1 //===- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect -*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file implements the RegBankSelect class.
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/CodeGen/GlobalISel/MachineLegalizer.h"
16 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
17 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
18 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetPassConfig.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/Support/BlockFrequency.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Target/TargetSubtargetInfo.h"
26 
27 #define DEBUG_TYPE "regbankselect"
28 
29 using namespace llvm;
30 
31 static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
32     cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
33     cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
34                           "Run the Fast mode (default mapping)"),
35                clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
36                           "Use the Greedy mode (best local mapping)"),
37                clEnumValEnd));
38 
39 char RegBankSelect::ID = 0;
40 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
41                       "Assign register bank of generic virtual registers",
42                       false, false);
43 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
44 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
45 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
46 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
47                     "Assign register bank of generic virtual registers", false,
48                     false)
49 
50 RegBankSelect::RegBankSelect(Mode RunningMode)
51     : MachineFunctionPass(ID), RBI(nullptr), MRI(nullptr), TRI(nullptr),
52       MBFI(nullptr), MBPI(nullptr), OptMode(RunningMode) {
53   initializeRegBankSelectPass(*PassRegistry::getPassRegistry());
54   if (RegBankSelectMode.getNumOccurrences() != 0) {
55     OptMode = RegBankSelectMode;
56     if (RegBankSelectMode != RunningMode)
57       DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
58   }
59 }
60 
61 void RegBankSelect::init(MachineFunction &MF) {
62   RBI = MF.getSubtarget().getRegBankInfo();
63   assert(RBI && "Cannot work without RegisterBankInfo");
64   MRI = &MF.getRegInfo();
65   TRI = MF.getSubtarget().getRegisterInfo();
66   TPC = &getAnalysis<TargetPassConfig>();
67   if (OptMode != Mode::Fast) {
68     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
69     MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
70   } else {
71     MBFI = nullptr;
72     MBPI = nullptr;
73   }
74   MIRBuilder.setMF(MF);
75 }
76 
77 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
78   if (OptMode != Mode::Fast) {
79     // We could preserve the information from these two analysis but
80     // the APIs do not allow to do so yet.
81     AU.addRequired<MachineBlockFrequencyInfo>();
82     AU.addRequired<MachineBranchProbabilityInfo>();
83   }
84   AU.addRequired<TargetPassConfig>();
85   MachineFunctionPass::getAnalysisUsage(AU);
86 }
87 
88 bool RegBankSelect::assignmentMatch(
89     unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping,
90     bool &OnlyAssign) const {
91   // By default we assume we will have to repair something.
92   OnlyAssign = false;
93   // Each part of a break down needs to end up in a different register.
94   // In other word, Reg assignement does not match.
95   if (ValMapping.NumBreakDowns > 1)
96     return false;
97 
98   const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
99   const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
100   // Reg is free of assignment, a simple assignment will make the
101   // register bank to match.
102   OnlyAssign = CurRegBank == nullptr;
103   DEBUG(dbgs() << "Does assignment already match: ";
104         if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
105         dbgs() << " against ";
106         assert(DesiredRegBrank && "The mapping must be valid");
107         dbgs() << *DesiredRegBrank << '\n';);
108   return CurRegBank == DesiredRegBrank;
109 }
110 
111 bool RegBankSelect::repairReg(
112     MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
113     RegBankSelect::RepairingPlacement &RepairPt,
114     const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) {
115   if (ValMapping.NumBreakDowns != 1 && !TPC->isGlobalISelAbortEnabled())
116     return false;
117   assert(ValMapping.NumBreakDowns == 1 && "Not yet implemented");
118   // An empty range of new register means no repairing.
119   assert(NewVRegs.begin() != NewVRegs.end() && "We should not have to repair");
120 
121   // Assume we are repairing a use and thus, the original reg will be
122   // the source of the repairing.
123   unsigned Src = MO.getReg();
124   unsigned Dst = *NewVRegs.begin();
125 
126   // If we repair a definition, swap the source and destination for
127   // the repairing.
128   if (MO.isDef())
129     std::swap(Src, Dst);
130 
131   assert((RepairPt.getNumInsertPoints() == 1 ||
132           TargetRegisterInfo::isPhysicalRegister(Dst)) &&
133          "We are about to create several defs for Dst");
134 
135   // Build the instruction used to repair, then clone it at the right places.
