1 //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the RegBankSelect class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 17 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 18 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 19 #include "llvm/CodeGen/GlobalISel/Utils.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 22 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineOperand.h" 26 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetOpcodes.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "llvm/CodeGen/TargetRegisterInfo.h" 31 #include "llvm/CodeGen/TargetSubtargetInfo.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/BlockFrequency.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Compiler.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <algorithm> 43 #include <cassert> 44 #include <cstdint> 45 #include <limits> 46 #include <memory> 47 #include <utility> 48 49 #define DEBUG_TYPE "regbankselect" 50 51 using namespace llvm; 52 53 static cl::opt<RegBankSelect::Mode> RegBankSelectMode( 54 cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional, 55 cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast", 56 "Run the Fast mode (default mapping)"), 57 clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy", 58 "Use the Greedy mode (best local mapping)"))); 59 60 char RegBankSelect::ID = 0; 61 62 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE, 63 "Assign register bank of generic virtual registers", 64 false, false); 65 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 66 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 67 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 68 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, 69 "Assign register bank of generic virtual registers", false, 70 false) 71 72 RegBankSelect::RegBankSelect(Mode RunningMode) 73 : MachineFunctionPass(ID), OptMode(RunningMode) { 74 initializeRegBankSelectPass(*PassRegistry::getPassRegistry()); 75 if (RegBankSelectMode.getNumOccurrences() != 0) { 76 OptMode = RegBankSelectMode; 77 if (RegBankSelectMode != RunningMode) 78 LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n"); 79 } 80 } 81 82 void RegBankSelect::init(MachineFunction &MF) { 83 RBI = MF.getSubtarget().getRegBankInfo(); 84 assert(RBI && "Cannot work without RegisterBankInfo"); 85 MRI = &MF.getRegInfo(); 86 TRI = MF.getSubtarget().getRegisterInfo(); 87 TPC = &getAnalysis<TargetPassConfig>(); 88 if (OptMode != Mode::Fast) { 89 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 90 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 91 } else { 92 MBFI = nullptr; 93 MBPI = nullptr; 94 } 95 MIRBuilder.setMF(MF); 96 MORE = llvm::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI); 97 } 98 99 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const { 100 if (OptMode != Mode::Fast) { 101 // We could preserve the information from these two analysis but 102 // the APIs do not allow to do so yet. 103 AU.addRequired<MachineBlockFrequencyInfo>(); 104 AU.addRequired<MachineBranchProbabilityInfo>(); 105 } 106 AU.addRequired<TargetPassConfig>(); 107 getSelectionDAGFallbackAnalysisUsage(AU); 108 MachineFunctionPass::getAnalysisUsage(AU); 109 } 110 111 bool RegBankSelect::assignmentMatch( 112 unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping, 113 bool &OnlyAssign) const { 114 // By default we assume we will have to repair something. 115 OnlyAssign = false; 116 // Each part of a break down needs to end up in a different register. 117 // In other word, Reg assignment does not match. 118 if (ValMapping.NumBreakDowns != 1) 119 return false; 120 121 const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI); 122 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank; 123 // Reg is free of assignment, a simple assignment will make the 124 // register bank to match. 125 OnlyAssign = CurRegBank == nullptr; 126 LLVM_DEBUG(dbgs() << "Does assignment already match: "; 127 if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none"; 128 dbgs() << " against "; 129 assert(DesiredRegBrank && "The mapping must be valid"); 130 dbgs() << *DesiredRegBrank << '\n';); 131 return CurRegBank == DesiredRegBrank; 132 } 133 134 bool RegBankSelect::repairReg( 135 MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping, 136 RegBankSelect::RepairingPlacement &RepairPt, 137 const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) { 138 139 assert(ValMapping.NumBreakDowns == size(NewVRegs) && "need new vreg for each breakdown"); 140 141 // An empty range of new register means no repairing. 142 assert(!empty(NewVRegs) && "We should not have to repair"); 143 144 MachineInstr *MI; 145 if (ValMapping.NumBreakDowns == 1) { 146 // Assume we are repairing a use and thus, the original reg will be 147 // the source of the repairing. 148 unsigned Src = MO.getReg(); 149 unsigned Dst = *NewVRegs.begin(); 150 151 // If we repair a definition, swap the source and destination for 152 // the repairing. 