1 //===- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect -*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements the RegBankSelect class. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 14 #include "llvm/ADT/PostOrderIterator.h" 15 #include "llvm/CodeGen/GlobalISel/MachineLegalizer.h" 16 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 17 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 18 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetPassConfig.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/Support/BlockFrequency.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Target/TargetSubtargetInfo.h" 26 27 #define DEBUG_TYPE "regbankselect" 28 29 using namespace llvm; 30 31 static cl::opt<RegBankSelect::Mode> RegBankSelectMode( 32 cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional, 33 cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast", 34 "Run the Fast mode (default mapping)"), 35 clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy", 36 "Use the Greedy mode (best local mapping)"), 37 clEnumValEnd)); 38 39 char RegBankSelect::ID = 0; 40 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE, 41 "Assign register bank of generic virtual registers", 42 false, false); 43 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 44 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 45 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 46 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, 47 "Assign register bank of generic virtual registers", false, 48 false) 49 50 RegBankSelect::RegBankSelect(Mode RunningMode) 51 : MachineFunctionPass(ID), RBI(nullptr), MRI(nullptr), TRI(nullptr), 52 MBFI(nullptr), MBPI(nullptr), OptMode(RunningMode) { 53 initializeRegBankSelectPass(*PassRegistry::getPassRegistry()); 54 if (RegBankSelectMode.getNumOccurrences() != 0) { 55 OptMode = RegBankSelectMode; 56 if (RegBankSelectMode != RunningMode) 57 DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n"); 58 } 59 } 60 61 void RegBankSelect::init(MachineFunction &MF) { 62 RBI = MF.getSubtarget().getRegBankInfo(); 63 assert(RBI && "Cannot work without RegisterBankInfo"); 64 MRI = &MF.getRegInfo(); 65 TRI = MF.getSubtarget().getRegisterInfo(); 66 TPC = &getAnalysis<TargetPassConfig>(); 67 if (OptMode != Mode::Fast) { 68 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 69 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 70 } else { 71 MBFI = nullptr; 72 MBPI = nullptr; 73 } 74 MIRBuilder.setMF(MF); 75 } 76 77 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const { 78 if (OptMode != Mode::Fast) { 79 // We could preserve the information from these two analysis but 80 // the APIs do not allow to do so yet. 81 AU.addRequired<MachineBlockFrequencyInfo>(); 82 AU.addRequired<MachineBranchProbabilityInfo>(); 83 } 84 AU.addRequired<TargetPassConfig>(); 85 MachineFunctionPass::getAnalysisUsage(AU); 86 } 87 88 bool RegBankSelect::assignmentMatch( 89 unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping, 90 bool &OnlyAssign) const { 91 // By default we assume we will have to repair something. 92 OnlyAssign = false; 93 // Each part of a break down needs to end up in a different register. 94 // In other word, Reg assignement does not match. 95 if (ValMapping.NumBreakDowns > 1) 96 return false; 97 98 const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI); 99 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank; 100 // Reg is free of assignment, a simple assignment will make the 101 // register bank to match. 102 OnlyAssign = CurRegBank == nullptr; 103 DEBUG(dbgs() << "Does assignment already match: "; 104 if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none"; 105 dbgs() << " against "; 106 assert(DesiredRegBrank && "The mapping must be valid"); 107 dbgs() << *DesiredRegBrank << '\n';); 108 return CurRegBank == DesiredRegBrank; 109 } 110 111 bool RegBankSelect::repairReg( 112 MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping, 113 RegBankSelect::RepairingPlacement &RepairPt, 114 const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) { 115 if (ValMapping.NumBreakDowns != 1 && !TPC->isGlobalISelAbortEnabled()) 116 return false; 117 assert(ValMapping.NumBreakDowns == 1 && "Not yet implemented"); 118 // An empty range of new register means no repairing. 119 assert(NewVRegs.begin() != NewVRegs.end() && "We should not have to repair"); 120 121 // Assume we are repairing a use and thus, the original reg will be 122 // the source of the repairing. 123 unsigned Src = MO.getReg(); 124 unsigned Dst = *NewVRegs.begin(); 125 126 // If we repair a definition, swap the source and destination for 127 // the repairing. 