136   MachineInstr *MI = MIRBuilder.buildCopy(Dst, Src);
137   MI->removeFromParent();
138   DEBUG(dbgs() << "Copy: " << PrintReg(Src) << " to: " << PrintReg(Dst)
139                << '\n');
140   // TODO:
141   // Check if MI is legal. if not, we need to legalize all the
142   // instructions we are going to insert.
143   std::unique_ptr<MachineInstr *[]> NewInstrs(
144       new MachineInstr *[RepairPt.getNumInsertPoints()]);
145   bool IsFirst = true;
146   unsigned Idx = 0;
147   for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
148     MachineInstr *CurMI;
149     if (IsFirst)
150       CurMI = MI;
151     else
152       CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
153     InsertPt->insert(*CurMI);
154     NewInstrs[Idx++] = CurMI;
155     IsFirst = false;
156   }
157   // TODO:
158   // Legalize NewInstrs if need be.
159   return true;
160 }
161 
162 uint64_t RegBankSelect::getRepairCost(
163     const MachineOperand &MO,
164     const RegisterBankInfo::ValueMapping &ValMapping) const {
165   assert(MO.isReg() && "We should only repair register operand");
166   assert(ValMapping.NumBreakDowns && "Nothing to map??");
167 
168   bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
169   const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
170   // If MO does not have a register bank, we should have just been
171   // able to set one unless we have to break the value down.
172   assert((!IsSameNumOfValues || CurRegBank) && "We should not have to repair");
173   // Def: Val <- NewDefs
174   //     Same number of values: copy
175   //     Different number: Val = build_sequence Defs1, Defs2, ...
176   // Use: NewSources <- Val.
177   //     Same number of values: copy.
178   //     Different number: Src1, Src2, ... =
179   //           extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
180   // We should remember that this value is available somewhere else to
181   // coalesce the value.
182 
183   if (IsSameNumOfValues) {
184     const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
185     // If we repair a definition, swap the source and destination for
186     // the repairing.
187     if (MO.isDef())
188       std::swap(CurRegBank, DesiredRegBrank);
189     // TODO: It may be possible to actually avoid the copy.
190     // If we repair something where the source is defined by a copy
191     // and the source of that copy is on the right bank, we can reuse
192     // it for free.
193     // E.g.,
194     // RegToRepair<BankA> = copy AlternativeSrc<BankB>
195     // = op RegToRepair<BankA>
196     // We can simply propagate AlternativeSrc instead of copying RegToRepair
197     // into a new virtual register.
198     // We would also need to propagate this information in the
199     // repairing placement.
200     unsigned Cost =
201         RBI->copyCost(*DesiredRegBrank, *CurRegBank,
202                       RegisterBankInfo::getSizeInBits(MO.getReg(), *MRI, *TRI));
203     // TODO: use a dedicated constant for ImpossibleCost.
204     if (Cost != UINT_MAX)
205       return Cost;
206     assert(!TPC->isGlobalISelAbortEnabled() &&
207            "Legalization not available yet");
208     // Return the legalization cost of that repairing.
209   }
210   assert(!TPC->isGlobalISelAbortEnabled() &&
211          "Complex repairing not implemented yet");
212   return UINT_MAX;
213 }
214 
215 RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
216     MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
217     SmallVectorImpl<RepairingPlacement> &RepairPts) {
218   assert(!PossibleMappings.empty() &&
219          "Do not know how to map this instruction");
220 
221   RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
222   MappingCost Cost = MappingCost::ImpossibleCost();
223   SmallVector<RepairingPlacement, 4> LocalRepairPts;
224   for (RegisterBankInfo::InstructionMapping &CurMapping : PossibleMappings) {
225     MappingCost CurCost = computeMapping(MI, CurMapping, LocalRepairPts, &Cost);
226     if (CurCost < Cost) {
227       Cost = CurCost;
228       BestMapping = &CurMapping;
229       RepairPts.clear();
230       for (RepairingPlacement &RepairPt : LocalRepairPts)
231         RepairPts.emplace_back(std::move(RepairPt));
232     }
233   }
234   if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
235     // If none of the mapping worked that means they are all impossible.
236     // Thus, pick the first one and set an impossible repairing point.
237     // It will trigger the failed isel mode.
