1 //===- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect -*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements the RegBankSelect class. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 14 #include "llvm/ADT/PostOrderIterator.h" 15 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 16 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 17 #include "llvm/CodeGen/GlobalISel/Utils.h" 18 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 19 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetPassConfig.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/Support/BlockFrequency.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Target/TargetSubtargetInfo.h" 27 28 #define DEBUG_TYPE "regbankselect" 29 30 using namespace llvm; 31 32 static cl::opt<RegBankSelect::Mode> RegBankSelectMode( 33 cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional, 34 cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast", 35 "Run the Fast mode (default mapping)"), 36 clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy", 37 "Use the Greedy mode (best local mapping)"))); 38 39 char RegBankSelect::ID = 0; 40 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE, 41 "Assign register bank of generic virtual registers", 42 false, false); 43 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 44 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 45 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 46 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, 47 "Assign register bank of generic virtual registers", false, 48 false) 49 50 RegBankSelect::RegBankSelect(Mode RunningMode) 51 : MachineFunctionPass(ID), RBI(nullptr), MRI(nullptr), TRI(nullptr), 52 MBFI(nullptr), MBPI(nullptr), OptMode(RunningMode) { 53 initializeRegBankSelectPass(*PassRegistry::getPassRegistry()); 54 if (RegBankSelectMode.getNumOccurrences() != 0) { 55 OptMode = RegBankSelectMode; 56 if (RegBankSelectMode != RunningMode) 57 DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n"); 58 } 59 } 60 61 void RegBankSelect::init(MachineFunction &MF) { 62 RBI = MF.getSubtarget().getRegBankInfo(); 63 assert(RBI && "Cannot work without RegisterBankInfo"); 64 MRI = &MF.getRegInfo(); 65 TRI = MF.getSubtarget().getRegisterInfo(); 66 TPC = &getAnalysis<TargetPassConfig>(); 67 if (OptMode != Mode::Fast) { 68 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 69 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 70 } else { 71 MBFI = nullptr; 72 MBPI = nullptr; 73 } 74 MIRBuilder.setMF(MF); 75 MORE = make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI); 76 } 77 78 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const { 79 if (OptMode != Mode::Fast) { 80 // We could preserve the information from these two analysis but 81 // the APIs do not allow to do so yet. 82 AU.addRequired<MachineBlockFrequencyInfo>(); 83 AU.addRequired<MachineBranchProbabilityInfo>(); 84 } 85 AU.addRequired<TargetPassConfig>(); 86 MachineFunctionPass::getAnalysisUsage(AU); 87 } 88 89 bool RegBankSelect::assignmentMatch( 90 unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping, 91 bool &OnlyAssign) const { 92 // By default we assume we will have to repair something. 93 OnlyAssign = false; 94 // Each part of a break down needs to end up in a different register. 95 // In other word, Reg assignement does not match. 96 if (ValMapping.NumBreakDowns > 1) 97 return false; 98 99 const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI); 100 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank; 101 // Reg is free of assignment, a simple assignment will make the 102 // register bank to match. 103 OnlyAssign = CurRegBank == nullptr; 104 DEBUG(dbgs() << "Does assignment already match: "; 105 if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none"; 106 dbgs() << " against "; 107 assert(DesiredRegBrank && "The mapping must be valid"); 108 dbgs() << *DesiredRegBrank << '\n';); 109 return CurRegBank == DesiredRegBrank; 110 } 111 112 bool RegBankSelect::repairReg( 113 MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping, 114 RegBankSelect::RepairingPlacement &RepairPt, 115 const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) { 116 if (ValMapping.NumBreakDowns != 1 && !TPC->isGlobalISelAbortEnabled()) 117 return false; 118 assert(ValMapping.NumBreakDowns == 1 && "Not yet implemented"); 119 // An empty range of new register means no repairing. 120 assert(NewVRegs.begin() != NewVRegs.end() && "We should not have to repair"); 121 122 // Assume we are repairing a use and thus, the original reg will be 123 // the source of the repairing. 124 unsigned Src = MO.getReg(); 125 unsigned Dst = *NewVRegs.begin(); 126 127 // If we repair a definition, swap the source and destination for 128 // the repairing. 