153 if (MO.isDef()) 154 std::swap(Src, Dst); 155 156 assert((RepairPt.getNumInsertPoints() == 1 || 157 TargetRegisterInfo::isPhysicalRegister(Dst)) && 158 "We are about to create several defs for Dst"); 159 160 // Build the instruction used to repair, then clone it at the right 161 // places. Avoiding buildCopy bypasses the check that Src and Dst have the 162 // same types because the type is a placeholder when this function is called. 163 MI = MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY) 164 .addDef(Dst) 165 .addUse(Src); 166 LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst) 167 << '\n'); 168 } else { 169 // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT 170 // sequence. 171 assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported"); 172 173 LLT RegTy = MRI->getType(MO.getReg()); 174 assert(!RegTy.isPointer() && "not implemented"); 175 176 // FIXME: We could handle split vectors with concat_vectors easily, but this 177 // would require an agreement on the type of registers with the 178 // target. Currently createVRegs just uses scalar types, and expects the 179 // target code to replace this type (which we won't know about here) 180 assert((RegTy.isScalar() || 181 RegTy.getNumElements() == ValMapping.NumBreakDowns) && 182 "only basic vector breakdowns currently supported"); 183 184 if (MO.isDef()) { 185 unsigned MergeOp = RegTy.isScalar() ? 186 TargetOpcode::G_MERGE_VALUES : TargetOpcode::G_BUILD_VECTOR; 187 188 auto MergeBuilder = 189 MIRBuilder.buildInstrNoInsert(MergeOp) 190 .addDef(MO.getReg()); 191 192 for (unsigned SrcReg : NewVRegs) 193 MergeBuilder.addUse(SrcReg); 194 195 MI = MergeBuilder; 196 } else { 197 MachineInstrBuilder UnMergeBuilder = 198 MIRBuilder.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES); 199 for (unsigned DefReg : NewVRegs) 200 UnMergeBuilder.addDef(DefReg); 201 202 UnMergeBuilder.addUse(MO.getReg()); 203 MI = UnMergeBuilder; 204 } 205 } 206 207 if (RepairPt.getNumInsertPoints() != 1) 208 report_fatal_error("need testcase to support multiple insertion points"); 209 210 // TODO: 211 // Check if MI is legal. if not, we need to legalize all the 212 // instructions we are going to insert. 213 std::unique_ptr<MachineInstr *[]> NewInstrs( 214 new MachineInstr *[RepairPt.getNumInsertPoints()]); 215 bool IsFirst = true; 216 unsigned Idx = 0; 217 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 218 MachineInstr *CurMI; 219 if (IsFirst) 220 CurMI = MI; 221 else 222 CurMI = MIRBuilder.getMF().CloneMachineInstr(MI); 223 InsertPt->insert(*CurMI); 224 NewInstrs[Idx++] = CurMI; 225 IsFirst = false; 226 } 227 // TODO: 228 // Legalize NewInstrs if need be. 229 return true; 230 } 231 232 uint64_t RegBankSelect::getRepairCost( 233 const MachineOperand &MO, 234 const RegisterBankInfo::ValueMapping &ValMapping) const { 235 assert(MO.isReg() && "We should only repair register operand"); 236 assert(ValMapping.NumBreakDowns && "Nothing to map??"); 237 238 bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1; 239 const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI); 240 // If MO does not have a register bank, we should have just been 241 // able to set one unless we have to break the value down. 242 assert(CurRegBank || MO.isDef()); 243 244 // Def: Val <- NewDefs 245 // Same number of values: copy 246 // Different number: Val = build_sequence Defs1, Defs2, ... 247 // Use: NewSources <- Val. 248 // Same number of values: copy. 249 // Different number: Src1, Src2, ... = 250 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ... 251 // We should remember that this value is available somewhere else to 252 // coalesce the value. 253 254 if (ValMapping.NumBreakDowns != 1) 255 return RBI->getBreakDownCost(ValMapping, CurRegBank); 256 257 if (IsSameNumOfValues) { 258 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank; 259 // If we repair a definition, swap the source and destination for 260 // the repairing. 261 if (MO.isDef()) 262 std::swap(CurRegBank, DesiredRegBrank); 263 // TODO: It may be possible to actually avoid the copy. 264 // If we repair something where the source is defined by a copy 265 // and the source of that copy is on the right bank, we can reuse 266 // it for free. 267 // E.g., 268 // RegToRepair<BankA> = copy AlternativeSrc<BankB> 269 // = op RegToRepair<BankA> 270 // We can simply propagate AlternativeSrc instead of copying RegToRepair 271 // into a new virtual register. 272 // We would also need to propagate this information in the 273 // repairing placement. 274 unsigned Cost = RBI->copyCost(*DesiredRegBrank, *CurRegBank, 275 RBI->getSizeInBits(MO.getReg(), *MRI, *TRI)); 276 // TODO: use a dedicated constant for ImpossibleCost. 277 if (Cost != std::numeric_limits<unsigned>::max()) 278 return Cost; 279 // Return the legalization cost of that repairing. 