1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetFrameLowering.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 #define DEBUG_TYPE "legalizer"
29 
30 using namespace llvm;
31 using namespace LegalizeActions;
32 
33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
34 ///
35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
36 /// with any leftover piece as type \p LeftoverTy
37 ///
38 /// Returns -1 in the first element of the pair if the breakdown is not
39 /// satisfiable.
40 static std::pair<int, int>
41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
42   assert(!LeftoverTy.isValid() && "this is an out argument");
43 
44   unsigned Size = OrigTy.getSizeInBits();
45   unsigned NarrowSize = NarrowTy.getSizeInBits();
46   unsigned NumParts = Size / NarrowSize;
47   unsigned LeftoverSize = Size - NumParts * NarrowSize;
48   assert(Size > NarrowSize);
49 
50   if (LeftoverSize == 0)
51     return {NumParts, 0};
52 
53   if (NarrowTy.isVector()) {
54     unsigned EltSize = OrigTy.getScalarSizeInBits();
55     if (LeftoverSize % EltSize != 0)
56       return {-1, -1};
57     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
58   } else {
59     LeftoverTy = LLT::scalar(LeftoverSize);
60   }
61 
62   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
63   return std::make_pair(NumParts, NumLeftover);
64 }
65 
66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
67 
68   if (!Ty.isScalar())
69     return nullptr;
70 
71   switch (Ty.getSizeInBits()) {
72   case 16:
73     return Type::getHalfTy(Ctx);
74   case 32:
75     return Type::getFloatTy(Ctx);
76   case 64:
77     return Type::getDoubleTy(Ctx);
78   case 128:
79     return Type::getFP128Ty(Ctx);
80   default:
81     return nullptr;
82   }
83 }
84 
85 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
86                                  GISelChangeObserver &Observer,
87                                  MachineIRBuilder &Builder)
88     : MIRBuilder(Builder), MRI(MF.getRegInfo()),
89       LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) {
90   MIRBuilder.setMF(MF);
91   MIRBuilder.setChangeObserver(Observer);
92 }
93 
94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
95                                  GISelChangeObserver &Observer,
96                                  MachineIRBuilder &B)
97     : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) {
98   MIRBuilder.setMF(MF);
99   MIRBuilder.setChangeObserver(Observer);
100 }
101 LegalizerHelper::LegalizeResult
102 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
103   LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs()));
104 
105   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
106       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
107     return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized
108                                                           : UnableToLegalize;
109   auto Step = LI.getAction(MI, MRI);
110   switch (Step.Action) {
111   case Legal:
112     LLVM_DEBUG(dbgs() << ".. Already legal\n");
113     return AlreadyLegal;
114   case Libcall:
115     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
116     return libcall(MI);
117   case NarrowScalar:
118     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
119     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
120   case WidenScalar:
121     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
122     return widenScalar(MI, Step.TypeIdx, Step.NewType);
123   case Bitcast:
124     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
125     return bitcast(MI, Step.TypeIdx, Step.NewType);
126   case Lower:
127     LLVM_DEBUG(dbgs() << ".. Lower\n");
128     return lower(MI, Step.TypeIdx, Step.NewType);
129   case FewerElements:
130     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
131     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
132   case MoreElements:
133     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
134     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
135   case Custom:
136     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
137     return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized
138                                                             : UnableToLegalize;
139   default:
140     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
141     return UnableToLegalize;
142   }
143 }
144 
145 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
146                                    SmallVectorImpl<Register> &VRegs) {
147   for (int i = 0; i < NumParts; ++i)
148     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
149   MIRBuilder.buildUnmerge(VRegs, Reg);
150 }
151 
152 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
153                                    LLT MainTy, LLT &LeftoverTy,
154                                    SmallVectorImpl<Register> &VRegs,
155                                    SmallVectorImpl<Register> &LeftoverRegs) {
156   assert(!LeftoverTy.isValid() && "this is an out argument");
157 
158   unsigned RegSize = RegTy.getSizeInBits();
159   unsigned MainSize = MainTy.getSizeInBits();
160   unsigned NumParts = RegSize / MainSize;
161   unsigned LeftoverSize = RegSize - NumParts * MainSize;
162 
163   // Use an unmerge when possible.
164   if (LeftoverSize == 0) {
165     for (unsigned I = 0; I < NumParts; ++I)
166       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
167     MIRBuilder.buildUnmerge(VRegs, Reg);
168     return true;
169   }
170 
171   if (MainTy.isVector()) {
172     unsigned EltSize = MainTy.getScalarSizeInBits();
173     if (LeftoverSize % EltSize != 0)
174       return false;
175     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
176   } else {
177     LeftoverTy = LLT::scalar(LeftoverSize);
178   }
179 
180   // For irregular sizes, extract the individual parts.
181   for (unsigned I = 0; I != NumParts; ++I) {
182     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
183     VRegs.push_back(NewReg);
184     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
185   }
186 
187   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
188        Offset += LeftoverSize) {
189     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
190     LeftoverRegs.push_back(NewReg);
191     MIRBuilder.buildExtract(NewReg, Reg, Offset);
192   }
193 
194   return true;
195 }
196 
197 void LegalizerHelper::insertParts(Register DstReg,
198                                   LLT ResultTy, LLT PartTy,
199                                   ArrayRef<Register> PartRegs,
200                                   LLT LeftoverTy,
201                                   ArrayRef<Register> LeftoverRegs) {
202   if (!LeftoverTy.isValid()) {
203     assert(LeftoverRegs.empty());
204 
205     if (!ResultTy.isVector()) {
206       MIRBuilder.buildMerge(DstReg, PartRegs);
207       return;
208     }
209 
210     if (PartTy.isVector())
211       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
212     else
213       MIRBuilder.buildBuildVector(DstReg, PartRegs);
214     return;
215   }
216 
217   unsigned PartSize = PartTy.getSizeInBits();
218   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
219 
220   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
221   MIRBuilder.buildUndef(CurResultReg);
222 
223   unsigned Offset = 0;
224   for (Register PartReg : PartRegs) {
225     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
226     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
227     CurResultReg = NewResultReg;
228     Offset += PartSize;
229   }
230 
231   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
232     // Use the original output register for the final insert to avoid a copy.
233     Register NewResultReg = (I + 1 == E) ?
234       DstReg : MRI.createGenericVirtualRegister(ResultTy);
235 
236     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
237     CurResultReg = NewResultReg;
238     Offset += LeftoverPartSize;
239   }
240 }
241 
242 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs
243 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
244                               const MachineInstr &MI) {
245   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
246 
247   const int NumResults = MI.getNumOperands() - 1;
248   Regs.resize(NumResults);
249   for (int I = 0; I != NumResults; ++I)
250     Regs[I] = MI.getOperand(I).getReg();
251 }
252 
253 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
254                                     LLT NarrowTy, Register SrcReg) {
255   LLT SrcTy = MRI.getType(SrcReg);
256 
257   LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy));
258   if (SrcTy == GCDTy) {
259     // If the source already evenly divides the result type, we don't need to do
260     // anything.
261     Parts.push_back(SrcReg);
262   } else {
263     // Need to split into common type sized pieces.
264     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
265     getUnmergeResults(Parts, *Unmerge);
266   }
267 
268   return GCDTy;
269 }
270 
271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
272                                          SmallVectorImpl<Register> &VRegs,
273                                          unsigned PadStrategy) {
274   LLT LCMTy = getLCMType(DstTy, NarrowTy);
275 
276   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
277   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
278   int NumOrigSrc = VRegs.size();
279 
280   Register PadReg;
281 
282   // Get a value we can use to pad the source value if the sources won't evenly
283   // cover the result type.
284   if (NumOrigSrc < NumParts * NumSubParts) {
285     if (PadStrategy == TargetOpcode::G_ZEXT)
286       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
287     else if (PadStrategy == TargetOpcode::G_ANYEXT)
288       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
289     else {
290       assert(PadStrategy == TargetOpcode::G_SEXT);
291 
292       // Shift the sign bit of the low register through the high register.
293       auto ShiftAmt =
294         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
295       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
296     }
297   }
298 
299   // Registers for the final merge to be produced.
300   SmallVector<Register, 4> Remerge(NumParts);
301 
302   // Registers needed for intermediate merges, which will be merged into a
303   // source for Remerge.
304   SmallVector<Register, 4> SubMerge(NumSubParts);
305 
306   // Once we've fully read off the end of the original source bits, we can reuse
307   // the same high bits for remaining padding elements.
308   Register AllPadReg;
309 
310   // Build merges to the LCM type to cover the original result type.
311   for (int I = 0; I != NumParts; ++I) {
312     bool AllMergePartsArePadding = true;
313 
314     // Build the requested merges to the requested type.
315     for (int J = 0; J != NumSubParts; ++J) {
316       int Idx = I * NumSubParts + J;
317       if (Idx >= NumOrigSrc) {
318         SubMerge[J] = PadReg;
319         continue;
320       }
321 
322       SubMerge[J] = VRegs[Idx];
323 
324       // There are meaningful bits here we can't reuse later.
325       AllMergePartsArePadding = false;
326     }
327 
328     // If we've filled up a complete piece with padding bits, we can directly
329     // emit the natural sized constant if applicable, rather than a merge of
330     // smaller constants.
331     if (AllMergePartsArePadding && !AllPadReg) {
332       if (PadStrategy == TargetOpcode::G_ANYEXT)
333         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
334       else if (PadStrategy == TargetOpcode::G_ZEXT)
335         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
336 
337       // If this is a sign extension, we can't materialize a trivial constant
338       // with the right type and have to produce a merge.
339     }
340 
341     if (AllPadReg) {
342       // Avoid creating additional instructions if we're just adding additional
343       // copies of padding bits.
344       Remerge[I] = AllPadReg;
345       continue;
346     }
347 
348     if (NumSubParts == 1)
349       Remerge[I] = SubMerge[0];
350     else
351       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
352 
353     // In the sign extend padding case, re-use the first all-signbit merge.
354     if (AllMergePartsArePadding && !AllPadReg)
355       AllPadReg = Remerge[I];
356   }
357 
358   VRegs = std::move(Remerge);
359   return LCMTy;
360 }
361 
362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
363                                                ArrayRef<Register> RemergeRegs) {
364   LLT DstTy = MRI.getType(DstReg);
365 
366   // Create the merge to the widened source, and extract the relevant bits into
367   // the result.
368 
369   if (DstTy == LCMTy) {
370     MIRBuilder.buildMerge(DstReg, RemergeRegs);
371     return;
372   }
373 
374   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
375   if (DstTy.isScalar() && LCMTy.isScalar()) {
376     MIRBuilder.buildTrunc(DstReg, Remerge);
377     return;
378   }
379 
380   if (LCMTy.isVector()) {
381     MIRBuilder.buildExtract(DstReg, Remerge, 0);
382     return;
383   }
384 
385   llvm_unreachable("unhandled case");
386 }
387 
388 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
389 #define RTLIBCASE(LibcallPrefix)                                               \
390   do {                                                                         \
391     switch (Size) {                                                            \
392     case 32:                                                                   \
393       return RTLIB::LibcallPrefix##32;                                         \
394     case 64:                                                                   \
395       return RTLIB::LibcallPrefix##64;                                         \
396     case 128:                                                                  \
397       return RTLIB::LibcallPrefix##128;                                        \
398     default:                                                                   \
399       llvm_unreachable("unexpected size");                                     \
400     }                                                                          \
401   } while (0)
402 
403   assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
404 
405   switch (Opcode) {
406   case TargetOpcode::G_SDIV:
407     RTLIBCASE(SDIV_I);
408   case TargetOpcode::G_UDIV:
409     RTLIBCASE(UDIV_I);
410   case TargetOpcode::G_SREM:
411     RTLIBCASE(SREM_I);
412   case TargetOpcode::G_UREM:
413     RTLIBCASE(UREM_I);
414   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
415     RTLIBCASE(CTLZ_I);
416   case TargetOpcode::G_FADD:
417     RTLIBCASE(ADD_F);
418   case TargetOpcode::G_FSUB:
419     RTLIBCASE(SUB_F);
420   case TargetOpcode::G_FMUL:
421     RTLIBCASE(MUL_F);
422   case TargetOpcode::G_FDIV:
423     RTLIBCASE(DIV_F);
424   case TargetOpcode::G_FEXP:
425     RTLIBCASE(EXP_F);
426   case TargetOpcode::G_FEXP2:
427     RTLIBCASE(EXP2_F);
428   case TargetOpcode::G_FREM:
429     RTLIBCASE(REM_F);
430   case TargetOpcode::G_FPOW:
431     RTLIBCASE(POW_F);
432   case TargetOpcode::G_FMA:
433     RTLIBCASE(FMA_F);
434   case TargetOpcode::G_FSIN:
435     RTLIBCASE(SIN_F);
436   case TargetOpcode::G_FCOS:
437     RTLIBCASE(COS_F);
438   case TargetOpcode::G_FLOG10:
439     RTLIBCASE(LOG10_F);
440   case TargetOpcode::G_FLOG:
441     RTLIBCASE(LOG_F);
442   case TargetOpcode::G_FLOG2:
443     RTLIBCASE(LOG2_F);
444   case TargetOpcode::G_FCEIL:
445     RTLIBCASE(CEIL_F);
446   case TargetOpcode::G_FFLOOR:
447     RTLIBCASE(FLOOR_F);
448   case TargetOpcode::G_FMINNUM:
449     RTLIBCASE(FMIN_F);
450   case TargetOpcode::G_FMAXNUM:
451     RTLIBCASE(FMAX_F);
452   case TargetOpcode::G_FSQRT:
453     RTLIBCASE(SQRT_F);
454   case TargetOpcode::G_FRINT:
455     RTLIBCASE(RINT_F);
456   case TargetOpcode::G_FNEARBYINT:
457     RTLIBCASE(NEARBYINT_F);
458   }
459   llvm_unreachable("Unknown libcall function");
460 }
461 
462 /// True if an instruction is in tail position in its caller. Intended for
463 /// legalizing libcalls as tail calls when possible.
464 static bool isLibCallInTailPosition(MachineInstr &MI) {
465   const Function &F = MI.getParent()->getParent()->getFunction();
466 
467   // Conservatively require the attributes of the call to match those of
468   // the return. Ignore NoAlias and NonNull because they don't affect the
469   // call sequence.
470   AttributeList CallerAttrs = F.getAttributes();
471   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
472           .removeAttribute(Attribute::NoAlias)
473           .removeAttribute(Attribute::NonNull)
474           .hasAttributes())
475     return false;
476 
477   // It's not safe to eliminate the sign / zero extension of the return value.
478   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
479       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
480     return false;
481 
482   // Only tail call if the following instruction is a standard return.
483   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
484   MachineInstr *Next = MI.getNextNode();
485   if (!Next || TII.isTailCall(*Next) || !Next->isReturn())
486     return false;
487 
488   return true;
489 }
490 
491 LegalizerHelper::LegalizeResult
492 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
493                     const CallLowering::ArgInfo &Result,
494                     ArrayRef<CallLowering::ArgInfo> Args,
495                     const CallingConv::ID CC) {
496   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
497 
498   CallLowering::CallLoweringInfo Info;
499   Info.CallConv = CC;
500   Info.Callee = MachineOperand::CreateES(Name);
501   Info.OrigRet = Result;
502   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
503   if (!CLI.lowerCall(MIRBuilder, Info))
504     return LegalizerHelper::UnableToLegalize;
505 
506   return LegalizerHelper::Legalized;
507 }
508 
509 LegalizerHelper::LegalizeResult
510 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
511                     const CallLowering::ArgInfo &Result,
512                     ArrayRef<CallLowering::ArgInfo> Args) {
513   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
514   const char *Name = TLI.getLibcallName(Libcall);
515   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
516   return createLibcall(MIRBuilder, Name, Result, Args, CC);
517 }
518 
519 // Useful for libcalls where all operands have the same type.
520 static LegalizerHelper::LegalizeResult
521 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
522               Type *OpType) {
523   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
524 
525   SmallVector<CallLowering::ArgInfo, 3> Args;
526   for (unsigned i = 1; i < MI.getNumOperands(); i++)
527     Args.push_back({MI.getOperand(i).getReg(), OpType});
528   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
529                        Args);
530 }
531 
532 LegalizerHelper::LegalizeResult
533 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
534                        MachineInstr &MI) {
535   assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
536   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
537 
538   SmallVector<CallLowering::ArgInfo, 3> Args;
539   // Add all the args, except for the last which is an imm denoting 'tail'.
540   for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) {
541     Register Reg = MI.getOperand(i).getReg();
542 
543     // Need derive an IR type for call lowering.
544     LLT OpLLT = MRI.getType(Reg);
545     Type *OpTy = nullptr;
546     if (OpLLT.isPointer())
547       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
548     else
549       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
550     Args.push_back({Reg, OpTy});
551   }
552 
553   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
554   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
555   Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
556   RTLIB::Libcall RTLibcall;
557   switch (ID) {
558   case Intrinsic::memcpy:
559     RTLibcall = RTLIB::MEMCPY;
560     break;
561   case Intrinsic::memset:
562     RTLibcall = RTLIB::MEMSET;
563     break;
564   case Intrinsic::memmove:
565     RTLibcall = RTLIB::MEMMOVE;
566     break;
567   default:
568     return LegalizerHelper::UnableToLegalize;
569   }
570   const char *Name = TLI.getLibcallName(RTLibcall);
571 
572   MIRBuilder.setInstr(MI);
573 
574   CallLowering::CallLoweringInfo Info;
575   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
576   Info.Callee = MachineOperand::CreateES(Name);
577   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
578   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 &&
579                     isLibCallInTailPosition(MI);
580 
581   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
582   if (!CLI.lowerCall(MIRBuilder, Info))
583     return LegalizerHelper::UnableToLegalize;
584 
585   if (Info.LoweredTailCall) {
586     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
587     // We must have a return following the call to get past
588     // isLibCallInTailPosition.
589     assert(MI.getNextNode() && MI.getNextNode()->isReturn() &&
590            "Expected instr following MI to be a return?");
591 
592     // We lowered a tail call, so the call is now the return from the block.
593     // Delete the old return.