129 if (MO.isDef()) 130 std::swap(Src, Dst); 131 132 assert((RepairPt.getNumInsertPoints() == 1 || 133 TargetRegisterInfo::isPhysicalRegister(Dst)) && 134 "We are about to create several defs for Dst"); 135 136 // Build the instruction used to repair, then clone it at the right places. 137 MachineInstr *MI = MIRBuilder.buildCopy(Dst, Src); 138 MI->removeFromParent(); 139 DEBUG(dbgs() << "Copy: " << PrintReg(Src) << " to: " << PrintReg(Dst) 140 << '\n'); 141 // TODO: 142 // Check if MI is legal. if not, we need to legalize all the 143 // instructions we are going to insert. 144 std::unique_ptr<MachineInstr *[]> NewInstrs( 145 new MachineInstr *[RepairPt.getNumInsertPoints()]); 146 bool IsFirst = true; 147 unsigned Idx = 0; 148 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 149 MachineInstr *CurMI; 150 if (IsFirst) 151 CurMI = MI; 152 else 153 CurMI = MIRBuilder.getMF().CloneMachineInstr(MI); 154 InsertPt->insert(*CurMI); 155 NewInstrs[Idx++] = CurMI; 156 IsFirst = false; 157 } 158 // TODO: 159 // Legalize NewInstrs if need be. 160 return true; 161 } 162 163 uint64_t RegBankSelect::getRepairCost( 164 const MachineOperand &MO, 165 const RegisterBankInfo::ValueMapping &ValMapping) const { 166 assert(MO.isReg() && "We should only repair register operand"); 167 assert(ValMapping.NumBreakDowns && "Nothing to map??"); 168 169 bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1; 170 const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI); 171 // If MO does not have a register bank, we should have just been 172 // able to set one unless we have to break the value down. 173 assert((!IsSameNumOfValues || CurRegBank) && "We should not have to repair"); 174 // Def: Val <- NewDefs 175 // Same number of values: copy 176 // Different number: Val = build_sequence Defs1, Defs2, ... 177 // Use: NewSources <- Val. 178 // Same number of values: copy. 179 // Different number: Src1, Src2, ... = 180 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ... 181 // We should remember that this value is available somewhere else to 182 // coalesce the value. 183 184 if (IsSameNumOfValues) { 185 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank; 186 // If we repair a definition, swap the source and destination for 187 // the repairing. 188 if (MO.isDef()) 189 std::swap(CurRegBank, DesiredRegBrank); 190 // TODO: It may be possible to actually avoid the copy. 191 // If we repair something where the source is defined by a copy 192 // and the source of that copy is on the right bank, we can reuse 193 // it for free. 194 // E.g., 195 // RegToRepair<BankA> = copy AlternativeSrc<BankB> 196 // = op RegToRepair<BankA> 197 // We can simply propagate AlternativeSrc instead of copying RegToRepair 198 // into a new virtual register. 199 // We would also need to propagate this information in the 200 // repairing placement. 201 unsigned Cost = 202 RBI->copyCost(*DesiredRegBrank, *CurRegBank, 203 RegisterBankInfo::getSizeInBits(MO.getReg(), *MRI, *TRI)); 204 // TODO: use a dedicated constant for ImpossibleCost. 205 if (Cost != UINT_MAX) 206 return Cost; 207 // Return the legalization cost of that repairing. 208 } 209 return UINT_MAX; 210 } 211 212 const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping( 213 MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings, 214 SmallVectorImpl<RepairingPlacement> &RepairPts) { 215 assert(!PossibleMappings.empty() && 216 "Do not know how to map this instruction"); 217 218 const RegisterBankInfo::InstructionMapping *BestMapping = nullptr; 219 MappingCost Cost = MappingCost::ImpossibleCost(); 220 SmallVector<RepairingPlacement, 4> LocalRepairPts; 221 for (const RegisterBankInfo::InstructionMapping *CurMapping : 222 PossibleMappings) { 223 MappingCost CurCost = 224 computeMapping(MI, *CurMapping, LocalRepairPts, &Cost); 225 if (CurCost < Cost) { 226 DEBUG(dbgs() << "New best: " << CurCost << '\n'); 227 Cost = CurCost; 228 BestMapping = CurMapping; 229 RepairPts.clear(); 230 for (RepairingPlacement &RepairPt : LocalRepairPts) 231 RepairPts.emplace_back(std::move(RepairPt)); 232 } 233 } 234 if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) { 235 // If none of the mapping worked that means they are all impossible. 236 // Thus, pick the first one and set an impossible repairing point. 237 // It will trigger the failed isel mode. 238 BestMapping = *PossibleMappings.begin(); 239 RepairPts.emplace_back( 240 RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible)); 241 } else 242 assert(BestMapping && "No suitable mapping for instruction"); 243 return *BestMapping; 244 } 245 246 void RegBankSelect::tryAvoidingSplit( 247 RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO, 248 const RegisterBankInfo::ValueMapping &ValMapping) const { 249 const MachineInstr &MI = *MO.getParent(); 250 assert(RepairPt.hasSplit() && "We should not have to adjust for split"); 251 // Splitting should only occur for PHIs or between terminators, 252 // because we only do local repairing. 