128 if (MO.isDef()) 129 std::swap(Src, Dst); 130 131 assert((RepairPt.getNumInsertPoints() == 1 || 132 TargetRegisterInfo::isPhysicalRegister(Dst)) && 133 "We are about to create several defs for Dst"); 134 135 // Build the instruction used to repair, then clone it at the right places. 136 MachineInstr *MI = MIRBuilder.buildCopy(Dst, Src); 137 MI->removeFromParent(); 138 DEBUG(dbgs() << "Copy: " << PrintReg(Src) << " to: " << PrintReg(Dst) 139 << '\n'); 140 // TODO: 141 // Check if MI is legal. if not, we need to legalize all the 142 // instructions we are going to insert. 143 std::unique_ptr<MachineInstr *[]> NewInstrs( 144 new MachineInstr *[RepairPt.getNumInsertPoints()]); 145 bool IsFirst = true; 146 unsigned Idx = 0; 147 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 148 MachineInstr *CurMI; 149 if (IsFirst) 150 CurMI = MI; 151 else 152 CurMI = MIRBuilder.getMF().CloneMachineInstr(MI); 153 InsertPt->insert(*CurMI); 154 NewInstrs[Idx++] = CurMI; 155 IsFirst = false; 156 } 157 // TODO: 158 // Legalize NewInstrs if need be. 159 return true; 160 } 161 162 uint64_t RegBankSelect::getRepairCost( 163 const MachineOperand &MO, 164 const RegisterBankInfo::ValueMapping &ValMapping) const { 165 assert(MO.isReg() && "We should only repair register operand"); 166 assert(ValMapping.NumBreakDowns && "Nothing to map??"); 167 168 bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1; 169 const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI); 170 // If MO does not have a register bank, we should have just been 171 // able to set one unless we have to break the value down. 172 assert((!IsSameNumOfValues || CurRegBank) && "We should not have to repair"); 173 // Def: Val <- NewDefs 174 // Same number of values: copy 175 // Different number: Val = build_sequence Defs1, Defs2, ... 176 // Use: NewSources <- Val. 177 // Same number of values: copy. 178 // Different number: Src1, Src2, ... = 179 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ... 180 // We should remember that this value is available somewhere else to 181 // coalesce the value. 182 183 if (IsSameNumOfValues) { 184 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank; 185 // If we repair a definition, swap the source and destination for 186 // the repairing. 187 if (MO.isDef()) 188 std::swap(CurRegBank, DesiredRegBrank); 189 // TODO: It may be possible to actually avoid the copy. 190 // If we repair something where the source is defined by a copy 191 // and the source of that copy is on the right bank, we can reuse 192 // it for free. 193 // E.g., 194 // RegToRepair<BankA> = copy AlternativeSrc<BankB> 195 // = op RegToRepair<BankA> 196 // We can simply propagate AlternativeSrc instead of copying RegToRepair 197 // into a new virtual register. 198 // We would also need to propagate this information in the 199 // repairing placement. 200 unsigned Cost = 201 RBI->copyCost(*DesiredRegBrank, *CurRegBank, 202 RegisterBankInfo::getSizeInBits(MO.getReg(), *MRI, *TRI)); 203 // TODO: use a dedicated constant for ImpossibleCost. 204 if (Cost != UINT_MAX) 205 return Cost; 206 assert(!TPC->isGlobalISelAbortEnabled() && 207 "Legalization not available yet"); 208 // Return the legalization cost of that repairing. 209 } 210 assert(!TPC->isGlobalISelAbortEnabled() && 211 "Complex repairing not implemented yet"); 212 return UINT_MAX; 213 } 214 215 RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping( 216 MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings, 217 SmallVectorImpl<RepairingPlacement> &RepairPts) { 218 assert(!PossibleMappings.empty() && 219 "Do not know how to map this instruction"); 220 221 RegisterBankInfo::InstructionMapping *BestMapping = nullptr; 222 MappingCost Cost = MappingCost::ImpossibleCost(); 223 SmallVector<RepairingPlacement, 4> LocalRepairPts; 224 for (RegisterBankInfo::InstructionMapping &CurMapping : PossibleMappings) { 225 MappingCost CurCost = computeMapping(MI, CurMapping, LocalRepairPts, &Cost); 226 if (CurCost < Cost) { 227 Cost = CurCost; 228 BestMapping = &CurMapping; 229 RepairPts.clear(); 230 for (RepairingPlacement &RepairPt : LocalRepairPts) 231 RepairPts.emplace_back(std::move(RepairPt)); 232 } 233 } 234 if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) { 235 // If none of the mapping worked that means they are all impossible. 236 // Thus, pick the first one and set an impossible repairing point. 237 // It will trigger the failed isel mode. 238 BestMapping = &(*PossibleMappings.begin()); 239 RepairPts.emplace_back( 240 RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible)); 241 } else 242 assert(BestMapping && "No suitable mapping for instruction"); 243 return *BestMapping; 244 } 245 246 void RegBankSelect::tryAvoidingSplit( 247 RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO, 248 const RegisterBankInfo::ValueMapping &ValMapping) const { 249 const MachineInstr &MI = *MO.getParent(); 250 assert(RepairPt.hasSplit() && "We should not have to adjust for split"); 251 // Splitting should only occur for PHIs or between terminators, 252 // because we only do local repairing. 