const RegisterBankInfo::InstructionMapping *CurMapping :
294        PossibleMappings) {
295     MappingCost CurCost =
296         computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
297     if (CurCost < Cost) {
298       LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');
299       Cost = CurCost;
300       BestMapping = CurMapping;
301       RepairPts.clear();
302       for (RepairingPlacement &RepairPt : LocalRepairPts)
303         RepairPts.emplace_back(std::move(RepairPt));
304     }
305   }
306   if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
307     // If none of the mapping worked that means they are all impossible.
308     // Thus, pick the first one and set an impossible repairing point.
309     // It will trigger the failed isel mode.
310     BestMapping = *PossibleMappings.begin();
311     RepairPts.emplace_back(
312         RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
313   } else
314     assert(BestMapping && "No suitable mapping for instruction");
315   return *BestMapping;
316 }
317 
318 void RegBankSelect::tryAvoidingSplit(
319     RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
320     const RegisterBankInfo::ValueMapping &ValMapping) const {
321   const MachineInstr &MI = *MO.getParent();
322   assert(RepairPt.hasSplit() && "We should not have to adjust for split");
323   // Splitting should only occur for PHIs or between terminators,
324   // because we only do local repairing.
325   assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
326 
327   assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
328          "Repairing placement does not match operand");
329 
330   // If we need splitting for phis, that means it is because we
331   // could not find an insertion point before the terminators of
332   // the predecessor block for this argument. In other words,
333   // the input value is defined by one of the terminators.
334   assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
335 
336   // We split to repair the use of a phi or a terminator.
337   if (!MO.isDef()) {
338     if (MI.isTerminator()) {
339       assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
340              "Need to split for the first terminator?!");
341     } else {
342       // For the PHI case, the split may not be actually required.
343       // In the copy case, a phi is already a copy on the incoming edge,
344       // therefore there is no need to split.
345       if (ValMapping.NumBreakDowns == 1)
346         // This is a already a copy, there is nothing to do.
347         RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
348     }
349     return;
350   }
351 
352   // At this point, we need to repair a defintion of a terminator.
353 
354   // Technically we need to fix the def of MI on all outgoing
355   // edges of MI to keep the repairing local. In other words, we
356   // will create several definitions of the same register. This
357   // does not work for SSA unless that definition is a physical
358   // register.
359   // However, there are other cases where we can get away with
360   // that while still keeping the repairing local.
361   assert(MI.isTerminator() && MO.isDef() &&
362          "This code is for the def of a terminator");
363 
364   // Since we use RPO traversal, if we need to repair a definition
365   // this means this definition could be:
366   // 1. Used by PHIs (i.e., this VReg has been visited as part of the
367   //    uses of a phi.), or
368   // 2. Part of a target specific instruction (i.e., the target applied
369   //    some register class constraints when creating the instruction.)
370   // If the constraints come for #2, the target said that another mapping
371   // is supported so we may just drop them. Indeed, if we do not change
372   // the number of registers holding that value, the uses will get fixed
373   // when we get to them.
374   // Uses in PHIs may have already been proceeded though.
375   // If the constraints come for #1, then, those are weak constraints and
376   // no actual uses may rely on them. However, the problem remains mainly
377   // the same as for #2. If the value stays in one register, we could
378   // just switch the register bank of the definition, but we would need to
379   // account for a repairing cost for each phi we silently change.
380   //
381   // In any case, if the value needs to be broken down into several
382   // registers, the repairing is not local anymore as we need to patch
383   // every uses to rebuild the value in just one register.
384   //
385   // To summarize:
386   // - If the value is in a physical register, we can do the split and
387   //   fix locally.
388   // Otherwise if the value is in a virtual register:
389   // - If the value remains in one register, we do not have to split
390   //   just switching the register bank would do, but we need to account
391   //   in the repairing cost all the phi we changed.
392   // - If the value spans several registers, then we cannot do a local
393   //   repairing.
394 
395   // Check if this is a physical or virtual register.
396   unsigned Reg = MO.getReg();
397   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
398     // We are going to split every outgoing edges.
399     // Check that this is possible.
400     // FIXME: The machine representation is currently broken
401     // since it also several terminators in one basic block.
402     // Because of that we would technically need a way to get
403     // the targets of just one terminator to know which edges
404     // we have to split.
405     // Assert that we do not hit the ill-formed representation.
406 
407     // If there are other terminators before that one, some of
408     // the outgoing edges may not be dominated by this definition.
