1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 static LLT getGCDType(LLT OrigTy, LLT TargetTy) { 67 if (OrigTy.isVector() && TargetTy.isVector()) { 68 assert(OrigTy.getElementType() == TargetTy.getElementType()); 69 int GCD = greatestCommonDivisor(OrigTy.getNumElements(), 70 TargetTy.getNumElements()); 71 return LLT::scalarOrVector(GCD, OrigTy.getElementType()); 72 } 73 74 if (OrigTy.isVector() && !TargetTy.isVector()) { 75 assert(OrigTy.getElementType() == TargetTy); 76 return TargetTy; 77 } 78 79 assert(!OrigTy.isVector() && !TargetTy.isVector() && 80 "GCD type of vector and scalar not implemented"); 81 82 int GCD = greatestCommonDivisor(OrigTy.getSizeInBits(), 83 TargetTy.getSizeInBits()); 84 return LLT::scalar(GCD); 85 } 86 87 static LLT getLCMType(LLT Ty0, LLT Ty1) { 88 if (!Ty0.isVector() && !Ty1.isVector()) { 89 unsigned Mul = Ty0.getSizeInBits() * Ty1.getSizeInBits(); 90 int GCDSize = greatestCommonDivisor(Ty0.getSizeInBits(), 91 Ty1.getSizeInBits()); 92 return LLT::scalar(Mul / GCDSize); 93 } 94 95 if (Ty0.isVector() && !Ty1.isVector()) { 96 assert(Ty0.getElementType() == Ty1 && "not yet handled"); 97 return Ty0; 98 } 99 100 if (Ty1.isVector() && !Ty0.isVector()) { 101 assert(Ty1.getElementType() == Ty0 && "not yet handled"); 102 return Ty1; 103 } 104 105 if (Ty0.isVector() && Ty1.isVector()) { 106 assert(Ty0.getElementType() == Ty1.getElementType() && "not yet handled"); 107 108 int GCDElts = greatestCommonDivisor(Ty0.getNumElements(), 109 Ty1.getNumElements()); 110 111 int Mul = Ty0.getNumElements() * Ty1.getNumElements(); 112 return LLT::vector(Mul / GCDElts, Ty0.getElementType()); 113 } 114 115 llvm_unreachable("not yet handled"); 116 } 117 118 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 119 120 if (!Ty.isScalar()) 121 return nullptr; 122 123 switch (Ty.getSizeInBits()) { 124 case 16: 125 return Type::getHalfTy(Ctx); 126 case 32: 127 return Type::getFloatTy(Ctx); 128 case 64: 129 return Type::getDoubleTy(Ctx); 130 case 128: 131 return Type::getFP128Ty(Ctx); 132 default: 133 return nullptr; 134 } 135 } 136 137 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 138 GISelChangeObserver &Observer, 139 MachineIRBuilder &Builder) 140 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 141 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 142 MIRBuilder.setMF(MF); 143 MIRBuilder.setChangeObserver(Observer); 144 } 145 146 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 147 GISelChangeObserver &Observer, 148 MachineIRBuilder &B) 149 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 150 MIRBuilder.setMF(MF); 151 MIRBuilder.setChangeObserver(Observer); 152 } 153 LegalizerHelper::LegalizeResult 154 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 155 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 156 157 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 158 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 159 return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized 160 : UnableToLegalize; 161 auto Step = LI.getAction(MI, MRI); 162 switch (Step.Action) { 163 case Legal: 164 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 165 return AlreadyLegal; 166 case Libcall: 167 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 168 return libcall(MI); 169 case NarrowScalar: 170 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 171 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 172 case WidenScalar: 173 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 174 return widenScalar(MI, Step.TypeIdx, Step.NewType); 175 case Lower: 176 LLVM_DEBUG(dbgs() << ".. Lower\n"); 177 return lower(MI, Step.TypeIdx, Step.NewType); 178 case FewerElements: 179 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 180 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 181 case MoreElements: 182 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 183 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 184 case Custom: 185 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 186 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 187 : UnableToLegalize; 188 default: 189 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 190 return UnableToLegalize; 191 } 192 } 193 194 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 195 SmallVectorImpl<Register> &VRegs) { 196 for (int i = 0; i < NumParts; ++i) 197 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 198 MIRBuilder.buildUnmerge(VRegs, Reg); 199 } 200 201 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 202 LLT MainTy, LLT &LeftoverTy, 203 SmallVectorImpl<Register> &VRegs, 204 SmallVectorImpl<Register> &LeftoverRegs) { 205 assert(!LeftoverTy.isValid() && "this is an out argument"); 206 207 unsigned RegSize = RegTy.getSizeInBits(); 208 unsigned MainSize = MainTy.getSizeInBits(); 209 unsigned NumParts = RegSize / MainSize; 210 unsigned LeftoverSize = RegSize - NumParts * MainSize; 211 212 // Use an unmerge when possible. 213 if (LeftoverSize == 0) { 214 for (unsigned I = 0; I < NumParts; ++I) 215 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 216 MIRBuilder.buildUnmerge(VRegs, Reg); 217 return true; 218 } 219 220 if (MainTy.isVector()) { 221 unsigned EltSize = MainTy.getScalarSizeInBits(); 222 if (LeftoverSize % EltSize != 0) 223 return false; 224 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 225 } else { 226 LeftoverTy = LLT::scalar(LeftoverSize); 227 } 228 229 // For irregular sizes, extract the individual parts. 230 for (unsigned I = 0; I != NumParts; ++I) { 231 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 232 VRegs.push_back(NewReg); 233 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 234 } 235 236 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 237 Offset += LeftoverSize) { 238 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 239 LeftoverRegs.push_back(NewReg); 240 MIRBuilder.buildExtract(NewReg, Reg, Offset); 241 } 242 243 return true; 244 } 245 246 void LegalizerHelper::insertParts(Register DstReg, 247 LLT ResultTy, LLT PartTy, 248 ArrayRef<Register> PartRegs, 249 LLT LeftoverTy, 250 ArrayRef<Register> LeftoverRegs) { 251 if (!LeftoverTy.isValid()) { 252 assert(LeftoverRegs.empty()); 253 254 if (!ResultTy.isVector()) { 255 MIRBuilder.buildMerge(DstReg, PartRegs); 256 return; 257 } 258 259 if (PartTy.isVector()) 260 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 261 else 262 MIRBuilder.buildBuildVector(DstReg, PartRegs); 263 return; 264 } 265 266 unsigned PartSize = PartTy.getSizeInBits(); 267 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 268 269 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 270 MIRBuilder.buildUndef(CurResultReg); 271 272 unsigned Offset = 0; 273 for (Register PartReg : PartRegs) { 274 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 275 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 276 CurResultReg = NewResultReg; 277 Offset += PartSize; 278 } 279 280 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 281 // Use the original output register for the final insert to avoid a copy. 282 Register NewResultReg = (I + 1 == E) ? 283 DstReg : MRI.createGenericVirtualRegister(ResultTy); 284 285 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 286 CurResultReg = NewResultReg; 287 Offset += LeftoverPartSize; 288 } 289 } 290 291 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 292 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 293 const MachineInstr &MI) { 294 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 295 296 const int NumResults = MI.getNumOperands() - 1; 297 Regs.resize(NumResults); 298 for (int I = 0; I != NumResults; ++I) 299 Regs[I] = MI.getOperand(I).getReg(); 300 } 301 302 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 303 LLT NarrowTy, Register SrcReg) { 304 LLT SrcTy = MRI.getType(SrcReg); 305 306 LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy)); 307 if (SrcTy == GCDTy) { 308 // If the source already evenly divides the result type, we don't need to do 309 // anything. 310 Parts.push_back(SrcReg); 311 } else { 312 // Need to split into common type sized pieces. 313 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 314 getUnmergeResults(Parts, *Unmerge); 315 } 316 317 return GCDTy; 318 } 319 320 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 321 SmallVectorImpl<Register> &VRegs, 322 unsigned PadStrategy) { 323 LLT LCMTy = getLCMType(DstTy, NarrowTy); 324 325 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 326 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 327 int NumOrigSrc = VRegs.size(); 328 329 Register PadReg; 330 331 // Get a value we can use to pad the source value if the sources won't evenly 332 // cover the result type. 333 if (NumOrigSrc < NumParts * NumSubParts) { 334 if (PadStrategy == TargetOpcode::G_ZEXT) 335 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 336 else if (PadStrategy == TargetOpcode::G_ANYEXT) 337 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 338 else { 339 assert(PadStrategy == TargetOpcode::G_SEXT); 340 341 // Shift the sign bit of the low register through the high register. 342 auto ShiftAmt = 343 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 344 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 345 } 346 } 347 348 // Registers for the final merge to be produced. 349 SmallVector<Register, 4> Remerge(NumParts); 350 351 // Registers needed for intermediate merges, which will be merged into a 352 // source for Remerge. 353 SmallVector<Register, 4> SubMerge(NumSubParts); 354 355 // Once we've fully read off the end of the original source bits, we can reuse 356 // the same high bits for remaining padding elements. 357 Register AllPadReg; 358 359 // Build merges to the LCM type to cover the original result type. 360 for (int I = 0; I != NumParts; ++I) { 361 bool AllMergePartsArePadding = true; 362 363 // Build the requested merges to the requested type. 364 for (int J = 0; J != NumSubParts; ++J) { 365 int Idx = I * NumSubParts + J; 366 if (Idx >= NumOrigSrc) { 367 SubMerge[J] = PadReg; 368 continue; 369 } 370 371 SubMerge[J] = VRegs[Idx]; 372 373 // There are meaningful bits here we can't reuse later. 374 AllMergePartsArePadding = false; 375 } 376 377 // If we've filled up a complete piece with padding bits, we can directly 378 // emit the natural sized constant if applicable, rather than a merge of 379 // smaller constants. 380 if (AllMergePartsArePadding && !AllPadReg) { 381 if (PadStrategy == TargetOpcode::G_ANYEXT) 382 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 383 else if (PadStrategy == TargetOpcode::G_ZEXT) 384 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 385 386 // If this is a sign extension, we can't materialize a trivial constant 387 // with the right type and have to produce a merge. 388 } 389 390 if (AllPadReg) { 391 // Avoid creating additional instructions if we're just adding additional 392 // copies of padding bits. 393 Remerge[I] = AllPadReg; 394 continue; 395 } 396 397 if (NumSubParts == 1) 398 Remerge[I] = SubMerge[0]; 399 else 400 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 401 402 // In the sign extend padding case, re-use the first all-signbit merge. 403 if (AllMergePartsArePadding && !AllPadReg) 404 AllPadReg = Remerge[I]; 405 } 406 407 VRegs = std::move(Remerge); 408 return LCMTy; 409 } 410 411 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 412 ArrayRef<Register> RemergeRegs) { 413 LLT DstTy = MRI.getType(DstReg); 414 415 // Create the merge to the widened source, and extract the relevant bits into 416 // the result. 417 418 if (DstTy == LCMTy) { 419 MIRBuilder.buildMerge(DstReg, RemergeRegs); 420 return; 421 } 422 423 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 424 if (DstTy.isScalar() && LCMTy.isScalar()) { 425 MIRBuilder.buildTrunc(DstReg, Remerge); 426 return; 427 } 428 429 if (LCMTy.isVector()) { 430 MIRBuilder.buildExtract(DstReg, Remerge, 0); 431 return; 432 } 433 434 llvm_unreachable("unhandled case"); 435 } 436 437 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 438 switch (Opcode) { 439 case TargetOpcode::G_SDIV: 440 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 441 switch (Size) { 442 case 32: 443 return RTLIB::SDIV_I32; 444 case 64: 445 return RTLIB::SDIV_I64; 446 case 128: 447 return RTLIB::SDIV_I128; 448 default: 449 llvm_unreachable("unexpected size"); 450 } 451 case TargetOpcode::G_UDIV: 452 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 453 switch (Size) { 454 case 32: 455 return RTLIB::UDIV_I32; 456 case 64: 457 return RTLIB::UDIV_I64; 458 case 128: 459 return RTLIB::UDIV_I128; 460 default: 461 llvm_unreachable("unexpected size"); 462 } 463 case TargetOpcode::G_SREM: 464 assert((Size == 32 || Size == 64) && "Unsupported size"); 465 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 466 case TargetOpcode::G_UREM: 467 assert((Size == 32 || Size == 64) && "Unsupported size"); 468 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 469 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 470 assert(Size == 32 && "Unsupported size"); 471 return RTLIB::CTLZ_I32; 472 case TargetOpcode::G_FADD: 473 assert((Size == 32 || Size == 64) && "Unsupported size"); 474 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 475 case TargetOpcode::G_FSUB: 476 assert((Size == 32 || Size == 64) && "Unsupported size"); 477 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 478 case TargetOpcode::G_FMUL: 479 assert((Size == 32 || Size == 64) && "Unsupported size"); 480 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 481 case TargetOpcode::G_FDIV: 482 assert((Size == 32 || Size == 64) && "Unsupported size"); 483 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 484 case TargetOpcode::G_FEXP: 485 assert((Size == 32 || Size == 64) && "Unsupported size"); 486 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; 487 case TargetOpcode::G_FEXP2: 488 assert((Size == 32 || Size == 64) && "Unsupported size"); 489 return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32; 490 case TargetOpcode::G_FREM: 491 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 492 case TargetOpcode::G_FPOW: 493 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 494 case TargetOpcode::G_FMA: 495 assert((Size == 32 || Size == 64) && "Unsupported size"); 496 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 497 case TargetOpcode::G_FSIN: 498 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 499 return Size == 128 ? RTLIB::SIN_F128 500 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; 501 case TargetOpcode::G_FCOS: 502 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 503 return Size == 128 ? RTLIB::COS_F128 504 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; 505 case TargetOpcode::G_FLOG10: 506 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 507 return Size == 128 ? RTLIB::LOG10_F128 508 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; 509 case TargetOpcode::G_FLOG: 510 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 511 return Size == 128 ? RTLIB::LOG_F128 512 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; 513 case TargetOpcode::G_FLOG2: 514 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 515 return Size == 128 ? RTLIB::LOG2_F128 516 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; 517 case TargetOpcode::G_FCEIL: 518 assert((Size == 32 || Size == 64) && "Unsupported size"); 519 return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32; 520 case TargetOpcode::G_FFLOOR: 521 assert((Size == 32 || Size == 64) && "Unsupported size"); 522 return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32; 523 } 524 llvm_unreachable("Unknown libcall function"); 525 } 526 527 /// True if an instruction is in tail position in its caller. Intended for 528 /// legalizing libcalls as tail calls when possible. 529 static bool isLibCallInTailPosition(MachineInstr &MI) { 530 const Function &F = MI.getParent()->getParent()->getFunction(); 531 532 // Conservatively require the attributes of the call to match those of 533 // the return. Ignore NoAlias and NonNull because they don't affect the 534 // call sequence. 535 AttributeList CallerAttrs = F.getAttributes(); 536 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 537 .removeAttribute(Attribute::NoAlias) 538 .removeAttribute(Attribute::NonNull) 539 .hasAttributes()) 540 return false; 541 542 // It's not safe to eliminate the sign / zero extension of the return value. 543 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 544 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 545 return false; 546 547 // Only tail call if the following instruction is a standard return. 548 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 549 MachineInstr *Next = MI.getNextNode(); 550 if (!Next || TII.isTailCall(*Next) || !Next->isReturn()) 551 return false; 552 553 return true; 554 } 555 556 LegalizerHelper::LegalizeResult 557 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 558 const CallLowering::ArgInfo &Result, 559 ArrayRef<CallLowering::ArgInfo> Args) { 560 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 561 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 562 const char *Name = TLI.getLibcallName(Libcall); 563 564 CallLowering::CallLoweringInfo Info; 565 Info.CallConv = TLI.getLibcallCallingConv(Libcall); 566 Info.Callee = MachineOperand::CreateES(Name); 567 Info.OrigRet = Result; 568 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 569 if (!CLI.lowerCall(MIRBuilder, Info)) 570 return LegalizerHelper::UnableToLegalize; 571 572 return LegalizerHelper::Legalized; 573 } 574 575 // Useful for libcalls where all operands have the same type. 576 static LegalizerHelper::LegalizeResult 577 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 578 Type *OpType) { 579 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 580 581 SmallVector<CallLowering::ArgInfo, 3> Args; 582 for (unsigned i = 1; i < MI.getNumOperands(); i++) 583 Args.push_back({MI.getOperand(i).getReg(), OpType}); 584 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 585 Args); 586 } 587 588 LegalizerHelper::LegalizeResult 589 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 590 MachineInstr &MI) { 591 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 592 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 593 594 SmallVector<CallLowering::ArgInfo, 3> Args; 595 // Add all the args, except for the last which is an imm denoting 'tail'. 596 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 597 Register Reg = MI.getOperand(i).getReg(); 598 599 // Need derive an IR type for call lowering. 600 LLT OpLLT = MRI.getType(Reg); 601 Type *OpTy = nullptr; 602 if (OpLLT.isPointer()) 603 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 604 else 605 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 606 Args.push_back({Reg, OpTy}); 607 } 608 609 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 610 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 611 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 612 RTLIB::Libcall RTLibcall; 613 switch (ID) { 614 case Intrinsic::memcpy: 615 RTLibcall = RTLIB::MEMCPY; 616 break; 617 case Intrinsic::memset: 618 RTLibcall = RTLIB::MEMSET; 619 break; 620 case Intrinsic::memmove: 621 RTLibcall = RTLIB::MEMMOVE; 622 break; 623 default: 624 return LegalizerHelper::UnableToLegalize; 625 } 626 const char *Name = TLI.getLibcallName(RTLibcall); 627 628 MIRBuilder.setInstr(MI); 629 630 CallLowering::CallLoweringInfo Info; 631 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 632 Info.Callee = MachineOperand::CreateES(Name); 633 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 634 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 635 isLibCallInTailPosition(MI); 636 637 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 638 if (!CLI.lowerCall(MIRBuilder, Info)) 639 return LegalizerHelper::UnableToLegalize; 640 641 if (Info.LoweredTailCall) { 642 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 643 // We must have a return following the call to get past 644 // isLibCallInTailPosition. 645 assert(MI.getNextNode() && MI.getNextNode()->isReturn() && 646 "Expected instr following MI to be a return?"); 647 648 // We lowered a tail call, so the call is now the return from the block. 649 // Delete the old return. 