1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
21 #include "llvm/CodeGen/GlobalISel/Utils.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/TargetFrameLowering.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetOpcodes.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/raw_ostream.h"
32 
33 #define DEBUG_TYPE "legalizer"
34 
35 using namespace llvm;
36 using namespace LegalizeActions;
37 using namespace MIPatternMatch;
38 
39 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
40 ///
41 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
42 /// with any leftover piece as type \p LeftoverTy
43 ///
44 /// Returns -1 in the first element of the pair if the breakdown is not
45 /// satisfiable.
46 static std::pair<int, int>
47 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
48   assert(!LeftoverTy.isValid() && "this is an out argument");
49 
50   unsigned Size = OrigTy.getSizeInBits();
51   unsigned NarrowSize = NarrowTy.getSizeInBits();
52   unsigned NumParts = Size / NarrowSize;
53   unsigned LeftoverSize = Size - NumParts * NarrowSize;
54   assert(Size > NarrowSize);
55 
56   if (LeftoverSize == 0)
57     return {NumParts, 0};
58 
59   if (NarrowTy.isVector()) {
60     unsigned EltSize = OrigTy.getScalarSizeInBits();
61     if (LeftoverSize % EltSize != 0)
62       return {-1, -1};
63     LeftoverTy = LLT::scalarOrVector(
64         ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
65   } else {
66     LeftoverTy = LLT::scalar(LeftoverSize);
67   }
68 
69   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
70   return std::make_pair(NumParts, NumLeftover);
71 }
72 
73 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
74 
75   if (!Ty.isScalar())
76     return nullptr;
77 
78   switch (Ty.getSizeInBits()) {
79   case 16:
80     return Type::getHalfTy(Ctx);
81   case 32:
82     return Type::getFloatTy(Ctx);
83   case 64:
84     return Type::getDoubleTy(Ctx);
85   case 80:
86     return Type::getX86_FP80Ty(Ctx);
87   case 128:
88     return Type::getFP128Ty(Ctx);
89   default:
90     return nullptr;
91   }
92 }
93 
94 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
95                                  GISelChangeObserver &Observer,
96                                  MachineIRBuilder &Builder)
97     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
98       LI(*MF.getSubtarget().getLegalizerInfo()),
99       TLI(*MF.getSubtarget().getTargetLowering()) { }
100 
101 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
102                                  GISelChangeObserver &Observer,
103                                  MachineIRBuilder &B)
104   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
105     TLI(*MF.getSubtarget().getTargetLowering()) { }
106 
107 LegalizerHelper::LegalizeResult
108 LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
109                                    LostDebugLocObserver &LocObserver) {
110   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
111 
112   MIRBuilder.setInstrAndDebugLoc(MI);
113 
114   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
115       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
116     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
117   auto Step = LI.getAction(MI, MRI);
118   switch (Step.Action) {
119   case Legal:
120     LLVM_DEBUG(dbgs() << ".. Already legal\n");
121     return AlreadyLegal;
122   case Libcall:
123     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
124     return libcall(MI, LocObserver);
125   case NarrowScalar:
126     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
127     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
128   case WidenScalar:
129     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
130     return widenScalar(MI, Step.TypeIdx, Step.NewType);
131   case Bitcast:
132     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
133     return bitcast(MI, Step.TypeIdx, Step.NewType);
134   case Lower:
135     LLVM_DEBUG(dbgs() << ".. Lower\n");
136     return lower(MI, Step.TypeIdx, Step.NewType);
137   case FewerElements:
138     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
139     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
140   case MoreElements:
141     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
142     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
143   case Custom:
144     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
145     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
146   default:
147     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
148     return UnableToLegalize;
149   }
150 }
151 
152 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
153                                    SmallVectorImpl<Register> &VRegs) {
154   for (int i = 0; i < NumParts; ++i)
155     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
156   MIRBuilder.buildUnmerge(VRegs, Reg);
157 }
158 
159 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
160                                    LLT MainTy, LLT &LeftoverTy,
161                                    SmallVectorImpl<Register> &VRegs,
162                                    SmallVectorImpl<Register> &LeftoverRegs) {
163   assert(!LeftoverTy.isValid() && "this is an out argument");
164 
165   unsigned RegSize = RegTy.getSizeInBits();
166   unsigned MainSize = MainTy.getSizeInBits();
167   unsigned NumParts = RegSize / MainSize;
168   unsigned LeftoverSize = RegSize - NumParts * MainSize;
169 
170   // Use an unmerge when possible.
171   if (LeftoverSize == 0) {
172     for (unsigned I = 0; I < NumParts; ++I)
173       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
174     MIRBuilder.buildUnmerge(VRegs, Reg);
175     return true;
176   }
177 
178   if (MainTy.isVector()) {
179     unsigned EltSize = MainTy.getScalarSizeInBits();
180     if (LeftoverSize % EltSize != 0)
181       return false;
182     LeftoverTy = LLT::scalarOrVector(
183         ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
184   } else {
185     LeftoverTy = LLT::scalar(LeftoverSize);
186   }
187 
188   // For irregular sizes, extract the individual parts.
189   for (unsigned I = 0; I != NumParts; ++I) {
190     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
191     VRegs.push_back(NewReg);
192     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
193   }
194 
195   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
196        Offset += LeftoverSize) {
197     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
198     LeftoverRegs.push_back(NewReg);
199     MIRBuilder.buildExtract(NewReg, Reg, Offset);
200   }
201 
202   return true;
203 }
204 
205 void LegalizerHelper::insertParts(Register DstReg,
206                                   LLT ResultTy, LLT PartTy,
207                                   ArrayRef<Register> PartRegs,
208                                   LLT LeftoverTy,
209                                   ArrayRef<Register> LeftoverRegs) {
210   if (!LeftoverTy.isValid()) {
211     assert(LeftoverRegs.empty());
212 
213     if (!ResultTy.isVector()) {
214       MIRBuilder.buildMerge(DstReg, PartRegs);
215       return;
216     }
217 
218     if (PartTy.isVector())
219       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
220     else
221       MIRBuilder.buildBuildVector(DstReg, PartRegs);
222     return;
223   }
224 
225   SmallVector<Register> GCDRegs;
226   LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy);
227   for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs))
228     extractGCDType(GCDRegs, GCDTy, PartReg);
229   LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs);
230   buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs);
231 }
232 
233 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
234 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
235                               const MachineInstr &MI) {
236   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
237 
238   const int StartIdx = Regs.size();
239   const int NumResults = MI.getNumOperands() - 1;
240   Regs.resize(Regs.size() + NumResults);
241   for (int I = 0; I != NumResults; ++I)
242     Regs[StartIdx + I] = MI.getOperand(I).getReg();
243 }
244 
245 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
246                                      LLT GCDTy, Register SrcReg) {
247   LLT SrcTy = MRI.getType(SrcReg);
248   if (SrcTy == GCDTy) {
249     // If the source already evenly divides the result type, we don't need to do
250     // anything.
251     Parts.push_back(SrcReg);
252   } else {
253     // Need to split into common type sized pieces.
254     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
255     getUnmergeResults(Parts, *Unmerge);
256   }
257 }
258 
259 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
260                                     LLT NarrowTy, Register SrcReg) {
261   LLT SrcTy = MRI.getType(SrcReg);
262   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
263   extractGCDType(Parts, GCDTy, SrcReg);
264   return GCDTy;
265 }
266 
267 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
268                                          SmallVectorImpl<Register> &VRegs,
269                                          unsigned PadStrategy) {
270   LLT LCMTy = getLCMType(DstTy, NarrowTy);
271 
272   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
273   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
274   int NumOrigSrc = VRegs.size();
275 
276   Register PadReg;
277 
278   // Get a value we can use to pad the source value if the sources won't evenly
279   // cover the result type.
280   if (NumOrigSrc < NumParts * NumSubParts) {
281     if (PadStrategy == TargetOpcode::G_ZEXT)
282       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
283     else if (PadStrategy == TargetOpcode::G_ANYEXT)
284       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
285     else {
286       assert(PadStrategy == TargetOpcode::G_SEXT);
287 
288       // Shift the sign bit of the low register through the high register.
289       auto ShiftAmt =
290         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
291       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
292     }
293   }
294 
295   // Registers for the final merge to be produced.
296   SmallVector<Register, 4> Remerge(NumParts);
297 
298   // Registers needed for intermediate merges, which will be merged into a
299   // source for Remerge.
300   SmallVector<Register, 4> SubMerge(NumSubParts);
301 
302   // Once we've fully read off the end of the original source bits, we can reuse
303   // the same high bits for remaining padding elements.
304   Register AllPadReg;
305 
306   // Build merges to the LCM type to cover the original result type.
307   for (int I = 0; I != NumParts; ++I) {
308     bool AllMergePartsArePadding = true;
309 
310     // Build the requested merges to the requested type.
311     for (int J = 0; J != NumSubParts; ++J) {
312       int Idx = I * NumSubParts + J;
313       if (Idx >= NumOrigSrc) {
314         SubMerge[J] = PadReg;
315         continue;
316       }
317 
318       SubMerge[J] = VRegs[Idx];
319 
320       // There are meaningful bits here we can't reuse later.
321       AllMergePartsArePadding = false;
322     }
323 
324     // If we've filled up a complete piece with padding bits, we can directly
325     // emit the natural sized constant if applicable, rather than a merge of
326     // smaller constants.
327     if (AllMergePartsArePadding && !AllPadReg) {
328       if (PadStrategy == TargetOpcode::G_ANYEXT)
329         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
330       else if (PadStrategy == TargetOpcode::G_ZEXT)
331         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
332 
333       // If this is a sign extension, we can't materialize a trivial constant
334       // with the right type and have to produce a merge.
335     }
336 
337     if (AllPadReg) {
338       // Avoid creating additional instructions if we're just adding additional
339       // copies of padding bits.
340       Remerge[I] = AllPadReg;
341       continue;
342     }
343 
344     if (NumSubParts == 1)
345       Remerge[I] = SubMerge[0];
346     else
347       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
348 
349     // In the sign extend padding case, re-use the first all-signbit merge.
350     if (AllMergePartsArePadding && !AllPadReg)
351       AllPadReg = Remerge[I];
352   }
353 
354   VRegs = std::move(Remerge);
355   return LCMTy;
356 }
357 
358 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
359                                                ArrayRef<Register> RemergeRegs) {
360   LLT DstTy = MRI.getType(DstReg);
361 
362   // Create the merge to the widened source, and extract the relevant bits into
363   // the result.
364 
365   if (DstTy == LCMTy) {
366     MIRBuilder.buildMerge(DstReg, RemergeRegs);
367     return;
368   }
369 
370   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
371   if (DstTy.isScalar() && LCMTy.isScalar()) {
372     MIRBuilder.buildTrunc(DstReg, Remerge);
373     return;
374   }
375 
376   if (LCMTy.isVector()) {
377     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
378     SmallVector<Register, 8> UnmergeDefs(NumDefs);
379     UnmergeDefs[0] = DstReg;
380     for (unsigned I = 1; I != NumDefs; ++I)
381       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
382 
383     MIRBuilder.buildUnmerge(UnmergeDefs,
384                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
385     return;
386   }
387 
388   llvm_unreachable("unhandled case");
389 }
390 
391 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
392 #define RTLIBCASE_INT(LibcallPrefix)                                           \
393   do {                                                                         \
394     switch (Size) {                                                            \
395     case 32:                                                                   \
396       return RTLIB::LibcallPrefix##32;                                         \
397     case 64:                                                                   \
398       return RTLIB::LibcallPrefix##64;                                         \
399     case 128:                                                                  \
400       return RTLIB::LibcallPrefix##128;                                        \
401     default:                                                                   \
402       llvm_unreachable("unexpected size");                                     \
403     }                                                                          \
404   } while (0)
405 
406 #define RTLIBCASE(LibcallPrefix)                                               \
407   do {                                                                         \
408     switch (Size) {                                                            \
409     case 32:                                                                   \
410       return RTLIB::LibcallPrefix##32;                                         \
411     case 64:                                                                   \
412       return RTLIB::LibcallPrefix##64;                                         \
413     case 80:                                                                   \
414       return RTLIB::LibcallPrefix##80;                                         \
415     case 128:                                                                  \
416       return RTLIB::LibcallPrefix##128;                                        \
417     default:                                                                   \
418       llvm_unreachable("unexpected size");                                     \
419     }                                                                          \
420   } while (0)
421 
422   switch (Opcode) {
423   case TargetOpcode::G_SDIV:
424     RTLIBCASE_INT(SDIV_I);
425   case TargetOpcode::G_UDIV:
426     RTLIBCASE_INT(UDIV_I);
427   case TargetOpcode::G_SREM:
428     RTLIBCASE_INT(SREM_I);
429   case TargetOpcode::G_UREM:
430     RTLIBCASE_INT(UREM_I);
431   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
432     RTLIBCASE_INT(CTLZ_I);
433   case TargetOpcode::G_FADD:
434     RTLIBCASE(ADD_F);
435   case TargetOpcode::G_FSUB:
436     RTLIBCASE(SUB_F);
437   case TargetOpcode::G_FMUL:
438     RTLIBCASE(MUL_F);
439   case TargetOpcode::G_FDIV:
440     RTLIBCASE(DIV_F);
441   case TargetOpcode::G_FEXP:
442     RTLIBCASE(EXP_F);
443   case TargetOpcode::G_FEXP2:
444     RTLIBCASE(EXP2_F);
445   case TargetOpcode::G_FREM:
446     RTLIBCASE(REM_F);
447   case TargetOpcode::G_FPOW:
448     RTLIBCASE(POW_F);
449   case TargetOpcode::G_FMA:
450     RTLIBCASE(FMA_F);
451   case TargetOpcode::G_FSIN:
452     RTLIBCASE(SIN_F);
453   case TargetOpcode::G_FCOS:
454     RTLIBCASE(COS_F);
455   case TargetOpcode::G_FLOG10:
456     RTLIBCASE(LOG10_F);
457   case TargetOpcode::G_FLOG:
458     RTLIBCASE(LOG_F);
459   case TargetOpcode::G_FLOG2:
460     RTLIBCASE(LOG2_F);
461   case TargetOpcode::G_FCEIL:
462     RTLIBCASE(CEIL_F);
463   case TargetOpcode::G_FFLOOR:
464     RTLIBCASE(FLOOR_F);
465   case TargetOpcode::G_FMINNUM:
466     RTLIBCASE(FMIN_F);
467   case TargetOpcode::G_FMAXNUM:
468     RTLIBCASE(FMAX_F);
469   case TargetOpcode::G_FSQRT:
470     RTLIBCASE(SQRT_F);
471   case TargetOpcode::G_FRINT:
472     RTLIBCASE(RINT_F);
473   case TargetOpcode::G_FNEARBYINT:
474     RTLIBCASE(NEARBYINT_F);
475   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
476     RTLIBCASE(ROUNDEVEN_F);
477   }
478   llvm_unreachable("Unknown libcall function");
479 }
480 
481 /// True if an instruction is in tail position in its caller. Intended for
482 /// legalizing libcalls as tail calls when possible.
483 static bool isLibCallInTailPosition(MachineInstr &MI,
484                                     const TargetInstrInfo &TII,
485                                     MachineRegisterInfo &MRI) {
486   MachineBasicBlock &MBB = *MI.getParent();
487   const Function &F = MBB.getParent()->getFunction();
488 
489   // Conservatively require the attributes of the call to match those of
490   // the return. Ignore NoAlias and NonNull because they don't affect the
491   // call sequence.
492   AttributeList CallerAttrs = F.getAttributes();
493   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
494           .removeAttribute(Attribute::NoAlias)
495           .removeAttribute(Attribute::NonNull)
496           .hasAttributes())
497     return false;
498 
499   // It's not safe to eliminate the sign / zero extension of the return value.
500   if (CallerAttrs.hasRetAttr(Attribute::ZExt) ||
501       CallerAttrs.hasRetAttr(Attribute::SExt))
502     return false;
503 
504   // Only tail call if the following instruction is a standard return or if we
505   // have a `thisreturn` callee, and a sequence like:
506   //
507   //   G_MEMCPY %0, %1, %2
508   //   $x0 = COPY %0
509   //   RET_ReallyLR implicit $x0
510   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
511   if (Next != MBB.instr_end() && Next->isCopy()) {
512     switch (MI.getOpcode()) {
513     default:
514       llvm_unreachable("unsupported opcode");
515     case TargetOpcode::G_BZERO:
516       return false;
517     case TargetOpcode::G_MEMCPY:
518     case TargetOpcode::G_MEMMOVE:
519     case TargetOpcode::G_MEMSET:
520       break;
521     }
522 
523     Register VReg = MI.getOperand(0).getReg();
524     if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg())
525       return false;
526 
527     Register PReg = Next->getOperand(0).getReg();
528     if (!PReg.isPhysical())
529       return false;
530 
531     auto Ret = next_nodbg(Next, MBB.instr_end());
532     if (Ret == MBB.instr_end() || !Ret->isReturn())
533       return false;
534 
535     if (Ret->getNumImplicitOperands() != 1)
536       return false;
537 
538     if (PReg != Ret->getOperand(0).getReg())
539       return false;
540 
541     // Skip over the COPY that we just validated.
542     Next = Ret;
543   }
544 
545   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
546     return false;
547 
548   return true;
549 }
550 
551 LegalizerHelper::LegalizeResult
552 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
553                     const CallLowering::ArgInfo &Result,
554                     ArrayRef<CallLowering::ArgInfo> Args,
555                     const CallingConv::ID CC) {
556   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
557 
558   CallLowering::CallLoweringInfo Info;
559   Info.CallConv = CC;
560   Info.Callee = MachineOperand::CreateES(Name);
561   Info.OrigRet = Result;
562   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
563   if (!CLI.lowerCall(MIRBuilder, Info))
564     return LegalizerHelper::UnableToLegalize;
565 
566   return LegalizerHelper::Legalized;
567 }
568 
569 LegalizerHelper::LegalizeResult
570 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
571                     const CallLowering::ArgInfo &Result,
572                     ArrayRef<CallLowering::ArgInfo> Args) {
573   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
574   const char *Name = TLI.getLibcallName(Libcall);
575   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
576   return createLibcall(MIRBuilder, Name, Result, Args, CC);
577 }
578 
579 // Useful for libcalls where all operands have the same type.
580 static LegalizerHelper::LegalizeResult
581 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
582               Type *OpType) {
583   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
584 
585   // FIXME: What does the original arg index mean here?
586   SmallVector<CallLowering::ArgInfo, 3> Args;
587   for (unsigned i = 1; i < MI.getNumOperands(); i++)
588     Args.push_back({MI.getOperand(i).getReg(), OpType, 0});
589   return createLibcall(MIRBuilder, Libcall,
590                        {MI.getOperand(0).getReg(), OpType, 0}, Args);
591 }
592 
593 LegalizerHelper::LegalizeResult
594 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
595                        MachineInstr &MI, LostDebugLocObserver &LocObserver) {
596   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
597 
598   SmallVector<CallLowering::ArgInfo, 3> Args;
599   // Add all the args, except for the last which is an imm denoting 'tail'.
600   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
601     Register Reg = MI.getOperand(i).getReg();
602 
603     // Need derive an IR type for call lowering.
604     LLT OpLLT = MRI.getType(Reg);
605     Type *OpTy = nullptr;
606     if (OpLLT.isPointer())
607       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
608     else
609       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
610     Args.push_back({Reg, OpTy, 0});
611   }
612 
613   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
614   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
615   RTLIB::Libcall RTLibcall;
616   unsigned Opc = MI.getOpcode();
617   switch (Opc) {
618   case TargetOpcode::G_BZERO:
619     RTLibcall = RTLIB::BZERO;
620     break;
621   case TargetOpcode::G_MEMCPY:
622     RTLibcall = RTLIB::MEMCPY;
623     Args[0].Flags[0].setReturned();
624     break;
625   case TargetOpcode::G_MEMMOVE:
626     RTLibcall = RTLIB::MEMMOVE;
627     Args[0].Flags[0].setReturned();
628     break;
629   case TargetOpcode::G_MEMSET:
630     RTLibcall = RTLIB::MEMSET;
631     Args[0].Flags[0].setReturned();
632     break;
633   default:
634     llvm_unreachable("unsupported opcode");
635   }
636   const char *Name = TLI.getLibcallName(RTLibcall);
637 
638   // Unsupported libcall on the target.
639   if (!Name) {
640     LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
641                       << MIRBuilder.getTII().getName(Opc) << "\n");
642     return LegalizerHelper::UnableToLegalize;
643   }
644 
645   CallLowering::CallLoweringInfo Info;
646   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
647   Info.Callee = MachineOperand::CreateES(Name);
648   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0);
649   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
650                     isLibCallInTailPosition(MI, MIRBuilder.getTII(), MRI);
651 
652   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
653   if (!CLI.lowerCall(MIRBuilder, Info))
654     return LegalizerHelper::UnableToLegalize;
655 
656   if (Info.LoweredTailCall) {
657     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
658 
659     // Check debug locations before removing the return.
660     LocObserver.checkpoint(true);
661 
662     // We must have a return following the call (or debug insts) to get past
663     // isLibCallInTailPosition.
664     do {
665       MachineInstr *Next = MI.getNextNode();
666       assert(Next &&
667              (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) &&
668              "Expected instr following MI to be return or debug inst?");
669       // We lowered a tail call, so the call is now the return from the block.
670       // Delete the old return.
671       Next->eraseFromParent();
672     } while (MI.getNextNode());
673 
674     // We expect to lose the debug location from the return.
675     LocObserver.checkpoint(false);
676   }
677 
678   return LegalizerHelper::Legalized;
679 }
680 
681 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
682                                        Type *FromType) {
683   auto ToMVT = MVT::getVT(ToType);
684   auto FromMVT = MVT::getVT(FromType);
685 
686   switch (Opcode) {
687   case TargetOpcode::G_FPEXT:
688     return RTLIB::getFPEXT(FromMVT, ToMVT);
689   case TargetOpcode::G_FPTRUNC:
690     return RTLIB::getFPROUND(FromMVT, ToMVT);
691   case TargetOpcode::G_FPTOSI:
692     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
693   case TargetOpcode::G_FPTOUI:
694     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
695   case TargetOpcode::G_SITOFP:
696     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
697   case TargetOpcode::G_UITOFP:
698     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
699   }
700   llvm_unreachable("Unsupported libcall function");
701 }
702 
703 static LegalizerHelper::LegalizeResult
704 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
705                   Type *FromType) {
706   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
707   return createLibcall(MIRBuilder, Libcall,
708                        {MI.getOperand(0).getReg(), ToType, 0},
709                        {{MI.getOperand(1).getReg(), FromType, 0}});
710 }
711 
712 LegalizerHelper::LegalizeResult
713 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) {
714   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
715   unsigned Size = LLTy.getSizeInBits();
716   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
717 
718   switch (MI.getOpcode()) {
719   default:
720     return UnableToLegalize;
721   case TargetOpcode::G_SDIV:
722   case TargetOpcode::G_UDIV:
723   case TargetOpcode::G_SREM:
724   case TargetOpcode::G_UREM:
725   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
726     Type *HLTy = IntegerType::get(Ctx, Size);
727     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
728     if (Status != Legalized)
729       return Status;
730     break;
731   }
732   case TargetOpcode::G_FADD:
733   case TargetOpcode::G_FSUB:
734   case TargetOpcode::G_FMUL:
735   case TargetOpcode::G_FDIV:
736   case TargetOpcode::G_FMA:
737   case TargetOpcode::G_FPOW:
738   case TargetOpcode::G_FREM:
739   case TargetOpcode::G_FCOS:
740   case TargetOpcode::G_FSIN:
741   case TargetOpcode::G_FLOG10:
742   case TargetOpcode::G_FLOG:
743   case TargetOpcode::G_FLOG2:
744   case TargetOpcode::G_FEXP:
745   case TargetOpcode::G_FEXP2:
746   case TargetOpcode::G_FCEIL:
747   case TargetOpcode::G_FFLOOR:
748   case TargetOpcode::G_FMINNUM:
749   case TargetOpcode::G_FMAXNUM:
750   case TargetOpcode::G_FSQRT:
751   case TargetOpcode::G_FRINT:
752   case TargetOpcode::G_FNEARBYINT:
753   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
754     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
755     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
756       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
757       return UnableToLegalize;
758     }
759     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
760     if (Status != Legalized)
761       return Status;
762     break;
763   }
764   case TargetOpcode::G_FPEXT:
765   case TargetOpcode::G_FPTRUNC: {
766     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
767     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
768     if (!FromTy || !ToTy)
769       return UnableToLegalize;
770     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
771     if (Status != Legalized)
772       return Status;
773     break;
774   }
775   case TargetOpcode::G_FPTOSI:
776   case TargetOpcode::G_FPTOUI: {
777     // FIXME: Support other types
778     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
779     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
780     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
781       return UnableToLegalize;
782     LegalizeResult Status = conversionLibcall(
783         MI, MIRBuilder,
784         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
785         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
786     if (Status != Legalized)
787       return Status;
788     break;
789   }
790   case TargetOpcode::G_SITOFP:
791   case TargetOpcode::G_UITOFP: {
792     // FIXME: Support other types
793     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
794     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
795     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
796       return UnableToLegalize;
797     LegalizeResult Status = conversionLibcall(
798         MI, MIRBuilder,
799         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
800         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
801     if (Status != Legalized)
802       return Status;
803     break;
804   }
805   case TargetOpcode::G_BZERO:
806   case TargetOpcode::G_MEMCPY:
807   case TargetOpcode::G_MEMMOVE:
808   case TargetOpcode::G_MEMSET: {
809     LegalizeResult Result =
810         createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver);
811     if (Result != Legalized)
812       return Result;
813     MI.eraseFromParent();
814     return Result;
815   }
816   }
817 
818   MI.eraseFromParent();
819   return Legalized;
820 }
821 
822 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
823                                                               unsigned TypeIdx,
824                                                               LLT NarrowTy) {
825   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
826   uint64_t NarrowSize = NarrowTy.getSizeInBits();
827 
828   switch (MI.getOpcode()) {
829   default:
830     return UnableToLegalize;
831   case TargetOpcode::G_IMPLICIT_DEF: {
832     Register DstReg = MI.getOperand(0).getReg();
833     LLT DstTy = MRI.getType(DstReg);
834 
835     // If SizeOp0 is not an exact multiple of NarrowSize, emit
836     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
837     // FIXME: Although this would also be legal for the general case, it causes
838     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
839     //  combines not being hit). This seems to be a problem related to the
840     //  artifact combiner.
841     if (SizeOp0 % NarrowSize != 0) {
842       LLT ImplicitTy = NarrowTy;
843       if (DstTy.isVector())
844         ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy);
845 
846       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
847       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
848 
849       MI.eraseFromParent();
850       return Legalized;
851     }
852 
853     int NumParts = SizeOp0 / NarrowSize;
854 
855     SmallVector<Register, 2> DstRegs;
856     for (int i = 0; i < NumParts; ++i)
857       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
858 
859     if (DstTy.isVector())
860       MIRBuilder.buildBuildVector(DstReg, DstRegs);
861     else
862       MIRBuilder.buildMerge(DstReg, DstRegs);
863     MI.eraseFromParent();
864     return Legalized;
865   }
866   case TargetOpcode::G_CONSTANT: {
867     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
868     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
869     unsigned TotalSize = Ty.getSizeInBits();
870     unsigned NarrowSize = NarrowTy.getSizeInBits();
871     int NumParts = TotalSize / NarrowSize;
872 
873     SmallVector<Register, 4> PartRegs;
874     for (int I = 0; I != NumParts; ++I) {
875       unsigned Offset = I * NarrowSize;
876       auto K = MIRBuilder.buildConstant(NarrowTy,
877                                         Val.lshr(Offset).trunc(NarrowSize));
878       PartRegs.push_back(K.getReg(0));
879     }
880 
881     LLT LeftoverTy;
882     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
883     SmallVector<Register, 1> LeftoverRegs;
884     if (LeftoverBits != 0) {
885       LeftoverTy = LLT::scalar(LeftoverBits);
886       auto K = MIRBuilder.buildConstant(
887         LeftoverTy,
888         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
889       LeftoverRegs.push_back(K.getReg(0));
890     }
891 
892     insertParts(MI.getOperand(0).getReg(),
893                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
894 
895     MI.eraseFromParent();
896     return Legalized;
897   }
898   case TargetOpcode::G_SEXT:
899   case TargetOpcode::G_ZEXT:
900   case TargetOpcode::G_ANYEXT:
901     return narrowScalarExt(MI, TypeIdx, NarrowTy);
902   case TargetOpcode::G_TRUNC: {
903     if (TypeIdx != 1)
904       return UnableToLegalize;
905 
906     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
907     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
908       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
909       return UnableToLegalize;
910     }
911 
912     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
913     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
914     MI.eraseFromParent();
915     return Legalized;
916   }
917 
918   case TargetOpcode::G_FREEZE:
919     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
920   case TargetOpcode::G_ADD:
921   case TargetOpcode::G_SUB:
922   case TargetOpcode::G_SADDO:
923   case TargetOpcode::G_SSUBO:
924   case TargetOpcode::G_SADDE:
925   case TargetOpcode::G_SSUBE:
926   case TargetOpcode::G_UADDO:
927   case TargetOpcode::G_USUBO:
928   case TargetOpcode::G_UADDE:
929   case TargetOpcode::G_USUBE:
930     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
931   case TargetOpcode::G_MUL:
932   case TargetOpcode::G_UMULH:
933     return narrowScalarMul(MI, NarrowTy);
934   case TargetOpcode::G_EXTRACT:
935     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
936   case TargetOpcode::G_INSERT:
937     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
938   case TargetOpcode::G_LOAD: {
939     auto &LoadMI = cast<GLoad>(MI);
940     Register DstReg = LoadMI.getDstReg();
941     LLT DstTy = MRI.getType(DstReg);
942     if (DstTy.isVector())
943       return UnableToLegalize;
944 
945     if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) {
946       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
947       MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO());
948       MIRBuilder.buildAnyExt(DstReg, TmpReg);
949       LoadMI.eraseFromParent();
950       return Legalized;
951     }
952 
953     return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy);
954   }
955   case TargetOpcode::G_ZEXTLOAD:
956   case TargetOpcode::G_SEXTLOAD: {
957     auto &LoadMI = cast<GExtLoad>(MI);
958     Register DstReg = LoadMI.getDstReg();
959     Register PtrReg = LoadMI.getPointerReg();
960 
961     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
962     auto &MMO = LoadMI.getMMO();
963     unsigned MemSize = MMO.getSizeInBits();
964 
965     if (MemSize == NarrowSize) {
966       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
967     } else if (MemSize < NarrowSize) {
968       MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO);
969     } else if (MemSize > NarrowSize) {
970       // FIXME: Need to split the load.