409     assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
410            "Do not know which outgoing edges are relevant");
411     const MachineInstr *Next = MI.getNextNode();
412     assert((!Next || Next->isUnconditionalBranch()) &&
413            "Do not know where each terminator ends up");
414     if (Next)
415       // If the next terminator uses Reg, this means we have
416       // to split right after MI and thus we need a way to ask
417       // which outgoing edges are affected.
418       assert(!Next->readsRegister(Reg) && "Need to split between terminators");
419     // We will split all the edges and repair there.
420   } else {
421     // This is a virtual register defined by a terminator.
422     if (ValMapping.NumBreakDowns == 1) {
423       // There is nothing to repair, but we may actually lie on
424       // the repairing cost because of the PHIs already proceeded
425       // as already stated.
426       // Though the code will be correct.
427       assert(false && "Repairing cost may not be accurate");
428     } else {
429       // We need to do non-local repairing. Basically, patch all
430       // the uses (i.e., phis) that we already proceeded.
431       // For now, just say this mapping is not possible.
432       RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
433     }
434   }
435 }
436 
437 RegBankSelect::MappingCost RegBankSelect::computeMapping(
438     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
439     SmallVectorImpl<RepairingPlacement> &RepairPts,
440     const RegBankSelect::MappingCost *BestCost) {
441   assert((MBFI || !BestCost) && "Costs comparison require MBFI");
442 
443   if (!InstrMapping.isValid())
444     return MappingCost::ImpossibleCost();
445 
446   // If mapped with InstrMapping, MI will have the recorded cost.
447   MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
448   bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
449   assert(!Saturated && "Possible mapping saturated the cost");
450   LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
451   LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');
452   RepairPts.clear();
453   if (BestCost && Cost > *BestCost) {
454     LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
455     return Cost;
456   }
457 
458   // Moreover, to realize this mapping, the register bank of each operand must
459   // match this mapping. In other words, we may need to locally reassign the
460   // register banks. Account for that repairing cost as well.
461   // In this context, local means in the surrounding of MI.
462   for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
463        OpIdx != EndOpIdx; ++OpIdx) {
464     const MachineOperand &MO = MI.getOperand(OpIdx);
465     if (!MO.isReg())
466       continue;
467     unsigned Reg = MO.getReg();
468     if (!Reg)
469       continue;
470     LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n');
471     const RegisterBankInfo::ValueMapping &ValMapping =
472         InstrMapping.getOperandMapping(OpIdx);
473     // If Reg is already properly mapped, this is free.
474     bool Assign;
475     if (assignmentMatch(Reg, ValMapping, Assign)) {
476       LLVM_DEBUG(dbgs() << "=> is free (match).\n");
477       continue;
478     }
479     if (Assign) {
480       LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
481       RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
482                                                 RepairingPlacement::Reassign));
483       continue;
484     }
485 
486     // Find the insertion point for the repairing code.
487     RepairPts.emplace_back(
488         RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
489     RepairingPlacement &RepairPt = RepairPts.back();
490 
491     // If we need to split a basic block to materialize this insertion point,
492     // we may give a higher cost to this mapping.
493     // Nevertheless, we may get away with the split, so try that first.
494     if (RepairPt.hasSplit())
495       tryAvoidingSplit(RepairPt, MO, ValMapping);
496 
497     // Check that the materialization of the repairing is possible.
498     if (!RepairPt.canMaterialize()) {
499       LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
500       return MappingCost::ImpossibleCost();
501     }
502 
503     // Account for the split cost and repair cost.
504     // Unless the cost is already saturated or we do not care about the cost.
505     if (!BestCost || Saturated)
506       continue;
507 
508     // To get accurate information we need MBFI and MBPI.
509     // Thus, if we end up here this information should be here.
510     assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
511 
512     // FIXME: We will have to rework the repairing cost model.
513     // The repairing cost depends on the register bank that MO has.
514     // However, when we break down the value into different values,
515     // MO may not have a register bank while still needing repairing.
516     // For the fast mode, we don't compute the cost so that is fine,
517     // but still for the repairing code, we will have to make a choice.
518     // For the greedy mode, we should choose greedily what is the best
519     // choice based on the next use of MO.
520 
521     // Sums up the repairing cost of MO at each insertion point.
522     uint64_t RepairCost = getRepairCost(MO, ValMapping);
523 
524     // This is an impossible to repair cost.