650 MI.getNextNode()->eraseFromParent(); 651 } 652 653 return LegalizerHelper::Legalized; 654 } 655 656 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 657 Type *FromType) { 658 auto ToMVT = MVT::getVT(ToType); 659 auto FromMVT = MVT::getVT(FromType); 660 661 switch (Opcode) { 662 case TargetOpcode::G_FPEXT: 663 return RTLIB::getFPEXT(FromMVT, ToMVT); 664 case TargetOpcode::G_FPTRUNC: 665 return RTLIB::getFPROUND(FromMVT, ToMVT); 666 case TargetOpcode::G_FPTOSI: 667 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 668 case TargetOpcode::G_FPTOUI: 669 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 670 case TargetOpcode::G_SITOFP: 671 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 672 case TargetOpcode::G_UITOFP: 673 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 674 } 675 llvm_unreachable("Unsupported libcall function"); 676 } 677 678 static LegalizerHelper::LegalizeResult 679 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 680 Type *FromType) { 681 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 682 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 683 {{MI.getOperand(1).getReg(), FromType}}); 684 } 685 686 LegalizerHelper::LegalizeResult 687 LegalizerHelper::libcall(MachineInstr &MI) { 688 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 689 unsigned Size = LLTy.getSizeInBits(); 690 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 691 692 MIRBuilder.setInstr(MI); 693 694 switch (MI.getOpcode()) { 695 default: 696 return UnableToLegalize; 697 case TargetOpcode::G_SDIV: 698 case TargetOpcode::G_UDIV: 699 case TargetOpcode::G_SREM: 700 case TargetOpcode::G_UREM: 701 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 702 Type *HLTy = IntegerType::get(Ctx, Size); 703 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 704 if (Status != Legalized) 705 return Status; 706 break; 707 } 708 case TargetOpcode::G_FADD: 709 case TargetOpcode::G_FSUB: 710 case TargetOpcode::G_FMUL: 711 case TargetOpcode::G_FDIV: 712 case TargetOpcode::G_FMA: 713 case TargetOpcode::G_FPOW: 714 case TargetOpcode::G_FREM: 715 case TargetOpcode::G_FCOS: 716 case TargetOpcode::G_FSIN: 717 case TargetOpcode::G_FLOG10: 718 case TargetOpcode::G_FLOG: 719 case TargetOpcode::G_FLOG2: 720 case TargetOpcode::G_FEXP: 721 case TargetOpcode::G_FEXP2: 722 case TargetOpcode::G_FCEIL: 723 case TargetOpcode::G_FFLOOR: { 724 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 725 if (!HLTy || (Size != 32 && Size != 64)) { 726 LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n"); 727 return UnableToLegalize; 728 } 729 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 730 if (Status != Legalized) 731 return Status; 732 break; 733 } 734 case TargetOpcode::G_FPEXT: 735 case TargetOpcode::G_FPTRUNC: { 736 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 737 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 738 if (!FromTy || !ToTy) 739 return UnableToLegalize; 740 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 741 if (Status != Legalized) 742 return Status; 743 break; 744 } 745 case TargetOpcode::G_FPTOSI: 746 case TargetOpcode::G_FPTOUI: { 747 // FIXME: Support other types 748 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 749 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 750 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 751 return UnableToLegalize; 752 LegalizeResult Status = conversionLibcall( 753 MI, MIRBuilder, 754 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 755 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 756 if (Status != Legalized) 757 return Status; 758 break; 759 } 760 case TargetOpcode::G_SITOFP: 761 case TargetOpcode::G_UITOFP: { 762 // FIXME: Support other types 763 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 764 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 765 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 766 return UnableToLegalize; 767 LegalizeResult Status = conversionLibcall( 768 MI, MIRBuilder, 769 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 770 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 771 if (Status != Legalized) 772 return Status; 773 break; 774 } 775 } 776 777 MI.eraseFromParent(); 778 return Legalized; 779 } 780 781 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 782 unsigned TypeIdx, 783 LLT NarrowTy) { 784 MIRBuilder.setInstr(MI); 785 786 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 787 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 788 789 switch (MI.getOpcode()) { 790 default: 791 return UnableToLegalize; 792 case TargetOpcode::G_IMPLICIT_DEF: { 793 // FIXME: add support for when SizeOp0 isn't an exact multiple of 794 // NarrowSize. 795 if (SizeOp0 % NarrowSize != 0) 796 return UnableToLegalize; 797 int NumParts = SizeOp0 / NarrowSize; 798 799 SmallVector<Register, 2> DstRegs; 800 for (int i = 0; i < NumParts; ++i) 801 DstRegs.push_back( 802 MIRBuilder.buildUndef(NarrowTy).getReg(0)); 803 804 Register DstReg = MI.getOperand(0).getReg(); 805 if(MRI.getType(DstReg).isVector()) 806 MIRBuilder.buildBuildVector(DstReg, DstRegs); 807 else 808 MIRBuilder.buildMerge(DstReg, DstRegs); 809 MI.eraseFromParent(); 810 return Legalized; 811 } 812 case TargetOpcode::G_CONSTANT: { 813 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 814 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 815 unsigned TotalSize = Ty.getSizeInBits(); 816 unsigned NarrowSize = NarrowTy.getSizeInBits(); 817 int NumParts = TotalSize / NarrowSize; 818 819 SmallVector<Register, 4> PartRegs; 820 for (int I = 0; I != NumParts; ++I) { 821 unsigned Offset = I * NarrowSize; 822 auto K = MIRBuilder.buildConstant(NarrowTy, 823 Val.lshr(Offset).trunc(NarrowSize)); 824 PartRegs.push_back(K.getReg(0)); 825 } 826 827 LLT LeftoverTy; 828 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 829 SmallVector<Register, 1> LeftoverRegs; 830 if (LeftoverBits != 0) { 831 LeftoverTy = LLT::scalar(LeftoverBits); 832 auto K = MIRBuilder.buildConstant( 833 LeftoverTy, 834 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 835 LeftoverRegs.push_back(K.getReg(0)); 836 } 837 838 insertParts(MI.getOperand(0).getReg(), 839 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 840 841 MI.eraseFromParent(); 842 return Legalized; 843 } 844 case TargetOpcode::G_SEXT: 845 case TargetOpcode::G_ZEXT: 846 case TargetOpcode::G_ANYEXT: 847 return narrowScalarExt(MI, TypeIdx, NarrowTy); 848 case TargetOpcode::G_TRUNC: { 849 if (TypeIdx != 1) 850 return UnableToLegalize; 851 852 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 853 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 854 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 855 return UnableToLegalize; 856 } 857 858 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 859 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 860 MI.eraseFromParent(); 861 return Legalized; 862 } 863 864 case TargetOpcode::G_ADD: { 865 // FIXME: add support for when SizeOp0 isn't an exact multiple of 866 // NarrowSize. 867 if (SizeOp0 % NarrowSize != 0) 868 return UnableToLegalize; 869 // Expand in terms of carry-setting/consuming G_ADDE instructions. 870 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 871 872 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 873 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 874 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 875 876 Register CarryIn; 877 for (int i = 0; i < NumParts; ++i) { 878 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 879 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 880 881 if (i == 0) 882 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 883 else { 884 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 885 Src2Regs[i], CarryIn); 886 } 887 888 DstRegs.push_back(DstReg); 889 CarryIn = CarryOut; 890 } 891 Register DstReg = MI.getOperand(0).getReg(); 892 if(MRI.getType(DstReg).isVector()) 893 MIRBuilder.buildBuildVector(DstReg, DstRegs); 894 else 895 MIRBuilder.buildMerge(DstReg, DstRegs); 896 MI.eraseFromParent(); 897 return Legalized; 898 } 899 case TargetOpcode::G_SUB: { 900 // FIXME: add support for when SizeOp0 isn't an exact multiple of 901 // NarrowSize. 902 if (SizeOp0 % NarrowSize != 0) 903 return UnableToLegalize; 904 905 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 906 907 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 908 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 909 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 910 911 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 912 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 913 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 914 {Src1Regs[0], Src2Regs[0]}); 915 DstRegs.push_back(DstReg); 916 Register BorrowIn = BorrowOut; 917 for (int i = 1; i < NumParts; ++i) { 918 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 919 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 920 921 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 922 {Src1Regs[i], Src2Regs[i], BorrowIn}); 923 924 DstRegs.push_back(DstReg); 925 BorrowIn = BorrowOut; 926 } 927 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 928 MI.eraseFromParent(); 929 return Legalized; 930 } 931 case TargetOpcode::G_MUL: 932 case TargetOpcode::G_UMULH: 933 return narrowScalarMul(MI, NarrowTy); 934 case TargetOpcode::G_EXTRACT: 935 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 936 case TargetOpcode::G_INSERT: 937 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 938 case TargetOpcode::G_LOAD: { 939 const auto &MMO = **MI.memoperands_begin(); 940 Register DstReg = MI.getOperand(0).getReg(); 941 LLT DstTy = MRI.getType(DstReg); 942 if (DstTy.isVector()) 943 return UnableToLegalize; 944 945 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 946 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 947 auto &MMO = **MI.memoperands_begin(); 948 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 949 MIRBuilder.buildAnyExt(DstReg, TmpReg); 950 MI.eraseFromParent(); 951 return Legalized; 952 } 953 954 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 955 } 956 case TargetOpcode::G_ZEXTLOAD: 957 case TargetOpcode::G_SEXTLOAD: { 958 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 959 Register DstReg = MI.getOperand(0).getReg(); 960 Register PtrReg = MI.getOperand(1).getReg(); 961 962 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 963 auto &MMO = **MI.memoperands_begin(); 964 if (MMO.getSizeInBits() == NarrowSize) { 965 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 966 } else { 967 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 968 } 969 970 if (ZExt) 971 MIRBuilder.buildZExt(DstReg, TmpReg); 972 else 973 MIRBuilder.buildSExt(DstReg, TmpReg); 974 975 MI.eraseFromParent(); 976 return Legalized; 977 } 978 case TargetOpcode::G_STORE: { 979 const auto &MMO = **MI.memoperands_begin(); 980 981 Register SrcReg = MI.getOperand(0).getReg(); 982 LLT SrcTy = MRI.getType(SrcReg); 983 if (SrcTy.isVector()) 984 return UnableToLegalize; 985 986 int NumParts = SizeOp0 / NarrowSize; 987 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 988 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 989 if (SrcTy.isVector() && LeftoverBits != 0) 990 return UnableToLegalize; 991 992 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 993 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 994 auto &MMO = **MI.memoperands_begin(); 995 MIRBuilder.buildTrunc(TmpReg, SrcReg); 996 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 997 MI.eraseFromParent(); 998 return Legalized; 999 } 1000 1001 return reduceLoadStoreWidth(MI, 0, NarrowTy); 1002 } 1003 case TargetOpcode::G_SELECT: 1004 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 1005 case TargetOpcode::G_AND: 1006 case TargetOpcode::G_OR: 1007 case TargetOpcode::G_XOR: { 1008 // Legalize bitwise operation: 1009 // A = BinOp<Ty> B, C 1010 // into: 1011 // B1, ..., BN = G_UNMERGE_VALUES B 1012 // C1, ..., CN = G_UNMERGE_VALUES C 1013 // A1 = BinOp<Ty/N> B1, C2 1014 // ... 1015 // AN = BinOp<Ty/N> BN, CN 1016 // A = G_MERGE_VALUES A1, ..., AN 1017 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1018 } 1019 case TargetOpcode::G_SHL: 1020 case TargetOpcode::G_LSHR: 1021 case TargetOpcode::G_ASHR: 1022 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1023 case TargetOpcode::G_CTLZ: 1024 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1025 case TargetOpcode::G_CTTZ: 1026 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1027 case TargetOpcode::G_CTPOP: 1028 if (TypeIdx == 1) 1029 switch (MI.getOpcode()) { 1030 case TargetOpcode::G_CTLZ: 1031 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1032 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1033 case TargetOpcode::G_CTTZ: 1034 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1035 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1036 case TargetOpcode::G_CTPOP: 1037 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1038 default: 1039 return UnableToLegalize; 1040 } 1041 1042 Observer.changingInstr(MI); 1043 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1044 Observer.changedInstr(MI); 1045 return Legalized; 1046 case TargetOpcode::G_INTTOPTR: 1047 if (TypeIdx != 1) 1048 return UnableToLegalize; 1049 1050 Observer.changingInstr(MI); 1051 narrowScalarSrc(MI, NarrowTy, 1); 1052 Observer.changedInstr(MI); 1053 return Legalized; 1054 case TargetOpcode::G_PTRTOINT: 1055 if (TypeIdx != 0) 1056 return UnableToLegalize; 1057 1058 Observer.changingInstr(MI); 1059 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1060 Observer.changedInstr(MI); 1061 return Legalized; 1062 case TargetOpcode::G_PHI: { 1063 unsigned NumParts = SizeOp0 / NarrowSize; 1064 SmallVector<Register, 2> DstRegs(NumParts); 1065 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1066 Observer.changingInstr(MI); 1067 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1068 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1069 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1070 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1071 SrcRegs[i / 2]); 1072 } 1073 MachineBasicBlock &MBB = *MI.getParent(); 1074 MIRBuilder.setInsertPt(MBB, MI); 1075 for (unsigned i = 0; i < NumParts; ++i) { 1076 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1077 MachineInstrBuilder MIB = 1078 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1079 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1080 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1081 } 1082 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1083 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1084 Observer.changedInstr(MI); 1085 MI.eraseFromParent(); 1086 return Legalized; 1087 } 1088 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1089 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1090 if (TypeIdx != 2) 1091 return UnableToLegalize; 1092 1093 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1094 Observer.changingInstr(MI); 1095 narrowScalarSrc(MI, NarrowTy, OpIdx); 1096 Observer.changedInstr(MI); 1097 return Legalized; 1098 } 1099 case TargetOpcode::G_ICMP: { 1100 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1101 if (NarrowSize * 2 != SrcSize) 1102 return UnableToLegalize; 1103 1104 Observer.changingInstr(MI); 1105 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1106 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1107 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1108 1109 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1110 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1111 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1112 1113 CmpInst::Predicate Pred = 1114 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1115 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1116 1117 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1118 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1119 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1120 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1121 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1122 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1123 } else { 1124 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1125 MachineInstrBuilder CmpHEQ = 1126 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1127 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1128 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1129 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1130 } 1131 Observer.changedInstr(MI); 1132 MI.eraseFromParent(); 1133 return Legalized; 1134 } 1135 case TargetOpcode::G_SEXT_INREG: { 1136 if (TypeIdx != 0) 1137 return UnableToLegalize; 1138 1139 int64_t SizeInBits = MI.getOperand(2).getImm(); 1140 1141 // So long as the new type has more bits than the bits we're extending we 1142 // don't need to break it apart. 1143 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1144 Observer.changingInstr(MI); 1145 // We don't lose any non-extension bits by truncating the src and 1146 // sign-extending the dst. 1147 MachineOperand &MO1 = MI.getOperand(1); 1148 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1149 MO1.setReg(TruncMIB.getReg(0)); 1150 1151 MachineOperand &MO2 = MI.getOperand(0); 1152 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1153 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1154 MIRBuilder.buildSExt(MO2, DstExt); 1155 MO2.setReg(DstExt); 1156 Observer.changedInstr(MI); 1157 return Legalized; 1158 } 1159 1160 // Break it apart. Components below the extension point are unmodified. The 1161 // component containing the extension point becomes a narrower SEXT_INREG. 1162 // Components above it are ashr'd from the component containing the 1163 // extension point. 1164 if (SizeOp0 % NarrowSize != 0) 1165 return UnableToLegalize; 1166 int NumParts = SizeOp0 / NarrowSize; 1167 1168 // List the registers where the destination will be scattered. 1169 SmallVector<Register, 2> DstRegs; 1170 // List the registers where the source will be split. 1171 SmallVector<Register, 2> SrcRegs; 1172 1173 // Create all the temporary registers. 1174 for (int i = 0; i < NumParts; ++i) { 1175 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1176 1177 SrcRegs.push_back(SrcReg); 1178 } 1179 1180 // Explode the big arguments into smaller chunks. 1181 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1182 1183 Register AshrCstReg = 1184 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1185 .getReg(0); 1186 Register FullExtensionReg = 0; 1187 Register PartialExtensionReg = 0; 1188 1189 // Do the operation on each small part. 1190 for (int i = 0; i < NumParts; ++i) { 1191 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1192 DstRegs.push_back(SrcRegs[i]); 1193 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1194 assert(PartialExtensionReg && 1195 "Expected to visit partial extension before full"); 1196 if (FullExtensionReg) { 1197 DstRegs.push_back(FullExtensionReg); 1198 continue; 1199 } 1200 DstRegs.push_back( 1201 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1202 .getReg(0)); 1203 FullExtensionReg = DstRegs.back(); 1204 } else { 1205 DstRegs.push_back( 1206 MIRBuilder 1207 .buildInstr( 1208 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1209 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1210 .getReg(0)); 1211 PartialExtensionReg = DstRegs.back(); 1212 } 1213 } 1214 1215 // Gather the destination registers into the final destination. 1216 Register DstReg = MI.getOperand(0).getReg(); 1217 MIRBuilder.buildMerge(DstReg, DstRegs); 1218 MI.eraseFromParent(); 1219 return Legalized; 1220 } 1221 case TargetOpcode::G_BSWAP: 1222 case TargetOpcode::G_BITREVERSE: { 1223 if (SizeOp0 % NarrowSize != 0) 1224 return UnableToLegalize; 1225 1226 Observer.changingInstr(MI); 1227 SmallVector<Register, 2> SrcRegs, DstRegs; 1228 unsigned NumParts = SizeOp0 / NarrowSize; 1229 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1230 1231 for (unsigned i = 0; i < NumParts; ++i) { 1232 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1233 {SrcRegs[NumParts - 1 - i]}); 1234 DstRegs.push_back(DstPart.getReg(0)); 1235 } 1236 1237 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1238 1239 Observer.changedInstr(MI); 1240 MI.eraseFromParent(); 1241 return Legalized; 1242 } 1243 } 1244 } 1245 1246 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1247 unsigned OpIdx, unsigned ExtOpcode) { 1248 MachineOperand &MO = MI.getOperand(OpIdx); 1249 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1250 MO.setReg(ExtB.getReg(0)); 1251 } 1252 1253 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1254 unsigned OpIdx) { 1255 MachineOperand &MO = MI.getOperand(OpIdx); 1256 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1257 MO.setReg(ExtB.getReg(0)); 1258 } 1259 1260 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1261 unsigned OpIdx, unsigned TruncOpcode) { 1262 MachineOperand &MO = MI.getOperand(OpIdx); 1263 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1264 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1265 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1266 MO.setReg(DstExt); 1267 } 1268 1269 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1270 unsigned OpIdx, unsigned ExtOpcode) { 1271 MachineOperand &MO = MI.getOperand(OpIdx); 1272 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1273 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1274 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1275 MO.setReg(DstTrunc); 1276 } 1277 1278 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1279 unsigned OpIdx) { 1280 MachineOperand &MO = MI.getOperand(OpIdx); 1281 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1282 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1283 MIRBuilder.buildExtract(MO, DstExt, 0); 1284 MO.setReg(DstExt); 1285 } 1286 1287 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1288 unsigned OpIdx) { 1289 MachineOperand &MO = MI.getOperand(OpIdx); 1290 1291 LLT OldTy = MRI.getType(MO.getReg()); 1292 unsigned OldElts = OldTy.getNumElements(); 1293 unsigned NewElts = MoreTy.getNumElements(); 1294 1295 unsigned NumParts = NewElts / OldElts; 1296 1297 // Use concat_vectors if the result is a multiple of the number of elements. 