253 assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?"); 254 255 assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO && 256 "Repairing placement does not match operand"); 257 258 // If we need splitting for phis, that means it is because we 259 // could not find an insertion point before the terminators of 260 // the predecessor block for this argument. In other words, 261 // the input value is defined by one of the terminators. 262 assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?"); 263 264 // We split to repair the use of a phi or a terminator. 265 if (!MO.isDef()) { 266 if (MI.isTerminator()) { 267 assert(&MI != &(*MI.getParent()->getFirstTerminator()) && 268 "Need to split for the first terminator?!"); 269 } else { 270 // For the PHI case, the split may not be actually required. 271 // In the copy case, a phi is already a copy on the incoming edge, 272 // therefore there is no need to split. 273 if (ValMapping.NumBreakDowns == 1) 274 // This is a already a copy, there is nothing to do. 275 RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign); 276 } 277 return; 278 } 279 280 // At this point, we need to repair a defintion of a terminator. 281 282 // Technically we need to fix the def of MI on all outgoing 283 // edges of MI to keep the repairing local. In other words, we 284 // will create several definitions of the same register. This 285 // does not work for SSA unless that definition is a physical 286 // register. 287 // However, there are other cases where we can get away with 288 // that while still keeping the repairing local. 289 assert(MI.isTerminator() && MO.isDef() && 290 "This code is for the def of a terminator"); 291 292 // Since we use RPO traversal, if we need to repair a definition 293 // this means this definition could be: 294 // 1. Used by PHIs (i.e., this VReg has been visited as part of the 295 // uses of a phi.), or 296 // 2. Part of a target specific instruction (i.e., the target applied 297 // some register class constraints when creating the instruction.) 298 // If the constraints come for #2, the target said that another mapping 299 // is supported so we may just drop them. Indeed, if we do not change 300 // the number of registers holding that value, the uses will get fixed 301 // when we get to them. 302 // Uses in PHIs may have already been proceeded though. 303 // If the constraints come for #1, then, those are weak constraints and 304 // no actual uses may rely on them. However, the problem remains mainly 305 // the same as for #2. If the value stays in one register, we could 306 // just switch the register bank of the definition, but we would need to 307 // account for a repairing cost for each phi we silently change. 308 // 309 // In any case, if the value needs to be broken down into several 310 // registers, the repairing is not local anymore as we need to patch 311 // every uses to rebuild the value in just one register. 312 // 313 // To summarize: 314 // - If the value is in a physical register, we can do the split and 315 // fix locally. 316 // Otherwise if the value is in a virtual register: 317 // - If the value remains in one register, we do not have to split 318 // just switching the register bank would do, but we need to account 319 // in the repairing cost all the phi we changed. 320 // - If the value spans several registers, then we cannot do a local 321 // repairing. 322 323 // Check if this is a physical or virtual register. 324 unsigned Reg = MO.getReg(); 325 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 326 // We are going to split every outgoing edges. 327 // Check that this is possible. 328 // FIXME: The machine representation is currently broken 329 // since it also several terminators in one basic block. 330 // Because of that we would technically need a way to get 331 // the targets of just one terminator to know which edges 332 // we have to split. 333 // Assert that we do not hit the ill-formed representation. 334 335 // If there are other terminators before that one, some of 336 // the outgoing edges may not be dominated by this definition. 337 assert(&MI == &(*MI.getParent()->getFirstTerminator()) && 338 "Do not know which outgoing edges are relevant"); 339 const MachineInstr *Next = MI.getNextNode(); 340 assert((!Next || Next->isUnconditionalBranch()) && 341 "Do not know where each terminator ends up"); 342 if (Next) 343 // If the next terminator uses Reg, this means we have 344 // to split right after MI and thus we need a way to ask 345 // which outgoing edges are affected. 