238     BestMapping = &(*PossibleMappings.begin());
239     RepairPts.emplace_back(
240         RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
241   } else
242     assert(BestMapping && "No suitable mapping for instruction");
243   return *BestMapping;
244 }
245 
246 void RegBankSelect::tryAvoidingSplit(
247     RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
248     const RegisterBankInfo::ValueMapping &ValMapping) const {
249   const MachineInstr &MI = *MO.getParent();
250   assert(RepairPt.hasSplit() && "We should not have to adjust for split");
251   // Splitting should only occur for PHIs or between terminators,
252   // because we only do local repairing.
253   assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
254 
255   assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
256          "Repairing placement does not match operand");
257 
258   // If we need splitting for phis, that means it is because we
259   // could not find an insertion point before the terminators of
260   // the predecessor block for this argument. In other words,
261   // the input value is defined by one of the terminators.
262   assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
263 
264   // We split to repair the use of a phi or a terminator.
265   if (!MO.isDef()) {
266     if (MI.isTerminator()) {
267       assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
268              "Need to split for the first terminator?!");
269     } else {
270       // For the PHI case, the split may not be actually required.
271       // In the copy case, a phi is already a copy on the incoming edge,
272       // therefore there is no need to split.
273       if (ValMapping.NumBreakDowns == 1)
274         // This is a already a copy, there is nothing to do.
275         RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
276     }
277     return;
278   }
279 
280   // At this point, we need to repair a defintion of a terminator.
281 
282   // Technically we need to fix the def of MI on all outgoing
283   // edges of MI to keep the repairing local. In other words, we
284   // will create several definitions of the same register. This
285   // does not work for SSA unless that definition is a physical
286   // register.
287   // However, there are other cases where we can get away with
288   // that while still keeping the repairing local.
289   assert(MI.isTerminator() && MO.isDef() &&
290          "This code is for the def of a terminator");
291 
292   // Since we use RPO traversal, if we need to repair a definition
293   // this means this definition could be:
294   // 1. Used by PHIs (i.e., this VReg has been visited as part of the
295   //    uses of a phi.), or
296   // 2. Part of a target specific instruction (i.e., the target applied
297   //    some register class constraints when creating the instruction.)
298   // If the constraints come for #2, the target said that another mapping
299   // is supported so we may just drop them. Indeed, if we do not change
300   // the number of registers holding that value, the uses will get fixed
301   // when we get to them.
302   // Uses in PHIs may have already been proceeded though.
303   // If the constraints come for #1, then, those are weak constraints and
304   // no actual uses may rely on them. However, the problem remains mainly
305   // the same as for #2. If the value stays in one register, we could
306   // just switch the register bank of the definition, but we would need to
307   // account for a repairing cost for each phi we silently change.
308   //
309   // In any case, if the value needs to be broken down into several
310   // registers, the repairing is not local anymore as we need to patch
311   // every uses to rebuild the value in just one register.
312   //
313   // To summarize:
314   // - If the value is in a physical register, we can do the split and
315   //   fix locally.
316   // Otherwise if the value is in a virtual register:
317   // - If the value remains in one register, we do not have to split
318   //   just switching the register bank would do, but we need to account
319   //   in the repairing cost all the phi we changed.
320   // - If the value spans several registers, then we cannot do a local
321   //   repairing.
322 
323   // Check if this is a physical or virtual register.
324   unsigned Reg = MO.getReg();
325   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
326     // We are going to split every outgoing edges.
327     // Check that this is possible.
328     // FIXME: The machine representation is currently broken
329     // since it also several terminators in one basic block.
330     // Because of that we would technically need a way to get
331     // the targets of just one terminator to know which edges
332     // we have to split.
333     // Assert that we do not hit the ill-formed representation.
334 
335     // If there are other terminators before that one, some of
336     // the outgoing edges may not be dominated by this definition.
337     assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
338            "Do not know which outgoing edges are relevant");
339     const MachineInstr *Next = MI.getNextNode();
340     assert((!Next || Next->isUnconditionalBranch()) &&
341            "Do not know where each terminator ends up");
342     if (Next)
343       // If the next terminator uses Reg, this means we have
344       // to split right after MI and thus we need a way to ask
345       // which outgoing edges are affected.
346       assert(!Next->readsRegister(Reg) && "Need to split between terminators");
347     // We will split all the edges and repair there.
348   } else {
349     // This is a virtual register defined by a terminator.
350     if (ValMapping.NumBreakDowns == 1) {
351       // There is nothing to repair, but we may actually lie on
352       // the repairing cost because of the PHIs already proceeded
353       // as already stated.