525     if (RepairCost == std::numeric_limits<unsigned>::max())
526       return MappingCost::ImpossibleCost();
527 
528     // Bias used for splitting: 5%.
529     const uint64_t PercentageForBias = 5;
530     uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
531     // We should not need more than a couple of instructions to repair
532     // an assignment. In other words, the computation should not
533     // overflow because the repairing cost is free of basic block
534     // frequency.
535     assert(((RepairCost < RepairCost * PercentageForBias) &&
536             (RepairCost * PercentageForBias <
537              RepairCost * PercentageForBias + 99)) &&
538            "Repairing involves more than a billion of instructions?!");
539     for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
540       assert(InsertPt->canMaterialize() && "We should not have made it here");
541       // We will applied some basic block frequency and those uses uint64_t.
542       if (!InsertPt->isSplit())
543         Saturated = Cost.addLocalCost(RepairCost);
544       else {
545         uint64_t CostForInsertPt = RepairCost;
546         // Again we shouldn't overflow here givent that
547         // CostForInsertPt is frequency free at this point.
548         assert(CostForInsertPt + Bias > CostForInsertPt &&
549                "Repairing + split bias overflows");
550         CostForInsertPt += Bias;
551         uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
552         // Check if we just overflowed.
553         if ((Saturated = PtCost < CostForInsertPt))
554           Cost.saturate();
555         else
556           Saturated = Cost.addNonLocalCost(PtCost);
557       }
558 
559       // Stop looking into what it takes to repair, this is already
560       // too expensive.
561       if (BestCost && Cost > *BestCost) {
562         LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
563         return Cost;
564       }
565 
566       // No need to accumulate more cost information.
567       // We need to still gather the repairing information though.
568       if (Saturated)
569         break;
570     }
571   }
572   LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
573   return Cost;
574 }
575 
576 bool RegBankSelect::applyMapping(
577     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
578     SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
579   // OpdMapper will hold all the information needed for the rewriting.
580   RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
581 
582   // First, place the repairing code.
583   for (RepairingPlacement &RepairPt : RepairPts) {
584     if (!RepairPt.canMaterialize() ||
585         RepairPt.getKind() == RepairingPlacement::Impossible)
586       return false;
587     assert(RepairPt.getKind() != RepairingPlacement::None &&
588            "This should not make its way in the list");
589     unsigned OpIdx = RepairPt.getOpIdx();
590     MachineOperand &MO = MI.getOperand(OpIdx);
591     const RegisterBankInfo::ValueMapping &ValMapping =
592         InstrMapping.getOperandMapping(OpIdx);
593     unsigned Reg = MO.getReg();
594 
595     switch (RepairPt.getKind()) {
596     case RepairingPlacement::Reassign:
597       assert(ValMapping.NumBreakDowns == 1 &&
598              "Reassignment should only be for simple mapping");
599       MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
600       break;
601     case RepairingPlacement::Insert:
602       OpdMapper.createVRegs(OpIdx);
603       if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
604         return false;
605       break;
606     default:
607       llvm_unreachable("Other kind should not happen");
608     }
609   }
610 
611   // Second, rewrite the instruction.
612   LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
613   RBI->applyMapping(OpdMapper);
614 
615   return true;
616 }
617 
618 bool RegBankSelect::assignInstr(MachineInstr &MI) {
619   LLVM_DEBUG(dbgs() << "Assign: " << MI);
620   // Remember the repairing placement for all the operands.
621   SmallVector<RepairingPlacement, 4> RepairPts;
622 
623   const RegisterBankInfo::InstructionMapping *BestMapping;
624   if (OptMode == RegBankSelect::Mode::Fast) {
625     BestMapping = &RBI->getInstrMapping(MI);
626     MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
627     (void)DefaultCost;
628     if (DefaultCost == MappingCost::ImpossibleCost())
629       return false;
630   } else {
631     RegisterBankInfo::InstructionMappings PossibleMappings =
632         RBI->getInstrPossibleMappings(MI);
633     if (PossibleMappings.empty())
634       return false;
635     BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
636   }
637   // Make sure the mapping is valid for MI.
638   assert(BestMapping->verify(MI) && "Invalid instruction mapping");
639 
640   LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
641 
642   // After this call, MI may not be valid anymore.
643   // Do not use it.
644   return applyMapping(MI, *BestMapping, RepairPts);
645 }
646 
647 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
648   // If the ISel pipeline failed, do not bother running that pass.