971       return UnableToLegalize;
972     }
973 
974     if (isa<GZExtLoad>(LoadMI))
975       MIRBuilder.buildZExt(DstReg, TmpReg);
976     else
977       MIRBuilder.buildSExt(DstReg, TmpReg);
978 
979     LoadMI.eraseFromParent();
980     return Legalized;
981   }
982   case TargetOpcode::G_STORE: {
983     auto &StoreMI = cast<GStore>(MI);
984 
985     Register SrcReg = StoreMI.getValueReg();
986     LLT SrcTy = MRI.getType(SrcReg);
987     if (SrcTy.isVector())
988       return UnableToLegalize;
989 
990     int NumParts = SizeOp0 / NarrowSize;
991     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
992     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
993     if (SrcTy.isVector() && LeftoverBits != 0)
994       return UnableToLegalize;
995 
996     if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) {
997       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
998       MIRBuilder.buildTrunc(TmpReg, SrcReg);
999       MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO());
1000       StoreMI.eraseFromParent();
1001       return Legalized;
1002     }
1003 
1004     return reduceLoadStoreWidth(StoreMI, 0, NarrowTy);
1005   }
1006   case TargetOpcode::G_SELECT:
1007     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
1008   case TargetOpcode::G_AND:
1009   case TargetOpcode::G_OR:
1010   case TargetOpcode::G_XOR: {
1011     // Legalize bitwise operation:
1012     // A = BinOp<Ty> B, C
1013     // into:
1014     // B1, ..., BN = G_UNMERGE_VALUES B
1015     // C1, ..., CN = G_UNMERGE_VALUES C
1016     // A1 = BinOp<Ty/N> B1, C2
1017     // ...
1018     // AN = BinOp<Ty/N> BN, CN
1019     // A = G_MERGE_VALUES A1, ..., AN
1020     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1021   }
1022   case TargetOpcode::G_SHL:
1023   case TargetOpcode::G_LSHR:
1024   case TargetOpcode::G_ASHR:
1025     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1026   case TargetOpcode::G_CTLZ:
1027   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1028   case TargetOpcode::G_CTTZ:
1029   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1030   case TargetOpcode::G_CTPOP:
1031     if (TypeIdx == 1)
1032       switch (MI.getOpcode()) {
1033       case TargetOpcode::G_CTLZ:
1034       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1035         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1036       case TargetOpcode::G_CTTZ:
1037       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1038         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1039       case TargetOpcode::G_CTPOP:
1040         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1041       default:
1042         return UnableToLegalize;
1043       }
1044 
1045     Observer.changingInstr(MI);
1046     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1047     Observer.changedInstr(MI);
1048     return Legalized;
1049   case TargetOpcode::G_INTTOPTR:
1050     if (TypeIdx != 1)
1051       return UnableToLegalize;
1052 
1053     Observer.changingInstr(MI);
1054     narrowScalarSrc(MI, NarrowTy, 1);
1055     Observer.changedInstr(MI);
1056     return Legalized;
1057   case TargetOpcode::G_PTRTOINT:
1058     if (TypeIdx != 0)
1059       return UnableToLegalize;
1060 
1061     Observer.changingInstr(MI);
1062     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1063     Observer.changedInstr(MI);
1064     return Legalized;
1065   case TargetOpcode::G_PHI: {
1066     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1067     // NarrowSize.
1068     if (SizeOp0 % NarrowSize != 0)
1069       return UnableToLegalize;
1070 
1071     unsigned NumParts = SizeOp0 / NarrowSize;
1072     SmallVector<Register, 2> DstRegs(NumParts);
1073     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1074     Observer.changingInstr(MI);
1075     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1076       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1077       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1078       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1079                    SrcRegs[i / 2]);
1080     }
1081     MachineBasicBlock &MBB = *MI.getParent();
1082     MIRBuilder.setInsertPt(MBB, MI);
1083     for (unsigned i = 0; i < NumParts; ++i) {
1084       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1085       MachineInstrBuilder MIB =
1086           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1087       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1088         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1089     }
1090     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1091     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1092     Observer.changedInstr(MI);
1093     MI.eraseFromParent();
1094     return Legalized;
1095   }
1096   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1097   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1098     if (TypeIdx != 2)
1099       return UnableToLegalize;
1100 
1101     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1102     Observer.changingInstr(MI);
1103     narrowScalarSrc(MI, NarrowTy, OpIdx);
1104     Observer.changedInstr(MI);
1105     return Legalized;
1106   }
1107   case TargetOpcode::G_ICMP: {
1108     Register LHS = MI.getOperand(2).getReg();
1109     LLT SrcTy = MRI.getType(LHS);
1110     uint64_t SrcSize = SrcTy.getSizeInBits();
1111     CmpInst::Predicate Pred =
1112         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1113 
1114     // TODO: Handle the non-equality case for weird sizes.
1115     if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred))
1116       return UnableToLegalize;
1117 
1118     LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover)
1119     SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs;
1120     if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs,
1121                       LHSLeftoverRegs))
1122       return UnableToLegalize;
1123 
1124     LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type.
1125     SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs;
1126     if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused,
1127                       RHSPartRegs, RHSLeftoverRegs))
1128       return UnableToLegalize;
1129 
1130     // We now have the LHS and RHS of the compare split into narrow-type
1131     // registers, plus potentially some leftover type.
1132     Register Dst = MI.getOperand(0).getReg();
1133     LLT ResTy = MRI.getType(Dst);
1134     if (ICmpInst::isEquality(Pred)) {
1135       // For each part on the LHS and RHS, keep track of the result of XOR-ing
1136       // them together. For each equal part, the result should be all 0s. For
1137       // each non-equal part, we'll get at least one 1.
1138       auto Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1139       SmallVector<Register, 4> Xors;
1140       for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) {
1141         auto LHS = std::get<0>(LHSAndRHS);
1142         auto RHS = std::get<1>(LHSAndRHS);
1143         auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0);
1144         Xors.push_back(Xor);
1145       }
1146 
1147       // Build a G_XOR for each leftover register. Each G_XOR must be widened
1148       // to the desired narrow type so that we can OR them together later.
1149       SmallVector<Register, 4> WidenedXors;
1150       for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) {
1151         auto LHS = std::get<0>(LHSAndRHS);
1152         auto RHS = std::get<1>(LHSAndRHS);
1153         auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0);
1154         LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor);
1155         buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors,
1156                             /* PadStrategy = */ TargetOpcode::G_ZEXT);
1157         Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end());
1158       }
1159 
1160       // Now, for each part we broke up, we know if they are equal/not equal
1161       // based off the G_XOR. We can OR these all together and compare against
1162       // 0 to get the result.
1163       assert(Xors.size() >= 2 && "Should have gotten at least two Xors?");
1164       auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]);
1165       for (unsigned I = 2, E = Xors.size(); I < E; ++I)
1166         Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]);
1167       MIRBuilder.buildICmp(Pred, Dst, Or, Zero);
1168     } else {
1169       // TODO: Handle non-power-of-two types.
1170       assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?");
1171       assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?");
1172       Register LHSL = LHSPartRegs[0];
1173       Register LHSH = LHSPartRegs[1];
1174       Register RHSL = RHSPartRegs[0];
1175       Register RHSH = RHSPartRegs[1];
1176       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1177       MachineInstrBuilder CmpHEQ =
1178           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1179       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1180           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1181       MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH);
1182     }
1183     MI.eraseFromParent();
1184     return Legalized;
1185   }
1186   case TargetOpcode::G_SEXT_INREG: {
1187     if (TypeIdx != 0)
1188       return UnableToLegalize;
1189 
1190     int64_t SizeInBits = MI.getOperand(2).getImm();
1191 
1192     // So long as the new type has more bits than the bits we're extending we
1193     // don't need to break it apart.
1194     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1195       Observer.changingInstr(MI);
1196       // We don't lose any non-extension bits by truncating the src and
1197       // sign-extending the dst.
1198       MachineOperand &MO1 = MI.getOperand(1);
1199       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1200       MO1.setReg(TruncMIB.getReg(0));
1201 
1202       MachineOperand &MO2 = MI.getOperand(0);
1203       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1204       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1205       MIRBuilder.buildSExt(MO2, DstExt);
1206       MO2.setReg(DstExt);
1207       Observer.changedInstr(MI);
1208       return Legalized;
1209     }
1210 
1211     // Break it apart. Components below the extension point are unmodified. The
1212     // component containing the extension point becomes a narrower SEXT_INREG.
1213     // Components above it are ashr'd from the component containing the
1214     // extension point.
1215     if (SizeOp0 % NarrowSize != 0)
1216       return UnableToLegalize;
1217     int NumParts = SizeOp0 / NarrowSize;
1218 
1219     // List the registers where the destination will be scattered.
1220     SmallVector<Register, 2> DstRegs;
1221     // List the registers where the source will be split.
1222     SmallVector<Register, 2> SrcRegs;
1223 
1224     // Create all the temporary registers.
1225     for (int i = 0; i < NumParts; ++i) {
1226       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1227 
1228       SrcRegs.push_back(SrcReg);
1229     }
1230 
1231     // Explode the big arguments into smaller chunks.
1232     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1233 
1234     Register AshrCstReg =
1235         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1236             .getReg(0);
1237     Register FullExtensionReg = 0;
1238     Register PartialExtensionReg = 0;
1239 
1240     // Do the operation on each small part.
1241     for (int i = 0; i < NumParts; ++i) {
1242       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1243         DstRegs.push_back(SrcRegs[i]);
1244       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1245         assert(PartialExtensionReg &&
1246                "Expected to visit partial extension before full");
1247         if (FullExtensionReg) {
1248           DstRegs.push_back(FullExtensionReg);
1249           continue;
1250         }
1251         DstRegs.push_back(
1252             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1253                 .getReg(0));
1254         FullExtensionReg = DstRegs.back();
1255       } else {
1256         DstRegs.push_back(
1257             MIRBuilder
1258                 .buildInstr(
1259                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1260                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1261                 .getReg(0));
1262         PartialExtensionReg = DstRegs.back();
1263       }
1264     }
1265 
1266     // Gather the destination registers into the final destination.
1267     Register DstReg = MI.getOperand(0).getReg();
1268     MIRBuilder.buildMerge(DstReg, DstRegs);
1269     MI.eraseFromParent();
1270     return Legalized;
1271   }
1272   case TargetOpcode::G_BSWAP:
1273   case TargetOpcode::G_BITREVERSE: {
1274     if (SizeOp0 % NarrowSize != 0)
1275       return UnableToLegalize;
1276 
1277     Observer.changingInstr(MI);
1278     SmallVector<Register, 2> SrcRegs, DstRegs;
1279     unsigned NumParts = SizeOp0 / NarrowSize;
1280     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1281 
1282     for (unsigned i = 0; i < NumParts; ++i) {
1283       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1284                                            {SrcRegs[NumParts - 1 - i]});
1285       DstRegs.push_back(DstPart.getReg(0));
1286     }
1287 
1288     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1289 
1290     Observer.changedInstr(MI);
1291     MI.eraseFromParent();
1292     return Legalized;
1293   }
1294   case TargetOpcode::G_PTR_ADD:
1295   case TargetOpcode::G_PTRMASK: {
1296     if (TypeIdx != 1)
1297       return UnableToLegalize;
1298     Observer.changingInstr(MI);
1299     narrowScalarSrc(MI, NarrowTy, 2);
1300     Observer.changedInstr(MI);
1301     return Legalized;
1302   }
1303   case TargetOpcode::G_FPTOUI:
1304   case TargetOpcode::G_FPTOSI:
1305     return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1306   case TargetOpcode::G_FPEXT:
1307     if (TypeIdx != 0)
1308       return UnableToLegalize;
1309     Observer.changingInstr(MI);
1310     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1311     Observer.changedInstr(MI);
1312     return Legalized;
1313   }
1314 }
1315 
1316 Register LegalizerHelper::coerceToScalar(Register Val) {
1317   LLT Ty = MRI.getType(Val);
1318   if (Ty.isScalar())
1319     return Val;
1320 
1321   const DataLayout &DL = MIRBuilder.getDataLayout();
1322   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1323   if (Ty.isPointer()) {
1324     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1325       return Register();
1326     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1327   }
1328 
1329   Register NewVal = Val;
1330 
1331   assert(Ty.isVector());
1332   LLT EltTy = Ty.getElementType();
1333   if (EltTy.isPointer())
1334     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1335   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1336 }
1337 
1338 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1339                                      unsigned OpIdx, unsigned ExtOpcode) {
1340   MachineOperand &MO = MI.getOperand(OpIdx);
1341   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1342   MO.setReg(ExtB.getReg(0));
1343 }
1344 
1345 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1346                                       unsigned OpIdx) {
1347   MachineOperand &MO = MI.getOperand(OpIdx);
1348   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1349   MO.setReg(ExtB.getReg(0));
1350 }
1351 
1352 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1353                                      unsigned OpIdx, unsigned TruncOpcode) {
1354   MachineOperand &MO = MI.getOperand(OpIdx);
1355   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1356   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1357   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1358   MO.setReg(DstExt);
1359 }
1360 
1361 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1362                                       unsigned OpIdx, unsigned ExtOpcode) {
1363   MachineOperand &MO = MI.getOperand(OpIdx);
1364   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1365   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1366   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1367   MO.setReg(DstTrunc);
1368 }
1369 
1370 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1371                                             unsigned OpIdx) {
1372   MachineOperand &MO = MI.getOperand(OpIdx);
1373   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1374   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1375 }
1376 
1377 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1378                                             unsigned OpIdx) {
1379   MachineOperand &MO = MI.getOperand(OpIdx);
1380 
1381   LLT OldTy = MRI.getType(MO.getReg());
1382   unsigned OldElts = OldTy.getNumElements();
1383   unsigned NewElts = MoreTy.getNumElements();
1384 
1385   unsigned NumParts = NewElts / OldElts;
1386 
1387   // Use concat_vectors if the result is a multiple of the number of elements.
1388   if (NumParts * OldElts == NewElts) {
1389     SmallVector<Register, 8> Parts;
1390     Parts.push_back(MO.getReg());
1391 
1392     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1393     for (unsigned I = 1; I != NumParts; ++I)
1394       Parts.push_back(ImpDef);
1395 
1396     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1397     MO.setReg(Concat.getReg(0));
1398     return;
1399   }
1400 
1401   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1402   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1403   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1404   MO.setReg(MoreReg);
1405 }
1406 
1407 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1408   MachineOperand &Op = MI.getOperand(OpIdx);
1409   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1410 }
1411 
1412 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1413   MachineOperand &MO = MI.getOperand(OpIdx);
1414   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1415   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1416   MIRBuilder.buildBitcast(MO, CastDst);
1417   MO.setReg(CastDst);
1418 }
1419 
1420 LegalizerHelper::LegalizeResult
1421 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1422                                         LLT WideTy) {
1423   if (TypeIdx != 1)
1424     return UnableToLegalize;
1425 
1426   Register DstReg = MI.getOperand(0).getReg();
1427   LLT DstTy = MRI.getType(DstReg);
1428   if (DstTy.isVector())
1429     return UnableToLegalize;
1430 
1431   Register Src1 = MI.getOperand(1).getReg();
1432   LLT SrcTy = MRI.getType(Src1);
1433   const int DstSize = DstTy.getSizeInBits();
1434   const int SrcSize = SrcTy.getSizeInBits();
1435   const int WideSize = WideTy.getSizeInBits();
1436   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1437 
1438   unsigned NumOps = MI.getNumOperands();
1439   unsigned NumSrc = MI.getNumOperands() - 1;
1440   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1441 
1442   if (WideSize >= DstSize) {
1443     // Directly pack the bits in the target type.
1444     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1445 
1446     for (unsigned I = 2; I != NumOps; ++I) {
1447       const unsigned Offset = (I - 1) * PartSize;
1448 
1449       Register SrcReg = MI.getOperand(I).getReg();
1450       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1451 
1452       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1453 
1454       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1455         MRI.createGenericVirtualRegister(WideTy);
1456 
1457       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1458       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1459       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1460       ResultReg = NextResult;
1461     }
1462 
1463     if (WideSize > DstSize)
1464       MIRBuilder.buildTrunc(DstReg, ResultReg);
1465     else if (DstTy.isPointer())
1466       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1467 
1468     MI.eraseFromParent();
1469     return Legalized;
1470   }
1471 
1472   // Unmerge the original values to the GCD type, and recombine to the next
1473   // multiple greater than the original type.
1474   //
1475   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1476   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1477   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1478   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1479   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1480   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1481   // %12:_(s12) = G_MERGE_VALUES %10, %11
1482   //
1483   // Padding with undef if necessary:
1484   //
1485   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1486   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1487   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1488   // %7:_(s2) = G_IMPLICIT_DEF
1489   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1490   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1491   // %10:_(s12) = G_MERGE_VALUES %8, %9
1492 
1493   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1494   LLT GCDTy = LLT::scalar(GCD);
1495 
1496   SmallVector<Register, 8> Parts;
1497   SmallVector<Register, 8> NewMergeRegs;
1498   SmallVector<Register, 8> Unmerges;
1499   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1500 
1501   // Decompose the original operands if they don't evenly divide.
1502   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1503     Register SrcReg = MI.getOperand(I).getReg();
1504     if (GCD == SrcSize) {
1505       Unmerges.push_back(SrcReg);
1506     } else {
1507       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1508       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1509         Unmerges.push_back(Unmerge.getReg(J));
1510     }
1511   }
1512 
1513   // Pad with undef to the next size that is a multiple of the requested size.
1514   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1515     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1516     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1517       Unmerges.push_back(UndefReg);
1518   }
1519 
1520   const int PartsPerGCD = WideSize / GCD;
1521 
1522   // Build merges of each piece.
1523   ArrayRef<Register> Slicer(Unmerges);
1524   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1525     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1526     NewMergeRegs.push_back(Merge.getReg(0));
1527   }
1528 
1529   // A truncate may be necessary if the requested type doesn't evenly divide the
1530   // original result type.
1531   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1532     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1533   } else {
1534     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1535     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1536   }
1537 
1538   MI.eraseFromParent();
1539   return Legalized;
1540 }
1541 
1542 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1543   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1544   LLT OrigTy = MRI.getType(OrigReg);
1545   LLT LCMTy = getLCMType(WideTy, OrigTy);
1546 
1547   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1548   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1549 
1550   Register UnmergeSrc = WideReg;
1551 
1552   // Create a merge to the LCM type, padding with undef
1553   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1554   // =>
1555   // %1:_(<4 x s32>) = G_FOO
1556   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1557   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1558   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1559   if (NumMergeParts > 1) {
1560     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1561     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1562     MergeParts[0] = WideReg;
1563     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1564   }
1565 
1566   // Unmerge to the original register and pad with dead defs.
1567   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1568   UnmergeResults[0] = OrigReg;
1569   for (int I = 1; I != NumUnmergeParts; ++I)
1570     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1571 
1572   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1573   return WideReg;
1574 }
1575 
1576 LegalizerHelper::LegalizeResult
1577 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1578                                           LLT WideTy) {
1579   if (TypeIdx != 0)
1580     return UnableToLegalize;
1581 
1582   int NumDst = MI.getNumOperands() - 1;
1583   Register SrcReg = MI.getOperand(NumDst).getReg();
1584   LLT SrcTy = MRI.getType(SrcReg);
1585   if (SrcTy.isVector())
1586     return UnableToLegalize;
1587 
1588   Register Dst0Reg = MI.getOperand(0).getReg();
1589   LLT DstTy = MRI.getType(Dst0Reg);
1590   if (!DstTy.isScalar())
1591     return UnableToLegalize;
1592 
1593   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1594     if (SrcTy.isPointer()) {
1595       const DataLayout &DL = MIRBuilder.getDataLayout();
1596       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1597         LLVM_DEBUG(
1598             dbgs() << "Not casting non-integral address space integer\n");
1599         return UnableToLegalize;
1600       }
1601 
1602       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1603       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1604     }
1605 
1606     // Widen SrcTy to WideTy. This does not affect the result, but since the
1607     // user requested this size, it is probably better handled than SrcTy and
1608     // should reduce the total number of legalization artifacts
1609     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1610       SrcTy = WideTy;
1611       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1612     }
1613 
1614     // Theres no unmerge type to target. Directly extract the bits from the
1615     // source type
1616     unsigned DstSize = DstTy.getSizeInBits();
1617 
1618     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1619     for (int I = 1; I != NumDst; ++I) {
1620       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1621       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1622       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1623     }
1624 
1625     MI.eraseFromParent();
1626     return Legalized;
1627   }
1628 
1629   // Extend the source to a wider type.
1630   LLT LCMTy = getLCMType(SrcTy, WideTy);
1631 
1632   Register WideSrc = SrcReg;
1633   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1634     // TODO: If this is an integral address space, cast to integer and anyext.
1635     if (SrcTy.isPointer()) {
1636       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1637       return UnableToLegalize;
1638     }
1639 
1640     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1641   }
1642 
1643   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1644 
1645   // Create a sequence of unmerges and merges to the original results. Since we
1646   // may have widened the source, we will need to pad the results with dead defs
1647   // to cover the source register.
1648   // e.g. widen s48 to s64:
1649   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1650   //
1651   // =>
1652   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1653   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1654   //  ; unpack to GCD type, with extra dead defs
1655   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1656   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1657   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1658   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1659   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1660   const LLT GCDTy = getGCDType(WideTy, DstTy);
1661   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1662   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1663 
1664   // Directly unmerge to the destination without going through a GCD type
1665   // if possible
1666   if (PartsPerRemerge == 1) {
1667     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1668 
1669     for (int I = 0; I != NumUnmerge; ++I) {
1670       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1671 
1672       for (int J = 0; J != PartsPerUnmerge; ++J) {
1673         int Idx = I * PartsPerUnmerge + J;
1674         if (Idx < NumDst)
1675           MIB.addDef(MI.getOperand(Idx).getReg());
1676         else {
1677           // Create dead def for excess components.
1678           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1679         }
1680       }
1681 
1682       MIB.addUse(Unmerge.getReg(I));
1683     }
1684   } else {
1685     SmallVector<Register, 16> Parts;
1686     for (int J = 0; J != NumUnmerge; ++J)
1687       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1688 
1689     SmallVector<Register, 8> RemergeParts;
1690     for (int I = 0; I != NumDst; ++I) {
1691       for (int J = 0; J < PartsPerRemerge; ++J) {
1692         const int Idx = I * PartsPerRemerge + J;
1693         RemergeParts.emplace_back(Parts[Idx]);
1694       }
1695 
1696       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1697       RemergeParts.clear();
1698     }
1699   }
1700 
1701   MI.eraseFromParent();
1702   return Legalized;
1703 }
1704 
1705 LegalizerHelper::LegalizeResult
1706 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1707                                     LLT WideTy) {
1708   Register DstReg = MI.getOperand(0).getReg();
1709   Register SrcReg = MI.getOperand(1).getReg();
1710   LLT SrcTy = MRI.getType(SrcReg);
1711 
1712   LLT DstTy = MRI.getType(DstReg);
1713   unsigned Offset = MI.getOperand(2).getImm();
1714 
1715   if (TypeIdx == 0) {
1716     if (SrcTy.isVector() || DstTy.isVector())
1717       return UnableToLegalize;
1718 
1719     SrcOp Src(SrcReg);
1720     if (SrcTy.isPointer()) {
1721       // Extracts from pointers can be handled only if they are really just
1722       // simple integers.
1723       const DataLayout &DL = MIRBuilder.getDataLayout();
1724       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1725         return UnableToLegalize;
1726 
1727       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1728       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1729       SrcTy = SrcAsIntTy;
1730     }
1731 
1732     if (DstTy.isPointer())
1733       return UnableToLegalize;
1734 
1735     if (Offset == 0) {
1736       // Avoid a shift in the degenerate case.
1737       MIRBuilder.buildTrunc(DstReg,
1738                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1739       MI.eraseFromParent();
1740       return Legalized;
1741     }
1742 
1743     // Do a shift in the source type.
1744     LLT ShiftTy = SrcTy;
1745     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1746       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1747       ShiftTy = WideTy;
1748     }
1749 
1750     auto LShr = MIRBuilder.buildLShr(
1751       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1752     MIRBuilder.buildTrunc(DstReg, LShr);
1753     MI.eraseFromParent();
1754     return Legalized;
1755   }
1756 
1757   if (SrcTy.isScalar()) {
1758     Observer.changingInstr(MI);
1759     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1760     Observer.changedInstr(MI);
1761     return Legalized;
1762   }
1763 
1764   if (!SrcTy.isVector())
1765     return UnableToLegalize;
1766 
1767   if (DstTy != SrcTy.getElementType())
1768     return UnableToLegalize;
1769 
1770   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1771     return UnableToLegalize;
1772 
1773   Observer.changingInstr(MI);
1774   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1775 
1776   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1777                           Offset);
1778   widenScalarDst(MI, WideTy.getScalarType(), 0);
1779   Observer.changedInstr(MI);
1780   return Legalized;
1781 }
1782 
1783 LegalizerHelper::LegalizeResult
1784 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1785                                    LLT WideTy) {
1786   if (TypeIdx != 0 || WideTy.isVector())
1787     return UnableToLegalize;
1788   Observer.changingInstr(MI);
1789   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1790   widenScalarDst(MI, WideTy);
1791   Observer.changedInstr(MI);
1792   return Legalized;
1793 }
1794 
1795 LegalizerHelper::LegalizeResult
1796 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1797                                            LLT WideTy) {
1798   if (TypeIdx == 1)
1799     return UnableToLegalize; // TODO
1800 
1801   unsigned Opcode;
1802   unsigned ExtOpcode;
1803   Optional<Register> CarryIn = None;
1804   switch (MI.getOpcode()) {
1805   default:
1806     llvm_unreachable("Unexpected opcode!");
1807   case TargetOpcode::G_SADDO:
1808     Opcode = TargetOpcode::G_ADD;
1809     ExtOpcode = TargetOpcode::G_SEXT;
1810     break;
1811   case TargetOpcode::G_SSUBO:
1812     Opcode = TargetOpcode::G_SUB;
1813     ExtOpcode = TargetOpcode::G_SEXT;
1814     break;
1815   case TargetOpcode::G_UADDO:
1816     Opcode = TargetOpcode::G_ADD;
1817     ExtOpcode = TargetOpcode::G_ZEXT;
1818     break;
1819   case TargetOpcode::G_USUBO:
1820     Opcode = TargetOpcode::G_SUB;
1821     ExtOpcode = TargetOpcode::G_ZEXT;
1822     break;
1823   case TargetOpcode::G_SADDE:
1824     Opcode = TargetOpcode::G_UADDE;
1825     ExtOpcode = TargetOpcode::G_SEXT;
1826     CarryIn = MI.getOperand(4).getReg();
1827     break;
1828   case TargetOpcode::G_SSUBE:
1829     Opcode = TargetOpcode::G_USUBE;
1830     ExtOpcode = TargetOpcode::G_SEXT;
1831     CarryIn = MI.getOperand(4).getReg();
1832     break;
1833   case TargetOpcode::G_UADDE:
1834     Opcode = TargetOpcode::G_UADDE;
1835     ExtOpcode = TargetOpcode::G_ZEXT;
1836     CarryIn = MI.getOperand(4).getReg();
1837     break;
1838   case TargetOpcode::G_USUBE:
1839     Opcode = TargetOpcode::G_USUBE;
1840     ExtOpcode = TargetOpcode::G_ZEXT;
1841     CarryIn = MI.getOperand(4).getReg();
1842     break;
1843   }
1844 
1845   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1846   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1847   // Do the arithmetic in the larger type.