354       // Though the code will be correct.
355       assert(0 && "Repairing cost may not be accurate");
356     } else {
357       // We need to do non-local repairing. Basically, patch all
358       // the uses (i.e., phis) that we already proceeded.
359       // For now, just say this mapping is not possible.
360       RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
361     }
362   }
363 }
364 
365 RegBankSelect::MappingCost RegBankSelect::computeMapping(
366     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
367     SmallVectorImpl<RepairingPlacement> &RepairPts,
368     const RegBankSelect::MappingCost *BestCost) {
369   assert((MBFI || !BestCost) && "Costs comparison require MBFI");
370 
371   // If mapped with InstrMapping, MI will have the recorded cost.
372   MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
373   bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
374   assert(!Saturated && "Possible mapping saturated the cost");
375   DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
376   DEBUG(dbgs() << "With: " << InstrMapping << '\n');
377   RepairPts.clear();
378   if (BestCost && Cost > *BestCost)
379     return Cost;
380 
381   // Moreover, to realize this mapping, the register bank of each operand must
382   // match this mapping. In other words, we may need to locally reassign the
383   // register banks. Account for that repairing cost as well.
384   // In this context, local means in the surrounding of MI.
385   for (unsigned OpIdx = 0, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
386        ++OpIdx) {
387     const MachineOperand &MO = MI.getOperand(OpIdx);
388     if (!MO.isReg())
389       continue;
390     unsigned Reg = MO.getReg();
391     if (!Reg)
392       continue;
393     DEBUG(dbgs() << "Opd" << OpIdx);
394     const RegisterBankInfo::ValueMapping &ValMapping =
395         InstrMapping.getOperandMapping(OpIdx);
396     // If Reg is already properly mapped, this is free.
397     bool Assign;
398     if (assignmentMatch(Reg, ValMapping, Assign)) {
399       DEBUG(dbgs() << " is free (match).\n");
400       continue;
401     }
402     if (Assign) {
403       DEBUG(dbgs() << " is free (simple assignment).\n");
404       RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
405                                                 RepairingPlacement::Reassign));
406       continue;
407     }
408 
409     // Find the insertion point for the repairing code.
410     RepairPts.emplace_back(
411         RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
412     RepairingPlacement &RepairPt = RepairPts.back();
413 
414     // If we need to split a basic block to materialize this insertion point,
415     // we may give a higher cost to this mapping.
416     // Nevertheless, we may get away with the split, so try that first.
417     if (RepairPt.hasSplit())
418       tryAvoidingSplit(RepairPt, MO, ValMapping);
419 
420     // Check that the materialization of the repairing is possible.
421     if (!RepairPt.canMaterialize())
422       return MappingCost::ImpossibleCost();
423 
424     // Account for the split cost and repair cost.
425     // Unless the cost is already saturated or we do not care about the cost.
426     if (!BestCost || Saturated)
427       continue;
428 
429     // To get accurate information we need MBFI and MBPI.
430     // Thus, if we end up here this information should be here.
431     assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
432 
433     // FIXME: We will have to rework the repairing cost model.
434     // The repairing cost depends on the register bank that MO has.
435     // However, when we break down the value into different values,
436     // MO may not have a register bank while still needing repairing.
437     // For the fast mode, we don't compute the cost so that is fine,
438     // but still for the repairing code, we will have to make a choice.
439     // For the greedy mode, we should choose greedily what is the best
440     // choice based on the next use of MO.
441 
442     // Sums up the repairing cost of MO at each insertion point.
443     uint64_t RepairCost = getRepairCost(MO, ValMapping);
444     // Bias used for splitting: 5%.
445     const uint64_t PercentageForBias = 5;
446     uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
447     // We should not need more than a couple of instructions to repair
448     // an assignment. In other words, the computation should not
449     // overflow because the repairing cost is free of basic block
450     // frequency.
451     assert(((RepairCost < RepairCost * PercentageForBias) &&
452             (RepairCost * PercentageForBias <
453              RepairCost * PercentageForBias + 99)) &&
454            "Repairing involves more than a billion of instructions?!");
455     for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
456       assert(InsertPt->canMaterialize() && "We should not have made it here");
457       // We will applied some basic block frequency and those uses uint64_t.
