1 //===- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect -*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements the RegBankSelect class. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 14 #include "llvm/ADT/PostOrderIterator.h" 15 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 16 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 17 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/Support/BlockFrequency.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Target/TargetSubtargetInfo.h" 23 24 #define DEBUG_TYPE "regbankselect" 25 26 using namespace llvm; 27 28 char RegBankSelect::ID = 0; 29 INITIALIZE_PASS_BEGIN(RegBankSelect, "regbankselect", 30 "Assign register bank of generic virtual registers", 31 false, false); 32 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 33 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 34 INITIALIZE_PASS_END(RegBankSelect, "regbankselect", 35 "Assign register bank of generic virtual registers", false, 36 false); 37 38 RegBankSelect::RegBankSelect(Mode RunningMode) 39 : MachineFunctionPass(ID), RBI(nullptr), MRI(nullptr), TRI(nullptr), 40 MBFI(nullptr), MBPI(nullptr), OptMode(RunningMode) { 41 initializeRegBankSelectPass(*PassRegistry::getPassRegistry()); 42 } 43 44 void RegBankSelect::init(MachineFunction &MF) { 45 RBI = MF.getSubtarget().getRegBankInfo(); 46 assert(RBI && "Cannot work without RegisterBankInfo"); 47 MRI = &MF.getRegInfo(); 48 TRI = MF.getSubtarget().getRegisterInfo(); 49 if (OptMode != Mode::Fast) { 50 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 51 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 52 } else { 53 MBFI = nullptr; 54 MBPI = nullptr; 55 } 56 MIRBuilder.setMF(MF); 57 } 58 59 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const { 60 if (OptMode != Mode::Fast) { 61 // We could preserve the information from these two analysis but 62 // the APIs do not allow to do so yet. 63 AU.addRequired<MachineBlockFrequencyInfo>(); 64 AU.addRequired<MachineBranchProbabilityInfo>(); 65 } 66 MachineFunctionPass::getAnalysisUsage(AU); 67 } 68 69 bool RegBankSelect::assignmentMatch( 70 unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping, 71 bool &OnlyAssign) const { 72 // By default we assume we will have to repair something. 73 OnlyAssign = false; 74 // Each part of a break down needs to end up in a different register. 75 // In other word, Reg assignement does not match. 76 if (ValMapping.BreakDown.size() > 1) 77 return false; 78 79 const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI); 80 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank; 81 // Reg is free of assignment, a simple assignment will make the 82 // register bank to match. 83 OnlyAssign = CurRegBank == nullptr; 84 DEBUG(dbgs() << "Does assignment already match: "; 85 if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none"; 86 dbgs() << " against "; 87 assert(DesiredRegBrank && "The mapping must be valid"); 88 dbgs() << *DesiredRegBrank << '\n';); 89 return CurRegBank == DesiredRegBrank; 90 } 91 92 void RegBankSelect::repairReg( 93 MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping, 94 RegBankSelect::RepairingPlacement &RepairPt, 95 const iterator_range<SmallVectorImpl<unsigned>::iterator> &NewVRegs) { 96 assert(ValMapping.BreakDown.size() == 1 && "Not yet implemented"); 97 // Assume we are repairing a use and thus, the original reg will be 98 // the source of the repairing. 99 unsigned Src = MO.getReg(); 100 unsigned Dst = *NewVRegs.begin(); 101 if (ValMapping.BreakDown.size() == 1) 102 MO.setReg(Dst); 103 104 // If we repair a definition, swap the source and destination for 105 // the repairing. 106 if (MO.isDef()) 107 std::swap(Src, Dst); 108 109 assert((RepairPt.getNumInsertPoints() == 1 || 110 TargetRegisterInfo::isPhysicalRegister(Dst)) && 111 "We are about to create several defs for Dst"); 112 113 // Build the instruction used to repair, then clone it at the right places. 114 MachineInstr *MI = MIRBuilder.buildInstr(TargetOpcode::COPY, Dst, Src); 115 MI->removeFromParent(); 116 DEBUG(dbgs() << "Copy: " << PrintReg(Src) << " to: " << PrintReg(Dst) 117 << '\n'); 118 // TODO: 119 // Check if MI is legal. if not, we need to legalize all the 120 // instructions we are going to insert. 