1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 67 68 if (!Ty.isScalar()) 69 return nullptr; 70 71 switch (Ty.getSizeInBits()) { 72 case 16: 73 return Type::getHalfTy(Ctx); 74 case 32: 75 return Type::getFloatTy(Ctx); 76 case 64: 77 return Type::getDoubleTy(Ctx); 78 case 128: 79 return Type::getFP128Ty(Ctx); 80 default: 81 return nullptr; 82 } 83 } 84 85 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 86 GISelChangeObserver &Observer, 87 MachineIRBuilder &Builder) 88 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 89 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 90 MIRBuilder.setMF(MF); 91 MIRBuilder.setChangeObserver(Observer); 92 } 93 94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 95 GISelChangeObserver &Observer, 96 MachineIRBuilder &B) 97 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 98 MIRBuilder.setMF(MF); 99 MIRBuilder.setChangeObserver(Observer); 100 } 101 LegalizerHelper::LegalizeResult 102 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 103 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 104 105 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 106 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 107 return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized 108 : UnableToLegalize; 109 auto Step = LI.getAction(MI, MRI); 110 switch (Step.Action) { 111 case Legal: 112 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 113 return AlreadyLegal; 114 case Libcall: 115 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 116 return libcall(MI); 117 case NarrowScalar: 118 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 119 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 120 case WidenScalar: 121 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 122 return widenScalar(MI, Step.TypeIdx, Step.NewType); 123 case Bitcast: 124 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 125 return bitcast(MI, Step.TypeIdx, Step.NewType); 126 case Lower: 127 LLVM_DEBUG(dbgs() << ".. Lower\n"); 128 return lower(MI, Step.TypeIdx, Step.NewType); 129 case FewerElements: 130 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 131 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 132 case MoreElements: 133 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 134 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 135 case Custom: 136 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 137 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 138 : UnableToLegalize; 139 default: 140 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 141 return UnableToLegalize; 142 } 143 } 144 145 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 146 SmallVectorImpl<Register> &VRegs) { 147 for (int i = 0; i < NumParts; ++i) 148 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 149 MIRBuilder.buildUnmerge(VRegs, Reg); 150 } 151 152 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 153 LLT MainTy, LLT &LeftoverTy, 154 SmallVectorImpl<Register> &VRegs, 155 SmallVectorImpl<Register> &LeftoverRegs) { 156 assert(!LeftoverTy.isValid() && "this is an out argument"); 157 158 unsigned RegSize = RegTy.getSizeInBits(); 159 unsigned MainSize = MainTy.getSizeInBits(); 160 unsigned NumParts = RegSize / MainSize; 161 unsigned LeftoverSize = RegSize - NumParts * MainSize; 162 163 // Use an unmerge when possible. 164 if (LeftoverSize == 0) { 165 for (unsigned I = 0; I < NumParts; ++I) 166 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 167 MIRBuilder.buildUnmerge(VRegs, Reg); 168 return true; 169 } 170 171 if (MainTy.isVector()) { 172 unsigned EltSize = MainTy.getScalarSizeInBits(); 173 if (LeftoverSize % EltSize != 0) 174 return false; 175 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 176 } else { 177 LeftoverTy = LLT::scalar(LeftoverSize); 178 } 179 180 // For irregular sizes, extract the individual parts. 181 for (unsigned I = 0; I != NumParts; ++I) { 182 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 183 VRegs.push_back(NewReg); 184 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 185 } 186 187 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 188 Offset += LeftoverSize) { 189 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 190 LeftoverRegs.push_back(NewReg); 191 MIRBuilder.buildExtract(NewReg, Reg, Offset); 192 } 193 194 return true; 195 } 196 197 void LegalizerHelper::insertParts(Register DstReg, 198 LLT ResultTy, LLT PartTy, 199 ArrayRef<Register> PartRegs, 200 LLT LeftoverTy, 201 ArrayRef<Register> LeftoverRegs) { 202 if (!LeftoverTy.isValid()) { 203 assert(LeftoverRegs.empty()); 204 205 if (!ResultTy.isVector()) { 206 MIRBuilder.buildMerge(DstReg, PartRegs); 207 return; 208 } 209 210 if (PartTy.isVector()) 211 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 212 else 213 MIRBuilder.buildBuildVector(DstReg, PartRegs); 214 return; 215 } 216 217 unsigned PartSize = PartTy.getSizeInBits(); 218 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 219 220 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 221 MIRBuilder.buildUndef(CurResultReg); 222 223 unsigned Offset = 0; 224 for (Register PartReg : PartRegs) { 225 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 226 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 227 CurResultReg = NewResultReg; 228 Offset += PartSize; 229 } 230 231 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 232 // Use the original output register for the final insert to avoid a copy. 233 Register NewResultReg = (I + 1 == E) ? 234 DstReg : MRI.createGenericVirtualRegister(ResultTy); 235 236 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 237 CurResultReg = NewResultReg; 238 Offset += LeftoverPartSize; 239 } 240 } 241 242 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 243 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 244 const MachineInstr &MI) { 245 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 246 247 const int NumResults = MI.getNumOperands() - 1; 248 Regs.resize(NumResults); 249 for (int I = 0; I != NumResults; ++I) 250 Regs[I] = MI.getOperand(I).getReg(); 251 } 252 253 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 254 LLT NarrowTy, Register SrcReg) { 255 LLT SrcTy = MRI.getType(SrcReg); 256 257 LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy)); 258 if (SrcTy == GCDTy) { 259 // If the source already evenly divides the result type, we don't need to do 260 // anything. 261 Parts.push_back(SrcReg); 262 } else { 263 // Need to split into common type sized pieces. 264 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 265 getUnmergeResults(Parts, *Unmerge); 266 } 267 268 return GCDTy; 269 } 270 271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 272 SmallVectorImpl<Register> &VRegs, 273 unsigned PadStrategy) { 274 LLT LCMTy = getLCMType(DstTy, NarrowTy); 275 276 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 277 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 278 int NumOrigSrc = VRegs.size(); 279 280 Register PadReg; 281 282 // Get a value we can use to pad the source value if the sources won't evenly 283 // cover the result type. 284 if (NumOrigSrc < NumParts * NumSubParts) { 285 if (PadStrategy == TargetOpcode::G_ZEXT) 286 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 287 else if (PadStrategy == TargetOpcode::G_ANYEXT) 288 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 289 else { 290 assert(PadStrategy == TargetOpcode::G_SEXT); 291 292 // Shift the sign bit of the low register through the high register. 293 auto ShiftAmt = 294 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 295 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 296 } 297 } 298 299 // Registers for the final merge to be produced. 300 SmallVector<Register, 4> Remerge(NumParts); 301 302 // Registers needed for intermediate merges, which will be merged into a 303 // source for Remerge. 304 SmallVector<Register, 4> SubMerge(NumSubParts); 305 306 // Once we've fully read off the end of the original source bits, we can reuse 307 // the same high bits for remaining padding elements. 308 Register AllPadReg; 309 310 // Build merges to the LCM type to cover the original result type. 311 for (int I = 0; I != NumParts; ++I) { 312 bool AllMergePartsArePadding = true; 313 314 // Build the requested merges to the requested type. 315 for (int J = 0; J != NumSubParts; ++J) { 316 int Idx = I * NumSubParts + J; 317 if (Idx >= NumOrigSrc) { 318 SubMerge[J] = PadReg; 319 continue; 320 } 321 322 SubMerge[J] = VRegs[Idx]; 323 324 // There are meaningful bits here we can't reuse later. 325 AllMergePartsArePadding = false; 326 } 327 328 // If we've filled up a complete piece with padding bits, we can directly 329 // emit the natural sized constant if applicable, rather than a merge of 330 // smaller constants. 331 if (AllMergePartsArePadding && !AllPadReg) { 332 if (PadStrategy == TargetOpcode::G_ANYEXT) 333 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 334 else if (PadStrategy == TargetOpcode::G_ZEXT) 335 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 336 337 // If this is a sign extension, we can't materialize a trivial constant 338 // with the right type and have to produce a merge. 339 } 340 341 if (AllPadReg) { 342 // Avoid creating additional instructions if we're just adding additional 343 // copies of padding bits. 344 Remerge[I] = AllPadReg; 345 continue; 346 } 347 348 if (NumSubParts == 1) 349 Remerge[I] = SubMerge[0]; 350 else 351 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 352 353 // In the sign extend padding case, re-use the first all-signbit merge. 354 if (AllMergePartsArePadding && !AllPadReg) 355 AllPadReg = Remerge[I]; 356 } 357 358 VRegs = std::move(Remerge); 359 return LCMTy; 360 } 361 362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 363 ArrayRef<Register> RemergeRegs) { 364 LLT DstTy = MRI.getType(DstReg); 365 366 // Create the merge to the widened source, and extract the relevant bits into 367 // the result. 