280 } 281 return std::numeric_limits<unsigned>::max(); 282 } 283 284 const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping( 285 MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings, 286 SmallVectorImpl<RepairingPlacement> &RepairPts) { 287 assert(!PossibleMappings.empty() && 288 "Do not know how to map this instruction"); 289 290 const RegisterBankInfo::InstructionMapping *BestMapping = nullptr; 291 MappingCost Cost = MappingCost::ImpossibleCost(); 292 SmallVector<RepairingPlacement, 4> LocalRepairPts; 293 for (const RegisterBankInfo::InstructionMapping *CurMapping : 294 PossibleMappings) { 295 MappingCost CurCost = 296 computeMapping(MI, *CurMapping, LocalRepairPts, &Cost); 297 if (CurCost < Cost) { 298 LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n'); 299 Cost = CurCost; 300 BestMapping = CurMapping; 301 RepairPts.clear(); 302 for (RepairingPlacement &RepairPt : LocalRepairPts) 303 RepairPts.emplace_back(std::move(RepairPt)); 304 } 305 } 306 if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) { 307 // If none of the mapping worked that means they are all impossible. 308 // Thus, pick the first one and set an impossible repairing point. 309 // It will trigger the failed isel mode. 310 BestMapping = *PossibleMappings.begin(); 311 RepairPts.emplace_back( 312 RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible)); 313 } else 314 assert(BestMapping && "No suitable mapping for instruction"); 315 return *BestMapping; 316 } 317 318 void RegBankSelect::tryAvoidingSplit( 319 RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO, 320 const RegisterBankInfo::ValueMapping &ValMapping) const { 321 const MachineInstr &MI = *MO.getParent(); 322 assert(RepairPt.hasSplit() && "We should not have to adjust for split"); 323 // Splitting should only occur for PHIs or between terminators, 324 // because we only do local repairing. 325 assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?"); 326 327 assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO && 328 "Repairing placement does not match operand"); 329 330 // If we need splitting for phis, that means it is because we 331 // could not find an insertion point before the terminators of 332 // the predecessor block for this argument. In other words, 333 // the input value is defined by one of the terminators. 334 assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?"); 335 336 // We split to repair the use of a phi or a terminator. 337 if (!MO.isDef()) { 338 if (MI.isTerminator()) { 339 assert(&MI != &(*MI.getParent()->getFirstTerminator()) && 340 "Need to split for the first terminator?!"); 341 } else { 342 // For the PHI case, the split may not be actually required. 343 // In the copy case, a phi is already a copy on the incoming edge, 344 // therefore there is no need to split. 345 if (ValMapping.NumBreakDowns == 1) 346 // This is a already a copy, there is nothing to do. 347 RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign); 348 } 349 return; 350 } 351 352 // At this point, we need to repair a defintion of a terminator. 353 354 // Technically we need to fix the def of MI on all outgoing 355 // edges of MI to keep the repairing local. In other words, we 356 // will create several definitions of the same register. This 357 // does not work for SSA unless that definition is a physical 358 // register. 359 // However, there are other cases where we can get away with 360 // that while still keeping the repairing local. 361 assert(MI.isTerminator() && MO.isDef() && 362 "This code is for the def of a terminator"); 363 364 // Since we use RPO traversal, if we need to repair a definition 365 // this means this definition could be: 366 // 1. Used by PHIs (i.e., this VReg has been visited as part of the 367 // uses of a phi.), or 368 // 2. Part of a target specific instruction (i.e., the target applied 369 // some register class constraints when creating the instruction.) 370 // If the constraints come for #2, the target said that another mapping 371 // is supported so we may just drop them. Indeed, if we do not change 372 // the number of registers holding that value, the uses will get fixed 373 // when we get to them. 374 // Uses in PHIs may have already been proceeded though. 375 // If the constraints come for #1, then, those are weak constraints and 376 // no actual uses may rely on them. However, the problem remains mainly 377 // the same as for #2. If the value stays in one register, we could 378 // just switch the register bank of the definition, but we would need to 379 // account for a repairing cost for each phi we silently change. 380 // 381 // In any case, if the value needs to be broken down into several 382 // registers, the repairing is not local anymore as we need to patch 383 // every uses to rebuild the value in just one register. 384 // 385 // To summarize: 386 // - If the value is in a physical register, we can do the split and 387 // fix locally. 388 // Otherwise if the value is in a virtual register: 389 // - If the value remains in one register, we do not have to split 390 // just switching the register bank would do, but we need to account 391 // in the repairing cost all the phi we changed. 392 // - If the value spans several registers, then we cannot do a local 393 // repairing. 394 395 // Check if this is a physical or virtual register. 396 unsigned Reg = MO.getReg(); 397 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 398 // We are going to split every outgoing edges. 