253 assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?"); 254 255 assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO && 256 "Repairing placement does not match operand"); 257 258 // If we need splitting for phis, that means it is because we 259 // could not find an insertion point before the terminators of 260 // the predecessor block for this argument. In other words, 261 // the input value is defined by one of the terminators. 262 assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?"); 263 264 // We split to repair the use of a phi or a terminator. 265 if (!MO.isDef()) { 266 if (MI.isTerminator()) { 267 assert(&MI != &(*MI.getParent()->getFirstTerminator()) && 268 "Need to split for the first terminator?!"); 269 } else { 270 // For the PHI case, the split may not be actually required. 271 // In the copy case, a phi is already a copy on the incoming edge, 272 // therefore there is no need to split. 273 if (ValMapping.NumBreakDowns == 1) 274 // This is a already a copy, there is nothing to do. 275 RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign); 276 } 277 return; 278 } 279 280 // At this point, we need to repair a defintion of a terminator. 281 282 // Technically we need to fix the def of MI on all outgoing 283 // edges of MI to keep the repairing local. In other words, we 284 // will create several definitions of the same register. This 285 // does not work for SSA unless that definition is a physical 286 // register. 287 // However, there are other cases where we can get away with 288 // that while still keeping the repairing local. 289 assert(MI.isTerminator() && MO.isDef() && 290 "This code is for the def of a terminator"); 291 292 // Since we use RPO traversal, if we need to repair a definition 293 // this means this definition could be: 294 // 1. Used by PHIs (i.e., this VReg has been visited as part of the 295 // uses of a phi.), or 296 // 2. Part of a target specific instruction (i.e., the target applied 297 // some register class constraints when creating the instruction.) 298 // If the constraints come for #2, the target said that another mapping 299 // is supported so we may just drop them. Indeed, if we do not change 300 // the number of registers holding that value, the uses will get fixed 301 // when we get to them. 302 // Uses in PHIs may have already been proceeded though. 303 // If the constraints come for #1, then, those are weak constraints and 304 // no actual uses may rely on them. However, the problem remains mainly 305 // the same as for #2. If the value stays in one register, we could 306 // just switch the register bank of the definition, but we would need to 307 // account for a repairing cost for each phi we silently change. 308 // 309 // In any case, if the value needs to be broken down into several 310 // registers, the repairing is not local anymore as we need to patch 311 // every uses to rebuild the value in just one register. 312 // 313 // To summarize: 314 // - If the value is in a physical register, we can do the split and 315 // fix locally. 316 // Otherwise if the value is in a virtual register: 317 // - If the value remains in one register, we do not have to split 318 // just switching the register bank would do, but we need to account 319 // in the repairing cost all the phi we changed. 320 // - If the value spans several registers, then we cannot do a local 321 // repairing. 322 323 // Check if this is a physical or virtual register. 324 unsigned Reg = MO.getReg(); 325 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 326 // We are going to split every outgoing edges. 327 // Check that this is possible. 328 // FIXME: The machine representation is currently broken 329 // since it also several terminators in one basic block. 330 // Because of that we would technically need a way to get 331 // the targets of just one terminator to know which edges 332 // we have to split. 333 // Assert that we do not hit the ill-formed representation. 334 335 // If there are other terminators before that one, some of 336 // the outgoing edges may not be dominated by this definition. 337 assert(&MI == &(*MI.getParent()->getFirstTerminator()) && 338 "Do not know which outgoing edges are relevant"); 339 const MachineInstr *Next = MI.getNextNode(); 340 assert((!Next || Next->isUnconditionalBranch()) && 341 "Do not know where each terminator ends up"); 342 if (Next) 343 // If the next terminator uses Reg, this means we have 344 // to split right after MI and thus we need a way to ask 345 // which outgoing edges are affected. 346 assert(!Next->readsRegister(Reg) && "Need to split between terminators"); 347 // We will split all the edges and repair there. 348 } else { 349 // This is a virtual register defined by a terminator. 