1848   Register NewOp;
1849   if (CarryIn) {
1850     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1851     NewOp = MIRBuilder
1852                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1853                             {LHSExt, RHSExt, *CarryIn})
1854                 .getReg(0);
1855   } else {
1856     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1857   }
1858   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1859   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1860   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1861   // There is no overflow if the ExtOp is the same as NewOp.
1862   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1863   // Now trunc the NewOp to the original result.
1864   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1865   MI.eraseFromParent();
1866   return Legalized;
1867 }
1868 
1869 LegalizerHelper::LegalizeResult
1870 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1871                                          LLT WideTy) {
1872   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1873                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1874                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1875   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1876                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1877   // We can convert this to:
1878   //   1. Any extend iN to iM
1879   //   2. SHL by M-N
1880   //   3. [US][ADD|SUB|SHL]SAT
1881   //   4. L/ASHR by M-N
1882   //
1883   // It may be more efficient to lower this to a min and a max operation in
1884   // the higher precision arithmetic if the promoted operation isn't legal,
1885   // but this decision is up to the target's lowering request.
1886   Register DstReg = MI.getOperand(0).getReg();
1887 
1888   unsigned NewBits = WideTy.getScalarSizeInBits();
1889   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1890 
1891   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1892   // must not left shift the RHS to preserve the shift amount.
1893   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1894   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1895                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1896   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1897   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1898   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1899 
1900   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1901                                         {ShiftL, ShiftR}, MI.getFlags());
1902 
1903   // Use a shift that will preserve the number of sign bits when the trunc is
1904   // folded away.
1905   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1906                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1907 
1908   MIRBuilder.buildTrunc(DstReg, Result);
1909   MI.eraseFromParent();
1910   return Legalized;
1911 }
1912 
1913 LegalizerHelper::LegalizeResult
1914 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1915                                  LLT WideTy) {
1916   if (TypeIdx == 1)
1917     return UnableToLegalize;
1918 
1919   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
1920   Register Result = MI.getOperand(0).getReg();
1921   Register OriginalOverflow = MI.getOperand(1).getReg();
1922   Register LHS = MI.getOperand(2).getReg();
1923   Register RHS = MI.getOperand(3).getReg();
1924   LLT SrcTy = MRI.getType(LHS);
1925   LLT OverflowTy = MRI.getType(OriginalOverflow);
1926   unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
1927 
1928   // To determine if the result overflowed in the larger type, we extend the
1929   // input to the larger type, do the multiply (checking if it overflows),
1930   // then also check the high bits of the result to see if overflow happened
1931   // there.
1932   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1933   auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
1934   auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
1935 
1936   auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
1937                                     {LeftOperand, RightOperand});
1938   auto Mul = Mulo->getOperand(0);
1939   MIRBuilder.buildTrunc(Result, Mul);
1940 
1941   MachineInstrBuilder ExtResult;
1942   // Overflow occurred if it occurred in the larger type, or if the high part
1943   // of the result does not zero/sign-extend the low part.  Check this second
1944   // possibility first.
1945   if (IsSigned) {
1946     // For signed, overflow occurred when the high part does not sign-extend
1947     // the low part.
1948     ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
1949   } else {
1950     // Unsigned overflow occurred when the high part does not zero-extend the
1951     // low part.
1952     ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
1953   }
1954 
1955   // Multiplication cannot overflow if the WideTy is >= 2 * original width,
1956   // so we don't need to check the overflow result of larger type Mulo.
1957   if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
1958     auto Overflow =
1959         MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
1960     // Finally check if the multiplication in the larger type itself overflowed.
1961     MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
1962   } else {
1963     MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
1964   }
1965   MI.eraseFromParent();
1966   return Legalized;
1967 }
1968 
1969 LegalizerHelper::LegalizeResult
1970 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1971   switch (MI.getOpcode()) {
1972   default:
1973     return UnableToLegalize;
1974   case TargetOpcode::G_ATOMICRMW_XCHG:
1975   case TargetOpcode::G_ATOMICRMW_ADD:
1976   case TargetOpcode::G_ATOMICRMW_SUB:
1977   case TargetOpcode::G_ATOMICRMW_AND:
1978   case TargetOpcode::G_ATOMICRMW_OR:
1979   case TargetOpcode::G_ATOMICRMW_XOR:
1980   case TargetOpcode::G_ATOMICRMW_MIN:
1981   case TargetOpcode::G_ATOMICRMW_MAX:
1982   case TargetOpcode::G_ATOMICRMW_UMIN:
1983   case TargetOpcode::G_ATOMICRMW_UMAX:
1984     assert(TypeIdx == 0 && "atomicrmw with second scalar type");
1985     Observer.changingInstr(MI);
1986     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1987     widenScalarDst(MI, WideTy, 0);
1988     Observer.changedInstr(MI);
1989     return Legalized;
1990   case TargetOpcode::G_ATOMIC_CMPXCHG:
1991     assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type");
1992     Observer.changingInstr(MI);
1993     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1994     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1995     widenScalarDst(MI, WideTy, 0);
1996     Observer.changedInstr(MI);
1997     return Legalized;
1998   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS:
1999     if (TypeIdx == 0) {
2000       Observer.changingInstr(MI);
2001       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2002       widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT);
2003       widenScalarDst(MI, WideTy, 0);
2004       Observer.changedInstr(MI);
2005       return Legalized;
2006     }
2007     assert(TypeIdx == 1 &&
2008            "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type");
2009     Observer.changingInstr(MI);
2010     widenScalarDst(MI, WideTy, 1);
2011     Observer.changedInstr(MI);
2012     return Legalized;
2013   case TargetOpcode::G_EXTRACT:
2014     return widenScalarExtract(MI, TypeIdx, WideTy);
2015   case TargetOpcode::G_INSERT:
2016     return widenScalarInsert(MI, TypeIdx, WideTy);
2017   case TargetOpcode::G_MERGE_VALUES:
2018     return widenScalarMergeValues(MI, TypeIdx, WideTy);
2019   case TargetOpcode::G_UNMERGE_VALUES:
2020     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
2021   case TargetOpcode::G_SADDO:
2022   case TargetOpcode::G_SSUBO:
2023   case TargetOpcode::G_UADDO:
2024   case TargetOpcode::G_USUBO:
2025   case TargetOpcode::G_SADDE:
2026   case TargetOpcode::G_SSUBE:
2027   case TargetOpcode::G_UADDE:
2028   case TargetOpcode::G_USUBE:
2029     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
2030   case TargetOpcode::G_UMULO:
2031   case TargetOpcode::G_SMULO:
2032     return widenScalarMulo(MI, TypeIdx, WideTy);
2033   case TargetOpcode::G_SADDSAT:
2034   case TargetOpcode::G_SSUBSAT:
2035   case TargetOpcode::G_SSHLSAT:
2036   case TargetOpcode::G_UADDSAT:
2037   case TargetOpcode::G_USUBSAT:
2038   case TargetOpcode::G_USHLSAT:
2039     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
2040   case TargetOpcode::G_CTTZ:
2041   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2042   case TargetOpcode::G_CTLZ:
2043   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2044   case TargetOpcode::G_CTPOP: {
2045     if (TypeIdx == 0) {
2046       Observer.changingInstr(MI);
2047       widenScalarDst(MI, WideTy, 0);
2048       Observer.changedInstr(MI);
2049       return Legalized;
2050     }
2051 
2052     Register SrcReg = MI.getOperand(1).getReg();
2053 
2054     // First extend the input.
2055     unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ ||
2056                               MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF
2057                           ? TargetOpcode::G_ANYEXT
2058                           : TargetOpcode::G_ZEXT;
2059     auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg});
2060     LLT CurTy = MRI.getType(SrcReg);
2061     unsigned NewOpc = MI.getOpcode();
2062     if (NewOpc == TargetOpcode::G_CTTZ) {
2063       // The count is the same in the larger type except if the original
2064       // value was zero.  This can be handled by setting the bit just off
2065       // the top of the original type.
2066       auto TopBit =
2067           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
2068       MIBSrc = MIRBuilder.buildOr(
2069         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
2070       // Now we know the operand is non-zero, use the more relaxed opcode.
2071       NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF;
2072     }
2073 
2074     // Perform the operation at the larger size.
2075     auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc});
2076     // This is already the correct result for CTPOP and CTTZs
2077     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
2078         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
2079       // The correct result is NewOp - (Difference in widety and current ty).
2080       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
2081       MIBNewOp = MIRBuilder.buildSub(
2082           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
2083     }
2084 
2085     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
2086     MI.eraseFromParent();
2087     return Legalized;
2088   }
2089   case TargetOpcode::G_BSWAP: {
2090     Observer.changingInstr(MI);
2091     Register DstReg = MI.getOperand(0).getReg();
2092 
2093     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
2094     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2095     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
2096     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2097 
2098     MI.getOperand(0).setReg(DstExt);
2099 
2100     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2101 
2102     LLT Ty = MRI.getType(DstReg);
2103     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2104     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
2105     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
2106 
2107     MIRBuilder.buildTrunc(DstReg, ShrReg);
2108     Observer.changedInstr(MI);
2109     return Legalized;
2110   }
2111   case TargetOpcode::G_BITREVERSE: {
2112     Observer.changingInstr(MI);
2113 
2114     Register DstReg = MI.getOperand(0).getReg();
2115     LLT Ty = MRI.getType(DstReg);
2116     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2117 
2118     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2119     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2120     MI.getOperand(0).setReg(DstExt);
2121     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2122 
2123     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
2124     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
2125     MIRBuilder.buildTrunc(DstReg, Shift);
2126     Observer.changedInstr(MI);
2127     return Legalized;
2128   }
2129   case TargetOpcode::G_FREEZE:
2130     Observer.changingInstr(MI);
2131     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2132     widenScalarDst(MI, WideTy);
2133     Observer.changedInstr(MI);
2134     return Legalized;
2135 
2136   case TargetOpcode::G_ABS:
2137     Observer.changingInstr(MI);
2138     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2139     widenScalarDst(MI, WideTy);
2140     Observer.changedInstr(MI);
2141     return Legalized;
2142 
2143   case TargetOpcode::G_ADD:
2144   case TargetOpcode::G_AND:
2145   case TargetOpcode::G_MUL:
2146   case TargetOpcode::G_OR:
2147   case TargetOpcode::G_XOR:
2148   case TargetOpcode::G_SUB:
2149     // Perform operation at larger width (any extension is fines here, high bits
2150     // don't affect the result) and then truncate the result back to the
2151     // original type.
2152     Observer.changingInstr(MI);
2153     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2154     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2155     widenScalarDst(MI, WideTy);
2156     Observer.changedInstr(MI);
2157     return Legalized;
2158 
2159   case TargetOpcode::G_SBFX:
2160   case TargetOpcode::G_UBFX:
2161     Observer.changingInstr(MI);
2162 
2163     if (TypeIdx == 0) {
2164       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2165       widenScalarDst(MI, WideTy);
2166     } else {
2167       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2168       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2169     }
2170 
2171     Observer.changedInstr(MI);
2172     return Legalized;
2173 
2174   case TargetOpcode::G_SHL:
2175     Observer.changingInstr(MI);
2176 
2177     if (TypeIdx == 0) {
2178       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2179       widenScalarDst(MI, WideTy);
2180     } else {
2181       assert(TypeIdx == 1);
2182       // The "number of bits to shift" operand must preserve its value as an
2183       // unsigned integer:
2184       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2185     }
2186 
2187     Observer.changedInstr(MI);
2188     return Legalized;
2189 
2190   case TargetOpcode::G_SDIV:
2191   case TargetOpcode::G_SREM:
2192   case TargetOpcode::G_SMIN:
2193   case TargetOpcode::G_SMAX:
2194     Observer.changingInstr(MI);
2195     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2196     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2197     widenScalarDst(MI, WideTy);
2198     Observer.changedInstr(MI);
2199     return Legalized;
2200 
2201   case TargetOpcode::G_SDIVREM:
2202     Observer.changingInstr(MI);
2203     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2204     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2205     widenScalarDst(MI, WideTy);
2206     widenScalarDst(MI, WideTy, 1);
2207     Observer.changedInstr(MI);
2208     return Legalized;
2209 
2210   case TargetOpcode::G_ASHR:
2211   case TargetOpcode::G_LSHR:
2212     Observer.changingInstr(MI);
2213 
2214     if (TypeIdx == 0) {
2215       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2216         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2217 
2218       widenScalarSrc(MI, WideTy, 1, CvtOp);
2219       widenScalarDst(MI, WideTy);
2220     } else {
2221       assert(TypeIdx == 1);
2222       // The "number of bits to shift" operand must preserve its value as an
2223       // unsigned integer:
2224       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2225     }
2226 
2227     Observer.changedInstr(MI);
2228     return Legalized;
2229   case TargetOpcode::G_UDIV:
2230   case TargetOpcode::G_UREM:
2231   case TargetOpcode::G_UMIN:
2232   case TargetOpcode::G_UMAX:
2233     Observer.changingInstr(MI);
2234     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2235     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2236     widenScalarDst(MI, WideTy);
2237     Observer.changedInstr(MI);
2238     return Legalized;
2239 
2240   case TargetOpcode::G_UDIVREM:
2241     Observer.changingInstr(MI);
2242     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2243     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2244     widenScalarDst(MI, WideTy);
2245     widenScalarDst(MI, WideTy, 1);
2246     Observer.changedInstr(MI);
2247     return Legalized;
2248 
2249   case TargetOpcode::G_SELECT:
2250     Observer.changingInstr(MI);
2251     if (TypeIdx == 0) {
2252       // Perform operation at larger width (any extension is fine here, high
2253       // bits don't affect the result) and then truncate the result back to the
2254       // original type.
2255       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2256       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2257       widenScalarDst(MI, WideTy);
2258     } else {
2259       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2260       // Explicit extension is required here since high bits affect the result.
2261       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2262     }
2263     Observer.changedInstr(MI);
2264     return Legalized;
2265 
2266   case TargetOpcode::G_FPTOSI:
2267   case TargetOpcode::G_FPTOUI:
2268     Observer.changingInstr(MI);
2269 
2270     if (TypeIdx == 0)
2271       widenScalarDst(MI, WideTy);
2272     else
2273       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2274 
2275     Observer.changedInstr(MI);
2276     return Legalized;
2277   case TargetOpcode::G_SITOFP:
2278     Observer.changingInstr(MI);
2279 
2280     if (TypeIdx == 0)
2281       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2282     else
2283       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2284 
2285     Observer.changedInstr(MI);
2286     return Legalized;
2287   case TargetOpcode::G_UITOFP:
2288     Observer.changingInstr(MI);
2289 
2290     if (TypeIdx == 0)
2291       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2292     else
2293       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2294 
2295     Observer.changedInstr(MI);
2296     return Legalized;
2297   case TargetOpcode::G_LOAD:
2298   case TargetOpcode::G_SEXTLOAD:
2299   case TargetOpcode::G_ZEXTLOAD:
2300     Observer.changingInstr(MI);
2301     widenScalarDst(MI, WideTy);
2302     Observer.changedInstr(MI);
2303     return Legalized;
2304 
2305   case TargetOpcode::G_STORE: {
2306     if (TypeIdx != 0)
2307       return UnableToLegalize;
2308 
2309     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2310     if (!Ty.isScalar())
2311       return UnableToLegalize;
2312 
2313     Observer.changingInstr(MI);
2314 
2315     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2316       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2317     widenScalarSrc(MI, WideTy, 0, ExtType);
2318 
2319     Observer.changedInstr(MI);
2320     return Legalized;
2321   }
2322   case TargetOpcode::G_CONSTANT: {
2323     MachineOperand &SrcMO = MI.getOperand(1);
2324     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2325     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2326         MRI.getType(MI.getOperand(0).getReg()));
2327     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2328             ExtOpc == TargetOpcode::G_ANYEXT) &&
2329            "Illegal Extend");
2330     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2331     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2332                            ? SrcVal.sext(WideTy.getSizeInBits())
2333                            : SrcVal.zext(WideTy.getSizeInBits());
2334     Observer.changingInstr(MI);
2335     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2336 
2337     widenScalarDst(MI, WideTy);
2338     Observer.changedInstr(MI);
2339     return Legalized;
2340   }
2341   case TargetOpcode::G_FCONSTANT: {
2342     MachineOperand &SrcMO = MI.getOperand(1);
2343     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2344     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2345     bool LosesInfo;
2346     switch (WideTy.getSizeInBits()) {
2347     case 32:
2348       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2349                   &LosesInfo);
2350       break;
2351     case 64:
2352       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2353                   &LosesInfo);
2354       break;
2355     default:
2356       return UnableToLegalize;
2357     }
2358 
2359     assert(!LosesInfo && "extend should always be lossless");
2360 
2361     Observer.changingInstr(MI);
2362     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2363 
2364     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2365     Observer.changedInstr(MI);
2366     return Legalized;
2367   }
2368   case TargetOpcode::G_IMPLICIT_DEF: {
2369     Observer.changingInstr(MI);
2370     widenScalarDst(MI, WideTy);
2371     Observer.changedInstr(MI);
2372     return Legalized;
2373   }
2374   case TargetOpcode::G_BRCOND:
2375     Observer.changingInstr(MI);
2376     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2377     Observer.changedInstr(MI);
2378     return Legalized;
2379 
2380   case TargetOpcode::G_FCMP:
2381     Observer.changingInstr(MI);
2382     if (TypeIdx == 0)
2383       widenScalarDst(MI, WideTy);
2384     else {
2385       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2386       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2387     }
2388     Observer.changedInstr(MI);
2389     return Legalized;
2390 
2391   case TargetOpcode::G_ICMP:
2392     Observer.changingInstr(MI);
2393     if (TypeIdx == 0)
2394       widenScalarDst(MI, WideTy);
2395     else {
2396       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2397                                MI.getOperand(1).getPredicate()))
2398                                ? TargetOpcode::G_SEXT
2399                                : TargetOpcode::G_ZEXT;
2400       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2401       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2402     }
2403     Observer.changedInstr(MI);
2404     return Legalized;
2405 
2406   case TargetOpcode::G_PTR_ADD:
2407     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2408     Observer.changingInstr(MI);
2409     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2410     Observer.changedInstr(MI);
2411     return Legalized;
2412 
2413   case TargetOpcode::G_PHI: {
2414     assert(TypeIdx == 0 && "Expecting only Idx 0");
2415 
2416     Observer.changingInstr(MI);
2417     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2418       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2419       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2420       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2421     }
2422 
2423     MachineBasicBlock &MBB = *MI.getParent();
2424     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2425     widenScalarDst(MI, WideTy);
2426     Observer.changedInstr(MI);
2427     return Legalized;
2428   }
2429   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2430     if (TypeIdx == 0) {
2431       Register VecReg = MI.getOperand(1).getReg();
2432       LLT VecTy = MRI.getType(VecReg);
2433       Observer.changingInstr(MI);
2434 
2435       widenScalarSrc(
2436           MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1,
2437           TargetOpcode::G_SEXT);
2438 
2439       widenScalarDst(MI, WideTy, 0);
2440       Observer.changedInstr(MI);
2441       return Legalized;
2442     }
2443 
2444     if (TypeIdx != 2)
2445       return UnableToLegalize;
2446     Observer.changingInstr(MI);
2447     // TODO: Probably should be zext
2448     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2449     Observer.changedInstr(MI);
2450     return Legalized;
2451   }
2452   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2453     if (TypeIdx == 1) {
2454       Observer.changingInstr(MI);
2455 
2456       Register VecReg = MI.getOperand(1).getReg();
2457       LLT VecTy = MRI.getType(VecReg);
2458       LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy);
2459 
2460       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2461       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2462       widenScalarDst(MI, WideVecTy, 0);
2463       Observer.changedInstr(MI);
2464       return Legalized;
2465     }
2466 
2467     if (TypeIdx == 2) {
2468       Observer.changingInstr(MI);
2469       // TODO: Probably should be zext
2470       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2471       Observer.changedInstr(MI);
2472       return Legalized;
2473     }
2474 
2475     return UnableToLegalize;
2476   }
2477   case TargetOpcode::G_FADD:
2478   case TargetOpcode::G_FMUL:
2479   case TargetOpcode::G_FSUB:
2480   case TargetOpcode::G_FMA:
2481   case TargetOpcode::G_FMAD:
2482   case TargetOpcode::G_FNEG:
2483   case TargetOpcode::G_FABS:
2484   case TargetOpcode::G_FCANONICALIZE:
2485   case TargetOpcode::G_FMINNUM:
2486   case TargetOpcode::G_FMAXNUM:
2487   case TargetOpcode::G_FMINNUM_IEEE:
2488   case TargetOpcode::G_FMAXNUM_IEEE:
2489   case TargetOpcode::G_FMINIMUM:
2490   case TargetOpcode::G_FMAXIMUM:
2491   case TargetOpcode::G_FDIV:
2492   case TargetOpcode::G_FREM:
2493   case TargetOpcode::G_FCEIL:
2494   case TargetOpcode::G_FFLOOR:
2495   case TargetOpcode::G_FCOS:
2496   case TargetOpcode::G_FSIN:
2497   case TargetOpcode::G_FLOG10:
2498   case TargetOpcode::G_FLOG:
2499   case TargetOpcode::G_FLOG2:
2500   case TargetOpcode::G_FRINT:
2501   case TargetOpcode::G_FNEARBYINT:
2502   case TargetOpcode::G_FSQRT:
2503   case TargetOpcode::G_FEXP:
2504   case TargetOpcode::G_FEXP2:
2505   case TargetOpcode::G_FPOW:
2506   case TargetOpcode::G_INTRINSIC_TRUNC:
2507   case TargetOpcode::G_INTRINSIC_ROUND:
2508   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2509     assert(TypeIdx == 0);
2510     Observer.changingInstr(MI);
2511 
2512     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2513       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2514 
2515     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2516     Observer.changedInstr(MI);
2517     return Legalized;
2518   case TargetOpcode::G_FPOWI: {
2519     if (TypeIdx != 0)
2520       return UnableToLegalize;
2521     Observer.changingInstr(MI);
2522     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2523     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2524     Observer.changedInstr(MI);
2525     return Legalized;
2526   }
2527   case TargetOpcode::G_INTTOPTR:
2528     if (TypeIdx != 1)
2529       return UnableToLegalize;
2530 
2531     Observer.changingInstr(MI);
2532     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2533     Observer.changedInstr(MI);
2534     return Legalized;
2535   case TargetOpcode::G_PTRTOINT:
2536     if (TypeIdx != 0)
2537       return UnableToLegalize;
2538 
2539     Observer.changingInstr(MI);
2540     widenScalarDst(MI, WideTy, 0);
2541     Observer.changedInstr(MI);
2542     return Legalized;
2543   case TargetOpcode::G_BUILD_VECTOR: {
2544     Observer.changingInstr(MI);
2545 
2546     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2547     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2548       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2549 
2550     // Avoid changing the result vector type if the source element type was
2551     // requested.
2552     if (TypeIdx == 1) {
2553       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2554     } else {
2555       widenScalarDst(MI, WideTy, 0);
2556     }
2557 
2558     Observer.changedInstr(MI);
2559     return Legalized;
2560   }
2561   case TargetOpcode::G_SEXT_INREG:
2562     if (TypeIdx != 0)
2563       return UnableToLegalize;
2564 
2565     Observer.changingInstr(MI);
2566     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2567     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2568     Observer.changedInstr(MI);
2569     return Legalized;
2570   case TargetOpcode::G_PTRMASK: {
2571     if (TypeIdx != 1)
2572       return UnableToLegalize;
2573     Observer.changingInstr(MI);
2574     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2575     Observer.changedInstr(MI);
2576     return Legalized;
2577   }
2578   }
2579 }
2580 
2581 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2582                              MachineIRBuilder &B, Register Src, LLT Ty) {
2583   auto Unmerge = B.buildUnmerge(Ty, Src);
2584   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2585     Pieces.push_back(Unmerge.getReg(I));
2586 }
2587 
2588 LegalizerHelper::LegalizeResult
2589 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2590   Register Dst = MI.getOperand(0).getReg();
2591   Register Src = MI.getOperand(1).getReg();
2592   LLT DstTy = MRI.getType(Dst);
2593   LLT SrcTy = MRI.getType(Src);
2594 
2595   if (SrcTy.isVector()) {
2596     LLT SrcEltTy = SrcTy.getElementType();
2597     SmallVector<Register, 8> SrcRegs;
2598 
2599     if (DstTy.isVector()) {
2600       int NumDstElt = DstTy.getNumElements();
2601       int NumSrcElt = SrcTy.getNumElements();
2602 
2603       LLT DstEltTy = DstTy.getElementType();
2604       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2605       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2606 
2607       // If there's an element size mismatch, insert intermediate casts to match
2608       // the result element type.
2609       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2610         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2611         //
2612         // =>
2613         //
2614         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2615         // %3:_(<2 x s8>) = G_BITCAST %2
2616         // %4:_(<2 x s8>) = G_BITCAST %3
2617         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2618         DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy);
2619         SrcPartTy = SrcEltTy;
2620       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2621         //
2622         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2623         //
2624         // =>
2625         //
2626         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2627         // %3:_(s16) = G_BITCAST %2
2628         // %4:_(s16) = G_BITCAST %3
2629         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2630         SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy);
2631         DstCastTy = DstEltTy;
2632       }
2633 
2634       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2635       for (Register &SrcReg : SrcRegs)
2636         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2637     } else
2638       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2639 
2640     MIRBuilder.buildMerge(Dst, SrcRegs);
2641     MI.eraseFromParent();
2642     return Legalized;
2643   }
2644 
2645   if (DstTy.isVector()) {
2646     SmallVector<Register, 8> SrcRegs;
2647     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2648     MIRBuilder.buildMerge(Dst, SrcRegs);
2649     MI.eraseFromParent();
2650     return Legalized;
2651   }
2652 
2653   return UnableToLegalize;
2654 }
2655 
2656 /// Figure out the bit offset into a register when coercing a vector index for
2657 /// the wide element type. This is only for the case when promoting vector to
2658 /// one with larger elements.
2659 //
2660 ///
2661 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2662 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2663 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2664                                                    Register Idx,
2665                                                    unsigned NewEltSize,
2666                                                    unsigned OldEltSize) {
2667   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2668   LLT IdxTy = B.getMRI()->getType(Idx);
2669 
2670   // Now figure out the amount we need to shift to get the target bits.
2671   auto OffsetMask = B.buildConstant(
2672     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2673   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2674   return B.buildShl(IdxTy, OffsetIdx,
2675                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2676 }
2677 
2678 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2679 /// is casting to a vector with a smaller element size, perform multiple element
2680 /// extracts and merge the results. If this is coercing to a vector with larger
2681 /// elements, index the bitcasted vector and extract the target element with bit
2682 /// operations. This is intended to force the indexing in the native register
2683 /// size for architectures that can dynamically index the register file.
2684 LegalizerHelper::LegalizeResult
2685 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2686                                          LLT CastTy) {
2687   if (TypeIdx != 1)
2688     return UnableToLegalize;
2689 
2690   Register Dst = MI.getOperand(0).getReg();
2691   Register SrcVec = MI.getOperand(1).getReg();
2692   Register Idx = MI.getOperand(2).getReg();
2693   LLT SrcVecTy = MRI.getType(SrcVec);
2694   LLT IdxTy = MRI.getType(Idx);
2695 
2696   LLT SrcEltTy = SrcVecTy.getElementType();
2697   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2698   unsigned OldNumElts = SrcVecTy.getNumElements();
2699 
2700   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2701   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2702 
2703   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2704   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2705   if (NewNumElts > OldNumElts) {
2706     // Decreasing the vector element size
2707     //
2708     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2709     //  =>
2710     //  v4i32:castx = bitcast x:v2i64
2711     //
2712     // i64 = bitcast
2713     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2714     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2715     //
2716     if (NewNumElts % OldNumElts != 0)
2717       return UnableToLegalize;
2718 
2719     // Type of the intermediate result vector.
2720     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2721     LLT MidTy =
2722         LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy);
2723 
2724     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2725 
2726     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2727     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2728 
2729     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2730       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2731       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2732       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2733       NewOps[I] = Elt.getReg(0);
2734     }
2735 
2736     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2737     MIRBuilder.buildBitcast(Dst, NewVec);
2738     MI.eraseFromParent();
2739     return Legalized;
2740   }
2741 
2742   if (NewNumElts < OldNumElts) {
2743     if (NewEltSize % OldEltSize != 0)
2744       return UnableToLegalize;
2745 
2746     // This only depends on powers of 2 because we use bit tricks to figure out
2747     // the bit offset we need to shift to get the target element. A general
2748     // expansion could emit division/multiply.
2749     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2750       return UnableToLegalize;
2751 
2752     // Increasing the vector element size.
2753     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2754     //
2755     //   =>
2756     //
2757     // %cast = G_BITCAST %vec
2758     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2759     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2760     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2761     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2762     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2763     // %elt = G_TRUNC %elt_bits
2764 
2765     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2766     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2767 
2768     // Divide to get the index in the wider element type.