121 std::unique_ptr<MachineInstr *[]> NewInstrs( 122 new MachineInstr *[RepairPt.getNumInsertPoints()]); 123 bool IsFirst = true; 124 unsigned Idx = 0; 125 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 126 MachineInstr *CurMI; 127 if (IsFirst) 128 CurMI = MI; 129 else 130 CurMI = MIRBuilder.getMF().CloneMachineInstr(MI); 131 InsertPt->insert(*CurMI); 132 NewInstrs[Idx++] = CurMI; 133 IsFirst = false; 134 } 135 // TODO: 136 // Legalize NewInstrs if need be. 137 } 138 139 uint64_t RegBankSelect::getRepairCost( 140 const MachineOperand &MO, 141 const RegisterBankInfo::ValueMapping &ValMapping) const { 142 assert(MO.isReg() && "We should only repair register operand"); 143 assert(!ValMapping.BreakDown.empty() && "Nothing to map??"); 144 145 bool IsSameNumOfValues = ValMapping.BreakDown.size() == 1; 146 const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI); 147 // If MO does not have a register bank, we should have just been 148 // able to set one unless we have to break the value down. 149 assert((!IsSameNumOfValues || CurRegBank) && "We should not have to repair"); 150 // Def: Val <- NewDefs 151 // Same number of values: copy 152 // Different number: Val = build_sequence Defs1, Defs2, ... 153 // Use: NewSources <- Val. 154 // Same number of values: copy. 155 // Different number: Src1, Src2, ... = 156 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ... 157 // We should remember that this value is available somewhere else to 158 // coalesce the value. 159 160 if (IsSameNumOfValues) { 161 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank; 162 // If we repair a definition, swap the source and destination for 163 // the repairing. 164 if (MO.isDef()) 165 std::swap(CurRegBank, DesiredRegBrank); 166 unsigned Cost = RBI->copyCost(*DesiredRegBrank, *CurRegBank); 167 // TODO: use a dedicated constant for ImpossibleCost. 168 if (Cost != UINT_MAX) 169 return Cost; 170 assert(false && "Legalization not available yet"); 171 // Return the legalization cost of that repairing. 172 } 173 assert(false && "Complex repairing not implemented yet"); 174 return 1; 175 } 176 177 RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping( 178 MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings, 179 SmallVectorImpl<RepairingPlacement> &RepairPts) { 180 181 RegisterBankInfo::InstructionMapping *BestMapping = nullptr; 182 MappingCost Cost = MappingCost::ImpossibleCost(); 183 SmallVector<RepairingPlacement, 4> LocalRepairPts; 184 for (RegisterBankInfo::InstructionMapping &CurMapping : PossibleMappings) { 185 MappingCost CurCost = computeMapping(MI, CurMapping, LocalRepairPts, &Cost); 186 if (CurCost < Cost) { 187 Cost = CurCost; 188 BestMapping = &CurMapping; 189 RepairPts.clear(); 190 for (RepairingPlacement &RepairPt : LocalRepairPts) 191 RepairPts.emplace_back(std::move(RepairPt)); 192 } 193 } 194 assert(BestMapping && "No suitable mapping for instruction"); 195 return *BestMapping; 196 } 197 198 void RegBankSelect::tryAvoidingSplit( 199 RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO, 200 const RegisterBankInfo::ValueMapping &ValMapping) const { 201 const MachineInstr &MI = *MO.getParent(); 202 assert(RepairPt.hasSplit() && "We should not have to adjust for split"); 203 // Splitting should only occur for PHIs or between terminators, 204 // because we only do local repairing. 205 assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?"); 206 207 assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO && 208 "Repairing placement does not match operand"); 209 210 // If we need splitting for phis, that means it is because we 211 // could not find an insertion point before the terminators of 212 // the predecessor block for this argument. In other words, 213 // the input value is defined by one of the terminators. 214 assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?"); 215 216 // We split to repair the use of a phi or a terminator. 217 if (!MO.isDef()) { 218 if (MI.isTerminator()) { 219 assert(&MI != &(*MI.getParent()->getFirstTerminator()) && 220 "Need to split for the first terminator?!"); 221 } else { 222 // For the PHI case, the split may not be actually required. 223 // In the copy case, a phi is already a copy on the incoming edge, 224 // therefore there is no need to split. 