1298 if (NumParts * OldElts == NewElts) { 1299 SmallVector<Register, 8> Parts; 1300 Parts.push_back(MO.getReg()); 1301 1302 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1303 for (unsigned I = 1; I != NumParts; ++I) 1304 Parts.push_back(ImpDef); 1305 1306 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1307 MO.setReg(Concat.getReg(0)); 1308 return; 1309 } 1310 1311 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1312 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1313 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1314 MO.setReg(MoreReg); 1315 } 1316 1317 LegalizerHelper::LegalizeResult 1318 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1319 LLT WideTy) { 1320 if (TypeIdx != 1) 1321 return UnableToLegalize; 1322 1323 Register DstReg = MI.getOperand(0).getReg(); 1324 LLT DstTy = MRI.getType(DstReg); 1325 if (DstTy.isVector()) 1326 return UnableToLegalize; 1327 1328 Register Src1 = MI.getOperand(1).getReg(); 1329 LLT SrcTy = MRI.getType(Src1); 1330 const int DstSize = DstTy.getSizeInBits(); 1331 const int SrcSize = SrcTy.getSizeInBits(); 1332 const int WideSize = WideTy.getSizeInBits(); 1333 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1334 1335 unsigned NumOps = MI.getNumOperands(); 1336 unsigned NumSrc = MI.getNumOperands() - 1; 1337 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1338 1339 if (WideSize >= DstSize) { 1340 // Directly pack the bits in the target type. 1341 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1342 1343 for (unsigned I = 2; I != NumOps; ++I) { 1344 const unsigned Offset = (I - 1) * PartSize; 1345 1346 Register SrcReg = MI.getOperand(I).getReg(); 1347 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1348 1349 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1350 1351 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1352 MRI.createGenericVirtualRegister(WideTy); 1353 1354 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1355 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1356 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1357 ResultReg = NextResult; 1358 } 1359 1360 if (WideSize > DstSize) 1361 MIRBuilder.buildTrunc(DstReg, ResultReg); 1362 else if (DstTy.isPointer()) 1363 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1364 1365 MI.eraseFromParent(); 1366 return Legalized; 1367 } 1368 1369 // Unmerge the original values to the GCD type, and recombine to the next 1370 // multiple greater than the original type. 1371 // 1372 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1373 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1374 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1375 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1376 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1377 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1378 // %12:_(s12) = G_MERGE_VALUES %10, %11 1379 // 1380 // Padding with undef if necessary: 1381 // 1382 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1383 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1384 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1385 // %7:_(s2) = G_IMPLICIT_DEF 1386 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1387 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1388 // %10:_(s12) = G_MERGE_VALUES %8, %9 1389 1390 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1391 LLT GCDTy = LLT::scalar(GCD); 1392 1393 SmallVector<Register, 8> Parts; 1394 SmallVector<Register, 8> NewMergeRegs; 1395 SmallVector<Register, 8> Unmerges; 1396 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1397 1398 // Decompose the original operands if they don't evenly divide. 1399 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1400 Register SrcReg = MI.getOperand(I).getReg(); 1401 if (GCD == SrcSize) { 1402 Unmerges.push_back(SrcReg); 1403 } else { 1404 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1405 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1406 Unmerges.push_back(Unmerge.getReg(J)); 1407 } 1408 } 1409 1410 // Pad with undef to the next size that is a multiple of the requested size. 1411 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1412 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1413 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1414 Unmerges.push_back(UndefReg); 1415 } 1416 1417 const int PartsPerGCD = WideSize / GCD; 1418 1419 // Build merges of each piece. 1420 ArrayRef<Register> Slicer(Unmerges); 1421 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1422 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1423 NewMergeRegs.push_back(Merge.getReg(0)); 1424 } 1425 1426 // A truncate may be necessary if the requested type doesn't evenly divide the 1427 // original result type. 1428 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1429 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1430 } else { 1431 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1432 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1433 } 1434 1435 MI.eraseFromParent(); 1436 return Legalized; 1437 } 1438 1439 LegalizerHelper::LegalizeResult 1440 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1441 LLT WideTy) { 1442 if (TypeIdx != 0) 1443 return UnableToLegalize; 1444 1445 int NumDst = MI.getNumOperands() - 1; 1446 Register SrcReg = MI.getOperand(NumDst).getReg(); 1447 LLT SrcTy = MRI.getType(SrcReg); 1448 if (SrcTy.isVector()) 1449 return UnableToLegalize; 1450 1451 Register Dst0Reg = MI.getOperand(0).getReg(); 1452 LLT DstTy = MRI.getType(Dst0Reg); 1453 if (!DstTy.isScalar()) 1454 return UnableToLegalize; 1455 1456 if (WideTy.getSizeInBits() == SrcTy.getSizeInBits()) { 1457 if (SrcTy.isPointer()) { 1458 const DataLayout &DL = MIRBuilder.getDataLayout(); 1459 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1460 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 1461 return UnableToLegalize; 1462 } 1463 1464 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1465 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1466 } 1467 1468 // Theres no unmerge type to target. Directly extract the bits from the 1469 // source type 1470 unsigned DstSize = DstTy.getSizeInBits(); 1471 1472 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1473 for (int I = 1; I != NumDst; ++I) { 1474 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1475 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1476 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1477 } 1478 1479 MI.eraseFromParent(); 1480 return Legalized; 1481 } 1482 1483 // TODO 1484 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1485 return UnableToLegalize; 1486 1487 // Extend the source to a wider type. 1488 LLT LCMTy = getLCMType(SrcTy, WideTy); 1489 1490 Register WideSrc = SrcReg; 1491 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1492 // TODO: If this is an integral address space, cast to integer and anyext. 1493 if (SrcTy.isPointer()) { 1494 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1495 return UnableToLegalize; 1496 } 1497 1498 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1499 } 1500 1501 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1502 1503 // Create a sequence of unmerges to the original results. since we may have 1504 // widened the source, we will need to pad the results with dead defs to cover 1505 // the source register. 1506 // e.g. widen s16 to s32: 1507 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1508 // 1509 // => 1510 // %4:_(s64) = G_ANYEXT %0:_(s48) 1511 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1512 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1513 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1514 1515 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1516 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1517 1518 for (int I = 0; I != NumUnmerge; ++I) { 1519 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1520 1521 for (int J = 0; J != PartsPerUnmerge; ++J) { 1522 int Idx = I * PartsPerUnmerge + J; 1523 if (Idx < NumDst) 1524 MIB.addDef(MI.getOperand(Idx).getReg()); 1525 else { 1526 // Create dead def for excess components. 1527 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1528 } 1529 } 1530 1531 MIB.addUse(Unmerge.getReg(I)); 1532 } 1533 1534 MI.eraseFromParent(); 1535 return Legalized; 1536 } 1537 1538 LegalizerHelper::LegalizeResult 1539 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1540 LLT WideTy) { 1541 Register DstReg = MI.getOperand(0).getReg(); 1542 Register SrcReg = MI.getOperand(1).getReg(); 1543 LLT SrcTy = MRI.getType(SrcReg); 1544 1545 LLT DstTy = MRI.getType(DstReg); 1546 unsigned Offset = MI.getOperand(2).getImm(); 1547 1548 if (TypeIdx == 0) { 1549 if (SrcTy.isVector() || DstTy.isVector()) 1550 return UnableToLegalize; 1551 1552 SrcOp Src(SrcReg); 1553 if (SrcTy.isPointer()) { 1554 // Extracts from pointers can be handled only if they are really just 1555 // simple integers. 1556 const DataLayout &DL = MIRBuilder.getDataLayout(); 1557 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1558 return UnableToLegalize; 1559 1560 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1561 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1562 SrcTy = SrcAsIntTy; 1563 } 1564 1565 if (DstTy.isPointer()) 1566 return UnableToLegalize; 1567 1568 if (Offset == 0) { 1569 // Avoid a shift in the degenerate case. 1570 MIRBuilder.buildTrunc(DstReg, 1571 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1572 MI.eraseFromParent(); 1573 return Legalized; 1574 } 1575 1576 // Do a shift in the source type. 1577 LLT ShiftTy = SrcTy; 1578 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1579 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1580 ShiftTy = WideTy; 1581 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1582 return UnableToLegalize; 1583 1584 auto LShr = MIRBuilder.buildLShr( 1585 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1586 MIRBuilder.buildTrunc(DstReg, LShr); 1587 MI.eraseFromParent(); 1588 return Legalized; 1589 } 1590 1591 if (SrcTy.isScalar()) { 1592 Observer.changingInstr(MI); 1593 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1594 Observer.changedInstr(MI); 1595 return Legalized; 1596 } 1597 1598 if (!SrcTy.isVector()) 1599 return UnableToLegalize; 1600 1601 if (DstTy != SrcTy.getElementType()) 1602 return UnableToLegalize; 1603 1604 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1605 return UnableToLegalize; 1606 1607 Observer.changingInstr(MI); 1608 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1609 1610 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1611 Offset); 1612 widenScalarDst(MI, WideTy.getScalarType(), 0); 1613 Observer.changedInstr(MI); 1614 return Legalized; 1615 } 1616 1617 LegalizerHelper::LegalizeResult 1618 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1619 LLT WideTy) { 1620 if (TypeIdx != 0) 1621 return UnableToLegalize; 1622 Observer.changingInstr(MI); 1623 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1624 widenScalarDst(MI, WideTy); 1625 Observer.changedInstr(MI); 1626 return Legalized; 1627 } 1628 1629 LegalizerHelper::LegalizeResult 1630 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1631 MIRBuilder.setInstr(MI); 1632 1633 switch (MI.getOpcode()) { 1634 default: 1635 return UnableToLegalize; 1636 case TargetOpcode::G_EXTRACT: 1637 return widenScalarExtract(MI, TypeIdx, WideTy); 1638 case TargetOpcode::G_INSERT: 1639 return widenScalarInsert(MI, TypeIdx, WideTy); 1640 case TargetOpcode::G_MERGE_VALUES: 1641 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1642 case TargetOpcode::G_UNMERGE_VALUES: 1643 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1644 case TargetOpcode::G_UADDO: 1645 case TargetOpcode::G_USUBO: { 1646 if (TypeIdx == 1) 1647 return UnableToLegalize; // TODO 1648 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1649 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1650 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1651 ? TargetOpcode::G_ADD 1652 : TargetOpcode::G_SUB; 1653 // Do the arithmetic in the larger type. 1654 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1655 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1656 APInt Mask = 1657 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1658 auto AndOp = MIRBuilder.buildAnd( 1659 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1660 // There is no overflow if the AndOp is the same as NewOp. 1661 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1662 // Now trunc the NewOp to the original result. 1663 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1664 MI.eraseFromParent(); 1665 return Legalized; 1666 } 1667 case TargetOpcode::G_CTTZ: 1668 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1669 case TargetOpcode::G_CTLZ: 1670 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1671 case TargetOpcode::G_CTPOP: { 1672 if (TypeIdx == 0) { 1673 Observer.changingInstr(MI); 1674 widenScalarDst(MI, WideTy, 0); 1675 Observer.changedInstr(MI); 1676 return Legalized; 1677 } 1678 1679 Register SrcReg = MI.getOperand(1).getReg(); 1680 1681 // First ZEXT the input. 1682 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1683 LLT CurTy = MRI.getType(SrcReg); 1684 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1685 // The count is the same in the larger type except if the original 1686 // value was zero. This can be handled by setting the bit just off 1687 // the top of the original type. 1688 auto TopBit = 1689 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1690 MIBSrc = MIRBuilder.buildOr( 1691 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1692 } 1693 1694 // Perform the operation at the larger size. 1695 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1696 // This is already the correct result for CTPOP and CTTZs 1697 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1698 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1699 // The correct result is NewOp - (Difference in widety and current ty). 1700 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1701 MIBNewOp = MIRBuilder.buildSub( 1702 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1703 } 1704 1705 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1706 MI.eraseFromParent(); 1707 return Legalized; 1708 } 1709 case TargetOpcode::G_BSWAP: { 1710 Observer.changingInstr(MI); 1711 Register DstReg = MI.getOperand(0).getReg(); 1712 1713 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1714 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1715 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1716 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1717 1718 MI.getOperand(0).setReg(DstExt); 1719 1720 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1721 1722 LLT Ty = MRI.getType(DstReg); 1723 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1724 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1725 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1726 1727 MIRBuilder.buildTrunc(DstReg, ShrReg); 1728 Observer.changedInstr(MI); 1729 return Legalized; 1730 } 1731 case TargetOpcode::G_BITREVERSE: { 1732 Observer.changingInstr(MI); 1733 1734 Register DstReg = MI.getOperand(0).getReg(); 1735 LLT Ty = MRI.getType(DstReg); 1736 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1737 1738 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1739 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1740 MI.getOperand(0).setReg(DstExt); 1741 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1742 1743 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1744 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1745 MIRBuilder.buildTrunc(DstReg, Shift); 1746 Observer.changedInstr(MI); 1747 return Legalized; 1748 } 1749 case TargetOpcode::G_ADD: 1750 case TargetOpcode::G_AND: 1751 case TargetOpcode::G_MUL: 1752 case TargetOpcode::G_OR: 1753 case TargetOpcode::G_XOR: 1754 case TargetOpcode::G_SUB: 1755 // Perform operation at larger width (any extension is fines here, high bits 1756 // don't affect the result) and then truncate the result back to the 1757 // original type. 1758 Observer.changingInstr(MI); 1759 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1760 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1761 widenScalarDst(MI, WideTy); 1762 Observer.changedInstr(MI); 1763 return Legalized; 1764 1765 case TargetOpcode::G_SHL: 1766 Observer.changingInstr(MI); 1767 1768 if (TypeIdx == 0) { 1769 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1770 widenScalarDst(MI, WideTy); 1771 } else { 1772 assert(TypeIdx == 1); 1773 // The "number of bits to shift" operand must preserve its value as an 1774 // unsigned integer: 1775 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1776 } 1777 1778 Observer.changedInstr(MI); 1779 return Legalized; 1780 1781 case TargetOpcode::G_SDIV: 1782 case TargetOpcode::G_SREM: 1783 case TargetOpcode::G_SMIN: 1784 case TargetOpcode::G_SMAX: 1785 Observer.changingInstr(MI); 1786 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1787 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1788 widenScalarDst(MI, WideTy); 1789 Observer.changedInstr(MI); 1790 return Legalized; 1791 1792 case TargetOpcode::G_ASHR: 1793 case TargetOpcode::G_LSHR: 1794 Observer.changingInstr(MI); 1795 1796 if (TypeIdx == 0) { 1797 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1798 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1799 1800 widenScalarSrc(MI, WideTy, 1, CvtOp); 1801 widenScalarDst(MI, WideTy); 1802 } else { 1803 assert(TypeIdx == 1); 1804 // The "number of bits to shift" operand must preserve its value as an 1805 // unsigned integer: 1806 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1807 } 1808 1809 Observer.changedInstr(MI); 1810 return Legalized; 1811 case TargetOpcode::G_UDIV: 1812 case TargetOpcode::G_UREM: 1813 case TargetOpcode::G_UMIN: 1814 case TargetOpcode::G_UMAX: 1815 Observer.changingInstr(MI); 1816 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1817 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1818 widenScalarDst(MI, WideTy); 1819 Observer.changedInstr(MI); 1820 return Legalized; 1821 1822 case TargetOpcode::G_SELECT: 1823 Observer.changingInstr(MI); 1824 if (TypeIdx == 0) { 1825 // Perform operation at larger width (any extension is fine here, high 1826 // bits don't affect the result) and then truncate the result back to the 1827 // original type. 1828 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1829 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1830 widenScalarDst(MI, WideTy); 1831 } else { 1832 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1833 // Explicit extension is required here since high bits affect the result. 1834 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1835 } 1836 Observer.changedInstr(MI); 1837 return Legalized; 1838 1839 case TargetOpcode::G_FPTOSI: 1840 case TargetOpcode::G_FPTOUI: 1841 Observer.changingInstr(MI); 1842 1843 if (TypeIdx == 0) 1844 widenScalarDst(MI, WideTy); 1845 else 1846 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1847 1848 Observer.changedInstr(MI); 1849 return Legalized; 1850 case TargetOpcode::G_SITOFP: 1851 if (TypeIdx != 1) 1852 return UnableToLegalize; 1853 Observer.changingInstr(MI); 1854 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1855 Observer.changedInstr(MI); 1856 return Legalized; 1857 1858 case TargetOpcode::G_UITOFP: 1859 if (TypeIdx != 1) 1860 return UnableToLegalize; 1861 Observer.changingInstr(MI); 1862 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1863 Observer.changedInstr(MI); 1864 return Legalized; 1865 1866 case TargetOpcode::G_LOAD: 1867 case TargetOpcode::G_SEXTLOAD: 1868 case TargetOpcode::G_ZEXTLOAD: 1869 Observer.changingInstr(MI); 1870 widenScalarDst(MI, WideTy); 1871 Observer.changedInstr(MI); 1872 return Legalized; 1873 1874 case TargetOpcode::G_STORE: { 1875 if (TypeIdx != 0) 1876 return UnableToLegalize; 1877 1878 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1879 if (!isPowerOf2_32(Ty.getSizeInBits())) 1880 return UnableToLegalize; 1881 1882 Observer.changingInstr(MI); 1883 1884 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1885 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1886 widenScalarSrc(MI, WideTy, 0, ExtType); 1887 1888 Observer.changedInstr(MI); 1889 return Legalized; 1890 } 1891 case TargetOpcode::G_CONSTANT: { 1892 MachineOperand &SrcMO = MI.getOperand(1); 1893 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1894 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1895 MRI.getType(MI.getOperand(0).getReg())); 1896 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1897 ExtOpc == TargetOpcode::G_ANYEXT) && 1898 "Illegal Extend"); 1899 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1900 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1901 ? SrcVal.sext(WideTy.getSizeInBits()) 1902 : SrcVal.zext(WideTy.getSizeInBits()); 1903 Observer.changingInstr(MI); 1904 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1905 1906 widenScalarDst(MI, WideTy); 1907 Observer.changedInstr(MI); 1908 return Legalized; 1909 } 1910 case TargetOpcode::G_FCONSTANT: { 1911 MachineOperand &SrcMO = MI.getOperand(1); 1912 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1913 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1914 bool LosesInfo; 1915 switch (WideTy.getSizeInBits()) { 1916 case 32: 1917 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1918 &LosesInfo); 1919 break; 1920 case 64: 1921 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1922 &LosesInfo); 1923 break; 1924 default: 1925 return UnableToLegalize; 1926 } 1927 1928 assert(!LosesInfo && "extend should always be lossless"); 1929 1930 Observer.changingInstr(MI); 1931 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1932 1933 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1934 Observer.changedInstr(MI); 1935 return Legalized; 1936 } 1937 case TargetOpcode::G_IMPLICIT_DEF: { 1938 Observer.changingInstr(MI); 1939 widenScalarDst(MI, WideTy); 1940 Observer.changedInstr(MI); 1941 return Legalized; 1942 } 1943 case TargetOpcode::G_BRCOND: 1944 Observer.changingInstr(MI); 1945 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1946 Observer.changedInstr(MI); 1947 return Legalized; 1948 1949 case TargetOpcode::G_FCMP: 1950 Observer.changingInstr(MI); 1951 if (TypeIdx == 0) 1952 widenScalarDst(MI, WideTy); 1953 else { 1954 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1955 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1956 } 1957 Observer.changedInstr(MI); 1958 return Legalized; 1959 1960 case TargetOpcode::G_ICMP: 1961 Observer.changingInstr(MI); 1962 if (TypeIdx == 0) 1963 widenScalarDst(MI, WideTy); 1964 else { 1965 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1966 MI.getOperand(1).getPredicate())) 1967 ? TargetOpcode::G_SEXT 1968 : TargetOpcode::G_ZEXT; 1969 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1970 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1971 } 1972 Observer.changedInstr(MI); 1973 return Legalized; 1974 1975 case TargetOpcode::G_PTR_ADD: 