350 if (ValMapping.NumBreakDowns == 1) { 351 // There is nothing to repair, but we may actually lie on 352 // the repairing cost because of the PHIs already proceeded 353 // as already stated. 354 // Though the code will be correct. 355 assert(0 && "Repairing cost may not be accurate"); 356 } else { 357 // We need to do non-local repairing. Basically, patch all 358 // the uses (i.e., phis) that we already proceeded. 359 // For now, just say this mapping is not possible. 360 RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible); 361 } 362 } 363 } 364 365 RegBankSelect::MappingCost RegBankSelect::computeMapping( 366 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 367 SmallVectorImpl<RepairingPlacement> &RepairPts, 368 const RegBankSelect::MappingCost *BestCost) { 369 assert((MBFI || !BestCost) && "Costs comparison require MBFI"); 370 371 if (!InstrMapping.isValid()) 372 return MappingCost::ImpossibleCost(); 373 374 // If mapped with InstrMapping, MI will have the recorded cost. 375 MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1); 376 bool Saturated = Cost.addLocalCost(InstrMapping.getCost()); 377 assert(!Saturated && "Possible mapping saturated the cost"); 378 DEBUG(dbgs() << "Evaluating mapping cost for: " << MI); 379 DEBUG(dbgs() << "With: " << InstrMapping << '\n'); 380 RepairPts.clear(); 381 if (BestCost && Cost > *BestCost) { 382 DEBUG(dbgs() << "Mapping is too expensive from the start\n"); 383 return Cost; 384 } 385 386 // Moreover, to realize this mapping, the register bank of each operand must 387 // match this mapping. In other words, we may need to locally reassign the 388 // register banks. Account for that repairing cost as well. 389 // In this context, local means in the surrounding of MI. 390 for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands(); 391 OpIdx != EndOpIdx; ++OpIdx) { 392 const MachineOperand &MO = MI.getOperand(OpIdx); 393 if (!MO.isReg()) 394 continue; 395 unsigned Reg = MO.getReg(); 396 if (!Reg) 397 continue; 398 DEBUG(dbgs() << "Opd" << OpIdx << '\n'); 399 const RegisterBankInfo::ValueMapping &ValMapping = 400 InstrMapping.getOperandMapping(OpIdx); 401 // If Reg is already properly mapped, this is free. 402 bool Assign; 403 if (assignmentMatch(Reg, ValMapping, Assign)) { 404 DEBUG(dbgs() << "=> is free (match).\n"); 405 continue; 406 } 407 if (Assign) { 408 DEBUG(dbgs() << "=> is free (simple assignment).\n"); 409 RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this, 410 RepairingPlacement::Reassign)); 411 continue; 412 } 413 414 // Find the insertion point for the repairing code. 415 RepairPts.emplace_back( 416 RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert)); 417 RepairingPlacement &RepairPt = RepairPts.back(); 418 419 // If we need to split a basic block to materialize this insertion point, 420 // we may give a higher cost to this mapping. 421 // Nevertheless, we may get away with the split, so try that first. 422 if (RepairPt.hasSplit()) 423 tryAvoidingSplit(RepairPt, MO, ValMapping); 424 425 // Check that the materialization of the repairing is possible. 426 if (!RepairPt.canMaterialize()) { 427 DEBUG(dbgs() << "Mapping involves impossible repairing\n"); 428 return MappingCost::ImpossibleCost(); 429 } 430 431 // Account for the split cost and repair cost. 432 // Unless the cost is already saturated or we do not care about the cost. 433 if (!BestCost || Saturated) 434 continue; 435 436 // To get accurate information we need MBFI and MBPI. 437 // Thus, if we end up here this information should be here. 438 assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI"); 439 440 // FIXME: We will have to rework the repairing cost model. 441 // The repairing cost depends on the register bank that MO has. 442 // However, when we break down the value into different values, 443 // MO may not have a register bank while still needing repairing. 444 // For the fast mode, we don't compute the cost so that is fine, 445 // but still for the repairing code, we will have to make a choice. 446 // For the greedy mode, we should choose greedily what is the best 447 // choice based on the next use of MO. 448 449 // Sums up the repairing cost of MO at each insertion point. 450 uint64_t RepairCost = getRepairCost(MO, ValMapping); 451 452 // This is an impossible to repair cost. 453 if (RepairCost == UINT_MAX) 454 continue; 455 456 // Bias used for splitting: 5%. 457 const uint64_t PercentageForBias = 5; 458 uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100; 459 // We should not need more than a couple of instructions to repair 460 // an assignment. In other words, the computation should not 461 // overflow because the repairing cost is free of basic block 462 // frequency. 