225 if (ValMapping.BreakDown.size() == 1) 226 // This is a already a copy, there is nothing to do. 227 RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign); 228 } 229 return; 230 } 231 232 // At this point, we need to repair a defintion of a terminator. 233 234 // Technically we need to fix the def of MI on all outgoing 235 // edges of MI to keep the repairing local. In other words, we 236 // will create several definitions of the same register. This 237 // does not work for SSA unless that definition is a physical 238 // register. 239 // However, there are other cases where we can get away with 240 // that while still keeping the repairing local. 241 assert(MI.isTerminator() && MO.isDef() && 242 "This code is for the def of a terminator"); 243 244 // Since we use RPO traversal, if we need to repair a definition 245 // this means this definition could be: 246 // 1. Used by PHIs (i.e., this VReg has been visited as part of the 247 // uses of a phi.), or 248 // 2. Part of a target specific instruction (i.e., the target applied 249 // some register class constraints when creating the instruction.) 250 // If the constraints come for #2, the target said that another mapping 251 // is supported so we may just drop them. Indeed, if we do not change 252 // the number of registers holding that value, the uses will get fixed 253 // when we get to them. 254 // Uses in PHIs may have already been proceeded though. 255 // If the constraints come for #1, then, those are weak constraints and 256 // no actual uses may rely on them. However, the problem remains mainly 257 // the same as for #2. If the value stays in one register, we could 258 // just switch the register bank of the definition, but we would need to 259 // account for a repairing cost for each phi we silently change. 260 // 261 // In any case, if the value needs to be broken down into several 262 // registers, the repairing is not local anymore as we need to patch 263 // every uses to rebuild the value in just one register. 264 // 265 // To summarize: 266 // - If the value is in a physical register, we can do the split and 267 // fix locally. 268 // Otherwise if the value is in a virtual register: 269 // - If the value remains in one register, we do not have to split 270 // just switching the register bank would do, but we need to account 271 // in the repairing cost all the phi we changed. 272 // - If the value spans several registers, then we cannot do a local 273 // repairing. 274 275 // Check if this is a physical or virtual register. 276 unsigned Reg = MO.getReg(); 277 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 278 // We are going to split every outgoing edges. 279 // Check that this is possible. 280 // FIXME: The machine representation is currently broken 281 // since it also several terminators in one basic block. 282 // Because of that we would technically need a way to get 283 // the targets of just one terminator to know which edges 284 // we have to split. 285 // Assert that we do not hit the ill-formed representation. 286 287 // If there are other terminators before that one, some of 288 // the outgoing edges may not be dominated by this definition. 289 assert(&MI == &(*MI.getParent()->getFirstTerminator()) && 290 "Do not know which outgoing edges are relevant"); 291 const MachineInstr *Next = MI.getNextNode(); 292 assert((!Next || Next->isUnconditionalBranch()) && 293 "Do not know where each terminator ends up"); 294 if (Next) 295 // If the next terminator uses Reg, this means we have 296 // to split right after MI and thus we need a way to ask 297 // which outgoing edges are affected. 298 assert(!Next->readsRegister(Reg) && "Need to split between terminators"); 299 // We will split all the edges and repair there. 300 } else { 301 // This is a virtual register defined by a terminator. 302 if (ValMapping.BreakDown.size() == 1) { 303 // There is nothing to repair, but we may actually lie on 304 // the repairing cost because of the PHIs already proceeded 305 // as already stated. 306 // Though the code will be correct. 307 assert(0 && "Repairing cost may not be accurate"); 308 } else { 309 // We need to do non-local repairing. Basically, patch all 310 // the uses (i.e., phis) that we already proceeded. 311 // For now, just say this mapping is not possible. 