2769     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2770 
2771     Register WideElt = CastVec;
2772     if (CastTy.isVector()) {
2773       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2774                                                      ScaledIdx).getReg(0);
2775     }
2776 
2777     // Compute the bit offset into the register of the target element.
2778     Register OffsetBits = getBitcastWiderVectorElementOffset(
2779       MIRBuilder, Idx, NewEltSize, OldEltSize);
2780 
2781     // Shift the wide element to get the target element.
2782     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2783     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2784     MI.eraseFromParent();
2785     return Legalized;
2786   }
2787 
2788   return UnableToLegalize;
2789 }
2790 
2791 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2792 /// TargetReg, while preserving other bits in \p TargetReg.
2793 ///
2794 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2795 static Register buildBitFieldInsert(MachineIRBuilder &B,
2796                                     Register TargetReg, Register InsertReg,
2797                                     Register OffsetBits) {
2798   LLT TargetTy = B.getMRI()->getType(TargetReg);
2799   LLT InsertTy = B.getMRI()->getType(InsertReg);
2800   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2801   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2802 
2803   // Produce a bitmask of the value to insert
2804   auto EltMask = B.buildConstant(
2805     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2806                                    InsertTy.getSizeInBits()));
2807   // Shift it into position
2808   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2809   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2810 
2811   // Clear out the bits in the wide element
2812   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2813 
2814   // The value to insert has all zeros already, so stick it into the masked
2815   // wide element.
2816   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2817 }
2818 
2819 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2820 /// is increasing the element size, perform the indexing in the target element
2821 /// type, and use bit operations to insert at the element position. This is
2822 /// intended for architectures that can dynamically index the register file and
2823 /// want to force indexing in the native register size.
2824 LegalizerHelper::LegalizeResult
2825 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2826                                         LLT CastTy) {
2827   if (TypeIdx != 0)
2828     return UnableToLegalize;
2829 
2830   Register Dst = MI.getOperand(0).getReg();
2831   Register SrcVec = MI.getOperand(1).getReg();
2832   Register Val = MI.getOperand(2).getReg();
2833   Register Idx = MI.getOperand(3).getReg();
2834 
2835   LLT VecTy = MRI.getType(Dst);
2836   LLT IdxTy = MRI.getType(Idx);
2837 
2838   LLT VecEltTy = VecTy.getElementType();
2839   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2840   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2841   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2842 
2843   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2844   unsigned OldNumElts = VecTy.getNumElements();
2845 
2846   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2847   if (NewNumElts < OldNumElts) {
2848     if (NewEltSize % OldEltSize != 0)
2849       return UnableToLegalize;
2850 
2851     // This only depends on powers of 2 because we use bit tricks to figure out
2852     // the bit offset we need to shift to get the target element. A general
2853     // expansion could emit division/multiply.
2854     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2855       return UnableToLegalize;
2856 
2857     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2858     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2859 
2860     // Divide to get the index in the wider element type.
2861     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2862 
2863     Register ExtractedElt = CastVec;
2864     if (CastTy.isVector()) {
2865       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2866                                                           ScaledIdx).getReg(0);
2867     }
2868 
2869     // Compute the bit offset into the register of the target element.
2870     Register OffsetBits = getBitcastWiderVectorElementOffset(
2871       MIRBuilder, Idx, NewEltSize, OldEltSize);
2872 
2873     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2874                                                Val, OffsetBits);
2875     if (CastTy.isVector()) {
2876       InsertedElt = MIRBuilder.buildInsertVectorElement(
2877         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2878     }
2879 
2880     MIRBuilder.buildBitcast(Dst, InsertedElt);
2881     MI.eraseFromParent();
2882     return Legalized;
2883   }
2884 
2885   return UnableToLegalize;
2886 }
2887 
2888 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) {
2889   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2890   Register DstReg = LoadMI.getDstReg();
2891   Register PtrReg = LoadMI.getPointerReg();
2892   LLT DstTy = MRI.getType(DstReg);
2893   MachineMemOperand &MMO = LoadMI.getMMO();
2894   LLT MemTy = MMO.getMemoryType();
2895   MachineFunction &MF = MIRBuilder.getMF();
2896 
2897   unsigned MemSizeInBits = MemTy.getSizeInBits();
2898   unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes();
2899 
2900   if (MemSizeInBits != MemStoreSizeInBits) {
2901     if (MemTy.isVector())
2902       return UnableToLegalize;
2903 
2904     // Promote to a byte-sized load if not loading an integral number of
2905     // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
2906     LLT WideMemTy = LLT::scalar(MemStoreSizeInBits);
2907     MachineMemOperand *NewMMO =
2908         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy);
2909 
2910     Register LoadReg = DstReg;
2911     LLT LoadTy = DstTy;
2912 
2913     // If this wasn't already an extending load, we need to widen the result
2914     // register to avoid creating a load with a narrower result than the source.
2915     if (MemStoreSizeInBits > DstTy.getSizeInBits()) {
2916       LoadTy = WideMemTy;
2917       LoadReg = MRI.createGenericVirtualRegister(WideMemTy);
2918     }
2919 
2920     if (isa<GSExtLoad>(LoadMI)) {
2921       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
2922       MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits);
2923     } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == DstTy) {
2924       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
2925       // The extra bits are guaranteed to be zero, since we stored them that
2926       // way.  A zext load from Wide thus automatically gives zext from MemVT.
2927       MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits);
2928     } else {
2929       MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO);
2930     }
2931 
2932     if (DstTy != LoadTy)
2933       MIRBuilder.buildTrunc(DstReg, LoadReg);
2934 
2935     LoadMI.eraseFromParent();
2936     return Legalized;
2937   }
2938 
2939   // Big endian lowering not implemented.
2940   if (MIRBuilder.getDataLayout().isBigEndian())
2941     return UnableToLegalize;
2942 
2943   // This load needs splitting into power of 2 sized loads.
2944   //
2945   // Our strategy here is to generate anyextending loads for the smaller
2946   // types up to next power-2 result type, and then combine the two larger
2947   // result values together, before truncating back down to the non-pow-2
2948   // type.
2949   // E.g. v1 = i24 load =>
2950   // v2 = i32 zextload (2 byte)
2951   // v3 = i32 load (1 byte)
2952   // v4 = i32 shl v3, 16
2953   // v5 = i32 or v4, v2
2954   // v1 = i24 trunc v5
2955   // By doing this we generate the correct truncate which should get
2956   // combined away as an artifact with a matching extend.
2957 
2958   uint64_t LargeSplitSize, SmallSplitSize;
2959 
2960   if (!isPowerOf2_32(MemSizeInBits)) {
2961     // This load needs splitting into power of 2 sized loads.
2962     LargeSplitSize = PowerOf2Floor(MemSizeInBits);
2963     SmallSplitSize = MemSizeInBits - LargeSplitSize;
2964   } else {
2965     // This is already a power of 2, but we still need to split this in half.
2966     //
2967     // Assume we're being asked to decompose an unaligned load.
2968     // TODO: If this requires multiple splits, handle them all at once.
2969     auto &Ctx = MF.getFunction().getContext();
2970     if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
2971       return UnableToLegalize;
2972 
2973     SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
2974   }
2975 
2976   if (MemTy.isVector()) {
2977     // TODO: Handle vector extloads
2978     if (MemTy != DstTy)
2979       return UnableToLegalize;
2980 
2981     // TODO: We can do better than scalarizing the vector and at least split it
2982     // in half.
2983     return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType());
2984   }
2985 
2986   MachineMemOperand *LargeMMO =
2987       MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2988   MachineMemOperand *SmallMMO =
2989       MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2990 
2991   LLT PtrTy = MRI.getType(PtrReg);
2992   unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits());
2993   LLT AnyExtTy = LLT::scalar(AnyExtSize);
2994   auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy,
2995                                              PtrReg, *LargeMMO);
2996 
2997   auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()),
2998                                             LargeSplitSize / 8);
2999   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
3000   auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
3001   auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy,
3002                                              SmallPtr, *SmallMMO);
3003 
3004   auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
3005   auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
3006 
3007   if (AnyExtTy == DstTy)
3008     MIRBuilder.buildOr(DstReg, Shift, LargeLoad);
3009   else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) {
3010     auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
3011     MIRBuilder.buildTrunc(DstReg, {Or});
3012   } else {
3013     assert(DstTy.isPointer() && "expected pointer");
3014     auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
3015 
3016     // FIXME: We currently consider this to be illegal for non-integral address
3017     // spaces, but we need still need a way to reinterpret the bits.
3018     MIRBuilder.buildIntToPtr(DstReg, Or);
3019   }
3020 
3021   LoadMI.eraseFromParent();
3022   return Legalized;
3023 }
3024 
3025 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) {
3026   // Lower a non-power of 2 store into multiple pow-2 stores.
3027   // E.g. split an i24 store into an i16 store + i8 store.
3028   // We do this by first extending the stored value to the next largest power
3029   // of 2 type, and then using truncating stores to store the components.
3030   // By doing this, likewise with G_LOAD, generate an extend that can be
3031   // artifact-combined away instead of leaving behind extracts.
3032   Register SrcReg = StoreMI.getValueReg();
3033   Register PtrReg = StoreMI.getPointerReg();
3034   LLT SrcTy = MRI.getType(SrcReg);
3035   MachineFunction &MF = MIRBuilder.getMF();
3036   MachineMemOperand &MMO = **StoreMI.memoperands_begin();
3037   LLT MemTy = MMO.getMemoryType();
3038 
3039   unsigned StoreWidth = MemTy.getSizeInBits();
3040   unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes();
3041 
3042   if (StoreWidth != StoreSizeInBits) {
3043     if (SrcTy.isVector())
3044       return UnableToLegalize;
3045 
3046     // Promote to a byte-sized store with upper bits zero if not
3047     // storing an integral number of bytes.  For example, promote
3048     // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
3049     LLT WideTy = LLT::scalar(StoreSizeInBits);
3050 
3051     if (StoreSizeInBits > SrcTy.getSizeInBits()) {
3052       // Avoid creating a store with a narrower source than result.
3053       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
3054       SrcTy = WideTy;
3055     }
3056 
3057     auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth);
3058 
3059     MachineMemOperand *NewMMO =
3060         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy);
3061     MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO);
3062     StoreMI.eraseFromParent();
3063     return Legalized;
3064   }
3065 
3066   if (MemTy.isVector()) {
3067     // TODO: Handle vector trunc stores
3068     if (MemTy != SrcTy)
3069       return UnableToLegalize;
3070 
3071     // TODO: We can do better than scalarizing the vector and at least split it
3072     // in half.
3073     return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType());
3074   }
3075 
3076   unsigned MemSizeInBits = MemTy.getSizeInBits();
3077   uint64_t LargeSplitSize, SmallSplitSize;
3078 
3079   if (!isPowerOf2_32(MemSizeInBits)) {
3080     LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits());
3081     SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize;
3082   } else {
3083     auto &Ctx = MF.getFunction().getContext();
3084     if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
3085       return UnableToLegalize; // Don't know what we're being asked to do.
3086 
3087     SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
3088   }
3089 
3090   // Extend to the next pow-2. If this store was itself the result of lowering,
3091   // e.g. an s56 store being broken into s32 + s24, we might have a stored type
3092   // that's wider than the stored size.
3093   unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits());
3094   const LLT NewSrcTy = LLT::scalar(AnyExtSize);
3095 
3096   if (SrcTy.isPointer()) {
3097     const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits());
3098     SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0);
3099   }
3100 
3101   auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg);
3102 
3103   // Obtain the smaller value by shifting away the larger value.
3104   auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize);
3105   auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt);
3106 
3107   // Generate the PtrAdd and truncating stores.
3108   LLT PtrTy = MRI.getType(PtrReg);
3109   auto OffsetCst = MIRBuilder.buildConstant(
3110     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
3111   auto SmallPtr =
3112     MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst);
3113 
3114   MachineMemOperand *LargeMMO =
3115     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
3116   MachineMemOperand *SmallMMO =
3117     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
3118   MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO);
3119   MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO);
3120   StoreMI.eraseFromParent();
3121   return Legalized;
3122 }
3123 
3124 LegalizerHelper::LegalizeResult
3125 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
3126   switch (MI.getOpcode()) {
3127   case TargetOpcode::G_LOAD: {
3128     if (TypeIdx != 0)
3129       return UnableToLegalize;
3130     MachineMemOperand &MMO = **MI.memoperands_begin();
3131 
3132     // Not sure how to interpret a bitcast of an extending load.
3133     if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3134       return UnableToLegalize;
3135 
3136     Observer.changingInstr(MI);
3137     bitcastDst(MI, CastTy, 0);
3138     MMO.setType(CastTy);
3139     Observer.changedInstr(MI);
3140     return Legalized;
3141   }
3142   case TargetOpcode::G_STORE: {
3143     if (TypeIdx != 0)
3144       return UnableToLegalize;
3145 
3146     MachineMemOperand &MMO = **MI.memoperands_begin();
3147 
3148     // Not sure how to interpret a bitcast of a truncating store.
3149     if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3150       return UnableToLegalize;
3151 
3152     Observer.changingInstr(MI);
3153     bitcastSrc(MI, CastTy, 0);
3154     MMO.setType(CastTy);
3155     Observer.changedInstr(MI);
3156     return Legalized;
3157   }
3158   case TargetOpcode::G_SELECT: {
3159     if (TypeIdx != 0)
3160       return UnableToLegalize;
3161 
3162     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
3163       LLVM_DEBUG(
3164           dbgs() << "bitcast action not implemented for vector select\n");
3165       return UnableToLegalize;
3166     }
3167 
3168     Observer.changingInstr(MI);
3169     bitcastSrc(MI, CastTy, 2);
3170     bitcastSrc(MI, CastTy, 3);
3171     bitcastDst(MI, CastTy, 0);
3172     Observer.changedInstr(MI);
3173     return Legalized;
3174   }
3175   case TargetOpcode::G_AND:
3176   case TargetOpcode::G_OR:
3177   case TargetOpcode::G_XOR: {
3178     Observer.changingInstr(MI);
3179     bitcastSrc(MI, CastTy, 1);
3180     bitcastSrc(MI, CastTy, 2);
3181     bitcastDst(MI, CastTy, 0);
3182     Observer.changedInstr(MI);
3183     return Legalized;
3184   }
3185   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
3186     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
3187   case TargetOpcode::G_INSERT_VECTOR_ELT:
3188     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
3189   default:
3190     return UnableToLegalize;
3191   }
3192 }
3193 
3194 // Legalize an instruction by changing the opcode in place.
3195 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
3196     Observer.changingInstr(MI);
3197     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
3198     Observer.changedInstr(MI);
3199 }
3200 
3201 LegalizerHelper::LegalizeResult
3202 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
3203   using namespace TargetOpcode;
3204 
3205   switch(MI.getOpcode()) {
3206   default:
3207     return UnableToLegalize;
3208   case TargetOpcode::G_BITCAST:
3209     return lowerBitcast(MI);
3210   case TargetOpcode::G_SREM:
3211   case TargetOpcode::G_UREM: {
3212     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3213     auto Quot =
3214         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
3215                               {MI.getOperand(1), MI.getOperand(2)});
3216 
3217     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
3218     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
3219     MI.eraseFromParent();
3220     return Legalized;
3221   }
3222   case TargetOpcode::G_SADDO:
3223   case TargetOpcode::G_SSUBO:
3224     return lowerSADDO_SSUBO(MI);
3225   case TargetOpcode::G_UMULH:
3226   case TargetOpcode::G_SMULH:
3227     return lowerSMULH_UMULH(MI);
3228   case TargetOpcode::G_SMULO:
3229   case TargetOpcode::G_UMULO: {
3230     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
3231     // result.
3232     Register Res = MI.getOperand(0).getReg();
3233     Register Overflow = MI.getOperand(1).getReg();
3234     Register LHS = MI.getOperand(2).getReg();
3235     Register RHS = MI.getOperand(3).getReg();
3236     LLT Ty = MRI.getType(Res);
3237 
3238     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
3239                           ? TargetOpcode::G_SMULH
3240                           : TargetOpcode::G_UMULH;
3241 
3242     Observer.changingInstr(MI);
3243     const auto &TII = MIRBuilder.getTII();
3244     MI.setDesc(TII.get(TargetOpcode::G_MUL));
3245     MI.RemoveOperand(1);
3246     Observer.changedInstr(MI);
3247 
3248     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
3249     auto Zero = MIRBuilder.buildConstant(Ty, 0);
3250 
3251     // Move insert point forward so we can use the Res register if needed.
3252     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
3253 
3254     // For *signed* multiply, overflow is detected by checking:
3255     // (hi != (lo >> bitwidth-1))
3256     if (Opcode == TargetOpcode::G_SMULH) {
3257       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
3258       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
3259       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
3260     } else {
3261       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
3262     }
3263     return Legalized;
3264   }
3265   case TargetOpcode::G_FNEG: {
3266     Register Res = MI.getOperand(0).getReg();
3267     LLT Ty = MRI.getType(Res);
3268 
3269     // TODO: Handle vector types once we are able to
3270     // represent them.
3271     if (Ty.isVector())
3272       return UnableToLegalize;
3273     auto SignMask =
3274         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
3275     Register SubByReg = MI.getOperand(1).getReg();
3276     MIRBuilder.buildXor(Res, SubByReg, SignMask);
3277     MI.eraseFromParent();
3278     return Legalized;
3279   }
3280   case TargetOpcode::G_FSUB: {
3281     Register Res = MI.getOperand(0).getReg();
3282     LLT Ty = MRI.getType(Res);
3283 
3284     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3285     // First, check if G_FNEG is marked as Lower. If so, we may
3286     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3287     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3288       return UnableToLegalize;
3289     Register LHS = MI.getOperand(1).getReg();
3290     Register RHS = MI.getOperand(2).getReg();
3291     Register Neg = MRI.createGenericVirtualRegister(Ty);
3292     MIRBuilder.buildFNeg(Neg, RHS);
3293     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3294     MI.eraseFromParent();
3295     return Legalized;
3296   }
3297   case TargetOpcode::G_FMAD:
3298     return lowerFMad(MI);
3299   case TargetOpcode::G_FFLOOR:
3300     return lowerFFloor(MI);
3301   case TargetOpcode::G_INTRINSIC_ROUND:
3302     return lowerIntrinsicRound(MI);
3303   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3304     // Since round even is the assumed rounding mode for unconstrained FP
3305     // operations, rint and roundeven are the same operation.
3306     changeOpcode(MI, TargetOpcode::G_FRINT);
3307     return Legalized;
3308   }
3309   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3310     Register OldValRes = MI.getOperand(0).getReg();
3311     Register SuccessRes = MI.getOperand(1).getReg();
3312     Register Addr = MI.getOperand(2).getReg();
3313     Register CmpVal = MI.getOperand(3).getReg();
3314     Register NewVal = MI.getOperand(4).getReg();
3315     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3316                                   **MI.memoperands_begin());
3317     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3318     MI.eraseFromParent();
3319     return Legalized;
3320   }
3321   case TargetOpcode::G_LOAD:
3322   case TargetOpcode::G_SEXTLOAD:
3323   case TargetOpcode::G_ZEXTLOAD:
3324     return lowerLoad(cast<GAnyLoad>(MI));
3325   case TargetOpcode::G_STORE:
3326     return lowerStore(cast<GStore>(MI));
3327   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3328   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3329   case TargetOpcode::G_CTLZ:
3330   case TargetOpcode::G_CTTZ:
3331   case TargetOpcode::G_CTPOP:
3332     return lowerBitCount(MI);
3333   case G_UADDO: {
3334     Register Res = MI.getOperand(0).getReg();
3335     Register CarryOut = MI.getOperand(1).getReg();
3336     Register LHS = MI.getOperand(2).getReg();
3337     Register RHS = MI.getOperand(3).getReg();
3338 
3339     MIRBuilder.buildAdd(Res, LHS, RHS);
3340     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3341 
3342     MI.eraseFromParent();
3343     return Legalized;
3344   }
3345   case G_UADDE: {
3346     Register Res = MI.getOperand(0).getReg();
3347     Register CarryOut = MI.getOperand(1).getReg();
3348     Register LHS = MI.getOperand(2).getReg();
3349     Register RHS = MI.getOperand(3).getReg();
3350     Register CarryIn = MI.getOperand(4).getReg();
3351     LLT Ty = MRI.getType(Res);
3352 
3353     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3354     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3355     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3356     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3357 
3358     MI.eraseFromParent();
3359     return Legalized;
3360   }
3361   case G_USUBO: {
3362     Register Res = MI.getOperand(0).getReg();
3363     Register BorrowOut = MI.getOperand(1).getReg();
3364     Register LHS = MI.getOperand(2).getReg();
3365     Register RHS = MI.getOperand(3).getReg();
3366 
3367     MIRBuilder.buildSub(Res, LHS, RHS);
3368     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3369 
3370     MI.eraseFromParent();
3371     return Legalized;
3372   }
3373   case G_USUBE: {
3374     Register Res = MI.getOperand(0).getReg();
3375     Register BorrowOut = MI.getOperand(1).getReg();
3376     Register LHS = MI.getOperand(2).getReg();
3377     Register RHS = MI.getOperand(3).getReg();
3378     Register BorrowIn = MI.getOperand(4).getReg();
3379     const LLT CondTy = MRI.getType(BorrowOut);
3380     const LLT Ty = MRI.getType(Res);
3381 
3382     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3383     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3384     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3385 
3386     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3387     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3388     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3389 
3390     MI.eraseFromParent();
3391     return Legalized;
3392   }
3393   case G_UITOFP:
3394     return lowerUITOFP(MI);
3395   case G_SITOFP:
3396     return lowerSITOFP(MI);
3397   case G_FPTOUI:
3398     return lowerFPTOUI(MI);
3399   case G_FPTOSI:
3400     return lowerFPTOSI(MI);
3401   case G_FPTRUNC:
3402     return lowerFPTRUNC(MI);
3403   case G_FPOWI:
3404     return lowerFPOWI(MI);
3405   case G_SMIN:
3406   case G_SMAX:
3407   case G_UMIN:
3408   case G_UMAX:
3409     return lowerMinMax(MI);
3410   case G_FCOPYSIGN:
3411     return lowerFCopySign(MI);
3412   case G_FMINNUM:
3413   case G_FMAXNUM:
3414     return lowerFMinNumMaxNum(MI);
3415   case G_MERGE_VALUES:
3416     return lowerMergeValues(MI);
3417   case G_UNMERGE_VALUES:
3418     return lowerUnmergeValues(MI);
3419   case TargetOpcode::G_SEXT_INREG: {
3420     assert(MI.getOperand(2).isImm() && "Expected immediate");
3421     int64_t SizeInBits = MI.getOperand(2).getImm();
3422 
3423     Register DstReg = MI.getOperand(0).getReg();
3424     Register SrcReg = MI.getOperand(1).getReg();
3425     LLT DstTy = MRI.getType(DstReg);
3426     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3427 
3428     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3429     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3430     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3431     MI.eraseFromParent();
3432     return Legalized;
3433   }
3434   case G_EXTRACT_VECTOR_ELT:
3435   case G_INSERT_VECTOR_ELT:
3436     return lowerExtractInsertVectorElt(MI);
3437   case G_SHUFFLE_VECTOR:
3438     return lowerShuffleVector(MI);
3439   case G_DYN_STACKALLOC:
3440     return lowerDynStackAlloc(MI);
3441   case G_EXTRACT:
3442     return lowerExtract(MI);
3443   case G_INSERT:
3444     return lowerInsert(MI);
3445   case G_BSWAP:
3446     return lowerBswap(MI);
3447   case G_BITREVERSE:
3448     return lowerBitreverse(MI);
3449   case G_READ_REGISTER:
3450   case G_WRITE_REGISTER:
3451     return lowerReadWriteRegister(MI);
3452   case G_UADDSAT:
3453   case G_USUBSAT: {
3454     // Try to make a reasonable guess about which lowering strategy to use. The
3455     // target can override this with custom lowering and calling the
3456     // implementation functions.
3457     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3458     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3459       return lowerAddSubSatToMinMax(MI);
3460     return lowerAddSubSatToAddoSubo(MI);
3461   }
3462   case G_SADDSAT:
3463   case G_SSUBSAT: {
3464     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3465 
3466     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3467     // since it's a shorter expansion. However, we would need to figure out the
3468     // preferred boolean type for the carry out for the query.
3469     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3470       return lowerAddSubSatToMinMax(MI);
3471     return lowerAddSubSatToAddoSubo(MI);
3472   }
3473   case G_SSHLSAT:
3474   case G_USHLSAT:
3475     return lowerShlSat(MI);
3476   case G_ABS:
3477     return lowerAbsToAddXor(MI);
3478   case G_SELECT:
3479     return lowerSelect(MI);
3480   case G_SDIVREM:
3481   case G_UDIVREM:
3482     return lowerDIVREM(MI);
3483   case G_FSHL:
3484   case G_FSHR:
3485     return lowerFunnelShift(MI);
3486   case G_ROTL:
3487   case G_ROTR:
3488     return lowerRotate(MI);
3489   }
3490 }
3491 
3492 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3493                                                   Align MinAlign) const {
3494   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3495   // datalayout for the preferred alignment. Also there should be a target hook
3496   // for this to allow targets to reduce the alignment and ignore the
3497   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3498   // the type.
3499   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3500 }
3501 
3502 MachineInstrBuilder
3503 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3504                                       MachinePointerInfo &PtrInfo) {
3505   MachineFunction &MF = MIRBuilder.getMF();
3506   const DataLayout &DL = MIRBuilder.getDataLayout();
3507   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3508 
3509   unsigned AddrSpace = DL.getAllocaAddrSpace();
3510   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3511 
3512   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3513   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3514 }
3515 
3516 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3517                                         LLT VecTy) {
3518   int64_t IdxVal;
3519   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3520     return IdxReg;
3521 
3522   LLT IdxTy = B.getMRI()->getType(IdxReg);
3523   unsigned NElts = VecTy.getNumElements();
3524   if (isPowerOf2_32(NElts)) {
3525     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3526     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3527   }
3528 
3529   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3530       .getReg(0);
3531 }
3532 
3533 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3534                                                   Register Index) {
3535   LLT EltTy = VecTy.getElementType();
3536 
3537   // Calculate the element offset and add it to the pointer.
3538   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3539   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3540          "Converting bits to bytes lost precision");
3541 
3542   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3543 
3544   LLT IdxTy = MRI.getType(Index);
3545   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3546                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3547 
3548   LLT PtrTy = MRI.getType(VecPtr);
3549   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3550 }
3551 
3552 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3553     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3554   Register DstReg = MI.getOperand(0).getReg();
3555   LLT DstTy = MRI.getType(DstReg);
3556   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3557 
3558   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3559 
3560   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3561   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3562 
3563   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3564   MI.eraseFromParent();
3565   return Legalized;
3566 }
3567 
3568 // Handle splitting vector operations which need to have the same number of
3569 // elements in each type index, but each type index may have a different element
3570 // type.
3571 //
3572 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3573 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3574 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3575 //
3576 // Also handles some irregular breakdown cases, e.g.
3577 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3578 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3579 //             s64 = G_SHL s64, s32
3580 LegalizerHelper::LegalizeResult
3581 LegalizerHelper::fewerElementsVectorMultiEltType(
3582   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3583   if (TypeIdx != 0)
3584     return UnableToLegalize;
3585 
3586   const LLT NarrowTy0 = NarrowTyArg;
3587   const Register DstReg = MI.getOperand(0).getReg();
3588   LLT DstTy = MRI.getType(DstReg);
3589   LLT LeftoverTy0;
3590 
3591   // All of the operands need to have the same number of elements, so if we can
3592   // determine a type breakdown for the result type, we can for all of the
3593   // source types.
3594   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3595   if (NumParts < 0)
3596     return UnableToLegalize;
3597 
3598   SmallVector<MachineInstrBuilder, 4> NewInsts;
3599 
3600   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3601   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3602 
3603   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3604     Register SrcReg = MI.getOperand(I).getReg();
3605     LLT SrcTyI = MRI.getType(SrcReg);
3606     const auto NewEC = NarrowTy0.isVector() ? NarrowTy0.getElementCount()
3607                                             : ElementCount::getFixed(1);
3608     LLT NarrowTyI = LLT::scalarOrVector(NewEC, SrcTyI.getScalarType());
3609     LLT LeftoverTyI;
3610 
3611     // Split this operand into the requested typed registers, and any leftover
3612     // required to reproduce the original type.
3613     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3614                       LeftoverRegs))
3615       return UnableToLegalize;
3616 
3617     if (I == 1) {
3618       // For the first operand, create an instruction for each part and setup
3619       // the result.
3620       for (Register PartReg : PartRegs) {
3621         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3622         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3623                                .addDef(PartDstReg)
3624                                .addUse(PartReg));
3625         DstRegs.push_back(PartDstReg);
3626       }
3627 
3628       for (Register LeftoverReg : LeftoverRegs) {
3629         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3630         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3631                                .addDef(PartDstReg)
3632                                .addUse(LeftoverReg));
3633         LeftoverDstRegs.push_back(PartDstReg);
3634       }
3635     } else {
3636       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3637 
3638       // Add the newly created operand splits to the existing instructions. The
3639       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3640       // pieces.