1976 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 1977 Observer.changingInstr(MI); 1978 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1979 Observer.changedInstr(MI); 1980 return Legalized; 1981 1982 case TargetOpcode::G_PHI: { 1983 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1984 1985 Observer.changingInstr(MI); 1986 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1987 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1988 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1989 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1990 } 1991 1992 MachineBasicBlock &MBB = *MI.getParent(); 1993 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1994 widenScalarDst(MI, WideTy); 1995 Observer.changedInstr(MI); 1996 return Legalized; 1997 } 1998 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1999 if (TypeIdx == 0) { 2000 Register VecReg = MI.getOperand(1).getReg(); 2001 LLT VecTy = MRI.getType(VecReg); 2002 Observer.changingInstr(MI); 2003 2004 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2005 WideTy.getSizeInBits()), 2006 1, TargetOpcode::G_SEXT); 2007 2008 widenScalarDst(MI, WideTy, 0); 2009 Observer.changedInstr(MI); 2010 return Legalized; 2011 } 2012 2013 if (TypeIdx != 2) 2014 return UnableToLegalize; 2015 Observer.changingInstr(MI); 2016 // TODO: Probably should be zext 2017 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2018 Observer.changedInstr(MI); 2019 return Legalized; 2020 } 2021 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2022 if (TypeIdx == 1) { 2023 Observer.changingInstr(MI); 2024 2025 Register VecReg = MI.getOperand(1).getReg(); 2026 LLT VecTy = MRI.getType(VecReg); 2027 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2028 2029 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2030 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2031 widenScalarDst(MI, WideVecTy, 0); 2032 Observer.changedInstr(MI); 2033 return Legalized; 2034 } 2035 2036 if (TypeIdx == 2) { 2037 Observer.changingInstr(MI); 2038 // TODO: Probably should be zext 2039 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2040 Observer.changedInstr(MI); 2041 } 2042 2043 return Legalized; 2044 } 2045 case TargetOpcode::G_FADD: 2046 case TargetOpcode::G_FMUL: 2047 case TargetOpcode::G_FSUB: 2048 case TargetOpcode::G_FMA: 2049 case TargetOpcode::G_FMAD: 2050 case TargetOpcode::G_FNEG: 2051 case TargetOpcode::G_FABS: 2052 case TargetOpcode::G_FCANONICALIZE: 2053 case TargetOpcode::G_FMINNUM: 2054 case TargetOpcode::G_FMAXNUM: 2055 case TargetOpcode::G_FMINNUM_IEEE: 2056 case TargetOpcode::G_FMAXNUM_IEEE: 2057 case TargetOpcode::G_FMINIMUM: 2058 case TargetOpcode::G_FMAXIMUM: 2059 case TargetOpcode::G_FDIV: 2060 case TargetOpcode::G_FREM: 2061 case TargetOpcode::G_FCEIL: 2062 case TargetOpcode::G_FFLOOR: 2063 case TargetOpcode::G_FCOS: 2064 case TargetOpcode::G_FSIN: 2065 case TargetOpcode::G_FLOG10: 2066 case TargetOpcode::G_FLOG: 2067 case TargetOpcode::G_FLOG2: 2068 case TargetOpcode::G_FRINT: 2069 case TargetOpcode::G_FNEARBYINT: 2070 case TargetOpcode::G_FSQRT: 2071 case TargetOpcode::G_FEXP: 2072 case TargetOpcode::G_FEXP2: 2073 case TargetOpcode::G_FPOW: 2074 case TargetOpcode::G_INTRINSIC_TRUNC: 2075 case TargetOpcode::G_INTRINSIC_ROUND: 2076 assert(TypeIdx == 0); 2077 Observer.changingInstr(MI); 2078 2079 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2080 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2081 2082 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2083 Observer.changedInstr(MI); 2084 return Legalized; 2085 case TargetOpcode::G_INTTOPTR: 2086 if (TypeIdx != 1) 2087 return UnableToLegalize; 2088 2089 Observer.changingInstr(MI); 2090 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2091 Observer.changedInstr(MI); 2092 return Legalized; 2093 case TargetOpcode::G_PTRTOINT: 2094 if (TypeIdx != 0) 2095 return UnableToLegalize; 2096 2097 Observer.changingInstr(MI); 2098 widenScalarDst(MI, WideTy, 0); 2099 Observer.changedInstr(MI); 2100 return Legalized; 2101 case TargetOpcode::G_BUILD_VECTOR: { 2102 Observer.changingInstr(MI); 2103 2104 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2105 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2106 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2107 2108 // Avoid changing the result vector type if the source element type was 2109 // requested. 2110 if (TypeIdx == 1) { 2111 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2112 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2113 } else { 2114 widenScalarDst(MI, WideTy, 0); 2115 } 2116 2117 Observer.changedInstr(MI); 2118 return Legalized; 2119 } 2120 case TargetOpcode::G_SEXT_INREG: 2121 if (TypeIdx != 0) 2122 return UnableToLegalize; 2123 2124 Observer.changingInstr(MI); 2125 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2126 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2127 Observer.changedInstr(MI); 2128 return Legalized; 2129 } 2130 } 2131 2132 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2133 MachineIRBuilder &B, Register Src, LLT Ty) { 2134 auto Unmerge = B.buildUnmerge(Ty, Src); 2135 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2136 Pieces.push_back(Unmerge.getReg(I)); 2137 } 2138 2139 LegalizerHelper::LegalizeResult 2140 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2141 Register Dst = MI.getOperand(0).getReg(); 2142 Register Src = MI.getOperand(1).getReg(); 2143 LLT DstTy = MRI.getType(Dst); 2144 LLT SrcTy = MRI.getType(Src); 2145 2146 if (SrcTy.isVector() && !DstTy.isVector()) { 2147 SmallVector<Register, 8> SrcRegs; 2148 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType()); 2149 MIRBuilder.buildMerge(Dst, SrcRegs); 2150 MI.eraseFromParent(); 2151 return Legalized; 2152 } 2153 2154 if (DstTy.isVector() && !SrcTy.isVector()) { 2155 SmallVector<Register, 8> SrcRegs; 2156 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2157 MIRBuilder.buildMerge(Dst, SrcRegs); 2158 MI.eraseFromParent(); 2159 return Legalized; 2160 } 2161 2162 return UnableToLegalize; 2163 } 2164 2165 LegalizerHelper::LegalizeResult 2166 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2167 using namespace TargetOpcode; 2168 MIRBuilder.setInstr(MI); 2169 2170 switch(MI.getOpcode()) { 2171 default: 2172 return UnableToLegalize; 2173 case TargetOpcode::G_BITCAST: 2174 return lowerBitcast(MI); 2175 case TargetOpcode::G_SREM: 2176 case TargetOpcode::G_UREM: { 2177 Register QuotReg = MRI.createGenericVirtualRegister(Ty); 2178 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {QuotReg}, 2179 {MI.getOperand(1), MI.getOperand(2)}); 2180 2181 Register ProdReg = MRI.createGenericVirtualRegister(Ty); 2182 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2)); 2183 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), ProdReg); 2184 MI.eraseFromParent(); 2185 return Legalized; 2186 } 2187 case TargetOpcode::G_SADDO: 2188 case TargetOpcode::G_SSUBO: 2189 return lowerSADDO_SSUBO(MI); 2190 case TargetOpcode::G_SMULO: 2191 case TargetOpcode::G_UMULO: { 2192 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2193 // result. 2194 Register Res = MI.getOperand(0).getReg(); 2195 Register Overflow = MI.getOperand(1).getReg(); 2196 Register LHS = MI.getOperand(2).getReg(); 2197 Register RHS = MI.getOperand(3).getReg(); 2198 2199 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2200 ? TargetOpcode::G_SMULH 2201 : TargetOpcode::G_UMULH; 2202 2203 Observer.changingInstr(MI); 2204 const auto &TII = MIRBuilder.getTII(); 2205 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2206 MI.RemoveOperand(1); 2207 Observer.changedInstr(MI); 2208 2209 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2210 2211 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2212 2213 Register Zero = MRI.createGenericVirtualRegister(Ty); 2214 MIRBuilder.buildConstant(Zero, 0); 2215 2216 // For *signed* multiply, overflow is detected by checking: 2217 // (hi != (lo >> bitwidth-1)) 2218 if (Opcode == TargetOpcode::G_SMULH) { 2219 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2220 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2221 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2222 } else { 2223 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2224 } 2225 return Legalized; 2226 } 2227 case TargetOpcode::G_FNEG: { 2228 // TODO: Handle vector types once we are able to 2229 // represent them. 2230 if (Ty.isVector()) 2231 return UnableToLegalize; 2232 Register Res = MI.getOperand(0).getReg(); 2233 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2234 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2235 if (!ZeroTy) 2236 return UnableToLegalize; 2237 ConstantFP &ZeroForNegation = 2238 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2239 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2240 Register SubByReg = MI.getOperand(1).getReg(); 2241 Register ZeroReg = Zero.getReg(0); 2242 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2243 MI.eraseFromParent(); 2244 return Legalized; 2245 } 2246 case TargetOpcode::G_FSUB: { 2247 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2248 // First, check if G_FNEG is marked as Lower. If so, we may 2249 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2250 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2251 return UnableToLegalize; 2252 Register Res = MI.getOperand(0).getReg(); 2253 Register LHS = MI.getOperand(1).getReg(); 2254 Register RHS = MI.getOperand(2).getReg(); 2255 Register Neg = MRI.createGenericVirtualRegister(Ty); 2256 MIRBuilder.buildFNeg(Neg, RHS); 2257 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2258 MI.eraseFromParent(); 2259 return Legalized; 2260 } 2261 case TargetOpcode::G_FMAD: 2262 return lowerFMad(MI); 2263 case TargetOpcode::G_INTRINSIC_ROUND: 2264 return lowerIntrinsicRound(MI); 2265 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2266 Register OldValRes = MI.getOperand(0).getReg(); 2267 Register SuccessRes = MI.getOperand(1).getReg(); 2268 Register Addr = MI.getOperand(2).getReg(); 2269 Register CmpVal = MI.getOperand(3).getReg(); 2270 Register NewVal = MI.getOperand(4).getReg(); 2271 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2272 **MI.memoperands_begin()); 2273 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2274 MI.eraseFromParent(); 2275 return Legalized; 2276 } 2277 case TargetOpcode::G_LOAD: 2278 case TargetOpcode::G_SEXTLOAD: 2279 case TargetOpcode::G_ZEXTLOAD: { 2280 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2281 Register DstReg = MI.getOperand(0).getReg(); 2282 Register PtrReg = MI.getOperand(1).getReg(); 2283 LLT DstTy = MRI.getType(DstReg); 2284 auto &MMO = **MI.memoperands_begin(); 2285 2286 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2287 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2288 // This load needs splitting into power of 2 sized loads. 2289 if (DstTy.isVector()) 2290 return UnableToLegalize; 2291 if (isPowerOf2_32(DstTy.getSizeInBits())) 2292 return UnableToLegalize; // Don't know what we're being asked to do. 2293 2294 // Our strategy here is to generate anyextending loads for the smaller 2295 // types up to next power-2 result type, and then combine the two larger 2296 // result values together, before truncating back down to the non-pow-2 2297 // type. 2298 // E.g. v1 = i24 load => 2299 // v2 = i32 zextload (2 byte) 2300 // v3 = i32 load (1 byte) 2301 // v4 = i32 shl v3, 16 2302 // v5 = i32 or v4, v2 2303 // v1 = i24 trunc v5 2304 // By doing this we generate the correct truncate which should get 2305 // combined away as an artifact with a matching extend. 2306 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2307 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2308 2309 MachineFunction &MF = MIRBuilder.getMF(); 2310 MachineMemOperand *LargeMMO = 2311 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2312 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2313 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2314 2315 LLT PtrTy = MRI.getType(PtrReg); 2316 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2317 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2318 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2319 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2320 auto LargeLoad = MIRBuilder.buildLoadInstr( 2321 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2322 2323 auto OffsetCst = MIRBuilder.buildConstant( 2324 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2325 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2326 auto SmallPtr = 2327 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2328 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2329 *SmallMMO); 2330 2331 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2332 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2333 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2334 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2335 MI.eraseFromParent(); 2336 return Legalized; 2337 } 2338 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2339 MI.eraseFromParent(); 2340 return Legalized; 2341 } 2342 2343 if (DstTy.isScalar()) { 2344 Register TmpReg = 2345 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2346 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2347 switch (MI.getOpcode()) { 2348 default: 2349 llvm_unreachable("Unexpected opcode"); 2350 case TargetOpcode::G_LOAD: 2351 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2352 break; 2353 case TargetOpcode::G_SEXTLOAD: 2354 MIRBuilder.buildSExt(DstReg, TmpReg); 2355 break; 2356 case TargetOpcode::G_ZEXTLOAD: 2357 MIRBuilder.buildZExt(DstReg, TmpReg); 2358 break; 2359 } 2360 MI.eraseFromParent(); 2361 return Legalized; 2362 } 2363 2364 return UnableToLegalize; 2365 } 2366 case TargetOpcode::G_STORE: { 2367 // Lower a non-power of 2 store into multiple pow-2 stores. 2368 // E.g. split an i24 store into an i16 store + i8 store. 2369 // We do this by first extending the stored value to the next largest power 2370 // of 2 type, and then using truncating stores to store the components. 2371 // By doing this, likewise with G_LOAD, generate an extend that can be 2372 // artifact-combined away instead of leaving behind extracts. 2373 Register SrcReg = MI.getOperand(0).getReg(); 2374 Register PtrReg = MI.getOperand(1).getReg(); 2375 LLT SrcTy = MRI.getType(SrcReg); 2376 MachineMemOperand &MMO = **MI.memoperands_begin(); 2377 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2378 return UnableToLegalize; 2379 if (SrcTy.isVector()) 2380 return UnableToLegalize; 2381 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2382 return UnableToLegalize; // Don't know what we're being asked to do. 2383 2384 // Extend to the next pow-2. 2385 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2386 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2387 2388 // Obtain the smaller value by shifting away the larger value. 2389 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2390 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2391 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2392 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2393 2394 // Generate the PtrAdd and truncating stores. 2395 LLT PtrTy = MRI.getType(PtrReg); 2396 auto OffsetCst = MIRBuilder.buildConstant( 2397 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2398 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2399 auto SmallPtr = 2400 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2401 2402 MachineFunction &MF = MIRBuilder.getMF(); 2403 MachineMemOperand *LargeMMO = 2404 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2405 MachineMemOperand *SmallMMO = 2406 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2407 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2408 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2409 MI.eraseFromParent(); 2410 return Legalized; 2411 } 2412 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2413 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2414 case TargetOpcode::G_CTLZ: 2415 case TargetOpcode::G_CTTZ: 2416 case TargetOpcode::G_CTPOP: 2417 return lowerBitCount(MI, TypeIdx, Ty); 2418 case G_UADDO: { 2419 Register Res = MI.getOperand(0).getReg(); 2420 Register CarryOut = MI.getOperand(1).getReg(); 2421 Register LHS = MI.getOperand(2).getReg(); 2422 Register RHS = MI.getOperand(3).getReg(); 2423 2424 MIRBuilder.buildAdd(Res, LHS, RHS); 2425 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2426 2427 MI.eraseFromParent(); 2428 return Legalized; 2429 } 2430 case G_UADDE: { 2431 Register Res = MI.getOperand(0).getReg(); 2432 Register CarryOut = MI.getOperand(1).getReg(); 2433 Register LHS = MI.getOperand(2).getReg(); 2434 Register RHS = MI.getOperand(3).getReg(); 2435 Register CarryIn = MI.getOperand(4).getReg(); 2436 2437 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2438 Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 2439 2440 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 2441 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 2442 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2443 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2444 2445 MI.eraseFromParent(); 2446 return Legalized; 2447 } 2448 case G_USUBO: { 2449 Register Res = MI.getOperand(0).getReg(); 2450 Register BorrowOut = MI.getOperand(1).getReg(); 2451 Register LHS = MI.getOperand(2).getReg(); 2452 Register RHS = MI.getOperand(3).getReg(); 2453 2454 MIRBuilder.buildSub(Res, LHS, RHS); 2455 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2456 2457 MI.eraseFromParent(); 2458 return Legalized; 2459 } 2460 case G_USUBE: { 2461 Register Res = MI.getOperand(0).getReg(); 2462 Register BorrowOut = MI.getOperand(1).getReg(); 2463 Register LHS = MI.getOperand(2).getReg(); 2464 Register RHS = MI.getOperand(3).getReg(); 2465 Register BorrowIn = MI.getOperand(4).getReg(); 2466 2467 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2468 Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); 2469 Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2470 Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2471 2472 MIRBuilder.buildSub(TmpRes, LHS, RHS); 2473 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); 2474 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2475 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); 2476 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); 2477 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2478 2479 MI.eraseFromParent(); 2480 return Legalized; 2481 } 2482 case G_UITOFP: 2483 return lowerUITOFP(MI, TypeIdx, Ty); 2484 case G_SITOFP: 2485 return lowerSITOFP(MI, TypeIdx, Ty); 2486 case G_FPTOUI: 2487 return lowerFPTOUI(MI, TypeIdx, Ty); 2488 case G_FPTOSI: 2489 return lowerFPTOSI(MI); 2490 case G_FPTRUNC: 2491 return lowerFPTRUNC(MI, TypeIdx, Ty); 2492 case G_SMIN: 2493 case G_SMAX: 2494 case G_UMIN: 2495 case G_UMAX: 2496 return lowerMinMax(MI, TypeIdx, Ty); 2497 case G_FCOPYSIGN: 2498 return lowerFCopySign(MI, TypeIdx, Ty); 2499 case G_FMINNUM: 2500 case G_FMAXNUM: 2501 return lowerFMinNumMaxNum(MI); 2502 case G_UNMERGE_VALUES: 2503 return lowerUnmergeValues(MI); 2504 case TargetOpcode::G_SEXT_INREG: { 2505 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2506 int64_t SizeInBits = MI.getOperand(2).getImm(); 2507 2508 Register DstReg = MI.getOperand(0).getReg(); 2509 Register SrcReg = MI.getOperand(1).getReg(); 2510 LLT DstTy = MRI.getType(DstReg); 2511 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2512 2513 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2514 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2515 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2516 MI.eraseFromParent(); 2517 return Legalized; 2518 } 2519 case G_SHUFFLE_VECTOR: 2520 return lowerShuffleVector(MI); 2521 case G_DYN_STACKALLOC: 2522 return lowerDynStackAlloc(MI); 2523 case G_EXTRACT: 2524 return lowerExtract(MI); 2525 case G_INSERT: 2526 return lowerInsert(MI); 2527 case G_BSWAP: 2528 return lowerBswap(MI); 2529 case G_BITREVERSE: 2530 return lowerBitreverse(MI); 2531 case G_READ_REGISTER: 2532 case G_WRITE_REGISTER: 2533 return lowerReadWriteRegister(MI); 2534 } 2535 } 2536 2537 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2538 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2539 SmallVector<Register, 2> DstRegs; 2540 2541 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2542 Register DstReg = MI.getOperand(0).getReg(); 2543 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2544 int NumParts = Size / NarrowSize; 2545 // FIXME: Don't know how to handle the situation where the small vectors 2546 // aren't all the same size yet. 2547 if (Size % NarrowSize != 0) 2548 return UnableToLegalize; 2549 2550 for (int i = 0; i < NumParts; ++i) { 2551 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2552 MIRBuilder.buildUndef(TmpReg); 2553 DstRegs.push_back(TmpReg); 2554 } 2555 2556 if (NarrowTy.isVector()) 2557 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2558 else 2559 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2560 2561 MI.eraseFromParent(); 2562 return Legalized; 2563 } 2564 2565 LegalizerHelper::LegalizeResult 2566 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 2567 LLT NarrowTy) { 2568 const unsigned Opc = MI.getOpcode(); 2569 const unsigned NumOps = MI.getNumOperands() - 1; 2570 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 2571 const Register DstReg = MI.getOperand(0).getReg(); 2572 const unsigned Flags = MI.getFlags(); 2573 const LLT DstTy = MRI.getType(DstReg); 2574 const unsigned Size = DstTy.getSizeInBits(); 2575 const int NumParts = Size / NarrowSize; 2576 const LLT EltTy = DstTy.getElementType(); 2577 const unsigned EltSize = EltTy.getSizeInBits(); 2578 const unsigned BitsForNumParts = NarrowSize * NumParts; 2579 2580 // Check if we have any leftovers. If we do, then only handle the case where 2581 // the leftover is one element. 