594     MI.getNextNode()->eraseFromParent();
595   }
596 
597   return LegalizerHelper::Legalized;
598 }
599 
600 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
601                                        Type *FromType) {
602   auto ToMVT = MVT::getVT(ToType);
603   auto FromMVT = MVT::getVT(FromType);
604 
605   switch (Opcode) {
606   case TargetOpcode::G_FPEXT:
607     return RTLIB::getFPEXT(FromMVT, ToMVT);
608   case TargetOpcode::G_FPTRUNC:
609     return RTLIB::getFPROUND(FromMVT, ToMVT);
610   case TargetOpcode::G_FPTOSI:
611     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
612   case TargetOpcode::G_FPTOUI:
613     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
614   case TargetOpcode::G_SITOFP:
615     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
616   case TargetOpcode::G_UITOFP:
617     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
618   }
619   llvm_unreachable("Unsupported libcall function");
620 }
621 
622 static LegalizerHelper::LegalizeResult
623 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
624                   Type *FromType) {
625   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
626   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
627                        {{MI.getOperand(1).getReg(), FromType}});
628 }
629 
630 LegalizerHelper::LegalizeResult
631 LegalizerHelper::libcall(MachineInstr &MI) {
632   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
633   unsigned Size = LLTy.getSizeInBits();
634   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
635 
636   MIRBuilder.setInstrAndDebugLoc(MI);
637 
638   switch (MI.getOpcode()) {
639   default:
640     return UnableToLegalize;
641   case TargetOpcode::G_SDIV:
642   case TargetOpcode::G_UDIV:
643   case TargetOpcode::G_SREM:
644   case TargetOpcode::G_UREM:
645   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
646     Type *HLTy = IntegerType::get(Ctx, Size);
647     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
648     if (Status != Legalized)
649       return Status;
650     break;
651   }
652   case TargetOpcode::G_FADD:
653   case TargetOpcode::G_FSUB:
654   case TargetOpcode::G_FMUL:
655   case TargetOpcode::G_FDIV:
656   case TargetOpcode::G_FMA:
657   case TargetOpcode::G_FPOW:
658   case TargetOpcode::G_FREM:
659   case TargetOpcode::G_FCOS:
660   case TargetOpcode::G_FSIN:
661   case TargetOpcode::G_FLOG10:
662   case TargetOpcode::G_FLOG:
663   case TargetOpcode::G_FLOG2:
664   case TargetOpcode::G_FEXP:
665   case TargetOpcode::G_FEXP2:
666   case TargetOpcode::G_FCEIL:
667   case TargetOpcode::G_FFLOOR:
668   case TargetOpcode::G_FMINNUM:
669   case TargetOpcode::G_FMAXNUM:
670   case TargetOpcode::G_FSQRT:
671   case TargetOpcode::G_FRINT:
672   case TargetOpcode::G_FNEARBYINT: {
673     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
674     if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) {
675       LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n");
676       return UnableToLegalize;
677     }
678     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
679     if (Status != Legalized)
680       return Status;
681     break;
682   }
683   case TargetOpcode::G_FPEXT:
684   case TargetOpcode::G_FPTRUNC: {
685     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
686     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
687     if (!FromTy || !ToTy)
688       return UnableToLegalize;
689     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
690     if (Status != Legalized)
691       return Status;
692     break;
693   }
694   case TargetOpcode::G_FPTOSI:
695   case TargetOpcode::G_FPTOUI: {
696     // FIXME: Support other types
697     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
698     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
699     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
700       return UnableToLegalize;
701     LegalizeResult Status = conversionLibcall(
702         MI, MIRBuilder,
703         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
704         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
705     if (Status != Legalized)
706       return Status;
707     break;
708   }
709   case TargetOpcode::G_SITOFP:
710   case TargetOpcode::G_UITOFP: {
711     // FIXME: Support other types
712     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
713     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
714     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
715       return UnableToLegalize;
716     LegalizeResult Status = conversionLibcall(
717         MI, MIRBuilder,
718         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
719         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
720     if (Status != Legalized)
721       return Status;
722     break;
723   }
724   }
725 
726   MI.eraseFromParent();
727   return Legalized;
728 }
729 
730 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
731                                                               unsigned TypeIdx,
732                                                               LLT NarrowTy) {
733   MIRBuilder.setInstrAndDebugLoc(MI);
734 
735   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
736   uint64_t NarrowSize = NarrowTy.getSizeInBits();
737 
738   switch (MI.getOpcode()) {
739   default:
740     return UnableToLegalize;
741   case TargetOpcode::G_IMPLICIT_DEF: {
742     Register DstReg = MI.getOperand(0).getReg();
743     LLT DstTy = MRI.getType(DstReg);
744 
745     // If SizeOp0 is not an exact multiple of NarrowSize, emit
746     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
747     // FIXME: Although this would also be legal for the general case, it causes
748     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
749     //  combines not being hit). This seems to be a problem related to the
750     //  artifact combiner.
751     if (SizeOp0 % NarrowSize != 0) {
752       LLT ImplicitTy = NarrowTy;
753       if (DstTy.isVector())
754         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
755 
756       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
757       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
758 
759       MI.eraseFromParent();
760       return Legalized;
761     }
762 
763     int NumParts = SizeOp0 / NarrowSize;
764 
765     SmallVector<Register, 2> DstRegs;
766     for (int i = 0; i < NumParts; ++i)
767       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
768 
769     if (DstTy.isVector())
770       MIRBuilder.buildBuildVector(DstReg, DstRegs);
771     else
772       MIRBuilder.buildMerge(DstReg, DstRegs);
773     MI.eraseFromParent();
774     return Legalized;
775   }
776   case TargetOpcode::G_CONSTANT: {
777     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
778     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
779     unsigned TotalSize = Ty.getSizeInBits();
780     unsigned NarrowSize = NarrowTy.getSizeInBits();
781     int NumParts = TotalSize / NarrowSize;
782 
783     SmallVector<Register, 4> PartRegs;
784     for (int I = 0; I != NumParts; ++I) {
785       unsigned Offset = I * NarrowSize;
786       auto K = MIRBuilder.buildConstant(NarrowTy,
787                                         Val.lshr(Offset).trunc(NarrowSize));
788       PartRegs.push_back(K.getReg(0));
789     }
790 
791     LLT LeftoverTy;
792     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
793     SmallVector<Register, 1> LeftoverRegs;
794     if (LeftoverBits != 0) {
795       LeftoverTy = LLT::scalar(LeftoverBits);
796       auto K = MIRBuilder.buildConstant(
797         LeftoverTy,
798         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
799       LeftoverRegs.push_back(K.getReg(0));
800     }
801 
802     insertParts(MI.getOperand(0).getReg(),
803                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
804 
805     MI.eraseFromParent();
806     return Legalized;
807   }
808   case TargetOpcode::G_SEXT:
809   case TargetOpcode::G_ZEXT:
810   case TargetOpcode::G_ANYEXT:
811     return narrowScalarExt(MI, TypeIdx, NarrowTy);
812   case TargetOpcode::G_TRUNC: {
813     if (TypeIdx != 1)
814       return UnableToLegalize;
815 
816     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
817     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
818       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
819       return UnableToLegalize;
820     }
821 
822     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
823     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
824     MI.eraseFromParent();
825     return Legalized;
826   }
827 
828   case TargetOpcode::G_ADD: {
829     // FIXME: add support for when SizeOp0 isn't an exact multiple of
830     // NarrowSize.
831     if (SizeOp0 % NarrowSize != 0)
832       return UnableToLegalize;
833     // Expand in terms of carry-setting/consuming G_ADDE instructions.
834     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
835 
836     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
837     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
838     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
839 
840     Register CarryIn;
841     for (int i = 0; i < NumParts; ++i) {
842       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
843       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
844 
845       if (i == 0)
846         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
847       else {
848         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
849                               Src2Regs[i], CarryIn);
850       }
851 
852       DstRegs.push_back(DstReg);
853       CarryIn = CarryOut;
854     }
855     Register DstReg = MI.getOperand(0).getReg();
856     if(MRI.getType(DstReg).isVector())
857       MIRBuilder.buildBuildVector(DstReg, DstRegs);
858     else
859       MIRBuilder.buildMerge(DstReg, DstRegs);
860     MI.eraseFromParent();
861     return Legalized;
862   }
863   case TargetOpcode::G_SUB: {
864     // FIXME: add support for when SizeOp0 isn't an exact multiple of
865     // NarrowSize.
866     if (SizeOp0 % NarrowSize != 0)
867       return UnableToLegalize;
868 
869     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
870 
871     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
872     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
873     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
874 
875     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
876     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
877     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
878                           {Src1Regs[0], Src2Regs[0]});
879     DstRegs.push_back(DstReg);
880     Register BorrowIn = BorrowOut;
881     for (int i = 1; i < NumParts; ++i) {
882       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
883       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
884 
885       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
886                             {Src1Regs[i], Src2Regs[i], BorrowIn});
887 
888       DstRegs.push_back(DstReg);
889       BorrowIn = BorrowOut;
890     }
891     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
892     MI.eraseFromParent();
893     return Legalized;
894   }
895   case TargetOpcode::G_MUL:
896   case TargetOpcode::G_UMULH:
897     return narrowScalarMul(MI, NarrowTy);
898   case TargetOpcode::G_EXTRACT:
899     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
900   case TargetOpcode::G_INSERT:
901     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
902   case TargetOpcode::G_LOAD: {
903     const auto &MMO = **MI.memoperands_begin();
904     Register DstReg = MI.getOperand(0).getReg();
905     LLT DstTy = MRI.getType(DstReg);
906     if (DstTy.isVector())
907       return UnableToLegalize;
908 
909     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
910       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
911       auto &MMO = **MI.memoperands_begin();
912       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
913       MIRBuilder.buildAnyExt(DstReg, TmpReg);
914       MI.eraseFromParent();
915       return Legalized;
916     }
917 
918     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
919   }
920   case TargetOpcode::G_ZEXTLOAD:
921   case TargetOpcode::G_SEXTLOAD: {
922     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
923     Register DstReg = MI.getOperand(0).getReg();
924     Register PtrReg = MI.getOperand(1).getReg();
925 
926     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
927     auto &MMO = **MI.memoperands_begin();
928     if (MMO.getSizeInBits() == NarrowSize) {
929       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
930     } else {
931       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
932     }
933 
934     if (ZExt)
935       MIRBuilder.buildZExt(DstReg, TmpReg);
936     else
937       MIRBuilder.buildSExt(DstReg, TmpReg);
938 
939     MI.eraseFromParent();
940     return Legalized;
941   }
942   case TargetOpcode::G_STORE: {
943     const auto &MMO = **MI.memoperands_begin();
944 
945     Register SrcReg = MI.getOperand(0).getReg();
946     LLT SrcTy = MRI.getType(SrcReg);
947     if (SrcTy.isVector())
948       return UnableToLegalize;
949 
950     int NumParts = SizeOp0 / NarrowSize;
951     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
952     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
953     if (SrcTy.isVector() && LeftoverBits != 0)
954       return UnableToLegalize;
955 
956     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
957       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
958       auto &MMO = **MI.memoperands_begin();
959       MIRBuilder.buildTrunc(TmpReg, SrcReg);
960       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
961       MI.eraseFromParent();
962       return Legalized;
963     }
964 
965     return reduceLoadStoreWidth(MI, 0, NarrowTy);
966   }
967   case TargetOpcode::G_SELECT:
968     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
969   case TargetOpcode::G_AND:
970   case TargetOpcode::G_OR:
971   case TargetOpcode::G_XOR: {
972     // Legalize bitwise operation:
973     // A = BinOp<Ty> B, C
974     // into:
975     // B1, ..., BN = G_UNMERGE_VALUES B
976     // C1, ..., CN = G_UNMERGE_VALUES C
977     // A1 = BinOp<Ty/N> B1, C2
978     // ...
979     // AN = BinOp<Ty/N> BN, CN
980     // A = G_MERGE_VALUES A1, ..., AN
981     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
982   }
983   case TargetOpcode::G_SHL:
984   case TargetOpcode::G_LSHR:
985   case TargetOpcode::G_ASHR:
986     return narrowScalarShift(MI, TypeIdx, NarrowTy);
987   case TargetOpcode::G_CTLZ:
988   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
989   case TargetOpcode::G_CTTZ:
990   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
991   case TargetOpcode::G_CTPOP:
992     if (TypeIdx == 1)
993       switch (MI.getOpcode()) {
994       case TargetOpcode::G_CTLZ:
995       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
996         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
997       case TargetOpcode::G_CTTZ:
998       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
999         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1000       case TargetOpcode::G_CTPOP:
1001         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1002       default:
1003         return UnableToLegalize;
1004       }
1005 
1006     Observer.changingInstr(MI);
1007     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1008     Observer.changedInstr(MI);
1009     return Legalized;
1010   case TargetOpcode::G_INTTOPTR:
1011     if (TypeIdx != 1)
1012       return UnableToLegalize;
1013 
1014     Observer.changingInstr(MI);
1015     narrowScalarSrc(MI, NarrowTy, 1);
1016     Observer.changedInstr(MI);
1017     return Legalized;
1018   case TargetOpcode::G_PTRTOINT:
1019     if (TypeIdx != 0)
1020       return UnableToLegalize;
1021 
1022     Observer.changingInstr(MI);
1023     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1024     Observer.changedInstr(MI);
1025     return Legalized;
1026   case TargetOpcode::G_PHI: {
1027     unsigned NumParts = SizeOp0 / NarrowSize;
1028     SmallVector<Register, 2> DstRegs(NumParts);
1029     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1030     Observer.changingInstr(MI);
1031     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1032       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1033       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1034       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1035                    SrcRegs[i / 2]);
1036     }
1037     MachineBasicBlock &MBB = *MI.getParent();
1038     MIRBuilder.setInsertPt(MBB, MI);
1039     for (unsigned i = 0; i < NumParts; ++i) {
1040       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1041       MachineInstrBuilder MIB =
1042           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1043       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1044         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1045     }
1046     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1047     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1048     Observer.changedInstr(MI);
1049     MI.eraseFromParent();
1050     return Legalized;
1051   }
1052   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1053   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1054     if (TypeIdx != 2)
1055       return UnableToLegalize;
1056 
1057     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1058     Observer.changingInstr(MI);
1059     narrowScalarSrc(MI, NarrowTy, OpIdx);
1060     Observer.changedInstr(MI);
1061     return Legalized;
1062   }
1063   case TargetOpcode::G_ICMP: {
1064     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1065     if (NarrowSize * 2 != SrcSize)
1066       return UnableToLegalize;
1067 
1068     Observer.changingInstr(MI);
1069     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1070     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1071     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1072 
1073     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1074     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1075     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1076 
1077     CmpInst::Predicate Pred =
1078         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1079     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1080 
1081     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1082       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1083       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1084       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1085       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1086       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1087     } else {
1088       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1089       MachineInstrBuilder CmpHEQ =
1090           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1091       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1092           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1093       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1094     }
1095     Observer.changedInstr(MI);
1096     MI.eraseFromParent();
1097     return Legalized;
1098   }
1099   case TargetOpcode::G_SEXT_INREG: {
1100     if (TypeIdx != 0)
1101       return UnableToLegalize;
1102 
1103     int64_t SizeInBits = MI.getOperand(2).getImm();
1104 
1105     // So long as the new type has more bits than the bits we're extending we
1106     // don't need to break it apart.
1107     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1108       Observer.changingInstr(MI);
1109       // We don't lose any non-extension bits by truncating the src and
1110       // sign-extending the dst.
1111       MachineOperand &MO1 = MI.getOperand(1);
1112       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1113       MO1.setReg(TruncMIB.getReg(0));
1114 
1115       MachineOperand &MO2 = MI.getOperand(0);
1116       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1117       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1118       MIRBuilder.buildSExt(MO2, DstExt);
1119       MO2.setReg(DstExt);
1120       Observer.changedInstr(MI);
1121       return Legalized;
1122     }
1123 
1124     // Break it apart. Components below the extension point are unmodified. The
1125     // component containing the extension point becomes a narrower SEXT_INREG.
1126     // Components above it are ashr'd from the component containing the
1127     // extension point.
1128     if (SizeOp0 % NarrowSize != 0)
1129       return UnableToLegalize;
1130     int NumParts = SizeOp0 / NarrowSize;
1131 
1132     // List the registers where the destination will be scattered.
1133     SmallVector<Register, 2> DstRegs;
1134     // List the registers where the source will be split.
1135     SmallVector<Register, 2> SrcRegs;
1136 
1137     // Create all the temporary registers.
1138     for (int i = 0; i < NumParts; ++i) {
1139       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1140 
1141       SrcRegs.push_back(SrcReg);
1142     }
1143 
1144     // Explode the big arguments into smaller chunks.
1145     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1146 
1147     Register AshrCstReg =
1148         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1149             .getReg(0);
1150     Register FullExtensionReg = 0;
1151     Register PartialExtensionReg = 0;
1152 
1153     // Do the operation on each small part.
1154     for (int i = 0; i < NumParts; ++i) {
1155       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1156         DstRegs.push_back(SrcRegs[i]);
1157       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1158         assert(PartialExtensionReg &&
1159                "Expected to visit partial extension before full");
1160         if (FullExtensionReg) {
1161           DstRegs.push_back(FullExtensionReg);
1162           continue;
1163         }
1164         DstRegs.push_back(
1165             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1166                 .getReg(0));
1167         FullExtensionReg = DstRegs.back();
1168       } else {
1169         DstRegs.push_back(
1170             MIRBuilder
1171                 .buildInstr(
1172                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1173                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1174                 .getReg(0));
1175         PartialExtensionReg = DstRegs.back();
1176       }
1177     }
1178 
1179     // Gather the destination registers into the final destination.
1180     Register DstReg = MI.getOperand(0).getReg();
1181     MIRBuilder.buildMerge(DstReg, DstRegs);
1182     MI.eraseFromParent();
1183     return Legalized;
1184   }
1185   case TargetOpcode::G_BSWAP:
1186   case TargetOpcode::G_BITREVERSE: {
1187     if (SizeOp0 % NarrowSize != 0)
1188       return UnableToLegalize;
1189 
1190     Observer.changingInstr(MI);
1191     SmallVector<Register, 2> SrcRegs, DstRegs;
1192     unsigned NumParts = SizeOp0 / NarrowSize;
1193     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1194 
1195     for (unsigned i = 0; i < NumParts; ++i) {
1196       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1197                                            {SrcRegs[NumParts - 1 - i]});
1198       DstRegs.push_back(DstPart.getReg(0));
1199     }
1200 
1201     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1202 
1203     Observer.changedInstr(MI);
1204     MI.eraseFromParent();
1205     return Legalized;
1206   }
1207   }
1208 }
1209 
1210 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1211                                      unsigned OpIdx, unsigned ExtOpcode) {
1212   MachineOperand &MO = MI.getOperand(OpIdx);
1213   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1214   MO.setReg(ExtB.getReg(0));
1215 }
1216 
1217 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1218                                       unsigned OpIdx) {
1219   MachineOperand &MO = MI.getOperand(OpIdx);
1220   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1221   MO.setReg(ExtB.getReg(0));
1222 }
1223 
1224 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1225                                      unsigned OpIdx, unsigned TruncOpcode) {
1226   MachineOperand &MO = MI.getOperand(OpIdx);
1227   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1228   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1229   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1230   MO.setReg(DstExt);
1231 }
1232 
1233 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1234                                       unsigned OpIdx, unsigned ExtOpcode) {
1235   MachineOperand &MO = MI.getOperand(OpIdx);
1236   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1237   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1238   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1239   MO.setReg(DstTrunc);
1240 }
1241 
1242 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1243                                             unsigned OpIdx) {
1244   MachineOperand &MO = MI.getOperand(OpIdx);
1245   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1246   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1247   MIRBuilder.buildExtract(MO, DstExt, 0);
1248   MO.setReg(DstExt);
1249 }
1250 
1251 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1252                                             unsigned OpIdx) {
1253   MachineOperand &MO = MI.getOperand(OpIdx);
1254 
1255   LLT OldTy = MRI.getType(MO.getReg());
1256   unsigned OldElts = OldTy.getNumElements();
1257   unsigned NewElts = MoreTy.getNumElements();
1258 
1259   unsigned NumParts = NewElts / OldElts;
1260 
1261   // Use concat_vectors if the result is a multiple of the number of elements.
1262   if (NumParts * OldElts == NewElts) {
1263     SmallVector<Register, 8> Parts;
1264     Parts.push_back(MO.getReg());
1265 
1266     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1267     for (unsigned I = 1; I != NumParts; ++I)
1268       Parts.push_back(ImpDef);
1269 
1270     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1271     MO.setReg(Concat.getReg(0));
1272     return;
1273   }
1274 
1275   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1276   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1277   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1278   MO.setReg(MoreReg);
1279 }
1280 
1281 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1282   MachineOperand &Op = MI.getOperand(OpIdx);
1283   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1284 }
1285 
1286 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1287   MachineOperand &MO = MI.getOperand(OpIdx);
1288   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1289   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1290   MIRBuilder.buildBitcast(MO, CastDst);
1291   MO.setReg(CastDst);
1292 }
1293 
1294 LegalizerHelper::LegalizeResult
1295 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1296                                         LLT WideTy) {
1297   if (TypeIdx != 1)
1298     return UnableToLegalize;
1299 
1300   Register DstReg = MI.getOperand(0).getReg();
1301   LLT DstTy = MRI.getType(DstReg);
1302   if (DstTy.isVector())
1303     return UnableToLegalize;
1304 
1305   Register Src1 = MI.getOperand(1).getReg();
1306   LLT SrcTy = MRI.getType(Src1);
1307   const int DstSize = DstTy.getSizeInBits();
1308   const int SrcSize = SrcTy.getSizeInBits();
1309   const int WideSize = WideTy.getSizeInBits();
1310   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1311 
1312   unsigned NumOps = MI.getNumOperands();
1313   unsigned NumSrc = MI.getNumOperands() - 1;
1314   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1315 
1316   if (WideSize >= DstSize) {
1317     // Directly pack the bits in the target type.