368 369 if (DstTy == LCMTy) { 370 MIRBuilder.buildMerge(DstReg, RemergeRegs); 371 return; 372 } 373 374 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 375 if (DstTy.isScalar() && LCMTy.isScalar()) { 376 MIRBuilder.buildTrunc(DstReg, Remerge); 377 return; 378 } 379 380 if (LCMTy.isVector()) { 381 MIRBuilder.buildExtract(DstReg, Remerge, 0); 382 return; 383 } 384 385 llvm_unreachable("unhandled case"); 386 } 387 388 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 389 #define RTLIBCASE(LibcallPrefix) \ 390 do { \ 391 switch (Size) { \ 392 case 32: \ 393 return RTLIB::LibcallPrefix##32; \ 394 case 64: \ 395 return RTLIB::LibcallPrefix##64; \ 396 case 128: \ 397 return RTLIB::LibcallPrefix##128; \ 398 default: \ 399 llvm_unreachable("unexpected size"); \ 400 } \ 401 } while (0) 402 403 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 404 405 switch (Opcode) { 406 case TargetOpcode::G_SDIV: 407 RTLIBCASE(SDIV_I); 408 case TargetOpcode::G_UDIV: 409 RTLIBCASE(UDIV_I); 410 case TargetOpcode::G_SREM: 411 RTLIBCASE(SREM_I); 412 case TargetOpcode::G_UREM: 413 RTLIBCASE(UREM_I); 414 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 415 RTLIBCASE(CTLZ_I); 416 case TargetOpcode::G_FADD: 417 RTLIBCASE(ADD_F); 418 case TargetOpcode::G_FSUB: 419 RTLIBCASE(SUB_F); 420 case TargetOpcode::G_FMUL: 421 RTLIBCASE(MUL_F); 422 case TargetOpcode::G_FDIV: 423 RTLIBCASE(DIV_F); 424 case TargetOpcode::G_FEXP: 425 RTLIBCASE(EXP_F); 426 case TargetOpcode::G_FEXP2: 427 RTLIBCASE(EXP2_F); 428 case TargetOpcode::G_FREM: 429 RTLIBCASE(REM_F); 430 case TargetOpcode::G_FPOW: 431 RTLIBCASE(POW_F); 432 case TargetOpcode::G_FMA: 433 RTLIBCASE(FMA_F); 434 case TargetOpcode::G_FSIN: 435 RTLIBCASE(SIN_F); 436 case TargetOpcode::G_FCOS: 437 RTLIBCASE(COS_F); 438 case TargetOpcode::G_FLOG10: 439 RTLIBCASE(LOG10_F); 440 case TargetOpcode::G_FLOG: 441 RTLIBCASE(LOG_F); 442 case TargetOpcode::G_FLOG2: 443 RTLIBCASE(LOG2_F); 444 case TargetOpcode::G_FCEIL: 445 RTLIBCASE(CEIL_F); 446 case TargetOpcode::G_FFLOOR: 447 RTLIBCASE(FLOOR_F); 448 case TargetOpcode::G_FMINNUM: 449 RTLIBCASE(FMIN_F); 450 case TargetOpcode::G_FMAXNUM: 451 RTLIBCASE(FMAX_F); 452 case TargetOpcode::G_FSQRT: 453 RTLIBCASE(SQRT_F); 454 case TargetOpcode::G_FRINT: 455 RTLIBCASE(RINT_F); 456 case TargetOpcode::G_FNEARBYINT: 457 RTLIBCASE(NEARBYINT_F); 458 } 459 llvm_unreachable("Unknown libcall function"); 460 } 461 462 /// True if an instruction is in tail position in its caller. Intended for 463 /// legalizing libcalls as tail calls when possible. 464 static bool isLibCallInTailPosition(MachineInstr &MI) { 465 const Function &F = MI.getParent()->getParent()->getFunction(); 466 467 // Conservatively require the attributes of the call to match those of 468 // the return. Ignore NoAlias and NonNull because they don't affect the 469 // call sequence. 470 AttributeList CallerAttrs = F.getAttributes(); 471 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 472 .removeAttribute(Attribute::NoAlias) 473 .removeAttribute(Attribute::NonNull) 474 .hasAttributes()) 475 return false; 476 477 // It's not safe to eliminate the sign / zero extension of the return value. 478 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 479 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 480 return false; 481 482 // Only tail call if the following instruction is a standard return. 483 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 484 MachineInstr *Next = MI.getNextNode(); 485 if (!Next || TII.isTailCall(*Next) || !Next->isReturn()) 486 return false; 487 488 return true; 489 } 490 491 LegalizerHelper::LegalizeResult 492 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 493 const CallLowering::ArgInfo &Result, 494 ArrayRef<CallLowering::ArgInfo> Args, 495 const CallingConv::ID CC) { 496 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 497 498 CallLowering::CallLoweringInfo Info; 499 Info.CallConv = CC; 500 Info.Callee = MachineOperand::CreateES(Name); 501 Info.OrigRet = Result; 502 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 503 if (!CLI.lowerCall(MIRBuilder, Info)) 504 return LegalizerHelper::UnableToLegalize; 505 506 return LegalizerHelper::Legalized; 507 } 508 509 LegalizerHelper::LegalizeResult 510 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 511 const CallLowering::ArgInfo &Result, 512 ArrayRef<CallLowering::ArgInfo> Args) { 513 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 514 const char *Name = TLI.getLibcallName(Libcall); 515 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 516 return createLibcall(MIRBuilder, Name, Result, Args, CC); 517 } 518 519 // Useful for libcalls where all operands have the same type. 520 static LegalizerHelper::LegalizeResult 521 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 522 Type *OpType) { 523 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 524 525 SmallVector<CallLowering::ArgInfo, 3> Args; 526 for (unsigned i = 1; i < MI.getNumOperands(); i++) 527 Args.push_back({MI.getOperand(i).getReg(), OpType}); 528 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 529 Args); 530 } 531 532 LegalizerHelper::LegalizeResult 533 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 534 MachineInstr &MI) { 535 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 536 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 537 538 SmallVector<CallLowering::ArgInfo, 3> Args; 539 // Add all the args, except for the last which is an imm denoting 'tail'. 540 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 541 Register Reg = MI.getOperand(i).getReg(); 542 543 // Need derive an IR type for call lowering. 544 LLT OpLLT = MRI.getType(Reg); 545 Type *OpTy = nullptr; 546 if (OpLLT.isPointer()) 547 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 548 else 549 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 550 Args.push_back({Reg, OpTy}); 551 } 552 553 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 554 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 555 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 556 RTLIB::Libcall RTLibcall; 557 switch (ID) { 558 case Intrinsic::memcpy: 559 RTLibcall = RTLIB::MEMCPY; 560 break; 561 case Intrinsic::memset: 562 RTLibcall = RTLIB::MEMSET; 563 break; 564 case Intrinsic::memmove: 565 RTLibcall = RTLIB::MEMMOVE; 566 break; 567 default: 568 return LegalizerHelper::UnableToLegalize; 569 } 570 const char *Name = TLI.getLibcallName(RTLibcall); 571 572 MIRBuilder.setInstr(MI); 573 574 CallLowering::CallLoweringInfo Info; 575 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 576 Info.Callee = MachineOperand::CreateES(Name); 577 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 578 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 579 isLibCallInTailPosition(MI); 580 581 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 582 if (!CLI.lowerCall(MIRBuilder, Info)) 583 return LegalizerHelper::UnableToLegalize; 584 585 if (Info.LoweredTailCall) { 586 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 587 // We must have a return following the call to get past 588 // isLibCallInTailPosition. 589 assert(MI.getNextNode() && MI.getNextNode()->isReturn() && 590 "Expected instr following MI to be a return?"); 591 592 // We lowered a tail call, so the call is now the return from the block. 593 // Delete the old return. 594 MI.getNextNode()->eraseFromParent(); 595 } 596 597 return LegalizerHelper::Legalized; 598 } 599 600 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 601 Type *FromType) { 602 auto ToMVT = MVT::getVT(ToType); 603 auto FromMVT = MVT::getVT(FromType); 604 605 switch (Opcode) { 606 case TargetOpcode::G_FPEXT: 607 return RTLIB::getFPEXT(FromMVT, ToMVT); 608 case TargetOpcode::G_FPTRUNC: 609 return RTLIB::getFPROUND(FromMVT, ToMVT); 610 case TargetOpcode::G_FPTOSI: 611 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 612 case TargetOpcode::G_FPTOUI: 613 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 614 case TargetOpcode::G_SITOFP: 615 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 616 case TargetOpcode::G_UITOFP: 617 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 618 } 619 llvm_unreachable("Unsupported libcall function"); 620 } 621 622 static LegalizerHelper::LegalizeResult 623 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 624 Type *FromType) { 625 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 626 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 627 {{MI.getOperand(1).getReg(), FromType}}); 628 } 629 630 LegalizerHelper::LegalizeResult 631 LegalizerHelper::libcall(MachineInstr &MI) { 632 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 633 unsigned Size = LLTy.getSizeInBits(); 634 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 635 636 MIRBuilder.setInstrAndDebugLoc(MI); 637 638 switch (MI.getOpcode()) { 639 default: 640 return UnableToLegalize; 641 case TargetOpcode::G_SDIV: 642 case TargetOpcode::G_UDIV: 643 case TargetOpcode::G_SREM: 644 case TargetOpcode::G_UREM: 645 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 646 Type *HLTy = IntegerType::get(Ctx, Size); 647 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 648 if (Status != Legalized) 649 return Status; 650 break; 651 } 652 case TargetOpcode::G_FADD: 653 case TargetOpcode::G_FSUB: 654 case TargetOpcode::G_FMUL: 655 case TargetOpcode::G_FDIV: 656 case TargetOpcode::G_FMA: 657 case TargetOpcode::G_FPOW: 658 case TargetOpcode::G_FREM: 659 case TargetOpcode::G_FCOS: 660 case TargetOpcode::G_FSIN: 661 case TargetOpcode::G_FLOG10: 662 case TargetOpcode::G_FLOG: 663 case TargetOpcode::G_FLOG2: 664 case TargetOpcode::G_FEXP: 665 case