1 //===- lib/CodeGen/GlobalISel/LegalizerInfo.cpp - Legalizer ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implement an interface to specify and query how an illegal operation on a 11 // given type should be expanded. 12 // 13 // Issues to be resolved: 14 // + Make it fast. 15 // + Support weird types like i3, <7 x i3>, ... 16 // + Operations with more than one type (ICMP, CMPXCHG, intrinsics, ...) 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 21 #include "llvm/ADT/SmallBitVector.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineOperand.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/TargetOpcodes.h" 26 #include "llvm/MC/MCInstrDesc.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/LowLevelTypeImpl.h" 30 #include "llvm/Support/MathExtras.h" 31 #include <algorithm> 32 #include <map> 33 34 using namespace llvm; 35 using namespace LegalizeActions; 36 37 #define DEBUG_TYPE "legalizer-info" 38 39 cl::opt<bool> llvm::DisableGISelLegalityCheck( 40 "disable-gisel-legality-check", 41 cl::desc("Don't verify that MIR is fully legal between GlobalISel passes"), 42 cl::Hidden); 43 44 raw_ostream &LegalityQuery::print(raw_ostream &OS) const { 45 OS << Opcode << ", {"; 46 for (const auto &Type : Types) { 47 OS << Type << ", "; 48 } 49 OS << "}"; 50 return OS; 51 } 52 53 LegalizeActionStep LegalizeRuleSet::apply(const LegalityQuery &Query) const { 54 DEBUG(dbgs() << "Applying legalizer ruleset to: "; Query.print(dbgs()); 55 dbgs() << "\n"); 56 if (Rules.empty()) { 57 DEBUG(dbgs() << ".. fallback to legacy rules (no rules defined)\n"); 58 return {LegalizeAction::UseLegacyRules, 0, LLT{}}; 59 } 60 for (const auto &Rule : Rules) { 61 if (Rule.match(Query)) { 62 DEBUG(dbgs() << ".. match\n"); 63 std::pair<unsigned, LLT> Mutation = Rule.determineMutation(Query); 64 DEBUG(dbgs() << ".. .. " << (unsigned)Rule.getAction() << ", " 65 << Mutation.first << ", " << Mutation.second << "\n"); 66 assert((Query.Types[Mutation.first] != Mutation.second || 67 Rule.getAction() == Lower || 68 Rule.getAction() == MoreElements || 69 Rule.getAction() == FewerElements) && 70 "Simple loop detected"); 71 return {Rule.getAction(), Mutation.first, Mutation.second}; 72 } else 73 DEBUG(dbgs() << ".. no match\n"); 74 } 75 DEBUG(dbgs() << ".. unsupported\n"); 76 return {LegalizeAction::Unsupported, 0, LLT{}}; 77 } 78 79 LegalizerInfo::LegalizerInfo() : TablesInitialized(false) { 80 // Set defaults. 81 // FIXME: these two (G_ANYEXT and G_TRUNC?) can be legalized to the 82 // fundamental load/store Jakob proposed. Once loads & stores are supported. 83 setScalarAction(TargetOpcode::G_ANYEXT, 1, {{1, Legal}}); 84 setScalarAction(TargetOpcode::G_ZEXT, 1, {{1, Legal}}); 85 setScalarAction(TargetOpcode::G_SEXT, 1, {{1, Legal}}); 86 setScalarAction(TargetOpcode::G_TRUNC, 0, {{1, Legal}}); 87 setScalarAction(TargetOpcode::G_TRUNC, 1, {{1, Legal}}); 88 89 setScalarAction(TargetOpcode::G_INTRINSIC, 0, {{1, Legal}}); 90 setScalarAction(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS, 0, {{1, Legal}}); 91 92 setLegalizeScalarToDifferentSizeStrategy( 93 TargetOpcode::G_IMPLICIT_DEF, 0, narrowToSmallerAndUnsupportedIfTooSmall); 94 setLegalizeScalarToDifferentSizeStrategy( 95 TargetOpcode::G_ADD, 0, widenToLargerTypesAndNarrowToLargest); 96 setLegalizeScalarToDifferentSizeStrategy( 97 TargetOpcode::G_OR, 0, widenToLargerTypesAndNarrowToLargest); 98 setLegalizeScalarToDifferentSizeStrategy( 99 TargetOpcode::G_LOAD, 0, narrowToSmallerAndUnsupportedIfTooSmall); 