312 RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible); 313 } 314 } 315 } 316 317 RegBankSelect::MappingCost RegBankSelect::computeMapping( 318 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 319 SmallVectorImpl<RepairingPlacement> &RepairPts, 320 const RegBankSelect::MappingCost *BestCost) { 321 assert((MBFI || !BestCost) && "Costs comparison require MBFI"); 322 323 // If mapped with InstrMapping, MI will have the recorded cost. 324 MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1); 325 bool Saturated = Cost.addLocalCost(InstrMapping.getCost()); 326 assert(!Saturated && "Possible mapping saturated the cost"); 327 DEBUG(dbgs() << "Evaluating mapping cost for: " << MI); 328 DEBUG(dbgs() << "With: " << InstrMapping << '\n'); 329 RepairPts.clear(); 330 if (BestCost && Cost > *BestCost) 331 return Cost; 332 333 // Moreover, to realize this mapping, the register bank of each operand must 334 // match this mapping. In other words, we may need to locally reassign the 335 // register banks. Account for that repairing cost as well. 336 // In this context, local means in the surrounding of MI. 337 for (unsigned OpIdx = 0, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; 338 ++OpIdx) { 339 const MachineOperand &MO = MI.getOperand(OpIdx); 340 if (!MO.isReg()) 341 continue; 342 unsigned Reg = MO.getReg(); 343 if (!Reg) 344 continue; 345 DEBUG(dbgs() << "Opd" << OpIdx); 346 const RegisterBankInfo::ValueMapping &ValMapping = 347 InstrMapping.getOperandMapping(OpIdx); 348 // If Reg is already properly mapped, this is free. 349 bool Assign; 350 if (assignmentMatch(Reg, ValMapping, Assign)) { 351 DEBUG(dbgs() << " is free (match).\n"); 352 continue; 353 } 354 if (Assign) { 355 DEBUG(dbgs() << " is free (simple assignment).\n"); 356 RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this, 357 RepairingPlacement::Reassign)); 358 continue; 359 } 360 361 // Find the insertion point for the repairing code. 362 RepairPts.emplace_back( 363 RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert)); 364 RepairingPlacement &RepairPt = RepairPts.back(); 365 366 // If we need to split a basic block to materialize this insertion point, 367 // we may give a higher cost to this mapping. 368 // Nevertheless, we may get away with the split, so try that first. 369 if (RepairPt.hasSplit()) 370 tryAvoidingSplit(RepairPt, MO, ValMapping); 371 372 // Check that the materialization of the repairing is possible. 373 if (!RepairPt.canMaterialize()) 374 return MappingCost::ImpossibleCost(); 375 376 // Account for the split cost and repair cost. 377 // Unless the cost is already saturated or we do not care about the cost. 378 if (!BestCost || Saturated) 379 continue; 380 381 // To get accurate information we need MBFI and MBPI. 382 // Thus, if we end up here this information should be here. 383 assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI"); 384 385 // Sums up the repairing cost of MO at each insertion point. 386 uint64_t RepairCost = getRepairCost(MO, ValMapping); 387 // Bias used for splitting: 5%. 388 const uint64_t PercentageForBias = 5; 389 uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100; 390 // We should not need more than a couple of instructions to repair 391 // an assignment. In other words, the computation should not 392 // overflow because the repairing cost is free of basic block 393 // frequency. 394 assert(((RepairCost < RepairCost * PercentageForBias) && 395 (RepairCost * PercentageForBias < 396 RepairCost * PercentageForBias + 99)) && 397 "Repairing involves more than a billion of instructions?!"); 398 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 399 assert(InsertPt->canMaterialize() && "We should not have made it here"); 400 // We will applied some basic block frequency and those uses uint64_t. 401 if (!InsertPt->isSplit()) 402 Saturated = Cost.addLocalCost(RepairCost); 403 else { 404 uint64_t CostForInsertPt = RepairCost; 405 // Again we shouldn't overflow here givent that 406 // CostForInsertPt is frequency free at this point. 407 assert(CostForInsertPt + Bias > CostForInsertPt && 408 "Repairing + split bias overflows"); 409 CostForInsertPt += Bias; 410 uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt; 411 // Check if we just overflowed. 