458       if (!InsertPt->isSplit())
459         Saturated = Cost.addLocalCost(RepairCost);
460       else {
461         uint64_t CostForInsertPt = RepairCost;
462         // Again we shouldn't overflow here givent that
463         // CostForInsertPt is frequency free at this point.
464         assert(CostForInsertPt + Bias > CostForInsertPt &&
465                "Repairing + split bias overflows");
466         CostForInsertPt += Bias;
467         uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
468         // Check if we just overflowed.
469         if ((Saturated = PtCost < CostForInsertPt))
470           Cost.saturate();
471         else
472           Saturated = Cost.addNonLocalCost(PtCost);
473       }
474 
475       // Stop looking into what it takes to repair, this is already
476       // too expensive.
477       if (BestCost && Cost > *BestCost)
478         return Cost;
479 
480       // No need to accumulate more cost information.
481       // We need to still gather the repairing information though.
482       if (Saturated)
483         break;
484     }
485   }
486   return Cost;
487 }
488 
489 bool RegBankSelect::applyMapping(
490     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
491     SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
492   // OpdMapper will hold all the information needed for the rewritting.
493   RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
494 
495   // First, place the repairing code.
496   for (RepairingPlacement &RepairPt : RepairPts) {
497     if (!RepairPt.canMaterialize() ||
498         RepairPt.getKind() == RepairingPlacement::Impossible)
499       return false;
500     assert(RepairPt.getKind() != RepairingPlacement::None &&
501            "This should not make its way in the list");
502     unsigned OpIdx = RepairPt.getOpIdx();
503     MachineOperand &MO = MI.getOperand(OpIdx);
504     const RegisterBankInfo::ValueMapping &ValMapping =
505         InstrMapping.getOperandMapping(OpIdx);
506     unsigned Reg = MO.getReg();
507 
508     switch (RepairPt.getKind()) {
509     case RepairingPlacement::Reassign:
510       assert(ValMapping.NumBreakDowns == 1 &&
511              "Reassignment should only be for simple mapping");
512       MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
513       break;
514     case RepairingPlacement::Insert:
515       OpdMapper.createVRegs(OpIdx);
516       if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
517         return false;
518       break;
519     default:
520       llvm_unreachable("Other kind should not happen");
521     }
522   }
523   // Second, rewrite the instruction.
524   DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
525   RBI->applyMapping(OpdMapper);
526   return true;
527 }
528 
529 bool RegBankSelect::assignInstr(MachineInstr &MI) {
530   DEBUG(dbgs() << "Assign: " << MI);
531   // Remember the repairing placement for all the operands.
532   SmallVector<RepairingPlacement, 4> RepairPts;
533 
534   RegisterBankInfo::InstructionMapping BestMapping;
535   if (OptMode == RegBankSelect::Mode::Fast) {
536     BestMapping = RBI->getInstrMapping(MI);
537     MappingCost DefaultCost = computeMapping(MI, BestMapping, RepairPts);
538     (void)DefaultCost;
539     if (DefaultCost == MappingCost::ImpossibleCost())
540       return false;
541   } else {
542     RegisterBankInfo::InstructionMappings PossibleMappings =
543         RBI->getInstrPossibleMappings(MI);
544     if (PossibleMappings.empty())
545       return false;
546     BestMapping = std::move(findBestMapping(MI, PossibleMappings, RepairPts));
547   }
548   // Make sure the mapping is valid for MI.
549   assert(BestMapping.verify(MI) && "Invalid instruction mapping");
550 
551   DEBUG(dbgs() << "Mapping: " << BestMapping << '\n');
552 
553   // After this call, MI may not be valid anymore.
554   // Do not use it.
555   return applyMapping(MI, BestMapping, RepairPts);
556 }
557 
558 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
559   // If the ISel pipeline failed, do not bother running that pass.
560   if (MF.getProperties().hasProperty(
561           MachineFunctionProperties::Property::FailedISel))
562     return false;
563 
564   DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
565   const Function *F = MF.getFunction();
566   Mode SaveOptMode = OptMode;
567   if (F->hasFnAttribute(Attribute::OptimizeNone))
568     OptMode = Mode::Fast;
569   init(MF);
570 
571 #ifndef NDEBUG
572   // Check that our input is fully legal: we require the function to have the
573   // Legalized property, so it should be.
574   // FIXME: This should be in the MachineVerifier, but it can't use the
575   // MachineLegalizer as it's currently in the separate GlobalISel library.