100 setLegalizeScalarToDifferentSizeStrategy( 101 TargetOpcode::G_STORE, 0, narrowToSmallerAndUnsupportedIfTooSmall); 102 103 setLegalizeScalarToDifferentSizeStrategy( 104 TargetOpcode::G_BRCOND, 0, widenToLargerTypesUnsupportedOtherwise); 105 setLegalizeScalarToDifferentSizeStrategy( 106 TargetOpcode::G_INSERT, 0, narrowToSmallerAndUnsupportedIfTooSmall); 107 setLegalizeScalarToDifferentSizeStrategy( 108 TargetOpcode::G_EXTRACT, 0, narrowToSmallerAndUnsupportedIfTooSmall); 109 setLegalizeScalarToDifferentSizeStrategy( 110 TargetOpcode::G_EXTRACT, 1, narrowToSmallerAndUnsupportedIfTooSmall); 111 setScalarAction(TargetOpcode::G_FNEG, 0, {{1, Lower}}); 112 } 113 114 void LegalizerInfo::computeTables() { 115 assert(TablesInitialized == false); 116 117 for (unsigned OpcodeIdx = 0; OpcodeIdx <= LastOp - FirstOp; ++OpcodeIdx) { 118 const unsigned Opcode = FirstOp + OpcodeIdx; 119 for (unsigned TypeIdx = 0; TypeIdx != SpecifiedActions[OpcodeIdx].size(); 120 ++TypeIdx) { 121 // 0. Collect information specified through the setAction API, i.e. 122 // for specific bit sizes. 123 // For scalar types: 124 SizeAndActionsVec ScalarSpecifiedActions; 125 // For pointer types: 126 std::map<uint16_t, SizeAndActionsVec> AddressSpace2SpecifiedActions; 127 // For vector types: 128 std::map<uint16_t, SizeAndActionsVec> ElemSize2SpecifiedActions; 129 for (auto LLT2Action : SpecifiedActions[OpcodeIdx][TypeIdx]) { 130 const LLT Type = LLT2Action.first; 131 const LegalizeAction Action = LLT2Action.second; 132 133 auto SizeAction = std::make_pair(Type.getSizeInBits(), Action); 134 if (Type.isPointer()) 135 AddressSpace2SpecifiedActions[Type.getAddressSpace()].push_back( 136 SizeAction); 137 else if (Type.isVector()) 138 ElemSize2SpecifiedActions[Type.getElementType().getSizeInBits()] 139 .push_back(SizeAction); 140 else 141 ScalarSpecifiedActions.push_back(SizeAction); 142 } 143 144 // 1. Handle scalar types 145 { 146 // Decide how to handle bit sizes for which no explicit specification 147 // was given. 148 SizeChangeStrategy S = &unsupportedForDifferentSizes; 149 if (TypeIdx < ScalarSizeChangeStrategies[OpcodeIdx].size() && 150 ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr) 151 S = ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx]; 152 llvm::sort(ScalarSpecifiedActions.begin(), 153 ScalarSpecifiedActions.end()); 154 checkPartialSizeAndActionsVector(ScalarSpecifiedActions); 155 setScalarAction(Opcode, TypeIdx, S(ScalarSpecifiedActions)); 156 } 157 158 // 2. Handle pointer types 159 for (auto PointerSpecifiedActions : AddressSpace2SpecifiedActions) { 160 llvm::sort(PointerSpecifiedActions.second.begin(), 161 PointerSpecifiedActions.second.end()); 162 checkPartialSizeAndActionsVector(PointerSpecifiedActions.second); 163 // For pointer types, we assume that there isn't a meaningfull way 164 // to change the number of bits used in the pointer. 165 setPointerAction( 166 Opcode, TypeIdx, PointerSpecifiedActions.first, 167 unsupportedForDifferentSizes(PointerSpecifiedActions.second)); 168 } 169 170 // 3. Handle vector types 171 SizeAndActionsVec ElementSizesSeen; 172 for (auto VectorSpecifiedActions : ElemSize2SpecifiedActions) { 173 llvm::sort(VectorSpecifiedActions.second.begin(), 174 VectorSpecifiedActions.second.end()); 175 const uint16_t ElementSize = VectorSpecifiedActions.first; 176 ElementSizesSeen.push_back({ElementSize, Legal}); 177 checkPartialSizeAndActionsVector(VectorSpecifiedActions.second); 178 // For vector types, we assume that the best way to adapt the number 179 // of elements is to the next larger number of elements type for which 180 // the vector type is legal, unless there is no such type. In that case, 181 // legalize towards a vector type with a smaller number of elements. 