2582 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) 2583 return UnableToLegalize; 2584 2585 if (BitsForNumParts != Size) { 2586 Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy); 2587 MIRBuilder.buildUndef(AccumDstReg); 2588 2589 // Handle the pieces which evenly divide into the requested type with 2590 // extract/op/insert sequence. 2591 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { 2592 SmallVector<SrcOp, 4> SrcOps; 2593 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2594 Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); 2595 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I), Offset); 2596 SrcOps.push_back(PartOpReg); 2597 } 2598 2599 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); 2600 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2601 2602 Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy); 2603 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); 2604 AccumDstReg = PartInsertReg; 2605 } 2606 2607 // Handle the remaining element sized leftover piece. 2608 SmallVector<SrcOp, 4> SrcOps; 2609 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2610 Register PartOpReg = MRI.createGenericVirtualRegister(EltTy); 2611 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I), BitsForNumParts); 2612 SrcOps.push_back(PartOpReg); 2613 } 2614 2615 Register PartDstReg = MRI.createGenericVirtualRegister(EltTy); 2616 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2617 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); 2618 MI.eraseFromParent(); 2619 2620 return Legalized; 2621 } 2622 2623 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2624 2625 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 2626 2627 if (NumOps >= 2) 2628 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 2629 2630 if (NumOps >= 3) 2631 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 2632 2633 for (int i = 0; i < NumParts; ++i) { 2634 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 2635 2636 if (NumOps == 1) 2637 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 2638 else if (NumOps == 2) { 2639 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 2640 } else if (NumOps == 3) { 2641 MIRBuilder.buildInstr(Opc, {DstReg}, 2642 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 2643 } 2644 2645 DstRegs.push_back(DstReg); 2646 } 2647 2648 if (NarrowTy.isVector()) 2649 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2650 else 2651 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2652 2653 MI.eraseFromParent(); 2654 return Legalized; 2655 } 2656 2657 // Handle splitting vector operations which need to have the same number of 2658 // elements in each type index, but each type index may have a different element 2659 // type. 2660 // 2661 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2662 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2663 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2664 // 2665 // Also handles some irregular breakdown cases, e.g. 2666 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2667 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2668 // s64 = G_SHL s64, s32 2669 LegalizerHelper::LegalizeResult 2670 LegalizerHelper::fewerElementsVectorMultiEltType( 2671 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2672 if (TypeIdx != 0) 2673 return UnableToLegalize; 2674 2675 const LLT NarrowTy0 = NarrowTyArg; 2676 const unsigned NewNumElts = 2677 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2678 2679 const Register DstReg = MI.getOperand(0).getReg(); 2680 LLT DstTy = MRI.getType(DstReg); 2681 LLT LeftoverTy0; 2682 2683 // All of the operands need to have the same number of elements, so if we can 2684 // determine a type breakdown for the result type, we can for all of the 2685 // source types. 2686 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2687 if (NumParts < 0) 2688 return UnableToLegalize; 2689 2690 SmallVector<MachineInstrBuilder, 4> NewInsts; 2691 2692 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2693 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2694 2695 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2696 LLT LeftoverTy; 2697 Register SrcReg = MI.getOperand(I).getReg(); 2698 LLT SrcTyI = MRI.getType(SrcReg); 2699 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2700 LLT LeftoverTyI; 2701 2702 // Split this operand into the requested typed registers, and any leftover 2703 // required to reproduce the original type. 2704 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2705 LeftoverRegs)) 2706 return UnableToLegalize; 2707 2708 if (I == 1) { 2709 // For the first operand, create an instruction for each part and setup 2710 // the result. 2711 for (Register PartReg : PartRegs) { 2712 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2713 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2714 .addDef(PartDstReg) 2715 .addUse(PartReg)); 2716 DstRegs.push_back(PartDstReg); 2717 } 2718 2719 for (Register LeftoverReg : LeftoverRegs) { 2720 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2721 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2722 .addDef(PartDstReg) 2723 .addUse(LeftoverReg)); 2724 LeftoverDstRegs.push_back(PartDstReg); 2725 } 2726 } else { 2727 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2728 2729 // Add the newly created operand splits to the existing instructions. The 2730 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2731 // pieces. 2732 unsigned InstCount = 0; 2733 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2734 NewInsts[InstCount++].addUse(PartRegs[J]); 2735 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2736 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2737 } 2738 2739 PartRegs.clear(); 2740 LeftoverRegs.clear(); 2741 } 2742 2743 // Insert the newly built operations and rebuild the result register. 2744 for (auto &MIB : NewInsts) 2745 MIRBuilder.insertInstr(MIB); 2746 2747 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2748 2749 MI.eraseFromParent(); 2750 return Legalized; 2751 } 2752 2753 LegalizerHelper::LegalizeResult 2754 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2755 LLT NarrowTy) { 2756 if (TypeIdx != 0) 2757 return UnableToLegalize; 2758 2759 Register DstReg = MI.getOperand(0).getReg(); 2760 Register SrcReg = MI.getOperand(1).getReg(); 2761 LLT DstTy = MRI.getType(DstReg); 2762 LLT SrcTy = MRI.getType(SrcReg); 2763 2764 LLT NarrowTy0 = NarrowTy; 2765 LLT NarrowTy1; 2766 unsigned NumParts; 2767 2768 if (NarrowTy.isVector()) { 2769 // Uneven breakdown not handled. 2770 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2771 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2772 return UnableToLegalize; 2773 2774 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2775 } else { 2776 NumParts = DstTy.getNumElements(); 2777 NarrowTy1 = SrcTy.getElementType(); 2778 } 2779 2780 SmallVector<Register, 4> SrcRegs, DstRegs; 2781 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2782 2783 for (unsigned I = 0; I < NumParts; ++I) { 2784 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2785 MachineInstr *NewInst = 2786 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2787 2788 NewInst->setFlags(MI.getFlags()); 2789 DstRegs.push_back(DstReg); 2790 } 2791 2792 if (NarrowTy.isVector()) 2793 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2794 else 2795 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2796 2797 MI.eraseFromParent(); 2798 return Legalized; 2799 } 2800 2801 LegalizerHelper::LegalizeResult 2802 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2803 LLT NarrowTy) { 2804 Register DstReg = MI.getOperand(0).getReg(); 2805 Register Src0Reg = MI.getOperand(2).getReg(); 2806 LLT DstTy = MRI.getType(DstReg); 2807 LLT SrcTy = MRI.getType(Src0Reg); 2808 2809 unsigned NumParts; 2810 LLT NarrowTy0, NarrowTy1; 2811 2812 if (TypeIdx == 0) { 2813 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2814 unsigned OldElts = DstTy.getNumElements(); 2815 2816 NarrowTy0 = NarrowTy; 2817 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2818 NarrowTy1 = NarrowTy.isVector() ? 2819 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2820 SrcTy.getElementType(); 2821 2822 } else { 2823 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2824 unsigned OldElts = SrcTy.getNumElements(); 2825 2826 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2827 NarrowTy.getNumElements(); 2828 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2829 DstTy.getScalarSizeInBits()); 2830 NarrowTy1 = NarrowTy; 2831 } 2832 2833 // FIXME: Don't know how to handle the situation where the small vectors 2834 // aren't all the same size yet. 2835 if (NarrowTy1.isVector() && 2836 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2837 return UnableToLegalize; 2838 2839 CmpInst::Predicate Pred 2840 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2841 2842 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2843 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2844 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2845 2846 for (unsigned I = 0; I < NumParts; ++I) { 2847 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2848 DstRegs.push_back(DstReg); 2849 2850 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2851 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2852 else { 2853 MachineInstr *NewCmp 2854 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2855 NewCmp->setFlags(MI.getFlags()); 2856 } 2857 } 2858 2859 if (NarrowTy1.isVector()) 2860 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2861 else 2862 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2863 2864 MI.eraseFromParent(); 2865 return Legalized; 2866 } 2867 2868 LegalizerHelper::LegalizeResult 2869 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2870 LLT NarrowTy) { 2871 Register DstReg = MI.getOperand(0).getReg(); 2872 Register CondReg = MI.getOperand(1).getReg(); 2873 2874 unsigned NumParts = 0; 2875 LLT NarrowTy0, NarrowTy1; 2876 2877 LLT DstTy = MRI.getType(DstReg); 2878 LLT CondTy = MRI.getType(CondReg); 2879 unsigned Size = DstTy.getSizeInBits(); 2880 2881 assert(TypeIdx == 0 || CondTy.isVector()); 2882 2883 if (TypeIdx == 0) { 2884 NarrowTy0 = NarrowTy; 2885 NarrowTy1 = CondTy; 2886 2887 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2888 // FIXME: Don't know how to handle the situation where the small vectors 2889 // aren't all the same size yet. 2890 if (Size % NarrowSize != 0) 2891 return UnableToLegalize; 2892 2893 NumParts = Size / NarrowSize; 2894 2895 // Need to break down the condition type 2896 if (CondTy.isVector()) { 2897 if (CondTy.getNumElements() == NumParts) 2898 NarrowTy1 = CondTy.getElementType(); 2899 else 2900 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2901 CondTy.getScalarSizeInBits()); 2902 } 2903 } else { 2904 NumParts = CondTy.getNumElements(); 2905 if (NarrowTy.isVector()) { 2906 // TODO: Handle uneven breakdown. 2907 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2908 return UnableToLegalize; 2909 2910 return UnableToLegalize; 2911 } else { 2912 NarrowTy0 = DstTy.getElementType(); 2913 NarrowTy1 = NarrowTy; 2914 } 2915 } 2916 2917 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2918 if (CondTy.isVector()) 2919 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2920 2921 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2922 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2923 2924 for (unsigned i = 0; i < NumParts; ++i) { 2925 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2926 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2927 Src1Regs[i], Src2Regs[i]); 2928 DstRegs.push_back(DstReg); 2929 } 2930 2931 if (NarrowTy0.isVector()) 2932 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2933 else 2934 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2935 2936 MI.eraseFromParent(); 2937 return Legalized; 2938 } 2939 2940 LegalizerHelper::LegalizeResult 2941 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2942 LLT NarrowTy) { 2943 const Register DstReg = MI.getOperand(0).getReg(); 2944 LLT PhiTy = MRI.getType(DstReg); 2945 LLT LeftoverTy; 2946 2947 // All of the operands need to have the same number of elements, so if we can 2948 // determine a type breakdown for the result type, we can for all of the 2949 // source types. 2950 int NumParts, NumLeftover; 2951 std::tie(NumParts, NumLeftover) 2952 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2953 if (NumParts < 0) 2954 return UnableToLegalize; 2955 2956 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2957 SmallVector<MachineInstrBuilder, 4> NewInsts; 2958 2959 const int TotalNumParts = NumParts + NumLeftover; 2960 2961 // Insert the new phis in the result block first. 2962 for (int I = 0; I != TotalNumParts; ++I) { 2963 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2964 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2965 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2966 .addDef(PartDstReg)); 2967 if (I < NumParts) 2968 DstRegs.push_back(PartDstReg); 2969 else 2970 LeftoverDstRegs.push_back(PartDstReg); 2971 } 2972 2973 MachineBasicBlock *MBB = MI.getParent(); 2974 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2975 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2976 2977 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2978 2979 // Insert code to extract the incoming values in each predecessor block. 2980 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2981 PartRegs.clear(); 2982 LeftoverRegs.clear(); 2983 2984 Register SrcReg = MI.getOperand(I).getReg(); 2985 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2986 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2987 2988 LLT Unused; 2989 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2990 LeftoverRegs)) 2991 return UnableToLegalize; 2992 2993 // Add the newly created operand splits to the existing instructions. The 2994 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2995 // pieces. 2996 for (int J = 0; J != TotalNumParts; ++J) { 2997 MachineInstrBuilder MIB = NewInsts[J]; 2998 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2999 MIB.addMBB(&OpMBB); 3000 } 3001 } 3002 3003 MI.eraseFromParent(); 3004 return Legalized; 3005 } 3006 3007 LegalizerHelper::LegalizeResult 3008 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3009 unsigned TypeIdx, 3010 LLT NarrowTy) { 3011 if (TypeIdx != 1) 3012 return UnableToLegalize; 3013 3014 const int NumDst = MI.getNumOperands() - 1; 3015 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3016 LLT SrcTy = MRI.getType(SrcReg); 3017 3018 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3019 3020 // TODO: Create sequence of extracts. 3021 if (DstTy == NarrowTy) 3022 return UnableToLegalize; 3023 3024 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3025 if (DstTy == GCDTy) { 3026 // This would just be a copy of the same unmerge. 3027 // TODO: Create extracts, pad with undef and create intermediate merges. 3028 return UnableToLegalize; 3029 } 3030 3031 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3032 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3033 const int PartsPerUnmerge = NumDst / NumUnmerge; 3034 3035 for (int I = 0; I != NumUnmerge; ++I) { 3036 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3037 3038 for (int J = 0; J != PartsPerUnmerge; ++J) 3039 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3040 MIB.addUse(Unmerge.getReg(I)); 3041 } 3042 3043 MI.eraseFromParent(); 3044 return Legalized; 3045 } 3046 3047 LegalizerHelper::LegalizeResult 3048 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 3049 unsigned TypeIdx, 3050 LLT NarrowTy) { 3051 assert(TypeIdx == 0 && "not a vector type index"); 3052 Register DstReg = MI.getOperand(0).getReg(); 3053 LLT DstTy = MRI.getType(DstReg); 3054 LLT SrcTy = DstTy.getElementType(); 3055 3056 int DstNumElts = DstTy.getNumElements(); 3057 int NarrowNumElts = NarrowTy.getNumElements(); 3058 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3059 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3060 3061 SmallVector<Register, 8> ConcatOps; 3062 SmallVector<Register, 8> SubBuildVector; 3063 3064 Register UndefReg; 3065 if (WidenedDstTy != DstTy) 3066 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3067 3068 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3069 // necessary. 3070 // 3071 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3072 // -> <2 x s16> 3073 // 3074 // %4:_(s16) = G_IMPLICIT_DEF 3075 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3076 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3077 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3078 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3079 for (int I = 0; I != NumConcat; ++I) { 3080 for (int J = 0; J != NarrowNumElts; ++J) { 3081 int SrcIdx = NarrowNumElts * I + J; 3082 3083 if (SrcIdx < DstNumElts) { 3084 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3085 SubBuildVector.push_back(SrcReg); 3086 } else 3087 SubBuildVector.push_back(UndefReg); 3088 } 3089 3090 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3091 ConcatOps.push_back(BuildVec.getReg(0)); 3092 SubBuildVector.clear(); 3093 } 3094 3095 if (DstTy == WidenedDstTy) 3096 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3097 else { 3098 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3099 MIRBuilder.buildExtract(DstReg, Concat, 0); 3100 } 3101 3102 MI.eraseFromParent(); 3103 return Legalized; 3104 } 3105 3106 LegalizerHelper::LegalizeResult 3107 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3108 LLT NarrowTy) { 3109 // FIXME: Don't know how to handle secondary types yet. 3110 if (TypeIdx != 0) 3111 return UnableToLegalize; 3112 3113 MachineMemOperand *MMO = *MI.memoperands_begin(); 3114 3115 // This implementation doesn't work for atomics. Give up instead of doing 3116 // something invalid. 3117 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3118 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3119 return UnableToLegalize; 3120 3121 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3122 Register ValReg = MI.getOperand(0).getReg(); 3123 Register AddrReg = MI.getOperand(1).getReg(); 3124 LLT ValTy = MRI.getType(ValReg); 3125 3126 int NumParts = -1; 3127 int NumLeftover = -1; 3128 LLT LeftoverTy; 3129 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3130 if (IsLoad) { 3131 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3132 } else { 3133 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3134 NarrowLeftoverRegs)) { 3135 NumParts = NarrowRegs.size(); 3136 NumLeftover = NarrowLeftoverRegs.size(); 3137 } 3138 } 3139 3140 if (NumParts == -1) 3141 return UnableToLegalize; 3142 3143 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3144 3145 unsigned TotalSize = ValTy.getSizeInBits(); 3146 3147 // Split the load/store into PartTy sized pieces starting at Offset. If this 3148 // is a load, return the new registers in ValRegs. For a store, each elements 3149 // of ValRegs should be PartTy. Returns the next offset that needs to be 3150 // handled. 3151 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3152 unsigned Offset) -> unsigned { 3153 MachineFunction &MF = MIRBuilder.getMF(); 3154 unsigned PartSize = PartTy.getSizeInBits(); 3155 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3156 Offset += PartSize, ++Idx) { 3157 unsigned ByteSize = PartSize / 8; 3158 unsigned ByteOffset = Offset / 8; 3159 Register NewAddrReg; 3160 3161 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3162 3163 MachineMemOperand *NewMMO = 3164 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3165 3166 if (IsLoad) { 3167 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3168 ValRegs.push_back(Dst); 3169 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3170 } else { 3171 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3172 } 3173 } 3174 3175 return Offset; 3176 }; 3177 3178 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3179 3180 // Handle the rest of the register if this isn't an even type breakdown. 