576   const MachineRegisterInfo &MRI = MF.getRegInfo();
577   if (const MachineLegalizer *MLI = MF.getSubtarget().getMachineLegalizer()) {
578     for (const MachineBasicBlock &MBB : MF) {
579       for (const MachineInstr &MI : MBB) {
580         if (isPreISelGenericOpcode(MI.getOpcode()) && !MLI->isLegal(MI, MRI)) {
581           if (!TPC->isGlobalISelAbortEnabled()) {
582             MF.getProperties().set(
583                 MachineFunctionProperties::Property::FailedISel);
584             return false;
585           }
586           std::string ErrStorage;
587           raw_string_ostream Err(ErrStorage);
588           Err << "Instruction is not legal: " << MI << '\n';
589           report_fatal_error(Err.str());
590         }
591       }
592     }
593   }
594 #endif
595 
596   // Walk the function and assign register banks to all operands.
597   // Use a RPOT to make sure all registers are assigned before we choose
598   // the best mapping of the current instruction.
599   ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
600   for (MachineBasicBlock *MBB : RPOT) {
601     // Set a sensible insertion point so that subsequent calls to
602     // MIRBuilder.
603     MIRBuilder.setMBB(*MBB);
604     for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end();
605          MII != End;) {
606       // MI might be invalidated by the assignment, so move the
607       // iterator before hand.
608       MachineInstr &MI = *MII++;
609 
610       // Ignore target-specific instructions: they should use proper regclasses.
611       if (isTargetSpecificOpcode(MI.getOpcode()))
612         continue;
613 
614       if (!assignInstr(MI)) {
615         if (TPC->isGlobalISelAbortEnabled())
616           report_fatal_error("Unable to map instruction");
617         MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
618         return false;
619       }
620     }
621   }
622   OptMode = SaveOptMode;
623   return false;
624 }
625 
626 //------------------------------------------------------------------------------
627 //                  Helper Classes Implementation
628 //------------------------------------------------------------------------------
629 RegBankSelect::RepairingPlacement::RepairingPlacement(
630     MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
631     RepairingPlacement::RepairingKind Kind)
632     // Default is, we are going to insert code to repair OpIdx.
633     : Kind(Kind),
634       OpIdx(OpIdx),
635       CanMaterialize(Kind != RepairingKind::Impossible),
636       HasSplit(false),
637       P(P) {
638   const MachineOperand &MO = MI.getOperand(OpIdx);
639   assert(MO.isReg() && "Trying to repair a non-reg operand");
640 
641   if (Kind != RepairingKind::Insert)
642     return;
643 
644   // Repairings for definitions happen after MI, uses happen before.
645   bool Before = !MO.isDef();
646 
647   // Check if we are done with MI.
648   if (!MI.isPHI() && !MI.isTerminator()) {
649     addInsertPoint(MI, Before);
650     // We are done with the initialization.
651     return;
652   }
653 
654   // Now, look for the special cases.
655   if (MI.isPHI()) {
656     // - PHI must be the first instructions:
657     //   * Before, we have to split the related incoming edge.
658     //   * After, move the insertion point past the last phi.
659     if (!Before) {
660       MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
661       if (It != MI.getParent()->end())
662         addInsertPoint(*It, /*Before*/ true);
663       else
664         addInsertPoint(*(--It), /*Before*/ false);
665       return;
666     }
667     // We repair a use of a phi, we may need to split the related edge.
668     MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
669     // Check if we can move the insertion point prior to the
670     // terminators of the predecessor.
671     unsigned Reg = MO.getReg();
672     MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
673     for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
674       if (It->modifiesRegister(Reg, &TRI)) {
675         // We cannot hoist the repairing code in the predecessor.
676         // Split the edge.
677         addInsertPoint(Pred, *MI.getParent());
678         return;
679       }
680     // At this point, we can insert in Pred.
681 
682     // - If It is invalid, Pred is empty and we can insert in Pred
683     //   wherever we want.
684     // - If It is valid, It is the first non-terminator, insert after It.
685     if (It == Pred.end())
686       addInsertPoint(Pred, /*Beginning*/ false);
687     else
688       addInsertPoint(*It, /*Before*/ false);
689   } else {
690     // - Terminators must be the last instructions:
691     //   * Before, move the insert point before the first terminator.
692     //   * After, we have to split the outcoming edges.