182 SizeAndActionsVec NumElementsActions; 183 for (SizeAndAction BitsizeAndAction : VectorSpecifiedActions.second) { 184 assert(BitsizeAndAction.first % ElementSize == 0); 185 const uint16_t NumElements = BitsizeAndAction.first / ElementSize; 186 NumElementsActions.push_back({NumElements, BitsizeAndAction.second}); 187 } 188 setVectorNumElementAction( 189 Opcode, TypeIdx, ElementSize, 190 moreToWiderTypesAndLessToWidest(NumElementsActions)); 191 } 192 llvm::sort(ElementSizesSeen.begin(), ElementSizesSeen.end()); 193 SizeChangeStrategy VectorElementSizeChangeStrategy = 194 &unsupportedForDifferentSizes; 195 if (TypeIdx < VectorElementSizeChangeStrategies[OpcodeIdx].size() && 196 VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr) 197 VectorElementSizeChangeStrategy = 198 VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx]; 199 setScalarInVectorAction( 200 Opcode, TypeIdx, VectorElementSizeChangeStrategy(ElementSizesSeen)); 201 } 202 } 203 204 TablesInitialized = true; 205 } 206 207 // FIXME: inefficient implementation for now. Without ComputeValueVTs we're 208 // probably going to need specialized lookup structures for various types before 209 // we have any hope of doing well with something like <13 x i3>. Even the common 210 // cases should do better than what we have now. 211 std::pair<LegalizeAction, LLT> 212 LegalizerInfo::getAspectAction(const InstrAspect &Aspect) const { 213 assert(TablesInitialized && "backend forgot to call computeTables"); 214 // These *have* to be implemented for now, they're the fundamental basis of 215 // how everything else is transformed. 216 if (Aspect.Type.isScalar() || Aspect.Type.isPointer()) 217 return findScalarLegalAction(Aspect); 218 assert(Aspect.Type.isVector()); 219 return findVectorLegalAction(Aspect); 220 } 221 222 /// Helper function to get LLT for the given type index. 223 static LLT getTypeFromTypeIdx(const MachineInstr &MI, 224 const MachineRegisterInfo &MRI, unsigned OpIdx, 225 unsigned TypeIdx) { 226 assert(TypeIdx < MI.getNumOperands() && "Unexpected TypeIdx"); 227 // G_UNMERGE_VALUES has variable number of operands, but there is only 228 // one source type and one destination type as all destinations must be the 229 // same type. So, get the last operand if TypeIdx == 1. 230 if (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && TypeIdx == 1) 231 return MRI.getType(MI.getOperand(MI.getNumOperands() - 1).getReg()); 232 return MRI.getType(MI.getOperand(OpIdx).getReg()); 233 } 234 235 unsigned LegalizerInfo::getOpcodeIdxForOpcode(unsigned Opcode) const { 236 assert(Opcode >= FirstOp && Opcode <= LastOp && "Unsupported opcode"); 237 return Opcode - FirstOp; 238 } 239 240 unsigned LegalizerInfo::getActionDefinitionsIdx(unsigned Opcode) const { 241 unsigned OpcodeIdx = getOpcodeIdxForOpcode(Opcode); 242 if (unsigned Alias = RulesForOpcode[OpcodeIdx].getAlias()) { 243 DEBUG(dbgs() << ".. opcode " << Opcode << " is aliased to " << Alias 244 << "\n"); 245 OpcodeIdx = getOpcodeIdxForOpcode(Alias); 246 DEBUG(dbgs() << ".. opcode " << Alias << " is aliased to " 247 << RulesForOpcode[OpcodeIdx].getAlias() << "\n"); 248 assert(RulesForOpcode[OpcodeIdx].getAlias() == 0 && "Cannot chain aliases"); 