3641       unsigned InstCount = 0;
3642       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3643         NewInsts[InstCount++].addUse(PartRegs[J]);
3644       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3645         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3646     }
3647 
3648     PartRegs.clear();
3649     LeftoverRegs.clear();
3650   }
3651 
3652   // Insert the newly built operations and rebuild the result register.
3653   for (auto &MIB : NewInsts)
3654     MIRBuilder.insertInstr(MIB);
3655 
3656   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3657 
3658   MI.eraseFromParent();
3659   return Legalized;
3660 }
3661 
3662 LegalizerHelper::LegalizeResult
3663 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3664                                           LLT NarrowTy) {
3665   if (TypeIdx != 0)
3666     return UnableToLegalize;
3667 
3668   Register DstReg = MI.getOperand(0).getReg();
3669   Register SrcReg = MI.getOperand(1).getReg();
3670   LLT DstTy = MRI.getType(DstReg);
3671   LLT SrcTy = MRI.getType(SrcReg);
3672 
3673   LLT NarrowTy0 = NarrowTy;
3674   LLT NarrowTy1;
3675   unsigned NumParts;
3676 
3677   if (NarrowTy.isVector()) {
3678     // Uneven breakdown not handled.
3679     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3680     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3681       return UnableToLegalize;
3682 
3683     NarrowTy1 = LLT::vector(NarrowTy.getElementCount(), SrcTy.getElementType());
3684   } else {
3685     NumParts = DstTy.getNumElements();
3686     NarrowTy1 = SrcTy.getElementType();
3687   }
3688 
3689   SmallVector<Register, 4> SrcRegs, DstRegs;
3690   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3691 
3692   for (unsigned I = 0; I < NumParts; ++I) {
3693     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3694     MachineInstr *NewInst =
3695         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3696 
3697     NewInst->setFlags(MI.getFlags());
3698     DstRegs.push_back(DstReg);
3699   }
3700 
3701   if (NarrowTy.isVector())
3702     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3703   else
3704     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3705 
3706   MI.eraseFromParent();
3707   return Legalized;
3708 }
3709 
3710 LegalizerHelper::LegalizeResult
3711 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3712                                         LLT NarrowTy) {
3713   Register DstReg = MI.getOperand(0).getReg();
3714   Register Src0Reg = MI.getOperand(2).getReg();
3715   LLT DstTy = MRI.getType(DstReg);
3716   LLT SrcTy = MRI.getType(Src0Reg);
3717 
3718   unsigned NumParts;
3719   LLT NarrowTy0, NarrowTy1;
3720 
3721   if (TypeIdx == 0) {
3722     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3723     unsigned OldElts = DstTy.getNumElements();
3724 
3725     NarrowTy0 = NarrowTy;
3726     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3727     NarrowTy1 = NarrowTy.isVector() ? LLT::vector(NarrowTy.getElementCount(),
3728                                                   SrcTy.getScalarSizeInBits())
3729                                     : SrcTy.getElementType();
3730 
3731   } else {
3732     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3733     unsigned OldElts = SrcTy.getNumElements();
3734 
3735     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3736       NarrowTy.getNumElements();
3737     NarrowTy0 =
3738         LLT::vector(NarrowTy.getElementCount(), DstTy.getScalarSizeInBits());
3739     NarrowTy1 = NarrowTy;
3740   }
3741 
3742   // FIXME: Don't know how to handle the situation where the small vectors
3743   // aren't all the same size yet.
3744   if (NarrowTy1.isVector() &&
3745       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3746     return UnableToLegalize;
3747 
3748   CmpInst::Predicate Pred
3749     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3750 
3751   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3752   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3753   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3754 
3755   for (unsigned I = 0; I < NumParts; ++I) {
3756     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3757     DstRegs.push_back(DstReg);
3758 
3759     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3760       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3761     else {
3762       MachineInstr *NewCmp
3763         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3764       NewCmp->setFlags(MI.getFlags());
3765     }
3766   }
3767 
3768   if (NarrowTy1.isVector())
3769     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3770   else
3771     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3772 
3773   MI.eraseFromParent();
3774   return Legalized;
3775 }
3776 
3777 LegalizerHelper::LegalizeResult
3778 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3779                                            LLT NarrowTy) {
3780   Register DstReg = MI.getOperand(0).getReg();
3781   Register CondReg = MI.getOperand(1).getReg();
3782 
3783   unsigned NumParts = 0;
3784   LLT NarrowTy0, NarrowTy1;
3785 
3786   LLT DstTy = MRI.getType(DstReg);
3787   LLT CondTy = MRI.getType(CondReg);
3788   unsigned Size = DstTy.getSizeInBits();
3789 
3790   assert(TypeIdx == 0 || CondTy.isVector());
3791 
3792   if (TypeIdx == 0) {
3793     NarrowTy0 = NarrowTy;
3794     NarrowTy1 = CondTy;
3795 
3796     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3797     // FIXME: Don't know how to handle the situation where the small vectors
3798     // aren't all the same size yet.
3799     if (Size % NarrowSize != 0)
3800       return UnableToLegalize;
3801 
3802     NumParts = Size / NarrowSize;
3803 
3804     // Need to break down the condition type
3805     if (CondTy.isVector()) {
3806       if (CondTy.getNumElements() == NumParts)
3807         NarrowTy1 = CondTy.getElementType();
3808       else
3809         NarrowTy1 =
3810             LLT::vector(CondTy.getElementCount().divideCoefficientBy(NumParts),
3811                         CondTy.getScalarSizeInBits());
3812     }
3813   } else {
3814     NumParts = CondTy.getNumElements();
3815     if (NarrowTy.isVector()) {
3816       // TODO: Handle uneven breakdown.
3817       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3818         return UnableToLegalize;
3819 
3820       return UnableToLegalize;
3821     } else {
3822       NarrowTy0 = DstTy.getElementType();
3823       NarrowTy1 = NarrowTy;
3824     }
3825   }
3826 
3827   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3828   if (CondTy.isVector())
3829     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3830 
3831   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3832   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3833 
3834   for (unsigned i = 0; i < NumParts; ++i) {
3835     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3836     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3837                            Src1Regs[i], Src2Regs[i]);
3838     DstRegs.push_back(DstReg);
3839   }
3840 
3841   if (NarrowTy0.isVector())
3842     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3843   else
3844     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3845 
3846   MI.eraseFromParent();
3847   return Legalized;
3848 }
3849 
3850 LegalizerHelper::LegalizeResult
3851 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3852                                         LLT NarrowTy) {
3853   const Register DstReg = MI.getOperand(0).getReg();
3854   LLT PhiTy = MRI.getType(DstReg);
3855   LLT LeftoverTy;
3856 
3857   // All of the operands need to have the same number of elements, so if we can
3858   // determine a type breakdown for the result type, we can for all of the
3859   // source types.
3860   int NumParts, NumLeftover;
3861   std::tie(NumParts, NumLeftover)
3862     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3863   if (NumParts < 0)
3864     return UnableToLegalize;
3865 
3866   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3867   SmallVector<MachineInstrBuilder, 4> NewInsts;
3868 
3869   const int TotalNumParts = NumParts + NumLeftover;
3870 
3871   // Insert the new phis in the result block first.
3872   for (int I = 0; I != TotalNumParts; ++I) {
3873     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3874     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3875     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3876                        .addDef(PartDstReg));
3877     if (I < NumParts)
3878       DstRegs.push_back(PartDstReg);
3879     else
3880       LeftoverDstRegs.push_back(PartDstReg);
3881   }
3882 
3883   MachineBasicBlock *MBB = MI.getParent();
3884   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3885   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3886 
3887   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3888 
3889   // Insert code to extract the incoming values in each predecessor block.
3890   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3891     PartRegs.clear();
3892     LeftoverRegs.clear();
3893 
3894     Register SrcReg = MI.getOperand(I).getReg();
3895     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3896     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3897 
3898     LLT Unused;
3899     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3900                       LeftoverRegs))
3901       return UnableToLegalize;
3902 
3903     // Add the newly created operand splits to the existing instructions. The
3904     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3905     // pieces.
3906     for (int J = 0; J != TotalNumParts; ++J) {
3907       MachineInstrBuilder MIB = NewInsts[J];
3908       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3909       MIB.addMBB(&OpMBB);
3910     }
3911   }
3912 
3913   MI.eraseFromParent();
3914   return Legalized;
3915 }
3916 
3917 LegalizerHelper::LegalizeResult
3918 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3919                                                   unsigned TypeIdx,
3920                                                   LLT NarrowTy) {
3921   if (TypeIdx != 1)
3922     return UnableToLegalize;
3923 
3924   const int NumDst = MI.getNumOperands() - 1;
3925   const Register SrcReg = MI.getOperand(NumDst).getReg();
3926   LLT SrcTy = MRI.getType(SrcReg);
3927 
3928   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3929 
3930   // TODO: Create sequence of extracts.
3931   if (DstTy == NarrowTy)
3932     return UnableToLegalize;
3933 
3934   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3935   if (DstTy == GCDTy) {
3936     // This would just be a copy of the same unmerge.
3937     // TODO: Create extracts, pad with undef and create intermediate merges.
3938     return UnableToLegalize;
3939   }
3940 
3941   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3942   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3943   const int PartsPerUnmerge = NumDst / NumUnmerge;
3944 
3945   for (int I = 0; I != NumUnmerge; ++I) {
3946     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3947 
3948     for (int J = 0; J != PartsPerUnmerge; ++J)
3949       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3950     MIB.addUse(Unmerge.getReg(I));
3951   }
3952 
3953   MI.eraseFromParent();
3954   return Legalized;
3955 }
3956 
3957 LegalizerHelper::LegalizeResult
3958 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx,
3959                                          LLT NarrowTy) {
3960   Register Result = MI.getOperand(0).getReg();
3961   Register Overflow = MI.getOperand(1).getReg();
3962   Register LHS = MI.getOperand(2).getReg();
3963   Register RHS = MI.getOperand(3).getReg();
3964 
3965   LLT SrcTy = MRI.getType(LHS);
3966   if (!SrcTy.isVector())
3967     return UnableToLegalize;
3968 
3969   LLT ElementType = SrcTy.getElementType();
3970   LLT OverflowElementTy = MRI.getType(Overflow).getElementType();
3971   const ElementCount NumResult = SrcTy.getElementCount();
3972   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3973 
3974   // Unmerge the operands to smaller parts of GCD type.
3975   auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS);
3976   auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS);
3977 
3978   const int NumOps = UnmergeLHS->getNumOperands() - 1;
3979   const ElementCount PartsPerUnmerge = NumResult.divideCoefficientBy(NumOps);
3980   LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy);
3981   LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType);
3982 
3983   // Perform the operation over unmerged parts.
3984   SmallVector<Register, 8> ResultParts;
3985   SmallVector<Register, 8> OverflowParts;
3986   for (int I = 0; I != NumOps; ++I) {
3987     Register Operand1 = UnmergeLHS->getOperand(I).getReg();
3988     Register Operand2 = UnmergeRHS->getOperand(I).getReg();
3989     auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy},
3990                                          {Operand1, Operand2});
3991     ResultParts.push_back(PartMul->getOperand(0).getReg());
3992     OverflowParts.push_back(PartMul->getOperand(1).getReg());
3993   }
3994 
3995   LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts);
3996   LLT OverflowLCMTy =
3997       LLT::scalarOrVector(ResultLCMTy.getElementCount(), OverflowElementTy);
3998 
3999   // Recombine the pieces to the original result and overflow registers.
4000   buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts);
4001   buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts);
4002   MI.eraseFromParent();
4003   return Legalized;
4004 }
4005 
4006 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
4007 // a vector
4008 //
4009 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
4010 // undef as necessary.
4011 //
4012 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
4013 //   -> <2 x s16>
4014 //
4015 // %4:_(s16) = G_IMPLICIT_DEF
4016 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
4017 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
4018 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
4019 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
4020 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
4021 LegalizerHelper::LegalizeResult
4022 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
4023                                           LLT NarrowTy) {
4024   Register DstReg = MI.getOperand(0).getReg();
4025   LLT DstTy = MRI.getType(DstReg);
4026   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4027   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
4028 
4029   // Break into a common type
4030   SmallVector<Register, 16> Parts;
4031   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
4032     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
4033 
4034   // Build the requested new merge, padding with undef.
4035   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
4036                                   TargetOpcode::G_ANYEXT);
4037 
4038   // Pack into the original result register.
4039   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4040 
4041   MI.eraseFromParent();
4042   return Legalized;
4043 }
4044 
4045 LegalizerHelper::LegalizeResult
4046 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
4047                                                            unsigned TypeIdx,
4048                                                            LLT NarrowVecTy) {
4049   Register DstReg = MI.getOperand(0).getReg();
4050   Register SrcVec = MI.getOperand(1).getReg();
4051   Register InsertVal;
4052   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
4053 
4054   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
4055   if (IsInsert)
4056     InsertVal = MI.getOperand(2).getReg();
4057 
4058   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
4059 
4060   // TODO: Handle total scalarization case.
4061   if (!NarrowVecTy.isVector())
4062     return UnableToLegalize;
4063 
4064   LLT VecTy = MRI.getType(SrcVec);
4065 
4066   // If the index is a constant, we can really break this down as you would
4067   // expect, and index into the target size pieces.
4068   int64_t IdxVal;
4069   auto MaybeCst =
4070       getConstantVRegValWithLookThrough(Idx, MRI, /*LookThroughInstrs*/ true,
4071                                         /*HandleFConstants*/ false);
4072   if (MaybeCst) {
4073     IdxVal = MaybeCst->Value.getSExtValue();
4074     // Avoid out of bounds indexing the pieces.
4075     if (IdxVal >= VecTy.getNumElements()) {
4076       MIRBuilder.buildUndef(DstReg);
4077       MI.eraseFromParent();
4078       return Legalized;
4079     }
4080 
4081     SmallVector<Register, 8> VecParts;
4082     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
4083 
4084     // Build a sequence of NarrowTy pieces in VecParts for this operand.
4085     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
4086                                     TargetOpcode::G_ANYEXT);
4087 
4088     unsigned NewNumElts = NarrowVecTy.getNumElements();
4089 
4090     LLT IdxTy = MRI.getType(Idx);
4091     int64_t PartIdx = IdxVal / NewNumElts;
4092     auto NewIdx =
4093         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
4094 
4095     if (IsInsert) {
4096       LLT PartTy = MRI.getType(VecParts[PartIdx]);
4097 
4098       // Use the adjusted index to insert into one of the subvectors.
4099       auto InsertPart = MIRBuilder.buildInsertVectorElement(
4100           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
4101       VecParts[PartIdx] = InsertPart.getReg(0);
4102 
4103       // Recombine the inserted subvector with the others to reform the result
4104       // vector.
4105       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
4106     } else {
4107       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
4108     }
4109 
4110     MI.eraseFromParent();
4111     return Legalized;
4112   }
4113 
4114   // With a variable index, we can't perform the operation in a smaller type, so
4115   // we're forced to expand this.
4116   //
4117   // TODO: We could emit a chain of compare/select to figure out which piece to
4118   // index.
4119   return lowerExtractInsertVectorElt(MI);
4120 }
4121 
4122 LegalizerHelper::LegalizeResult
4123 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx,
4124                                       LLT NarrowTy) {
4125   // FIXME: Don't know how to handle secondary types yet.
4126   if (TypeIdx != 0)
4127     return UnableToLegalize;
4128 
4129   // This implementation doesn't work for atomics. Give up instead of doing
4130   // something invalid.
4131   if (LdStMI.isAtomic())
4132     return UnableToLegalize;
4133 
4134   bool IsLoad = isa<GLoad>(LdStMI);
4135   Register ValReg = LdStMI.getReg(0);
4136   Register AddrReg = LdStMI.getPointerReg();
4137   LLT ValTy = MRI.getType(ValReg);
4138 
4139   // FIXME: Do we need a distinct NarrowMemory legalize action?
4140   if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) {
4141     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
4142     return UnableToLegalize;
4143   }
4144 
4145   int NumParts = -1;
4146   int NumLeftover = -1;
4147   LLT LeftoverTy;
4148   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
4149   if (IsLoad) {
4150     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
4151   } else {
4152     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
4153                      NarrowLeftoverRegs)) {
4154       NumParts = NarrowRegs.size();
4155       NumLeftover = NarrowLeftoverRegs.size();
4156     }
4157   }
4158 
4159   if (NumParts == -1)
4160     return UnableToLegalize;
4161 
4162   LLT PtrTy = MRI.getType(AddrReg);
4163   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
4164 
4165   unsigned TotalSize = ValTy.getSizeInBits();
4166 
4167   // Split the load/store into PartTy sized pieces starting at Offset. If this
4168   // is a load, return the new registers in ValRegs. For a store, each elements
4169   // of ValRegs should be PartTy. Returns the next offset that needs to be
4170   // handled.
4171   auto MMO = LdStMI.getMMO();
4172   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
4173                              unsigned Offset) -> unsigned {
4174     MachineFunction &MF = MIRBuilder.getMF();
4175     unsigned PartSize = PartTy.getSizeInBits();
4176     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
4177          Offset += PartSize, ++Idx) {
4178       unsigned ByteOffset = Offset / 8;
4179       Register NewAddrReg;
4180 
4181       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
4182 
4183       MachineMemOperand *NewMMO =
4184           MF.getMachineMemOperand(&MMO, ByteOffset, PartTy);
4185 
4186       if (IsLoad) {
4187         Register Dst = MRI.createGenericVirtualRegister(PartTy);
4188         ValRegs.push_back(Dst);
4189         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
4190       } else {
4191         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
4192       }
4193     }
4194 
4195     return Offset;
4196   };
4197 
4198   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
4199 
4200   // Handle the rest of the register if this isn't an even type breakdown.
4201   if (LeftoverTy.isValid())
4202     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
4203 
4204   if (IsLoad) {
4205     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
4206                 LeftoverTy, NarrowLeftoverRegs);
4207   }
4208 
4209   LdStMI.eraseFromParent();
4210   return Legalized;
4211 }
4212 
4213 LegalizerHelper::LegalizeResult
4214 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
4215                                       LLT NarrowTy) {
4216   assert(TypeIdx == 0 && "only one type index expected");
4217 
4218   const unsigned Opc = MI.getOpcode();
4219   const int NumDefOps = MI.getNumExplicitDefs();
4220   const int NumSrcOps = MI.getNumOperands() - NumDefOps;
4221   const unsigned Flags = MI.getFlags();
4222   const unsigned NarrowSize = NarrowTy.getSizeInBits();
4223   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
4224 
4225   assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 "
4226                                      "result and 1-3 sources or 2 results and "
4227                                      "1-2 sources");
4228 
4229   SmallVector<Register, 2> DstRegs;
4230   for (int I = 0; I < NumDefOps; ++I)
4231     DstRegs.push_back(MI.getOperand(I).getReg());
4232 
4233   // First of all check whether we are narrowing (changing the element type)
4234   // or reducing the vector elements
4235   const LLT DstTy = MRI.getType(DstRegs[0]);
4236   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
4237 
4238   SmallVector<Register, 8> ExtractedRegs[3];
4239   SmallVector<Register, 8> Parts;
4240 
4241   // Break down all the sources into NarrowTy pieces we can operate on. This may
4242   // involve creating merges to a wider type, padded with undef.
4243   for (int I = 0; I != NumSrcOps; ++I) {
4244     Register SrcReg = MI.getOperand(I + NumDefOps).getReg();
4245     LLT SrcTy = MRI.getType(SrcReg);
4246 
4247     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
4248     // For fewerElements, this is a smaller vector with the same element type.
4249     LLT OpNarrowTy;
4250     if (IsNarrow) {
4251       OpNarrowTy = NarrowScalarTy;
4252 
4253       // In case of narrowing, we need to cast vectors to scalars for this to
4254       // work properly
4255       // FIXME: Can we do without the bitcast here if we're narrowing?
4256       if (SrcTy.isVector()) {
4257         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
4258         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
4259       }
4260     } else {
4261       auto NarrowEC = NarrowTy.isVector() ? NarrowTy.getElementCount()
4262                                           : ElementCount::getFixed(1);
4263       OpNarrowTy = LLT::scalarOrVector(NarrowEC, SrcTy.getScalarType());
4264     }
4265 
4266     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
4267 
4268     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
4269     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
4270                         TargetOpcode::G_ANYEXT);
4271   }
4272 
4273   SmallVector<Register, 8> ResultRegs[2];
4274 
4275   // Input operands for each sub-instruction.
4276   SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register());
4277 
4278   int NumParts = ExtractedRegs[0].size();
4279   const unsigned DstSize = DstTy.getSizeInBits();
4280   const LLT DstScalarTy = LLT::scalar(DstSize);
4281 
4282   // Narrowing needs to use scalar types
4283   LLT DstLCMTy, NarrowDstTy;
4284   if (IsNarrow) {
4285     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
4286     NarrowDstTy = NarrowScalarTy;
4287   } else {
4288     DstLCMTy = getLCMType(DstTy, NarrowTy);
4289     NarrowDstTy = NarrowTy;
4290   }
4291 
4292   // We widened the source registers to satisfy merge/unmerge size
4293   // constraints. We'll have some extra fully undef parts.
4294   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
4295 
4296   for (int I = 0; I != NumRealParts; ++I) {
4297     // Emit this instruction on each of the split pieces.
4298     for (int J = 0; J != NumSrcOps; ++J)
4299       InputRegs[J] = ExtractedRegs[J][I];
4300 
4301     MachineInstrBuilder Inst;
4302     if (NumDefOps == 1)
4303       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
4304     else
4305       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs,
4306                                    Flags);
4307 
4308     for (int J = 0; J != NumDefOps; ++J)
4309       ResultRegs[J].push_back(Inst.getReg(J));
4310   }
4311 
4312   // Fill out the widened result with undef instead of creating instructions
4313   // with undef inputs.
4314   int NumUndefParts = NumParts - NumRealParts;
4315   if (NumUndefParts != 0) {
4316     Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0);
4317     for (int I = 0; I != NumDefOps; ++I)
4318       ResultRegs[I].append(NumUndefParts, Undef);
4319   }
4320 
4321   // Extract the possibly padded result. Use a scratch register if we need to do
4322   // a final bitcast, otherwise use the original result register.
4323   Register MergeDstReg;
4324   for (int I = 0; I != NumDefOps; ++I) {
4325     if (IsNarrow && DstTy.isVector())
4326       MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
4327     else
4328       MergeDstReg = DstRegs[I];
4329 
4330     buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]);
4331 
4332     // Recast to vector if we narrowed a vector
4333     if (IsNarrow && DstTy.isVector())
4334       MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg);
4335   }
4336 
4337   MI.eraseFromParent();
4338   return Legalized;
4339 }
4340 
4341 LegalizerHelper::LegalizeResult
4342 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
4343                                               LLT NarrowTy) {
4344   Register DstReg = MI.getOperand(0).getReg();
4345   Register SrcReg = MI.getOperand(1).getReg();
4346   int64_t Imm = MI.getOperand(2).getImm();
4347 
4348   LLT DstTy = MRI.getType(DstReg);
4349 
4350   SmallVector<Register, 8> Parts;
4351   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4352   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
4353 
4354   for (Register &R : Parts)
4355     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
4356 
4357   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4358 
4359   MI.eraseFromParent();
4360   return Legalized;
4361 }
4362 
4363 LegalizerHelper::LegalizeResult
4364 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4365                                      LLT NarrowTy) {
4366   using namespace TargetOpcode;
4367 
4368   switch (MI.getOpcode()) {
4369   case G_IMPLICIT_DEF:
4370     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
4371   case G_TRUNC:
4372   case G_AND:
4373   case G_OR:
4374   case G_XOR:
4375   case G_ADD:
4376   case G_SUB:
4377   case G_MUL:
4378   case G_PTR_ADD:
4379   case G_SMULH:
4380   case G_UMULH:
4381   case G_FADD:
4382   case G_FMUL:
4383   case G_FSUB:
4384   case G_FNEG:
4385   case G_FABS:
4386   case G_FCANONICALIZE:
4387   case G_FDIV:
4388   case G_FREM:
4389   case G_FMA:
4390   case G_FMAD:
4391   case G_FPOW:
4392   case G_FEXP:
4393   case G_FEXP2:
4394   case G_FLOG:
4395   case G_FLOG2:
4396   case G_FLOG10:
4397   case G_FNEARBYINT:
4398   case G_FCEIL:
4399   case G_FFLOOR:
4400   case G_FRINT:
4401   case G_INTRINSIC_ROUND:
4402   case G_INTRINSIC_ROUNDEVEN:
4403   case G_INTRINSIC_TRUNC:
4404   case G_FCOS:
4405   case G_FSIN:
4406   case G_FSQRT:
4407   case G_BSWAP:
4408   case G_BITREVERSE:
4409   case G_SDIV:
4410   case G_UDIV:
4411   case G_SREM:
4412   case G_UREM:
4413   case G_SDIVREM:
4414   case G_UDIVREM:
4415   case G_SMIN:
4416   case G_SMAX:
4417   case G_UMIN:
4418   case G_UMAX:
4419   case G_ABS:
4420   case G_FMINNUM:
4421   case G_FMAXNUM:
4422   case G_FMINNUM_IEEE:
4423   case G_FMAXNUM_IEEE:
4424   case G_FMINIMUM:
4425   case G_FMAXIMUM:
4426   case G_FSHL:
4427   case G_FSHR:
4428   case G_FREEZE:
4429   case G_SADDSAT:
4430   case G_SSUBSAT:
4431   case G_UADDSAT:
4432   case G_USUBSAT:
4433     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4434   case G_UMULO:
4435   case G_SMULO:
4436     return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy);
4437   case G_SHL:
4438   case G_LSHR:
4439   case G_ASHR:
4440   case G_SSHLSAT:
4441   case G_USHLSAT:
4442   case G_CTLZ:
4443   case G_CTLZ_ZERO_UNDEF:
4444   case G_CTTZ:
4445   case G_CTTZ_ZERO_UNDEF:
4446   case G_CTPOP:
4447   case G_FCOPYSIGN:
4448     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4449   case G_ZEXT:
4450   case G_SEXT:
4451   case G_ANYEXT:
4452   case G_FPEXT:
4453   case G_FPTRUNC:
4454   case G_SITOFP:
4455   case G_UITOFP:
4456   case G_FPTOSI:
4457   case G_FPTOUI:
4458   case G_INTTOPTR:
4459   case G_PTRTOINT:
4460   case G_ADDRSPACE_CAST:
4461     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4462   case G_ICMP:
4463   case G_FCMP:
4464     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4465   case G_SELECT:
4466     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4467   case G_PHI:
4468     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4469   case G_UNMERGE_VALUES:
4470     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4471   case G_BUILD_VECTOR:
4472     assert(TypeIdx == 0 && "not a vector type index");
4473     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4474   case G_CONCAT_VECTORS:
4475     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4476       return UnableToLegalize;
4477     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4478   case G_EXTRACT_VECTOR_ELT:
4479   case G_INSERT_VECTOR_ELT:
4480     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4481   case G_LOAD:
4482   case G_STORE:
4483     return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy);
4484   case G_SEXT_INREG:
4485     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4486   GISEL_VECREDUCE_CASES_NONSEQ
4487     return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4488   case G_SHUFFLE_VECTOR:
4489     return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy);
4490   default:
4491     return UnableToLegalize;
4492   }
4493 }
4494 
4495 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle(
4496     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4497   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
4498   if (TypeIdx != 0)
4499     return UnableToLegalize;
4500 
4501   Register DstReg = MI.getOperand(0).getReg();
4502   Register Src1Reg = MI.getOperand(1).getReg();
4503   Register Src2Reg = MI.getOperand(2).getReg();
4504   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4505   LLT DstTy = MRI.getType(DstReg);
4506   LLT Src1Ty = MRI.getType(Src1Reg);
4507   LLT Src2Ty = MRI.getType(Src2Reg);
4508   // The shuffle should be canonicalized by now.
4509   if (DstTy != Src1Ty)
4510     return UnableToLegalize;
4511   if (DstTy != Src2Ty)
4512     return UnableToLegalize;
4513 
4514   if (!isPowerOf2_32(DstTy.getNumElements()))
4515     return UnableToLegalize;
4516 
4517   // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly.
4518   // Further legalization attempts will be needed to do split further.
4519   NarrowTy =
4520       DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2));
4521   unsigned NewElts = NarrowTy.getNumElements();
4522 
4523   SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs;
4524   extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs);
4525   extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs);
4526   Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0],
4527                         SplitSrc2Regs[1]};
4528 
4529   Register Hi, Lo;
4530 
4531   // If Lo or Hi uses elements from at most two of the four input vectors, then
4532   // express it as a vector shuffle of those two inputs.  Otherwise extract the
4533   // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
4534   SmallVector<int, 16> Ops;
4535   for (unsigned High = 0; High < 2; ++High) {
4536     Register &Output = High ? Hi : Lo;
4537 
4538     // Build a shuffle mask for the output, discovering on the fly which
4539     // input vectors to use as shuffle operands (recorded in InputUsed).