1318     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1319 
1320     for (unsigned I = 2; I != NumOps; ++I) {
1321       const unsigned Offset = (I - 1) * PartSize;
1322 
1323       Register SrcReg = MI.getOperand(I).getReg();
1324       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1325 
1326       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1327 
1328       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1329         MRI.createGenericVirtualRegister(WideTy);
1330 
1331       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1332       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1333       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1334       ResultReg = NextResult;
1335     }
1336 
1337     if (WideSize > DstSize)
1338       MIRBuilder.buildTrunc(DstReg, ResultReg);
1339     else if (DstTy.isPointer())
1340       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1341 
1342     MI.eraseFromParent();
1343     return Legalized;
1344   }
1345 
1346   // Unmerge the original values to the GCD type, and recombine to the next
1347   // multiple greater than the original type.
1348   //
1349   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1350   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1351   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1352   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1353   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1354   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1355   // %12:_(s12) = G_MERGE_VALUES %10, %11
1356   //
1357   // Padding with undef if necessary:
1358   //
1359   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1360   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1361   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1362   // %7:_(s2) = G_IMPLICIT_DEF
1363   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1364   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1365   // %10:_(s12) = G_MERGE_VALUES %8, %9
1366 
1367   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1368   LLT GCDTy = LLT::scalar(GCD);
1369 
1370   SmallVector<Register, 8> Parts;
1371   SmallVector<Register, 8> NewMergeRegs;
1372   SmallVector<Register, 8> Unmerges;
1373   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1374 
1375   // Decompose the original operands if they don't evenly divide.
1376   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1377     Register SrcReg = MI.getOperand(I).getReg();
1378     if (GCD == SrcSize) {
1379       Unmerges.push_back(SrcReg);
1380     } else {
1381       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1382       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1383         Unmerges.push_back(Unmerge.getReg(J));
1384     }
1385   }
1386 
1387   // Pad with undef to the next size that is a multiple of the requested size.
1388   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1389     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1390     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1391       Unmerges.push_back(UndefReg);
1392   }
1393 
1394   const int PartsPerGCD = WideSize / GCD;
1395 
1396   // Build merges of each piece.
1397   ArrayRef<Register> Slicer(Unmerges);
1398   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1399     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1400     NewMergeRegs.push_back(Merge.getReg(0));
1401   }
1402 
1403   // A truncate may be necessary if the requested type doesn't evenly divide the
1404   // original result type.
1405   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1406     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1407   } else {
1408     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1409     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1410   }
1411 
1412   MI.eraseFromParent();
1413   return Legalized;
1414 }
1415 
1416 LegalizerHelper::LegalizeResult
1417 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1418                                           LLT WideTy) {
1419   if (TypeIdx != 0)
1420     return UnableToLegalize;
1421 
1422   int NumDst = MI.getNumOperands() - 1;
1423   Register SrcReg = MI.getOperand(NumDst).getReg();
1424   LLT SrcTy = MRI.getType(SrcReg);
1425   if (SrcTy.isVector())
1426     return UnableToLegalize;
1427 
1428   Register Dst0Reg = MI.getOperand(0).getReg();
1429   LLT DstTy = MRI.getType(Dst0Reg);
1430   if (!DstTy.isScalar())
1431     return UnableToLegalize;
1432 
1433   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1434     if (SrcTy.isPointer()) {
1435       const DataLayout &DL = MIRBuilder.getDataLayout();
1436       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1437         LLVM_DEBUG(
1438             dbgs() << "Not casting non-integral address space integer\n");
1439         return UnableToLegalize;
1440       }
1441 
1442       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1443       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1444     }
1445 
1446     // Widen SrcTy to WideTy. This does not affect the result, but since the
1447     // user requested this size, it is probably better handled than SrcTy and
1448     // should reduce the total number of legalization artifacts
1449     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1450       SrcTy = WideTy;
1451       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1452     }
1453 
1454     // Theres no unmerge type to target. Directly extract the bits from the
1455     // source type
1456     unsigned DstSize = DstTy.getSizeInBits();
1457 
1458     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1459     for (int I = 1; I != NumDst; ++I) {
1460       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1461       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1462       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1463     }
1464 
1465     MI.eraseFromParent();
1466     return Legalized;
1467   }
1468 
1469   // Extend the source to a wider type.
1470   LLT LCMTy = getLCMType(SrcTy, WideTy);
1471 
1472   Register WideSrc = SrcReg;
1473   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1474     // TODO: If this is an integral address space, cast to integer and anyext.
1475     if (SrcTy.isPointer()) {
1476       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1477       return UnableToLegalize;
1478     }
1479 
1480     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1481   }
1482 
1483   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1484 
1485   // Create a sequence of unmerges to the original results. since we may have
1486   // widened the source, we will need to pad the results with dead defs to cover
1487   // the source register.
1488   // e.g. widen s16 to s32:
1489   // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48)
1490   //
1491   // =>
1492   //  %4:_(s64) = G_ANYEXT %0:_(s48)
1493   //  %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge
1494   //  %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs
1495   //  %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def
1496 
1497   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1498   const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1499 
1500   for (int I = 0; I != NumUnmerge; ++I) {
1501     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1502 
1503     for (int J = 0; J != PartsPerUnmerge; ++J) {
1504       int Idx = I * PartsPerUnmerge + J;
1505       if (Idx < NumDst)
1506         MIB.addDef(MI.getOperand(Idx).getReg());
1507       else {
1508         // Create dead def for excess components.
1509         MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1510       }
1511     }
1512 
1513     MIB.addUse(Unmerge.getReg(I));
1514   }
1515 
1516   MI.eraseFromParent();
1517   return Legalized;
1518 }
1519 
1520 LegalizerHelper::LegalizeResult
1521 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1522                                     LLT WideTy) {
1523   Register DstReg = MI.getOperand(0).getReg();
1524   Register SrcReg = MI.getOperand(1).getReg();
1525   LLT SrcTy = MRI.getType(SrcReg);
1526 
1527   LLT DstTy = MRI.getType(DstReg);
1528   unsigned Offset = MI.getOperand(2).getImm();
1529 
1530   if (TypeIdx == 0) {
1531     if (SrcTy.isVector() || DstTy.isVector())
1532       return UnableToLegalize;
1533 
1534     SrcOp Src(SrcReg);
1535     if (SrcTy.isPointer()) {
1536       // Extracts from pointers can be handled only if they are really just
1537       // simple integers.
1538       const DataLayout &DL = MIRBuilder.getDataLayout();
1539       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1540         return UnableToLegalize;
1541 
1542       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1543       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1544       SrcTy = SrcAsIntTy;
1545     }
1546 
1547     if (DstTy.isPointer())
1548       return UnableToLegalize;
1549 
1550     if (Offset == 0) {
1551       // Avoid a shift in the degenerate case.
1552       MIRBuilder.buildTrunc(DstReg,
1553                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1554       MI.eraseFromParent();
1555       return Legalized;
1556     }
1557 
1558     // Do a shift in the source type.
1559     LLT ShiftTy = SrcTy;
1560     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1561       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1562       ShiftTy = WideTy;
1563     } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits())
1564       return UnableToLegalize;
1565 
1566     auto LShr = MIRBuilder.buildLShr(
1567       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1568     MIRBuilder.buildTrunc(DstReg, LShr);
1569     MI.eraseFromParent();
1570     return Legalized;
1571   }
1572 
1573   if (SrcTy.isScalar()) {
1574     Observer.changingInstr(MI);
1575     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1576     Observer.changedInstr(MI);
1577     return Legalized;
1578   }
1579 
1580   if (!SrcTy.isVector())
1581     return UnableToLegalize;
1582 
1583   if (DstTy != SrcTy.getElementType())
1584     return UnableToLegalize;
1585 
1586   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1587     return UnableToLegalize;
1588 
1589   Observer.changingInstr(MI);
1590   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1591 
1592   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1593                           Offset);
1594   widenScalarDst(MI, WideTy.getScalarType(), 0);
1595   Observer.changedInstr(MI);
1596   return Legalized;
1597 }
1598 
1599 LegalizerHelper::LegalizeResult
1600 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1601                                    LLT WideTy) {
1602   if (TypeIdx != 0)
1603     return UnableToLegalize;
1604   Observer.changingInstr(MI);
1605   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1606   widenScalarDst(MI, WideTy);
1607   Observer.changedInstr(MI);
1608   return Legalized;
1609 }
1610 
1611 LegalizerHelper::LegalizeResult
1612 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1613   MIRBuilder.setInstrAndDebugLoc(MI);
1614 
1615   switch (MI.getOpcode()) {
1616   default:
1617     return UnableToLegalize;
1618   case TargetOpcode::G_EXTRACT:
1619     return widenScalarExtract(MI, TypeIdx, WideTy);
1620   case TargetOpcode::G_INSERT:
1621     return widenScalarInsert(MI, TypeIdx, WideTy);
1622   case TargetOpcode::G_MERGE_VALUES:
1623     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1624   case TargetOpcode::G_UNMERGE_VALUES:
1625     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1626   case TargetOpcode::G_UADDO:
1627   case TargetOpcode::G_USUBO: {
1628     if (TypeIdx == 1)
1629       return UnableToLegalize; // TODO
1630     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1631     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1632     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1633                           ? TargetOpcode::G_ADD
1634                           : TargetOpcode::G_SUB;
1635     // Do the arithmetic in the larger type.
1636     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1637     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1638     APInt Mask =
1639         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1640     auto AndOp = MIRBuilder.buildAnd(
1641         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1642     // There is no overflow if the AndOp is the same as NewOp.
1643     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1644     // Now trunc the NewOp to the original result.
1645     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1646     MI.eraseFromParent();
1647     return Legalized;
1648   }
1649   case TargetOpcode::G_CTTZ:
1650   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1651   case TargetOpcode::G_CTLZ:
1652   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1653   case TargetOpcode::G_CTPOP: {
1654     if (TypeIdx == 0) {
1655       Observer.changingInstr(MI);
1656       widenScalarDst(MI, WideTy, 0);
1657       Observer.changedInstr(MI);
1658       return Legalized;
1659     }
1660 
1661     Register SrcReg = MI.getOperand(1).getReg();
1662 
1663     // First ZEXT the input.
1664     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1665     LLT CurTy = MRI.getType(SrcReg);
1666     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1667       // The count is the same in the larger type except if the original
1668       // value was zero.  This can be handled by setting the bit just off
1669       // the top of the original type.
1670       auto TopBit =
1671           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1672       MIBSrc = MIRBuilder.buildOr(
1673         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1674     }
1675 
1676     // Perform the operation at the larger size.
1677     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1678     // This is already the correct result for CTPOP and CTTZs
1679     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1680         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1681       // The correct result is NewOp - (Difference in widety and current ty).
1682       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1683       MIBNewOp = MIRBuilder.buildSub(
1684           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1685     }
1686 
1687     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1688     MI.eraseFromParent();
1689     return Legalized;
1690   }
1691   case TargetOpcode::G_BSWAP: {
1692     Observer.changingInstr(MI);
1693     Register DstReg = MI.getOperand(0).getReg();
1694 
1695     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1696     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1697     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1698     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1699 
1700     MI.getOperand(0).setReg(DstExt);
1701 
1702     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1703 
1704     LLT Ty = MRI.getType(DstReg);
1705     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1706     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1707     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1708 
1709     MIRBuilder.buildTrunc(DstReg, ShrReg);
1710     Observer.changedInstr(MI);
1711     return Legalized;
1712   }
1713   case TargetOpcode::G_BITREVERSE: {
1714     Observer.changingInstr(MI);
1715 
1716     Register DstReg = MI.getOperand(0).getReg();
1717     LLT Ty = MRI.getType(DstReg);
1718     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1719 
1720     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1721     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1722     MI.getOperand(0).setReg(DstExt);
1723     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1724 
1725     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1726     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1727     MIRBuilder.buildTrunc(DstReg, Shift);
1728     Observer.changedInstr(MI);
1729     return Legalized;
1730   }
1731   case TargetOpcode::G_ADD:
1732   case TargetOpcode::G_AND:
1733   case TargetOpcode::G_MUL:
1734   case TargetOpcode::G_OR:
1735   case TargetOpcode::G_XOR:
1736   case TargetOpcode::G_SUB:
1737     // Perform operation at larger width (any extension is fines here, high bits
1738     // don't affect the result) and then truncate the result back to the
1739     // original type.
1740     Observer.changingInstr(MI);
1741     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1742     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1743     widenScalarDst(MI, WideTy);
1744     Observer.changedInstr(MI);
1745     return Legalized;
1746 
1747   case TargetOpcode::G_SHL:
1748     Observer.changingInstr(MI);
1749 
1750     if (TypeIdx == 0) {
1751       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1752       widenScalarDst(MI, WideTy);
1753     } else {
1754       assert(TypeIdx == 1);
1755       // The "number of bits to shift" operand must preserve its value as an
1756       // unsigned integer:
1757       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1758     }
1759 
1760     Observer.changedInstr(MI);
1761     return Legalized;
1762 
1763   case TargetOpcode::G_SDIV:
1764   case TargetOpcode::G_SREM:
1765   case TargetOpcode::G_SMIN:
1766   case TargetOpcode::G_SMAX:
1767     Observer.changingInstr(MI);
1768     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1769     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1770     widenScalarDst(MI, WideTy);
1771     Observer.changedInstr(MI);
1772     return Legalized;
1773 
1774   case TargetOpcode::G_ASHR:
1775   case TargetOpcode::G_LSHR:
1776     Observer.changingInstr(MI);
1777 
1778     if (TypeIdx == 0) {
1779       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1780         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1781 
1782       widenScalarSrc(MI, WideTy, 1, CvtOp);
1783       widenScalarDst(MI, WideTy);
1784     } else {
1785       assert(TypeIdx == 1);
1786       // The "number of bits to shift" operand must preserve its value as an
1787       // unsigned integer:
1788       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1789     }
1790 
1791     Observer.changedInstr(MI);
1792     return Legalized;
1793   case TargetOpcode::G_UDIV:
1794   case TargetOpcode::G_UREM:
1795   case TargetOpcode::G_UMIN:
1796   case TargetOpcode::G_UMAX:
1797     Observer.changingInstr(MI);
1798     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1799     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1800     widenScalarDst(MI, WideTy);
1801     Observer.changedInstr(MI);
1802     return Legalized;
1803 
1804   case TargetOpcode::G_SELECT:
1805     Observer.changingInstr(MI);
1806     if (TypeIdx == 0) {
1807       // Perform operation at larger width (any extension is fine here, high
1808       // bits don't affect the result) and then truncate the result back to the
1809       // original type.
1810       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1811       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1812       widenScalarDst(MI, WideTy);
1813     } else {
1814       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1815       // Explicit extension is required here since high bits affect the result.
1816       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1817     }
1818     Observer.changedInstr(MI);
1819     return Legalized;
1820 
1821   case TargetOpcode::G_FPTOSI:
1822   case TargetOpcode::G_FPTOUI:
1823     Observer.changingInstr(MI);
1824 
1825     if (TypeIdx == 0)
1826       widenScalarDst(MI, WideTy);
1827     else
1828       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
1829 
1830     Observer.changedInstr(MI);
1831     return Legalized;
1832   case TargetOpcode::G_SITOFP:
1833     if (TypeIdx != 1)
1834       return UnableToLegalize;
1835     Observer.changingInstr(MI);
1836     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1837     Observer.changedInstr(MI);
1838     return Legalized;
1839 
1840   case TargetOpcode::G_UITOFP:
1841     if (TypeIdx != 1)
1842       return UnableToLegalize;
1843     Observer.changingInstr(MI);
1844     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1845     Observer.changedInstr(MI);
1846     return Legalized;
1847 
1848   case TargetOpcode::G_LOAD:
1849   case TargetOpcode::G_SEXTLOAD:
1850   case TargetOpcode::G_ZEXTLOAD:
1851     Observer.changingInstr(MI);
1852     widenScalarDst(MI, WideTy);
1853     Observer.changedInstr(MI);
1854     return Legalized;
1855 
1856   case TargetOpcode::G_STORE: {
1857     if (TypeIdx != 0)
1858       return UnableToLegalize;
1859 
1860     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1861     if (!isPowerOf2_32(Ty.getSizeInBits()))
1862       return UnableToLegalize;
1863 
1864     Observer.changingInstr(MI);
1865 
1866     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
1867       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
1868     widenScalarSrc(MI, WideTy, 0, ExtType);
1869 
1870     Observer.changedInstr(MI);
1871     return Legalized;
1872   }
1873   case TargetOpcode::G_CONSTANT: {
1874     MachineOperand &SrcMO = MI.getOperand(1);
1875     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1876     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
1877         MRI.getType(MI.getOperand(0).getReg()));
1878     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
1879             ExtOpc == TargetOpcode::G_ANYEXT) &&
1880            "Illegal Extend");
1881     const APInt &SrcVal = SrcMO.getCImm()->getValue();
1882     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
1883                            ? SrcVal.sext(WideTy.getSizeInBits())
1884                            : SrcVal.zext(WideTy.getSizeInBits());
1885     Observer.changingInstr(MI);
1886     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
1887 
1888     widenScalarDst(MI, WideTy);
1889     Observer.changedInstr(MI);
1890     return Legalized;
1891   }
1892   case TargetOpcode::G_FCONSTANT: {
1893     MachineOperand &SrcMO = MI.getOperand(1);
1894     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1895     APFloat Val = SrcMO.getFPImm()->getValueAPF();
1896     bool LosesInfo;
1897     switch (WideTy.getSizeInBits()) {
1898     case 32:
1899       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1900                   &LosesInfo);
1901       break;
1902     case 64:
1903       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1904                   &LosesInfo);
1905       break;
1906     default:
1907       return UnableToLegalize;
1908     }
1909 
1910     assert(!LosesInfo && "extend should always be lossless");
1911 
1912     Observer.changingInstr(MI);
1913     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
1914 
1915     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1916     Observer.changedInstr(MI);
1917     return Legalized;
1918   }
1919   case TargetOpcode::G_IMPLICIT_DEF: {
1920     Observer.changingInstr(MI);
1921     widenScalarDst(MI, WideTy);
1922     Observer.changedInstr(MI);
1923     return Legalized;
1924   }
1925   case TargetOpcode::G_BRCOND:
1926     Observer.changingInstr(MI);
1927     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
1928     Observer.changedInstr(MI);
1929     return Legalized;
1930 
1931   case TargetOpcode::G_FCMP:
1932     Observer.changingInstr(MI);
1933     if (TypeIdx == 0)
1934       widenScalarDst(MI, WideTy);
1935     else {
1936       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
1937       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
1938     }
1939     Observer.changedInstr(MI);
1940     return Legalized;
1941 
1942   case TargetOpcode::G_ICMP:
1943     Observer.changingInstr(MI);
1944     if (TypeIdx == 0)
1945       widenScalarDst(MI, WideTy);
1946     else {
1947       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
1948                                MI.getOperand(1).getPredicate()))
1949                                ? TargetOpcode::G_SEXT
1950                                : TargetOpcode::G_ZEXT;
1951       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
1952       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
1953     }
1954     Observer.changedInstr(MI);
1955     return Legalized;
1956 
1957   case TargetOpcode::G_PTR_ADD:
1958     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
1959     Observer.changingInstr(MI);
1960     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1961     Observer.changedInstr(MI);
1962     return Legalized;
1963 
1964   case TargetOpcode::G_PHI: {
1965     assert(TypeIdx == 0 && "Expecting only Idx 0");
1966 
1967     Observer.changingInstr(MI);
1968     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
1969       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
1970       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1971       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
1972     }
1973 
1974     MachineBasicBlock &MBB = *MI.getParent();
1975     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
1976     widenScalarDst(MI, WideTy);
1977     Observer.changedInstr(MI);
1978     return Legalized;
1979   }
1980   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
1981     if (TypeIdx == 0) {
1982       Register VecReg = MI.getOperand(1).getReg();
1983       LLT VecTy = MRI.getType(VecReg);
1984       Observer.changingInstr(MI);
1985 
1986       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
1987                                      WideTy.getSizeInBits()),
1988                      1, TargetOpcode::G_SEXT);
1989 
1990       widenScalarDst(MI, WideTy, 0);
1991       Observer.changedInstr(MI);
1992       return Legalized;
1993     }
1994 
1995     if (TypeIdx != 2)
1996       return UnableToLegalize;
1997     Observer.changingInstr(MI);
1998     // TODO: Probably should be zext
1999     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2000     Observer.changedInstr(MI);
2001     return Legalized;
2002   }
2003   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2004     if (TypeIdx == 1) {
2005       Observer.changingInstr(MI);
2006 
2007       Register VecReg = MI.getOperand(1).getReg();
2008       LLT VecTy = MRI.getType(VecReg);
2009       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2010 
2011       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2012       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2013       widenScalarDst(MI, WideVecTy, 0);
2014       Observer.changedInstr(MI);
2015       return Legalized;
2016     }
2017 
2018     if (TypeIdx == 2) {
2019       Observer.changingInstr(MI);
2020       // TODO: Probably should be zext
2021       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2022       Observer.changedInstr(MI);
2023     }
2024 
2025     return Legalized;
2026   }
2027   case TargetOpcode::G_FADD:
2028   case TargetOpcode::G_FMUL:
2029   case TargetOpcode::G_FSUB:
2030   case TargetOpcode::G_FMA:
2031   case TargetOpcode::G_FMAD:
2032   case TargetOpcode::G_FNEG:
2033   case TargetOpcode::G_FABS:
2034   case TargetOpcode::G_FCANONICALIZE:
2035   case TargetOpcode::G_FMINNUM:
2036   case TargetOpcode::G_FMAXNUM:
2037   case TargetOpcode::G_FMINNUM_IEEE:
2038   case TargetOpcode::G_FMAXNUM_IEEE:
2039   case TargetOpcode::G_FMINIMUM:
2040   case TargetOpcode::G_FMAXIMUM:
2041   case TargetOpcode::G_FDIV:
2042   case TargetOpcode::G_FREM:
2043   case TargetOpcode::G_FCEIL:
2044   case TargetOpcode::G_FFLOOR:
2045   case TargetOpcode::G_FCOS:
2046   case TargetOpcode::G_FSIN:
2047   case TargetOpcode::G_FLOG10:
2048   case TargetOpcode::G_FLOG:
2049   case TargetOpcode::G_FLOG2:
2050   case TargetOpcode::G_FRINT:
2051   case TargetOpcode::G_FNEARBYINT:
2052   case TargetOpcode::G_FSQRT:
2053   case TargetOpcode::G_FEXP:
2054   case TargetOpcode::G_FEXP2:
2055   case TargetOpcode::G_FPOW:
2056   case TargetOpcode::G_INTRINSIC_TRUNC:
2057   case TargetOpcode::G_INTRINSIC_ROUND:
2058     assert(TypeIdx == 0);
2059     Observer.changingInstr(MI);
2060 
2061     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2062       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2063 
2064     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2065     Observer.changedInstr(MI);
2066     return Legalized;
2067   case TargetOpcode::G_INTTOPTR:
2068     if (TypeIdx != 1)
2069       return UnableToLegalize;
2070 
2071     Observer.changingInstr(MI);
2072     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2073     Observer.changedInstr(MI);
2074     return Legalized;
2075   case TargetOpcode::G_PTRTOINT:
2076     if (TypeIdx != 0)
2077       return UnableToLegalize;
2078 
2079     Observer.changingInstr(MI);
2080     widenScalarDst(MI, WideTy, 0);
2081     Observer.changedInstr(MI);
2082     return Legalized;
2083   case TargetOpcode::G_BUILD_VECTOR: {
2084     Observer.changingInstr(MI);
2085 
2086     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2087     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2088       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2089 
2090     // Avoid changing the result vector type if the source element type was
2091     // requested.