3181 if (LeftoverTy.isValid()) 3182 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3183 3184 if (IsLoad) { 3185 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3186 LeftoverTy, NarrowLeftoverRegs); 3187 } 3188 3189 MI.eraseFromParent(); 3190 return Legalized; 3191 } 3192 3193 LegalizerHelper::LegalizeResult 3194 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3195 LLT NarrowTy) { 3196 Register DstReg = MI.getOperand(0).getReg(); 3197 Register SrcReg = MI.getOperand(1).getReg(); 3198 int64_t Imm = MI.getOperand(2).getImm(); 3199 3200 LLT DstTy = MRI.getType(DstReg); 3201 3202 SmallVector<Register, 8> Parts; 3203 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3204 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3205 3206 for (Register &R : Parts) 3207 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3208 3209 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3210 3211 MI.eraseFromParent(); 3212 return Legalized; 3213 } 3214 3215 LegalizerHelper::LegalizeResult 3216 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3217 LLT NarrowTy) { 3218 using namespace TargetOpcode; 3219 3220 MIRBuilder.setInstr(MI); 3221 switch (MI.getOpcode()) { 3222 case G_IMPLICIT_DEF: 3223 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3224 case G_AND: 3225 case G_OR: 3226 case G_XOR: 3227 case G_ADD: 3228 case G_SUB: 3229 case G_MUL: 3230 case G_SMULH: 3231 case G_UMULH: 3232 case G_FADD: 3233 case G_FMUL: 3234 case G_FSUB: 3235 case G_FNEG: 3236 case G_FABS: 3237 case G_FCANONICALIZE: 3238 case G_FDIV: 3239 case G_FREM: 3240 case G_FMA: 3241 case G_FMAD: 3242 case G_FPOW: 3243 case G_FEXP: 3244 case G_FEXP2: 3245 case G_FLOG: 3246 case G_FLOG2: 3247 case G_FLOG10: 3248 case G_FNEARBYINT: 3249 case G_FCEIL: 3250 case G_FFLOOR: 3251 case G_FRINT: 3252 case G_INTRINSIC_ROUND: 3253 case G_INTRINSIC_TRUNC: 3254 case G_FCOS: 3255 case G_FSIN: 3256 case G_FSQRT: 3257 case G_BSWAP: 3258 case G_BITREVERSE: 3259 case G_SDIV: 3260 case G_UDIV: 3261 case G_SREM: 3262 case G_UREM: 3263 case G_SMIN: 3264 case G_SMAX: 3265 case G_UMIN: 3266 case G_UMAX: 3267 case G_FMINNUM: 3268 case G_FMAXNUM: 3269 case G_FMINNUM_IEEE: 3270 case G_FMAXNUM_IEEE: 3271 case G_FMINIMUM: 3272 case G_FMAXIMUM: 3273 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 3274 case G_SHL: 3275 case G_LSHR: 3276 case G_ASHR: 3277 case G_CTLZ: 3278 case G_CTLZ_ZERO_UNDEF: 3279 case G_CTTZ: 3280 case G_CTTZ_ZERO_UNDEF: 3281 case G_CTPOP: 3282 case G_FCOPYSIGN: 3283 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3284 case G_ZEXT: 3285 case G_SEXT: 3286 case G_ANYEXT: 3287 case G_FPEXT: 3288 case G_FPTRUNC: 3289 case G_SITOFP: 3290 case G_UITOFP: 3291 case G_FPTOSI: 3292 case G_FPTOUI: 3293 case G_INTTOPTR: 3294 case G_PTRTOINT: 3295 case G_ADDRSPACE_CAST: 3296 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3297 case G_ICMP: 3298 case G_FCMP: 3299 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3300 case G_SELECT: 3301 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3302 case G_PHI: 3303 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3304 case G_UNMERGE_VALUES: 3305 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3306 case G_BUILD_VECTOR: 3307 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3308 case G_LOAD: 3309 case G_STORE: 3310 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3311 case G_SEXT_INREG: 3312 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3313 default: 3314 return UnableToLegalize; 3315 } 3316 } 3317 3318 LegalizerHelper::LegalizeResult 3319 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3320 const LLT HalfTy, const LLT AmtTy) { 3321 3322 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3323 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3324 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3325 3326 if (Amt.isNullValue()) { 3327 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3328 MI.eraseFromParent(); 3329 return Legalized; 3330 } 3331 3332 LLT NVT = HalfTy; 3333 unsigned NVTBits = HalfTy.getSizeInBits(); 3334 unsigned VTBits = 2 * NVTBits; 3335 3336 SrcOp Lo(Register(0)), Hi(Register(0)); 3337 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3338 if (Amt.ugt(VTBits)) { 3339 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3340 } else if (Amt.ugt(NVTBits)) { 3341 Lo = MIRBuilder.buildConstant(NVT, 0); 3342 Hi = MIRBuilder.buildShl(NVT, InL, 3343 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3344 } else if (Amt == NVTBits) { 3345 Lo = MIRBuilder.buildConstant(NVT, 0); 3346 Hi = InL; 3347 } else { 3348 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3349 auto OrLHS = 3350 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3351 auto OrRHS = MIRBuilder.buildLShr( 3352 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3353 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3354 } 3355 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3356 if (Amt.ugt(VTBits)) { 3357 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3358 } else if (Amt.ugt(NVTBits)) { 3359 Lo = MIRBuilder.buildLShr(NVT, InH, 3360 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3361 Hi = MIRBuilder.buildConstant(NVT, 0); 3362 } else if (Amt == NVTBits) { 3363 Lo = InH; 3364 Hi = MIRBuilder.buildConstant(NVT, 0); 3365 } else { 3366 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3367 3368 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3369 auto OrRHS = MIRBuilder.buildShl( 3370 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3371 3372 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3373 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3374 } 3375 } else { 3376 if (Amt.ugt(VTBits)) { 3377 Hi = Lo = MIRBuilder.buildAShr( 3378 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3379 } else if (Amt.ugt(NVTBits)) { 3380 Lo = MIRBuilder.buildAShr(NVT, InH, 3381 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3382 Hi = MIRBuilder.buildAShr(NVT, InH, 3383 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3384 } else if (Amt == NVTBits) { 3385 Lo = InH; 3386 Hi = MIRBuilder.buildAShr(NVT, InH, 3387 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3388 } else { 3389 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3390 3391 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3392 auto OrRHS = MIRBuilder.buildShl( 3393 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3394 3395 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3396 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3397 } 3398 } 3399 3400 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 3401 MI.eraseFromParent(); 3402 3403 return Legalized; 3404 } 3405 3406 // TODO: Optimize if constant shift amount. 3407 LegalizerHelper::LegalizeResult 3408 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3409 LLT RequestedTy) { 3410 if (TypeIdx == 1) { 3411 Observer.changingInstr(MI); 3412 narrowScalarSrc(MI, RequestedTy, 2); 3413 Observer.changedInstr(MI); 3414 return Legalized; 3415 } 3416 3417 Register DstReg = MI.getOperand(0).getReg(); 3418 LLT DstTy = MRI.getType(DstReg); 3419 if (DstTy.isVector()) 3420 return UnableToLegalize; 3421 3422 Register Amt = MI.getOperand(2).getReg(); 3423 LLT ShiftAmtTy = MRI.getType(Amt); 3424 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3425 if (DstEltSize % 2 != 0) 3426 return UnableToLegalize; 3427 3428 // Ignore the input type. We can only go to exactly half the size of the 3429 // input. If that isn't small enough, the resulting pieces will be further 3430 // legalized. 3431 const unsigned NewBitSize = DstEltSize / 2; 3432 const LLT HalfTy = LLT::scalar(NewBitSize); 3433 const LLT CondTy = LLT::scalar(1); 3434 3435 if (const MachineInstr *KShiftAmt = 3436 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3437 return narrowScalarShiftByConstant( 3438 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3439 } 3440 3441 // TODO: Expand with known bits. 3442 3443 // Handle the fully general expansion by an unknown amount. 3444 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3445 3446 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3447 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3448 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3449 3450 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3451 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3452 3453 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3454 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3455 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3456 3457 Register ResultRegs[2]; 3458 switch (MI.getOpcode()) { 3459 case TargetOpcode::G_SHL: { 3460 // Short: ShAmt < NewBitSize 3461 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3462 3463 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3464 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3465 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3466 3467 // Long: ShAmt >= NewBitSize 3468 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3469 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3470 3471 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3472 auto Hi = MIRBuilder.buildSelect( 3473 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3474 3475 ResultRegs[0] = Lo.getReg(0); 3476 ResultRegs[1] = Hi.getReg(0); 3477 break; 3478 } 3479 case TargetOpcode::G_LSHR: 3480 case TargetOpcode::G_ASHR: { 3481 // Short: ShAmt < NewBitSize 3482 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3483 3484 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3485 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3486 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3487 3488 // Long: ShAmt >= NewBitSize 3489 MachineInstrBuilder HiL; 3490 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3491 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3492 } else { 3493 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3494 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3495 } 3496 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3497 {InH, AmtExcess}); // Lo from Hi part. 3498 3499 auto Lo = MIRBuilder.buildSelect( 3500 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3501 3502 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3503 3504 ResultRegs[0] = Lo.getReg(0); 3505 ResultRegs[1] = Hi.getReg(0); 3506 break; 3507 } 3508 default: 3509 llvm_unreachable("not a shift"); 3510 } 3511 3512 MIRBuilder.buildMerge(DstReg, ResultRegs); 3513 MI.eraseFromParent(); 3514 return Legalized; 3515 } 3516 3517 LegalizerHelper::LegalizeResult 3518 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3519 LLT MoreTy) { 3520 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3521 3522 Observer.changingInstr(MI); 3523 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3524 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3525 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3526 moreElementsVectorSrc(MI, MoreTy, I); 3527 } 3528 3529 MachineBasicBlock &MBB = *MI.getParent(); 3530 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3531 moreElementsVectorDst(MI, MoreTy, 0); 3532 Observer.changedInstr(MI); 3533 return Legalized; 3534 } 3535 3536 LegalizerHelper::LegalizeResult 3537 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3538 LLT MoreTy) { 3539 MIRBuilder.setInstr(MI); 3540 unsigned Opc = MI.getOpcode(); 3541 switch (Opc) { 3542 case TargetOpcode::G_IMPLICIT_DEF: 3543 case TargetOpcode::G_LOAD: { 3544 if (TypeIdx != 0) 3545 return UnableToLegalize; 3546 Observer.changingInstr(MI); 3547 moreElementsVectorDst(MI, MoreTy, 0); 3548 Observer.changedInstr(MI); 3549 return Legalized; 3550 } 3551 case TargetOpcode::G_STORE: 3552 if (TypeIdx != 0) 3553 return UnableToLegalize; 3554 Observer.changingInstr(MI); 3555 moreElementsVectorSrc(MI, MoreTy, 0); 3556 Observer.changedInstr(MI); 3557 return Legalized; 3558 case TargetOpcode::G_AND: 3559 case TargetOpcode::G_OR: 3560 case TargetOpcode::G_XOR: 3561 case TargetOpcode::G_SMIN: 3562 case TargetOpcode::G_SMAX: 3563 case TargetOpcode::G_UMIN: 3564 case TargetOpcode::G_UMAX: 3565 case TargetOpcode::G_FMINNUM: 3566 case TargetOpcode::G_FMAXNUM: 3567 case TargetOpcode::G_FMINNUM_IEEE: 3568 case TargetOpcode::G_FMAXNUM_IEEE: 3569 case TargetOpcode::G_FMINIMUM: 3570 case TargetOpcode::G_FMAXIMUM: { 3571 Observer.changingInstr(MI); 3572 moreElementsVectorSrc(MI, MoreTy, 1); 3573 moreElementsVectorSrc(MI, MoreTy, 2); 3574 moreElementsVectorDst(MI, MoreTy, 0); 3575 Observer.changedInstr(MI); 3576 return Legalized; 3577 } 3578 case TargetOpcode::G_EXTRACT: 3579 if (TypeIdx != 1) 3580 return UnableToLegalize; 3581 Observer.changingInstr(MI); 3582 moreElementsVectorSrc(MI, MoreTy, 1); 3583 Observer.changedInstr(MI); 3584 return Legalized; 3585 case TargetOpcode::G_INSERT: 3586 if (TypeIdx != 0) 3587 return UnableToLegalize; 3588 Observer.changingInstr(MI); 3589 moreElementsVectorSrc(MI, MoreTy, 1); 3590 moreElementsVectorDst(MI, MoreTy, 0); 3591 Observer.changedInstr(MI); 3592 return Legalized; 3593 case TargetOpcode::G_SELECT: 3594 if (TypeIdx != 0) 3595 return UnableToLegalize; 3596 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3597 return UnableToLegalize; 3598 3599 Observer.changingInstr(MI); 3600 moreElementsVectorSrc(MI, MoreTy, 2); 3601 moreElementsVectorSrc(MI, MoreTy, 3); 3602 moreElementsVectorDst(MI, MoreTy, 0); 3603 Observer.changedInstr(MI); 3604 return Legalized; 3605 case TargetOpcode::G_UNMERGE_VALUES: { 3606 if (TypeIdx != 1) 3607 return UnableToLegalize; 3608 3609 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3610 int NumDst = MI.getNumOperands() - 1; 3611 moreElementsVectorSrc(MI, MoreTy, NumDst); 3612 3613 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3614 for (int I = 0; I != NumDst; ++I) 3615 MIB.addDef(MI.getOperand(I).getReg()); 3616 3617 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3618 for (int I = NumDst; I != NewNumDst; ++I) 3619 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3620 3621 MIB.addUse(MI.getOperand(NumDst).getReg()); 3622 MI.eraseFromParent(); 3623 return Legalized; 3624 } 3625 case TargetOpcode::G_PHI: 3626 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3627 default: 3628 return UnableToLegalize; 3629 } 3630 } 3631 3632 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3633 ArrayRef<Register> Src1Regs, 3634 ArrayRef<Register> Src2Regs, 3635 LLT NarrowTy) { 3636 MachineIRBuilder &B = MIRBuilder; 3637 unsigned SrcParts = Src1Regs.size(); 3638 unsigned DstParts = DstRegs.size(); 3639 3640 unsigned DstIdx = 0; // Low bits of the result. 3641 Register FactorSum = 3642 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3643 DstRegs[DstIdx] = FactorSum; 3644 3645 unsigned CarrySumPrevDstIdx; 3646 SmallVector<Register, 4> Factors; 3647 3648 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3649 // Collect low parts of muls for DstIdx. 3650 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3651 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3652 MachineInstrBuilder Mul = 3653 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3654 Factors.push_back(Mul.getReg(0)); 3655 } 3656 // Collect high parts of muls from previous DstIdx. 3657 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3658 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3659 MachineInstrBuilder Umulh = 3660 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3661 Factors.push_back(Umulh.getReg(0)); 3662 } 3663 // Add CarrySum from additions calculated for previous DstIdx. 3664 if (DstIdx != 1) { 3665 Factors.push_back(CarrySumPrevDstIdx); 3666 } 3667 3668 Register CarrySum; 3669 // Add all factors and accumulate all carries into CarrySum. 3670 if (DstIdx != DstParts - 1) { 3671 MachineInstrBuilder Uaddo = 3672 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3673 FactorSum = Uaddo.getReg(0); 3674 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3675 for (unsigned i = 2; i < Factors.size(); ++i) { 3676 MachineInstrBuilder Uaddo = 3677 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3678 FactorSum = Uaddo.getReg(0); 3679 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3680 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3681 } 3682 } else { 3683 // Since value for the next index is not calculated, neither is CarrySum. 3684 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3685 for (unsigned i = 2; i < Factors.size(); ++i) 3686 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3687 } 3688 3689 CarrySumPrevDstIdx = CarrySum; 3690 DstRegs[DstIdx] = FactorSum; 3691 Factors.clear(); 3692 } 3693 } 3694 3695 LegalizerHelper::LegalizeResult 3696 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3697 Register DstReg = MI.getOperand(0).getReg(); 3698 Register Src1 = MI.getOperand(1).getReg(); 3699 Register Src2 = MI.getOperand(2).getReg(); 3700 3701 LLT Ty = MRI.getType(DstReg); 3702 if (Ty.isVector()) 3703 return UnableToLegalize; 3704 3705 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3706 unsigned DstSize = Ty.getSizeInBits(); 3707 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3708 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3709 return UnableToLegalize; 3710 3711 unsigned NumDstParts = DstSize / NarrowSize; 3712 unsigned NumSrcParts = SrcSize / NarrowSize; 3713 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3714 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3715 3716 SmallVector<Register, 2> Src1Parts, Src2Parts; 3717 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 3718 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3719 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3720 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3721 3722 // Take only high half of registers if this is high mul. 3723 ArrayRef<Register> DstRegs( 3724 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3725 MIRBuilder.buildMerge(DstReg, DstRegs); 3726 MI.eraseFromParent(); 3727 return Legalized; 3728 } 3729 3730 LegalizerHelper::LegalizeResult 3731 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3732 LLT NarrowTy) { 3733 if (TypeIdx != 1) 3734 return UnableToLegalize; 3735 3736 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3737 3738 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3739 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3740 // NarrowSize. 3741 if (SizeOp1 % NarrowSize != 0) 3742 return UnableToLegalize; 3743 int NumParts = SizeOp1 / NarrowSize; 3744 3745 SmallVector<Register, 2> SrcRegs, DstRegs; 3746 SmallVector<uint64_t, 2> Indexes; 3747 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3748 3749 Register OpReg = MI.getOperand(0).getReg(); 3750 uint64_t OpStart = MI.getOperand(2).getImm(); 3751 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3752 for (int i = 0; i < NumParts; ++i) { 3753 unsigned SrcStart = i * NarrowSize; 3754 3755 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3756 // No part of the extract uses this subregister, ignore it. 3757 continue; 3758 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3759 // The entire subregister is extracted, forward the value. 3760 DstRegs.push_back(SrcRegs[i]); 3761 continue; 3762 } 3763 3764 // OpSegStart is where this destination segment would start in OpReg if it 3765 // extended infinitely in both directions. 3766 int64_t ExtractOffset; 3767 uint64_t SegSize; 3768 if (OpStart < SrcStart) { 3769 ExtractOffset = 0; 3770 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3771 } else { 3772 ExtractOffset = OpStart - SrcStart; 3773 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3774 } 3775 3776 Register SegReg = SrcRegs[i]; 3777 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3778 // A genuine extract is needed. 3779 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3780 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3781 } 3782 3783 DstRegs.push_back(SegReg); 3784 } 3785 3786 Register DstReg = MI.getOperand(0).getReg(); 3787 if(MRI.getType(DstReg).isVector()) 3788 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3789 else 3790 MIRBuilder.buildMerge(DstReg, DstRegs); 3791 MI.eraseFromParent(); 3792 return Legalized; 3793 } 3794 3795 LegalizerHelper::LegalizeResult 3796 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3797 LLT NarrowTy) { 3798 // FIXME: Don't know how to handle secondary types yet. 3799 if (TypeIdx != 0) 3800 return UnableToLegalize; 3801 3802 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3803 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3804 3805 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3806 // NarrowSize. 3807 if (SizeOp0 % NarrowSize != 0) 3808 return UnableToLegalize; 3809 3810 int NumParts = SizeOp0 / NarrowSize; 3811 3812 SmallVector<Register, 2> SrcRegs, DstRegs; 3813 SmallVector<uint64_t, 2> Indexes; 3814 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3815 3816 Register OpReg = MI.getOperand(2).getReg(); 3817 uint64_t OpStart = MI.getOperand(3).getImm(); 3818 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3819 for (int i = 0; i < NumParts; ++i) { 3820 unsigned DstStart = i * NarrowSize; 3821 3822 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3823 // No part of the insert affects this subregister, forward the original. 3824 DstRegs.push_back(SrcRegs[i]); 3825 continue; 3826 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3827 // The entire subregister is defined by this insert, forward the new 3828 // value. 3829 DstRegs.push_back(OpReg); 3830 continue; 3831 } 3832 3833 // OpSegStart is where this destination segment would start in OpReg if it 3834 // extended infinitely in both directions. 3835 int64_t ExtractOffset, InsertOffset; 3836 uint64_t SegSize; 3837 if (OpStart < DstStart) { 3838 InsertOffset = 0; 3839 ExtractOffset = DstStart - OpStart; 3840 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3841 } else { 3842 InsertOffset = OpStart - DstStart; 3843 ExtractOffset = 0; 3844 SegSize = 3845 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3846 } 3847 3848 Register SegReg = OpReg; 3849 if (ExtractOffset != 0 || SegSize != OpSize) { 3850 // A genuine extract is needed. 