412 if ((Saturated = PtCost < CostForInsertPt)) 413 Cost.saturate(); 414 else 415 Saturated = Cost.addNonLocalCost(PtCost); 416 } 417 418 // Stop looking into what it takes to repair, this is already 419 // too expensive. 420 if (BestCost && Cost > *BestCost) 421 return Cost; 422 423 // No need to accumulate more cost information. 424 // We need to still gather the repairing information though. 425 if (Saturated) 426 break; 427 } 428 } 429 return Cost; 430 } 431 432 void RegBankSelect::applyMapping( 433 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 434 SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) { 435 assert(InstrMapping.getID() == RegisterBankInfo::DefaultMappingID && 436 "Rewriting of MI not implemented yet"); 437 // First, place the repairing code. 438 bool NeedRewrite = false; 439 SmallVector<unsigned, 8> NewVRegs; 440 for (RepairingPlacement &RepairPt : RepairPts) { 441 assert(RepairPt.canMaterialize() && 442 RepairPt.getKind() != RepairingPlacement::Impossible && 443 "This mapping is impossible"); 444 assert(RepairPt.getKind() != RepairingPlacement::None && 445 "This should not make its way in the list"); 446 unsigned OpIdx = RepairPt.getOpIdx(); 447 MachineOperand &MO = MI.getOperand(OpIdx); 448 const RegisterBankInfo::ValueMapping &ValMapping = 449 InstrMapping.getOperandMapping(OpIdx); 450 unsigned BreakDownSize = ValMapping.BreakDown.size(); 451 unsigned Reg = MO.getReg(); 452 NeedRewrite = BreakDownSize != 1; 453 454 switch (RepairPt.getKind()) { 455 case RepairingPlacement::Reassign: 456 assert(BreakDownSize == 1 && 457 "Reassignment should only be for simple mapping"); 458 MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank); 459 break; 460 case RepairingPlacement::Insert: 461 // We need as many new virtual registers as the number of partial mapping. 462 for (const RegisterBankInfo::PartialMapping &PartMap : 463 ValMapping.BreakDown) { 464 unsigned Tmp = MRI->createGenericVirtualRegister(PartMap.Length); 465 MRI->setRegBank(Tmp, *PartMap.RegBank); 466 NewVRegs.push_back(Tmp); 467 } 468 repairReg(MO, ValMapping, RepairPt, 469 make_range(NewVRegs.end() - BreakDownSize, NewVRegs.end())); 470 break; 471 default: 472 llvm_unreachable("Other kind should not happen"); 473 } 474 } 475 // Second, rewrite the instruction. 476 (void)NeedRewrite; 477 assert(!NeedRewrite && "Not implemented yet"); 478 } 479 480 void RegBankSelect::assignInstr(MachineInstr &MI) { 481 DEBUG(dbgs() << "Assign: " << MI); 482 // Remember the repairing placement for all the operands. 483 SmallVector<RepairingPlacement, 4> RepairPts; 484 485 RegisterBankInfo::InstructionMapping BestMapping; 486 if (OptMode == RegBankSelect::Mode::Fast) { 487 BestMapping = RBI->getInstrMapping(MI); 488 MappingCost DefaultCost = computeMapping(MI, BestMapping, RepairPts); 489 (void)DefaultCost; 490 assert(DefaultCost != MappingCost::ImpossibleCost() && 491 "Default mapping is not suited"); 492 } else { 493 RegisterBankInfo::InstructionMappings PossibleMappings = 494 RBI->getInstrPossibleMappings(MI); 495 assert(!PossibleMappings.empty() && 496 "Do not know how to map this instruction"); 497 BestMapping = std::move(findBestMapping(MI, PossibleMappings, RepairPts)); 498 } 499 // Make sure the mapping is valid for MI. 500 assert(BestMapping.verify(MI) && "Invalid instruction mapping"); 501 502 DEBUG(dbgs() << "Mapping: " << BestMapping << '\n'); 503 504 applyMapping(MI, BestMapping, RepairPts); 505 506 DEBUG(dbgs() << "Assigned: " << MI); 507 } 508 509 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) { 510 DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n'); 511 const Function *F = MF.getFunction(); 512 Mode SaveOptMode = OptMode; 513 if (F->hasFnAttribute(Attribute::OptimizeNone)) 514 OptMode = Mode::Fast; 515 init(MF); 516 // Walk the function and assign register banks to all operands. 517 // Use a RPOT to make sure all registers are assigned before we choose 518 // the best mapping of the current instruction. 519 ReversePostOrderTraversal<MachineFunction*> RPOT(&MF); 520 for (MachineBasicBlock *MBB : RPOT) { 521 // Set a sensible insertion point so that subsequent calls to 522 // MIRBuilder. 