463 assert(((RepairCost < RepairCost * PercentageForBias) && 464 (RepairCost * PercentageForBias < 465 RepairCost * PercentageForBias + 99)) && 466 "Repairing involves more than a billion of instructions?!"); 467 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 468 assert(InsertPt->canMaterialize() && "We should not have made it here"); 469 // We will applied some basic block frequency and those uses uint64_t. 470 if (!InsertPt->isSplit()) 471 Saturated = Cost.addLocalCost(RepairCost); 472 else { 473 uint64_t CostForInsertPt = RepairCost; 474 // Again we shouldn't overflow here givent that 475 // CostForInsertPt is frequency free at this point. 476 assert(CostForInsertPt + Bias > CostForInsertPt && 477 "Repairing + split bias overflows"); 478 CostForInsertPt += Bias; 479 uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt; 480 // Check if we just overflowed. 481 if ((Saturated = PtCost < CostForInsertPt)) 482 Cost.saturate(); 483 else 484 Saturated = Cost.addNonLocalCost(PtCost); 485 } 486 487 // Stop looking into what it takes to repair, this is already 488 // too expensive. 489 if (BestCost && Cost > *BestCost) { 490 DEBUG(dbgs() << "Mapping is too expensive, stop processing\n"); 491 return Cost; 492 } 493 494 // No need to accumulate more cost information. 495 // We need to still gather the repairing information though. 496 if (Saturated) 497 break; 498 } 499 } 500 DEBUG(dbgs() << "Total cost is: " << Cost << "\n"); 501 return Cost; 502 } 503 504 bool RegBankSelect::applyMapping( 505 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 506 SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) { 507 // OpdMapper will hold all the information needed for the rewritting. 508 RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI); 509 510 // First, place the repairing code. 511 for (RepairingPlacement &RepairPt : RepairPts) { 512 if (!RepairPt.canMaterialize() || 513 RepairPt.getKind() == RepairingPlacement::Impossible) 514 return false; 515 assert(RepairPt.getKind() != RepairingPlacement::None && 516 "This should not make its way in the list"); 517 unsigned OpIdx = RepairPt.getOpIdx(); 518 MachineOperand &MO = MI.getOperand(OpIdx); 519 const RegisterBankInfo::ValueMapping &ValMapping = 520 InstrMapping.getOperandMapping(OpIdx); 521 unsigned Reg = MO.getReg(); 522 523 switch (RepairPt.getKind()) { 524 case RepairingPlacement::Reassign: 525 assert(ValMapping.NumBreakDowns == 1 && 526 "Reassignment should only be for simple mapping"); 527 MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank); 528 break; 529 case RepairingPlacement::Insert: 530 OpdMapper.createVRegs(OpIdx); 531 if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx))) 532 return false; 533 break; 534 default: 535 llvm_unreachable("Other kind should not happen"); 536 } 537 } 538 // Second, rewrite the instruction. 539 DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n'); 540 RBI->applyMapping(OpdMapper); 541 return true; 542 } 543 544 bool RegBankSelect::assignInstr(MachineInstr &MI) { 545 DEBUG(dbgs() << "Assign: " << MI); 546 // Remember the repairing placement for all the operands. 547 SmallVector<RepairingPlacement, 4> RepairPts; 548 549 const RegisterBankInfo::InstructionMapping *BestMapping; 550 if (OptMode == RegBankSelect::Mode::Fast) { 551 BestMapping = &RBI->getInstrMapping(MI); 552 MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts); 553 (void)DefaultCost; 554 if (DefaultCost == MappingCost::ImpossibleCost()) 555 return false; 556 } else { 557 RegisterBankInfo::InstructionMappings PossibleMappings = 558 RBI->getInstrPossibleMappings(MI); 559 if (PossibleMappings.empty()) 560 return false; 561 BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts); 562 } 563 // Make sure the mapping is valid for MI. 564 assert(BestMapping->verify(MI) && "Invalid instruction mapping"); 565 566 DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n'); 567 568 // After this call, MI may not be valid anymore. 569 // Do not use it. 570 return applyMapping(MI, *BestMapping, RepairPts); 571 } 572 573 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) { 574 // If the ISel pipeline failed, do not bother running that pass. 575 if (MF.getProperties().hasProperty( 576 MachineFunctionProperties::Property::FailedISel)) 577 return false; 578 579 DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n'); 580 const Function *F = MF.getFunction(); 581 Mode SaveOptMode = OptMode; 582 if (F->hasFnAttribute(Attribute::OptimizeNone)) 583 OptMode = Mode::Fast; 584 init(MF); 585 586 #ifndef NDEBUG 587 // Check that our input is fully legal: we require the function to have the 588 // Legalized property, so it should be. 589 // FIXME: This should be in the MachineVerifier, but it can't use the 590 // LegalizerInfo as it's currently in the separate GlobalISel library. 