3851 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3852 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3853 } 3854 3855 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3856 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3857 DstRegs.push_back(DstReg); 3858 } 3859 3860 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3861 Register DstReg = MI.getOperand(0).getReg(); 3862 if(MRI.getType(DstReg).isVector()) 3863 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3864 else 3865 MIRBuilder.buildMerge(DstReg, DstRegs); 3866 MI.eraseFromParent(); 3867 return Legalized; 3868 } 3869 3870 LegalizerHelper::LegalizeResult 3871 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3872 LLT NarrowTy) { 3873 Register DstReg = MI.getOperand(0).getReg(); 3874 LLT DstTy = MRI.getType(DstReg); 3875 3876 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3877 3878 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3879 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3880 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3881 LLT LeftoverTy; 3882 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3883 Src0Regs, Src0LeftoverRegs)) 3884 return UnableToLegalize; 3885 3886 LLT Unused; 3887 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3888 Src1Regs, Src1LeftoverRegs)) 3889 llvm_unreachable("inconsistent extractParts result"); 3890 3891 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3892 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3893 {Src0Regs[I], Src1Regs[I]}); 3894 DstRegs.push_back(Inst.getReg(0)); 3895 } 3896 3897 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3898 auto Inst = MIRBuilder.buildInstr( 3899 MI.getOpcode(), 3900 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 3901 DstLeftoverRegs.push_back(Inst.getReg(0)); 3902 } 3903 3904 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3905 LeftoverTy, DstLeftoverRegs); 3906 3907 MI.eraseFromParent(); 3908 return Legalized; 3909 } 3910 3911 LegalizerHelper::LegalizeResult 3912 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 3913 LLT NarrowTy) { 3914 if (TypeIdx != 0) 3915 return UnableToLegalize; 3916 3917 Register DstReg = MI.getOperand(0).getReg(); 3918 Register SrcReg = MI.getOperand(1).getReg(); 3919 3920 LLT DstTy = MRI.getType(DstReg); 3921 if (DstTy.isVector()) 3922 return UnableToLegalize; 3923 3924 SmallVector<Register, 8> Parts; 3925 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3926 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 3927 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3928 3929 MI.eraseFromParent(); 3930 return Legalized; 3931 } 3932 3933 LegalizerHelper::LegalizeResult 3934 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 3935 LLT NarrowTy) { 3936 if (TypeIdx != 0) 3937 return UnableToLegalize; 3938 3939 Register CondReg = MI.getOperand(1).getReg(); 3940 LLT CondTy = MRI.getType(CondReg); 3941 if (CondTy.isVector()) // TODO: Handle vselect 3942 return UnableToLegalize; 3943 3944 Register DstReg = MI.getOperand(0).getReg(); 3945 LLT DstTy = MRI.getType(DstReg); 3946 3947 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3948 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3949 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 3950 LLT LeftoverTy; 3951 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 3952 Src1Regs, Src1LeftoverRegs)) 3953 return UnableToLegalize; 3954 3955 LLT Unused; 3956 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 3957 Src2Regs, Src2LeftoverRegs)) 3958 llvm_unreachable("inconsistent extractParts result"); 3959 3960 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3961 auto Select = MIRBuilder.buildSelect(NarrowTy, 3962 CondReg, Src1Regs[I], Src2Regs[I]); 3963 DstRegs.push_back(Select.getReg(0)); 3964 } 3965 3966 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3967 auto Select = MIRBuilder.buildSelect( 3968 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 3969 DstLeftoverRegs.push_back(Select.getReg(0)); 3970 } 3971 3972 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3973 LeftoverTy, DstLeftoverRegs); 3974 3975 MI.eraseFromParent(); 3976 return Legalized; 3977 } 3978 3979 LegalizerHelper::LegalizeResult 3980 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 3981 LLT NarrowTy) { 3982 if (TypeIdx != 1) 3983 return UnableToLegalize; 3984 3985 Register DstReg = MI.getOperand(0).getReg(); 3986 Register SrcReg = MI.getOperand(1).getReg(); 3987 LLT DstTy = MRI.getType(DstReg); 3988 LLT SrcTy = MRI.getType(SrcReg); 3989 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3990 3991 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 3992 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 3993 3994 MachineIRBuilder &B = MIRBuilder; 3995 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 3996 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 3997 auto C_0 = B.buildConstant(NarrowTy, 0); 3998 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3999 UnmergeSrc.getReg(1), C_0); 4000 auto LoCTLZ = IsUndef ? 4001 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4002 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4003 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4004 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4005 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4006 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4007 4008 MI.eraseFromParent(); 4009 return Legalized; 4010 } 4011 4012 return UnableToLegalize; 4013 } 4014 4015 LegalizerHelper::LegalizeResult 4016 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4017 LLT NarrowTy) { 4018 if (TypeIdx != 1) 4019 return UnableToLegalize; 4020 4021 Register DstReg = MI.getOperand(0).getReg(); 4022 Register SrcReg = MI.getOperand(1).getReg(); 4023 LLT DstTy = MRI.getType(DstReg); 4024 LLT SrcTy = MRI.getType(SrcReg); 4025 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4026 4027 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4028 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4029 4030 MachineIRBuilder &B = MIRBuilder; 4031 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4032 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4033 auto C_0 = B.buildConstant(NarrowTy, 0); 4034 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4035 UnmergeSrc.getReg(0), C_0); 4036 auto HiCTTZ = IsUndef ? 4037 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4038 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4039 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4040 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4041 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4042 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4043 4044 MI.eraseFromParent(); 4045 return Legalized; 4046 } 4047 4048 return UnableToLegalize; 4049 } 4050 4051 LegalizerHelper::LegalizeResult 4052 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4053 LLT NarrowTy) { 4054 if (TypeIdx != 1) 4055 return UnableToLegalize; 4056 4057 Register DstReg = MI.getOperand(0).getReg(); 4058 LLT DstTy = MRI.getType(DstReg); 4059 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4060 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4061 4062 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4063 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4064 4065 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4066 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4067 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4068 4069 MI.eraseFromParent(); 4070 return Legalized; 4071 } 4072 4073 return UnableToLegalize; 4074 } 4075 4076 LegalizerHelper::LegalizeResult 4077 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4078 unsigned Opc = MI.getOpcode(); 4079 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 4080 auto isSupported = [this](const LegalityQuery &Q) { 4081 auto QAction = LI.getAction(Q).Action; 4082 return QAction == Legal || QAction == Libcall || QAction == Custom; 4083 }; 4084 switch (Opc) { 4085 default: 4086 return UnableToLegalize; 4087 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4088 // This trivially expands to CTLZ. 4089 Observer.changingInstr(MI); 4090 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4091 Observer.changedInstr(MI); 4092 return Legalized; 4093 } 4094 case TargetOpcode::G_CTLZ: { 4095 Register DstReg = MI.getOperand(0).getReg(); 4096 Register SrcReg = MI.getOperand(1).getReg(); 4097 LLT DstTy = MRI.getType(DstReg); 4098 LLT SrcTy = MRI.getType(SrcReg); 4099 unsigned Len = SrcTy.getSizeInBits(); 4100 4101 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4102 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4103 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4104 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4105 auto ICmp = MIRBuilder.buildICmp( 4106 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4107 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4108 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4109 MI.eraseFromParent(); 4110 return Legalized; 4111 } 4112 // for now, we do this: 4113 // NewLen = NextPowerOf2(Len); 4114 // x = x | (x >> 1); 4115 // x = x | (x >> 2); 4116 // ... 4117 // x = x | (x >>16); 4118 // x = x | (x >>32); // for 64-bit input 4119 // Upto NewLen/2 4120 // return Len - popcount(x); 4121 // 4122 // Ref: "Hacker's Delight" by Henry Warren 4123 Register Op = SrcReg; 4124 unsigned NewLen = PowerOf2Ceil(Len); 4125 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4126 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4127 auto MIBOp = MIRBuilder.buildOr( 4128 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4129 Op = MIBOp.getReg(0); 4130 } 4131 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4132 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4133 MIBPop); 4134 MI.eraseFromParent(); 4135 return Legalized; 4136 } 4137 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4138 // This trivially expands to CTTZ. 4139 Observer.changingInstr(MI); 4140 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4141 Observer.changedInstr(MI); 4142 return Legalized; 4143 } 4144 case TargetOpcode::G_CTTZ: { 4145 Register DstReg = MI.getOperand(0).getReg(); 4146 Register SrcReg = MI.getOperand(1).getReg(); 4147 LLT DstTy = MRI.getType(DstReg); 4148 LLT SrcTy = MRI.getType(SrcReg); 4149 4150 unsigned Len = SrcTy.getSizeInBits(); 4151 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4152 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4153 // zero. 4154 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4155 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4156 auto ICmp = MIRBuilder.buildICmp( 4157 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4158 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4159 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4160 MI.eraseFromParent(); 4161 return Legalized; 4162 } 4163 // for now, we use: { return popcount(~x & (x - 1)); } 4164 // unless the target has ctlz but not ctpop, in which case we use: 4165 // { return 32 - nlz(~x & (x-1)); } 4166 // Ref: "Hacker's Delight" by Henry Warren 4167 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4168 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4169 auto MIBTmp = MIRBuilder.buildAnd( 4170 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4171 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4172 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4173 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4174 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4175 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4176 MI.eraseFromParent(); 4177 return Legalized; 4178 } 4179 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4180 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4181 return Legalized; 4182 } 4183 case TargetOpcode::G_CTPOP: { 4184 unsigned Size = Ty.getSizeInBits(); 4185 MachineIRBuilder &B = MIRBuilder; 4186 4187 // Count set bits in blocks of 2 bits. Default approach would be 4188 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4189 // We use following formula instead: 4190 // B2Count = val - { (val >> 1) & 0x55555555 } 4191 // since it gives same result in blocks of 2 with one instruction less. 4192 auto C_1 = B.buildConstant(Ty, 1); 4193 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4194 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4195 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4196 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4197 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4198 4199 // In order to get count in blocks of 4 add values from adjacent block of 2. 4200 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4201 auto C_2 = B.buildConstant(Ty, 2); 4202 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4203 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4204 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4205 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4206 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4207 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4208 4209 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4210 // addition since count value sits in range {0,...,8} and 4 bits are enough 4211 // to hold such binary values. After addition high 4 bits still hold count 4212 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4213 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4214 auto C_4 = B.buildConstant(Ty, 4); 4215 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4216 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4217 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4218 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4219 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4220 4221 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4222 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4223 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4224 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4225 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4226 4227 // Shift count result from 8 high bits to low bits. 4228 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4229 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4230 4231 MI.eraseFromParent(); 4232 return Legalized; 4233 } 4234 } 4235 } 4236 4237 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4238 // representation. 4239 LegalizerHelper::LegalizeResult 4240 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4241 Register Dst = MI.getOperand(0).getReg(); 4242 Register Src = MI.getOperand(1).getReg(); 4243 const LLT S64 = LLT::scalar(64); 4244 const LLT S32 = LLT::scalar(32); 4245 const LLT S1 = LLT::scalar(1); 4246 4247 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4248 4249 // unsigned cul2f(ulong u) { 4250 // uint lz = clz(u); 4251 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4252 // u = (u << lz) & 0x7fffffffffffffffUL; 4253 // ulong t = u & 0xffffffffffUL; 4254 // uint v = (e << 23) | (uint)(u >> 40); 4255 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4256 // return as_float(v + r); 4257 // } 4258 4259 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4260 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4261 4262 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4263 4264 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4265 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4266 4267 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4268 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4269 4270 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4271 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4272 4273 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4274 4275 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4276 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4277 4278 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4279 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4280 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4281 4282 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4283 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4284 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4285 auto One = MIRBuilder.buildConstant(S32, 1); 4286 4287 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4288 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4289 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4290 MIRBuilder.buildAdd(Dst, V, R); 4291 4292 return Legalized; 4293 } 4294 4295 LegalizerHelper::LegalizeResult 4296 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4297 Register Dst = MI.getOperand(0).getReg(); 4298 Register Src = MI.getOperand(1).getReg(); 4299 LLT DstTy = MRI.getType(Dst); 4300 LLT SrcTy = MRI.getType(Src); 4301 4302 if (SrcTy == LLT::scalar(1)) { 4303 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4304 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4305 MIRBuilder.buildSelect(Dst, Src, True, False); 4306 MI.eraseFromParent(); 4307 return Legalized; 4308 } 4309 4310 if (SrcTy != LLT::scalar(64)) 4311 return UnableToLegalize; 4312 4313 if (DstTy == LLT::scalar(32)) { 4314 // TODO: SelectionDAG has several alternative expansions to port which may 4315 // be more reasonble depending on the available instructions. If a target 4316 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4317 // intermediate type, this is probably worse. 4318 return lowerU64ToF32BitOps(MI); 4319 } 4320 4321 return UnableToLegalize; 4322 } 4323 4324 LegalizerHelper::LegalizeResult 4325 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4326 Register Dst = MI.getOperand(0).getReg(); 4327 Register Src = MI.getOperand(1).getReg(); 4328 LLT DstTy = MRI.getType(Dst); 4329 LLT SrcTy = MRI.getType(Src); 4330 4331 const LLT S64 = LLT::scalar(64); 4332 const LLT S32 = LLT::scalar(32); 4333 const LLT S1 = LLT::scalar(1); 4334 4335 if (SrcTy == S1) { 4336 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4337 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4338 MIRBuilder.buildSelect(Dst, Src, True, False); 4339 MI.eraseFromParent(); 4340 return Legalized; 4341 } 4342 4343 if (SrcTy != S64) 4344 return UnableToLegalize; 4345 4346 if (DstTy == S32) { 4347 // signed cl2f(long l) { 4348 // long s = l >> 63; 4349 // float r = cul2f((l + s) ^ s); 4350 // return s ? -r : r; 4351 // } 4352 Register L = Src; 4353 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4354 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4355 4356 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4357 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4358 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4359 4360 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4361 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4362 MIRBuilder.buildConstant(S64, 0)); 4363 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4364 return Legalized; 4365 } 4366 4367 return UnableToLegalize; 4368 } 4369 4370 LegalizerHelper::LegalizeResult 4371 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4372 Register Dst = MI.getOperand(0).getReg(); 4373 Register Src = MI.getOperand(1).getReg(); 4374 LLT DstTy = MRI.getType(Dst); 4375 LLT SrcTy = MRI.getType(Src); 4376 const LLT S64 = LLT::scalar(64); 4377 const LLT S32 = LLT::scalar(32); 4378 4379 if (SrcTy != S64 && SrcTy != S32) 4380 return UnableToLegalize; 4381 if (DstTy != S32 && DstTy != S64) 4382 return UnableToLegalize; 4383 4384 // FPTOSI gives same result as FPTOUI for positive signed integers. 4385 // FPTOUI needs to deal with fp values that convert to unsigned integers 4386 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4387 4388 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4389 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4390 : APFloat::IEEEdouble(), 4391 APInt::getNullValue(SrcTy.getSizeInBits())); 4392 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4393 4394 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4395 4396 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4397 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4398 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4399 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4400 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4401 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4402 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4403 4404 const LLT S1 = LLT::scalar(1); 4405 4406 MachineInstrBuilder FCMP = 4407 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4408 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4409 4410 MI.eraseFromParent(); 4411 return Legalized; 4412 } 4413 4414 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4415 Register Dst = MI.getOperand(0).getReg(); 4416 Register Src = MI.getOperand(1).getReg(); 4417 LLT DstTy = MRI.getType(Dst); 4418 LLT SrcTy = MRI.getType(Src); 4419 const LLT S64 = LLT::scalar(64); 4420 const LLT S32 = LLT::scalar(32); 4421 4422 // FIXME: Only f32 to i64 conversions are supported. 4423 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4424 return UnableToLegalize; 4425 4426 // Expand f32 -> i64 conversion 4427 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4428 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4429 4430 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 4431 4432 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 4433 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 4434 4435 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 4436 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 4437 4438 auto SignMask = MIRBuilder.buildConstant(SrcTy, 4439 APInt::getSignMask(SrcEltBits)); 4440 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 4441 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 4442 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 4443 Sign = MIRBuilder.buildSExt(DstTy, Sign); 4444 4445 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 4446 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 4447 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 4448 4449 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 4450 R = MIRBuilder.buildZExt(DstTy, R); 4451 4452 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 4453 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 4454 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 4455 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 4456 4457 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 4458 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 4459 4460 const LLT S1 = LLT::scalar(1); 4461 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 4462 S1, Exponent, ExponentLoBit); 4463 4464 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 4465 4466 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 4467 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 4468 4469 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 4470 4471 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 4472 S1, Exponent, ZeroSrcTy); 4473 4474 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 4475 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 4476 4477 MI.eraseFromParent(); 4478 return Legalized; 4479 } 4480 4481 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 4482 LegalizerHelper::LegalizeResult 4483 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 4484 Register Dst = MI.getOperand(0).getReg(); 4485 Register Src = MI.getOperand(1).getReg(); 4486 4487 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 4488 return UnableToLegalize; 4489 4490 const unsigned ExpMask = 0x7ff; 4491 const unsigned ExpBiasf64 = 1023; 4492 const unsigned ExpBiasf16 = 15; 4493 const LLT S32 = LLT::scalar(32); 4494 const LLT S1 = LLT::scalar(1); 4495 4496 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 4497 Register U = Unmerge.getReg(0); 4498 Register UH = Unmerge.getReg(1); 4499 4500 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 4501 4502 // Subtract the fp64 exponent bias (1023) to get the real exponent and 4503 // add the f16 bias (15) to get the biased exponent for the f16 format. 