399 // Check that this is possible. 400 // FIXME: The machine representation is currently broken 401 // since it also several terminators in one basic block. 402 // Because of that we would technically need a way to get 403 // the targets of just one terminator to know which edges 404 // we have to split. 405 // Assert that we do not hit the ill-formed representation. 406 407 // If there are other terminators before that one, some of 408 // the outgoing edges may not be dominated by this definition. 409 assert(&MI == &(*MI.getParent()->getFirstTerminator()) && 410 "Do not know which outgoing edges are relevant"); 411 const MachineInstr *Next = MI.getNextNode(); 412 assert((!Next || Next->isUnconditionalBranch()) && 413 "Do not know where each terminator ends up"); 414 if (Next) 415 // If the next terminator uses Reg, this means we have 416 // to split right after MI and thus we need a way to ask 417 // which outgoing edges are affected. 418 assert(!Next->readsRegister(Reg) && "Need to split between terminators"); 419 // We will split all the edges and repair there. 420 } else { 421 // This is a virtual register defined by a terminator. 422 if (ValMapping.NumBreakDowns == 1) { 423 // There is nothing to repair, but we may actually lie on 424 // the repairing cost because of the PHIs already proceeded 425 // as already stated. 426 // Though the code will be correct. 427 assert(false && "Repairing cost may not be accurate"); 428 } else { 429 // We need to do non-local repairing. Basically, patch all 430 // the uses (i.e., phis) that we already proceeded. 431 // For now, just say this mapping is not possible. 432 RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible); 433 } 434 } 435 } 436 437 RegBankSelect::MappingCost RegBankSelect::computeMapping( 438 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 439 SmallVectorImpl<RepairingPlacement> &RepairPts, 440 const RegBankSelect::MappingCost *BestCost) { 441 assert((MBFI || !BestCost) && "Costs comparison require MBFI"); 442 443 if (!InstrMapping.isValid()) 444 return MappingCost::ImpossibleCost(); 445 446 // If mapped with InstrMapping, MI will have the recorded cost. 447 MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1); 448 bool Saturated = Cost.addLocalCost(InstrMapping.getCost()); 449 assert(!Saturated && "Possible mapping saturated the cost"); 450 LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI); 451 LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n'); 452 RepairPts.clear(); 453 if (BestCost && Cost > *BestCost) { 454 LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n"); 455 return Cost; 456 } 457 458 // Moreover, to realize this mapping, the register bank of each operand must 459 // match this mapping. In other words, we may need to locally reassign the 460 // register banks. Account for that repairing cost as well. 461 // In this context, local means in the surrounding of MI. 462 for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands(); 463 OpIdx != EndOpIdx; ++OpIdx) { 464 const MachineOperand &MO = MI.getOperand(OpIdx); 465 if (!MO.isReg()) 466 continue; 467 unsigned Reg = MO.getReg(); 468 if (!Reg) 469 continue; 470 LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n'); 471 const RegisterBankInfo::ValueMapping &ValMapping = 472 InstrMapping.getOperandMapping(OpIdx); 473 // If Reg is already properly mapped, this is free. 474 bool Assign; 475 if (assignmentMatch(Reg, ValMapping, Assign)) { 476 LLVM_DEBUG(dbgs() << "=> is free (match).\n"); 477 continue; 478 } 479 if (Assign) { 480 LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n"); 481 RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this, 482 RepairingPlacement::Reassign)); 483 continue; 484 } 485 486 // Find the insertion point for the repairing code. 487 RepairPts.emplace_back( 488 RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert)); 489 RepairingPlacement &RepairPt = RepairPts.back(); 490 491 // If we need to split a basic block to materialize this insertion point, 492 // we may give a higher cost to this mapping. 493 // Nevertheless, we may get away with the split, so try that first. 494 if (RepairPt.hasSplit()) 495 tryAvoidingSplit(RepairPt, MO, ValMapping); 496 497 // Check that the materialization of the repairing is possible. 498 if (!RepairPt.canMaterialize()) { 499 LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n"); 500 return MappingCost::ImpossibleCost(); 501 } 502 503 // Account for the split cost and repair cost. 504 // Unless the cost is already saturated or we do not care about the cost. 505 if (!BestCost || Saturated) 506 continue; 507 508 // To get accurate information we need MBFI and MBPI. 509 // Thus, if we end up here this information should be here. 510 assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI"); 511 512 // FIXME: We will have to rework the repairing cost model. 513 // The repairing cost depends on the register bank that MO has. 514 // However, when we break down the value into different values, 515 // MO may not have a register bank while still needing repairing. 