649   if (MF.getProperties().hasProperty(
650           MachineFunctionProperties::Property::FailedISel))
651     return false;
652 
653   LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
654   const Function &F = MF.getFunction();
655   Mode SaveOptMode = OptMode;
656   if (F.hasFnAttribute(Attribute::OptimizeNone))
657     OptMode = Mode::Fast;
658   init(MF);
659 
660 #ifndef NDEBUG
661   // Check that our input is fully legal: we require the function to have the
662   // Legalized property, so it should be.
663   // FIXME: This should be in the MachineVerifier.
664   if (!DisableGISelLegalityCheck)
665     if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
666       reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
667                          "instruction is not legal", *MI);
668       return false;
669     }
670 #endif
671 
672   // Walk the function and assign register banks to all operands.
673   // Use a RPOT to make sure all registers are assigned before we choose
674   // the best mapping of the current instruction.
675   ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
676   for (MachineBasicBlock *MBB : RPOT) {
677     // Set a sensible insertion point so that subsequent calls to
678     // MIRBuilder.
679     MIRBuilder.setMBB(*MBB);
680     for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end();
681          MII != End;) {
682       // MI might be invalidated by the assignment, so move the
683       // iterator before hand.
684       MachineInstr &MI = *MII++;
685 
686       // Ignore target-specific instructions: they should use proper regclasses.
687       if (isTargetSpecificOpcode(MI.getOpcode()))
688         continue;
689 
690       if (!assignInstr(MI)) {
691         reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
692                            "unable to map instruction", MI);
693         return false;
694       }
695     }
696   }
697   OptMode = SaveOptMode;
698   return false;
699 }
700 
701 //------------------------------------------------------------------------------
702 //                  Helper Classes Implementation
703 //------------------------------------------------------------------------------
704 RegBankSelect::RepairingPlacement::RepairingPlacement(
705     MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
706     RepairingPlacement::RepairingKind Kind)
707     // Default is, we are going to insert code to repair OpIdx.
708     : Kind(Kind), OpIdx(OpIdx),
709       CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
710   const MachineOperand &MO = MI.getOperand(OpIdx);
711   assert(MO.isReg() && "Trying to repair a non-reg operand");
712 
713   if (Kind != RepairingKind::Insert)
714     return;
715 
716   // Repairings for definitions happen after MI, uses happen before.
717   bool Before = !MO.isDef();
718 
719   // Check if we are done with MI.
720   if (!MI.isPHI() && !MI.isTerminator()) {
721     addInsertPoint(MI, Before);
722     // We are done with the initialization.
723     return;
724   }
725 
726   // Now, look for the special cases.
727   if (MI.isPHI()) {
728     // - PHI must be the first instructions:
729     //   * Before, we have to split the related incoming edge.
730     //   * After, move the insertion point past the last phi.
731     if (!Before) {
732       MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
733       if (It != MI.getParent()->end())
734         addInsertPoint(*It, /*Before*/ true);
735       else
736         addInsertPoint(*(--It), /*Before*/ false);
737       return;
738     }
739     // We repair a use of a phi, we may need to split the related edge.
740     MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
741     // Check if we can move the insertion point prior to the
742     // terminators of the predecessor.
743     unsigned Reg = MO.getReg();
744     MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
745     for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
746       if (It->modifiesRegister(Reg, &TRI)) {
747         // We cannot hoist the repairing code in the predecessor.
748         // Split the edge.
749         addInsertPoint(Pred, *MI.getParent());
750         return;
751       }
752     // At this point, we can insert in Pred.
753 
754     // - If It is invalid, Pred is empty and we can insert in Pred
755     //   wherever we want.
756     // - If It is valid, It is the first non-terminator, insert after It.
757     if (It == Pred.end())
758       addInsertPoint(Pred, /*Beginning*/ false);
759     else
760       addInsertPoint(*It, /*Before*/ false);
761   } else {
762     // - Terminators must be the last instructions:
763     //   * Before, move the insert point before the first terminator.
764     //   * After, we have to split the outcoming edges.
765     if (Before) {
766       // Check whether Reg is defined by any terminator.
767       MachineBasicBlock::reverse_iterator It = MI;
768       auto REnd = MI.getParent()->rend();
769 
770       for (; It != REnd && It->isTerminator(); ++It) {
771         assert(!It->modifiesRegister(MO.getReg(), &TRI) &&
772                "copy insertion in middle of terminators not handled");
773       }
774 
775       if (It == REnd) {
776         addInsertPoint(*MI.getParent()->begin(), true);
777         return;
778       }
779 
780       // We are sure to be right before the first terminator.