4540     // If building a suitable shuffle vector proves too hard, then bail
4541     // out with useBuildVector set.
4542     unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered.
4543     unsigned FirstMaskIdx = High * NewElts;
4544     bool UseBuildVector = false;
4545     for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4546       // The mask element.  This indexes into the input.
4547       int Idx = Mask[FirstMaskIdx + MaskOffset];
4548 
4549       // The input vector this mask element indexes into.
4550       unsigned Input = (unsigned)Idx / NewElts;
4551 
4552       if (Input >= array_lengthof(Inputs)) {
4553         // The mask element does not index into any input vector.
4554         Ops.push_back(-1);
4555         continue;
4556       }
4557 
4558       // Turn the index into an offset from the start of the input vector.
4559       Idx -= Input * NewElts;
4560 
4561       // Find or create a shuffle vector operand to hold this input.
4562       unsigned OpNo;
4563       for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
4564         if (InputUsed[OpNo] == Input) {
4565           // This input vector is already an operand.
4566           break;
4567         } else if (InputUsed[OpNo] == -1U) {
4568           // Create a new operand for this input vector.
4569           InputUsed[OpNo] = Input;
4570           break;
4571         }
4572       }
4573 
4574       if (OpNo >= array_lengthof(InputUsed)) {
4575         // More than two input vectors used!  Give up on trying to create a
4576         // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
4577         UseBuildVector = true;
4578         break;
4579       }
4580 
4581       // Add the mask index for the new shuffle vector.
4582       Ops.push_back(Idx + OpNo * NewElts);
4583     }
4584 
4585     if (UseBuildVector) {
4586       LLT EltTy = NarrowTy.getElementType();
4587       SmallVector<Register, 16> SVOps;
4588 
4589       // Extract the input elements by hand.
4590       for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4591         // The mask element.  This indexes into the input.
4592         int Idx = Mask[FirstMaskIdx + MaskOffset];
4593 
4594         // The input vector this mask element indexes into.
4595         unsigned Input = (unsigned)Idx / NewElts;
4596 
4597         if (Input >= array_lengthof(Inputs)) {
4598           // The mask element is "undef" or indexes off the end of the input.
4599           SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0));
4600           continue;
4601         }
4602 
4603         // Turn the index into an offset from the start of the input vector.
4604         Idx -= Input * NewElts;
4605 
4606         // Extract the vector element by hand.
4607         SVOps.push_back(MIRBuilder
4608                             .buildExtractVectorElement(
4609                                 EltTy, Inputs[Input],
4610                                 MIRBuilder.buildConstant(LLT::scalar(32), Idx))
4611                             .getReg(0));
4612       }
4613 
4614       // Construct the Lo/Hi output using a G_BUILD_VECTOR.
4615       Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0);
4616     } else if (InputUsed[0] == -1U) {
4617       // No input vectors were used! The result is undefined.
4618       Output = MIRBuilder.buildUndef(NarrowTy).getReg(0);
4619     } else {
4620       Register Op0 = Inputs[InputUsed[0]];
4621       // If only one input was used, use an undefined vector for the other.
4622       Register Op1 = InputUsed[1] == -1U
4623                          ? MIRBuilder.buildUndef(NarrowTy).getReg(0)
4624                          : Inputs[InputUsed[1]];
4625       // At least one input vector was used. Create a new shuffle vector.
4626       Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0);
4627     }
4628 
4629     Ops.clear();
4630   }
4631 
4632   MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi});
4633   MI.eraseFromParent();
4634   return Legalized;
4635 }
4636 
4637 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4638     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4639   unsigned Opc = MI.getOpcode();
4640   assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&
4641          Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
4642          "Sequential reductions not expected");
4643 
4644   if (TypeIdx != 1)
4645     return UnableToLegalize;
4646 
4647   // The semantics of the normal non-sequential reductions allow us to freely
4648   // re-associate the operation.
4649   Register SrcReg = MI.getOperand(1).getReg();
4650   LLT SrcTy = MRI.getType(SrcReg);
4651   Register DstReg = MI.getOperand(0).getReg();
4652   LLT DstTy = MRI.getType(DstReg);
4653 
4654   if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)
4655     return UnableToLegalize;
4656 
4657   SmallVector<Register> SplitSrcs;
4658   const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements();
4659   extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
4660   SmallVector<Register> PartialReductions;
4661   for (unsigned Part = 0; Part < NumParts; ++Part) {
4662     PartialReductions.push_back(
4663         MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
4664   }
4665 
4666   unsigned ScalarOpc;
4667   switch (Opc) {
4668   case TargetOpcode::G_VECREDUCE_FADD:
4669     ScalarOpc = TargetOpcode::G_FADD;
4670     break;
4671   case TargetOpcode::G_VECREDUCE_FMUL:
4672     ScalarOpc = TargetOpcode::G_FMUL;
4673     break;
4674   case TargetOpcode::G_VECREDUCE_FMAX:
4675     ScalarOpc = TargetOpcode::G_FMAXNUM;
4676     break;
4677   case TargetOpcode::G_VECREDUCE_FMIN:
4678     ScalarOpc = TargetOpcode::G_FMINNUM;
4679     break;
4680   case TargetOpcode::G_VECREDUCE_ADD:
4681     ScalarOpc = TargetOpcode::G_ADD;
4682     break;
4683   case TargetOpcode::G_VECREDUCE_MUL:
4684     ScalarOpc = TargetOpcode::G_MUL;
4685     break;
4686   case TargetOpcode::G_VECREDUCE_AND:
4687     ScalarOpc = TargetOpcode::G_AND;
4688     break;
4689   case TargetOpcode::G_VECREDUCE_OR:
4690     ScalarOpc = TargetOpcode::G_OR;
4691     break;
4692   case TargetOpcode::G_VECREDUCE_XOR:
4693     ScalarOpc = TargetOpcode::G_XOR;
4694     break;
4695   case TargetOpcode::G_VECREDUCE_SMAX:
4696     ScalarOpc = TargetOpcode::G_SMAX;
4697     break;
4698   case TargetOpcode::G_VECREDUCE_SMIN:
4699     ScalarOpc = TargetOpcode::G_SMIN;
4700     break;
4701   case TargetOpcode::G_VECREDUCE_UMAX:
4702     ScalarOpc = TargetOpcode::G_UMAX;
4703     break;
4704   case TargetOpcode::G_VECREDUCE_UMIN:
4705     ScalarOpc = TargetOpcode::G_UMIN;
4706     break;
4707   default:
4708     LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n");
4709     return UnableToLegalize;
4710   }
4711 
4712   // If the types involved are powers of 2, we can generate intermediate vector
4713   // ops, before generating a final reduction operation.
4714   if (isPowerOf2_32(SrcTy.getNumElements()) &&
4715       isPowerOf2_32(NarrowTy.getNumElements())) {
4716     return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4717   }
4718 
4719   Register Acc = PartialReductions[0];
4720   for (unsigned Part = 1; Part < NumParts; ++Part) {
4721     if (Part == NumParts - 1) {
4722       MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4723                             {Acc, PartialReductions[Part]});
4724     } else {
4725       Acc = MIRBuilder
4726                 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4727                 .getReg(0);
4728     }
4729   }
4730   MI.eraseFromParent();
4731   return Legalized;
4732 }
4733 
4734 LegalizerHelper::LegalizeResult
4735 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4736                                         LLT SrcTy, LLT NarrowTy,
4737                                         unsigned ScalarOpc) {
4738   SmallVector<Register> SplitSrcs;
4739   // Split the sources into NarrowTy size pieces.
4740   extractParts(SrcReg, NarrowTy,
4741                SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
4742   // We're going to do a tree reduction using vector operations until we have
4743   // one NarrowTy size value left.
4744   while (SplitSrcs.size() > 1) {
4745     SmallVector<Register> PartialRdxs;
4746     for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4747       Register LHS = SplitSrcs[Idx];
4748       Register RHS = SplitSrcs[Idx + 1];
4749       // Create the intermediate vector op.
4750       Register Res =
4751           MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4752       PartialRdxs.push_back(Res);
4753     }
4754     SplitSrcs = std::move(PartialRdxs);
4755   }
4756   // Finally generate the requested NarrowTy based reduction.
4757   Observer.changingInstr(MI);
4758   MI.getOperand(1).setReg(SplitSrcs[0]);
4759   Observer.changedInstr(MI);
4760   return Legalized;
4761 }
4762 
4763 LegalizerHelper::LegalizeResult
4764 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4765                                              const LLT HalfTy, const LLT AmtTy) {
4766 
4767   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4768   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4769   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4770 
4771   if (Amt.isNullValue()) {
4772     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4773     MI.eraseFromParent();
4774     return Legalized;
4775   }
4776 
4777   LLT NVT = HalfTy;
4778   unsigned NVTBits = HalfTy.getSizeInBits();
4779   unsigned VTBits = 2 * NVTBits;
4780 
4781   SrcOp Lo(Register(0)), Hi(Register(0));
4782   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4783     if (Amt.ugt(VTBits)) {
4784       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4785     } else if (Amt.ugt(NVTBits)) {
4786       Lo = MIRBuilder.buildConstant(NVT, 0);
4787       Hi = MIRBuilder.buildShl(NVT, InL,
4788                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4789     } else if (Amt == NVTBits) {
4790       Lo = MIRBuilder.buildConstant(NVT, 0);
4791       Hi = InL;
4792     } else {
4793       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4794       auto OrLHS =
4795           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4796       auto OrRHS = MIRBuilder.buildLShr(
4797           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4798       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4799     }
4800   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4801     if (Amt.ugt(VTBits)) {
4802       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4803     } else if (Amt.ugt(NVTBits)) {
4804       Lo = MIRBuilder.buildLShr(NVT, InH,
4805                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4806       Hi = MIRBuilder.buildConstant(NVT, 0);
4807     } else if (Amt == NVTBits) {
4808       Lo = InH;
4809       Hi = MIRBuilder.buildConstant(NVT, 0);
4810     } else {
4811       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4812 
4813       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4814       auto OrRHS = MIRBuilder.buildShl(
4815           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4816 
4817       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4818       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4819     }
4820   } else {
4821     if (Amt.ugt(VTBits)) {
4822       Hi = Lo = MIRBuilder.buildAShr(
4823           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4824     } else if (Amt.ugt(NVTBits)) {
4825       Lo = MIRBuilder.buildAShr(NVT, InH,
4826                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4827       Hi = MIRBuilder.buildAShr(NVT, InH,
4828                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4829     } else if (Amt == NVTBits) {
4830       Lo = InH;
4831       Hi = MIRBuilder.buildAShr(NVT, InH,
4832                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4833     } else {
4834       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4835 
4836       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4837       auto OrRHS = MIRBuilder.buildShl(
4838           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4839 
4840       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4841       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4842     }
4843   }
4844 
4845   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4846   MI.eraseFromParent();
4847 
4848   return Legalized;
4849 }
4850 
4851 // TODO: Optimize if constant shift amount.
4852 LegalizerHelper::LegalizeResult
4853 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4854                                    LLT RequestedTy) {
4855   if (TypeIdx == 1) {
4856     Observer.changingInstr(MI);
4857     narrowScalarSrc(MI, RequestedTy, 2);
4858     Observer.changedInstr(MI);
4859     return Legalized;
4860   }
4861 
4862   Register DstReg = MI.getOperand(0).getReg();
4863   LLT DstTy = MRI.getType(DstReg);
4864   if (DstTy.isVector())
4865     return UnableToLegalize;
4866 
4867   Register Amt = MI.getOperand(2).getReg();
4868   LLT ShiftAmtTy = MRI.getType(Amt);
4869   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4870   if (DstEltSize % 2 != 0)
4871     return UnableToLegalize;
4872 
4873   // Ignore the input type. We can only go to exactly half the size of the
4874   // input. If that isn't small enough, the resulting pieces will be further
4875   // legalized.
4876   const unsigned NewBitSize = DstEltSize / 2;
4877   const LLT HalfTy = LLT::scalar(NewBitSize);
4878   const LLT CondTy = LLT::scalar(1);
4879 
4880   if (auto VRegAndVal =
4881           getConstantVRegValWithLookThrough(Amt, MRI, true, false)) {
4882     return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy,
4883                                        ShiftAmtTy);
4884   }
4885 
4886   // TODO: Expand with known bits.
4887 
4888   // Handle the fully general expansion by an unknown amount.
4889   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4890 
4891   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4892   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4893   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4894 
4895   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4896   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4897 
4898   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4899   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4900   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4901 
4902   Register ResultRegs[2];
4903   switch (MI.getOpcode()) {
4904   case TargetOpcode::G_SHL: {
4905     // Short: ShAmt < NewBitSize
4906     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4907 
4908     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4909     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4910     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4911 
4912     // Long: ShAmt >= NewBitSize
4913     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4914     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4915 
4916     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4917     auto Hi = MIRBuilder.buildSelect(
4918         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4919 
4920     ResultRegs[0] = Lo.getReg(0);
4921     ResultRegs[1] = Hi.getReg(0);
4922     break;
4923   }
4924   case TargetOpcode::G_LSHR:
4925   case TargetOpcode::G_ASHR: {
4926     // Short: ShAmt < NewBitSize
4927     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4928 
4929     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4930     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4931     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4932 
4933     // Long: ShAmt >= NewBitSize
4934     MachineInstrBuilder HiL;
4935     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4936       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4937     } else {
4938       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4939       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4940     }
4941     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4942                                      {InH, AmtExcess});     // Lo from Hi part.
4943 
4944     auto Lo = MIRBuilder.buildSelect(
4945         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4946 
4947     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4948 
4949     ResultRegs[0] = Lo.getReg(0);
4950     ResultRegs[1] = Hi.getReg(0);
4951     break;
4952   }
4953   default:
4954     llvm_unreachable("not a shift");
4955   }
4956 
4957   MIRBuilder.buildMerge(DstReg, ResultRegs);
4958   MI.eraseFromParent();
4959   return Legalized;
4960 }
4961 
4962 LegalizerHelper::LegalizeResult
4963 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4964                                        LLT MoreTy) {
4965   assert(TypeIdx == 0 && "Expecting only Idx 0");
4966 
4967   Observer.changingInstr(MI);
4968   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4969     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4970     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4971     moreElementsVectorSrc(MI, MoreTy, I);
4972   }
4973 
4974   MachineBasicBlock &MBB = *MI.getParent();
4975   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4976   moreElementsVectorDst(MI, MoreTy, 0);
4977   Observer.changedInstr(MI);
4978   return Legalized;
4979 }
4980 
4981 LegalizerHelper::LegalizeResult
4982 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4983                                     LLT MoreTy) {
4984   unsigned Opc = MI.getOpcode();
4985   switch (Opc) {
4986   case TargetOpcode::G_IMPLICIT_DEF:
4987   case TargetOpcode::G_LOAD: {
4988     if (TypeIdx != 0)
4989       return UnableToLegalize;
4990     Observer.changingInstr(MI);
4991     moreElementsVectorDst(MI, MoreTy, 0);
4992     Observer.changedInstr(MI);
4993     return Legalized;
4994   }
4995   case TargetOpcode::G_STORE:
4996     if (TypeIdx != 0)
4997       return UnableToLegalize;
4998     Observer.changingInstr(MI);
4999     moreElementsVectorSrc(MI, MoreTy, 0);
5000     Observer.changedInstr(MI);
5001     return Legalized;
5002   case TargetOpcode::G_AND:
5003   case TargetOpcode::G_OR:
5004   case TargetOpcode::G_XOR:
5005   case TargetOpcode::G_SMIN:
5006   case TargetOpcode::G_SMAX:
5007   case TargetOpcode::G_UMIN:
5008   case TargetOpcode::G_UMAX:
5009   case TargetOpcode::G_FMINNUM:
5010   case TargetOpcode::G_FMAXNUM:
5011   case TargetOpcode::G_FMINNUM_IEEE:
5012   case TargetOpcode::G_FMAXNUM_IEEE:
5013   case TargetOpcode::G_FMINIMUM:
5014   case TargetOpcode::G_FMAXIMUM: {
5015     Observer.changingInstr(MI);
5016     moreElementsVectorSrc(MI, MoreTy, 1);
5017     moreElementsVectorSrc(MI, MoreTy, 2);
5018     moreElementsVectorDst(MI, MoreTy, 0);
5019     Observer.changedInstr(MI);
5020     return Legalized;
5021   }
5022   case TargetOpcode::G_EXTRACT:
5023     if (TypeIdx != 1)
5024       return UnableToLegalize;
5025     Observer.changingInstr(MI);
5026     moreElementsVectorSrc(MI, MoreTy, 1);
5027     Observer.changedInstr(MI);
5028     return Legalized;
5029   case TargetOpcode::G_INSERT:
5030   case TargetOpcode::G_FREEZE:
5031     if (TypeIdx != 0)
5032       return UnableToLegalize;
5033     Observer.changingInstr(MI);
5034     moreElementsVectorSrc(MI, MoreTy, 1);
5035     moreElementsVectorDst(MI, MoreTy, 0);
5036     Observer.changedInstr(MI);
5037     return Legalized;
5038   case TargetOpcode::G_SELECT:
5039     if (TypeIdx != 0)
5040       return UnableToLegalize;
5041     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
5042       return UnableToLegalize;
5043 
5044     Observer.changingInstr(MI);
5045     moreElementsVectorSrc(MI, MoreTy, 2);
5046     moreElementsVectorSrc(MI, MoreTy, 3);
5047     moreElementsVectorDst(MI, MoreTy, 0);
5048     Observer.changedInstr(MI);
5049     return Legalized;
5050   case TargetOpcode::G_UNMERGE_VALUES: {
5051     if (TypeIdx != 1)
5052       return UnableToLegalize;
5053 
5054     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5055     int NumDst = MI.getNumOperands() - 1;
5056     moreElementsVectorSrc(MI, MoreTy, NumDst);
5057 
5058     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
5059     for (int I = 0; I != NumDst; ++I)
5060       MIB.addDef(MI.getOperand(I).getReg());
5061 
5062     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
5063     for (int I = NumDst; I != NewNumDst; ++I)
5064       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
5065 
5066     MIB.addUse(MI.getOperand(NumDst).getReg());
5067     MI.eraseFromParent();
5068     return Legalized;
5069   }
5070   case TargetOpcode::G_PHI:
5071     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
5072   case TargetOpcode::G_SHUFFLE_VECTOR:
5073     return moreElementsVectorShuffle(MI, TypeIdx, MoreTy);
5074   default:
5075     return UnableToLegalize;
5076   }
5077 }
5078 
5079 LegalizerHelper::LegalizeResult
5080 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI,
5081                                            unsigned int TypeIdx, LLT MoreTy) {
5082   if (TypeIdx != 0)
5083     return UnableToLegalize;
5084 
5085   Register DstReg = MI.getOperand(0).getReg();
5086   Register Src1Reg = MI.getOperand(1).getReg();
5087   Register Src2Reg = MI.getOperand(2).getReg();
5088   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5089   LLT DstTy = MRI.getType(DstReg);
5090   LLT Src1Ty = MRI.getType(Src1Reg);
5091   LLT Src2Ty = MRI.getType(Src2Reg);
5092   unsigned NumElts = DstTy.getNumElements();
5093   unsigned WidenNumElts = MoreTy.getNumElements();
5094 
5095   // Expect a canonicalized shuffle.
5096   if (DstTy != Src1Ty || DstTy != Src2Ty)
5097     return UnableToLegalize;
5098 
5099   moreElementsVectorSrc(MI, MoreTy, 1);
5100   moreElementsVectorSrc(MI, MoreTy, 2);
5101 
5102   // Adjust mask based on new input vector length.
5103   SmallVector<int, 16> NewMask;
5104   for (unsigned I = 0; I != NumElts; ++I) {
5105     int Idx = Mask[I];
5106     if (Idx < static_cast<int>(NumElts))
5107       NewMask.push_back(Idx);
5108     else
5109       NewMask.push_back(Idx - NumElts + WidenNumElts);
5110   }
5111   for (unsigned I = NumElts; I != WidenNumElts; ++I)
5112     NewMask.push_back(-1);
5113   moreElementsVectorDst(MI, MoreTy, 0);
5114   MIRBuilder.setInstrAndDebugLoc(MI);
5115   MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(),
5116                                 MI.getOperand(1).getReg(),
5117                                 MI.getOperand(2).getReg(), NewMask);
5118   MI.eraseFromParent();
5119   return Legalized;
5120 }
5121 
5122 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
5123                                         ArrayRef<Register> Src1Regs,
5124                                         ArrayRef<Register> Src2Regs,
5125                                         LLT NarrowTy) {
5126   MachineIRBuilder &B = MIRBuilder;
5127   unsigned SrcParts = Src1Regs.size();
5128   unsigned DstParts = DstRegs.size();
5129 
5130   unsigned DstIdx = 0; // Low bits of the result.
5131   Register FactorSum =
5132       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
5133   DstRegs[DstIdx] = FactorSum;
5134 
5135   unsigned CarrySumPrevDstIdx;
5136   SmallVector<Register, 4> Factors;
5137 
5138   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
5139     // Collect low parts of muls for DstIdx.
5140     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
5141          i <= std::min(DstIdx, SrcParts - 1); ++i) {
5142       MachineInstrBuilder Mul =
5143           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
5144       Factors.push_back(Mul.getReg(0));
5145     }
5146     // Collect high parts of muls from previous DstIdx.
5147     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
5148          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
5149       MachineInstrBuilder Umulh =
5150           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
5151       Factors.push_back(Umulh.getReg(0));
5152     }
5153     // Add CarrySum from additions calculated for previous DstIdx.
5154     if (DstIdx != 1) {
5155       Factors.push_back(CarrySumPrevDstIdx);
5156     }
5157 
5158     Register CarrySum;
5159     // Add all factors and accumulate all carries into CarrySum.
5160     if (DstIdx != DstParts - 1) {
5161       MachineInstrBuilder Uaddo =
5162           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
5163       FactorSum = Uaddo.getReg(0);
5164       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
5165       for (unsigned i = 2; i < Factors.size(); ++i) {
5166         MachineInstrBuilder Uaddo =
5167             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
5168         FactorSum = Uaddo.getReg(0);
5169         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
5170         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
5171       }
5172     } else {
5173       // Since value for the next index is not calculated, neither is CarrySum.
5174       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
5175       for (unsigned i = 2; i < Factors.size(); ++i)
5176         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
5177     }
5178 
5179     CarrySumPrevDstIdx = CarrySum;
5180     DstRegs[DstIdx] = FactorSum;
5181     Factors.clear();
5182   }
5183 }
5184 
5185 LegalizerHelper::LegalizeResult
5186 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
5187                                     LLT NarrowTy) {
5188   if (TypeIdx != 0)
5189     return UnableToLegalize;
5190 
5191   Register DstReg = MI.getOperand(0).getReg();
5192   LLT DstType = MRI.getType(DstReg);
5193   // FIXME: add support for vector types
5194   if (DstType.isVector())
5195     return UnableToLegalize;
5196 
5197   unsigned Opcode = MI.getOpcode();
5198   unsigned OpO, OpE, OpF;
5199   switch (Opcode) {
5200   case TargetOpcode::G_SADDO:
5201   case TargetOpcode::G_SADDE:
5202   case TargetOpcode::G_UADDO:
5203   case TargetOpcode::G_UADDE:
5204   case TargetOpcode::G_ADD:
5205     OpO = TargetOpcode::G_UADDO;
5206     OpE = TargetOpcode::G_UADDE;
5207     OpF = TargetOpcode::G_UADDE;
5208     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
5209       OpF = TargetOpcode::G_SADDE;
5210     break;
5211   case TargetOpcode::G_SSUBO:
5212   case TargetOpcode::G_SSUBE:
5213   case TargetOpcode::G_USUBO:
5214   case TargetOpcode::G_USUBE:
5215   case TargetOpcode::G_SUB:
5216     OpO = TargetOpcode::G_USUBO;
5217     OpE = TargetOpcode::G_USUBE;
5218     OpF = TargetOpcode::G_USUBE;
5219     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
5220       OpF = TargetOpcode::G_SSUBE;
5221     break;
5222   default:
5223     llvm_unreachable("Unexpected add/sub opcode!");
5224   }
5225 
5226   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
5227   unsigned NumDefs = MI.getNumExplicitDefs();
5228   Register Src1 = MI.getOperand(NumDefs).getReg();
5229   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
5230   Register CarryDst, CarryIn;
5231   if (NumDefs == 2)
5232     CarryDst = MI.getOperand(1).getReg();
5233   if (MI.getNumOperands() == NumDefs + 3)
5234     CarryIn = MI.getOperand(NumDefs + 2).getReg();
5235 
5236   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5237   LLT LeftoverTy, DummyTy;
5238   SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs;
5239   extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left);
5240   extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left);
5241 
5242   int NarrowParts = Src1Regs.size();
5243   for (int I = 0, E = Src1Left.size(); I != E; ++I) {
5244     Src1Regs.push_back(Src1Left[I]);
5245     Src2Regs.push_back(Src2Left[I]);
5246   }
5247   DstRegs.reserve(Src1Regs.size());
5248 
5249   for (int i = 0, e = Src1Regs.size(); i != e; ++i) {
5250     Register DstReg =
5251         MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i]));
5252     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
5253     // Forward the final carry-out to the destination register
5254     if (i == e - 1 && CarryDst)
5255       CarryOut = CarryDst;
5256 
5257     if (!CarryIn) {
5258       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
5259                             {Src1Regs[i], Src2Regs[i]});
5260     } else if (i == e - 1) {
5261       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
5262                             {Src1Regs[i], Src2Regs[i], CarryIn});
5263     } else {
5264       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
5265                             {Src1Regs[i], Src2Regs[i], CarryIn});
5266     }
5267 
5268     DstRegs.push_back(DstReg);
5269     CarryIn = CarryOut;
5270   }
5271   insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy,
5272               makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy,
5273               makeArrayRef(DstRegs).drop_front(NarrowParts));
5274 
5275   MI.eraseFromParent();
5276   return Legalized;
5277 }
5278 
5279 LegalizerHelper::LegalizeResult
5280 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
5281   Register DstReg = MI.getOperand(0).getReg();
5282   Register Src1 = MI.getOperand(1).getReg();
5283   Register Src2 = MI.getOperand(2).getReg();
5284 
5285   LLT Ty = MRI.getType(DstReg);
5286   if (Ty.isVector())
5287     return UnableToLegalize;
5288 
5289   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
5290   unsigned DstSize = Ty.getSizeInBits();
5291   unsigned NarrowSize = NarrowTy.getSizeInBits();
5292   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
5293     return UnableToLegalize;
5294 
5295   unsigned NumDstParts = DstSize / NarrowSize;
5296   unsigned NumSrcParts = SrcSize / NarrowSize;
5297   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
5298   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
5299 
5300   SmallVector<Register, 2> Src1Parts, Src2Parts;
5301   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
5302   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
5303   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
5304   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
5305 
5306   // Take only high half of registers if this is high mul.
5307   ArrayRef<Register> DstRegs(
5308       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
5309   MIRBuilder.buildMerge(DstReg, DstRegs);
5310   MI.eraseFromParent();
5311   return Legalized;
5312 }
5313 
5314 LegalizerHelper::LegalizeResult
5315 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
5316                                    LLT NarrowTy) {
5317   if (TypeIdx != 0)
5318     return UnableToLegalize;
5319 
5320   bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
5321 
5322   Register Src = MI.getOperand(1).getReg();
5323   LLT SrcTy = MRI.getType(Src);
5324 
5325   // If all finite floats fit into the narrowed integer type, we can just swap
5326   // out the result type. This is practically only useful for conversions from
5327   // half to at least 16-bits, so just handle the one case.
5328   if (SrcTy.getScalarType() != LLT::scalar(16) ||
5329       NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
5330     return UnableToLegalize;
5331 
5332   Observer.changingInstr(MI);
5333   narrowScalarDst(MI, NarrowTy, 0,
5334                   IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
5335   Observer.changedInstr(MI);
5336   return Legalized;
5337 }
5338 
5339 LegalizerHelper::LegalizeResult
5340 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
5341                                      LLT NarrowTy) {
5342   if (TypeIdx != 1)
5343     return UnableToLegalize;
5344 
5345   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5346 
5347   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5348   // FIXME: add support for when SizeOp1 isn't an exact multiple of
5349   // NarrowSize.
5350   if (SizeOp1 % NarrowSize != 0)
5351     return UnableToLegalize;
5352   int NumParts = SizeOp1 / NarrowSize;
5353 
5354   SmallVector<Register, 2> SrcRegs, DstRegs;
5355   SmallVector<uint64_t, 2> Indexes;
5356   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
5357 
5358   Register OpReg = MI.getOperand(0).getReg();
5359   uint64_t OpStart = MI.getOperand(2).getImm();
5360   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5361   for (int i = 0; i < NumParts; ++i) {
5362     unsigned SrcStart = i * NarrowSize;
5363 
5364     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
5365       // No part of the extract uses this subregister, ignore it.
5366       continue;
5367     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5368       // The entire subregister is extracted, forward the value.
5369       DstRegs.push_back(SrcRegs[i]);
5370       continue;
5371     }
5372 
5373     // OpSegStart is where this destination segment would start in OpReg if it
5374     // extended infinitely in both directions.