591 const MachineRegisterInfo &MRI = MF.getRegInfo(); 592 if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo()) { 593 for (MachineBasicBlock &MBB : MF) { 594 for (MachineInstr &MI : MBB) { 595 if (isPreISelGenericOpcode(MI.getOpcode()) && !MLI->isLegal(MI, MRI)) { 596 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", 597 "instruction is not legal", MI); 598 return false; 599 } 600 } 601 } 602 } 603 #endif 604 605 // Walk the function and assign register banks to all operands. 606 // Use a RPOT to make sure all registers are assigned before we choose 607 // the best mapping of the current instruction. 608 ReversePostOrderTraversal<MachineFunction*> RPOT(&MF); 609 for (MachineBasicBlock *MBB : RPOT) { 610 // Set a sensible insertion point so that subsequent calls to 611 // MIRBuilder. 612 MIRBuilder.setMBB(*MBB); 613 for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end(); 614 MII != End;) { 615 // MI might be invalidated by the assignment, so move the 616 // iterator before hand. 617 MachineInstr &MI = *MII++; 618 619 // Ignore target-specific instructions: they should use proper regclasses. 620 if (isTargetSpecificOpcode(MI.getOpcode())) 621 continue; 622 623 if (!assignInstr(MI)) { 624 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", 625 "unable to map instruction", MI); 626 return false; 627 } 628 } 629 } 630 OptMode = SaveOptMode; 631 return false; 632 } 633 634 //------------------------------------------------------------------------------ 635 // Helper Classes Implementation 636 //------------------------------------------------------------------------------ 637 RegBankSelect::RepairingPlacement::RepairingPlacement( 638 MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P, 639 RepairingPlacement::RepairingKind Kind) 640 // Default is, we are going to insert code to repair OpIdx. 641 : Kind(Kind), 642 OpIdx(OpIdx), 643 CanMaterialize(Kind != RepairingKind::Impossible), 644 HasSplit(false), 645 P(P) { 646 const MachineOperand &MO = MI.getOperand(OpIdx); 647 assert(MO.isReg() && "Trying to repair a non-reg operand"); 648 649 if (Kind != RepairingKind::Insert) 650 return; 651 652 // Repairings for definitions happen after MI, uses happen before. 653 bool Before = !MO.isDef(); 654 655 // Check if we are done with MI. 656 if (!MI.isPHI() && !MI.isTerminator()) { 657 addInsertPoint(MI, Before); 658 // We are done with the initialization. 659 return; 660 } 661 662 // Now, look for the special cases. 663 if (MI.isPHI()) { 664 // - PHI must be the first instructions: 665 // * Before, we have to split the related incoming edge. 666 // * After, move the insertion point past the last phi. 667 if (!Before) { 668 MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI(); 669 if (It != MI.getParent()->end()) 670 addInsertPoint(*It, /*Before*/ true); 671 else 672 addInsertPoint(*(--It), /*Before*/ false); 673 return; 674 } 675 // We repair a use of a phi, we may need to split the related edge. 676 MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB(); 677 // Check if we can move the insertion point prior to the 678 // terminators of the predecessor. 679 unsigned Reg = MO.getReg(); 680 MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr(); 681 for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It) 682 if (It->modifiesRegister(Reg, &TRI)) { 683 // We cannot hoist the repairing code in the predecessor. 684 // Split the edge. 685 addInsertPoint(Pred, *MI.getParent()); 686 return; 687 } 688 // At this point, we can insert in Pred. 689 690 // - If It is invalid, Pred is empty and we can insert in Pred 691 // wherever we want. 692 // - If It is valid, It is the first non-terminator, insert after It. 693 if (It == Pred.end()) 694 addInsertPoint(Pred, /*Beginning*/ false); 695 else 696 addInsertPoint(*It, /*Before*/ false); 697 } else { 698 // - Terminators must be the last instructions: 699 // * Before, move the insert point before the first terminator. 700 // * After, we have to split the outcoming edges. 701 unsigned Reg = MO.getReg(); 702 if (Before) { 703 // Check whether Reg is defined by any terminator. 704 MachineBasicBlock::iterator It = MI; 705 for (auto Begin = MI.getParent()->begin(); 706 --It != Begin && It->isTerminator();) 707 if (It->modifiesRegister(Reg, &TRI)) { 708 // Insert the repairing code right after the definition. 709 addInsertPoint(*It, /*Before*/ false); 710 return; 711 } 712 addInsertPoint(*It, /*Before*/ true); 713 return; 714 } 715 // Make sure Reg is not redefined by other terminators, otherwise 716 // we do not know how to split. 717 for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end(); 718 ++It != End;) 719 // The machine verifier should reject this kind of code. 720 assert(It->modifiesRegister(Reg, &TRI) && "Do not know where to split"); 721 // Split each outcoming edges. 