781       addInsertPoint(*It, /*Before*/ false);
782       return;
783     }
784     // Make sure Reg is not redefined by other terminators, otherwise
785     // we do not know how to split.
786     for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
787          ++It != End;)
788       // The machine verifier should reject this kind of code.
789       assert(It->modifiesRegister(MO.getReg(), &TRI) &&
790              "Do not know where to split");
791     // Split each outcoming edges.
792     MachineBasicBlock &Src = *MI.getParent();
793     for (auto &Succ : Src.successors())
794       addInsertPoint(Src, Succ);
795   }
796 }
797 
798 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
799                                                        bool Before) {
800   addInsertPoint(*new InstrInsertPoint(MI, Before));
801 }
802 
803 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
804                                                        bool Beginning) {
805   addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
806 }
807 
808 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
809                                                        MachineBasicBlock &Dst) {
810   addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
811 }
812 
813 void RegBankSelect::RepairingPlacement::addInsertPoint(
814     RegBankSelect::InsertPoint &Point) {
815   CanMaterialize &= Point.canMaterialize();
816   HasSplit |= Point.isSplit();
817   InsertPoints.emplace_back(&Point);
818 }
819 
820 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
821                                                   bool Before)
822     : InsertPoint(), Instr(Instr), Before(Before) {
823   // Since we do not support splitting, we do not need to update
824   // liveness and such, so do not do anything with P.
825   assert((!Before || !Instr.isPHI()) &&
826          "Splitting before phis requires more points");
827   assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
828          "Splitting between phis does not make sense");
829 }
830 
831 void RegBankSelect::InstrInsertPoint::materialize() {
832   if (isSplit()) {
833     // Slice and return the beginning of the new block.
834     // If we need to split between the terminators, we theoritically
835     // need to know where the first and second set of terminators end
836     // to update the successors properly.
837     // Now, in pratice, we should have a maximum of 2 branch
838     // instructions; one conditional and one unconditional. Therefore
839     // we know how to update the successor by looking at the target of
840     // the unconditional branch.
841     // If we end up splitting at some point, then, we should update
842     // the liveness information and such. I.e., we would need to
843     // access P here.
844     // The machine verifier should actually make sure such cases
845     // cannot happen.
846     llvm_unreachable("Not yet implemented");
847   }
848   // Otherwise the insertion point is just the current or next
849   // instruction depending on Before. I.e., there is nothing to do
850   // here.
851 }
852 
853 bool RegBankSelect::InstrInsertPoint::isSplit() const {
854   // If the insertion point is after a terminator, we need to split.
855   if (!Before)
856     return Instr.isTerminator();
857   // If we insert before an instruction that is after a terminator,
858   // we are still after a terminator.
859   return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
860 }
861 
862 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
863   // Even if we need to split, because we insert between terminators,
864   // this split has actually the same frequency as the instruction.
865   const MachineBlockFrequencyInfo *MBFI =
866       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
867   if (!MBFI)
868     return 1;
869   return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
870 }
871 
872 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
873   const MachineBlockFrequencyInfo *MBFI =
874       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
875   if (!MBFI)
876     return 1;
877   return MBFI->getBlockFreq(&MBB).getFrequency();
878 }
879 
880 void RegBankSelect::EdgeInsertPoint::materialize() {
881   // If we end up repairing twice at the same place before materializing the
882   // insertion point, we may think we have to split an edge twice.
883   // We should have a factory for the insert point such that identical points
884   // are the same instance.
885   assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
886          "This point has already been split");
887   MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
888   assert(NewBB && "Invalid call to materialize");
889   // We reuse the destination block to hold the information of the new block.
890   DstOrSplit = NewBB;
891 }
892 
893 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
894   const MachineBlockFrequencyInfo *MBFI =
895       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
896   if (!MBFI)
897     return 1;
898   if (WasMaterialized)
899     return MBFI->getBlockFreq(DstOrSplit).getFrequency();
900 
901   const MachineBranchProbabilityInfo *MBPI =
902       P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
903   if (!MBPI)
904     return 1;
905   // The basic block will be on the edge.
906   return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
907       .getFrequency();
908 }
909 
910 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
911   // If this is not a critical edge, we should not have used this insert
912   // point. Indeed, either the successor or the predecessor should
913   // have do.