516 // For the fast mode, we don't compute the cost so that is fine, 517 // but still for the repairing code, we will have to make a choice. 518 // For the greedy mode, we should choose greedily what is the best 519 // choice based on the next use of MO. 520 521 // Sums up the repairing cost of MO at each insertion point. 522 uint64_t RepairCost = getRepairCost(MO, ValMapping); 523 524 // This is an impossible to repair cost. 525 if (RepairCost == std::numeric_limits<unsigned>::max()) 526 return MappingCost::ImpossibleCost(); 527 528 // Bias used for splitting: 5%. 529 const uint64_t PercentageForBias = 5; 530 uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100; 531 // We should not need more than a couple of instructions to repair 532 // an assignment. In other words, the computation should not 533 // overflow because the repairing cost is free of basic block 534 // frequency. 535 assert(((RepairCost < RepairCost * PercentageForBias) && 536 (RepairCost * PercentageForBias < 537 RepairCost * PercentageForBias + 99)) && 538 "Repairing involves more than a billion of instructions?!"); 539 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 540 assert(InsertPt->canMaterialize() && "We should not have made it here"); 541 // We will applied some basic block frequency and those uses uint64_t. 542 if (!InsertPt->isSplit()) 543 Saturated = Cost.addLocalCost(RepairCost); 544 else { 545 uint64_t CostForInsertPt = RepairCost; 546 // Again we shouldn't overflow here givent that 547 // CostForInsertPt is frequency free at this point. 548 assert(CostForInsertPt + Bias > CostForInsertPt && 549 "Repairing + split bias overflows"); 550 CostForInsertPt += Bias; 551 uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt; 552 // Check if we just overflowed. 553 if ((Saturated = PtCost < CostForInsertPt)) 554 Cost.saturate(); 555 else 556 Saturated = Cost.addNonLocalCost(PtCost); 557 } 558 559 // Stop looking into what it takes to repair, this is already 560 // too expensive. 561 if (BestCost && Cost > *BestCost) { 562 LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n"); 563 return Cost; 564 } 565 566 // No need to accumulate more cost information. 567 // We need to still gather the repairing information though. 568 if (Saturated) 569 break; 570 } 571 } 572 LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n"); 573 return Cost; 574 } 575 576 bool RegBankSelect::applyMapping( 577 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 578 SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) { 579 // OpdMapper will hold all the information needed for the rewriting. 580 RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI); 581 582 // First, place the repairing code. 583 for (RepairingPlacement &RepairPt : RepairPts) { 584 if (!RepairPt.canMaterialize() || 585 RepairPt.getKind() == RepairingPlacement::Impossible) 586 return false; 587 assert(RepairPt.getKind() != RepairingPlacement::None && 588 "This should not make its way in the list"); 589 unsigned OpIdx = RepairPt.getOpIdx(); 590 MachineOperand &MO = MI.getOperand(OpIdx); 591 const RegisterBankInfo::ValueMapping &ValMapping = 592 InstrMapping.getOperandMapping(OpIdx); 593 unsigned Reg = MO.getReg(); 594 595 switch (RepairPt.getKind()) { 596 case RepairingPlacement::Reassign: 597 assert(ValMapping.NumBreakDowns == 1 && 598 "Reassignment should only be for simple mapping"); 599 MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank); 600 break; 601 case RepairingPlacement::Insert: 602 OpdMapper.createVRegs(OpIdx); 603 if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx))) 604 return false; 605 break; 606 default: 607 llvm_unreachable("Other kind should not happen"); 608 } 609 } 610 611 // Second, rewrite the instruction. 612 LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n'); 613 RBI->applyMapping(OpdMapper); 614 615 return true; 616 } 617 618 bool RegBankSelect::assignInstr(MachineInstr &MI) { 619 LLVM_DEBUG(dbgs() << "Assign: " << MI); 620 // Remember the repairing placement for all the operands. 621 SmallVector<RepairingPlacement, 4> RepairPts; 622 623 const RegisterBankInfo::InstructionMapping *BestMapping; 624 if (OptMode == RegBankSelect::Mode::Fast) { 625 BestMapping = &RBI->getInstrMapping(MI); 626 MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts); 627 (void)DefaultCost; 628 if (DefaultCost == MappingCost::ImpossibleCost()) 629 return false; 630 } else { 631 RegisterBankInfo::InstructionMappings PossibleMappings = 632 RBI->getInstrPossibleMappings(MI); 633 if (PossibleMappings.empty()) 634 return false; 635 BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts); 636 } 637 // Make sure the mapping is valid for MI. 638 assert(BestMapping->verify(MI) && "Invalid instruction mapping"); 639 640 LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n'); 641 642 // After this call, MI may not be valid anymore. 