TargetOpcode::G_FEXP2: 666 case TargetOpcode::G_FCEIL: 667 case TargetOpcode::G_FFLOOR: 668 case TargetOpcode::G_FMINNUM: 669 case TargetOpcode::G_FMAXNUM: 670 case TargetOpcode::G_FSQRT: 671 case TargetOpcode::G_FRINT: 672 case TargetOpcode::G_FNEARBYINT: { 673 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 674 if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) { 675 LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n"); 676 return UnableToLegalize; 677 } 678 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 679 if (Status != Legalized) 680 return Status; 681 break; 682 } 683 case TargetOpcode::G_FPEXT: 684 case TargetOpcode::G_FPTRUNC: { 685 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 686 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 687 if (!FromTy || !ToTy) 688 return UnableToLegalize; 689 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 690 if (Status != Legalized) 691 return Status; 692 break; 693 } 694 case TargetOpcode::G_FPTOSI: 695 case TargetOpcode::G_FPTOUI: { 696 // FIXME: Support other types 697 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 698 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 699 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 700 return UnableToLegalize; 701 LegalizeResult Status = conversionLibcall( 702 MI, MIRBuilder, 703 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 704 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 705 if (Status != Legalized) 706 return Status; 707 break; 708 } 709 case TargetOpcode::G_SITOFP: 710 case TargetOpcode::G_UITOFP: { 711 // FIXME: Support other types 712 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 713 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 714 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 715 return UnableToLegalize; 716 LegalizeResult Status = conversionLibcall( 717 MI, MIRBuilder, 718 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 719 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 720 if (Status != Legalized) 721 return Status; 722 break; 723 } 724 } 725 726 MI.eraseFromParent(); 727 return Legalized; 728 } 729 730 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 731 unsigned TypeIdx, 732 LLT NarrowTy) { 733 MIRBuilder.setInstrAndDebugLoc(MI); 734 735 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 736 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 737 738 switch (MI.getOpcode()) { 739 default: 740 return UnableToLegalize; 741 case TargetOpcode::G_IMPLICIT_DEF: { 742 Register DstReg = MI.getOperand(0).getReg(); 743 LLT DstTy = MRI.getType(DstReg); 744 745 // If SizeOp0 is not an exact multiple of NarrowSize, emit 746 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 747 // FIXME: Although this would also be legal for the general case, it causes 748 // a lot of regressions in the emitted code (superfluous COPYs, artifact 749 // combines not being hit). This seems to be a problem related to the 750 // artifact combiner. 751 if (SizeOp0 % NarrowSize != 0) { 752 LLT ImplicitTy = NarrowTy; 753 if (DstTy.isVector()) 754 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 755 756 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 757 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 758 759 MI.eraseFromParent(); 760 return Legalized; 761 } 762 763 int NumParts = SizeOp0 / NarrowSize; 764 765 SmallVector<Register, 2> DstRegs; 766 for (int i = 0; i < NumParts; ++i) 767 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 768 769 if (DstTy.isVector()) 770 MIRBuilder.buildBuildVector(DstReg, DstRegs); 771 else 772 MIRBuilder.buildMerge(DstReg, DstRegs); 773 MI.eraseFromParent(); 774 return Legalized; 775 } 776 case TargetOpcode::G_CONSTANT: { 777 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 778 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 779 unsigned TotalSize = Ty.getSizeInBits(); 780 unsigned NarrowSize = NarrowTy.getSizeInBits(); 781 int NumParts = TotalSize / NarrowSize; 782 783 SmallVector<Register, 4> PartRegs; 784 for (int I = 0; I != NumParts; ++I) { 785 unsigned Offset = I * NarrowSize; 786 auto K = MIRBuilder.buildConstant(NarrowTy, 787 Val.lshr(Offset).trunc(NarrowSize)); 788 PartRegs.push_back(K.getReg(0)); 789 } 790 791 LLT LeftoverTy; 792 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 793 SmallVector<Register, 1> LeftoverRegs; 794 if (LeftoverBits != 0) { 795 LeftoverTy = LLT::scalar(LeftoverBits); 796 auto K = MIRBuilder.buildConstant( 797 LeftoverTy, 798 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 799 LeftoverRegs.push_back(K.getReg(0)); 800 } 801 802 insertParts(MI.getOperand(0).getReg(), 803 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 804 805 MI.eraseFromParent(); 806 return Legalized; 807 } 808 case TargetOpcode::G_SEXT: 809 case TargetOpcode::G_ZEXT: 810 case TargetOpcode::G_ANYEXT: 811 return narrowScalarExt(MI, TypeIdx, NarrowTy); 812 case TargetOpcode::G_TRUNC: { 813 if (TypeIdx != 1) 814 return UnableToLegalize; 815 816 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 817 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 818 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 819 return UnableToLegalize; 820 } 821 822 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 823 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 824 MI.eraseFromParent(); 825 return Legalized; 826 } 827 828 case TargetOpcode::G_ADD: { 829 // FIXME: add support for when SizeOp0 isn't an exact multiple of 830 // NarrowSize. 831 if (SizeOp0 % NarrowSize != 0) 832 return UnableToLegalize; 833 // Expand in terms of carry-setting/consuming G_ADDE instructions. 834 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 835 836 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 837 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 838 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 839 840 Register CarryIn; 841 for (int i = 0; i < NumParts; ++i) { 842 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 843 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 844 845 if (i == 0) 846 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 847 else { 848 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 849 Src2Regs[i], CarryIn); 850 } 851 852 DstRegs.push_back(DstReg); 853 CarryIn = CarryOut; 854 } 855 Register DstReg = MI.getOperand(0).getReg(); 856 if(MRI.getType(DstReg).isVector()) 857 MIRBuilder.buildBuildVector(DstReg, DstRegs); 858 else 859 MIRBuilder.buildMerge(DstReg, DstRegs); 860 MI.eraseFromParent(); 861 return Legalized; 862 } 863 case TargetOpcode::G_SUB: { 864 // FIXME: add support for when SizeOp0 isn't an exact multiple of 865 // NarrowSize. 866 if (SizeOp0 % NarrowSize != 0) 867 return UnableToLegalize; 868 869 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 870 871 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 872 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 873 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 874 875 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 876 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 877 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 878 {Src1Regs[0], Src2Regs[0]}); 879 DstRegs.push_back(DstReg); 880 Register BorrowIn = BorrowOut; 881 for (int i = 1; i < NumParts; ++i) { 882 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 883 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 884 885 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 886 {Src1Regs[i], Src2Regs[i], BorrowIn}); 887 888 DstRegs.push_back(DstReg); 889 BorrowIn = BorrowOut; 890 } 891 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 892 MI.eraseFromParent(); 893 return Legalized; 894 } 895 case TargetOpcode::G_MUL: 896 case TargetOpcode::G_UMULH: 897 return narrowScalarMul(MI, NarrowTy); 898 case TargetOpcode::G_EXTRACT: 899 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 900 case TargetOpcode::G_INSERT: 901 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 902 case TargetOpcode::G_LOAD: { 903 const auto &MMO = **MI.memoperands_begin(); 904 Register DstReg = MI.getOperand(0).getReg(); 905 LLT DstTy = MRI.getType(DstReg); 906 if (DstTy.isVector()) 907 return UnableToLegalize; 908 909 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 910 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 911 auto &MMO = **MI.memoperands_begin(); 912 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 913 MIRBuilder.buildAnyExt(DstReg, TmpReg); 914 MI.eraseFromParent(); 915 return Legalized; 916 } 917 918 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 919 } 920 case TargetOpcode::G_ZEXTLOAD: 921 case TargetOpcode::G_SEXTLOAD: { 922 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 923 Register DstReg = MI.getOperand(0).getReg(); 924 Register PtrReg = MI.getOperand(1).getReg(); 925 926 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 927 auto &MMO = **MI.memoperands_begin(); 928 if (MMO.getSizeInBits() == NarrowSize) { 929 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 930 } else { 931 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 932 } 933 934 if (ZExt) 935 MIRBuilder.buildZExt(DstReg, TmpReg); 936 else 937 MIRBuilder.buildSExt(DstReg, TmpReg); 938 939 MI.eraseFromParent(); 940 return Legalized; 941 } 942 case TargetOpcode::G_STORE: { 943 const auto &MMO = **MI.memoperands_begin(); 944 945 Register SrcReg = MI.getOperand(0).getReg(); 946 LLT SrcTy = MRI.getType(SrcReg); 947 if (SrcTy.isVector()) 948 return UnableToLegalize; 949 950 int NumParts = SizeOp0 / NarrowSize; 951 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 952 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 953 if (SrcTy.isVector() && LeftoverBits != 0) 954 return UnableToLegalize; 955 956 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 957 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 958 auto &MMO = **MI.memoperands_begin(); 959 MIRBuilder.buildTrunc(TmpReg, SrcReg); 960 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 961 MI.eraseFromParent(); 962 return Legalized; 963 } 964 965 return reduceLoadStoreWidth(MI, 0, NarrowTy); 966 } 967 case TargetOpcode::G_SELECT: 968 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 969 case TargetOpcode::G_AND: 970 case TargetOpcode::G_OR: 971 case TargetOpcode::G_XOR: { 972 // Legalize bitwise operation: 973 // A = BinOp<Ty> B, C 974 // into: 975 // B1, ..., BN = G_UNMERGE_VALUES B 976 // C1, ..., CN = G_UNMERGE_VALUES C 977 // A1 = BinOp<Ty/N> B1, C2 978 // ... 