2092     if (TypeIdx == 1) {
2093       auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
2094       MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2095     } else {
2096       widenScalarDst(MI, WideTy, 0);
2097     }
2098 
2099     Observer.changedInstr(MI);
2100     return Legalized;
2101   }
2102   case TargetOpcode::G_SEXT_INREG:
2103     if (TypeIdx != 0)
2104       return UnableToLegalize;
2105 
2106     Observer.changingInstr(MI);
2107     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2108     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2109     Observer.changedInstr(MI);
2110     return Legalized;
2111   }
2112 }
2113 
2114 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2115                              MachineIRBuilder &B, Register Src, LLT Ty) {
2116   auto Unmerge = B.buildUnmerge(Ty, Src);
2117   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2118     Pieces.push_back(Unmerge.getReg(I));
2119 }
2120 
2121 LegalizerHelper::LegalizeResult
2122 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2123   Register Dst = MI.getOperand(0).getReg();
2124   Register Src = MI.getOperand(1).getReg();
2125   LLT DstTy = MRI.getType(Dst);
2126   LLT SrcTy = MRI.getType(Src);
2127 
2128   if (SrcTy.isVector() && !DstTy.isVector()) {
2129     SmallVector<Register, 8> SrcRegs;
2130     getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType());
2131     MIRBuilder.buildMerge(Dst, SrcRegs);
2132     MI.eraseFromParent();
2133     return Legalized;
2134   }
2135 
2136   if (DstTy.isVector() && !SrcTy.isVector()) {
2137     SmallVector<Register, 8> SrcRegs;
2138     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2139     MIRBuilder.buildMerge(Dst, SrcRegs);
2140     MI.eraseFromParent();
2141     return Legalized;
2142   }
2143 
2144   return UnableToLegalize;
2145 }
2146 
2147 LegalizerHelper::LegalizeResult
2148 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2149   MIRBuilder.setInstr(MI);
2150 
2151   switch (MI.getOpcode()) {
2152   case TargetOpcode::G_LOAD: {
2153     if (TypeIdx != 0)
2154       return UnableToLegalize;
2155 
2156     Observer.changingInstr(MI);
2157     bitcastDst(MI, CastTy, 0);
2158     Observer.changedInstr(MI);
2159     return Legalized;
2160   }
2161   case TargetOpcode::G_STORE: {
2162     if (TypeIdx != 0)
2163       return UnableToLegalize;
2164 
2165     Observer.changingInstr(MI);
2166     bitcastSrc(MI, CastTy, 0);
2167     Observer.changedInstr(MI);
2168     return Legalized;
2169   }
2170   case TargetOpcode::G_SELECT: {
2171     if (TypeIdx != 0)
2172       return UnableToLegalize;
2173 
2174     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2175       LLVM_DEBUG(
2176           dbgs() << "bitcast action not implemented for vector select\n");
2177       return UnableToLegalize;
2178     }
2179 
2180     Observer.changingInstr(MI);
2181     bitcastSrc(MI, CastTy, 2);
2182     bitcastSrc(MI, CastTy, 3);
2183     bitcastDst(MI, CastTy, 0);
2184     Observer.changedInstr(MI);
2185     return Legalized;
2186   }
2187   case TargetOpcode::G_AND:
2188   case TargetOpcode::G_OR:
2189   case TargetOpcode::G_XOR: {
2190     Observer.changingInstr(MI);
2191     bitcastSrc(MI, CastTy, 1);
2192     bitcastSrc(MI, CastTy, 2);
2193     bitcastDst(MI, CastTy, 0);
2194     Observer.changedInstr(MI);
2195     return Legalized;
2196   }
2197   default:
2198     return UnableToLegalize;
2199   }
2200 }
2201 
2202 LegalizerHelper::LegalizeResult
2203 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
2204   using namespace TargetOpcode;
2205   MIRBuilder.setInstrAndDebugLoc(MI);
2206 
2207   switch(MI.getOpcode()) {
2208   default:
2209     return UnableToLegalize;
2210   case TargetOpcode::G_BITCAST:
2211     return lowerBitcast(MI);
2212   case TargetOpcode::G_SREM:
2213   case TargetOpcode::G_UREM: {
2214     auto Quot =
2215         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2216                               {MI.getOperand(1), MI.getOperand(2)});
2217 
2218     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2219     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2220     MI.eraseFromParent();
2221     return Legalized;
2222   }
2223   case TargetOpcode::G_SADDO:
2224   case TargetOpcode::G_SSUBO:
2225     return lowerSADDO_SSUBO(MI);
2226   case TargetOpcode::G_SMULO:
2227   case TargetOpcode::G_UMULO: {
2228     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2229     // result.
2230     Register Res = MI.getOperand(0).getReg();
2231     Register Overflow = MI.getOperand(1).getReg();
2232     Register LHS = MI.getOperand(2).getReg();
2233     Register RHS = MI.getOperand(3).getReg();
2234 
2235     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2236                           ? TargetOpcode::G_SMULH
2237                           : TargetOpcode::G_UMULH;
2238 
2239     Observer.changingInstr(MI);
2240     const auto &TII = MIRBuilder.getTII();
2241     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2242     MI.RemoveOperand(1);
2243     Observer.changedInstr(MI);
2244 
2245     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2246 
2247     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2248     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2249 
2250     // For *signed* multiply, overflow is detected by checking:
2251     // (hi != (lo >> bitwidth-1))
2252     if (Opcode == TargetOpcode::G_SMULH) {
2253       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2254       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2255       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2256     } else {
2257       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2258     }
2259     return Legalized;
2260   }
2261   case TargetOpcode::G_FNEG: {
2262     // TODO: Handle vector types once we are able to
2263     // represent them.
2264     if (Ty.isVector())
2265       return UnableToLegalize;
2266     Register Res = MI.getOperand(0).getReg();
2267     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2268     Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty);
2269     if (!ZeroTy)
2270       return UnableToLegalize;
2271     ConstantFP &ZeroForNegation =
2272         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
2273     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
2274     Register SubByReg = MI.getOperand(1).getReg();
2275     Register ZeroReg = Zero.getReg(0);
2276     MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags());
2277     MI.eraseFromParent();
2278     return Legalized;
2279   }
2280   case TargetOpcode::G_FSUB: {
2281     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2282     // First, check if G_FNEG is marked as Lower. If so, we may
2283     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2284     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2285       return UnableToLegalize;
2286     Register Res = MI.getOperand(0).getReg();
2287     Register LHS = MI.getOperand(1).getReg();
2288     Register RHS = MI.getOperand(2).getReg();
2289     Register Neg = MRI.createGenericVirtualRegister(Ty);
2290     MIRBuilder.buildFNeg(Neg, RHS);
2291     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2292     MI.eraseFromParent();
2293     return Legalized;
2294   }
2295   case TargetOpcode::G_FMAD:
2296     return lowerFMad(MI);
2297   case TargetOpcode::G_FFLOOR:
2298     return lowerFFloor(MI);
2299   case TargetOpcode::G_INTRINSIC_ROUND:
2300     return lowerIntrinsicRound(MI);
2301   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2302     Register OldValRes = MI.getOperand(0).getReg();
2303     Register SuccessRes = MI.getOperand(1).getReg();
2304     Register Addr = MI.getOperand(2).getReg();
2305     Register CmpVal = MI.getOperand(3).getReg();
2306     Register NewVal = MI.getOperand(4).getReg();
2307     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2308                                   **MI.memoperands_begin());
2309     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2310     MI.eraseFromParent();
2311     return Legalized;
2312   }
2313   case TargetOpcode::G_LOAD:
2314   case TargetOpcode::G_SEXTLOAD:
2315   case TargetOpcode::G_ZEXTLOAD: {
2316     // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2317     Register DstReg = MI.getOperand(0).getReg();
2318     Register PtrReg = MI.getOperand(1).getReg();
2319     LLT DstTy = MRI.getType(DstReg);
2320     auto &MMO = **MI.memoperands_begin();
2321 
2322     if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2323       if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2324         // This load needs splitting into power of 2 sized loads.
2325         if (DstTy.isVector())
2326           return UnableToLegalize;
2327         if (isPowerOf2_32(DstTy.getSizeInBits()))
2328           return UnableToLegalize; // Don't know what we're being asked to do.
2329 
2330         // Our strategy here is to generate anyextending loads for the smaller
2331         // types up to next power-2 result type, and then combine the two larger
2332         // result values together, before truncating back down to the non-pow-2
2333         // type.
2334         // E.g. v1 = i24 load =>
2335         // v2 = i32 zextload (2 byte)
2336         // v3 = i32 load (1 byte)
2337         // v4 = i32 shl v3, 16
2338         // v5 = i32 or v4, v2
2339         // v1 = i24 trunc v5
2340         // By doing this we generate the correct truncate which should get
2341         // combined away as an artifact with a matching extend.
2342         uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2343         uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2344 
2345         MachineFunction &MF = MIRBuilder.getMF();
2346         MachineMemOperand *LargeMMO =
2347             MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2348         MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2349             &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2350 
2351         LLT PtrTy = MRI.getType(PtrReg);
2352         unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2353         LLT AnyExtTy = LLT::scalar(AnyExtSize);
2354         Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2355         Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2356         auto LargeLoad = MIRBuilder.buildLoadInstr(
2357             TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2358 
2359         auto OffsetCst = MIRBuilder.buildConstant(
2360             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2361         Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2362         auto SmallPtr =
2363             MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2364         auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2365                                               *SmallMMO);
2366 
2367         auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2368         auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2369         auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2370         MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2371         MI.eraseFromParent();
2372         return Legalized;
2373       }
2374       MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2375       MI.eraseFromParent();
2376       return Legalized;
2377     }
2378 
2379     if (DstTy.isScalar()) {
2380       Register TmpReg =
2381           MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2382       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2383       switch (MI.getOpcode()) {
2384       default:
2385         llvm_unreachable("Unexpected opcode");
2386       case TargetOpcode::G_LOAD:
2387         MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg);
2388         break;
2389       case TargetOpcode::G_SEXTLOAD:
2390         MIRBuilder.buildSExt(DstReg, TmpReg);
2391         break;
2392       case TargetOpcode::G_ZEXTLOAD:
2393         MIRBuilder.buildZExt(DstReg, TmpReg);
2394         break;
2395       }
2396       MI.eraseFromParent();
2397       return Legalized;
2398     }
2399 
2400     return UnableToLegalize;
2401   }
2402   case TargetOpcode::G_STORE: {
2403     // Lower a non-power of 2 store into multiple pow-2 stores.
2404     // E.g. split an i24 store into an i16 store + i8 store.
2405     // We do this by first extending the stored value to the next largest power
2406     // of 2 type, and then using truncating stores to store the components.
2407     // By doing this, likewise with G_LOAD, generate an extend that can be
2408     // artifact-combined away instead of leaving behind extracts.
2409     Register SrcReg = MI.getOperand(0).getReg();
2410     Register PtrReg = MI.getOperand(1).getReg();
2411     LLT SrcTy = MRI.getType(SrcReg);
2412     MachineMemOperand &MMO = **MI.memoperands_begin();
2413     if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2414       return UnableToLegalize;
2415     if (SrcTy.isVector())
2416       return UnableToLegalize;
2417     if (isPowerOf2_32(SrcTy.getSizeInBits()))
2418       return UnableToLegalize; // Don't know what we're being asked to do.
2419 
2420     // Extend to the next pow-2.
2421     const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2422     auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2423 
2424     // Obtain the smaller value by shifting away the larger value.
2425     uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2426     uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2427     auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2428     auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2429 
2430     // Generate the PtrAdd and truncating stores.
2431     LLT PtrTy = MRI.getType(PtrReg);
2432     auto OffsetCst = MIRBuilder.buildConstant(
2433             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2434     Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2435     auto SmallPtr =
2436         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2437 
2438     MachineFunction &MF = MIRBuilder.getMF();
2439     MachineMemOperand *LargeMMO =
2440         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2441     MachineMemOperand *SmallMMO =
2442         MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2443     MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2444     MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2445     MI.eraseFromParent();
2446     return Legalized;
2447   }
2448   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2449   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2450   case TargetOpcode::G_CTLZ:
2451   case TargetOpcode::G_CTTZ:
2452   case TargetOpcode::G_CTPOP:
2453     return lowerBitCount(MI, TypeIdx, Ty);
2454   case G_UADDO: {
2455     Register Res = MI.getOperand(0).getReg();
2456     Register CarryOut = MI.getOperand(1).getReg();
2457     Register LHS = MI.getOperand(2).getReg();
2458     Register RHS = MI.getOperand(3).getReg();
2459 
2460     MIRBuilder.buildAdd(Res, LHS, RHS);
2461     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2462 
2463     MI.eraseFromParent();
2464     return Legalized;
2465   }
2466   case G_UADDE: {
2467     Register Res = MI.getOperand(0).getReg();
2468     Register CarryOut = MI.getOperand(1).getReg();
2469     Register LHS = MI.getOperand(2).getReg();
2470     Register RHS = MI.getOperand(3).getReg();
2471     Register CarryIn = MI.getOperand(4).getReg();
2472     LLT Ty = MRI.getType(Res);
2473 
2474     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
2475     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
2476     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2477     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2478 
2479     MI.eraseFromParent();
2480     return Legalized;
2481   }
2482   case G_USUBO: {
2483     Register Res = MI.getOperand(0).getReg();
2484     Register BorrowOut = MI.getOperand(1).getReg();
2485     Register LHS = MI.getOperand(2).getReg();
2486     Register RHS = MI.getOperand(3).getReg();
2487 
2488     MIRBuilder.buildSub(Res, LHS, RHS);
2489     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2490 
2491     MI.eraseFromParent();
2492     return Legalized;
2493   }
2494   case G_USUBE: {
2495     Register Res = MI.getOperand(0).getReg();
2496     Register BorrowOut = MI.getOperand(1).getReg();
2497     Register LHS = MI.getOperand(2).getReg();
2498     Register RHS = MI.getOperand(3).getReg();
2499     Register BorrowIn = MI.getOperand(4).getReg();
2500     const LLT CondTy = MRI.getType(BorrowOut);
2501     const LLT Ty = MRI.getType(Res);
2502 
2503     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
2504     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
2505     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2506 
2507     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
2508     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
2509     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2510 
2511     MI.eraseFromParent();
2512     return Legalized;
2513   }
2514   case G_UITOFP:
2515     return lowerUITOFP(MI, TypeIdx, Ty);
2516   case G_SITOFP:
2517     return lowerSITOFP(MI, TypeIdx, Ty);
2518   case G_FPTOUI:
2519     return lowerFPTOUI(MI, TypeIdx, Ty);
2520   case G_FPTOSI:
2521     return lowerFPTOSI(MI);
2522   case G_FPTRUNC:
2523     return lowerFPTRUNC(MI, TypeIdx, Ty);
2524   case G_SMIN:
2525   case G_SMAX:
2526   case G_UMIN:
2527   case G_UMAX:
2528     return lowerMinMax(MI, TypeIdx, Ty);
2529   case G_FCOPYSIGN:
2530     return lowerFCopySign(MI, TypeIdx, Ty);
2531   case G_FMINNUM:
2532   case G_FMAXNUM:
2533     return lowerFMinNumMaxNum(MI);
2534   case G_UNMERGE_VALUES:
2535     return lowerUnmergeValues(MI);
2536   case TargetOpcode::G_SEXT_INREG: {
2537     assert(MI.getOperand(2).isImm() && "Expected immediate");
2538     int64_t SizeInBits = MI.getOperand(2).getImm();
2539 
2540     Register DstReg = MI.getOperand(0).getReg();
2541     Register SrcReg = MI.getOperand(1).getReg();
2542     LLT DstTy = MRI.getType(DstReg);
2543     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
2544 
2545     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
2546     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
2547     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
2548     MI.eraseFromParent();
2549     return Legalized;
2550   }
2551   case G_SHUFFLE_VECTOR:
2552     return lowerShuffleVector(MI);
2553   case G_DYN_STACKALLOC:
2554     return lowerDynStackAlloc(MI);
2555   case G_EXTRACT:
2556     return lowerExtract(MI);
2557   case G_INSERT:
2558     return lowerInsert(MI);
2559   case G_BSWAP:
2560     return lowerBswap(MI);
2561   case G_BITREVERSE:
2562     return lowerBitreverse(MI);
2563   case G_READ_REGISTER:
2564   case G_WRITE_REGISTER:
2565     return lowerReadWriteRegister(MI);
2566   }
2567 }
2568 
2569 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
2570     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
2571   SmallVector<Register, 2> DstRegs;
2572 
2573   unsigned NarrowSize = NarrowTy.getSizeInBits();
2574   Register DstReg = MI.getOperand(0).getReg();
2575   unsigned Size = MRI.getType(DstReg).getSizeInBits();
2576   int NumParts = Size / NarrowSize;
2577   // FIXME: Don't know how to handle the situation where the small vectors
2578   // aren't all the same size yet.