722 MachineBasicBlock &Src = *MI.getParent(); 723 for (auto &Succ : Src.successors()) 724 addInsertPoint(Src, Succ); 725 } 726 } 727 728 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI, 729 bool Before) { 730 addInsertPoint(*new InstrInsertPoint(MI, Before)); 731 } 732 733 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB, 734 bool Beginning) { 735 addInsertPoint(*new MBBInsertPoint(MBB, Beginning)); 736 } 737 738 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src, 739 MachineBasicBlock &Dst) { 740 addInsertPoint(*new EdgeInsertPoint(Src, Dst, P)); 741 } 742 743 void RegBankSelect::RepairingPlacement::addInsertPoint( 744 RegBankSelect::InsertPoint &Point) { 745 CanMaterialize &= Point.canMaterialize(); 746 HasSplit |= Point.isSplit(); 747 InsertPoints.emplace_back(&Point); 748 } 749 750 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr, 751 bool Before) 752 : InsertPoint(), Instr(Instr), Before(Before) { 753 // Since we do not support splitting, we do not need to update 754 // liveness and such, so do not do anything with P. 755 assert((!Before || !Instr.isPHI()) && 756 "Splitting before phis requires more points"); 757 assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) && 758 "Splitting between phis does not make sense"); 759 } 760 761 void RegBankSelect::InstrInsertPoint::materialize() { 762 if (isSplit()) { 763 // Slice and return the beginning of the new block. 764 // If we need to split between the terminators, we theoritically 765 // need to know where the first and second set of terminators end 766 // to update the successors properly. 767 // Now, in pratice, we should have a maximum of 2 branch 768 // instructions; one conditional and one unconditional. Therefore 769 // we know how to update the successor by looking at the target of 770 // the unconditional branch. 771 // If we end up splitting at some point, then, we should update 772 // the liveness information and such. I.e., we would need to 773 // access P here. 774 // The machine verifier should actually make sure such cases 775 // cannot happen. 776 llvm_unreachable("Not yet implemented"); 777 } 778 // Otherwise the insertion point is just the current or next 779 // instruction depending on Before. I.e., there is nothing to do 780 // here. 781 } 782 783 bool RegBankSelect::InstrInsertPoint::isSplit() const { 784 // If the insertion point is after a terminator, we need to split. 785 if (!Before) 786 return Instr.isTerminator(); 787 // If we insert before an instruction that is after a terminator, 788 // we are still after a terminator. 789 return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator(); 790 } 791 792 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const { 793 // Even if we need to split, because we insert between terminators, 794 // this split has actually the same frequency as the instruction. 795 const MachineBlockFrequencyInfo *MBFI = 796 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 797 if (!MBFI) 798 return 1; 799 return MBFI->getBlockFreq(Instr.getParent()).getFrequency(); 800 } 801 802 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const { 803 const MachineBlockFrequencyInfo *MBFI = 804 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 805 if (!MBFI) 806 return 1; 807 return MBFI->getBlockFreq(&MBB).getFrequency(); 808 } 809 810 void RegBankSelect::EdgeInsertPoint::materialize() { 811 // If we end up repairing twice at the same place before materializing the 812 // insertion point, we may think we have to split an edge twice. 813 // We should have a factory for the insert point such that identical points 814 // are the same instance. 815 assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) && 816 "This point has already been split"); 817 MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P); 818 assert(NewBB && "Invalid call to materialize"); 819 // We reuse the destination block to hold the information of the new block. 820 DstOrSplit = NewBB; 821 } 822 823 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const { 824 const MachineBlockFrequencyInfo *MBFI = 825 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 826 if (!MBFI) 827 return 1; 828 if (WasMaterialized) 829 return MBFI->getBlockFreq(DstOrSplit).getFrequency(); 830 831 const MachineBranchProbabilityInfo *MBPI = 832 P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>(); 833 if (!MBPI) 834 return 1; 835 // The basic block will be on the edge. 836 return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit)) 837 .getFrequency(); 838 } 839 840 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const { 841 // If this is not a critical edge, we should not have used this insert 842 // point. Indeed, either the successor or the predecessor should 843 // have do. 844 assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 && 845 "Edge is not critical"); 846 return Src.canSplitCriticalEdge(DstOrSplit); 847 } 848 849 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq) 850 : LocalCost(0), NonLocalCost(0), LocalFreq(LocalFreq.getFrequency()) {} 851 852 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) { 853 // Check if this overflows. 