346 assert(!Next->readsRegister(Reg) && "Need to split between terminators"); 347 // We will split all the edges and repair there. 348 } else { 349 // This is a virtual register defined by a terminator. 350 if (ValMapping.NumBreakDowns == 1) { 351 // There is nothing to repair, but we may actually lie on 352 // the repairing cost because of the PHIs already proceeded 353 // as already stated. 354 // Though the code will be correct. 355 assert(0 && "Repairing cost may not be accurate"); 356 } else { 357 // We need to do non-local repairing. Basically, patch all 358 // the uses (i.e., phis) that we already proceeded. 359 // For now, just say this mapping is not possible. 360 RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible); 361 } 362 } 363 } 364 365 RegBankSelect::MappingCost RegBankSelect::computeMapping( 366 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 367 SmallVectorImpl<RepairingPlacement> &RepairPts, 368 const RegBankSelect::MappingCost *BestCost) { 369 assert((MBFI || !BestCost) && "Costs comparison require MBFI"); 370 371 // If mapped with InstrMapping, MI will have the recorded cost. 372 MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1); 373 bool Saturated = Cost.addLocalCost(InstrMapping.getCost()); 374 assert(!Saturated && "Possible mapping saturated the cost"); 375 DEBUG(dbgs() << "Evaluating mapping cost for: " << MI); 376 DEBUG(dbgs() << "With: " << InstrMapping << '\n'); 377 RepairPts.clear(); 378 if (BestCost && Cost > *BestCost) 379 return Cost; 380 381 // Moreover, to realize this mapping, the register bank of each operand must 382 // match this mapping. In other words, we may need to locally reassign the 383 // register banks. Account for that repairing cost as well. 384 // In this context, local means in the surrounding of MI. 385 for (unsigned OpIdx = 0, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; 386 ++OpIdx) { 387 const MachineOperand &MO = MI.getOperand(OpIdx); 388 if (!MO.isReg()) 389 continue; 390 unsigned Reg = MO.getReg(); 391 if (!Reg) 392 continue; 393 DEBUG(dbgs() << "Opd" << OpIdx); 394 const RegisterBankInfo::ValueMapping &ValMapping = 395 InstrMapping.getOperandMapping(OpIdx); 396 // If Reg is already properly mapped, this is free. 397 bool Assign; 398 if (assignmentMatch(Reg, ValMapping, Assign)) { 399 DEBUG(dbgs() << " is free (match).\n"); 400 continue; 401 } 402 if (Assign) { 403 DEBUG(dbgs() << " is free (simple assignment).\n"); 404 RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this, 405 RepairingPlacement::Reassign)); 406 continue; 407 } 408 409 // Find the insertion point for the repairing code. 410 RepairPts.emplace_back( 411 RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert)); 412 RepairingPlacement &RepairPt = RepairPts.back(); 413 414 // If we need to split a basic block to materialize this insertion point, 415 // we may give a higher cost to this mapping. 416 // Nevertheless, we may get away with the split, so try that first. 417 if (RepairPt.hasSplit()) 418 tryAvoidingSplit(RepairPt, MO, ValMapping); 419 420 // Check that the materialization of the repairing is possible. 421 if (!RepairPt.canMaterialize()) 422 return MappingCost::ImpossibleCost(); 423 424 // Account for the split cost and repair cost. 425 // Unless the cost is already saturated or we do not care about the cost. 426 if (!BestCost || Saturated) 427 continue; 428 429 // To get accurate information we need MBFI and MBPI. 430 // Thus, if we end up here this information should be here. 431 assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI"); 432 433 // FIXME: We will have to rework the repairing cost model. 434 // The repairing cost depends on the register bank that MO has. 435 // However, when we break down the value into different values, 436 // MO may not have a register bank while still needing repairing. 437 // For the fast mode, we don't compute the cost so that is fine, 438 // but still for the repairing code, we will have to make a choice. 439 // For the greedy mode, we should choose greedily what is the best 440 // choice based on the next use of MO. 441 442 // Sums up the repairing cost of MO at each insertion point. 443 uint64_t RepairCost = getRepairCost(MO, ValMapping); 444 // Bias used for splitting: 5%. 445 const uint64_t PercentageForBias = 5; 446 uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100; 447 // We should not need more than a couple of instructions to repair 448 // an assignment. In other words, the computation should not 449 // overflow because the repairing cost is free of basic block 450 // frequency. 