979 // AN = BinOp<Ty/N> BN, CN 980 // A = G_MERGE_VALUES A1, ..., AN 981 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 982 } 983 case TargetOpcode::G_SHL: 984 case TargetOpcode::G_LSHR: 985 case TargetOpcode::G_ASHR: 986 return narrowScalarShift(MI, TypeIdx, NarrowTy); 987 case TargetOpcode::G_CTLZ: 988 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 989 case TargetOpcode::G_CTTZ: 990 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 991 case TargetOpcode::G_CTPOP: 992 if (TypeIdx == 1) 993 switch (MI.getOpcode()) { 994 case TargetOpcode::G_CTLZ: 995 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 996 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 997 case TargetOpcode::G_CTTZ: 998 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 999 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1000 case TargetOpcode::G_CTPOP: 1001 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1002 default: 1003 return UnableToLegalize; 1004 } 1005 1006 Observer.changingInstr(MI); 1007 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1008 Observer.changedInstr(MI); 1009 return Legalized; 1010 case TargetOpcode::G_INTTOPTR: 1011 if (TypeIdx != 1) 1012 return UnableToLegalize; 1013 1014 Observer.changingInstr(MI); 1015 narrowScalarSrc(MI, NarrowTy, 1); 1016 Observer.changedInstr(MI); 1017 return Legalized; 1018 case TargetOpcode::G_PTRTOINT: 1019 if (TypeIdx != 0) 1020 return UnableToLegalize; 1021 1022 Observer.changingInstr(MI); 1023 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1024 Observer.changedInstr(MI); 1025 return Legalized; 1026 case TargetOpcode::G_PHI: { 1027 unsigned NumParts = SizeOp0 / NarrowSize; 1028 SmallVector<Register, 2> DstRegs(NumParts); 1029 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1030 Observer.changingInstr(MI); 1031 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1032 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1033 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1034 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1035 SrcRegs[i / 2]); 1036 } 1037 MachineBasicBlock &MBB = *MI.getParent(); 1038 MIRBuilder.setInsertPt(MBB, MI); 1039 for (unsigned i = 0; i < NumParts; ++i) { 1040 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1041 MachineInstrBuilder MIB = 1042 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1043 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1044 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1045 } 1046 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1047 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1048 Observer.changedInstr(MI); 1049 MI.eraseFromParent(); 1050 return Legalized; 1051 } 1052 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1053 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1054 if (TypeIdx != 2) 1055 return UnableToLegalize; 1056 1057 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1058 Observer.changingInstr(MI); 1059 narrowScalarSrc(MI, NarrowTy, OpIdx); 1060 Observer.changedInstr(MI); 1061 return Legalized; 1062 } 1063 case TargetOpcode::G_ICMP: { 1064 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1065 if (NarrowSize * 2 != SrcSize) 1066 return UnableToLegalize; 1067 1068 Observer.changingInstr(MI); 1069 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1070 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1071 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1072 1073 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1074 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1075 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1076 1077 CmpInst::Predicate Pred = 1078 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1079 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1080 1081 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1082 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1083 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1084 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1085 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1086 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1087 } else { 1088 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1089 MachineInstrBuilder CmpHEQ = 1090 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1091 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1092 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1093 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1094 } 1095 Observer.changedInstr(MI); 1096 MI.eraseFromParent(); 1097 return Legalized; 1098 } 1099 case TargetOpcode::G_SEXT_INREG: { 1100 if (TypeIdx != 0) 1101 return UnableToLegalize; 1102 1103 int64_t SizeInBits = MI.getOperand(2).getImm(); 1104 1105 // So long as the new type has more bits than the bits we're extending we 1106 // don't need to break it apart. 1107 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1108 Observer.changingInstr(MI); 1109 // We don't lose any non-extension bits by truncating the src and 1110 // sign-extending the dst. 1111 MachineOperand &MO1 = MI.getOperand(1); 1112 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1113 MO1.setReg(TruncMIB.getReg(0)); 1114 1115 MachineOperand &MO2 = MI.getOperand(0); 1116 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1117 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1118 MIRBuilder.buildSExt(MO2, DstExt); 1119 MO2.setReg(DstExt); 1120 Observer.changedInstr(MI); 1121 return Legalized; 1122 } 1123 1124 // Break it apart. Components below the extension point are unmodified. The 1125 // component containing the extension point becomes a narrower SEXT_INREG. 1126 // Components above it are ashr'd from the component containing the 1127 // extension point. 1128 if (SizeOp0 % NarrowSize != 0) 1129 return UnableToLegalize; 1130 int NumParts = SizeOp0 / NarrowSize; 1131 1132 // List the registers where the destination will be scattered. 1133 SmallVector<Register, 2> DstRegs; 1134 // List the registers where the source will be split. 1135 SmallVector<Register, 2> SrcRegs; 1136 1137 // Create all the temporary registers. 1138 for (int i = 0; i < NumParts; ++i) { 1139 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1140 1141 SrcRegs.push_back(SrcReg); 1142 } 1143 1144 // Explode the big arguments into smaller chunks. 1145 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1146 1147 Register AshrCstReg = 1148 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1149 .getReg(0); 1150 Register FullExtensionReg = 0; 1151 Register PartialExtensionReg = 0; 1152 1153 // Do the operation on each small part. 1154 for (int i = 0; i < NumParts; ++i) { 1155 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1156 DstRegs.push_back(SrcRegs[i]); 1157 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1158 assert(PartialExtensionReg && 1159 "Expected to visit partial extension before full"); 1160 if (FullExtensionReg) { 1161 DstRegs.push_back(FullExtensionReg); 1162 continue; 1163 } 1164 DstRegs.push_back( 1165 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1166 .getReg(0)); 1167 FullExtensionReg = DstRegs.back(); 1168 } else { 1169 DstRegs.push_back( 1170 MIRBuilder 1171 .buildInstr( 1172 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1173 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1174 .getReg(0)); 1175 PartialExtensionReg = DstRegs.back(); 1176 } 1177 } 1178 1179 // Gather the destination registers into the final destination. 1180 Register DstReg = MI.getOperand(0).getReg(); 1181 MIRBuilder.buildMerge(DstReg, DstRegs); 1182 MI.eraseFromParent(); 1183 return Legalized; 1184 } 1185 case TargetOpcode::G_BSWAP: 1186 case TargetOpcode::G_BITREVERSE: { 1187 if (SizeOp0 % NarrowSize != 0) 1188 return UnableToLegalize; 1189 1190 Observer.changingInstr(MI); 1191 SmallVector<Register, 2> SrcRegs, DstRegs; 1192 unsigned NumParts = SizeOp0 / NarrowSize; 1193 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1194 1195 for (unsigned i = 0; i < NumParts; ++i) { 1196 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1197 {SrcRegs[NumParts - 1 - i]}); 1198 DstRegs.push_back(DstPart.getReg(0)); 1199 } 1200 1201 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1202 1203 Observer.changedInstr(MI); 1204 MI.eraseFromParent(); 1205 return Legalized; 1206 } 1207 } 1208 } 1209 1210 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1211 unsigned OpIdx, unsigned ExtOpcode) { 1212 MachineOperand &MO = MI.getOperand(OpIdx); 1213 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1214 MO.setReg(ExtB.getReg(0)); 1215 } 1216 1217 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1218 unsigned OpIdx) { 1219 MachineOperand &MO = MI.getOperand(OpIdx); 1220 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1221 MO.setReg(ExtB.getReg(0)); 1222 } 1223 1224 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1225 unsigned OpIdx, unsigned TruncOpcode) { 1226 MachineOperand &MO = MI.getOperand(OpIdx); 1227 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1228 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1229 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1230 MO.setReg(DstExt); 1231 } 1232 1233 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1234 unsigned OpIdx, unsigned ExtOpcode) { 1235 MachineOperand &MO = MI.getOperand(OpIdx); 1236 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1237 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1238 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1239 MO.setReg(DstTrunc); 1240 } 1241 1242 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1243 unsigned OpIdx) { 1244 MachineOperand &MO = MI.getOperand(OpIdx); 1245 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1246 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1247 MIRBuilder.buildExtract(MO, DstExt, 0); 1248 MO.setReg(DstExt); 1249 } 1250 1251 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1252 unsigned OpIdx) { 1253 MachineOperand &MO = MI.getOperand(OpIdx); 1254 1255 LLT OldTy = MRI.getType(MO.getReg()); 1256 unsigned OldElts = OldTy.getNumElements(); 1257 unsigned NewElts = MoreTy.getNumElements(); 1258 1259 unsigned NumParts = NewElts / OldElts; 1260 1261 // Use concat_vectors if the result is a multiple of the number of elements. 