854 if (LocalCost + Cost < LocalCost) { 855 saturate(); 856 return true; 857 } 858 LocalCost += Cost; 859 return isSaturated(); 860 } 861 862 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) { 863 // Check if this overflows. 864 if (NonLocalCost + Cost < NonLocalCost) { 865 saturate(); 866 return true; 867 } 868 NonLocalCost += Cost; 869 return isSaturated(); 870 } 871 872 bool RegBankSelect::MappingCost::isSaturated() const { 873 return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX && 874 LocalFreq == UINT64_MAX; 875 } 876 877 void RegBankSelect::MappingCost::saturate() { 878 *this = ImpossibleCost(); 879 --LocalCost; 880 } 881 882 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() { 883 return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX); 884 } 885 886 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const { 887 // Sort out the easy cases. 888 if (*this == Cost) 889 return false; 890 // If one is impossible to realize the other is cheaper unless it is 891 // impossible as well. 892 if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost())) 893 return (*this == ImpossibleCost()) < (Cost == ImpossibleCost()); 894 // If one is saturated the other is cheaper, unless it is saturated 895 // as well. 896 if (isSaturated() || Cost.isSaturated()) 897 return isSaturated() < Cost.isSaturated(); 898 // At this point we know both costs hold sensible values. 899 900 // If both values have a different base frequency, there is no much 901 // we can do but to scale everything. 902 // However, if they have the same base frequency we can avoid making 903 // complicated computation. 904 uint64_t ThisLocalAdjust; 905 uint64_t OtherLocalAdjust; 906 if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) { 907 908 // At this point, we know the local costs are comparable. 909 // Do the case that do not involve potential overflow first. 910 if (NonLocalCost == Cost.NonLocalCost) 911 // Since the non-local costs do not discriminate on the result, 912 // just compare the local costs. 913 return LocalCost < Cost.LocalCost; 914 915 // The base costs are comparable so we may only keep the relative 916 // value to increase our chances of avoiding overflows. 917 ThisLocalAdjust = 0; 918 OtherLocalAdjust = 0; 919 if (LocalCost < Cost.LocalCost) 920 OtherLocalAdjust = Cost.LocalCost - LocalCost; 921 else 922 ThisLocalAdjust = LocalCost - Cost.LocalCost; 923 924 } else { 925 ThisLocalAdjust = LocalCost; 926 OtherLocalAdjust = Cost.LocalCost; 927 } 928 929 // The non-local costs are comparable, just keep the relative value. 930 uint64_t ThisNonLocalAdjust = 0; 931 uint64_t OtherNonLocalAdjust = 0; 932 if (NonLocalCost < Cost.NonLocalCost) 933 OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost; 934 else 935 ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost; 936 // Scale everything to make them comparable. 937 uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq; 938 // Check for overflow on that operation. 939 bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust || 940 ThisScaledCost < LocalFreq); 941 uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq; 942 // Check for overflow on the last operation. 943 bool OtherOverflows = 944 OtherLocalAdjust && 945 (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq); 946 // Add the non-local costs. 947 ThisOverflows |= ThisNonLocalAdjust && 948 ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust; 949 ThisScaledCost += ThisNonLocalAdjust; 950 OtherOverflows |= OtherNonLocalAdjust && 951 OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust; 952 OtherScaledCost += OtherNonLocalAdjust; 953 // If both overflows, we cannot compare without additional 954 // precision, e.g., APInt. Just give up on that case. 955 if (ThisOverflows && OtherOverflows) 956 return false; 957 // If one overflows but not the other, we can still compare. 958 if (ThisOverflows || OtherOverflows) 959 return ThisOverflows < OtherOverflows; 960 // Otherwise, just compare the values. 961 return ThisScaledCost < OtherScaledCost; 962 } 963 964 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const { 965 return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost && 966 LocalFreq == Cost.LocalFreq; 967 } 968 969 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 970 LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const { 971 print(dbgs()); 972 dbgs() << '\n'; 973 } 974 #endif 975 976 void RegBankSelect::MappingCost::print(raw_ostream &OS) const { 977 if (*this == ImpossibleCost()) { 978 OS << "impossible"; 979 return; 980 } 981 if (isSaturated()) { 982 OS << "saturated"; 983 return; 984 } 985 OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost; 986 } 987