523 MIRBuilder.setMBB(*MBB); 524 for (MachineInstr &MI : *MBB) 525 assignInstr(MI); 526 } 527 OptMode = SaveOptMode; 528 return false; 529 } 530 531 //------------------------------------------------------------------------------ 532 // Helper Classes Implementation 533 //------------------------------------------------------------------------------ 534 RegBankSelect::RepairingPlacement::RepairingPlacement( 535 MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P, 536 RepairingPlacement::RepairingKind Kind) 537 // Default is, we are going to insert code to repair OpIdx. 538 : Kind(Kind), 539 OpIdx(OpIdx), 540 CanMaterialize(Kind != RepairingKind::Impossible), 541 HasSplit(false), 542 P(P) { 543 const MachineOperand &MO = MI.getOperand(OpIdx); 544 assert(MO.isReg() && "Trying to repair a non-reg operand"); 545 546 if (Kind != RepairingKind::Insert) 547 return; 548 549 // Repairings for definitions happen after MI, uses happen before. 550 bool Before = !MO.isDef(); 551 552 // Check if we are done with MI. 553 if (!MI.isPHI() && !MI.isTerminator()) { 554 addInsertPoint(MI, Before); 555 // We are done with the initialization. 556 return; 557 } 558 559 // Now, look for the special cases. 560 if (MI.isPHI()) { 561 // - PHI must be the first instructions: 562 // * Before, we have to split the related incoming edge. 563 // * After, move the insertion point past the last phi. 564 if (!Before) { 565 MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI(); 566 if (It != MI.getParent()->end()) 567 addInsertPoint(*It, /*Before*/ true); 568 else 569 addInsertPoint(*(--It), /*Before*/ false); 570 return; 571 } 572 // We repair a use of a phi, we may need to split the related edge. 573 MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB(); 574 // Check if we can move the insertion point prior to the 575 // terminators of the predecessor. 576 unsigned Reg = MO.getReg(); 577 MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr(); 578 for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It) 579 if (It->modifiesRegister(Reg, &TRI)) { 580 // We cannot hoist the repairing code in the predecessor. 581 // Split the edge. 582 addInsertPoint(Pred, *MI.getParent()); 583 return; 584 } 585 // At this point, we can insert in Pred. 586 587 // - If It is invalid, Pred is empty and we can insert in Pred 588 // wherever we want. 589 // - If It is valid, It is the first non-terminator, insert after It. 590 if (It == Pred.end()) 591 addInsertPoint(Pred, /*Beginning*/ false); 592 else 593 addInsertPoint(*It, /*Before*/ false); 594 } else { 595 // - Terminators must be the last instructions: 596 // * Before, move the insert point before the first terminator. 597 // * After, we have to split the outcoming edges. 598 unsigned Reg = MO.getReg(); 599 if (Before) { 600 // Check whether Reg is defined by any terminator. 601 MachineBasicBlock::iterator It = MI; 602 for (auto Begin = MI.getParent()->begin(); 603 --It != Begin && It->isTerminator();) 604 if (It->modifiesRegister(Reg, &TRI)) { 605 // Insert the repairing code right after the definition. 606 addInsertPoint(*It, /*Before*/ false); 607 return; 608 } 609 addInsertPoint(*It, /*Before*/ true); 610 return; 611 } 612 // Make sure Reg is not redefined by other terminators, otherwise 613 // we do not know how to split. 614 for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end(); 615 ++It != End;) 616 // The machine verifier should reject this kind of code. 617 assert(It->modifiesRegister(Reg, &TRI) && "Do not know where to split"); 618 // Split each outcoming edges. 619 MachineBasicBlock &Src = *MI.getParent(); 620 for (auto &Succ : Src.successors()) 621 addInsertPoint(Src, Succ); 622 } 623 } 624 625 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI, 626 bool Before) { 627 addInsertPoint(*new InstrInsertPoint(MI, Before)); 628 } 629 630 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB, 631 bool Beginning) { 632 addInsertPoint(*new MBBInsertPoint(MBB, Beginning)); 633 } 634 635 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src, 636 MachineBasicBlock &Dst) { 637 addInsertPoint(*new EdgeInsertPoint(Src, Dst, P)); 638 } 639 640 void RegBankSelect::RepairingPlacement::addInsertPoint( 641 RegBankSelect::InsertPoint &Point) { 642 CanMaterialize &= Point.canMaterialize(); 643 HasSplit |= Point.isSplit(); 644 InsertPoints.emplace_back(&Point); 645 } 646 647 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr, 648 bool Before) 649 : InsertPoint(), Instr(Instr), Before(Before) { 650 // Since we do not support splitting, we do not need to update 651 // liveness and such, so do not do anything with P. 652 assert((!Before || !Instr.isPHI()) && 653 "Splitting before phis requires more points"); 654 assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) && 655 "Splitting between phis does not make sense"); 656 } 657 658 void RegBankSelect::InstrInsertPoint::materialize() { 659 if (isSplit()) { 660 // Slice and return the beginning of the new block. 