4504 E = MIRBuilder.buildAdd( 4505 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 4506 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 4507 4508 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 4509 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 4510 4511 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 4512 MIRBuilder.buildConstant(S32, 0x1ff)); 4513 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 4514 4515 auto Zero = MIRBuilder.buildConstant(S32, 0); 4516 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 4517 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 4518 M = MIRBuilder.buildOr(S32, M, Lo40Set); 4519 4520 // (M != 0 ? 0x0200 : 0) | 0x7c00; 4521 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 4522 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 4523 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 4524 4525 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 4526 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 4527 4528 // N = M | (E << 12); 4529 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 4530 auto N = MIRBuilder.buildOr(S32, M, EShl12); 4531 4532 // B = clamp(1-E, 0, 13); 4533 auto One = MIRBuilder.buildConstant(S32, 1); 4534 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 4535 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 4536 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 4537 4538 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 4539 MIRBuilder.buildConstant(S32, 0x1000)); 4540 4541 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 4542 auto D0 = MIRBuilder.buildShl(S32, D, B); 4543 4544 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 4545 D0, SigSetHigh); 4546 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 4547 D = MIRBuilder.buildOr(S32, D, D1); 4548 4549 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 4550 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 4551 4552 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 4553 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 4554 4555 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 4556 MIRBuilder.buildConstant(S32, 3)); 4557 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 4558 4559 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 4560 MIRBuilder.buildConstant(S32, 5)); 4561 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 4562 4563 V1 = MIRBuilder.buildOr(S32, V0, V1); 4564 V = MIRBuilder.buildAdd(S32, V, V1); 4565 4566 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 4567 E, MIRBuilder.buildConstant(S32, 30)); 4568 V = MIRBuilder.buildSelect(S32, CmpEGt30, 4569 MIRBuilder.buildConstant(S32, 0x7c00), V); 4570 4571 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 4572 E, MIRBuilder.buildConstant(S32, 1039)); 4573 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 4574 4575 // Extract the sign bit. 4576 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 4577 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 4578 4579 // Insert the sign bit 4580 V = MIRBuilder.buildOr(S32, Sign, V); 4581 4582 MIRBuilder.buildTrunc(Dst, V); 4583 MI.eraseFromParent(); 4584 return Legalized; 4585 } 4586 4587 LegalizerHelper::LegalizeResult 4588 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4589 Register Dst = MI.getOperand(0).getReg(); 4590 Register Src = MI.getOperand(1).getReg(); 4591 4592 LLT DstTy = MRI.getType(Dst); 4593 LLT SrcTy = MRI.getType(Src); 4594 const LLT S64 = LLT::scalar(64); 4595 const LLT S16 = LLT::scalar(16); 4596 4597 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 4598 return lowerFPTRUNC_F64_TO_F16(MI); 4599 4600 return UnableToLegalize; 4601 } 4602 4603 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4604 switch (Opc) { 4605 case TargetOpcode::G_SMIN: 4606 return CmpInst::ICMP_SLT; 4607 case TargetOpcode::G_SMAX: 4608 return CmpInst::ICMP_SGT; 4609 case TargetOpcode::G_UMIN: 4610 return CmpInst::ICMP_ULT; 4611 case TargetOpcode::G_UMAX: 4612 return CmpInst::ICMP_UGT; 4613 default: 4614 llvm_unreachable("not in integer min/max"); 4615 } 4616 } 4617 4618 LegalizerHelper::LegalizeResult 4619 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4620 Register Dst = MI.getOperand(0).getReg(); 4621 Register Src0 = MI.getOperand(1).getReg(); 4622 Register Src1 = MI.getOperand(2).getReg(); 4623 4624 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4625 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4626 4627 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4628 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4629 4630 MI.eraseFromParent(); 4631 return Legalized; 4632 } 4633 4634 LegalizerHelper::LegalizeResult 4635 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4636 Register Dst = MI.getOperand(0).getReg(); 4637 Register Src0 = MI.getOperand(1).getReg(); 4638 Register Src1 = MI.getOperand(2).getReg(); 4639 4640 const LLT Src0Ty = MRI.getType(Src0); 4641 const LLT Src1Ty = MRI.getType(Src1); 4642 4643 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4644 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4645 4646 auto SignBitMask = MIRBuilder.buildConstant( 4647 Src0Ty, APInt::getSignMask(Src0Size)); 4648 4649 auto NotSignBitMask = MIRBuilder.buildConstant( 4650 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4651 4652 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4653 MachineInstr *Or; 4654 4655 if (Src0Ty == Src1Ty) { 4656 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask); 4657 Or = MIRBuilder.buildOr(Dst, And0, And1); 4658 } else if (Src0Size > Src1Size) { 4659 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4660 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4661 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4662 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4663 Or = MIRBuilder.buildOr(Dst, And0, And1); 4664 } else { 4665 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4666 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4667 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4668 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4669 Or = MIRBuilder.buildOr(Dst, And0, And1); 4670 } 4671 4672 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4673 // constants are a nan and -0.0, but the final result should preserve 4674 // everything. 4675 if (unsigned Flags = MI.getFlags()) 4676 Or->setFlags(Flags); 4677 4678 MI.eraseFromParent(); 4679 return Legalized; 4680 } 4681 4682 LegalizerHelper::LegalizeResult 4683 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4684 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4685 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4686 4687 Register Dst = MI.getOperand(0).getReg(); 4688 Register Src0 = MI.getOperand(1).getReg(); 4689 Register Src1 = MI.getOperand(2).getReg(); 4690 LLT Ty = MRI.getType(Dst); 4691 4692 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4693 // Insert canonicalizes if it's possible we need to quiet to get correct 4694 // sNaN behavior. 4695 4696 // Note this must be done here, and not as an optimization combine in the 4697 // absence of a dedicate quiet-snan instruction as we're using an 4698 // omni-purpose G_FCANONICALIZE. 4699 if (!isKnownNeverSNaN(Src0, MRI)) 4700 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4701 4702 if (!isKnownNeverSNaN(Src1, MRI)) 4703 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4704 } 4705 4706 // If there are no nans, it's safe to simply replace this with the non-IEEE 4707 // version. 4708 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4709 MI.eraseFromParent(); 4710 return Legalized; 4711 } 4712 4713 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4714 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4715 Register DstReg = MI.getOperand(0).getReg(); 4716 LLT Ty = MRI.getType(DstReg); 4717 unsigned Flags = MI.getFlags(); 4718 4719 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4720 Flags); 4721 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4722 MI.eraseFromParent(); 4723 return Legalized; 4724 } 4725 4726 LegalizerHelper::LegalizeResult 4727 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4728 Register DstReg = MI.getOperand(0).getReg(); 4729 Register SrcReg = MI.getOperand(1).getReg(); 4730 unsigned Flags = MI.getFlags(); 4731 LLT Ty = MRI.getType(DstReg); 4732 const LLT CondTy = Ty.changeElementSize(1); 4733 4734 // result = trunc(src); 4735 // if (src < 0.0 && src != result) 4736 // result += -1.0. 4737 4738 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4739 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 4740 4741 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 4742 SrcReg, Zero, Flags); 4743 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 4744 SrcReg, Trunc, Flags); 4745 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 4746 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 4747 4748 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal); 4749 MI.eraseFromParent(); 4750 return Legalized; 4751 } 4752 4753 LegalizerHelper::LegalizeResult 4754 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 4755 const unsigned NumDst = MI.getNumOperands() - 1; 4756 const Register SrcReg = MI.getOperand(NumDst).getReg(); 4757 LLT SrcTy = MRI.getType(SrcReg); 4758 4759 Register Dst0Reg = MI.getOperand(0).getReg(); 4760 LLT DstTy = MRI.getType(Dst0Reg); 4761 4762 4763 // Expand scalarizing unmerge as bitcast to integer and shift. 4764 if (!DstTy.isVector() && SrcTy.isVector() && 4765 SrcTy.getElementType() == DstTy) { 4766 LLT IntTy = LLT::scalar(SrcTy.getSizeInBits()); 4767 Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0); 4768 4769 MIRBuilder.buildTrunc(Dst0Reg, Cast); 4770 4771 const unsigned DstSize = DstTy.getSizeInBits(); 4772 unsigned Offset = DstSize; 4773 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 4774 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 4775 auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt); 4776 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 4777 } 4778 4779 MI.eraseFromParent(); 4780 return Legalized; 4781 } 4782 4783 return UnableToLegalize; 4784 } 4785 4786 LegalizerHelper::LegalizeResult 4787 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 4788 Register DstReg = MI.getOperand(0).getReg(); 4789 Register Src0Reg = MI.getOperand(1).getReg(); 4790 Register Src1Reg = MI.getOperand(2).getReg(); 4791 LLT Src0Ty = MRI.getType(Src0Reg); 4792 LLT DstTy = MRI.getType(DstReg); 4793 LLT IdxTy = LLT::scalar(32); 4794 4795 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4796 4797 if (DstTy.isScalar()) { 4798 if (Src0Ty.isVector()) 4799 return UnableToLegalize; 4800 4801 // This is just a SELECT. 4802 assert(Mask.size() == 1 && "Expected a single mask element"); 4803 Register Val; 4804 if (Mask[0] < 0 || Mask[0] > 1) 4805 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 4806 else 4807 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 4808 MIRBuilder.buildCopy(DstReg, Val); 4809 MI.eraseFromParent(); 4810 return Legalized; 4811 } 4812 4813 Register Undef; 4814 SmallVector<Register, 32> BuildVec; 4815 LLT EltTy = DstTy.getElementType(); 4816 4817 for (int Idx : Mask) { 4818 if (Idx < 0) { 4819 if (!Undef.isValid()) 4820 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 4821 BuildVec.push_back(Undef); 4822 continue; 4823 } 4824 4825 if (Src0Ty.isScalar()) { 4826 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 4827 } else { 4828 int NumElts = Src0Ty.getNumElements(); 4829 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 4830 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 4831 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 4832 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 4833 BuildVec.push_back(Extract.getReg(0)); 4834 } 4835 } 4836 4837 MIRBuilder.buildBuildVector(DstReg, BuildVec); 4838 MI.eraseFromParent(); 4839 return Legalized; 4840 } 4841 4842 LegalizerHelper::LegalizeResult 4843 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 4844 Register Dst = MI.getOperand(0).getReg(); 4845 Register AllocSize = MI.getOperand(1).getReg(); 4846 unsigned Align = MI.getOperand(2).getImm(); 4847 4848 const auto &MF = *MI.getMF(); 4849 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 4850 4851 LLT PtrTy = MRI.getType(Dst); 4852 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 4853 4854 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 4855 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 4856 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 4857 4858 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 4859 // have to generate an extra instruction to negate the alloc and then use 4860 // G_PTR_ADD to add the negative offset. 4861 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 4862 if (Align) { 4863 APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true); 4864 AlignMask.negate(); 4865 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 4866 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 4867 } 4868 4869 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 4870 MIRBuilder.buildCopy(SPReg, SPTmp); 4871 MIRBuilder.buildCopy(Dst, SPTmp); 4872 4873 MI.eraseFromParent(); 4874 return Legalized; 4875 } 4876 4877 LegalizerHelper::LegalizeResult 4878 LegalizerHelper::lowerExtract(MachineInstr &MI) { 4879 Register Dst = MI.getOperand(0).getReg(); 4880 Register Src = MI.getOperand(1).getReg(); 4881 unsigned Offset = MI.getOperand(2).getImm(); 4882 4883 LLT DstTy = MRI.getType(Dst); 4884 LLT SrcTy = MRI.getType(Src); 4885 4886 if (DstTy.isScalar() && 4887 (SrcTy.isScalar() || 4888 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 4889 LLT SrcIntTy = SrcTy; 4890 if (!SrcTy.isScalar()) { 4891 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 4892 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 4893 } 4894 4895 if (Offset == 0) 4896 MIRBuilder.buildTrunc(Dst, Src); 4897 else { 4898 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 4899 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 4900 MIRBuilder.buildTrunc(Dst, Shr); 4901 } 4902 4903 MI.eraseFromParent(); 4904 return Legalized; 4905 } 4906 4907 return UnableToLegalize; 4908 } 4909 4910 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 4911 Register Dst = MI.getOperand(0).getReg(); 4912 Register Src = MI.getOperand(1).getReg(); 4913 Register InsertSrc = MI.getOperand(2).getReg(); 4914 uint64_t Offset = MI.getOperand(3).getImm(); 4915 4916 LLT DstTy = MRI.getType(Src); 4917 LLT InsertTy = MRI.getType(InsertSrc); 4918 4919 if (InsertTy.isScalar() && 4920 (DstTy.isScalar() || 4921 (DstTy.isVector() && DstTy.getElementType() == InsertTy))) { 4922 LLT IntDstTy = DstTy; 4923 if (!DstTy.isScalar()) { 4924 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 4925 Src = MIRBuilder.buildBitcast(IntDstTy, Src).getReg(0); 4926 } 4927 4928 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 4929 if (Offset != 0) { 4930 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 4931 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 4932 } 4933 4934 APInt MaskVal = APInt::getBitsSetWithWrap(DstTy.getSizeInBits(), 4935 Offset + InsertTy.getSizeInBits(), 4936 Offset); 4937 4938 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 4939 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 4940 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 4941 4942 MIRBuilder.buildBitcast(Dst, Or); 4943 MI.eraseFromParent(); 4944 return Legalized; 4945 } 4946 4947 return UnableToLegalize; 4948 } 4949 4950 LegalizerHelper::LegalizeResult 4951 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 4952 Register Dst0 = MI.getOperand(0).getReg(); 4953 Register Dst1 = MI.getOperand(1).getReg(); 4954 Register LHS = MI.getOperand(2).getReg(); 4955 Register RHS = MI.getOperand(3).getReg(); 4956 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 4957 4958 LLT Ty = MRI.getType(Dst0); 4959 LLT BoolTy = MRI.getType(Dst1); 4960 4961 if (IsAdd) 4962 MIRBuilder.buildAdd(Dst0, LHS, RHS); 4963 else 4964 MIRBuilder.buildSub(Dst0, LHS, RHS); 4965 4966 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 4967 4968 auto Zero = MIRBuilder.buildConstant(Ty, 0); 4969 4970 // For an addition, the result should be less than one of the operands (LHS) 4971 // if and only if the other operand (RHS) is negative, otherwise there will 4972 // be overflow. 4973 // For a subtraction, the result should be less than one of the operands 4974 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 4975 // otherwise there will be overflow. 4976 auto ResultLowerThanLHS = 4977 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 4978 auto ConditionRHS = MIRBuilder.buildICmp( 4979 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 4980 4981 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 4982 MI.eraseFromParent(); 4983 return Legalized; 4984 } 4985 4986 LegalizerHelper::LegalizeResult 4987 LegalizerHelper::lowerBswap(MachineInstr &MI) { 4988 Register Dst = MI.getOperand(0).getReg(); 4989 Register Src = MI.getOperand(1).getReg(); 4990 const LLT Ty = MRI.getType(Src); 4991 unsigned SizeInBytes = Ty.getSizeInBytes(); 4992 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 4993 4994 // Swap most and least significant byte, set remaining bytes in Res to zero. 4995 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 4996 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 4997 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 4998 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 4999 5000 // Set i-th high/low byte in Res to i-th low/high byte from Src. 5001 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 5002 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 5003 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 5004 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 5005 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 5006 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 5007 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 5008 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 5009 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 5010 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 5011 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5012 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 5013 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 5014 } 5015 Res.getInstr()->getOperand(0).setReg(Dst); 5016 5017 MI.eraseFromParent(); 5018 return Legalized; 5019 } 5020 5021 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 5022 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 5023 MachineInstrBuilder Src, APInt Mask) { 5024 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 5025 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 5026 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 5027 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 5028 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 5029 return B.buildOr(Dst, LHS, RHS); 5030 } 5031 5032 LegalizerHelper::LegalizeResult 5033 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 5034 Register Dst = MI.getOperand(0).getReg(); 5035 Register Src = MI.getOperand(1).getReg(); 5036 const LLT Ty = MRI.getType(Src); 5037 unsigned Size = Ty.getSizeInBits(); 5038 5039 MachineInstrBuilder BSWAP = 5040 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 5041 5042 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 5043 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 5044 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 5045 MachineInstrBuilder Swap4 = 5046 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 5047 5048 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 5049 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 5050 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 5051 MachineInstrBuilder Swap2 = 5052 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 5053 5054 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 5055 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 5056 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 5057 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 5058 5059 MI.eraseFromParent(); 5060 return Legalized; 5061 } 5062 5063 LegalizerHelper::LegalizeResult 5064 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 5065 MachineFunction &MF = MIRBuilder.getMF(); 5066 const TargetSubtargetInfo &STI = MF.getSubtarget(); 5067 const TargetLowering *TLI = STI.getTargetLowering(); 5068 5069 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 5070 int NameOpIdx = IsRead ? 1 : 0; 5071 int ValRegIndex = IsRead ? 0 : 1; 5072 5073 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 5074 const LLT Ty = MRI.getType(ValReg); 5075 const MDString *RegStr = cast<MDString>( 5076 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 5077 5078 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 5079 if (!PhysReg.isValid()) 5080 return UnableToLegalize; 5081 5082 if (IsRead) 5083 MIRBuilder.buildCopy(ValReg, PhysReg); 5084 else 5085 MIRBuilder.buildCopy(PhysReg, ValReg); 5086 5087 MI.eraseFromParent(); 5088 return Legalized; 5089 } 5090