2579   if (Size % NarrowSize != 0)
2580     return UnableToLegalize;
2581 
2582   for (int i = 0; i < NumParts; ++i) {
2583     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
2584     MIRBuilder.buildUndef(TmpReg);
2585     DstRegs.push_back(TmpReg);
2586   }
2587 
2588   if (NarrowTy.isVector())
2589     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2590   else
2591     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2592 
2593   MI.eraseFromParent();
2594   return Legalized;
2595 }
2596 
2597 // Handles operands with different types, but all must have the same number of
2598 // elements. There will be multiple type indexes. NarrowTy is expected to have
2599 // the result element type.
2600 LegalizerHelper::LegalizeResult
2601 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx,
2602                                           LLT NarrowTy) {
2603   assert(TypeIdx == 0 && "only one type index expected");
2604 
2605   const unsigned Opc = MI.getOpcode();
2606   const int NumOps = MI.getNumOperands() - 1;
2607   const Register DstReg = MI.getOperand(0).getReg();
2608   const unsigned Flags = MI.getFlags();
2609 
2610   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
2611 
2612   SmallVector<Register, 8> ExtractedRegs[3];
2613   SmallVector<Register, 8> Parts;
2614 
2615   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2616 
2617   // Break down all the sources into NarrowTy pieces we can operate on. This may
2618   // involve creating merges to a wider type, padded with undef.
2619   for (int I = 0; I != NumOps; ++I) {
2620     Register SrcReg =  MI.getOperand(I + 1).getReg();
2621     LLT SrcTy = MRI.getType(SrcReg);
2622 
2623     // Each operand may have its own type, but only the number of elements
2624     // matters.
2625     LLT OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
2626     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
2627 
2628     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
2629     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy,
2630                         ExtractedRegs[I], TargetOpcode::G_ANYEXT);
2631   }
2632 
2633   SmallVector<Register, 8> ResultRegs;
2634 
2635   // Input operands for each sub-instruction.
2636   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
2637 
2638   int NumParts = ExtractedRegs[0].size();
2639   const LLT DstTy = MRI.getType(DstReg);
2640   const unsigned DstSize = DstTy.getSizeInBits();
2641   LLT DstLCMTy = getLCMType(DstTy, NarrowTy);
2642 
2643   const unsigned NarrowSize = NarrowTy.getSizeInBits();
2644 
2645   // We widened the source registers to satisfy merge/unmerge size
2646   // constraints. We'll have some extra fully undef parts.
2647   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
2648 
2649   for (int I = 0; I != NumRealParts; ++I) {
2650     // Emit this instruction on each of the split pieces.
2651     for (int J = 0; J != NumOps; ++J)
2652       InputRegs[J] = ExtractedRegs[J][I];
2653 
2654     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowTy}, InputRegs, Flags);
2655     ResultRegs.push_back(Inst.getReg(0));
2656   }
2657 
2658   // Fill out the widened result with undef instead of creating instructions
2659   // with undef inputs.
2660   int NumUndefParts = NumParts - NumRealParts;
2661   if (NumUndefParts != 0)
2662     ResultRegs.append(NumUndefParts, MIRBuilder.buildUndef(NarrowTy).getReg(0));
2663 
2664   // Extract the possibly padded result to the original result register.
2665   buildWidenedRemergeToDst(DstReg, DstLCMTy, ResultRegs);
2666 
2667   MI.eraseFromParent();
2668   return Legalized;
2669 }
2670 
2671 // Handle splitting vector operations which need to have the same number of
2672 // elements in each type index, but each type index may have a different element
2673 // type.
2674 //
2675 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
2676 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2677 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2678 //
2679 // Also handles some irregular breakdown cases, e.g.
2680 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
2681 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2682 //             s64 = G_SHL s64, s32
2683 LegalizerHelper::LegalizeResult
2684 LegalizerHelper::fewerElementsVectorMultiEltType(
2685   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
2686   if (TypeIdx != 0)
2687     return UnableToLegalize;
2688 
2689   const LLT NarrowTy0 = NarrowTyArg;
2690   const unsigned NewNumElts =
2691       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
2692 
2693   const Register DstReg = MI.getOperand(0).getReg();
2694   LLT DstTy = MRI.getType(DstReg);
2695   LLT LeftoverTy0;
2696 
2697   // All of the operands need to have the same number of elements, so if we can
2698   // determine a type breakdown for the result type, we can for all of the
2699   // source types.
2700   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
2701   if (NumParts < 0)
2702     return UnableToLegalize;
2703 
2704   SmallVector<MachineInstrBuilder, 4> NewInsts;
2705 
2706   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2707   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2708 
2709   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2710     LLT LeftoverTy;
2711     Register SrcReg = MI.getOperand(I).getReg();
2712     LLT SrcTyI = MRI.getType(SrcReg);
2713     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
2714     LLT LeftoverTyI;
2715 
2716     // Split this operand into the requested typed registers, and any leftover
2717     // required to reproduce the original type.
2718     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
2719                       LeftoverRegs))
2720       return UnableToLegalize;
2721 
2722     if (I == 1) {
2723       // For the first operand, create an instruction for each part and setup
2724       // the result.
2725       for (Register PartReg : PartRegs) {
2726         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2727         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2728                                .addDef(PartDstReg)
2729                                .addUse(PartReg));
2730         DstRegs.push_back(PartDstReg);
2731       }
2732 
2733       for (Register LeftoverReg : LeftoverRegs) {
2734         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
2735         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2736                                .addDef(PartDstReg)
2737                                .addUse(LeftoverReg));
2738         LeftoverDstRegs.push_back(PartDstReg);
2739       }
2740     } else {
2741       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
2742 
2743       // Add the newly created operand splits to the existing instructions. The
2744       // odd-sized pieces are ordered after the requested NarrowTyArg sized
2745       // pieces.
2746       unsigned InstCount = 0;
2747       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
2748         NewInsts[InstCount++].addUse(PartRegs[J]);
2749       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
2750         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
2751     }
2752 
2753     PartRegs.clear();
2754     LeftoverRegs.clear();
2755   }
2756 
2757   // Insert the newly built operations and rebuild the result register.
2758   for (auto &MIB : NewInsts)
2759     MIRBuilder.insertInstr(MIB);
2760 
2761   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
2762 
2763   MI.eraseFromParent();
2764   return Legalized;
2765 }
2766 
2767 LegalizerHelper::LegalizeResult
2768 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
2769                                           LLT NarrowTy) {
2770   if (TypeIdx != 0)
2771     return UnableToLegalize;
2772 
2773   Register DstReg = MI.getOperand(0).getReg();
2774   Register SrcReg = MI.getOperand(1).getReg();
2775   LLT DstTy = MRI.getType(DstReg);
2776   LLT SrcTy = MRI.getType(SrcReg);
2777 
2778   LLT NarrowTy0 = NarrowTy;
2779   LLT NarrowTy1;
2780   unsigned NumParts;
2781 
2782   if (NarrowTy.isVector()) {
2783     // Uneven breakdown not handled.
2784     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
2785     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
2786       return UnableToLegalize;
2787 
2788     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
2789   } else {
2790     NumParts = DstTy.getNumElements();
2791     NarrowTy1 = SrcTy.getElementType();
2792   }
2793 
2794   SmallVector<Register, 4> SrcRegs, DstRegs;
2795   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
2796 
2797   for (unsigned I = 0; I < NumParts; ++I) {
2798     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2799     MachineInstr *NewInst =
2800         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
2801 
2802     NewInst->setFlags(MI.getFlags());
2803     DstRegs.push_back(DstReg);
2804   }
2805 
2806   if (NarrowTy.isVector())
2807     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2808   else
2809     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2810 
2811   MI.eraseFromParent();
2812   return Legalized;
2813 }
2814 
2815 LegalizerHelper::LegalizeResult
2816 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
2817                                         LLT NarrowTy) {
2818   Register DstReg = MI.getOperand(0).getReg();
2819   Register Src0Reg = MI.getOperand(2).getReg();
2820   LLT DstTy = MRI.getType(DstReg);
2821   LLT SrcTy = MRI.getType(Src0Reg);
2822 
2823   unsigned NumParts;
2824   LLT NarrowTy0, NarrowTy1;
2825 
2826   if (TypeIdx == 0) {
2827     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2828     unsigned OldElts = DstTy.getNumElements();
2829 
2830     NarrowTy0 = NarrowTy;
2831     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
2832     NarrowTy1 = NarrowTy.isVector() ?
2833       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
2834       SrcTy.getElementType();
2835 
2836   } else {
2837     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2838     unsigned OldElts = SrcTy.getNumElements();
2839 
2840     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
2841       NarrowTy.getNumElements();
2842     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
2843                             DstTy.getScalarSizeInBits());
2844     NarrowTy1 = NarrowTy;
2845   }
2846 
2847   // FIXME: Don't know how to handle the situation where the small vectors
2848   // aren't all the same size yet.
2849   if (NarrowTy1.isVector() &&
2850       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
2851     return UnableToLegalize;
2852 
2853   CmpInst::Predicate Pred
2854     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
2855 
2856   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
2857   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
2858   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
2859 
2860   for (unsigned I = 0; I < NumParts; ++I) {
2861     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2862     DstRegs.push_back(DstReg);
2863 
2864     if (MI.getOpcode() == TargetOpcode::G_ICMP)
2865       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2866     else {
2867       MachineInstr *NewCmp
2868         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2869       NewCmp->setFlags(MI.getFlags());
2870     }
2871   }
2872 
2873   if (NarrowTy1.isVector())
2874     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2875   else
2876     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2877 
2878   MI.eraseFromParent();
2879   return Legalized;
2880 }
2881 
2882 LegalizerHelper::LegalizeResult
2883 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
2884                                            LLT NarrowTy) {
2885   Register DstReg = MI.getOperand(0).getReg();
2886   Register CondReg = MI.getOperand(1).getReg();
2887 
2888   unsigned NumParts = 0;
2889   LLT NarrowTy0, NarrowTy1;
2890 
2891   LLT DstTy = MRI.getType(DstReg);
2892   LLT CondTy = MRI.getType(CondReg);
2893   unsigned Size = DstTy.getSizeInBits();
2894 
2895   assert(TypeIdx == 0 || CondTy.isVector());
2896 
2897   if (TypeIdx == 0) {
2898     NarrowTy0 = NarrowTy;
2899     NarrowTy1 = CondTy;
2900 
2901     unsigned NarrowSize = NarrowTy0.getSizeInBits();
2902     // FIXME: Don't know how to handle the situation where the small vectors
2903     // aren't all the same size yet.
2904     if (Size % NarrowSize != 0)
2905       return UnableToLegalize;
2906 
2907     NumParts = Size / NarrowSize;
2908 
2909     // Need to break down the condition type
2910     if (CondTy.isVector()) {
2911       if (CondTy.getNumElements() == NumParts)
2912         NarrowTy1 = CondTy.getElementType();
2913       else
2914         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
2915                                 CondTy.getScalarSizeInBits());
2916     }
2917   } else {
2918     NumParts = CondTy.getNumElements();
2919     if (NarrowTy.isVector()) {
2920       // TODO: Handle uneven breakdown.
2921       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
2922         return UnableToLegalize;
2923 
2924       return UnableToLegalize;
2925     } else {
2926       NarrowTy0 = DstTy.getElementType();
2927       NarrowTy1 = NarrowTy;
2928     }
2929   }
2930 
2931   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2932   if (CondTy.isVector())
2933     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
2934 
2935   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
2936   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
2937 
2938   for (unsigned i = 0; i < NumParts; ++i) {
2939     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2940     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
2941                            Src1Regs[i], Src2Regs[i]);
2942     DstRegs.push_back(DstReg);
2943   }
2944 
2945   if (NarrowTy0.isVector())
2946     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2947   else
2948     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2949 
2950   MI.eraseFromParent();
2951   return Legalized;
2952 }
2953 
2954 LegalizerHelper::LegalizeResult
2955 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
2956                                         LLT NarrowTy) {
2957   const Register DstReg = MI.getOperand(0).getReg();
2958   LLT PhiTy = MRI.getType(DstReg);
2959   LLT LeftoverTy;
2960 
2961   // All of the operands need to have the same number of elements, so if we can
2962   // determine a type breakdown for the result type, we can for all of the
2963   // source types.
2964   int NumParts, NumLeftover;
2965   std::tie(NumParts, NumLeftover)
2966     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
2967   if (NumParts < 0)
2968     return UnableToLegalize;
2969 
2970   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2971   SmallVector<MachineInstrBuilder, 4> NewInsts;
2972 
2973   const int TotalNumParts = NumParts + NumLeftover;
2974 
2975   // Insert the new phis in the result block first.
2976   for (int I = 0; I != TotalNumParts; ++I) {
2977     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
2978     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
2979     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
2980                        .addDef(PartDstReg));
2981     if (I < NumParts)
2982       DstRegs.push_back(PartDstReg);
2983     else
2984       LeftoverDstRegs.push_back(PartDstReg);
2985   }
2986 
2987   MachineBasicBlock *MBB = MI.getParent();
2988   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
2989   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
2990 
2991   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2992 
2993   // Insert code to extract the incoming values in each predecessor block.
2994   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
2995     PartRegs.clear();
2996     LeftoverRegs.clear();
2997 
2998     Register SrcReg = MI.getOperand(I).getReg();
2999     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3000     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3001 
3002     LLT Unused;
3003     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3004                       LeftoverRegs))
3005       return UnableToLegalize;
3006 
3007     // Add the newly created operand splits to the existing instructions. The
3008     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3009     // pieces.
3010     for (int J = 0; J != TotalNumParts; ++J) {
3011       MachineInstrBuilder MIB = NewInsts[J];
3012       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3013       MIB.addMBB(&OpMBB);
3014     }
3015   }
3016 
3017   MI.eraseFromParent();
3018   return Legalized;
3019 }
3020 
3021 LegalizerHelper::LegalizeResult
3022 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3023                                                   unsigned TypeIdx,
3024                                                   LLT NarrowTy) {
3025   if (TypeIdx != 1)
3026     return UnableToLegalize;
3027 
3028   const int NumDst = MI.getNumOperands() - 1;
3029   const Register SrcReg = MI.getOperand(NumDst).getReg();
3030   LLT SrcTy = MRI.getType(SrcReg);
3031 
3032   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3033 
3034   // TODO: Create sequence of extracts.
3035   if (DstTy == NarrowTy)
3036     return UnableToLegalize;
3037 
3038   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3039   if (DstTy == GCDTy) {
3040     // This would just be a copy of the same unmerge.
3041     // TODO: Create extracts, pad with undef and create intermediate merges.
3042     return UnableToLegalize;
3043   }
3044 
3045   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3046   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3047   const int PartsPerUnmerge = NumDst / NumUnmerge;
3048 
3049   for (int I = 0; I != NumUnmerge; ++I) {
3050     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3051 
3052     for (int J = 0; J != PartsPerUnmerge; ++J)
3053       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3054     MIB.addUse(Unmerge.getReg(I));
3055   }
3056 
3057   MI.eraseFromParent();
3058   return Legalized;
3059 }
3060 
3061 LegalizerHelper::LegalizeResult
3062 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI,
3063                                                 unsigned TypeIdx,
3064                                                 LLT NarrowTy) {
3065   assert(TypeIdx == 0 && "not a vector type index");
3066   Register DstReg = MI.getOperand(0).getReg();
3067   LLT DstTy = MRI.getType(DstReg);
3068   LLT SrcTy = DstTy.getElementType();
3069 
3070   int DstNumElts = DstTy.getNumElements();
3071   int NarrowNumElts = NarrowTy.getNumElements();
3072   int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts;
3073   LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy);
3074 
3075   SmallVector<Register, 8> ConcatOps;
3076   SmallVector<Register, 8> SubBuildVector;
3077 
3078   Register UndefReg;
3079   if (WidenedDstTy != DstTy)
3080     UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0);
3081 
3082   // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as
3083   // necessary.
3084   //
3085   // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3086   //   -> <2 x s16>
3087   //
3088   // %4:_(s16) = G_IMPLICIT_DEF
3089   // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3090   // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3091   // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6
3092   // %3:_(<3 x s16>) = G_EXTRACT %7, 0
3093   for (int I = 0; I != NumConcat; ++I) {
3094     for (int J = 0; J != NarrowNumElts; ++J) {
3095       int SrcIdx = NarrowNumElts * I + J;
3096 
3097       if (SrcIdx < DstNumElts) {
3098         Register SrcReg = MI.getOperand(SrcIdx + 1).getReg();
3099         SubBuildVector.push_back(SrcReg);
3100       } else
3101         SubBuildVector.push_back(UndefReg);
3102     }
3103 
3104     auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector);
3105     ConcatOps.push_back(BuildVec.getReg(0));
3106     SubBuildVector.clear();
3107   }
3108 
3109   if (DstTy == WidenedDstTy)
3110     MIRBuilder.buildConcatVectors(DstReg, ConcatOps);
3111   else {
3112     auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps);
3113     MIRBuilder.buildExtract(DstReg, Concat, 0);
3114   }
3115 
3116   MI.eraseFromParent();
3117   return Legalized;
3118 }
3119 
3120 LegalizerHelper::LegalizeResult
3121 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3122                                       LLT NarrowTy) {
3123   // FIXME: Don't know how to handle secondary types yet.
3124   if (TypeIdx != 0)
3125     return UnableToLegalize;
3126 
3127   MachineMemOperand *MMO = *MI.memoperands_begin();
3128 
3129   // This implementation doesn't work for atomics. Give up instead of doing
3130   // something invalid.
3131   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3132       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3133     return UnableToLegalize;
3134 
3135   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3136   Register ValReg = MI.getOperand(0).getReg();
3137   Register AddrReg = MI.getOperand(1).getReg();
3138   LLT ValTy = MRI.getType(ValReg);
3139 
3140   // FIXME: Do we need a distinct NarrowMemory legalize action?
3141   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3142     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3143     return UnableToLegalize;
3144   }
3145 
3146   int NumParts = -1;
3147   int NumLeftover = -1;
3148   LLT LeftoverTy;
3149   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3150   if (IsLoad) {
3151     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3152   } else {
3153     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3154                      NarrowLeftoverRegs)) {
3155       NumParts = NarrowRegs.size();
3156       NumLeftover = NarrowLeftoverRegs.size();
3157     }
3158   }
3159 
3160   if (NumParts == -1)
3161     return UnableToLegalize;
3162 
3163   const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits());
3164 
3165   unsigned TotalSize = ValTy.getSizeInBits();
3166 
3167   // Split the load/store into PartTy sized pieces starting at Offset. If this
3168   // is a load, return the new registers in ValRegs. For a store, each elements
3169   // of ValRegs should be PartTy. Returns the next offset that needs to be
3170   // handled.