693     unsigned Reg = MO.getReg();
694     if (Before) {
695       // Check whether Reg is defined by any terminator.
696       MachineBasicBlock::iterator It = MI;
697       for (auto Begin = MI.getParent()->begin();
698            --It != Begin && It->isTerminator();)
699         if (It->modifiesRegister(Reg, &TRI)) {
700           // Insert the repairing code right after the definition.
701           addInsertPoint(*It, /*Before*/ false);
702           return;
703         }
704       addInsertPoint(*It, /*Before*/ true);
705       return;
706     }
707     // Make sure Reg is not redefined by other terminators, otherwise
708     // we do not know how to split.
709     for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
710          ++It != End;)
711       // The machine verifier should reject this kind of code.
712       assert(It->modifiesRegister(Reg, &TRI) && "Do not know where to split");
713     // Split each outcoming edges.
714     MachineBasicBlock &Src = *MI.getParent();
715     for (auto &Succ : Src.successors())
716       addInsertPoint(Src, Succ);
717   }
718 }
719 
720 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
721                                                        bool Before) {
722   addInsertPoint(*new InstrInsertPoint(MI, Before));
723 }
724 
725 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
726                                                        bool Beginning) {
727   addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
728 }
729 
730 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
731                                                        MachineBasicBlock &Dst) {
732   addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
733 }
734 
735 void RegBankSelect::RepairingPlacement::addInsertPoint(
736     RegBankSelect::InsertPoint &Point) {
737   CanMaterialize &= Point.canMaterialize();
738   HasSplit |= Point.isSplit();
739   InsertPoints.emplace_back(&Point);
740 }
741 
742 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
743                                                   bool Before)
744     : InsertPoint(), Instr(Instr), Before(Before) {
745   // Since we do not support splitting, we do not need to update
746   // liveness and such, so do not do anything with P.
747   assert((!Before || !Instr.isPHI()) &&
748          "Splitting before phis requires more points");
749   assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
750          "Splitting between phis does not make sense");
751 }
752 
753 void RegBankSelect::InstrInsertPoint::materialize() {
754   if (isSplit()) {
755     // Slice and return the beginning of the new block.
756     // If we need to split between the terminators, we theoritically
757     // need to know where the first and second set of terminators end
758     // to update the successors properly.
759     // Now, in pratice, we should have a maximum of 2 branch
760     // instructions; one conditional and one unconditional. Therefore
761     // we know how to update the successor by looking at the target of
762     // the unconditional branch.
763     // If we end up splitting at some point, then, we should update
764     // the liveness information and such. I.e., we would need to
765     // access P here.
766     // The machine verifier should actually make sure such cases
767     // cannot happen.
768     llvm_unreachable("Not yet implemented");
769   }
770   // Otherwise the insertion point is just the current or next
771   // instruction depending on Before. I.e., there is nothing to do
772   // here.
773 }
774 
775 bool RegBankSelect::InstrInsertPoint::isSplit() const {
776   // If the insertion point is after a terminator, we need to split.
777   if (!Before)
778     return Instr.isTerminator();
779   // If we insert before an instruction that is after a terminator,
780   // we are still after a terminator.
781   return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
782 }
783 
784 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
785   // Even if we need to split, because we insert between terminators,
786   // this split has actually the same frequency as the instruction.
787   const MachineBlockFrequencyInfo *MBFI =
788       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
789   if (!MBFI)
790     return 1;
791   return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
792 }
793 
794 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
795   const MachineBlockFrequencyInfo *MBFI =
796       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
797   if (!MBFI)
798     return 1;
799   return MBFI->getBlockFreq(&MBB).getFrequency();
800 }
801 
802 void RegBankSelect::EdgeInsertPoint::materialize() {
803   // If we end up repairing twice at the same place before materializing the
804   // insertion point, we may think we have to split an edge twice.
805   // We should have a factory for the insert point such that identical points
806   // are the same instance.
807   assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
808          "This point has already been split");
809   MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
810   assert(NewBB && "Invalid call to materialize");
811   // We reuse the destination block to hold the information of the new block.
812   DstOrSplit = NewBB;
813 }
814 
815 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
816   const MachineBlockFrequencyInfo *MBFI =
817       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
818   if (!MBFI)
819     return 1;
820   if (WasMaterialized)
821     return MBFI->getBlockFreq(DstOrSplit).getFrequency();
822 
823   const MachineBranchProbabilityInfo *MBPI =
824       P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
825   if (!MBPI)
826     return 1;
827   // The basic block will be on the edge.