643 // Do not use it. 644 return applyMapping(MI, *BestMapping, RepairPts); 645 } 646 647 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) { 648 // If the ISel pipeline failed, do not bother running that pass. 649 if (MF.getProperties().hasProperty( 650 MachineFunctionProperties::Property::FailedISel)) 651 return false; 652 653 LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n'); 654 const Function &F = MF.getFunction(); 655 Mode SaveOptMode = OptMode; 656 if (F.hasFnAttribute(Attribute::OptimizeNone)) 657 OptMode = Mode::Fast; 658 init(MF); 659 660 #ifndef NDEBUG 661 // Check that our input is fully legal: we require the function to have the 662 // Legalized property, so it should be. 663 // FIXME: This should be in the MachineVerifier. 664 if (!DisableGISelLegalityCheck) 665 if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) { 666 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", 667 "instruction is not legal", *MI); 668 return false; 669 } 670 #endif 671 672 // Walk the function and assign register banks to all operands. 673 // Use a RPOT to make sure all registers are assigned before we choose 674 // the best mapping of the current instruction. 675 ReversePostOrderTraversal<MachineFunction*> RPOT(&MF); 676 for (MachineBasicBlock *MBB : RPOT) { 677 // Set a sensible insertion point so that subsequent calls to 678 // MIRBuilder. 679 MIRBuilder.setMBB(*MBB); 680 for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end(); 681 MII != End;) { 682 // MI might be invalidated by the assignment, so move the 683 // iterator before hand. 684 MachineInstr &MI = *MII++; 685 686 // Ignore target-specific instructions: they should use proper regclasses. 687 if (isTargetSpecificOpcode(MI.getOpcode())) 688 continue; 689 690 if (!assignInstr(MI)) { 691 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", 692 "unable to map instruction", MI); 693 return false; 694 } 695 } 696 } 697 OptMode = SaveOptMode; 698 return false; 699 } 700 701 //------------------------------------------------------------------------------ 702 // Helper Classes Implementation 703 //------------------------------------------------------------------------------ 704 RegBankSelect::RepairingPlacement::RepairingPlacement( 705 MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P, 706 RepairingPlacement::RepairingKind Kind) 707 // Default is, we are going to insert code to repair OpIdx. 708 : Kind(Kind), OpIdx(OpIdx), 709 CanMaterialize(Kind != RepairingKind::Impossible), P(P) { 710 const MachineOperand &MO = MI.getOperand(OpIdx); 711 assert(MO.isReg() && "Trying to repair a non-reg operand"); 712 713 if (Kind != RepairingKind::Insert) 714 return; 715 716 // Repairings for definitions happen after MI, uses happen before. 717 bool Before = !MO.isDef(); 718 719 // Check if we are done with MI. 720 if (!MI.isPHI() && !MI.isTerminator()) { 721 addInsertPoint(MI, Before); 722 // We are done with the initialization. 723 return; 724 } 725 726 // Now, look for the special cases. 727 if (MI.isPHI()) { 728 // - PHI must be the first instructions: 729 // * Before, we have to split the related incoming edge. 730 // * After, move the insertion point past the last phi. 731 if (!Before) { 732 MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI(); 733 if (It != MI.getParent()->end()) 734 addInsertPoint(*It, /*Before*/ true); 735 else 736 addInsertPoint(*(--It), /*Before*/ false); 737 return; 738 } 739 // We repair a use of a phi, we may need to split the related edge. 740 MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB(); 741 // Check if we can move the insertion point prior to the 742 // terminators of the predecessor. 743 unsigned Reg = MO.getReg(); 744 MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr(); 745 for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It) 746 if (It->modifiesRegister(Reg, &TRI)) { 747 // We cannot hoist the repairing code in the predecessor. 748 // Split the edge. 749 addInsertPoint(Pred, *MI.getParent()); 750 return; 751 } 752 // At this point, we can insert in Pred. 753 754 // - If It is invalid, Pred is empty and we can insert in Pred 755 // wherever we want. 756 // - If It is valid, It is the first non-terminator, insert after It. 757 if (It == Pred.end()) 758 addInsertPoint(Pred, /*Beginning*/ false); 759 else 760 addInsertPoint(*It, /*Before*/ false); 761 } else { 762 // - Terminators must be the last instructions: 763 // * Before, move the insert point before the first terminator. 764 // * After, we have to split the outcoming edges. 765 if (Before) { 766 // Check whether Reg is defined by any terminator. 767 MachineBasicBlock::reverse_iterator It = MI; 768 auto REnd = MI.getParent()->rend(); 769 770 for (; It != REnd && It->isTerminator(); ++It) { 771 assert(!It->modifiesRegister(MO.getReg(), &TRI) && 772 "copy insertion in middle of terminators not handled"); 773 } 774 775 if (It == REnd) { 776 addInsertPoint(*MI.getParent()->begin(), true); 777 return; 778 } 779 780 // We are sure to be right before the first terminator. 781 addInsertPoint(*It, /*Before*/ false); 782 return; 783 } 784 // Make sure Reg is not redefined by other terminators, otherwise 785 // we do not know how to split. 