914   assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
915          "Edge is not critical");
916   return Src.canSplitCriticalEdge(DstOrSplit);
917 }
918 
919 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
920     : LocalFreq(LocalFreq.getFrequency()) {}
921 
922 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
923   // Check if this overflows.
924   if (LocalCost + Cost < LocalCost) {
925     saturate();
926     return true;
927   }
928   LocalCost += Cost;
929   return isSaturated();
930 }
931 
932 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
933   // Check if this overflows.
934   if (NonLocalCost + Cost < NonLocalCost) {
935     saturate();
936     return true;
937   }
938   NonLocalCost += Cost;
939   return isSaturated();
940 }
941 
942 bool RegBankSelect::MappingCost::isSaturated() const {
943   return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
944          LocalFreq == UINT64_MAX;
945 }
946 
947 void RegBankSelect::MappingCost::saturate() {
948   *this = ImpossibleCost();
949   --LocalCost;
950 }
951 
952 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
953   return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
954 }
955 
956 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
957   // Sort out the easy cases.
958   if (*this == Cost)
959     return false;
960   // If one is impossible to realize the other is cheaper unless it is
961   // impossible as well.
962   if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
963     return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
964   // If one is saturated the other is cheaper, unless it is saturated
965   // as well.
966   if (isSaturated() || Cost.isSaturated())
967     return isSaturated() < Cost.isSaturated();
968   // At this point we know both costs hold sensible values.
969 
970   // If both values have a different base frequency, there is no much
971   // we can do but to scale everything.
972   // However, if they have the same base frequency we can avoid making
973   // complicated computation.
974   uint64_t ThisLocalAdjust;
975   uint64_t OtherLocalAdjust;
976   if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
977 
978     // At this point, we know the local costs are comparable.
979     // Do the case that do not involve potential overflow first.
980     if (NonLocalCost == Cost.NonLocalCost)
981       // Since the non-local costs do not discriminate on the result,
982       // just compare the local costs.
983       return LocalCost < Cost.LocalCost;
984 
985     // The base costs are comparable so we may only keep the relative
986     // value to increase our chances of avoiding overflows.
987     ThisLocalAdjust = 0;
988     OtherLocalAdjust = 0;
989     if (LocalCost < Cost.LocalCost)
990       OtherLocalAdjust = Cost.LocalCost - LocalCost;
991     else
992       ThisLocalAdjust = LocalCost - Cost.LocalCost;
993   } else {
994     ThisLocalAdjust = LocalCost;
995     OtherLocalAdjust = Cost.LocalCost;
996   }
997 
998   // The non-local costs are comparable, just keep the relative value.
999   uint64_t ThisNonLocalAdjust = 0;
1000   uint64_t OtherNonLocalAdjust = 0;
1001   if (NonLocalCost < Cost.NonLocalCost)
1002     OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
1003   else
1004     ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
1005   // Scale everything to make them comparable.
1006   uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
1007   // Check for overflow on that operation.
1008   bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
1009                                            ThisScaledCost < LocalFreq);
1010   uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
1011   // Check for overflow on the last operation.
1012   bool OtherOverflows =
1013       OtherLocalAdjust &&
1014       (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
1015   // Add the non-local costs.
1016   ThisOverflows |= ThisNonLocalAdjust &&
1017                    ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
1018   ThisScaledCost += ThisNonLocalAdjust;
1019   OtherOverflows |= OtherNonLocalAdjust &&
1020                     OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
1021   OtherScaledCost += OtherNonLocalAdjust;
1022   // If both overflows, we cannot compare without additional
1023   // precision, e.g., APInt. Just give up on that case.
1024   if (ThisOverflows && OtherOverflows)
1025     return false;
1026   // If one overflows but not the other, we can still compare.
1027   if (ThisOverflows || OtherOverflows)
1028     return ThisOverflows < OtherOverflows;
1029   // Otherwise, just compare the values.
1030   return ThisScaledCost < OtherScaledCost;
1031 }
1032 
1033 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
1034   return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
1035          LocalFreq == Cost.LocalFreq;
1036 }
1037 
1038 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1039 LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
1040   print(dbgs());
1041   dbgs() << '\n';
1042 }
1043 #endif
1044 
1045 void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
1046   if (*this == ImpossibleCost()) {
1047     OS << "impossible";
1048     return;
1049   }
1050   if (isSaturated()) {
1051     OS << "saturated";
1052     return;
1053   }
1054   OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;
1055 }
1056