828   return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
829       .getFrequency();
830 }
831 
832 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
833   // If this is not a critical edge, we should not have used this insert
834   // point. Indeed, either the successor or the predecessor should
835   // have do.
836   assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
837          "Edge is not critical");
838   return Src.canSplitCriticalEdge(DstOrSplit);
839 }
840 
841 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
842     : LocalCost(0), NonLocalCost(0), LocalFreq(LocalFreq.getFrequency()) {}
843 
844 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
845   // Check if this overflows.
846   if (LocalCost + Cost < LocalCost) {
847     saturate();
848     return true;
849   }
850   LocalCost += Cost;
851   return isSaturated();
852 }
853 
854 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
855   // Check if this overflows.
856   if (NonLocalCost + Cost < NonLocalCost) {
857     saturate();
858     return true;
859   }
860   NonLocalCost += Cost;
861   return isSaturated();
862 }
863 
864 bool RegBankSelect::MappingCost::isSaturated() const {
865   return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
866          LocalFreq == UINT64_MAX;
867 }
868 
869 void RegBankSelect::MappingCost::saturate() {
870   *this = ImpossibleCost();
871   --LocalCost;
872 }
873 
874 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
875   return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
876 }
877 
878 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
879   // Sort out the easy cases.
880   if (*this == Cost)
881     return false;
882   // If one is impossible to realize the other is cheaper unless it is
883   // impossible as well.
884   if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
885     return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
886   // If one is saturated the other is cheaper, unless it is saturated
887   // as well.
888   if (isSaturated() || Cost.isSaturated())
889     return isSaturated() < Cost.isSaturated();
890   // At this point we know both costs hold sensible values.
891 
892   // If both values have a different base frequency, there is no much
893   // we can do but to scale everything.
894   // However, if they have the same base frequency we can avoid making
895   // complicated computation.
896   uint64_t ThisLocalAdjust;
897   uint64_t OtherLocalAdjust;
898   if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
899 
900     // At this point, we know the local costs are comparable.
901     // Do the case that do not involve potential overflow first.
902     if (NonLocalCost == Cost.NonLocalCost)
903       // Since the non-local costs do not discriminate on the result,
904       // just compare the local costs.
905       return LocalCost < Cost.LocalCost;
906 
907     // The base costs are comparable so we may only keep the relative
908     // value to increase our chances of avoiding overflows.
909     ThisLocalAdjust = 0;
910     OtherLocalAdjust = 0;
911     if (LocalCost < Cost.LocalCost)
912       OtherLocalAdjust = Cost.LocalCost - LocalCost;
913     else
914       ThisLocalAdjust = LocalCost - Cost.LocalCost;
915 
916   } else {
917     ThisLocalAdjust = LocalCost;
918     OtherLocalAdjust = Cost.LocalCost;
919   }
920 
921   // The non-local costs are comparable, just keep the relative value.
922   uint64_t ThisNonLocalAdjust = 0;
923   uint64_t OtherNonLocalAdjust = 0;
924   if (NonLocalCost < Cost.NonLocalCost)
925     OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
926   else
927     ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
928   // Scale everything to make them comparable.
929   uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
930   // Check for overflow on that operation.
931   bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
932                                            ThisScaledCost < LocalFreq);
933   uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
934   // Check for overflow on the last operation.
935   bool OtherOverflows =
936       OtherLocalAdjust &&
937       (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
938   // Add the non-local costs.
939   ThisOverflows |= ThisNonLocalAdjust &&
940                    ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
941   ThisScaledCost += ThisNonLocalAdjust;
942   OtherOverflows |= OtherNonLocalAdjust &&
943                     OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
944   OtherScaledCost += OtherNonLocalAdjust;
945   // If both overflows, we cannot compare without additional
946   // precision, e.g., APInt. Just give up on that case.
947   if (ThisOverflows && OtherOverflows)
948     return false;
949   // If one overflows but not the other, we can still compare.
950   if (ThisOverflows || OtherOverflows)
951     return ThisOverflows < OtherOverflows;
952   // Otherwise, just compare the values.
953   return ThisScaledCost < OtherScaledCost;
954 }
955 
956 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
957   return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
958          LocalFreq == Cost.LocalFreq;
959 }
960