1262 if (NumParts * OldElts == NewElts) { 1263 SmallVector<Register, 8> Parts; 1264 Parts.push_back(MO.getReg()); 1265 1266 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1267 for (unsigned I = 1; I != NumParts; ++I) 1268 Parts.push_back(ImpDef); 1269 1270 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1271 MO.setReg(Concat.getReg(0)); 1272 return; 1273 } 1274 1275 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1276 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1277 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1278 MO.setReg(MoreReg); 1279 } 1280 1281 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1282 MachineOperand &Op = MI.getOperand(OpIdx); 1283 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1284 } 1285 1286 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1287 MachineOperand &MO = MI.getOperand(OpIdx); 1288 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1289 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1290 MIRBuilder.buildBitcast(MO, CastDst); 1291 MO.setReg(CastDst); 1292 } 1293 1294 LegalizerHelper::LegalizeResult 1295 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1296 LLT WideTy) { 1297 if (TypeIdx != 1) 1298 return UnableToLegalize; 1299 1300 Register DstReg = MI.getOperand(0).getReg(); 1301 LLT DstTy = MRI.getType(DstReg); 1302 if (DstTy.isVector()) 1303 return UnableToLegalize; 1304 1305 Register Src1 = MI.getOperand(1).getReg(); 1306 LLT SrcTy = MRI.getType(Src1); 1307 const int DstSize = DstTy.getSizeInBits(); 1308 const int SrcSize = SrcTy.getSizeInBits(); 1309 const int WideSize = WideTy.getSizeInBits(); 1310 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1311 1312 unsigned NumOps = MI.getNumOperands(); 1313 unsigned NumSrc = MI.getNumOperands() - 1; 1314 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1315 1316 if (WideSize >= DstSize) { 1317 // Directly pack the bits in the target type. 1318 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1319 1320 for (unsigned I = 2; I != NumOps; ++I) { 1321 const unsigned Offset = (I - 1) * PartSize; 1322 1323 Register SrcReg = MI.getOperand(I).getReg(); 1324 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1325 1326 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1327 1328 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1329 MRI.createGenericVirtualRegister(WideTy); 1330 1331 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1332 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1333 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1334 ResultReg = NextResult; 1335 } 1336 1337 if (WideSize > DstSize) 1338 MIRBuilder.buildTrunc(DstReg, ResultReg); 1339 else if (DstTy.isPointer()) 1340 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1341 1342 MI.eraseFromParent(); 1343 return Legalized; 1344 } 1345 1346 // Unmerge the original values to the GCD type, and recombine to the next 1347 // multiple greater than the original type. 1348 // 1349 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1350 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1351 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1352 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1353 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1354 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1355 // %12:_(s12) = G_MERGE_VALUES %10, %11 1356 // 1357 // Padding with undef if necessary: 1358 // 1359 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1360 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1361 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1362 // %7:_(s2) = G_IMPLICIT_DEF 1363 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1364 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1365 // %10:_(s12) = G_MERGE_VALUES %8, %9 1366 1367 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1368 LLT GCDTy = LLT::scalar(GCD); 1369 1370 SmallVector<Register, 8> Parts; 1371 SmallVector<Register, 8> NewMergeRegs; 1372 SmallVector<Register, 8> Unmerges; 1373 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1374 1375 // Decompose the original operands if they don't evenly divide. 1376 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1377 Register SrcReg = MI.getOperand(I).getReg(); 1378 if (GCD == SrcSize) { 1379 Unmerges.push_back(SrcReg); 1380 } else { 1381 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1382 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1383 Unmerges.push_back(Unmerge.getReg(J)); 1384 } 1385 } 1386 1387 // Pad with undef to the next size that is a multiple of the requested size. 1388 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1389 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1390 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1391 Unmerges.push_back(UndefReg); 1392 } 1393 1394 const int PartsPerGCD = WideSize / GCD; 1395 1396 // Build merges of each piece. 1397 ArrayRef<Register> Slicer(Unmerges); 1398 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1399 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1400 NewMergeRegs.push_back(Merge.getReg(0)); 1401 } 1402 1403 // A truncate may be necessary if the requested type doesn't evenly divide the 1404 // original result type. 1405 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1406 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1407 } else { 1408 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1409 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1410 } 1411 1412 MI.eraseFromParent(); 1413 return Legalized; 1414 } 1415 1416 LegalizerHelper::LegalizeResult 1417 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1418 LLT WideTy) { 1419 if (TypeIdx != 0) 1420 return UnableToLegalize; 1421 1422 int NumDst = MI.getNumOperands() - 1; 1423 Register SrcReg = MI.getOperand(NumDst).getReg(); 1424 LLT SrcTy = MRI.getType(SrcReg); 1425 if (SrcTy.isVector()) 1426 return UnableToLegalize; 1427 1428 Register Dst0Reg = MI.getOperand(0).getReg(); 1429 LLT DstTy = MRI.getType(Dst0Reg); 1430 if (!DstTy.isScalar()) 1431 return UnableToLegalize; 1432 1433 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1434 if (SrcTy.isPointer()) { 1435 const DataLayout &DL = MIRBuilder.getDataLayout(); 1436 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1437 LLVM_DEBUG( 1438 dbgs() << "Not casting non-integral address space integer\n"); 1439 return UnableToLegalize; 1440 } 1441 1442 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1443 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1444 } 1445 1446 // Widen SrcTy to WideTy. This does not affect the result, but since the 1447 // user requested this size, it is probably better handled than SrcTy and 1448 // should reduce the total number of legalization artifacts 1449 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1450 SrcTy = WideTy; 1451 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1452 } 1453 1454 // Theres no unmerge type to target. Directly extract the bits from the 1455 // source type 1456 unsigned DstSize = DstTy.getSizeInBits(); 1457 1458 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1459 for (int I = 1; I != NumDst; ++I) { 1460 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1461 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1462 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1463 } 1464 1465 MI.eraseFromParent(); 1466 return Legalized; 1467 } 1468 1469 // Extend the source to a wider type. 1470 LLT LCMTy = getLCMType(SrcTy, WideTy); 1471 1472 Register WideSrc = SrcReg; 1473 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1474 // TODO: If this is an integral address space, cast to integer and anyext. 1475 if (SrcTy.isPointer()) { 1476 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1477 return UnableToLegalize; 1478 } 1479 1480 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1481 } 1482 1483 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1484 1485 // Create a sequence of unmerges to the original results. since we may have 1486 // widened the source, we will need to pad the results with dead defs to cover 1487 // the source register. 1488 // e.g. widen s16 to s32: 1489 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1490 // 1491 // => 1492 // %4:_(s64) = G_ANYEXT %0:_(s48) 1493 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1494 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1495 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1496 1497 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1498 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1499 1500 for (int I = 0; I != NumUnmerge; ++I) { 1501 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1502 1503 for (int J = 0; J != PartsPerUnmerge; ++J) { 1504 int Idx = I * PartsPerUnmerge + J; 1505 if (Idx < NumDst) 1506 MIB.addDef(MI.getOperand(Idx).getReg()); 1507 else { 1508 // Create dead def for excess components. 