786 for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end(); 787 ++It != End;) 788 // The machine verifier should reject this kind of code. 789 assert(It->modifiesRegister(MO.getReg(), &TRI) && 790 "Do not know where to split"); 791 // Split each outcoming edges. 792 MachineBasicBlock &Src = *MI.getParent(); 793 for (auto &Succ : Src.successors()) 794 addInsertPoint(Src, Succ); 795 } 796 } 797 798 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI, 799 bool Before) { 800 addInsertPoint(*new InstrInsertPoint(MI, Before)); 801 } 802 803 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB, 804 bool Beginning) { 805 addInsertPoint(*new MBBInsertPoint(MBB, Beginning)); 806 } 807 808 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src, 809 MachineBasicBlock &Dst) { 810 addInsertPoint(*new EdgeInsertPoint(Src, Dst, P)); 811 } 812 813 void RegBankSelect::RepairingPlacement::addInsertPoint( 814 RegBankSelect::InsertPoint &Point) { 815 CanMaterialize &= Point.canMaterialize(); 816 HasSplit |= Point.isSplit(); 817 InsertPoints.emplace_back(&Point); 818 } 819 820 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr, 821 bool Before) 822 : InsertPoint(), Instr(Instr), Before(Before) { 823 // Since we do not support splitting, we do not need to update 824 // liveness and such, so do not do anything with P. 825 assert((!Before || !Instr.isPHI()) && 826 "Splitting before phis requires more points"); 827 assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) && 828 "Splitting between phis does not make sense"); 829 } 830 831 void RegBankSelect::InstrInsertPoint::materialize() { 832 if (isSplit()) { 833 // Slice and return the beginning of the new block. 834 // If we need to split between the terminators, we theoritically 835 // need to know where the first and second set of terminators end 836 // to update the successors properly. 837 // Now, in pratice, we should have a maximum of 2 branch 838 // instructions; one conditional and one unconditional. Therefore 839 // we know how to update the successor by looking at the target of 840 // the unconditional branch. 841 // If we end up splitting at some point, then, we should update 842 // the liveness information and such. I.e., we would need to 843 // access P here. 844 // The machine verifier should actually make sure such cases 845 // cannot happen. 846 llvm_unreachable("Not yet implemented"); 847 } 848 // Otherwise the insertion point is just the current or next 849 // instruction depending on Before. I.e., there is nothing to do 850 // here. 851 } 852 853 bool RegBankSelect::InstrInsertPoint::isSplit() const { 854 // If the insertion point is after a terminator, we need to split. 855 if (!Before) 856 return Instr.isTerminator(); 857 // If we insert before an instruction that is after a terminator, 858 // we are still after a terminator. 859 return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator(); 860 } 861 862 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const { 863 // Even if we need to split, because we insert between terminators, 864 // this split has actually the same frequency as the instruction. 865 const MachineBlockFrequencyInfo *MBFI = 866 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 867 if (!MBFI) 868 return 1; 869 return MBFI->getBlockFreq(Instr.getParent()).getFrequency(); 870 } 871 872 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const { 873 const MachineBlockFrequencyInfo *MBFI = 874 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 875 if (!MBFI) 876 return 1; 877 return MBFI->getBlockFreq(&MBB).getFrequency(); 878 } 879 880 void RegBankSelect::EdgeInsertPoint::materialize() { 881 // If we end up repairing twice at the same place before materializing the 882 // insertion point, we may think we have to split an edge twice. 883 // We should have a factory for the insert point such that identical points 884 // are the same instance. 885 assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) && 886 "This point has already been split"); 887 MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P); 888 assert(NewBB && "Invalid call to materialize"); 889 // We reuse the destination block to hold the information of the new block. 890 DstOrSplit = NewBB; 891 } 892 893 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const { 894 const MachineBlockFrequencyInfo *MBFI = 895 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 896 if (!MBFI) 897 return 1; 898 if (WasMaterialized) 899 return MBFI->getBlockFreq(DstOrSplit).getFrequency(); 900 901 const MachineBranchProbabilityInfo *MBPI = 902 P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>(); 903 if (!MBPI) 904 return 1; 905 // The basic block will be on the edge. 906 return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit)) 907 .getFrequency(); 908 } 909 910 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const { 911 // If this is not a critical edge, we should not have used this insert 912 // point. Indeed, either the successor or the predecessor should 913 // have do. 914 assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 && 915 "Edge is not critical"); 916 return Src.canSplitCriticalEdge(DstOrSplit); 917 } 918 919 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq) 920 : LocalFreq(LocalFreq.getFrequency()) {} 921 922 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) { 923 // Check if this overflows. 