3171   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3172                              unsigned Offset) -> unsigned {
3173     MachineFunction &MF = MIRBuilder.getMF();
3174     unsigned PartSize = PartTy.getSizeInBits();
3175     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3176          Offset += PartSize, ++Idx) {
3177       unsigned ByteSize = PartSize / 8;
3178       unsigned ByteOffset = Offset / 8;
3179       Register NewAddrReg;
3180 
3181       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3182 
3183       MachineMemOperand *NewMMO =
3184         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3185 
3186       if (IsLoad) {
3187         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3188         ValRegs.push_back(Dst);
3189         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3190       } else {
3191         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3192       }
3193     }
3194 
3195     return Offset;
3196   };
3197 
3198   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3199 
3200   // Handle the rest of the register if this isn't an even type breakdown.
3201   if (LeftoverTy.isValid())
3202     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3203 
3204   if (IsLoad) {
3205     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3206                 LeftoverTy, NarrowLeftoverRegs);
3207   }
3208 
3209   MI.eraseFromParent();
3210   return Legalized;
3211 }
3212 
3213 LegalizerHelper::LegalizeResult
3214 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3215                                               LLT NarrowTy) {
3216   Register DstReg = MI.getOperand(0).getReg();
3217   Register SrcReg = MI.getOperand(1).getReg();
3218   int64_t Imm = MI.getOperand(2).getImm();
3219 
3220   LLT DstTy = MRI.getType(DstReg);
3221 
3222   SmallVector<Register, 8> Parts;
3223   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3224   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3225 
3226   for (Register &R : Parts)
3227     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3228 
3229   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3230 
3231   MI.eraseFromParent();
3232   return Legalized;
3233 }
3234 
3235 LegalizerHelper::LegalizeResult
3236 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3237                                      LLT NarrowTy) {
3238   using namespace TargetOpcode;
3239 
3240   MIRBuilder.setInstrAndDebugLoc(MI);
3241   switch (MI.getOpcode()) {
3242   case G_IMPLICIT_DEF:
3243     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3244   case G_TRUNC:
3245   case G_AND:
3246   case G_OR:
3247   case G_XOR:
3248   case G_ADD:
3249   case G_SUB:
3250   case G_MUL:
3251   case G_SMULH:
3252   case G_UMULH:
3253   case G_FADD:
3254   case G_FMUL:
3255   case G_FSUB:
3256   case G_FNEG:
3257   case G_FABS:
3258   case G_FCANONICALIZE:
3259   case G_FDIV:
3260   case G_FREM:
3261   case G_FMA:
3262   case G_FMAD:
3263   case G_FPOW:
3264   case G_FEXP:
3265   case G_FEXP2:
3266   case G_FLOG:
3267   case G_FLOG2:
3268   case G_FLOG10:
3269   case G_FNEARBYINT:
3270   case G_FCEIL:
3271   case G_FFLOOR:
3272   case G_FRINT:
3273   case G_INTRINSIC_ROUND:
3274   case G_INTRINSIC_TRUNC:
3275   case G_FCOS:
3276   case G_FSIN:
3277   case G_FSQRT:
3278   case G_BSWAP:
3279   case G_BITREVERSE:
3280   case G_SDIV:
3281   case G_UDIV:
3282   case G_SREM:
3283   case G_UREM:
3284   case G_SMIN:
3285   case G_SMAX:
3286   case G_UMIN:
3287   case G_UMAX:
3288   case G_FMINNUM:
3289   case G_FMAXNUM:
3290   case G_FMINNUM_IEEE:
3291   case G_FMAXNUM_IEEE:
3292   case G_FMINIMUM:
3293   case G_FMAXIMUM:
3294   case G_FSHL:
3295   case G_FSHR:
3296     return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy);
3297   case G_SHL:
3298   case G_LSHR:
3299   case G_ASHR:
3300   case G_CTLZ:
3301   case G_CTLZ_ZERO_UNDEF:
3302   case G_CTTZ:
3303   case G_CTTZ_ZERO_UNDEF:
3304   case G_CTPOP:
3305   case G_FCOPYSIGN:
3306     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
3307   case G_ZEXT:
3308   case G_SEXT:
3309   case G_ANYEXT:
3310   case G_FPEXT:
3311   case G_FPTRUNC:
3312   case G_SITOFP:
3313   case G_UITOFP:
3314   case G_FPTOSI:
3315   case G_FPTOUI:
3316   case G_INTTOPTR:
3317   case G_PTRTOINT:
3318   case G_ADDRSPACE_CAST:
3319     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
3320   case G_ICMP:
3321   case G_FCMP:
3322     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
3323   case G_SELECT:
3324     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
3325   case G_PHI:
3326     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
3327   case G_UNMERGE_VALUES:
3328     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
3329   case G_BUILD_VECTOR:
3330     return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy);
3331   case G_LOAD:
3332   case G_STORE:
3333     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
3334   case G_SEXT_INREG:
3335     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
3336   default:
3337     return UnableToLegalize;
3338   }
3339 }
3340 
3341 LegalizerHelper::LegalizeResult
3342 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
3343                                              const LLT HalfTy, const LLT AmtTy) {
3344 
3345   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3346   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3347   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3348 
3349   if (Amt.isNullValue()) {
3350     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
3351     MI.eraseFromParent();
3352     return Legalized;
3353   }
3354 
3355   LLT NVT = HalfTy;
3356   unsigned NVTBits = HalfTy.getSizeInBits();
3357   unsigned VTBits = 2 * NVTBits;
3358 
3359   SrcOp Lo(Register(0)), Hi(Register(0));
3360   if (MI.getOpcode() == TargetOpcode::G_SHL) {
3361     if (Amt.ugt(VTBits)) {
3362       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3363     } else if (Amt.ugt(NVTBits)) {
3364       Lo = MIRBuilder.buildConstant(NVT, 0);
3365       Hi = MIRBuilder.buildShl(NVT, InL,
3366                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3367     } else if (Amt == NVTBits) {
3368       Lo = MIRBuilder.buildConstant(NVT, 0);
3369       Hi = InL;
3370     } else {
3371       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
3372       auto OrLHS =
3373           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
3374       auto OrRHS = MIRBuilder.buildLShr(
3375           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3376       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3377     }
3378   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3379     if (Amt.ugt(VTBits)) {
3380       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3381     } else if (Amt.ugt(NVTBits)) {
3382       Lo = MIRBuilder.buildLShr(NVT, InH,
3383                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3384       Hi = MIRBuilder.buildConstant(NVT, 0);
3385     } else if (Amt == NVTBits) {
3386       Lo = InH;
3387       Hi = MIRBuilder.buildConstant(NVT, 0);
3388     } else {
3389       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3390 
3391       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3392       auto OrRHS = MIRBuilder.buildShl(
3393           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3394 
3395       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3396       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
3397     }
3398   } else {
3399     if (Amt.ugt(VTBits)) {
3400       Hi = Lo = MIRBuilder.buildAShr(
3401           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3402     } else if (Amt.ugt(NVTBits)) {
3403       Lo = MIRBuilder.buildAShr(NVT, InH,
3404                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3405       Hi = MIRBuilder.buildAShr(NVT, InH,
3406                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3407     } else if (Amt == NVTBits) {
3408       Lo = InH;
3409       Hi = MIRBuilder.buildAShr(NVT, InH,
3410                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3411     } else {
3412       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3413 
3414       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3415       auto OrRHS = MIRBuilder.buildShl(
3416           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3417 
3418       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3419       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
3420     }
3421   }
3422 
3423   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
3424   MI.eraseFromParent();
3425 
3426   return Legalized;
3427 }
3428 
3429 // TODO: Optimize if constant shift amount.
3430 LegalizerHelper::LegalizeResult
3431 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
3432                                    LLT RequestedTy) {
3433   if (TypeIdx == 1) {
3434     Observer.changingInstr(MI);
3435     narrowScalarSrc(MI, RequestedTy, 2);
3436     Observer.changedInstr(MI);
3437     return Legalized;
3438   }
3439 
3440   Register DstReg = MI.getOperand(0).getReg();
3441   LLT DstTy = MRI.getType(DstReg);
3442   if (DstTy.isVector())
3443     return UnableToLegalize;
3444 
3445   Register Amt = MI.getOperand(2).getReg();
3446   LLT ShiftAmtTy = MRI.getType(Amt);
3447   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
3448   if (DstEltSize % 2 != 0)
3449     return UnableToLegalize;
3450 
3451   // Ignore the input type. We can only go to exactly half the size of the
3452   // input. If that isn't small enough, the resulting pieces will be further
3453   // legalized.
3454   const unsigned NewBitSize = DstEltSize / 2;
3455   const LLT HalfTy = LLT::scalar(NewBitSize);
3456   const LLT CondTy = LLT::scalar(1);
3457 
3458   if (const MachineInstr *KShiftAmt =
3459           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
3460     return narrowScalarShiftByConstant(
3461         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
3462   }
3463 
3464   // TODO: Expand with known bits.
3465 
3466   // Handle the fully general expansion by an unknown amount.
3467   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
3468 
3469   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3470   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3471   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3472 
3473   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
3474   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
3475 
3476   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
3477   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
3478   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
3479 
3480   Register ResultRegs[2];
3481   switch (MI.getOpcode()) {
3482   case TargetOpcode::G_SHL: {
3483     // Short: ShAmt < NewBitSize
3484     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
3485 
3486     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
3487     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
3488     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3489 
3490     // Long: ShAmt >= NewBitSize
3491     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
3492     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
3493 
3494     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
3495     auto Hi = MIRBuilder.buildSelect(
3496         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
3497 
3498     ResultRegs[0] = Lo.getReg(0);
3499     ResultRegs[1] = Hi.getReg(0);
3500     break;
3501   }
3502   case TargetOpcode::G_LSHR:
3503   case TargetOpcode::G_ASHR: {
3504     // Short: ShAmt < NewBitSize
3505     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
3506 
3507     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
3508     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
3509     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3510 
3511     // Long: ShAmt >= NewBitSize
3512     MachineInstrBuilder HiL;
3513     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3514       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
3515     } else {
3516       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
3517       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
3518     }
3519     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
3520                                      {InH, AmtExcess});     // Lo from Hi part.
3521 
3522     auto Lo = MIRBuilder.buildSelect(
3523         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
3524 
3525     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
3526 
3527     ResultRegs[0] = Lo.getReg(0);
3528     ResultRegs[1] = Hi.getReg(0);
3529     break;
3530   }
3531   default:
3532     llvm_unreachable("not a shift");
3533   }
3534 
3535   MIRBuilder.buildMerge(DstReg, ResultRegs);
3536   MI.eraseFromParent();
3537   return Legalized;
3538 }
3539 
3540 LegalizerHelper::LegalizeResult
3541 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3542                                        LLT MoreTy) {
3543   assert(TypeIdx == 0 && "Expecting only Idx 0");
3544 
3545   Observer.changingInstr(MI);
3546   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3547     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3548     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3549     moreElementsVectorSrc(MI, MoreTy, I);
3550   }
3551 
3552   MachineBasicBlock &MBB = *MI.getParent();
3553   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
3554   moreElementsVectorDst(MI, MoreTy, 0);
3555   Observer.changedInstr(MI);
3556   return Legalized;
3557 }
3558 
3559 LegalizerHelper::LegalizeResult
3560 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
3561                                     LLT MoreTy) {
3562   MIRBuilder.setInstr(MI);
3563   unsigned Opc = MI.getOpcode();
3564   switch (Opc) {
3565   case TargetOpcode::G_IMPLICIT_DEF:
3566   case TargetOpcode::G_LOAD: {
3567     if (TypeIdx != 0)
3568       return UnableToLegalize;
3569     Observer.changingInstr(MI);
3570     moreElementsVectorDst(MI, MoreTy, 0);
3571     Observer.changedInstr(MI);
3572     return Legalized;
3573   }
3574   case TargetOpcode::G_STORE:
3575     if (TypeIdx != 0)
3576       return UnableToLegalize;
3577     Observer.changingInstr(MI);
3578     moreElementsVectorSrc(MI, MoreTy, 0);
3579     Observer.changedInstr(MI);
3580     return Legalized;
3581   case TargetOpcode::G_AND:
3582   case TargetOpcode::G_OR:
3583   case TargetOpcode::G_XOR:
3584   case TargetOpcode::G_SMIN:
3585   case TargetOpcode::G_SMAX:
3586   case TargetOpcode::G_UMIN:
3587   case TargetOpcode::G_UMAX:
3588   case TargetOpcode::G_FMINNUM:
3589   case TargetOpcode::G_FMAXNUM:
3590   case TargetOpcode::G_FMINNUM_IEEE:
3591   case TargetOpcode::G_FMAXNUM_IEEE:
3592   case TargetOpcode::G_FMINIMUM:
3593   case TargetOpcode::G_FMAXIMUM: {
3594     Observer.changingInstr(MI);
3595     moreElementsVectorSrc(MI, MoreTy, 1);
3596     moreElementsVectorSrc(MI, MoreTy, 2);
3597     moreElementsVectorDst(MI, MoreTy, 0);
3598     Observer.changedInstr(MI);
3599     return Legalized;
3600   }
3601   case TargetOpcode::G_EXTRACT:
3602     if (TypeIdx != 1)
3603       return UnableToLegalize;
3604     Observer.changingInstr(MI);
3605     moreElementsVectorSrc(MI, MoreTy, 1);
3606     Observer.changedInstr(MI);
3607     return Legalized;
3608   case TargetOpcode::G_INSERT:
3609     if (TypeIdx != 0)
3610       return UnableToLegalize;
3611     Observer.changingInstr(MI);
3612     moreElementsVectorSrc(MI, MoreTy, 1);
3613     moreElementsVectorDst(MI, MoreTy, 0);
3614     Observer.changedInstr(MI);
3615     return Legalized;
3616   case TargetOpcode::G_SELECT:
3617     if (TypeIdx != 0)
3618       return UnableToLegalize;
3619     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
3620       return UnableToLegalize;
3621 
3622     Observer.changingInstr(MI);
3623     moreElementsVectorSrc(MI, MoreTy, 2);
3624     moreElementsVectorSrc(MI, MoreTy, 3);
3625     moreElementsVectorDst(MI, MoreTy, 0);
3626     Observer.changedInstr(MI);
3627     return Legalized;
3628   case TargetOpcode::G_UNMERGE_VALUES: {
3629     if (TypeIdx != 1)
3630       return UnableToLegalize;
3631 
3632     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3633     int NumDst = MI.getNumOperands() - 1;
3634     moreElementsVectorSrc(MI, MoreTy, NumDst);
3635 
3636     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3637     for (int I = 0; I != NumDst; ++I)
3638       MIB.addDef(MI.getOperand(I).getReg());
3639 
3640     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
3641     for (int I = NumDst; I != NewNumDst; ++I)
3642       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
3643 
3644     MIB.addUse(MI.getOperand(NumDst).getReg());
3645     MI.eraseFromParent();
3646     return Legalized;
3647   }
3648   case TargetOpcode::G_PHI:
3649     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
3650   default:
3651     return UnableToLegalize;
3652   }
3653 }
3654 
3655 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
3656                                         ArrayRef<Register> Src1Regs,
3657                                         ArrayRef<Register> Src2Regs,
3658                                         LLT NarrowTy) {
3659   MachineIRBuilder &B = MIRBuilder;
3660   unsigned SrcParts = Src1Regs.size();
3661   unsigned DstParts = DstRegs.size();
3662 
3663   unsigned DstIdx = 0; // Low bits of the result.
3664   Register FactorSum =
3665       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
3666   DstRegs[DstIdx] = FactorSum;
3667 
3668   unsigned CarrySumPrevDstIdx;
3669   SmallVector<Register, 4> Factors;
3670 
3671   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
3672     // Collect low parts of muls for DstIdx.
3673     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
3674          i <= std::min(DstIdx, SrcParts - 1); ++i) {
3675       MachineInstrBuilder Mul =
3676           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
3677       Factors.push_back(Mul.getReg(0));
3678     }
3679     // Collect high parts of muls from previous DstIdx.
3680     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
3681          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
3682       MachineInstrBuilder Umulh =
3683           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
3684       Factors.push_back(Umulh.getReg(0));
3685     }
3686     // Add CarrySum from additions calculated for previous DstIdx.
3687     if (DstIdx != 1) {
3688       Factors.push_back(CarrySumPrevDstIdx);
3689     }
3690 
3691     Register CarrySum;
3692     // Add all factors and accumulate all carries into CarrySum.
3693     if (DstIdx != DstParts - 1) {
3694       MachineInstrBuilder Uaddo =
3695           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
3696       FactorSum = Uaddo.getReg(0);
3697       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
3698       for (unsigned i = 2; i < Factors.size(); ++i) {
3699         MachineInstrBuilder Uaddo =
3700             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
3701         FactorSum = Uaddo.getReg(0);
3702         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
3703         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
3704       }
3705     } else {
3706       // Since value for the next index is not calculated, neither is CarrySum.
3707       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
3708       for (unsigned i = 2; i < Factors.size(); ++i)
3709         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
3710     }
3711 
3712     CarrySumPrevDstIdx = CarrySum;
3713     DstRegs[DstIdx] = FactorSum;
3714     Factors.clear();
3715   }
3716 }
3717 
3718 LegalizerHelper::LegalizeResult
3719 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
3720   Register DstReg = MI.getOperand(0).getReg();
3721   Register Src1 = MI.getOperand(1).getReg();
3722   Register Src2 = MI.getOperand(2).getReg();
3723 
3724   LLT Ty = MRI.getType(DstReg);
3725   if (Ty.isVector())
3726     return UnableToLegalize;
3727 
3728   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
3729   unsigned DstSize = Ty.getSizeInBits();
3730   unsigned NarrowSize = NarrowTy.getSizeInBits();
3731   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
3732     return UnableToLegalize;
3733 
3734   unsigned NumDstParts = DstSize / NarrowSize;
3735   unsigned NumSrcParts = SrcSize / NarrowSize;
3736   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
3737   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
3738 
3739   SmallVector<Register, 2> Src1Parts, Src2Parts;
3740   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
3741   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
3742   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
3743   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
3744 
3745   // Take only high half of registers if this is high mul.
3746   ArrayRef<Register> DstRegs(
3747       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
3748   MIRBuilder.buildMerge(DstReg, DstRegs);
3749   MI.eraseFromParent();
3750   return Legalized;
3751 }
3752 
3753 LegalizerHelper::LegalizeResult
3754 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
3755                                      LLT NarrowTy) {
3756   if (TypeIdx != 1)
3757     return UnableToLegalize;
3758 
3759   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3760 
3761   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
3762   // FIXME: add support for when SizeOp1 isn't an exact multiple of
3763   // NarrowSize.
3764   if (SizeOp1 % NarrowSize != 0)
3765     return UnableToLegalize;
3766   int NumParts = SizeOp1 / NarrowSize;
3767 
3768   SmallVector<Register, 2> SrcRegs, DstRegs;
3769   SmallVector<uint64_t, 2> Indexes;
3770   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3771 
3772   Register OpReg = MI.getOperand(0).getReg();
3773   uint64_t OpStart = MI.getOperand(2).getImm();
3774   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3775   for (int i = 0; i < NumParts; ++i) {
3776     unsigned SrcStart = i * NarrowSize;
3777 
3778     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
3779       // No part of the extract uses this subregister, ignore it.
3780       continue;
3781     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3782       // The entire subregister is extracted, forward the value.
3783       DstRegs.push_back(SrcRegs[i]);
3784       continue;
3785     }
3786 
3787     // OpSegStart is where this destination segment would start in OpReg if it
3788     // extended infinitely in both directions.