1509 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1510 } 1511 } 1512 1513 MIB.addUse(Unmerge.getReg(I)); 1514 } 1515 1516 MI.eraseFromParent(); 1517 return Legalized; 1518 } 1519 1520 LegalizerHelper::LegalizeResult 1521 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1522 LLT WideTy) { 1523 Register DstReg = MI.getOperand(0).getReg(); 1524 Register SrcReg = MI.getOperand(1).getReg(); 1525 LLT SrcTy = MRI.getType(SrcReg); 1526 1527 LLT DstTy = MRI.getType(DstReg); 1528 unsigned Offset = MI.getOperand(2).getImm(); 1529 1530 if (TypeIdx == 0) { 1531 if (SrcTy.isVector() || DstTy.isVector()) 1532 return UnableToLegalize; 1533 1534 SrcOp Src(SrcReg); 1535 if (SrcTy.isPointer()) { 1536 // Extracts from pointers can be handled only if they are really just 1537 // simple integers. 1538 const DataLayout &DL = MIRBuilder.getDataLayout(); 1539 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1540 return UnableToLegalize; 1541 1542 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1543 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1544 SrcTy = SrcAsIntTy; 1545 } 1546 1547 if (DstTy.isPointer()) 1548 return UnableToLegalize; 1549 1550 if (Offset == 0) { 1551 // Avoid a shift in the degenerate case. 1552 MIRBuilder.buildTrunc(DstReg, 1553 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1554 MI.eraseFromParent(); 1555 return Legalized; 1556 } 1557 1558 // Do a shift in the source type. 1559 LLT ShiftTy = SrcTy; 1560 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1561 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1562 ShiftTy = WideTy; 1563 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1564 return UnableToLegalize; 1565 1566 auto LShr = MIRBuilder.buildLShr( 1567 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1568 MIRBuilder.buildTrunc(DstReg, LShr); 1569 MI.eraseFromParent(); 1570 return Legalized; 1571 } 1572 1573 if (SrcTy.isScalar()) { 1574 Observer.changingInstr(MI); 1575 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1576 Observer.changedInstr(MI); 1577 return Legalized; 1578 } 1579 1580 if (!SrcTy.isVector()) 1581 return UnableToLegalize; 1582 1583 if (DstTy != SrcTy.getElementType()) 1584 return UnableToLegalize; 1585 1586 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1587 return UnableToLegalize; 1588 1589 Observer.changingInstr(MI); 1590 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1591 1592 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1593 Offset); 1594 widenScalarDst(MI, WideTy.getScalarType(), 0); 1595 Observer.changedInstr(MI); 1596 return Legalized; 1597 } 1598 1599 LegalizerHelper::LegalizeResult 1600 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1601 LLT WideTy) { 1602 if (TypeIdx != 0) 1603 return UnableToLegalize; 1604 Observer.changingInstr(MI); 1605 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1606 widenScalarDst(MI, WideTy); 1607 Observer.changedInstr(MI); 1608 return Legalized; 1609 } 1610 1611 LegalizerHelper::LegalizeResult 1612 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1613 MIRBuilder.setInstrAndDebugLoc(MI); 1614 1615 switch (MI.getOpcode()) { 1616 default: 1617 return UnableToLegalize; 1618 case TargetOpcode::G_EXTRACT: 1619 return widenScalarExtract(MI, TypeIdx, WideTy); 1620 case TargetOpcode::G_INSERT: 1621 return widenScalarInsert(MI, TypeIdx, WideTy); 1622 case TargetOpcode::G_MERGE_VALUES: 1623 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1624 case TargetOpcode::G_UNMERGE_VALUES: 1625 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1626 case TargetOpcode::G_UADDO: 1627 case TargetOpcode::G_USUBO: { 1628 if (TypeIdx == 1) 1629 return UnableToLegalize; // TODO 1630 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1631 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1632 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1633 ? TargetOpcode::G_ADD 1634 : TargetOpcode::G_SUB; 1635 // Do the arithmetic in the larger type. 1636 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1637 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1638 APInt Mask = 1639 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1640 auto AndOp = MIRBuilder.buildAnd( 1641 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1642 // There is no overflow if the AndOp is the same as NewOp. 1643 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1644 // Now trunc the NewOp to the original result. 1645 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1646 MI.eraseFromParent(); 1647 return Legalized; 1648 } 1649 case TargetOpcode::G_CTTZ: 1650 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1651 case TargetOpcode::G_CTLZ: 1652 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1653 case TargetOpcode::G_CTPOP: { 1654 if (TypeIdx == 0) { 1655 Observer.changingInstr(MI); 1656 widenScalarDst(MI, WideTy, 0); 1657 Observer.changedInstr(MI); 1658 return Legalized; 1659 } 1660 1661 Register SrcReg = MI.getOperand(1).getReg(); 1662 1663 // First ZEXT the input. 1664 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1665 LLT CurTy = MRI.getType(SrcReg); 1666 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1667 // The count is the same in the larger type except if the original 1668 // value was zero. This can be handled by setting the bit just off 1669 // the top of the original type. 1670 auto TopBit = 1671 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1672 MIBSrc = MIRBuilder.buildOr( 1673 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1674 } 1675 1676 // Perform the operation at the larger size. 1677 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1678 // This is already the correct result for CTPOP and CTTZs 1679 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1680 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1681 // The correct result is NewOp - (Difference in widety and current ty). 1682 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1683 MIBNewOp = MIRBuilder.buildSub( 1684 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1685 } 1686 1687 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1688 MI.eraseFromParent(); 1689 return Legalized; 1690 } 1691 case TargetOpcode::G_BSWAP: { 1692 Observer.changingInstr(MI); 1693 Register DstReg = MI.getOperand(0).getReg(); 1694 1695 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1696 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1697 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1698 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1699 1700 MI.getOperand(0).setReg(DstExt); 1701 1702 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1703 1704 LLT Ty = MRI.getType(DstReg); 1705 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1706 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1707 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1708 1709 MIRBuilder.buildTrunc(DstReg, ShrReg); 1710 Observer.changedInstr(MI); 1711 return Legalized; 1712 } 1713 case TargetOpcode::G_BITREVERSE: { 1714 Observer.changingInstr(MI); 1715 1716 Register DstReg = MI.getOperand(0).getReg(); 1717 LLT Ty = MRI.getType(DstReg); 1718 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1719 1720 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1721 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1722 MI.getOperand(0).setReg(DstExt); 1723 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1724 1725 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1726 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1727 MIRBuilder.buildTrunc(DstReg, Shift); 1728 Observer.changedInstr(MI); 1729 return Legalized; 1730 } 1731 case TargetOpcode::G_ADD: 1732 case TargetOpcode::G_AND: 1733 case TargetOpcode::G_MUL: 1734 case TargetOpcode::G_OR: 1735 case TargetOpcode::G_XOR: 1736 case TargetOpcode::G_SUB: 1737 // Perform operation at larger width (any extension is fines here, high bits 1738 // don't affect the result) and then truncate the result back to the 1739 // original type. 1740 Observer.changingInstr(MI); 1741 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1742 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1743 widenScalarDst(MI, WideTy); 1744 Observer.changedInstr(MI); 1745 return Legalized; 1746 1747 case TargetOpcode::G_SHL: 1748 Observer.changingInstr(MI); 1749 1750 if (TypeIdx == 0) { 1751 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1752 widenScalarDst(MI, WideTy); 1753 } else { 1754 assert(TypeIdx == 1); 1755 // The "number of bits to shift" operand must preserve its value as an 1756 // unsigned integer: 1757 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1758 } 1759 1760 Observer.changedInstr(MI); 1761 return Legalized; 1762 1763 case TargetOpcode::G_SDIV: 1764 case TargetOpcode::G_SREM: 1765 case TargetOpcode::G_SMIN: 1766 case TargetOpcode::G_SMAX: 1767 Observer.changingInstr(MI); 1768 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1769 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1770 widenScalarDst(MI, WideTy); 1771 Observer.changedInstr(MI); 1772 return Legalized; 1773 1774 case TargetOpcode::G_ASHR: 1775 case TargetOpcode::G_LSHR: 1776 Observer.changingInstr(MI); 1777 1778 if (TypeIdx == 0) { 1779 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1780 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1781 1782 widenScalarSrc(MI, WideTy, 1, CvtOp); 1783 widenScalarDst(MI, WideTy); 1784 } else { 1785 assert(TypeIdx == 1); 1786 // The "number of bits to shift" operand must preserve its value as an 1787 // unsigned integer: 1788 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1789 } 1790 1791 Observer.changedInstr(MI); 1792 return Legalized; 1793 case TargetOpcode::G_UDIV: 1794 case TargetOpcode::G_UREM: 1795 case TargetOpcode::G_UMIN: 1796 case TargetOpcode::G_UMAX: 1797 Observer.changingInstr(MI); 1798 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1799 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1800 widenScalarDst(MI, WideTy); 1801 Observer.changedInstr(MI); 1802 return Legalized; 1803 1804 case TargetOpcode::G_SELECT: 1805 Observer.changingInstr(MI); 1806 if (TypeIdx == 0) { 1807 // Perform operation at larger width (any extension is fine here, high 1808 // bits don't affect the result) and then truncate the result back to the 1809 // original type. 1810 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1811 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1812 widenScalarDst(MI, WideTy); 1813 } else { 1814 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1815 // Explicit extension is required here since high bits affect the result. 