249 } 250 251 return OpcodeIdx; 252 } 253 254 const LegalizeRuleSet & 255 LegalizerInfo::getActionDefinitions(unsigned Opcode) const { 256 unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode); 257 return RulesForOpcode[OpcodeIdx]; 258 } 259 260 LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(unsigned Opcode) { 261 unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode); 262 auto &Result = RulesForOpcode[OpcodeIdx]; 263 assert(!Result.isAliasedByAnother() && "Modifying this opcode will modify aliases"); 264 return Result; 265 } 266 267 LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder( 268 std::initializer_list<unsigned> Opcodes) { 269 unsigned Representative = *Opcodes.begin(); 270 271 assert(Opcodes.begin() != Opcodes.end() && 272 Opcodes.begin() + 1 != Opcodes.end() && 273 "Initializer list must have at least two opcodes"); 274 275 for (auto I = Opcodes.begin() + 1, E = Opcodes.end(); I != E; ++I) 276 aliasActionDefinitions(Representative, *I); 277 278 auto &Return = getActionDefinitionsBuilder(Representative); 279 Return.setIsAliasedByAnother(); 280 return Return; 281 } 282 283 void LegalizerInfo::aliasActionDefinitions(unsigned OpcodeTo, 284 unsigned OpcodeFrom) { 285 assert(OpcodeTo != OpcodeFrom && "Cannot alias to self"); 286 assert(OpcodeTo >= FirstOp && OpcodeTo <= LastOp && "Unsupported opcode"); 287 const unsigned OpcodeFromIdx = getOpcodeIdxForOpcode(OpcodeFrom); 288 RulesForOpcode[OpcodeFromIdx].aliasTo(OpcodeTo); 289 } 290 291 LegalizeActionStep 292 LegalizerInfo::getAction(const LegalityQuery &Query) const { 293 LegalizeActionStep Step = getActionDefinitions(Query.Opcode).apply(Query); 294 if (Step.Action != LegalizeAction::UseLegacyRules) { 295 return Step; 296 } 297 298 for (unsigned i = 0; i < Query.Types.size(); ++i) { 299 auto Action = getAspectAction({Query.Opcode, i, Query.Types[i]}); 300 if (Action.first != Legal) { 301 DEBUG(dbgs() << ".. (legacy) Type " << i << " Action=" 302 << (unsigned)Action.first << ", " << Action.second << "\n"); 303 return {Action.first, i, Action.second}; 304 } else 305 DEBUG(dbgs() << ".. (legacy) Type " << i << " Legal\n"); 306 } 307 DEBUG(dbgs() << ".. (legacy) Legal\n"); 308 return {Legal, 0, LLT{}}; 309 } 310 311 LegalizeActionStep 312 LegalizerInfo::getAction(const MachineInstr &MI, 313 const MachineRegisterInfo &MRI) const { 314 SmallVector<LLT, 2> Types; 315 SmallBitVector SeenTypes(8); 316 const MCOperandInfo *OpInfo = MI.getDesc().OpInfo; 317 // FIXME: probably we'll need to cache the results here somehow? 318 for (unsigned i = 0; i < MI.getDesc().getNumOperands(); ++i) { 319 if (!OpInfo[i].isGenericType()) 320 continue; 321 322 // We must only record actions once for each TypeIdx; otherwise we'd 323 // try to legalize operands multiple times down the line. 324 unsigned TypeIdx = OpInfo[i].getGenericTypeIndex(); 325 if (SeenTypes[TypeIdx]) 326 continue; 327 328 SeenTypes.set(TypeIdx); 329 330 LLT Ty = getTypeFromTypeIdx(MI, MRI, i, TypeIdx); 331 Types.push_back(Ty); 332 } 333 return getAction({MI.getOpcode(), Types}); 334 } 335 336 bool LegalizerInfo::isLegal(const MachineInstr &MI, 337 const MachineRegisterInfo &MRI) const { 338 return getAction(MI, MRI).Action == Legal; 339 } 340 341 bool LegalizerInfo::legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI, 342 MachineIRBuilder &MIRBuilder) const { 343 return false; 344 } 345 346 LegalizerInfo::SizeAndActionsVec 347 LegalizerInfo::increaseToLargerTypesAndDecreaseToLargest( 348 