451 assert(((RepairCost < RepairCost * PercentageForBias) && 452 (RepairCost * PercentageForBias < 453 RepairCost * PercentageForBias + 99)) && 454 "Repairing involves more than a billion of instructions?!"); 455 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 456 assert(InsertPt->canMaterialize() && "We should not have made it here"); 457 // We will applied some basic block frequency and those uses uint64_t. 458 if (!InsertPt->isSplit()) 459 Saturated = Cost.addLocalCost(RepairCost); 460 else { 461 uint64_t CostForInsertPt = RepairCost; 462 // Again we shouldn't overflow here givent that 463 // CostForInsertPt is frequency free at this point. 464 assert(CostForInsertPt + Bias > CostForInsertPt && 465 "Repairing + split bias overflows"); 466 CostForInsertPt += Bias; 467 uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt; 468 // Check if we just overflowed. 469 if ((Saturated = PtCost < CostForInsertPt)) 470 Cost.saturate(); 471 else 472 Saturated = Cost.addNonLocalCost(PtCost); 473 } 474 475 // Stop looking into what it takes to repair, this is already 476 // too expensive. 477 if (BestCost && Cost > *BestCost) 478 return Cost; 479 480 // No need to accumulate more cost information. 481 // We need to still gather the repairing information though. 482 if (Saturated) 483 break; 484 } 485 } 486 return Cost; 487 } 488 489 bool RegBankSelect::applyMapping( 490 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 491 SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) { 492 // OpdMapper will hold all the information needed for the rewritting. 493 RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI); 494 495 // First, place the repairing code. 496 for (RepairingPlacement &RepairPt : RepairPts) { 497 if (!RepairPt.canMaterialize() || 498 RepairPt.getKind() == RepairingPlacement::Impossible) 499 return false; 500 assert(RepairPt.getKind() != RepairingPlacement::None && 501 "This should not make its way in the list"); 502 unsigned OpIdx = RepairPt.getOpIdx(); 503 MachineOperand &MO = MI.getOperand(OpIdx); 504 const RegisterBankInfo::ValueMapping &ValMapping = 505 InstrMapping.getOperandMapping(OpIdx); 506 unsigned Reg = MO.getReg(); 507 508 switch (RepairPt.getKind()) { 509 case RepairingPlacement::Reassign: 510 assert(ValMapping.NumBreakDowns == 1 && 511 "Reassignment should only be for simple mapping"); 512 MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank); 513 break; 514 case RepairingPlacement::Insert: 515 OpdMapper.createVRegs(OpIdx); 516 if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx))) 517 return false; 518 break; 519 default: 520 llvm_unreachable("Other kind should not happen"); 521 } 522 } 523 // Second, rewrite the instruction. 524 DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n'); 525 RBI->applyMapping(OpdMapper); 526 return true; 527 } 528 529 bool RegBankSelect::assignInstr(MachineInstr &MI) { 530 DEBUG(dbgs() << "Assign: " << MI); 531 // Remember the repairing placement for all the operands. 532 SmallVector<RepairingPlacement, 4> RepairPts; 533 534 RegisterBankInfo::InstructionMapping BestMapping; 535 if (OptMode == RegBankSelect::Mode::Fast) { 536 BestMapping = RBI->getInstrMapping(MI); 537 MappingCost DefaultCost = computeMapping(MI, BestMapping, RepairPts); 538 (void)DefaultCost; 539 if (DefaultCost == MappingCost::ImpossibleCost()) 540 return false; 541 } else { 542 RegisterBankInfo::InstructionMappings PossibleMappings = 543 RBI->getInstrPossibleMappings(MI); 544 if (PossibleMappings.empty()) 545 return false; 546 BestMapping = std::move(findBestMapping(MI, PossibleMappings, RepairPts)); 547 } 548 // Make sure the mapping is valid for MI. 549 assert(BestMapping.verify(MI) && "Invalid instruction mapping"); 550 551 DEBUG(dbgs() << "Mapping: " << BestMapping << '\n'); 552 553 // After this call, MI may not be valid anymore. 554 // Do not use it. 555 return applyMapping(MI, BestMapping, RepairPts); 556 } 557 558 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) { 559 // If the ISel pipeline failed, do not bother running that pass. 560 if (MF.getProperties().hasProperty( 561 MachineFunctionProperties::Property::FailedISel)) 562 return false; 563 564 DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n'); 565 const Function *F = MF.getFunction(); 566 Mode SaveOptMode = OptMode; 567 if (F->hasFnAttribute(Attribute::OptimizeNone)) 568 OptMode = Mode::Fast; 569 init(MF); 570 571 #ifndef NDEBUG 572 // Check that our input is fully legal: we require the function to have the 573 // Legalized property, so it should be. 574 // FIXME: This should be in the MachineVerifier, but it can't use the 575 // MachineLegalizer as it's currently in the separate GlobalISel library. 