1816 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1817 } 1818 Observer.changedInstr(MI); 1819 return Legalized; 1820 1821 case TargetOpcode::G_FPTOSI: 1822 case TargetOpcode::G_FPTOUI: 1823 Observer.changingInstr(MI); 1824 1825 if (TypeIdx == 0) 1826 widenScalarDst(MI, WideTy); 1827 else 1828 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1829 1830 Observer.changedInstr(MI); 1831 return Legalized; 1832 case TargetOpcode::G_SITOFP: 1833 if (TypeIdx != 1) 1834 return UnableToLegalize; 1835 Observer.changingInstr(MI); 1836 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1837 Observer.changedInstr(MI); 1838 return Legalized; 1839 1840 case TargetOpcode::G_UITOFP: 1841 if (TypeIdx != 1) 1842 return UnableToLegalize; 1843 Observer.changingInstr(MI); 1844 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1845 Observer.changedInstr(MI); 1846 return Legalized; 1847 1848 case TargetOpcode::G_LOAD: 1849 case TargetOpcode::G_SEXTLOAD: 1850 case TargetOpcode::G_ZEXTLOAD: 1851 Observer.changingInstr(MI); 1852 widenScalarDst(MI, WideTy); 1853 Observer.changedInstr(MI); 1854 return Legalized; 1855 1856 case TargetOpcode::G_STORE: { 1857 if (TypeIdx != 0) 1858 return UnableToLegalize; 1859 1860 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1861 if (!isPowerOf2_32(Ty.getSizeInBits())) 1862 return UnableToLegalize; 1863 1864 Observer.changingInstr(MI); 1865 1866 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1867 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1868 widenScalarSrc(MI, WideTy, 0, ExtType); 1869 1870 Observer.changedInstr(MI); 1871 return Legalized; 1872 } 1873 case TargetOpcode::G_CONSTANT: { 1874 MachineOperand &SrcMO = MI.getOperand(1); 1875 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1876 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1877 MRI.getType(MI.getOperand(0).getReg())); 1878 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1879 ExtOpc == TargetOpcode::G_ANYEXT) && 1880 "Illegal Extend"); 1881 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1882 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1883 ? SrcVal.sext(WideTy.getSizeInBits()) 1884 : SrcVal.zext(WideTy.getSizeInBits()); 1885 Observer.changingInstr(MI); 1886 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1887 1888 widenScalarDst(MI, WideTy); 1889 Observer.changedInstr(MI); 1890 return Legalized; 1891 } 1892 case TargetOpcode::G_FCONSTANT: { 1893 MachineOperand &SrcMO = MI.getOperand(1); 1894 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1895 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1896 bool LosesInfo; 1897 switch (WideTy.getSizeInBits()) { 1898 case 32: 1899 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1900 &LosesInfo); 1901 break; 1902 case 64: 1903 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1904 &LosesInfo); 1905 break; 1906 default: 1907 return UnableToLegalize; 1908 } 1909 1910 assert(!LosesInfo && "extend should always be lossless"); 1911 1912 Observer.changingInstr(MI); 1913 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1914 1915 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1916 Observer.changedInstr(MI); 1917 return Legalized; 1918 } 1919 case TargetOpcode::G_IMPLICIT_DEF: { 1920 Observer.changingInstr(MI); 1921 widenScalarDst(MI, WideTy); 1922 Observer.changedInstr(MI); 1923 return Legalized; 1924 } 1925 case TargetOpcode::G_BRCOND: 1926 Observer.changingInstr(MI); 1927 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1928 Observer.changedInstr(MI); 1929 return Legalized; 1930 1931 case TargetOpcode::G_FCMP: 1932 Observer.changingInstr(MI); 1933 if (TypeIdx == 0) 1934 widenScalarDst(MI, WideTy); 1935 else { 1936 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1937 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1938 } 1939 Observer.changedInstr(MI); 1940 return Legalized; 1941 1942 case TargetOpcode::G_ICMP: 1943 Observer.changingInstr(MI); 1944 if (TypeIdx == 0) 1945 widenScalarDst(MI, WideTy); 1946 else { 1947 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1948 MI.getOperand(1).getPredicate())) 1949 ? TargetOpcode::G_SEXT 1950 : TargetOpcode::G_ZEXT; 1951 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1952 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1953 } 1954 Observer.changedInstr(MI); 1955 return Legalized; 1956 1957 case TargetOpcode::G_PTR_ADD: 1958 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 1959 Observer.changingInstr(MI); 1960 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1961 Observer.changedInstr(MI); 1962 return Legalized; 1963 1964 case TargetOpcode::G_PHI: { 1965 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1966 1967 Observer.changingInstr(MI); 1968 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1969 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1970 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1971 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1972 } 1973 1974 MachineBasicBlock &MBB = *MI.getParent(); 1975 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1976 widenScalarDst(MI, WideTy); 1977 Observer.changedInstr(MI); 1978 return Legalized; 1979 } 1980 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1981 if (TypeIdx == 0) { 1982 Register VecReg = MI.getOperand(1).getReg(); 1983 LLT VecTy = MRI.getType(VecReg); 1984 Observer.changingInstr(MI); 1985 1986 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1987 WideTy.getSizeInBits()), 1988 1, TargetOpcode::G_SEXT); 1989 1990 widenScalarDst(MI, WideTy, 0); 1991 Observer.changedInstr(MI); 1992 return Legalized; 1993 } 1994 1995 if (TypeIdx != 2) 1996 return UnableToLegalize; 1997 Observer.changingInstr(MI); 1998 // TODO: Probably should be zext 1999 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2000 Observer.changedInstr(MI); 2001 return Legalized; 2002 } 2003 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2004 if (TypeIdx == 1) { 2005 Observer.changingInstr(MI); 2006 2007 Register VecReg = MI.getOperand(1).getReg(); 2008 LLT VecTy = MRI.getType(VecReg); 2009 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2010 2011 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2012 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2013 widenScalarDst(MI, WideVecTy, 0); 2014 Observer.changedInstr(MI); 2015 return Legalized; 2016 } 2017 2018 if (TypeIdx == 2) { 2019 Observer.changingInstr(MI); 2020 // TODO: Probably should be zext 2021 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2022 Observer.changedInstr(MI); 2023 } 2024 2025 return Legalized; 2026 } 2027 case TargetOpcode::G_FADD: 2028 case TargetOpcode::G_FMUL: 2029 case TargetOpcode::G_FSUB: 2030 case TargetOpcode::G_FMA: 2031 case TargetOpcode::G_FMAD: 2032 case TargetOpcode::G_FNEG: 2033 case TargetOpcode::G_FABS: 2034 case TargetOpcode::G_FCANONICALIZE: 2035 case TargetOpcode::G_FMINNUM: 2036 case TargetOpcode::G_FMAXNUM: 2037 case TargetOpcode::G_FMINNUM_IEEE: 2038 case TargetOpcode::G_FMAXNUM_IEEE: 2039 case TargetOpcode::G_FMINIMUM: 2040 case TargetOpcode::G_FMAXIMUM: 2041 case TargetOpcode::G_FDIV: 2042 case TargetOpcode::G_FREM: 2043 case TargetOpcode::G_FCEIL: 2044 case TargetOpcode::G_FFLOOR: 2045 case TargetOpcode::G_FCOS: 2046 case TargetOpcode::G_FSIN: 2047 case TargetOpcode::G_FLOG10: 2048 case TargetOpcode::G_FLOG: 2049 case TargetOpcode::G_FLOG2: 2050 case TargetOpcode::G_FRINT: 2051 case TargetOpcode::G_FNEARBYINT: 2052 case TargetOpcode::G_FSQRT: 2053 case TargetOpcode::G_FEXP: 2054 case TargetOpcode::G_FEXP2: 2055 case TargetOpcode::G_FPOW: 2056 case TargetOpcode::G_INTRINSIC_TRUNC: 2057 case TargetOpcode::G_INTRINSIC_ROUND: 2058 assert(TypeIdx == 0); 2059 Observer.changingInstr(MI); 2060 2061 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2062 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2063 2064 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2065 Observer.changedInstr(MI); 2066 return Legalized; 2067 case TargetOpcode::G_INTTOPTR: 2068 if (TypeIdx != 1) 2069 return UnableToLegalize; 2070 2071 Observer.changingInstr(MI); 2072 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2073 Observer.changedInstr(MI); 2074 return Legalized; 2075 case TargetOpcode::G_PTRTOINT: 2076 if (TypeIdx != 0) 2077 return UnableToLegalize; 2078 2079 Observer.changingInstr(MI); 2080 widenScalarDst(MI, WideTy, 0); 2081 Observer.changedInstr(MI); 2082 return Legalized; 2083 case TargetOpcode::G_BUILD_VECTOR: { 2084 Observer.changingInstr(MI); 2085 2086 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2087 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2088 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2089 2090 // Avoid changing the result vector type if the source element type was 2091 // requested. 