3789     int64_t ExtractOffset;
3790     uint64_t SegSize;
3791     if (OpStart < SrcStart) {
3792       ExtractOffset = 0;
3793       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
3794     } else {
3795       ExtractOffset = OpStart - SrcStart;
3796       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
3797     }
3798 
3799     Register SegReg = SrcRegs[i];
3800     if (ExtractOffset != 0 || SegSize != NarrowSize) {
3801       // A genuine extract is needed.
3802       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3803       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
3804     }
3805 
3806     DstRegs.push_back(SegReg);
3807   }
3808 
3809   Register DstReg = MI.getOperand(0).getReg();
3810   if (MRI.getType(DstReg).isVector())
3811     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3812   else if (DstRegs.size() > 1)
3813     MIRBuilder.buildMerge(DstReg, DstRegs);
3814   else
3815     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
3816   MI.eraseFromParent();
3817   return Legalized;
3818 }
3819 
3820 LegalizerHelper::LegalizeResult
3821 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
3822                                     LLT NarrowTy) {
3823   // FIXME: Don't know how to handle secondary types yet.
3824   if (TypeIdx != 0)
3825     return UnableToLegalize;
3826 
3827   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
3828   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3829 
3830   // FIXME: add support for when SizeOp0 isn't an exact multiple of
3831   // NarrowSize.
3832   if (SizeOp0 % NarrowSize != 0)
3833     return UnableToLegalize;
3834 
3835   int NumParts = SizeOp0 / NarrowSize;
3836 
3837   SmallVector<Register, 2> SrcRegs, DstRegs;
3838   SmallVector<uint64_t, 2> Indexes;
3839   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3840 
3841   Register OpReg = MI.getOperand(2).getReg();
3842   uint64_t OpStart = MI.getOperand(3).getImm();
3843   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3844   for (int i = 0; i < NumParts; ++i) {
3845     unsigned DstStart = i * NarrowSize;
3846 
3847     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
3848       // No part of the insert affects this subregister, forward the original.
3849       DstRegs.push_back(SrcRegs[i]);
3850       continue;
3851     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3852       // The entire subregister is defined by this insert, forward the new
3853       // value.
3854       DstRegs.push_back(OpReg);
3855       continue;
3856     }
3857 
3858     // OpSegStart is where this destination segment would start in OpReg if it
3859     // extended infinitely in both directions.
3860     int64_t ExtractOffset, InsertOffset;
3861     uint64_t SegSize;
3862     if (OpStart < DstStart) {
3863       InsertOffset = 0;
3864       ExtractOffset = DstStart - OpStart;
3865       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
3866     } else {
3867       InsertOffset = OpStart - DstStart;
3868       ExtractOffset = 0;
3869       SegSize =
3870         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
3871     }
3872 
3873     Register SegReg = OpReg;
3874     if (ExtractOffset != 0 || SegSize != OpSize) {
3875       // A genuine extract is needed.
3876       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3877       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
3878     }
3879 
3880     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
3881     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
3882     DstRegs.push_back(DstReg);
3883   }
3884 
3885   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
3886   Register DstReg = MI.getOperand(0).getReg();
3887   if(MRI.getType(DstReg).isVector())
3888     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3889   else
3890     MIRBuilder.buildMerge(DstReg, DstRegs);
3891   MI.eraseFromParent();
3892   return Legalized;
3893 }
3894 
3895 LegalizerHelper::LegalizeResult
3896 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
3897                                    LLT NarrowTy) {
3898   Register DstReg = MI.getOperand(0).getReg();
3899   LLT DstTy = MRI.getType(DstReg);
3900 
3901   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
3902 
3903   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3904   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
3905   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3906   LLT LeftoverTy;
3907   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
3908                     Src0Regs, Src0LeftoverRegs))
3909     return UnableToLegalize;
3910 
3911   LLT Unused;
3912   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
3913                     Src1Regs, Src1LeftoverRegs))
3914     llvm_unreachable("inconsistent extractParts result");
3915 
3916   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3917     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
3918                                         {Src0Regs[I], Src1Regs[I]});
3919     DstRegs.push_back(Inst.getReg(0));
3920   }
3921 
3922   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3923     auto Inst = MIRBuilder.buildInstr(
3924       MI.getOpcode(),
3925       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
3926     DstLeftoverRegs.push_back(Inst.getReg(0));
3927   }
3928 
3929   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3930               LeftoverTy, DstLeftoverRegs);
3931 
3932   MI.eraseFromParent();
3933   return Legalized;
3934 }
3935 
3936 LegalizerHelper::LegalizeResult
3937 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
3938                                  LLT NarrowTy) {
3939   if (TypeIdx != 0)
3940     return UnableToLegalize;
3941 
3942   Register DstReg = MI.getOperand(0).getReg();
3943   Register SrcReg = MI.getOperand(1).getReg();
3944 
3945   LLT DstTy = MRI.getType(DstReg);
3946   if (DstTy.isVector())
3947     return UnableToLegalize;
3948 
3949   SmallVector<Register, 8> Parts;
3950   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3951   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
3952   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3953 
3954   MI.eraseFromParent();
3955   return Legalized;
3956 }
3957 
3958 LegalizerHelper::LegalizeResult
3959 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
3960                                     LLT NarrowTy) {
3961   if (TypeIdx != 0)
3962     return UnableToLegalize;
3963 
3964   Register CondReg = MI.getOperand(1).getReg();
3965   LLT CondTy = MRI.getType(CondReg);
3966   if (CondTy.isVector()) // TODO: Handle vselect
3967     return UnableToLegalize;
3968 
3969   Register DstReg = MI.getOperand(0).getReg();
3970   LLT DstTy = MRI.getType(DstReg);
3971 
3972   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3973   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3974   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
3975   LLT LeftoverTy;
3976   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
3977                     Src1Regs, Src1LeftoverRegs))
3978     return UnableToLegalize;
3979 
3980   LLT Unused;
3981   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
3982                     Src2Regs, Src2LeftoverRegs))
3983     llvm_unreachable("inconsistent extractParts result");
3984 
3985   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3986     auto Select = MIRBuilder.buildSelect(NarrowTy,
3987                                          CondReg, Src1Regs[I], Src2Regs[I]);
3988     DstRegs.push_back(Select.getReg(0));
3989   }
3990 
3991   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3992     auto Select = MIRBuilder.buildSelect(
3993       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
3994     DstLeftoverRegs.push_back(Select.getReg(0));
3995   }
3996 
3997   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3998               LeftoverTy, DstLeftoverRegs);
3999 
4000   MI.eraseFromParent();
4001   return Legalized;
4002 }
4003 
4004 LegalizerHelper::LegalizeResult
4005 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4006                                   LLT NarrowTy) {
4007   if (TypeIdx != 1)
4008     return UnableToLegalize;
4009 
4010   Register DstReg = MI.getOperand(0).getReg();
4011   Register SrcReg = MI.getOperand(1).getReg();
4012   LLT DstTy = MRI.getType(DstReg);
4013   LLT SrcTy = MRI.getType(SrcReg);
4014   unsigned NarrowSize = NarrowTy.getSizeInBits();
4015 
4016   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4017     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4018 
4019     MachineIRBuilder &B = MIRBuilder;
4020     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4021     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4022     auto C_0 = B.buildConstant(NarrowTy, 0);
4023     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4024                                 UnmergeSrc.getReg(1), C_0);
4025     auto LoCTLZ = IsUndef ?
4026       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4027       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4028     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4029     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4030     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4031     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4032 
4033     MI.eraseFromParent();
4034     return Legalized;
4035   }
4036 
4037   return UnableToLegalize;
4038 }
4039 
4040 LegalizerHelper::LegalizeResult
4041 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4042                                   LLT NarrowTy) {
4043   if (TypeIdx != 1)
4044     return UnableToLegalize;
4045 
4046   Register DstReg = MI.getOperand(0).getReg();
4047   Register SrcReg = MI.getOperand(1).getReg();
4048   LLT DstTy = MRI.getType(DstReg);
4049   LLT SrcTy = MRI.getType(SrcReg);
4050   unsigned NarrowSize = NarrowTy.getSizeInBits();
4051 
4052   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4053     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4054 
4055     MachineIRBuilder &B = MIRBuilder;
4056     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4057     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4058     auto C_0 = B.buildConstant(NarrowTy, 0);
4059     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4060                                 UnmergeSrc.getReg(0), C_0);
4061     auto HiCTTZ = IsUndef ?
4062       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4063       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4064     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4065     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4066     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4067     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4068 
4069     MI.eraseFromParent();
4070     return Legalized;
4071   }
4072 
4073   return UnableToLegalize;
4074 }
4075 
4076 LegalizerHelper::LegalizeResult
4077 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4078                                    LLT NarrowTy) {
4079   if (TypeIdx != 1)
4080     return UnableToLegalize;
4081 
4082   Register DstReg = MI.getOperand(0).getReg();
4083   LLT DstTy = MRI.getType(DstReg);
4084   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4085   unsigned NarrowSize = NarrowTy.getSizeInBits();
4086 
4087   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4088     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4089 
4090     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4091     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4092     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4093 
4094     MI.eraseFromParent();
4095     return Legalized;
4096   }
4097 
4098   return UnableToLegalize;
4099 }
4100 
4101 LegalizerHelper::LegalizeResult
4102 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4103   unsigned Opc = MI.getOpcode();
4104   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
4105   auto isSupported = [this](const LegalityQuery &Q) {
4106     auto QAction = LI.getAction(Q).Action;
4107     return QAction == Legal || QAction == Libcall || QAction == Custom;
4108   };
4109   switch (Opc) {
4110   default:
4111     return UnableToLegalize;
4112   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4113     // This trivially expands to CTLZ.
4114     Observer.changingInstr(MI);
4115     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4116     Observer.changedInstr(MI);
4117     return Legalized;
4118   }
4119   case TargetOpcode::G_CTLZ: {
4120     Register DstReg = MI.getOperand(0).getReg();
4121     Register SrcReg = MI.getOperand(1).getReg();
4122     LLT DstTy = MRI.getType(DstReg);
4123     LLT SrcTy = MRI.getType(SrcReg);
4124     unsigned Len = SrcTy.getSizeInBits();
4125 
4126     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4127       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4128       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4129       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4130       auto ICmp = MIRBuilder.buildICmp(
4131           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4132       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4133       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4134       MI.eraseFromParent();
4135       return Legalized;
4136     }
4137     // for now, we do this:
4138     // NewLen = NextPowerOf2(Len);
4139     // x = x | (x >> 1);
4140     // x = x | (x >> 2);
4141     // ...
4142     // x = x | (x >>16);
4143     // x = x | (x >>32); // for 64-bit input
4144     // Upto NewLen/2
4145     // return Len - popcount(x);
4146     //
4147     // Ref: "Hacker's Delight" by Henry Warren
4148     Register Op = SrcReg;
4149     unsigned NewLen = PowerOf2Ceil(Len);
4150     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4151       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4152       auto MIBOp = MIRBuilder.buildOr(
4153           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4154       Op = MIBOp.getReg(0);
4155     }
4156     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4157     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4158                         MIBPop);
4159     MI.eraseFromParent();
4160     return Legalized;
4161   }
4162   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4163     // This trivially expands to CTTZ.
4164     Observer.changingInstr(MI);
4165     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4166     Observer.changedInstr(MI);
4167     return Legalized;
4168   }
4169   case TargetOpcode::G_CTTZ: {
4170     Register DstReg = MI.getOperand(0).getReg();
4171     Register SrcReg = MI.getOperand(1).getReg();
4172     LLT DstTy = MRI.getType(DstReg);
4173     LLT SrcTy = MRI.getType(SrcReg);
4174 
4175     unsigned Len = SrcTy.getSizeInBits();
4176     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4177       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4178       // zero.
4179       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4180       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4181       auto ICmp = MIRBuilder.buildICmp(
4182           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4183       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4184       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4185       MI.eraseFromParent();
4186       return Legalized;
4187     }
4188     // for now, we use: { return popcount(~x & (x - 1)); }
4189     // unless the target has ctlz but not ctpop, in which case we use:
4190     // { return 32 - nlz(~x & (x-1)); }
4191     // Ref: "Hacker's Delight" by Henry Warren
4192     auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
4193     auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1);
4194     auto MIBTmp = MIRBuilder.buildAnd(
4195         Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1));
4196     if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
4197         isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
4198       auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
4199       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4200                           MIRBuilder.buildCTLZ(Ty, MIBTmp));
4201       MI.eraseFromParent();
4202       return Legalized;
4203     }
4204     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4205     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4206     return Legalized;
4207   }
4208   case TargetOpcode::G_CTPOP: {
4209     unsigned Size = Ty.getSizeInBits();
4210     MachineIRBuilder &B = MIRBuilder;
4211 
4212     // Count set bits in blocks of 2 bits. Default approach would be
4213     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4214     // We use following formula instead:
4215     // B2Count = val - { (val >> 1) & 0x55555555 }
4216     // since it gives same result in blocks of 2 with one instruction less.
4217     auto C_1 = B.buildConstant(Ty, 1);
4218     auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1);
4219     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4220     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4221     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4222     auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi);
4223 
4224     // In order to get count in blocks of 4 add values from adjacent block of 2.
4225     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4226     auto C_2 = B.buildConstant(Ty, 2);
4227     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4228     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4229     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4230     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4231     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4232     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4233 
4234     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4235     // addition since count value sits in range {0,...,8} and 4 bits are enough
4236     // to hold such binary values. After addition high 4 bits still hold count
4237     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4238     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4239     auto C_4 = B.buildConstant(Ty, 4);
4240     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4241     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4242     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4243     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4244     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4245 
4246     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4247     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4248     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4249     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4250     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4251 
4252     // Shift count result from 8 high bits to low bits.
4253     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4254     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4255 
4256     MI.eraseFromParent();
4257     return Legalized;
4258   }
4259   }
4260 }
4261 
4262 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4263 // representation.
4264 LegalizerHelper::LegalizeResult
4265 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4266   Register Dst = MI.getOperand(0).getReg();
4267   Register Src = MI.getOperand(1).getReg();
4268   const LLT S64 = LLT::scalar(64);
4269   const LLT S32 = LLT::scalar(32);
4270   const LLT S1 = LLT::scalar(1);
4271 
4272   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
4273 
4274   // unsigned cul2f(ulong u) {
4275   //   uint lz = clz(u);
4276   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
4277   //   u = (u << lz) & 0x7fffffffffffffffUL;
4278   //   ulong t = u & 0xffffffffffUL;
4279   //   uint v = (e << 23) | (uint)(u >> 40);
4280   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
4281   //   return as_float(v + r);
4282   // }
4283 
4284   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
4285   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
4286 
4287   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
4288 
4289   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
4290   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
4291 
4292   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
4293   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
4294 
4295   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
4296   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
4297 
4298   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
4299 
4300   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
4301   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
4302 
4303   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
4304   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
4305   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
4306 
4307   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
4308   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
4309   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
4310   auto One = MIRBuilder.buildConstant(S32, 1);
4311 
4312   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
4313   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
4314   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
4315   MIRBuilder.buildAdd(Dst, V, R);
4316 
4317   return Legalized;
4318 }
4319 
4320 LegalizerHelper::LegalizeResult
4321 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4322   Register Dst = MI.getOperand(0).getReg();
4323   Register Src = MI.getOperand(1).getReg();
4324   LLT DstTy = MRI.getType(Dst);
4325   LLT SrcTy = MRI.getType(Src);
4326 
4327   if (SrcTy == LLT::scalar(1)) {
4328     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
4329     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4330     MIRBuilder.buildSelect(Dst, Src, True, False);
4331     MI.eraseFromParent();
4332     return Legalized;
4333   }
4334 
4335   if (SrcTy != LLT::scalar(64))
4336     return UnableToLegalize;
4337 
4338   if (DstTy == LLT::scalar(32)) {
4339     // TODO: SelectionDAG has several alternative expansions to port which may
4340     // be more reasonble depending on the available instructions. If a target
4341     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
4342     // intermediate type, this is probably worse.
4343     return lowerU64ToF32BitOps(MI);
4344   }
4345 
4346   return UnableToLegalize;
4347 }
4348 
4349 LegalizerHelper::LegalizeResult
4350 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4351   Register Dst = MI.getOperand(0).getReg();
4352   Register Src = MI.getOperand(1).getReg();
4353   LLT DstTy = MRI.getType(Dst);
4354   LLT SrcTy = MRI.getType(Src);
4355 
4356   const LLT S64 = LLT::scalar(64);
4357   const LLT S32 = LLT::scalar(32);
4358   const LLT S1 = LLT::scalar(1);
4359 
4360   if (SrcTy == S1) {
4361     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
4362     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4363     MIRBuilder.buildSelect(Dst, Src, True, False);
4364     MI.eraseFromParent();
4365     return Legalized;
4366   }
4367 
4368   if (SrcTy != S64)
4369     return UnableToLegalize;
4370 
4371   if (DstTy == S32) {
4372     // signed cl2f(long l) {
4373     //   long s = l >> 63;
4374     //   float r = cul2f((l + s) ^ s);
4375     //   return s ? -r : r;
4376     // }
4377     Register L = Src;
4378     auto SignBit = MIRBuilder.buildConstant(S64, 63);
4379     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
4380 
4381     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
4382     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
4383     auto R = MIRBuilder.buildUITOFP(S32, Xor);
4384 
4385     auto RNeg = MIRBuilder.buildFNeg(S32, R);
4386     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
4387                                             MIRBuilder.buildConstant(S64, 0));
4388     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
4389     return Legalized;
4390   }
4391 
4392   return UnableToLegalize;
4393 }
4394 
4395 LegalizerHelper::LegalizeResult
4396 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4397   Register Dst = MI.getOperand(0).getReg();
4398   Register Src = MI.getOperand(1).getReg();
4399   LLT DstTy = MRI.getType(Dst);
4400   LLT SrcTy = MRI.getType(Src);
4401   const LLT S64 = LLT::scalar(64);
4402   const LLT S32 = LLT::scalar(32);
4403 
4404   if (SrcTy != S64 && SrcTy != S32)
4405     return UnableToLegalize;
4406   if (DstTy != S32 && DstTy != S64)
4407     return UnableToLegalize;
4408 
4409   // FPTOSI gives same result as FPTOUI for positive signed integers.
4410   // FPTOUI needs to deal with fp values that convert to unsigned integers
4411   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
4412 
4413   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
4414   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
4415                                                 : APFloat::IEEEdouble(),
4416                     APInt::getNullValue(SrcTy.getSizeInBits()));
4417   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
4418 
4419   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
4420 
4421   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
4422   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
4423   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
4424   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
4425   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
4426   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
4427   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
4428 
4429   const LLT S1 = LLT::scalar(1);
4430 
4431   MachineInstrBuilder FCMP =
4432       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
4433   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
4434 
4435   MI.eraseFromParent();
4436   return Legalized;
4437 }
4438 
4439 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
4440   Register Dst = MI.getOperand(0).getReg();
4441   Register Src = MI.getOperand(1).getReg();
4442   LLT DstTy = MRI.getType(Dst);
4443   LLT SrcTy = MRI.getType(Src);
4444   const LLT S64 = LLT::scalar(64);
4445   const LLT S32 = LLT::scalar(32);
4446 
4447   // FIXME: Only f32 to i64 conversions are supported.