661 // If we need to split between the terminators, we theoritically 662 // need to know where the first and second set of terminators end 663 // to update the successors properly. 664 // Now, in pratice, we should have a maximum of 2 branch 665 // instructions; one conditional and one unconditional. Therefore 666 // we know how to update the successor by looking at the target of 667 // the unconditional branch. 668 // If we end up splitting at some point, then, we should update 669 // the liveness information and such. I.e., we would need to 670 // access P here. 671 // The machine verifier should actually make sure such cases 672 // cannot happen. 673 llvm_unreachable("Not yet implemented"); 674 } 675 // Otherwise the insertion point is just the current or next 676 // instruction depending on Before. I.e., there is nothing to do 677 // here. 678 } 679 680 bool RegBankSelect::InstrInsertPoint::isSplit() const { 681 // If the insertion point is after a terminator, we need to split. 682 if (!Before) 683 return Instr.isTerminator(); 684 // If we insert before an instruction that is after a terminator, 685 // we are still after a terminator. 686 return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator(); 687 } 688 689 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const { 690 // Even if we need to split, because we insert between terminators, 691 // this split has actually the same frequency as the instruction. 692 const MachineBlockFrequencyInfo *MBFI = 693 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 694 if (!MBFI) 695 return 1; 696 return MBFI->getBlockFreq(Instr.getParent()).getFrequency(); 697 } 698 699 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const { 700 const MachineBlockFrequencyInfo *MBFI = 701 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 702 if (!MBFI) 703 return 1; 704 return MBFI->getBlockFreq(&MBB).getFrequency(); 705 } 706 707 void RegBankSelect::EdgeInsertPoint::materialize() { 708 // If we end up repairing twice at the same place before materializing the 709 // insertion point, we may think we have to split an edge twice. 710 // We should have a factory for the insert point such that identical points 711 // are the same instance. 712 assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) && 713 "This point has already been split"); 714 MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P); 715 assert(NewBB && "Invalid call to materialize"); 716 // We reuse the destination block to hold the information of the new block. 717 DstOrSplit = NewBB; 718 } 719 720 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const { 721 const MachineBlockFrequencyInfo *MBFI = 722 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 723 if (!MBFI) 724 return 1; 725 if (WasMaterialized) 726 return MBFI->getBlockFreq(DstOrSplit).getFrequency(); 727 728 const MachineBranchProbabilityInfo *MBPI = 729 P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>(); 730 if (!MBPI) 731 return 1; 732 // The basic block will be on the edge. 733 return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit)) 734 .getFrequency(); 735 } 736 737 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const { 738 // If this is not a critical edge, we should not have used this insert 739 // point. Indeed, either the successor or the predecessor should 740 // have do. 741 assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 && 742 "Edge is not critical"); 743 return Src.canSplitCriticalEdge(DstOrSplit); 744 } 745 746 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq) 747 : LocalCost(0), NonLocalCost(0), LocalFreq(LocalFreq.getFrequency()) {} 748 749 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) { 750 // Check if this overflows. 