const SizeAndActionsVec &v, LegalizeAction IncreaseAction, 349 LegalizeAction DecreaseAction) { 350 SizeAndActionsVec result; 351 unsigned LargestSizeSoFar = 0; 352 if (v.size() >= 1 && v[0].first != 1) 353 result.push_back({1, IncreaseAction}); 354 for (size_t i = 0; i < v.size(); ++i) { 355 result.push_back(v[i]); 356 LargestSizeSoFar = v[i].first; 357 if (i + 1 < v.size() && v[i + 1].first != v[i].first + 1) { 358 result.push_back({LargestSizeSoFar + 1, IncreaseAction}); 359 LargestSizeSoFar = v[i].first + 1; 360 } 361 } 362 result.push_back({LargestSizeSoFar + 1, DecreaseAction}); 363 return result; 364 } 365 366 LegalizerInfo::SizeAndActionsVec 367 LegalizerInfo::decreaseToSmallerTypesAndIncreaseToSmallest( 368 const SizeAndActionsVec &v, LegalizeAction DecreaseAction, 369 LegalizeAction IncreaseAction) { 370 SizeAndActionsVec result; 371 if (v.size() == 0 || v[0].first != 1) 372 result.push_back({1, IncreaseAction}); 373 for (size_t i = 0; i < v.size(); ++i) { 374 result.push_back(v[i]); 375 if (i + 1 == v.size() || v[i + 1].first != v[i].first + 1) { 376 result.push_back({v[i].first + 1, DecreaseAction}); 377 } 378 } 379 return result; 380 } 381 382 LegalizerInfo::SizeAndAction 383 LegalizerInfo::findAction(const SizeAndActionsVec &Vec, const uint32_t Size) { 384 assert(Size >= 1); 385 // Find the last element in Vec that has a bitsize equal to or smaller than 386 // the requested bit size. 387 // That is the element just before the first element that is bigger than Size. 388 auto VecIt = std::upper_bound( 389 Vec.begin(), Vec.end(), Size, 390 [](const uint32_t Size, const SizeAndAction lhs) -> bool { 391 return Size < lhs.first; 392 }); 393 assert(VecIt != Vec.begin() && "Does Vec not start with size 1?"); 394 --VecIt; 395 int VecIdx = VecIt - Vec.begin(); 396 397 LegalizeAction Action = Vec[VecIdx].second; 398 switch (Action) { 399 case Legal: 400 case Lower: 401 case Libcall: 402 case Custom: 403 return {Size, Action}; 404 case FewerElements: 405 // FIXME: is this special case still needed and correct? 406 // Special case for scalarization: 407 if (Vec == SizeAndActionsVec({{1, FewerElements}})) 408 return {1, FewerElements}; 409 LLVM_FALLTHROUGH; 410 case NarrowScalar: { 411 // The following needs to be a loop, as for now, we do allow needing to 412 // go over "Unsupported" bit sizes before finding a legalizable bit size. 413 // e.g. (s8, WidenScalar), (s9, Unsupported), (s32, Legal). if Size==8, 414 // we need to iterate over s9, and then to s32 to return (s32, Legal). 415 // If we want to get rid of the below loop, we should have stronger asserts 416 // when building the SizeAndActionsVecs, probably not allowing 417 // "Unsupported" unless at the ends of the vector. 418 for (int i = VecIdx - 1; i >= 0; --i) 419 if (!needsLegalizingToDifferentSize(Vec[i].second) && 420 Vec[i].second != Unsupported) 421 return {Vec[i].first, Action}; 422 llvm_unreachable(""); 423 } 424 case WidenScalar: 425 case MoreElements: { 426 // See above, the following needs to be a loop, at least for now. 427 for (std::size_t i = VecIdx + 1; i < Vec.size(); ++i) 428 if (!needsLegalizingToDifferentSize(Vec[i].second) && 429 Vec[i].second != Unsupported) 430 return {Vec[i].first, Action}; 431 llvm_unreachable(""); 432 } 433 case Unsupported: 434 return {Size, Unsupported}; 435 case NotFound: 436 case UseLegacyRules: 437 llvm_unreachable("NotFound"); 438 } 439 llvm_unreachable("Action has an unknown enum value"); 440 } 441 442 