576 const MachineRegisterInfo &MRI = MF.getRegInfo(); 577 if (const MachineLegalizer *MLI = MF.getSubtarget().getMachineLegalizer()) { 578 for (const MachineBasicBlock &MBB : MF) { 579 for (const MachineInstr &MI : MBB) { 580 if (isPreISelGenericOpcode(MI.getOpcode()) && !MLI->isLegal(MI, MRI)) { 581 if (!TPC->isGlobalISelAbortEnabled()) { 582 MF.getProperties().set( 583 MachineFunctionProperties::Property::FailedISel); 584 return false; 585 } 586 std::string ErrStorage; 587 raw_string_ostream Err(ErrStorage); 588 Err << "Instruction is not legal: " << MI << '\n'; 589 report_fatal_error(Err.str()); 590 } 591 } 592 } 593 } 594 #endif 595 596 // Walk the function and assign register banks to all operands. 597 // Use a RPOT to make sure all registers are assigned before we choose 598 // the best mapping of the current instruction. 599 ReversePostOrderTraversal<MachineFunction*> RPOT(&MF); 600 for (MachineBasicBlock *MBB : RPOT) { 601 // Set a sensible insertion point so that subsequent calls to 602 // MIRBuilder. 603 MIRBuilder.setMBB(*MBB); 604 for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end(); 605 MII != End;) { 606 // MI might be invalidated by the assignment, so move the 607 // iterator before hand. 608 MachineInstr &MI = *MII++; 609 610 // Ignore target-specific instructions: they should use proper regclasses. 611 if (isTargetSpecificOpcode(MI.getOpcode())) 612 continue; 613 614 if (!assignInstr(MI)) { 615 if (TPC->isGlobalISelAbortEnabled()) 616 report_fatal_error("Unable to map instruction"); 617 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 618 return false; 619 } 620 } 621 } 622 OptMode = SaveOptMode; 623 return false; 624 } 625 626 //------------------------------------------------------------------------------ 627 // Helper Classes Implementation 628 //------------------------------------------------------------------------------ 629 RegBankSelect::RepairingPlacement::RepairingPlacement( 630 MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P, 631 RepairingPlacement::RepairingKind Kind) 632 // Default is, we are going to insert code to repair OpIdx. 633 : Kind(Kind), 634 OpIdx(OpIdx), 635 CanMaterialize(Kind != RepairingKind::Impossible), 636 HasSplit(false), 637 P(P) { 638 const MachineOperand &MO = MI.getOperand(OpIdx); 639 assert(MO.isReg() && "Trying to repair a non-reg operand"); 640 641 if (Kind != RepairingKind::Insert) 642 return; 643 644 // Repairings for definitions happen after MI, uses happen before. 645 bool Before = !MO.isDef(); 646 647 // Check if we are done with MI. 648 if (!MI.isPHI() && !MI.isTerminator()) { 649 addInsertPoint(MI, Before); 650 // We are done with the initialization. 651 return; 652 } 653 654 // Now, look for the special cases. 655 if (MI.isPHI()) { 656 // - PHI must be the first instructions: 657 // * Before, we have to split the related incoming edge. 658 // * After, move the insertion point past the last phi. 659 if (!Before) { 660 MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI(); 661 if (It != MI.getParent()->end()) 662 addInsertPoint(*It, /*Before*/ true); 663 else 664 addInsertPoint(*(--It), /*Before*/ false); 665 return; 666 } 667 // We repair a use of a phi, we may need to split the related edge. 668 MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB(); 669 // Check if we can move the insertion point prior to the 670 // terminators of the predecessor. 671 unsigned Reg = MO.getReg(); 672 MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr(); 673 for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It) 674 if (It->modifiesRegister(Reg, &TRI)) { 675 // We cannot hoist the repairing code in the predecessor. 676 // Split the edge. 677 addInsertPoint(Pred, *MI.getParent()); 678 return; 679 } 680 // At this point, we can insert in Pred. 681 682 // - If It is invalid, Pred is empty and we can insert in Pred 683 // wherever we want. 684 // - If It is valid, It is the first non-terminator, insert after It. 685 if (It == Pred.end()) 686 addInsertPoint(Pred, /*Beginning*/ false); 687 else 688 addInsertPoint(*It, /*Before*/ false); 689 } else { 690 // - Terminators must be the last instructions: 691 // * Before, move the insert point before the first terminator. 692 // * After, we have to split the outcoming edges. 693 unsigned Reg = MO.getReg(); 694 if (Before) { 695 // Check whether Reg is defined by any terminator. 696 MachineBasicBlock::iterator It = MI; 697 for (auto Begin = MI.getParent()->begin(); 698 --It != Begin && It->isTerminator();) 699 if (It->modifiesRegister(Reg, &TRI)) { 700 // Insert the repairing code right after the definition. 701 addInsertPoint(*It, /*Before*/ false); 702 return; 703 } 704 addInsertPoint(*It, /*Before*/ true); 705 return; 706 } 707 // Make sure Reg is not redefined by other terminators, otherwise 708 // we do not know how to split. 