924 if (LocalCost + Cost < LocalCost) { 925 saturate(); 926 return true; 927 } 928 LocalCost += Cost; 929 return isSaturated(); 930 } 931 932 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) { 933 // Check if this overflows. 934 if (NonLocalCost + Cost < NonLocalCost) { 935 saturate(); 936 return true; 937 } 938 NonLocalCost += Cost; 939 return isSaturated(); 940 } 941 942 bool RegBankSelect::MappingCost::isSaturated() const { 943 return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX && 944 LocalFreq == UINT64_MAX; 945 } 946 947 void RegBankSelect::MappingCost::saturate() { 948 *this = ImpossibleCost(); 949 --LocalCost; 950 } 951 952 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() { 953 return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX); 954 } 955 956 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const { 957 // Sort out the easy cases. 958 if (*this == Cost) 959 return false; 960 // If one is impossible to realize the other is cheaper unless it is 961 // impossible as well. 962 if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost())) 963 return (*this == ImpossibleCost()) < (Cost == ImpossibleCost()); 964 // If one is saturated the other is cheaper, unless it is saturated 965 // as well. 966 if (isSaturated() || Cost.isSaturated()) 967 return isSaturated() < Cost.isSaturated(); 968 // At this point we know both costs hold sensible values. 969 970 // If both values have a different base frequency, there is no much 971 // we can do but to scale everything. 972 // However, if they have the same base frequency we can avoid making 973 // complicated computation. 974 uint64_t ThisLocalAdjust; 975 uint64_t OtherLocalAdjust; 976 if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) { 977 978 // At this point, we know the local costs are comparable. 979 // Do the case that do not involve potential overflow first. 980 if (NonLocalCost == Cost.NonLocalCost) 981 // Since the non-local costs do not discriminate on the result, 982 // just compare the local costs. 983 return LocalCost < Cost.LocalCost; 984 985 // The base costs are comparable so we may only keep the relative 986 // value to increase our chances of avoiding overflows. 987 ThisLocalAdjust = 0; 988 OtherLocalAdjust = 0; 989 if (LocalCost < Cost.LocalCost) 990 OtherLocalAdjust = Cost.LocalCost - LocalCost; 991 else 992 ThisLocalAdjust = LocalCost - Cost.LocalCost; 993 } else { 994 ThisLocalAdjust = LocalCost; 995 OtherLocalAdjust = Cost.LocalCost; 996 } 997 998 // The non-local costs are comparable, just keep the relative value. 999 uint64_t ThisNonLocalAdjust = 0; 1000 uint64_t OtherNonLocalAdjust = 0; 1001 if (NonLocalCost < Cost.NonLocalCost) 1002 OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost; 1003 else 1004 ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost; 1005 // Scale everything to make them comparable. 1006 uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq; 1007 // Check for overflow on that operation. 1008 bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust || 1009 ThisScaledCost < LocalFreq); 1010 uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq; 1011 // Check for overflow on the last operation. 1012 bool OtherOverflows = 1013 OtherLocalAdjust && 1014 (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq); 1015 // Add the non-local costs. 1016 ThisOverflows |= ThisNonLocalAdjust && 1017 ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust; 1018 ThisScaledCost += ThisNonLocalAdjust; 1019 OtherOverflows |= OtherNonLocalAdjust && 1020 OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust; 1021 OtherScaledCost += OtherNonLocalAdjust; 1022 // If both overflows, we cannot compare without additional 1023 // precision, e.g., APInt. Just give up on that case. 1024 if (ThisOverflows && OtherOverflows) 1025 return false; 1026 // If one overflows but not the other, we can still compare. 1027 if (ThisOverflows || OtherOverflows) 1028 return ThisOverflows < OtherOverflows; 1029 // Otherwise, just compare the values. 1030 return ThisScaledCost < OtherScaledCost; 1031 } 1032 1033 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const { 1034 return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost && 1035 LocalFreq == Cost.LocalFreq; 1036 } 1037 1038 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1039 LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const { 1040 print(dbgs()); 1041 dbgs() << '\n'; 1042 } 1043 #endif 1044 1045 void RegBankSelect::MappingCost::print(raw_ostream &OS) const { 1046 if (*this == ImpossibleCost()) { 1047 OS << "impossible"; 1048 return; 1049 } 1050 if (isSaturated()) { 1051 OS << "saturated"; 1052 return; 1053 } 1054 OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost; 1055 } 1056