4448   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
4449     return UnableToLegalize;
4450 
4451   // Expand f32 -> i64 conversion
4452   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4453   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4454 
4455   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
4456 
4457   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
4458   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
4459 
4460   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
4461   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
4462 
4463   auto SignMask = MIRBuilder.buildConstant(SrcTy,
4464                                            APInt::getSignMask(SrcEltBits));
4465   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
4466   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
4467   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
4468   Sign = MIRBuilder.buildSExt(DstTy, Sign);
4469 
4470   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
4471   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
4472   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
4473 
4474   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
4475   R = MIRBuilder.buildZExt(DstTy, R);
4476 
4477   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
4478   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
4479   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
4480   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
4481 
4482   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
4483   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
4484 
4485   const LLT S1 = LLT::scalar(1);
4486   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
4487                                     S1, Exponent, ExponentLoBit);
4488 
4489   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
4490 
4491   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
4492   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
4493 
4494   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
4495 
4496   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
4497                                           S1, Exponent, ZeroSrcTy);
4498 
4499   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
4500   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
4501 
4502   MI.eraseFromParent();
4503   return Legalized;
4504 }
4505 
4506 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
4507 LegalizerHelper::LegalizeResult
4508 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
4509   Register Dst = MI.getOperand(0).getReg();
4510   Register Src = MI.getOperand(1).getReg();
4511 
4512   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
4513     return UnableToLegalize;
4514 
4515   const unsigned ExpMask = 0x7ff;
4516   const unsigned ExpBiasf64 = 1023;
4517   const unsigned ExpBiasf16 = 15;
4518   const LLT S32 = LLT::scalar(32);
4519   const LLT S1 = LLT::scalar(1);
4520 
4521   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
4522   Register U = Unmerge.getReg(0);
4523   Register UH = Unmerge.getReg(1);
4524 
4525   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
4526 
4527   // Subtract the fp64 exponent bias (1023) to get the real exponent and
4528   // add the f16 bias (15) to get the biased exponent for the f16 format.
4529   E = MIRBuilder.buildAdd(
4530     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
4531   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
4532 
4533   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
4534   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
4535 
4536   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
4537                                        MIRBuilder.buildConstant(S32, 0x1ff));
4538   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
4539 
4540   auto Zero = MIRBuilder.buildConstant(S32, 0);
4541   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
4542   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
4543   M = MIRBuilder.buildOr(S32, M, Lo40Set);
4544 
4545   // (M != 0 ? 0x0200 : 0) | 0x7c00;
4546   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
4547   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
4548   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
4549 
4550   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
4551   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
4552 
4553   // N = M | (E << 12);
4554   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
4555   auto N = MIRBuilder.buildOr(S32, M, EShl12);
4556 
4557   // B = clamp(1-E, 0, 13);
4558   auto One = MIRBuilder.buildConstant(S32, 1);
4559   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
4560   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
4561   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
4562 
4563   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
4564                                        MIRBuilder.buildConstant(S32, 0x1000));
4565 
4566   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
4567   auto D0 = MIRBuilder.buildShl(S32, D, B);
4568 
4569   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
4570                                              D0, SigSetHigh);
4571   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
4572   D = MIRBuilder.buildOr(S32, D, D1);
4573 
4574   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
4575   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
4576 
4577   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
4578   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
4579 
4580   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
4581                                        MIRBuilder.buildConstant(S32, 3));
4582   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
4583 
4584   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
4585                                        MIRBuilder.buildConstant(S32, 5));
4586   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
4587 
4588   V1 = MIRBuilder.buildOr(S32, V0, V1);
4589   V = MIRBuilder.buildAdd(S32, V, V1);
4590 
4591   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
4592                                        E, MIRBuilder.buildConstant(S32, 30));
4593   V = MIRBuilder.buildSelect(S32, CmpEGt30,
4594                              MIRBuilder.buildConstant(S32, 0x7c00), V);
4595 
4596   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
4597                                          E, MIRBuilder.buildConstant(S32, 1039));
4598   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
4599 
4600   // Extract the sign bit.
4601   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
4602   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
4603 
4604   // Insert the sign bit
4605   V = MIRBuilder.buildOr(S32, Sign, V);
4606 
4607   MIRBuilder.buildTrunc(Dst, V);
4608   MI.eraseFromParent();
4609   return Legalized;
4610 }
4611 
4612 LegalizerHelper::LegalizeResult
4613 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4614   Register Dst = MI.getOperand(0).getReg();
4615   Register Src = MI.getOperand(1).getReg();
4616 
4617   LLT DstTy = MRI.getType(Dst);
4618   LLT SrcTy = MRI.getType(Src);
4619   const LLT S64 = LLT::scalar(64);
4620   const LLT S16 = LLT::scalar(16);
4621 
4622   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
4623     return lowerFPTRUNC_F64_TO_F16(MI);
4624 
4625   return UnableToLegalize;
4626 }
4627 
4628 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
4629   switch (Opc) {
4630   case TargetOpcode::G_SMIN:
4631     return CmpInst::ICMP_SLT;
4632   case TargetOpcode::G_SMAX:
4633     return CmpInst::ICMP_SGT;
4634   case TargetOpcode::G_UMIN:
4635     return CmpInst::ICMP_ULT;
4636   case TargetOpcode::G_UMAX:
4637     return CmpInst::ICMP_UGT;
4638   default:
4639     llvm_unreachable("not in integer min/max");
4640   }
4641 }
4642 
4643 LegalizerHelper::LegalizeResult
4644 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4645   Register Dst = MI.getOperand(0).getReg();
4646   Register Src0 = MI.getOperand(1).getReg();
4647   Register Src1 = MI.getOperand(2).getReg();
4648 
4649   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
4650   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
4651 
4652   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
4653   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
4654 
4655   MI.eraseFromParent();
4656   return Legalized;
4657 }
4658 
4659 LegalizerHelper::LegalizeResult
4660 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4661   Register Dst = MI.getOperand(0).getReg();
4662   Register Src0 = MI.getOperand(1).getReg();
4663   Register Src1 = MI.getOperand(2).getReg();
4664 
4665   const LLT Src0Ty = MRI.getType(Src0);
4666   const LLT Src1Ty = MRI.getType(Src1);
4667 
4668   const int Src0Size = Src0Ty.getScalarSizeInBits();
4669   const int Src1Size = Src1Ty.getScalarSizeInBits();
4670 
4671   auto SignBitMask = MIRBuilder.buildConstant(
4672     Src0Ty, APInt::getSignMask(Src0Size));
4673 
4674   auto NotSignBitMask = MIRBuilder.buildConstant(
4675     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
4676 
4677   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
4678   MachineInstr *Or;
4679 
4680   if (Src0Ty == Src1Ty) {
4681     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
4682     Or = MIRBuilder.buildOr(Dst, And0, And1);
4683   } else if (Src0Size > Src1Size) {
4684     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
4685     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
4686     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
4687     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
4688     Or = MIRBuilder.buildOr(Dst, And0, And1);
4689   } else {
4690     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
4691     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
4692     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
4693     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
4694     Or = MIRBuilder.buildOr(Dst, And0, And1);
4695   }
4696 
4697   // Be careful about setting nsz/nnan/ninf on every instruction, since the
4698   // constants are a nan and -0.0, but the final result should preserve
4699   // everything.
4700   if (unsigned Flags = MI.getFlags())
4701     Or->setFlags(Flags);
4702 
4703   MI.eraseFromParent();
4704   return Legalized;
4705 }
4706 
4707 LegalizerHelper::LegalizeResult
4708 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
4709   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
4710     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
4711 
4712   Register Dst = MI.getOperand(0).getReg();
4713   Register Src0 = MI.getOperand(1).getReg();
4714   Register Src1 = MI.getOperand(2).getReg();
4715   LLT Ty = MRI.getType(Dst);
4716 
4717   if (!MI.getFlag(MachineInstr::FmNoNans)) {
4718     // Insert canonicalizes if it's possible we need to quiet to get correct
4719     // sNaN behavior.
4720 
4721     // Note this must be done here, and not as an optimization combine in the
4722     // absence of a dedicate quiet-snan instruction as we're using an
4723     // omni-purpose G_FCANONICALIZE.
4724     if (!isKnownNeverSNaN(Src0, MRI))
4725       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
4726 
4727     if (!isKnownNeverSNaN(Src1, MRI))
4728       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
4729   }
4730 
4731   // If there are no nans, it's safe to simply replace this with the non-IEEE
4732   // version.
4733   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
4734   MI.eraseFromParent();
4735   return Legalized;
4736 }
4737 
4738 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
4739   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
4740   Register DstReg = MI.getOperand(0).getReg();
4741   LLT Ty = MRI.getType(DstReg);
4742   unsigned Flags = MI.getFlags();
4743 
4744   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
4745                                   Flags);
4746   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
4747   MI.eraseFromParent();
4748   return Legalized;
4749 }
4750 
4751 LegalizerHelper::LegalizeResult
4752 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
4753   Register DstReg = MI.getOperand(0).getReg();
4754   Register X = MI.getOperand(1).getReg();
4755   const unsigned Flags = MI.getFlags();
4756   const LLT Ty = MRI.getType(DstReg);
4757   const LLT CondTy = Ty.changeElementSize(1);
4758 
4759   // round(x) =>
4760   //  t = trunc(x);
4761   //  d = fabs(x - t);
4762   //  o = copysign(1.0f, x);
4763   //  return t + (d >= 0.5 ? o : 0.0);
4764 
4765   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
4766 
4767   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
4768   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
4769   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4770   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
4771   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
4772   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
4773 
4774   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
4775                                   Flags);
4776   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
4777 
4778   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
4779 
4780   MI.eraseFromParent();
4781   return Legalized;
4782 }
4783 
4784 LegalizerHelper::LegalizeResult
4785 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
4786   Register DstReg = MI.getOperand(0).getReg();
4787   Register SrcReg = MI.getOperand(1).getReg();
4788   unsigned Flags = MI.getFlags();
4789   LLT Ty = MRI.getType(DstReg);
4790   const LLT CondTy = Ty.changeElementSize(1);
4791 
4792   // result = trunc(src);
4793   // if (src < 0.0 && src != result)
4794   //   result += -1.0.
4795 
4796   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
4797   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4798 
4799   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
4800                                   SrcReg, Zero, Flags);
4801   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
4802                                       SrcReg, Trunc, Flags);
4803   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
4804   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
4805 
4806   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
4807   MI.eraseFromParent();
4808   return Legalized;
4809 }
4810 
4811 LegalizerHelper::LegalizeResult
4812 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
4813   const unsigned NumDst = MI.getNumOperands() - 1;
4814   const Register SrcReg = MI.getOperand(NumDst).getReg();
4815   LLT SrcTy = MRI.getType(SrcReg);
4816 
4817   Register Dst0Reg = MI.getOperand(0).getReg();
4818   LLT DstTy = MRI.getType(Dst0Reg);
4819 
4820 
4821   // Expand scalarizing unmerge as bitcast to integer and shift.
4822   if (!DstTy.isVector() && SrcTy.isVector() &&
4823       SrcTy.getElementType() == DstTy) {
4824     LLT IntTy = LLT::scalar(SrcTy.getSizeInBits());
4825     Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0);
4826 
4827     MIRBuilder.buildTrunc(Dst0Reg, Cast);
4828 
4829     const unsigned DstSize = DstTy.getSizeInBits();
4830     unsigned Offset = DstSize;
4831     for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
4832       auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
4833       auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt);
4834       MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
4835     }
4836 
4837     MI.eraseFromParent();
4838     return Legalized;
4839   }
4840 
4841   return UnableToLegalize;
4842 }
4843 
4844 LegalizerHelper::LegalizeResult
4845 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
4846   Register DstReg = MI.getOperand(0).getReg();
4847   Register Src0Reg = MI.getOperand(1).getReg();
4848   Register Src1Reg = MI.getOperand(2).getReg();
4849   LLT Src0Ty = MRI.getType(Src0Reg);
4850   LLT DstTy = MRI.getType(DstReg);
4851   LLT IdxTy = LLT::scalar(32);
4852 
4853   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4854 
4855   if (DstTy.isScalar()) {
4856     if (Src0Ty.isVector())
4857       return UnableToLegalize;
4858 
4859     // This is just a SELECT.
4860     assert(Mask.size() == 1 && "Expected a single mask element");
4861     Register Val;
4862     if (Mask[0] < 0 || Mask[0] > 1)
4863       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
4864     else
4865       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
4866     MIRBuilder.buildCopy(DstReg, Val);
4867     MI.eraseFromParent();
4868     return Legalized;
4869   }
4870 
4871   Register Undef;
4872   SmallVector<Register, 32> BuildVec;
4873   LLT EltTy = DstTy.getElementType();
4874 
4875   for (int Idx : Mask) {
4876     if (Idx < 0) {
4877       if (!Undef.isValid())
4878         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
4879       BuildVec.push_back(Undef);
4880       continue;
4881     }
4882 
4883     if (Src0Ty.isScalar()) {
4884       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
4885     } else {
4886       int NumElts = Src0Ty.getNumElements();
4887       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
4888       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
4889       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
4890       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
4891       BuildVec.push_back(Extract.getReg(0));
4892     }
4893   }
4894 
4895   MIRBuilder.buildBuildVector(DstReg, BuildVec);
4896   MI.eraseFromParent();
4897   return Legalized;
4898 }
4899 
4900 LegalizerHelper::LegalizeResult
4901 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
4902   Register Dst = MI.getOperand(0).getReg();
4903   Register AllocSize = MI.getOperand(1).getReg();
4904   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
4905 
4906   const auto &MF = *MI.getMF();
4907   const auto &TLI = *MF.getSubtarget().getTargetLowering();
4908 
4909   LLT PtrTy = MRI.getType(Dst);
4910   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
4911 
4912   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
4913   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
4914   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
4915 
4916   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
4917   // have to generate an extra instruction to negate the alloc and then use
4918   // G_PTR_ADD to add the negative offset.
4919   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
4920   if (Alignment > Align(1)) {
4921     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
4922     AlignMask.negate();
4923     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
4924     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
4925   }
4926 
4927   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
4928   MIRBuilder.buildCopy(SPReg, SPTmp);
4929   MIRBuilder.buildCopy(Dst, SPTmp);
4930 
4931   MI.eraseFromParent();
4932   return Legalized;
4933 }
4934 
4935 LegalizerHelper::LegalizeResult
4936 LegalizerHelper::lowerExtract(MachineInstr &MI) {
4937   Register Dst = MI.getOperand(0).getReg();
4938   Register Src = MI.getOperand(1).getReg();
4939   unsigned Offset = MI.getOperand(2).getImm();
4940 
4941   LLT DstTy = MRI.getType(Dst);
4942   LLT SrcTy = MRI.getType(Src);
4943 
4944   if (DstTy.isScalar() &&
4945       (SrcTy.isScalar() ||
4946        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
4947     LLT SrcIntTy = SrcTy;
4948     if (!SrcTy.isScalar()) {
4949       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
4950       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
4951     }
4952 
4953     if (Offset == 0)
4954       MIRBuilder.buildTrunc(Dst, Src);
4955     else {
4956       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
4957       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
4958       MIRBuilder.buildTrunc(Dst, Shr);
4959     }
4960 
4961     MI.eraseFromParent();
4962     return Legalized;
4963   }
4964 
4965   return UnableToLegalize;
4966 }
4967 
4968 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
4969   Register Dst = MI.getOperand(0).getReg();
4970   Register Src = MI.getOperand(1).getReg();
4971   Register InsertSrc = MI.getOperand(2).getReg();
4972   uint64_t Offset = MI.getOperand(3).getImm();
4973 
4974   LLT DstTy = MRI.getType(Src);
4975   LLT InsertTy = MRI.getType(InsertSrc);
4976 
4977   if (InsertTy.isVector() ||
4978       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
4979     return UnableToLegalize;
4980 
4981   const DataLayout &DL = MIRBuilder.getDataLayout();
4982   if ((DstTy.isPointer() &&
4983        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
4984       (InsertTy.isPointer() &&
4985        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
4986     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
4987     return UnableToLegalize;
4988   }
4989 
4990   LLT IntDstTy = DstTy;
4991 
4992   if (!DstTy.isScalar()) {
4993     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
4994     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
4995   }
4996 
4997   if (!InsertTy.isScalar()) {
4998     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
4999     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5000   }
5001 
5002   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5003   if (Offset != 0) {
5004     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5005     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5006   }
5007 
5008   APInt MaskVal = APInt::getBitsSetWithWrap(
5009       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5010 
5011   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5012   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5013   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5014 
5015   MIRBuilder.buildCast(Dst, Or);
5016   MI.eraseFromParent();
5017   return Legalized;
5018 }
5019 
5020 LegalizerHelper::LegalizeResult
5021 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5022   Register Dst0 = MI.getOperand(0).getReg();
5023   Register Dst1 = MI.getOperand(1).getReg();
5024   Register LHS = MI.getOperand(2).getReg();
5025   Register RHS = MI.getOperand(3).getReg();
5026   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5027 
5028   LLT Ty = MRI.getType(Dst0);
5029   LLT BoolTy = MRI.getType(Dst1);
5030 
5031   if (IsAdd)
5032     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5033   else
5034     MIRBuilder.buildSub(Dst0, LHS, RHS);
5035 
5036   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5037 
5038   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5039 
5040   // For an addition, the result should be less than one of the operands (LHS)
5041   // if and only if the other operand (RHS) is negative, otherwise there will
5042   // be overflow.
5043   // For a subtraction, the result should be less than one of the operands
5044   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5045   // otherwise there will be overflow.
5046   auto ResultLowerThanLHS =
5047       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5048   auto ConditionRHS = MIRBuilder.buildICmp(
5049       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5050 
5051   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5052   MI.eraseFromParent();
5053   return Legalized;
5054 }
5055 
5056 LegalizerHelper::LegalizeResult
5057 LegalizerHelper::lowerBswap(MachineInstr &MI) {
5058   Register Dst = MI.getOperand(0).getReg();
5059   Register Src = MI.getOperand(1).getReg();
5060   const LLT Ty = MRI.getType(Src);
5061   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
5062   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
5063 
5064   // Swap most and least significant byte, set remaining bytes in Res to zero.
5065   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
5066   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
5067   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5068   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
5069 
5070   // Set i-th high/low byte in Res to i-th low/high byte from Src.
5071   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
5072     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
5073     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
5074     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
5075     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
5076     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
5077     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
5078     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
5079     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
5080     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
5081     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5082     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
5083     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
5084   }
5085   Res.getInstr()->getOperand(0).setReg(Dst);
5086 
5087   MI.eraseFromParent();
5088   return Legalized;
5089 }
5090 
5091 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
5092 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
5093                                  MachineInstrBuilder Src, APInt Mask) {
5094   const LLT Ty = Dst.getLLTTy(*B.getMRI());
5095   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
5096   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
5097   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
5098   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
5099   return B.buildOr(Dst, LHS, RHS);
5100 }
5101 
5102 LegalizerHelper::LegalizeResult
5103 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
5104   Register Dst = MI.getOperand(0).getReg();
5105   Register Src = MI.getOperand(1).getReg();
5106   const LLT Ty = MRI.getType(Src);
5107   unsigned Size = Ty.getSizeInBits();
5108 
5109   MachineInstrBuilder BSWAP =
5110       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
5111 
5112   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
5113   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
5114   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
5115   MachineInstrBuilder Swap4 =
5116       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
5117 
5118   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
5119   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
5120   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
5121   MachineInstrBuilder Swap2 =
5122       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
5123 
5124   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
5125   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
5126   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
5127   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
5128 
5129   MI.eraseFromParent();
5130   return Legalized;
5131 }
5132 
5133 LegalizerHelper::LegalizeResult
5134 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
5135   MachineFunction &MF = MIRBuilder.getMF();
5136   const TargetSubtargetInfo &STI = MF.getSubtarget();
5137   const TargetLowering *TLI = STI.getTargetLowering();
5138 
5139   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
5140   int NameOpIdx = IsRead ? 1 : 0;
5141   int ValRegIndex = IsRead ? 0 : 1;
5142 
5143   Register ValReg = MI.getOperand(ValRegIndex).getReg();
5144   const LLT Ty = MRI.getType(ValReg);
5145   const MDString *RegStr = cast<MDString>(
5146     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
5147 
5148   Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF);
5149   if (!PhysReg.isValid())
5150     return UnableToLegalize;
5151 
5152   if (IsRead)
5153     MIRBuilder.buildCopy(ValReg, PhysReg);
5154   else
5155     MIRBuilder.buildCopy(PhysReg, ValReg);
5156 
5157   MI.eraseFromParent();
5158   return Legalized;
5159 }
5160