709 for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end(); 710 ++It != End;) 711 // The machine verifier should reject this kind of code. 712 assert(It->modifiesRegister(Reg, &TRI) && "Do not know where to split"); 713 // Split each outcoming edges. 714 MachineBasicBlock &Src = *MI.getParent(); 715 for (auto &Succ : Src.successors()) 716 addInsertPoint(Src, Succ); 717 } 718 } 719 720 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI, 721 bool Before) { 722 addInsertPoint(*new InstrInsertPoint(MI, Before)); 723 } 724 725 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB, 726 bool Beginning) { 727 addInsertPoint(*new MBBInsertPoint(MBB, Beginning)); 728 } 729 730 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src, 731 MachineBasicBlock &Dst) { 732 addInsertPoint(*new EdgeInsertPoint(Src, Dst, P)); 733 } 734 735 void RegBankSelect::RepairingPlacement::addInsertPoint( 736 RegBankSelect::InsertPoint &Point) { 737 CanMaterialize &= Point.canMaterialize(); 738 HasSplit |= Point.isSplit(); 739 InsertPoints.emplace_back(&Point); 740 } 741 742 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr, 743 bool Before) 744 : InsertPoint(), Instr(Instr), Before(Before) { 745 // Since we do not support splitting, we do not need to update 746 // liveness and such, so do not do anything with P. 747 assert((!Before || !Instr.isPHI()) && 748 "Splitting before phis requires more points"); 749 assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) && 750 "Splitting between phis does not make sense"); 751 } 752 753 void RegBankSelect::InstrInsertPoint::materialize() { 754 if (isSplit()) { 755 // Slice and return the beginning of the new block. 756 // If we need to split between the terminators, we theoritically 757 // need to know where the first and second set of terminators end 758 // to update the successors properly. 759 // Now, in pratice, we should have a maximum of 2 branch 760 // instructions; one conditional and one unconditional. Therefore 761 // we know how to update the successor by looking at the target of 762 // the unconditional branch. 763 // If we end up splitting at some point, then, we should update 764 // the liveness information and such. I.e., we would need to 765 // access P here. 766 // The machine verifier should actually make sure such cases 767 // cannot happen. 768 llvm_unreachable("Not yet implemented"); 769 } 770 // Otherwise the insertion point is just the current or next 771 // instruction depending on Before. I.e., there is nothing to do 772 // here. 773 } 774 775 bool RegBankSelect::InstrInsertPoint::isSplit() const { 776 // If the insertion point is after a terminator, we need to split. 777 if (!Before) 778 return Instr.isTerminator(); 779 // If we insert before an instruction that is after a terminator, 780 // we are still after a terminator. 781 return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator(); 782 } 783 784 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const { 785 // Even if we need to split, because we insert between terminators, 786 // this split has actually the same frequency as the instruction. 787 const MachineBlockFrequencyInfo *MBFI = 788 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 789 if (!MBFI) 790 return 1; 791 return MBFI->getBlockFreq(Instr.getParent()).getFrequency(); 792 } 793 794 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const { 795 const MachineBlockFrequencyInfo *MBFI = 796 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 797 if (!MBFI) 798 return 1; 799 return MBFI->getBlockFreq(&MBB).getFrequency(); 800 } 801 802 void RegBankSelect::EdgeInsertPoint::materialize() { 803 // If we end up repairing twice at the same place before materializing the 804 // insertion point, we may think we have to split an edge twice. 805 // We should have a factory for the insert point such that identical points 806 // are the same instance. 807 assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) && 808 "This point has already been split"); 809 MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P); 810 assert(NewBB && "Invalid call to materialize"); 811 // We reuse the destination block to hold the information of the new block. 812 DstOrSplit = NewBB; 813 } 814 815 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const { 816 const MachineBlockFrequencyInfo *MBFI = 817 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 818 if (!MBFI) 819 return 1; 820 if (WasMaterialized) 821 return MBFI->getBlockFreq(DstOrSplit).getFrequency(); 822 823 const MachineBranchProbabilityInfo *MBPI = 824 P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>(); 825 if (!MBPI) 826 return 1; 827 // The basic block will be on the edge. 828 return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit)) 829 .getFrequency(); 830 } 831 832 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const { 833 // If this is not a critical edge, we should not have used this insert 834 // point. Indeed, either the successor or the predecessor should 835 // have do. 836 assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 && 837 "Edge is not critical"); 838 return Src.canSplitCriticalEdge(DstOrSplit); 839 } 840 841 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq) 842 : LocalCost(0), NonLocalCost(0), LocalFreq(LocalFreq.getFrequency()) {} 843 844 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) { 845 // Check if this overflows. 