5375     int64_t ExtractOffset;
5376     uint64_t SegSize;
5377     if (OpStart < SrcStart) {
5378       ExtractOffset = 0;
5379       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
5380     } else {
5381       ExtractOffset = OpStart - SrcStart;
5382       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
5383     }
5384 
5385     Register SegReg = SrcRegs[i];
5386     if (ExtractOffset != 0 || SegSize != NarrowSize) {
5387       // A genuine extract is needed.
5388       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5389       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
5390     }
5391 
5392     DstRegs.push_back(SegReg);
5393   }
5394 
5395   Register DstReg = MI.getOperand(0).getReg();
5396   if (MRI.getType(DstReg).isVector())
5397     MIRBuilder.buildBuildVector(DstReg, DstRegs);
5398   else if (DstRegs.size() > 1)
5399     MIRBuilder.buildMerge(DstReg, DstRegs);
5400   else
5401     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
5402   MI.eraseFromParent();
5403   return Legalized;
5404 }
5405 
5406 LegalizerHelper::LegalizeResult
5407 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
5408                                     LLT NarrowTy) {
5409   // FIXME: Don't know how to handle secondary types yet.
5410   if (TypeIdx != 0)
5411     return UnableToLegalize;
5412 
5413   SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs;
5414   SmallVector<uint64_t, 2> Indexes;
5415   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5416   LLT LeftoverTy;
5417   extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs,
5418                LeftoverRegs);
5419 
5420   for (Register Reg : LeftoverRegs)
5421     SrcRegs.push_back(Reg);
5422 
5423   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5424   Register OpReg = MI.getOperand(2).getReg();
5425   uint64_t OpStart = MI.getOperand(3).getImm();
5426   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5427   for (int I = 0, E = SrcRegs.size(); I != E; ++I) {
5428     unsigned DstStart = I * NarrowSize;
5429 
5430     if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5431       // The entire subregister is defined by this insert, forward the new
5432       // value.
5433       DstRegs.push_back(OpReg);
5434       continue;
5435     }
5436 
5437     Register SrcReg = SrcRegs[I];
5438     if (MRI.getType(SrcRegs[I]) == LeftoverTy) {
5439       // The leftover reg is smaller than NarrowTy, so we need to extend it.
5440       SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
5441       MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]);
5442     }
5443 
5444     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
5445       // No part of the insert affects this subregister, forward the original.
5446       DstRegs.push_back(SrcReg);
5447       continue;
5448     }
5449 
5450     // OpSegStart is where this destination segment would start in OpReg if it
5451     // extended infinitely in both directions.
5452     int64_t ExtractOffset, InsertOffset;
5453     uint64_t SegSize;
5454     if (OpStart < DstStart) {
5455       InsertOffset = 0;
5456       ExtractOffset = DstStart - OpStart;
5457       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
5458     } else {
5459       InsertOffset = OpStart - DstStart;
5460       ExtractOffset = 0;
5461       SegSize =
5462         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
5463     }
5464 
5465     Register SegReg = OpReg;
5466     if (ExtractOffset != 0 || SegSize != OpSize) {
5467       // A genuine extract is needed.
5468       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5469       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
5470     }
5471 
5472     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
5473     MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset);
5474     DstRegs.push_back(DstReg);
5475   }
5476 
5477   uint64_t WideSize = DstRegs.size() * NarrowSize;
5478   Register DstReg = MI.getOperand(0).getReg();
5479   if (WideSize > RegTy.getSizeInBits()) {
5480     Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize));
5481     MIRBuilder.buildMerge(MergeReg, DstRegs);
5482     MIRBuilder.buildTrunc(DstReg, MergeReg);
5483   } else
5484     MIRBuilder.buildMerge(DstReg, DstRegs);
5485 
5486   MI.eraseFromParent();
5487   return Legalized;
5488 }
5489 
5490 LegalizerHelper::LegalizeResult
5491 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5492                                    LLT NarrowTy) {
5493   Register DstReg = MI.getOperand(0).getReg();
5494   LLT DstTy = MRI.getType(DstReg);
5495 
5496   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
5497 
5498   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5499   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5500   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5501   LLT LeftoverTy;
5502   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5503                     Src0Regs, Src0LeftoverRegs))
5504     return UnableToLegalize;
5505 
5506   LLT Unused;
5507   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5508                     Src1Regs, Src1LeftoverRegs))
5509     llvm_unreachable("inconsistent extractParts result");
5510 
5511   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5512     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5513                                         {Src0Regs[I], Src1Regs[I]});
5514     DstRegs.push_back(Inst.getReg(0));
5515   }
5516 
5517   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5518     auto Inst = MIRBuilder.buildInstr(
5519       MI.getOpcode(),
5520       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5521     DstLeftoverRegs.push_back(Inst.getReg(0));
5522   }
5523 
5524   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5525               LeftoverTy, DstLeftoverRegs);
5526 
5527   MI.eraseFromParent();
5528   return Legalized;
5529 }
5530 
5531 LegalizerHelper::LegalizeResult
5532 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5533                                  LLT NarrowTy) {
5534   if (TypeIdx != 0)
5535     return UnableToLegalize;
5536 
5537   Register DstReg = MI.getOperand(0).getReg();
5538   Register SrcReg = MI.getOperand(1).getReg();
5539 
5540   LLT DstTy = MRI.getType(DstReg);
5541   if (DstTy.isVector())
5542     return UnableToLegalize;
5543 
5544   SmallVector<Register, 8> Parts;
5545   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5546   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5547   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5548 
5549   MI.eraseFromParent();
5550   return Legalized;
5551 }
5552 
5553 LegalizerHelper::LegalizeResult
5554 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5555                                     LLT NarrowTy) {
5556   if (TypeIdx != 0)
5557     return UnableToLegalize;
5558 
5559   Register CondReg = MI.getOperand(1).getReg();
5560   LLT CondTy = MRI.getType(CondReg);
5561   if (CondTy.isVector()) // TODO: Handle vselect
5562     return UnableToLegalize;
5563 
5564   Register DstReg = MI.getOperand(0).getReg();
5565   LLT DstTy = MRI.getType(DstReg);
5566 
5567   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5568   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5569   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5570   LLT LeftoverTy;
5571   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5572                     Src1Regs, Src1LeftoverRegs))
5573     return UnableToLegalize;
5574 
5575   LLT Unused;
5576   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5577                     Src2Regs, Src2LeftoverRegs))
5578     llvm_unreachable("inconsistent extractParts result");
5579 
5580   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5581     auto Select = MIRBuilder.buildSelect(NarrowTy,
5582                                          CondReg, Src1Regs[I], Src2Regs[I]);
5583     DstRegs.push_back(Select.getReg(0));
5584   }
5585 
5586   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5587     auto Select = MIRBuilder.buildSelect(
5588       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5589     DstLeftoverRegs.push_back(Select.getReg(0));
5590   }
5591 
5592   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5593               LeftoverTy, DstLeftoverRegs);
5594 
5595   MI.eraseFromParent();
5596   return Legalized;
5597 }
5598 
5599 LegalizerHelper::LegalizeResult
5600 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5601                                   LLT NarrowTy) {
5602   if (TypeIdx != 1)
5603     return UnableToLegalize;
5604 
5605   Register DstReg = MI.getOperand(0).getReg();
5606   Register SrcReg = MI.getOperand(1).getReg();
5607   LLT DstTy = MRI.getType(DstReg);
5608   LLT SrcTy = MRI.getType(SrcReg);
5609   unsigned NarrowSize = NarrowTy.getSizeInBits();
5610 
5611   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5612     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5613 
5614     MachineIRBuilder &B = MIRBuilder;
5615     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5616     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5617     auto C_0 = B.buildConstant(NarrowTy, 0);
5618     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5619                                 UnmergeSrc.getReg(1), C_0);
5620     auto LoCTLZ = IsUndef ?
5621       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5622       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5623     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5624     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5625     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5626     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5627 
5628     MI.eraseFromParent();
5629     return Legalized;
5630   }
5631 
5632   return UnableToLegalize;
5633 }
5634 
5635 LegalizerHelper::LegalizeResult
5636 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5637                                   LLT NarrowTy) {
5638   if (TypeIdx != 1)
5639     return UnableToLegalize;
5640 
5641   Register DstReg = MI.getOperand(0).getReg();
5642   Register SrcReg = MI.getOperand(1).getReg();
5643   LLT DstTy = MRI.getType(DstReg);
5644   LLT SrcTy = MRI.getType(SrcReg);
5645   unsigned NarrowSize = NarrowTy.getSizeInBits();
5646 
5647   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5648     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5649 
5650     MachineIRBuilder &B = MIRBuilder;
5651     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5652     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5653     auto C_0 = B.buildConstant(NarrowTy, 0);
5654     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5655                                 UnmergeSrc.getReg(0), C_0);
5656     auto HiCTTZ = IsUndef ?
5657       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5658       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5659     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5660     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5661     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5662     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5663 
5664     MI.eraseFromParent();
5665     return Legalized;
5666   }
5667 
5668   return UnableToLegalize;
5669 }
5670 
5671 LegalizerHelper::LegalizeResult
5672 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5673                                    LLT NarrowTy) {
5674   if (TypeIdx != 1)
5675     return UnableToLegalize;
5676 
5677   Register DstReg = MI.getOperand(0).getReg();
5678   LLT DstTy = MRI.getType(DstReg);
5679   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5680   unsigned NarrowSize = NarrowTy.getSizeInBits();
5681 
5682   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5683     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5684 
5685     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5686     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5687     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5688 
5689     MI.eraseFromParent();
5690     return Legalized;
5691   }
5692 
5693   return UnableToLegalize;
5694 }
5695 
5696 LegalizerHelper::LegalizeResult
5697 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5698   unsigned Opc = MI.getOpcode();
5699   const auto &TII = MIRBuilder.getTII();
5700   auto isSupported = [this](const LegalityQuery &Q) {
5701     auto QAction = LI.getAction(Q).Action;
5702     return QAction == Legal || QAction == Libcall || QAction == Custom;
5703   };
5704   switch (Opc) {
5705   default:
5706     return UnableToLegalize;
5707   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5708     // This trivially expands to CTLZ.
5709     Observer.changingInstr(MI);
5710     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5711     Observer.changedInstr(MI);
5712     return Legalized;
5713   }
5714   case TargetOpcode::G_CTLZ: {
5715     Register DstReg = MI.getOperand(0).getReg();
5716     Register SrcReg = MI.getOperand(1).getReg();
5717     LLT DstTy = MRI.getType(DstReg);
5718     LLT SrcTy = MRI.getType(SrcReg);
5719     unsigned Len = SrcTy.getSizeInBits();
5720 
5721     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5722       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5723       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5724       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5725       auto ICmp = MIRBuilder.buildICmp(
5726           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5727       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5728       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5729       MI.eraseFromParent();
5730       return Legalized;
5731     }
5732     // for now, we do this:
5733     // NewLen = NextPowerOf2(Len);
5734     // x = x | (x >> 1);
5735     // x = x | (x >> 2);
5736     // ...
5737     // x = x | (x >>16);
5738     // x = x | (x >>32); // for 64-bit input
5739     // Upto NewLen/2
5740     // return Len - popcount(x);
5741     //
5742     // Ref: "Hacker's Delight" by Henry Warren
5743     Register Op = SrcReg;
5744     unsigned NewLen = PowerOf2Ceil(Len);
5745     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5746       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5747       auto MIBOp = MIRBuilder.buildOr(
5748           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5749       Op = MIBOp.getReg(0);
5750     }
5751     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5752     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5753                         MIBPop);
5754     MI.eraseFromParent();
5755     return Legalized;
5756   }
5757   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5758     // This trivially expands to CTTZ.
5759     Observer.changingInstr(MI);
5760     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5761     Observer.changedInstr(MI);
5762     return Legalized;
5763   }
5764   case TargetOpcode::G_CTTZ: {
5765     Register DstReg = MI.getOperand(0).getReg();
5766     Register SrcReg = MI.getOperand(1).getReg();
5767     LLT DstTy = MRI.getType(DstReg);
5768     LLT SrcTy = MRI.getType(SrcReg);
5769 
5770     unsigned Len = SrcTy.getSizeInBits();
5771     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5772       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5773       // zero.
5774       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5775       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5776       auto ICmp = MIRBuilder.buildICmp(
5777           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5778       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5779       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5780       MI.eraseFromParent();
5781       return Legalized;
5782     }
5783     // for now, we use: { return popcount(~x & (x - 1)); }
5784     // unless the target has ctlz but not ctpop, in which case we use:
5785     // { return 32 - nlz(~x & (x-1)); }
5786     // Ref: "Hacker's Delight" by Henry Warren
5787     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5788     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5789     auto MIBTmp = MIRBuilder.buildAnd(
5790         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5791     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5792         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5793       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5794       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5795                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5796       MI.eraseFromParent();
5797       return Legalized;
5798     }
5799     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5800     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5801     return Legalized;
5802   }
5803   case TargetOpcode::G_CTPOP: {
5804     Register SrcReg = MI.getOperand(1).getReg();
5805     LLT Ty = MRI.getType(SrcReg);
5806     unsigned Size = Ty.getSizeInBits();
5807     MachineIRBuilder &B = MIRBuilder;
5808 
5809     // Count set bits in blocks of 2 bits. Default approach would be
5810     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5811     // We use following formula instead:
5812     // B2Count = val - { (val >> 1) & 0x55555555 }
5813     // since it gives same result in blocks of 2 with one instruction less.
5814     auto C_1 = B.buildConstant(Ty, 1);
5815     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5816     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5817     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5818     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5819     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5820 
5821     // In order to get count in blocks of 4 add values from adjacent block of 2.
5822     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5823     auto C_2 = B.buildConstant(Ty, 2);
5824     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5825     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5826     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5827     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5828     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5829     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5830 
5831     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5832     // addition since count value sits in range {0,...,8} and 4 bits are enough
5833     // to hold such binary values. After addition high 4 bits still hold count
5834     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5835     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5836     auto C_4 = B.buildConstant(Ty, 4);
5837     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5838     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5839     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5840     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5841     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5842 
5843     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5844     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5845     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5846     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5847     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5848 
5849     // Shift count result from 8 high bits to low bits.
5850     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5851     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5852 
5853     MI.eraseFromParent();
5854     return Legalized;
5855   }
5856   }
5857 }
5858 
5859 // Check that (every element of) Reg is undef or not an exact multiple of BW.
5860 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5861                                         Register Reg, unsigned BW) {
5862   return matchUnaryPredicate(
5863       MRI, Reg,
5864       [=](const Constant *C) {
5865         // Null constant here means an undef.
5866         const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5867         return !CI || CI->getValue().urem(BW) != 0;
5868       },
5869       /*AllowUndefs*/ true);
5870 }
5871 
5872 LegalizerHelper::LegalizeResult
5873 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5874   Register Dst = MI.getOperand(0).getReg();
5875   Register X = MI.getOperand(1).getReg();
5876   Register Y = MI.getOperand(2).getReg();
5877   Register Z = MI.getOperand(3).getReg();
5878   LLT Ty = MRI.getType(Dst);
5879   LLT ShTy = MRI.getType(Z);
5880 
5881   unsigned BW = Ty.getScalarSizeInBits();
5882 
5883   if (!isPowerOf2_32(BW))
5884     return UnableToLegalize;
5885 
5886   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5887   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5888 
5889   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5890     // fshl X, Y, Z -> fshr X, Y, -Z
5891     // fshr X, Y, Z -> fshl X, Y, -Z
5892     auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5893     Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5894   } else {
5895     // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5896     // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5897     auto One = MIRBuilder.buildConstant(ShTy, 1);
5898     if (IsFSHL) {
5899       Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5900       X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5901     } else {
5902       X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5903       Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5904     }
5905 
5906     Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5907   }
5908 
5909   MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5910   MI.eraseFromParent();
5911   return Legalized;
5912 }
5913 
5914 LegalizerHelper::LegalizeResult
5915 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5916   Register Dst = MI.getOperand(0).getReg();
5917   Register X = MI.getOperand(1).getReg();
5918   Register Y = MI.getOperand(2).getReg();
5919   Register Z = MI.getOperand(3).getReg();
5920   LLT Ty = MRI.getType(Dst);
5921   LLT ShTy = MRI.getType(Z);
5922 
5923   const unsigned BW = Ty.getScalarSizeInBits();
5924   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5925 
5926   Register ShX, ShY;
5927   Register ShAmt, InvShAmt;
5928 
5929   // FIXME: Emit optimized urem by constant instead of letting it expand later.
5930   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5931     // fshl: X << C | Y >> (BW - C)
5932     // fshr: X << (BW - C) | Y >> C
5933     // where C = Z % BW is not zero
5934     auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5935     ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5936     InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5937     ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5938     ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5939   } else {
5940     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5941     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5942     auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5943     if (isPowerOf2_32(BW)) {
5944       // Z % BW -> Z & (BW - 1)
5945       ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5946       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5947       auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5948       InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5949     } else {
5950       auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5951       ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5952       InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5953     }
5954 
5955     auto One = MIRBuilder.buildConstant(ShTy, 1);
5956     if (IsFSHL) {
5957       ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5958       auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5959       ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5960     } else {
5961       auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5962       ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5963       ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5964     }
5965   }
5966 
5967   MIRBuilder.buildOr(Dst, ShX, ShY);
5968   MI.eraseFromParent();
5969   return Legalized;
5970 }
5971 
5972 LegalizerHelper::LegalizeResult
5973 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5974   // These operations approximately do the following (while avoiding undefined
5975   // shifts by BW):
5976   // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5977   // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5978   Register Dst = MI.getOperand(0).getReg();
5979   LLT Ty = MRI.getType(Dst);
5980   LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5981 
5982   bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5983   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5984 
5985   // TODO: Use smarter heuristic that accounts for vector legalization.
5986   if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5987     return lowerFunnelShiftAsShifts(MI);
5988 
5989   // This only works for powers of 2, fallback to shifts if it fails.
5990   LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
5991   if (Result == UnableToLegalize)
5992     return lowerFunnelShiftAsShifts(MI);
5993   return Result;
5994 }
5995 
5996 LegalizerHelper::LegalizeResult
5997 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
5998   Register Dst = MI.getOperand(0).getReg();
5999   Register Src = MI.getOperand(1).getReg();
6000   Register Amt = MI.getOperand(2).getReg();
6001   LLT AmtTy = MRI.getType(Amt);
6002   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
6003   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
6004   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
6005   auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
6006   MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
6007   MI.eraseFromParent();
6008   return Legalized;
6009 }
6010 
6011 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
6012   Register Dst = MI.getOperand(0).getReg();
6013   Register Src = MI.getOperand(1).getReg();
6014   Register Amt = MI.getOperand(2).getReg();
6015   LLT DstTy = MRI.getType(Dst);
6016   LLT SrcTy = MRI.getType(Dst);
6017   LLT AmtTy = MRI.getType(Amt);
6018 
6019   unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
6020   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
6021 
6022   MIRBuilder.setInstrAndDebugLoc(MI);
6023 
6024   // If a rotate in the other direction is supported, use it.
6025   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
6026   if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
6027       isPowerOf2_32(EltSizeInBits))
6028     return lowerRotateWithReverseRotate(MI);
6029 
6030   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
6031   unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
6032   unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
6033   auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
6034   Register ShVal;
6035   Register RevShiftVal;
6036   if (isPowerOf2_32(EltSizeInBits)) {
6037     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6038     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6039     auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
6040     auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
6041     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
6042     auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
6043     RevShiftVal =
6044         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
6045   } else {
6046     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6047     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6048     auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
6049     auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
6050     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
6051     auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
6052     auto One = MIRBuilder.buildConstant(AmtTy, 1);
6053     auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
6054     RevShiftVal =
6055         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
6056   }
6057   MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
6058   MI.eraseFromParent();
6059   return Legalized;
6060 }
6061 
6062 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
6063 // representation.
6064 LegalizerHelper::LegalizeResult
6065 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
6066   Register Dst = MI.getOperand(0).getReg();
6067   Register Src = MI.getOperand(1).getReg();
6068   const LLT S64 = LLT::scalar(64);
6069   const LLT S32 = LLT::scalar(32);
6070   const LLT S1 = LLT::scalar(1);
6071 
6072   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
6073 
6074   // unsigned cul2f(ulong u) {
6075   //   uint lz = clz(u);
6076   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
6077   //   u = (u << lz) & 0x7fffffffffffffffUL;
6078   //   ulong t = u & 0xffffffffffUL;
6079   //   uint v = (e << 23) | (uint)(u >> 40);
6080   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
6081   //   return as_float(v + r);
6082   // }
6083 
6084   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
6085   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
6086 
6087   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
6088 
6089   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
6090   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
6091 
6092   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
6093   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
6094 
6095   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
6096   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
6097 
6098   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
6099 
6100   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
6101   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
6102 
6103   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
6104   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
6105   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
6106 
6107   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
6108   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
6109   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
6110   auto One = MIRBuilder.buildConstant(S32, 1);
6111 
6112   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
6113   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
6114   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
6115   MIRBuilder.buildAdd(Dst, V, R);
6116 
6117   MI.eraseFromParent();
6118   return Legalized;
6119 }
6120 
6121 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
6122   Register Dst = MI.getOperand(0).getReg();
6123   Register Src = MI.getOperand(1).getReg();
6124   LLT DstTy = MRI.getType(Dst);
6125   LLT SrcTy = MRI.getType(Src);
6126 
6127   if (SrcTy == LLT::scalar(1)) {
6128     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
6129     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6130     MIRBuilder.buildSelect(Dst, Src, True, False);
6131     MI.eraseFromParent();
6132     return Legalized;
6133   }
6134 
6135   if (SrcTy != LLT::scalar(64))
6136     return UnableToLegalize;
6137 
6138   if (DstTy == LLT::scalar(32)) {
6139     // TODO: SelectionDAG has several alternative expansions to port which may
6140     // be more reasonble depending on the available instructions. If a target
6141     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
6142     // intermediate type, this is probably worse.
6143     return lowerU64ToF32BitOps(MI);
6144   }
6145 
6146   return UnableToLegalize;
6147 }
6148 
6149 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
6150   Register Dst = MI.getOperand(0).getReg();
6151   Register Src = MI.getOperand(1).getReg();
6152   LLT DstTy = MRI.getType(Dst);
6153   LLT SrcTy = MRI.getType(Src);
6154 
6155   const LLT S64 = LLT::scalar(64);
6156   const LLT S32 = LLT::scalar(32);
6157   const LLT S1 = LLT::scalar(1);
6158 
6159   if (SrcTy == S1) {
6160     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
6161     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6162     MIRBuilder.buildSelect(Dst, Src, True, False);
6163     MI.eraseFromParent();
6164     return Legalized;
6165   }
6166 
6167   if (SrcTy != S64)
6168     return UnableToLegalize;
6169 
6170   if (DstTy == S32) {
6171     // signed cl2f(long l) {
6172     //   long s = l >> 63;
6173     //   float r = cul2f((l + s) ^ s);
6174     //   return s ? -r : r;
6175     // }
6176     Register L = Src;
6177     auto SignBit = MIRBuilder.buildConstant(S64, 63);
6178     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
6179 
6180     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
6181     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
6182     auto R = MIRBuilder.buildUITOFP(S32, Xor);
6183 
6184     auto RNeg = MIRBuilder.buildFNeg(S32, R);
6185     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
6186                                             MIRBuilder.buildConstant(S64, 0));
6187     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
6188     MI.eraseFromParent();
6189     return Legalized;
6190   }
6191 
6192   return UnableToLegalize;
6193 }
6194 
6195 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
6196   Register Dst = MI.getOperand(0).getReg();
6197   Register Src = MI.getOperand(1).getReg();
6198   LLT DstTy = MRI.getType(Dst);
6199   LLT SrcTy = MRI.getType(Src);
6200   const LLT S64 = LLT::scalar(64);
6201   const LLT S32 = LLT::scalar(32);
6202 
6203   if (SrcTy != S64 && SrcTy != S32)
6204     return UnableToLegalize;
6205   if (DstTy != S32 && DstTy != S64)
6206     return UnableToLegalize;
6207 
6208   // FPTOSI gives same result as FPTOUI for positive signed integers.
6209   // FPTOUI needs to deal with fp values that convert to unsigned integers
6210   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
6211 
6212   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
6213   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
6214                                                 : APFloat::IEEEdouble(),
6215                     APInt::getNullValue(SrcTy.getSizeInBits()));
6216   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
6217 
6218   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
6219 
6220   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
6221   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
6222   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
6223   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
6224   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
6225   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
6226   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
6227 
6228   const LLT S1 = LLT::scalar(1);
6229 
6230   MachineInstrBuilder FCMP =
6231       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
6232   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
6233 
6234   MI.eraseFromParent();
6235   return Legalized;
6236 }
6237 
6238 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
6239   Register Dst = MI.getOperand(0).getReg();
6240   Register Src = MI.getOperand(1).getReg();
6241   LLT DstTy = MRI.getType(Dst);
6242   LLT SrcTy = MRI.getType(Src);
6243   const LLT S64 = LLT::scalar(64);
6244   const LLT S32 = LLT::scalar(32);
6245 
6246   // FIXME: Only f32 to i64 conversions are supported.
6247   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
6248     return UnableToLegalize;
6249 
6250   // Expand f32 -> i64 conversion
6251   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6252   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6253 
6254   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
6255 
6256   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
6257   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
6258 
6259   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
6260   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
6261 
6262   auto SignMask = MIRBuilder.buildConstant(SrcTy,
6263                                            APInt::getSignMask(SrcEltBits));
6264   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
6265   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
6266   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
6267   Sign = MIRBuilder.buildSExt(DstTy, Sign);
6268 
6269   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
6270   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
6271   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
6272 
6273   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
6274   R = MIRBuilder.buildZExt(DstTy, R);
6275 
6276   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
6277   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
6278   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
6279   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
6280 
6281   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
6282   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
6283 
6284   const LLT S1 = LLT::scalar(1);
6285   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
6286                                     S1, Exponent, ExponentLoBit);
6287 
6288   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
6289 
6290   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
6291   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
6292 
6293   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
6294 
6295   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
6296                                           S1, Exponent, ZeroSrcTy);
6297 
6298   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
6299   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
6300 
6301   MI.eraseFromParent();
6302   return Legalized;
6303 }
6304 
6305 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
6306 LegalizerHelper::LegalizeResult
6307 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
6308   Register Dst = MI.getOperand(0).getReg();
6309   Register Src = MI.getOperand(1).getReg();
6310 
6311   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
6312     return UnableToLegalize;
6313 
6314   const unsigned ExpMask = 0x7ff;
6315   const unsigned ExpBiasf64 = 1023;
6316   const unsigned ExpBiasf16 = 15;
6317   const LLT S32 = LLT::scalar(32);
6318   const LLT S1 = LLT::scalar(1);
6319 
6320   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
6321   Register U = Unmerge.getReg(0);
6322   Register UH = Unmerge.getReg(1);
6323 
6324   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
6325   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
6326 
6327   // Subtract the fp64 exponent bias (1023) to get the real exponent and
6328   // add the f16 bias (15) to get the biased exponent for the f16 format.
6329   E = MIRBuilder.buildAdd(
6330     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
6331 
6332   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
6333   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
6334 
6335   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
6336                                        MIRBuilder.buildConstant(S32, 0x1ff));
6337   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
6338 
6339   auto Zero = MIRBuilder.buildConstant(S32, 0);
6340   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
6341   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
6342   M = MIRBuilder.buildOr(S32, M, Lo40Set);
6343 
6344   // (M != 0 ? 0x0200 : 0) | 0x7c00;
6345   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
6346   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
6347   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
6348 
6349   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
6350   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
6351 
6352   // N = M | (E << 12);
6353   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
6354   auto N = MIRBuilder.buildOr(S32, M, EShl12);
6355 
6356   // B = clamp(1-E, 0, 13);
6357   auto One = MIRBuilder.buildConstant(S32, 1);
6358   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
6359   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
6360   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
6361 
6362   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
6363                                        MIRBuilder.buildConstant(S32, 0x1000));
6364 
6365   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
6366   auto D0 = MIRBuilder.buildShl(S32, D, B);
6367 
6368   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
6369                                              D0, SigSetHigh);
6370   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
6371   D = MIRBuilder.buildOr(S32, D, D1);
6372 
6373   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
6374   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
6375 
6376   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
6377   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
6378 
6379   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
6380                                        MIRBuilder.buildConstant(S32, 3));
6381   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
6382 
6383   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
6384                                        MIRBuilder.buildConstant(S32, 5));
6385   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
6386 
6387   V1 = MIRBuilder.buildOr(S32, V0, V1);
6388   V = MIRBuilder.buildAdd(S32, V, V1);
6389 
6390   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
6391                                        E, MIRBuilder.buildConstant(S32, 30));
6392   V = MIRBuilder.buildSelect(S32, CmpEGt30,
6393                              MIRBuilder.buildConstant(S32, 0x7c00), V);
6394 
6395   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
6396                                          E, MIRBuilder.buildConstant(S32, 1039));
6397   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
6398 
6399   // Extract the sign bit.