751 if (LocalCost + Cost < LocalCost) { 752 saturate(); 753 return true; 754 } 755 LocalCost += Cost; 756 return isSaturated(); 757 } 758 759 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) { 760 // Check if this overflows. 761 if (NonLocalCost + Cost < NonLocalCost) { 762 saturate(); 763 return true; 764 } 765 NonLocalCost += Cost; 766 return isSaturated(); 767 } 768 769 bool RegBankSelect::MappingCost::isSaturated() const { 770 return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX && 771 LocalFreq == UINT64_MAX; 772 } 773 774 void RegBankSelect::MappingCost::saturate() { 775 *this = ImpossibleCost(); 776 --LocalCost; 777 } 778 779 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() { 780 return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX); 781 } 782 783 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const { 784 // Sort out the easy cases. 785 if (*this == Cost) 786 return false; 787 // If one is impossible to realize the other is cheaper unless it is 788 // impossible as well. 789 if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost())) 790 return (*this == ImpossibleCost()) < (Cost == ImpossibleCost()); 791 // If one is saturated the other is cheaper, unless it is saturated 792 // as well. 793 if (isSaturated() || Cost.isSaturated()) 794 return isSaturated() < Cost.isSaturated(); 795 // At this point we know both costs hold sensible values. 796 797 // If both values have a different base frequency, there is no much 798 // we can do but to scale everything. 799 // However, if they have the same base frequency we can avoid making 800 // complicated computation. 801 uint64_t ThisLocalAdjust; 802 uint64_t OtherLocalAdjust; 803 if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) { 804 805 // At this point, we know the local costs are comparable. 806 // Do the case that do not involve potential overflow first. 807 if (NonLocalCost == Cost.NonLocalCost) 808 // Since the non-local costs do not discriminate on the result, 809 // just compare the local costs. 810 return LocalCost < Cost.LocalCost; 811 812 // The base costs are comparable so we may only keep the relative 813 // value to increase our chances of avoiding overflows. 814 ThisLocalAdjust = 0; 815 OtherLocalAdjust = 0; 816 if (LocalCost < Cost.LocalCost) 817 OtherLocalAdjust = Cost.LocalCost - LocalCost; 818 else 819 ThisLocalAdjust = LocalCost - Cost.LocalCost; 820 821 } else { 822 ThisLocalAdjust = LocalCost; 823 OtherLocalAdjust = Cost.LocalCost; 824 } 825 826 // The non-local costs are comparable, just keep the relative value. 827 uint64_t ThisNonLocalAdjust = 0; 828 uint64_t OtherNonLocalAdjust = 0; 829 if (NonLocalCost < Cost.NonLocalCost) 830 OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost; 831 else 832 ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost; 833 // Scale everything to make them comparable. 834 uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq; 835 // Check for overflow on that operation. 836 bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust || 837 ThisScaledCost < LocalFreq); 838 uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq; 839 // Check for overflow on the last operation. 840 bool OtherOverflows = 841 OtherLocalAdjust && 842 (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq); 843 // Add the non-local costs. 844 ThisOverflows |= ThisNonLocalAdjust && 845 ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust; 846 ThisScaledCost += ThisNonLocalAdjust; 847 OtherOverflows |= OtherNonLocalAdjust && 848 OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust; 849 OtherScaledCost += OtherNonLocalAdjust; 850 // If both overflows, we cannot compare without additional 851 // precision, e.g., APInt. Just give up on that case. 852 if (ThisOverflows && OtherOverflows) 853 return false; 854 // If one overflows but not the other, we can still compare. 855 if (ThisOverflows || OtherOverflows) 856 return ThisOverflows < OtherOverflows; 857 // Otherwise, just compare the values. 858 return ThisScaledCost < OtherScaledCost; 859 } 860 861 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const { 862 return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost && 863 LocalFreq == Cost.LocalFreq; 864 } 865