std::pair<LegalizeAction, LLT> 443 LegalizerInfo::findScalarLegalAction(const InstrAspect &Aspect) const { 444 assert(Aspect.Type.isScalar() || Aspect.Type.isPointer()); 445 if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp) 446 return {NotFound, LLT()}; 447 const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode); 448 if (Aspect.Type.isPointer() && 449 AddrSpace2PointerActions[OpcodeIdx].find(Aspect.Type.getAddressSpace()) == 450 AddrSpace2PointerActions[OpcodeIdx].end()) { 451 return {NotFound, LLT()}; 452 } 453 const SmallVector<SizeAndActionsVec, 1> &Actions = 454 Aspect.Type.isPointer() 455 ? AddrSpace2PointerActions[OpcodeIdx] 456 .find(Aspect.Type.getAddressSpace()) 457 ->second 458 : ScalarActions[OpcodeIdx]; 459 if (Aspect.Idx >= Actions.size()) 460 return {NotFound, LLT()}; 461 const SizeAndActionsVec &Vec = Actions[Aspect.Idx]; 462 // FIXME: speed up this search, e.g. by using a results cache for repeated 463 // queries? 464 auto SizeAndAction = findAction(Vec, Aspect.Type.getSizeInBits()); 465 return {SizeAndAction.second, 466 Aspect.Type.isScalar() ? LLT::scalar(SizeAndAction.first) 467 : LLT::pointer(Aspect.Type.getAddressSpace(), 468 SizeAndAction.first)}; 469 } 470 471 std::pair<LegalizeAction, LLT> 472 LegalizerInfo::findVectorLegalAction(const InstrAspect &Aspect) const { 473 assert(Aspect.Type.isVector()); 474 // First legalize the vector element size, then legalize the number of 475 // lanes in the vector. 476 if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp) 477 return {NotFound, Aspect.Type}; 478 const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode); 479 const unsigned TypeIdx = Aspect.Idx; 480 if (TypeIdx >= ScalarInVectorActions[OpcodeIdx].size()) 481 return {NotFound, Aspect.Type}; 482 const SizeAndActionsVec &ElemSizeVec = 483 ScalarInVectorActions[OpcodeIdx][TypeIdx]; 484 485 LLT IntermediateType; 486 auto ElementSizeAndAction = 487 findAction(ElemSizeVec, Aspect.Type.getScalarSizeInBits()); 488 IntermediateType = 489 LLT::vector(Aspect.Type.getNumElements(), ElementSizeAndAction.first); 490 if (ElementSizeAndAction.second != Legal) 491 return {ElementSizeAndAction.second, IntermediateType}; 492 493 auto i = NumElements2Actions[OpcodeIdx].find( 494 IntermediateType.getScalarSizeInBits()); 495 if (i == NumElements2Actions[OpcodeIdx].end()) { 496 return {NotFound, IntermediateType}; 497 } 498 const SizeAndActionsVec &NumElementsVec = (*i).second[TypeIdx]; 499 auto NumElementsAndAction = 500 findAction(NumElementsVec, IntermediateType.getNumElements()); 501 return {NumElementsAndAction.second, 502 LLT::vector(NumElementsAndAction.first, 503 IntermediateType.getScalarSizeInBits())}; 504 } 505 506 #ifndef NDEBUG 507 // FIXME: This should be in the MachineVerifier, but it can't use the 508 // LegalizerInfo as it's currently in the separate GlobalISel library. 509 // Note that RegBankSelected property already checked in the verifier 510 // has the same layering problem, but we only use inline methods so 511 // end up not needing to link against the GlobalISel library. 512 const MachineInstr *llvm::machineFunctionIsIllegal(const MachineFunction &MF) { 513 if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo()) { 514 const MachineRegisterInfo &MRI = MF.getRegInfo(); 515 for (const MachineBasicBlock &MBB : MF) 516 for (const MachineInstr &MI : MBB) 517 if (isPreISelGenericOpcode(MI.getOpcode()) && !MLI->isLegal(MI, MRI)) 518 return &MI; 519 } 520 return nullptr; 521 } 522 #endif 523