6400   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
6401   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
6402 
6403   // Insert the sign bit
6404   V = MIRBuilder.buildOr(S32, Sign, V);
6405 
6406   MIRBuilder.buildTrunc(Dst, V);
6407   MI.eraseFromParent();
6408   return Legalized;
6409 }
6410 
6411 LegalizerHelper::LegalizeResult
6412 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
6413   Register Dst = MI.getOperand(0).getReg();
6414   Register Src = MI.getOperand(1).getReg();
6415 
6416   LLT DstTy = MRI.getType(Dst);
6417   LLT SrcTy = MRI.getType(Src);
6418   const LLT S64 = LLT::scalar(64);
6419   const LLT S16 = LLT::scalar(16);
6420 
6421   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
6422     return lowerFPTRUNC_F64_TO_F16(MI);
6423 
6424   return UnableToLegalize;
6425 }
6426 
6427 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
6428 // multiplication tree.
6429 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
6430   Register Dst = MI.getOperand(0).getReg();
6431   Register Src0 = MI.getOperand(1).getReg();
6432   Register Src1 = MI.getOperand(2).getReg();
6433   LLT Ty = MRI.getType(Dst);
6434 
6435   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
6436   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
6437   MI.eraseFromParent();
6438   return Legalized;
6439 }
6440 
6441 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
6442   switch (Opc) {
6443   case TargetOpcode::G_SMIN:
6444     return CmpInst::ICMP_SLT;
6445   case TargetOpcode::G_SMAX:
6446     return CmpInst::ICMP_SGT;
6447   case TargetOpcode::G_UMIN:
6448     return CmpInst::ICMP_ULT;
6449   case TargetOpcode::G_UMAX:
6450     return CmpInst::ICMP_UGT;
6451   default:
6452     llvm_unreachable("not in integer min/max");
6453   }
6454 }
6455 
6456 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
6457   Register Dst = MI.getOperand(0).getReg();
6458   Register Src0 = MI.getOperand(1).getReg();
6459   Register Src1 = MI.getOperand(2).getReg();
6460 
6461   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
6462   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
6463 
6464   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
6465   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
6466 
6467   MI.eraseFromParent();
6468   return Legalized;
6469 }
6470 
6471 LegalizerHelper::LegalizeResult
6472 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
6473   Register Dst = MI.getOperand(0).getReg();
6474   Register Src0 = MI.getOperand(1).getReg();
6475   Register Src1 = MI.getOperand(2).getReg();
6476 
6477   const LLT Src0Ty = MRI.getType(Src0);
6478   const LLT Src1Ty = MRI.getType(Src1);
6479 
6480   const int Src0Size = Src0Ty.getScalarSizeInBits();
6481   const int Src1Size = Src1Ty.getScalarSizeInBits();
6482 
6483   auto SignBitMask = MIRBuilder.buildConstant(
6484     Src0Ty, APInt::getSignMask(Src0Size));
6485 
6486   auto NotSignBitMask = MIRBuilder.buildConstant(
6487     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6488 
6489   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6490   Register And1;
6491   if (Src0Ty == Src1Ty) {
6492     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6493   } else if (Src0Size > Src1Size) {
6494     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6495     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6496     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6497     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6498   } else {
6499     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6500     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6501     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6502     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6503   }
6504 
6505   // Be careful about setting nsz/nnan/ninf on every instruction, since the
6506   // constants are a nan and -0.0, but the final result should preserve
6507   // everything.
6508   unsigned Flags = MI.getFlags();
6509   MIRBuilder.buildOr(Dst, And0, And1, Flags);
6510 
6511   MI.eraseFromParent();
6512   return Legalized;
6513 }
6514 
6515 LegalizerHelper::LegalizeResult
6516 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6517   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6518     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6519 
6520   Register Dst = MI.getOperand(0).getReg();
6521   Register Src0 = MI.getOperand(1).getReg();
6522   Register Src1 = MI.getOperand(2).getReg();
6523   LLT Ty = MRI.getType(Dst);
6524 
6525   if (!MI.getFlag(MachineInstr::FmNoNans)) {
6526     // Insert canonicalizes if it's possible we need to quiet to get correct
6527     // sNaN behavior.
6528 
6529     // Note this must be done here, and not as an optimization combine in the
6530     // absence of a dedicate quiet-snan instruction as we're using an
6531     // omni-purpose G_FCANONICALIZE.
6532     if (!isKnownNeverSNaN(Src0, MRI))
6533       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6534 
6535     if (!isKnownNeverSNaN(Src1, MRI))
6536       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6537   }
6538 
6539   // If there are no nans, it's safe to simply replace this with the non-IEEE
6540   // version.
6541   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6542   MI.eraseFromParent();
6543   return Legalized;
6544 }
6545 
6546 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6547   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6548   Register DstReg = MI.getOperand(0).getReg();
6549   LLT Ty = MRI.getType(DstReg);
6550   unsigned Flags = MI.getFlags();
6551 
6552   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6553                                   Flags);
6554   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6555   MI.eraseFromParent();
6556   return Legalized;
6557 }
6558 
6559 LegalizerHelper::LegalizeResult
6560 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6561   Register DstReg = MI.getOperand(0).getReg();
6562   Register X = MI.getOperand(1).getReg();
6563   const unsigned Flags = MI.getFlags();
6564   const LLT Ty = MRI.getType(DstReg);
6565   const LLT CondTy = Ty.changeElementSize(1);
6566 
6567   // round(x) =>
6568   //  t = trunc(x);
6569   //  d = fabs(x - t);
6570   //  o = copysign(1.0f, x);
6571   //  return t + (d >= 0.5 ? o : 0.0);
6572 
6573   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
6574 
6575   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
6576   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
6577   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6578   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
6579   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
6580   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
6581 
6582   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
6583                                   Flags);
6584   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
6585 
6586   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
6587 
6588   MI.eraseFromParent();
6589   return Legalized;
6590 }
6591 
6592 LegalizerHelper::LegalizeResult
6593 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
6594   Register DstReg = MI.getOperand(0).getReg();
6595   Register SrcReg = MI.getOperand(1).getReg();
6596   unsigned Flags = MI.getFlags();
6597   LLT Ty = MRI.getType(DstReg);
6598   const LLT CondTy = Ty.changeElementSize(1);
6599 
6600   // result = trunc(src);
6601   // if (src < 0.0 && src != result)
6602   //   result += -1.0.
6603 
6604   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
6605   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6606 
6607   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
6608                                   SrcReg, Zero, Flags);
6609   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
6610                                       SrcReg, Trunc, Flags);
6611   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
6612   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
6613 
6614   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
6615   MI.eraseFromParent();
6616   return Legalized;
6617 }
6618 
6619 LegalizerHelper::LegalizeResult
6620 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
6621   const unsigned NumOps = MI.getNumOperands();
6622   Register DstReg = MI.getOperand(0).getReg();
6623   Register Src0Reg = MI.getOperand(1).getReg();
6624   LLT DstTy = MRI.getType(DstReg);
6625   LLT SrcTy = MRI.getType(Src0Reg);
6626   unsigned PartSize = SrcTy.getSizeInBits();
6627 
6628   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
6629   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
6630 
6631   for (unsigned I = 2; I != NumOps; ++I) {
6632     const unsigned Offset = (I - 1) * PartSize;
6633 
6634     Register SrcReg = MI.getOperand(I).getReg();
6635     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
6636 
6637     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
6638       MRI.createGenericVirtualRegister(WideTy);
6639 
6640     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
6641     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
6642     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
6643     ResultReg = NextResult;
6644   }
6645 
6646   if (DstTy.isPointer()) {
6647     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
6648           DstTy.getAddressSpace())) {
6649       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
6650       return UnableToLegalize;
6651     }
6652 
6653     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
6654   }
6655 
6656   MI.eraseFromParent();
6657   return Legalized;
6658 }
6659 
6660 LegalizerHelper::LegalizeResult
6661 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
6662   const unsigned NumDst = MI.getNumOperands() - 1;
6663   Register SrcReg = MI.getOperand(NumDst).getReg();
6664   Register Dst0Reg = MI.getOperand(0).getReg();
6665   LLT DstTy = MRI.getType(Dst0Reg);
6666   if (DstTy.isPointer())
6667     return UnableToLegalize; // TODO
6668 
6669   SrcReg = coerceToScalar(SrcReg);
6670   if (!SrcReg)
6671     return UnableToLegalize;
6672 
6673   // Expand scalarizing unmerge as bitcast to integer and shift.
6674   LLT IntTy = MRI.getType(SrcReg);
6675 
6676   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
6677 
6678   const unsigned DstSize = DstTy.getSizeInBits();
6679   unsigned Offset = DstSize;
6680   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
6681     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
6682     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
6683     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
6684   }
6685 
6686   MI.eraseFromParent();
6687   return Legalized;
6688 }
6689 
6690 /// Lower a vector extract or insert by writing the vector to a stack temporary
6691 /// and reloading the element or vector.
6692 ///
6693 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
6694 ///  =>
6695 ///  %stack_temp = G_FRAME_INDEX
6696 ///  G_STORE %vec, %stack_temp
6697 ///  %idx = clamp(%idx, %vec.getNumElements())
6698 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
6699 ///  %dst = G_LOAD %element_ptr
6700 LegalizerHelper::LegalizeResult
6701 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
6702   Register DstReg = MI.getOperand(0).getReg();
6703   Register SrcVec = MI.getOperand(1).getReg();
6704   Register InsertVal;
6705   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
6706     InsertVal = MI.getOperand(2).getReg();
6707 
6708   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6709 
6710   LLT VecTy = MRI.getType(SrcVec);
6711   LLT EltTy = VecTy.getElementType();
6712   if (!EltTy.isByteSized()) { // Not implemented.
6713     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
6714     return UnableToLegalize;
6715   }
6716 
6717   unsigned EltBytes = EltTy.getSizeInBytes();
6718   Align VecAlign = getStackTemporaryAlignment(VecTy);
6719   Align EltAlign;
6720 
6721   MachinePointerInfo PtrInfo;
6722   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6723                                         VecAlign, PtrInfo);
6724   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6725 
6726   // Get the pointer to the element, and be sure not to hit undefined behavior
6727   // if the index is out of bounds.
6728   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6729 
6730   int64_t IdxVal;
6731   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6732     int64_t Offset = IdxVal * EltBytes;
6733     PtrInfo = PtrInfo.getWithOffset(Offset);
6734     EltAlign = commonAlignment(VecAlign, Offset);
6735   } else {
6736     // We lose information with a variable offset.
6737     EltAlign = getStackTemporaryAlignment(EltTy);
6738     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6739   }
6740 
6741   if (InsertVal) {
6742     // Write the inserted element
6743     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6744 
6745     // Reload the whole vector.
6746     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6747   } else {
6748     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6749   }
6750 
6751   MI.eraseFromParent();
6752   return Legalized;
6753 }
6754 
6755 LegalizerHelper::LegalizeResult
6756 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6757   Register DstReg = MI.getOperand(0).getReg();
6758   Register Src0Reg = MI.getOperand(1).getReg();
6759   Register Src1Reg = MI.getOperand(2).getReg();
6760   LLT Src0Ty = MRI.getType(Src0Reg);
6761   LLT DstTy = MRI.getType(DstReg);
6762   LLT IdxTy = LLT::scalar(32);
6763 
6764   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6765 
6766   if (DstTy.isScalar()) {
6767     if (Src0Ty.isVector())
6768       return UnableToLegalize;
6769 
6770     // This is just a SELECT.
6771     assert(Mask.size() == 1 && "Expected a single mask element");
6772     Register Val;
6773     if (Mask[0] < 0 || Mask[0] > 1)
6774       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6775     else
6776       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6777     MIRBuilder.buildCopy(DstReg, Val);
6778     MI.eraseFromParent();
6779     return Legalized;
6780   }
6781 
6782   Register Undef;
6783   SmallVector<Register, 32> BuildVec;
6784   LLT EltTy = DstTy.getElementType();
6785 
6786   for (int Idx : Mask) {
6787     if (Idx < 0) {
6788       if (!Undef.isValid())
6789         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6790       BuildVec.push_back(Undef);
6791       continue;
6792     }
6793 
6794     if (Src0Ty.isScalar()) {
6795       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6796     } else {
6797       int NumElts = Src0Ty.getNumElements();
6798       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6799       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6800       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6801       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6802       BuildVec.push_back(Extract.getReg(0));
6803     }
6804   }
6805 
6806   MIRBuilder.buildBuildVector(DstReg, BuildVec);
6807   MI.eraseFromParent();
6808   return Legalized;
6809 }
6810 
6811 LegalizerHelper::LegalizeResult
6812 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6813   const auto &MF = *MI.getMF();
6814   const auto &TFI = *MF.getSubtarget().getFrameLowering();
6815   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6816     return UnableToLegalize;
6817 
6818   Register Dst = MI.getOperand(0).getReg();
6819   Register AllocSize = MI.getOperand(1).getReg();
6820   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6821 
6822   LLT PtrTy = MRI.getType(Dst);
6823   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6824 
6825   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6826   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6827   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6828 
6829   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6830   // have to generate an extra instruction to negate the alloc and then use
6831   // G_PTR_ADD to add the negative offset.
6832   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6833   if (Alignment > Align(1)) {
6834     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6835     AlignMask.negate();
6836     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6837     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6838   }
6839 
6840   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6841   MIRBuilder.buildCopy(SPReg, SPTmp);
6842   MIRBuilder.buildCopy(Dst, SPTmp);
6843 
6844   MI.eraseFromParent();
6845   return Legalized;
6846 }
6847 
6848 LegalizerHelper::LegalizeResult
6849 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6850   Register Dst = MI.getOperand(0).getReg();
6851   Register Src = MI.getOperand(1).getReg();
6852   unsigned Offset = MI.getOperand(2).getImm();
6853 
6854   LLT DstTy = MRI.getType(Dst);
6855   LLT SrcTy = MRI.getType(Src);
6856 
6857   if (DstTy.isScalar() &&
6858       (SrcTy.isScalar() ||
6859        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6860     LLT SrcIntTy = SrcTy;
6861     if (!SrcTy.isScalar()) {
6862       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6863       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6864     }
6865 
6866     if (Offset == 0)
6867       MIRBuilder.buildTrunc(Dst, Src);
6868     else {
6869       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6870       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6871       MIRBuilder.buildTrunc(Dst, Shr);
6872     }
6873 
6874     MI.eraseFromParent();
6875     return Legalized;
6876   }
6877 
6878   return UnableToLegalize;
6879 }
6880 
6881 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6882   Register Dst = MI.getOperand(0).getReg();
6883   Register Src = MI.getOperand(1).getReg();
6884   Register InsertSrc = MI.getOperand(2).getReg();
6885   uint64_t Offset = MI.getOperand(3).getImm();
6886 
6887   LLT DstTy = MRI.getType(Src);
6888   LLT InsertTy = MRI.getType(InsertSrc);
6889 
6890   if (InsertTy.isVector() ||
6891       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6892     return UnableToLegalize;
6893 
6894   const DataLayout &DL = MIRBuilder.getDataLayout();
6895   if ((DstTy.isPointer() &&
6896        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6897       (InsertTy.isPointer() &&
6898        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6899     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6900     return UnableToLegalize;
6901   }
6902 
6903   LLT IntDstTy = DstTy;
6904 
6905   if (!DstTy.isScalar()) {
6906     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6907     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6908   }
6909 
6910   if (!InsertTy.isScalar()) {
6911     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6912     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6913   }
6914 
6915   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6916   if (Offset != 0) {
6917     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6918     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6919   }
6920 
6921   APInt MaskVal = APInt::getBitsSetWithWrap(
6922       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6923 
6924   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6925   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6926   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6927 
6928   MIRBuilder.buildCast(Dst, Or);
6929   MI.eraseFromParent();
6930   return Legalized;
6931 }
6932 
6933 LegalizerHelper::LegalizeResult
6934 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6935   Register Dst0 = MI.getOperand(0).getReg();
6936   Register Dst1 = MI.getOperand(1).getReg();
6937   Register LHS = MI.getOperand(2).getReg();
6938   Register RHS = MI.getOperand(3).getReg();
6939   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6940 
6941   LLT Ty = MRI.getType(Dst0);
6942   LLT BoolTy = MRI.getType(Dst1);
6943 
6944   if (IsAdd)
6945     MIRBuilder.buildAdd(Dst0, LHS, RHS);
6946   else
6947     MIRBuilder.buildSub(Dst0, LHS, RHS);
6948 
6949   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6950 
6951   auto Zero = MIRBuilder.buildConstant(Ty, 0);
6952 
6953   // For an addition, the result should be less than one of the operands (LHS)
6954   // if and only if the other operand (RHS) is negative, otherwise there will
6955   // be overflow.
6956   // For a subtraction, the result should be less than one of the operands
6957   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6958   // otherwise there will be overflow.
6959   auto ResultLowerThanLHS =
6960       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
6961   auto ConditionRHS = MIRBuilder.buildICmp(
6962       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6963 
6964   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6965   MI.eraseFromParent();
6966   return Legalized;
6967 }
6968 
6969 LegalizerHelper::LegalizeResult
6970 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6971   Register Res = MI.getOperand(0).getReg();
6972   Register LHS = MI.getOperand(1).getReg();
6973   Register RHS = MI.getOperand(2).getReg();
6974   LLT Ty = MRI.getType(Res);
6975   bool IsSigned;
6976   bool IsAdd;
6977   unsigned BaseOp;
6978   switch (MI.getOpcode()) {
6979   default:
6980     llvm_unreachable("unexpected addsat/subsat opcode");
6981   case TargetOpcode::G_UADDSAT:
6982     IsSigned = false;
6983     IsAdd = true;
6984     BaseOp = TargetOpcode::G_ADD;
6985     break;
6986   case TargetOpcode::G_SADDSAT:
6987     IsSigned = true;
6988     IsAdd = true;
6989     BaseOp = TargetOpcode::G_ADD;
6990     break;
6991   case TargetOpcode::G_USUBSAT:
6992     IsSigned = false;
6993     IsAdd = false;
6994     BaseOp = TargetOpcode::G_SUB;
6995     break;
6996   case TargetOpcode::G_SSUBSAT:
6997     IsSigned = true;
6998     IsAdd = false;
6999     BaseOp = TargetOpcode::G_SUB;
7000     break;
7001   }
7002 
7003   if (IsSigned) {
7004     // sadd.sat(a, b) ->
7005     //   hi = 0x7fffffff - smax(a, 0)
7006     //   lo = 0x80000000 - smin(a, 0)
7007     //   a + smin(smax(lo, b), hi)
7008     // ssub.sat(a, b) ->
7009     //   lo = smax(a, -1) - 0x7fffffff
7010     //   hi = smin(a, -1) - 0x80000000
7011     //   a - smin(smax(lo, b), hi)
7012     // TODO: AMDGPU can use a "median of 3" instruction here:
7013     //   a +/- med3(lo, b, hi)
7014     uint64_t NumBits = Ty.getScalarSizeInBits();
7015     auto MaxVal =
7016         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
7017     auto MinVal =
7018         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
7019     MachineInstrBuilder Hi, Lo;
7020     if (IsAdd) {
7021       auto Zero = MIRBuilder.buildConstant(Ty, 0);
7022       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
7023       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
7024     } else {
7025       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
7026       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
7027                                MaxVal);
7028       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
7029                                MinVal);
7030     }
7031     auto RHSClamped =
7032         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
7033     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
7034   } else {
7035     // uadd.sat(a, b) -> a + umin(~a, b)
7036     // usub.sat(a, b) -> a - umin(a, b)
7037     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
7038     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
7039     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
7040   }
7041 
7042   MI.eraseFromParent();
7043   return Legalized;
7044 }
7045 
7046 LegalizerHelper::LegalizeResult
7047 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
7048   Register Res = MI.getOperand(0).getReg();
7049   Register LHS = MI.getOperand(1).getReg();
7050   Register RHS = MI.getOperand(2).getReg();
7051   LLT Ty = MRI.getType(Res);
7052   LLT BoolTy = Ty.changeElementSize(1);
7053   bool IsSigned;
7054   bool IsAdd;
7055   unsigned OverflowOp;
7056   switch (MI.getOpcode()) {
7057   default:
7058     llvm_unreachable("unexpected addsat/subsat opcode");
7059   case TargetOpcode::G_UADDSAT:
7060     IsSigned = false;
7061     IsAdd = true;
7062     OverflowOp = TargetOpcode::G_UADDO;
7063     break;
7064   case TargetOpcode::G_SADDSAT:
7065     IsSigned = true;
7066     IsAdd = true;
7067     OverflowOp = TargetOpcode::G_SADDO;
7068     break;
7069   case TargetOpcode::G_USUBSAT:
7070     IsSigned = false;
7071     IsAdd = false;
7072     OverflowOp = TargetOpcode::G_USUBO;
7073     break;
7074   case TargetOpcode::G_SSUBSAT:
7075     IsSigned = true;
7076     IsAdd = false;
7077     OverflowOp = TargetOpcode::G_SSUBO;
7078     break;
7079   }
7080 
7081   auto OverflowRes =
7082       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
7083   Register Tmp = OverflowRes.getReg(0);
7084   Register Ov = OverflowRes.getReg(1);
7085   MachineInstrBuilder Clamp;
7086   if (IsSigned) {
7087     // sadd.sat(a, b) ->
7088     //   {tmp, ov} = saddo(a, b)
7089     //   ov ? (tmp >>s 31) + 0x80000000 : r
7090     // ssub.sat(a, b) ->
7091     //   {tmp, ov} = ssubo(a, b)
7092     //   ov ? (tmp >>s 31) + 0x80000000 : r
7093     uint64_t NumBits = Ty.getScalarSizeInBits();
7094     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
7095     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
7096     auto MinVal =
7097         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
7098     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
7099   } else {
7100     // uadd.sat(a, b) ->
7101     //   {tmp, ov} = uaddo(a, b)
7102     //   ov ? 0xffffffff : tmp
7103     // usub.sat(a, b) ->
7104     //   {tmp, ov} = usubo(a, b)
7105     //   ov ? 0 : tmp
7106     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
7107   }
7108   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
7109 
7110   MI.eraseFromParent();
7111   return Legalized;
7112 }
7113 
7114 LegalizerHelper::LegalizeResult
7115 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
7116   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
7117           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
7118          "Expected shlsat opcode!");
7119   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
7120   Register Res = MI.getOperand(0).getReg();
7121   Register LHS = MI.getOperand(1).getReg();
7122   Register RHS = MI.getOperand(2).getReg();
7123   LLT Ty = MRI.getType(Res);
7124   LLT BoolTy = Ty.changeElementSize(1);
7125 
7126   unsigned BW = Ty.getScalarSizeInBits();
7127   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
7128   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
7129                        : MIRBuilder.buildLShr(Ty, Result, RHS);
7130 
7131   MachineInstrBuilder SatVal;
7132   if (IsSigned) {
7133     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
7134     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
7135     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
7136                                     MIRBuilder.buildConstant(Ty, 0));
7137     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
7138   } else {
7139     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
7140   }
7141   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
7142   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
7143 
7144   MI.eraseFromParent();
7145   return Legalized;
7146 }
7147 
7148 LegalizerHelper::LegalizeResult
7149 LegalizerHelper::lowerBswap(MachineInstr &MI) {
7150   Register Dst = MI.getOperand(0).getReg();
7151   Register Src = MI.getOperand(1).getReg();
7152   const LLT Ty = MRI.getType(Src);
7153   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
7154   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
7155 
7156   // Swap most and least significant byte, set remaining bytes in Res to zero.
7157   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
7158   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
7159   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7160   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
7161 
7162   // Set i-th high/low byte in Res to i-th low/high byte from Src.
7163   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
7164     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
7165     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
7166     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
7167     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
7168     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
7169     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
7170     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
7171     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
7172     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
7173     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7174     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
7175     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
7176   }
7177   Res.getInstr()->getOperand(0).setReg(Dst);
7178 
7179   MI.eraseFromParent();
7180   return Legalized;
7181 }
7182 
7183 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
7184 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
7185                                  MachineInstrBuilder Src, APInt Mask) {
7186   const LLT Ty = Dst.getLLTTy(*B.getMRI());
7187   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
7188   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
7189   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
7190   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
7191   return B.buildOr(Dst, LHS, RHS);
7192 }
7193 
7194 LegalizerHelper::LegalizeResult
7195 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
7196   Register Dst = MI.getOperand(0).getReg();
7197   Register Src = MI.getOperand(1).getReg();
7198   const LLT Ty = MRI.getType(Src);
7199   unsigned Size = Ty.getSizeInBits();
7200 
7201   MachineInstrBuilder BSWAP =
7202       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
7203 
7204   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
7205   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
7206   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
7207   MachineInstrBuilder Swap4 =
7208       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
7209 
7210   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
7211   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
7212   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
7213   MachineInstrBuilder Swap2 =
7214       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
7215 
7216   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
7217   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
7218   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
7219   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
7220 
7221   MI.eraseFromParent();
7222   return Legalized;
7223 }
7224 
7225 LegalizerHelper::LegalizeResult
7226 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
7227   MachineFunction &MF = MIRBuilder.getMF();
7228 
7229   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
7230   int NameOpIdx = IsRead ? 1 : 0;
7231   int ValRegIndex = IsRead ? 0 : 1;
7232 
7233   Register ValReg = MI.getOperand(ValRegIndex).getReg();
7234   const LLT Ty = MRI.getType(ValReg);
7235   const MDString *RegStr = cast<MDString>(
7236     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
7237 
7238   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
7239   if (!PhysReg.isValid())
7240     return UnableToLegalize;
7241 
7242   if (IsRead)
7243     MIRBuilder.buildCopy(ValReg, PhysReg);
7244   else
7245     MIRBuilder.buildCopy(PhysReg, ValReg);
7246 
7247   MI.eraseFromParent();
7248   return Legalized;
7249 }
7250 
7251 LegalizerHelper::LegalizeResult
7252 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
7253   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
7254   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
7255   Register Result = MI.getOperand(0).getReg();
7256   LLT OrigTy = MRI.getType(Result);
7257   auto SizeInBits = OrigTy.getScalarSizeInBits();
7258   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
7259 
7260   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
7261   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
7262   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
7263   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
7264 
7265   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
7266   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
7267   MIRBuilder.buildTrunc(Result, Shifted);
7268 
7269   MI.eraseFromParent();
7270   return Legalized;
7271 }
7272 
7273 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
7274   // Implement vector G_SELECT in terms of XOR, AND, OR.
7275   Register DstReg = MI.getOperand(0).getReg();
7276   Register MaskReg = MI.getOperand(1).getReg();
7277   Register Op1Reg = MI.getOperand(2).getReg();
7278   Register Op2Reg = MI.getOperand(3).getReg();
7279   LLT DstTy = MRI.getType(DstReg);
7280   LLT MaskTy = MRI.getType(MaskReg);
7281   LLT Op1Ty = MRI.getType(Op1Reg);
7282   if (!DstTy.isVector())
7283     return UnableToLegalize;
7284 
7285   // Vector selects can have a scalar predicate. If so, splat into a vector and
7286   // finish for later legalization attempts to try again.
7287   if (MaskTy.isScalar()) {
7288     Register MaskElt = MaskReg;
7289     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
7290       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
7291     // Generate a vector splat idiom to be pattern matched later.
7292     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
7293     Observer.changingInstr(MI);
7294     MI.getOperand(1).setReg(ShufSplat.getReg(0));
7295     Observer.changedInstr(MI);
7296     return Legalized;
7297   }
7298 
7299   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
7300     return UnableToLegalize;
7301   }
7302 
7303   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
7304   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
7305   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
7306   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
7307   MI.eraseFromParent();
7308   return Legalized;
7309 }
7310 
7311 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
7312   // Split DIVREM into individual instructions.
7313   unsigned Opcode = MI.getOpcode();
7314 
7315   MIRBuilder.buildInstr(
7316       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
7317                                         : TargetOpcode::G_UDIV,
7318       {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7319   MIRBuilder.buildInstr(
7320       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
7321                                         : TargetOpcode::G_UREM,
7322       {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7323   MI.eraseFromParent();
7324   return Legalized;
7325 }
7326 
7327 LegalizerHelper::LegalizeResult
7328 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) {
7329   // Expand %res = G_ABS %a into:
7330   // %v1 = G_ASHR %a, scalar_size-1
7331   // %v2 = G_ADD %a, %v1
7332   // %res = G_XOR %v2, %v1
7333   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
7334   Register OpReg = MI.getOperand(1).getReg();
7335   auto ShiftAmt =
7336       MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
7337   auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
7338   auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
7339   MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
7340   MI.eraseFromParent();
7341   return Legalized;
7342 }
7343 
7344 LegalizerHelper::LegalizeResult
7345 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) {
7346   // Expand %res = G_ABS %a into:
7347   // %v1 = G_CONSTANT 0
7348   // %v2 = G_SUB %v1, %a
7349   // %res = G_SMAX %a, %v2
7350   Register SrcReg = MI.getOperand(1).getReg();
7351   LLT Ty = MRI.getType(SrcReg);
7352   auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0);
7353   auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0);
7354   MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub);
7355   MI.eraseFromParent();
7356   return Legalized;
7357 }
7358