846 if (LocalCost + Cost < LocalCost) { 847 saturate(); 848 return true; 849 } 850 LocalCost += Cost; 851 return isSaturated(); 852 } 853 854 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) { 855 // Check if this overflows. 856 if (NonLocalCost + Cost < NonLocalCost) { 857 saturate(); 858 return true; 859 } 860 NonLocalCost += Cost; 861 return isSaturated(); 862 } 863 864 bool RegBankSelect::MappingCost::isSaturated() const { 865 return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX && 866 LocalFreq == UINT64_MAX; 867 } 868 869 void RegBankSelect::MappingCost::saturate() { 870 *this = ImpossibleCost(); 871 --LocalCost; 872 } 873 874 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() { 875 return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX); 876 } 877 878 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const { 879 // Sort out the easy cases. 880 if (*this == Cost) 881 return false; 882 // If one is impossible to realize the other is cheaper unless it is 883 // impossible as well. 884 if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost())) 885 return (*this == ImpossibleCost()) < (Cost == ImpossibleCost()); 886 // If one is saturated the other is cheaper, unless it is saturated 887 // as well. 888 if (isSaturated() || Cost.isSaturated()) 889 return isSaturated() < Cost.isSaturated(); 890 // At this point we know both costs hold sensible values. 891 892 // If both values have a different base frequency, there is no much 893 // we can do but to scale everything. 894 // However, if they have the same base frequency we can avoid making 895 // complicated computation. 896 uint64_t ThisLocalAdjust; 897 uint64_t OtherLocalAdjust; 898 if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) { 899 900 // At this point, we know the local costs are comparable. 901 // Do the case that do not involve potential overflow first. 902 if (NonLocalCost == Cost.NonLocalCost) 903 // Since the non-local costs do not discriminate on the result, 904 // just compare the local costs. 905 return LocalCost < Cost.LocalCost; 906 907 // The base costs are comparable so we may only keep the relative 908 // value to increase our chances of avoiding overflows. 909 ThisLocalAdjust = 0; 910 OtherLocalAdjust = 0; 911 if (LocalCost < Cost.LocalCost) 912 OtherLocalAdjust = Cost.LocalCost - LocalCost; 913 else 914 ThisLocalAdjust = LocalCost - Cost.LocalCost; 915 916 } else { 917 ThisLocalAdjust = LocalCost; 918 OtherLocalAdjust = Cost.LocalCost; 919 } 920 921 // The non-local costs are comparable, just keep the relative value. 922 uint64_t ThisNonLocalAdjust = 0; 923 uint64_t OtherNonLocalAdjust = 0; 924 if (NonLocalCost < Cost.NonLocalCost) 925 OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost; 926 else 927 ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost; 928 // Scale everything to make them comparable. 929 uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq; 930 // Check for overflow on that operation. 931 bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust || 932 ThisScaledCost < LocalFreq); 933 uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq; 934 // Check for overflow on the last operation. 935 bool OtherOverflows = 936 OtherLocalAdjust && 937 (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq); 938 // Add the non-local costs. 939 ThisOverflows |= ThisNonLocalAdjust && 940 ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust; 941 ThisScaledCost += ThisNonLocalAdjust; 942 OtherOverflows |= OtherNonLocalAdjust && 943 OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust; 944 OtherScaledCost += OtherNonLocalAdjust; 945 // If both overflows, we cannot compare without additional 946 // precision, e.g., APInt. Just give up on that case. 947 if (ThisOverflows && OtherOverflows) 948 return false; 949 // If one overflows but not the other, we can still compare. 950 if (ThisOverflows || OtherOverflows) 951 return ThisOverflows < OtherOverflows; 952 // Otherwise, just compare the values. 953 return ThisScaledCost < OtherScaledCost; 954 } 955 956 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const { 957 return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost && 958 LocalFreq == Cost.LocalFreq; 959 } 960