2092 if (TypeIdx == 1) { 2093 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2094 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2095 } else { 2096 widenScalarDst(MI, WideTy, 0); 2097 } 2098 2099 Observer.changedInstr(MI); 2100 return Legalized; 2101 } 2102 case TargetOpcode::G_SEXT_INREG: 2103 if (TypeIdx != 0) 2104 return UnableToLegalize; 2105 2106 Observer.changingInstr(MI); 2107 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2108 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2109 Observer.changedInstr(MI); 2110 return Legalized; 2111 } 2112 } 2113 2114 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2115 MachineIRBuilder &B, Register Src, LLT Ty) { 2116 auto Unmerge = B.buildUnmerge(Ty, Src); 2117 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2118 Pieces.push_back(Unmerge.getReg(I)); 2119 } 2120 2121 LegalizerHelper::LegalizeResult 2122 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2123 Register Dst = MI.getOperand(0).getReg(); 2124 Register Src = MI.getOperand(1).getReg(); 2125 LLT DstTy = MRI.getType(Dst); 2126 LLT SrcTy = MRI.getType(Src); 2127 2128 if (SrcTy.isVector() && !DstTy.isVector()) { 2129 SmallVector<Register, 8> SrcRegs; 2130 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType()); 2131 MIRBuilder.buildMerge(Dst, SrcRegs); 2132 MI.eraseFromParent(); 2133 return Legalized; 2134 } 2135 2136 if (DstTy.isVector() && !SrcTy.isVector()) { 2137 SmallVector<Register, 8> SrcRegs; 2138 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2139 MIRBuilder.buildMerge(Dst, SrcRegs); 2140 MI.eraseFromParent(); 2141 return Legalized; 2142 } 2143 2144 return UnableToLegalize; 2145 } 2146 2147 LegalizerHelper::LegalizeResult 2148 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2149 MIRBuilder.setInstr(MI); 2150 2151 switch (MI.getOpcode()) { 2152 case TargetOpcode::G_LOAD: { 2153 if (TypeIdx != 0) 2154 return UnableToLegalize; 2155 2156 Observer.changingInstr(MI); 2157 bitcastDst(MI, CastTy, 0); 2158 Observer.changedInstr(MI); 2159 return Legalized; 2160 } 2161 case TargetOpcode::G_STORE: { 2162 if (TypeIdx != 0) 2163 return UnableToLegalize; 2164 2165 Observer.changingInstr(MI); 2166 bitcastSrc(MI, CastTy, 0); 2167 Observer.changedInstr(MI); 2168 return Legalized; 2169 } 2170 case TargetOpcode::G_SELECT: { 2171 if (TypeIdx != 0) 2172 return UnableToLegalize; 2173 2174 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2175 LLVM_DEBUG( 2176 dbgs() << "bitcast action not implemented for vector select\n"); 2177 return UnableToLegalize; 2178 } 2179 2180 Observer.changingInstr(MI); 2181 bitcastSrc(MI, CastTy, 2); 2182 bitcastSrc(MI, CastTy, 3); 2183 bitcastDst(MI, CastTy, 0); 2184 Observer.changedInstr(MI); 2185 return Legalized; 2186 } 2187 case TargetOpcode::G_AND: 2188 case TargetOpcode::G_OR: 2189 case TargetOpcode::G_XOR: { 2190 Observer.changingInstr(MI); 2191 bitcastSrc(MI, CastTy, 1); 2192 bitcastSrc(MI, CastTy, 2); 2193 bitcastDst(MI, CastTy, 0); 2194 Observer.changedInstr(MI); 2195 return Legalized; 2196 } 2197 default: 2198 return UnableToLegalize; 2199 } 2200 } 2201 2202 LegalizerHelper::LegalizeResult 2203 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2204 using namespace TargetOpcode; 2205 MIRBuilder.setInstrAndDebugLoc(MI); 2206 2207 switch(MI.getOpcode()) { 2208 default: 2209 return UnableToLegalize; 2210 case TargetOpcode::G_BITCAST: 2211 return lowerBitcast(MI); 2212 case TargetOpcode::G_SREM: 2213 case TargetOpcode::G_UREM: { 2214 auto Quot = 2215 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2216 {MI.getOperand(1), MI.getOperand(2)}); 2217 2218 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2219 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2220 MI.eraseFromParent(); 2221 return Legalized; 2222 } 2223 case TargetOpcode::G_SADDO: 2224 case TargetOpcode::G_SSUBO: 2225 return lowerSADDO_SSUBO(MI); 2226 case TargetOpcode::G_SMULO: 2227 case TargetOpcode::G_UMULO: { 2228 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2229 // result. 2230 Register Res = MI.getOperand(0).getReg(); 2231 Register Overflow = MI.getOperand(1).getReg(); 2232 Register LHS = MI.getOperand(2).getReg(); 2233 Register RHS = MI.getOperand(3).getReg(); 2234 2235 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2236 ? TargetOpcode::G_SMULH 2237 : TargetOpcode::G_UMULH; 2238 2239 Observer.changingInstr(MI); 2240 const auto &TII = MIRBuilder.getTII(); 2241 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2242 MI.RemoveOperand(1); 2243 Observer.changedInstr(MI); 2244 2245 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2246 2247 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2248 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2249 2250 // For *signed* multiply, overflow is detected by checking: 2251 // (hi != (lo >> bitwidth-1)) 2252 if (Opcode == TargetOpcode::G_SMULH) { 2253 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2254 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2255 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2256 } else { 2257 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2258 } 2259 return Legalized; 2260 } 2261 case TargetOpcode::G_FNEG: { 2262 // TODO: Handle vector types once we are able to 2263 // represent them. 2264 if (Ty.isVector()) 2265 return UnableToLegalize; 2266 Register Res = MI.getOperand(0).getReg(); 2267 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2268 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2269 if (!ZeroTy) 2270 return UnableToLegalize; 2271 ConstantFP &ZeroForNegation = 2272 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2273 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2274 Register SubByReg = MI.getOperand(1).getReg(); 2275 Register ZeroReg = Zero.getReg(0); 2276 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2277 MI.eraseFromParent(); 2278 return Legalized; 2279 } 2280 case TargetOpcode::G_FSUB: { 2281 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2282 // First, check if G_FNEG is marked as Lower. If so, we may 2283 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2284 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2285 return UnableToLegalize; 2286 Register Res = MI.getOperand(0).getReg(); 2287 Register LHS = MI.getOperand(1).getReg(); 2288 Register RHS = MI.getOperand(2).getReg(); 2289 Register Neg = MRI.createGenericVirtualRegister(Ty); 2290 MIRBuilder.buildFNeg(Neg, RHS); 2291 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2292 MI.eraseFromParent(); 2293 return Legalized; 2294 } 2295 case TargetOpcode::G_FMAD: 2296 return lowerFMad(MI); 2297 case TargetOpcode::G_FFLOOR: 2298 return lowerFFloor(MI); 2299 case TargetOpcode::G_INTRINSIC_ROUND: 2300 return lowerIntrinsicRound(MI); 2301 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2302 Register OldValRes = MI.getOperand(0).getReg(); 2303 Register SuccessRes = MI.getOperand(1).getReg(); 2304 Register Addr = MI.getOperand(2).getReg(); 2305 Register CmpVal = MI.getOperand(3).getReg(); 2306 Register NewVal = MI.getOperand(4).getReg(); 2307 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2308 **MI.memoperands_begin()); 2309 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2310 MI.eraseFromParent(); 2311 return Legalized; 2312 } 2313 case TargetOpcode::G_LOAD: 2314 case TargetOpcode::G_SEXTLOAD: 2315 case TargetOpcode::G_ZEXTLOAD: { 2316 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2317 Register DstReg = MI.getOperand(0).getReg(); 2318 Register PtrReg = MI.getOperand(1).getReg(); 2319 LLT DstTy = MRI.getType(DstReg); 2320 auto &MMO = **MI.memoperands_begin(); 2321 2322 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2323 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2324 // This load needs splitting into power of 2 sized loads. 2325 if (DstTy.isVector()) 2326 return UnableToLegalize; 2327 if (isPowerOf2_32(DstTy.getSizeInBits())) 2328 return UnableToLegalize; // Don't know what we're being asked to do. 2329 2330 // Our strategy here is to generate anyextending loads for the smaller 2331 // types up to next power-2 result type, and then combine the two larger 2332 // result values together, before truncating back down to the non-pow-2 2333 // type. 2334 // E.g. v1 = i24 load => 2335 // v2 = i32 zextload (2 byte) 2336 // v3 = i32 load (1 byte) 2337 // v4 = i32 shl v3, 16 2338 // v5 = i32 or v4, v2 2339 // v1 = i24 trunc v5 2340 // By doing this we generate the correct truncate which should get 2341 // combined away as an artifact with a matching extend. 2342 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2343 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2344 2345 MachineFunction &MF = MIRBuilder.getMF(); 2346 MachineMemOperand *LargeMMO = 2347 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2348 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2349 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2350 2351 LLT PtrTy = MRI.getType(PtrReg); 2352 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2353 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2354 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2355 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2356 auto LargeLoad = MIRBuilder.buildLoadInstr( 2357 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2358 2359 auto OffsetCst = MIRBuilder.buildConstant( 2360 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2361 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2362 auto SmallPtr = 2363 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2364 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2365 *SmallMMO); 2366 2367 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2368 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2369 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2370 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2371 MI.eraseFromParent(); 2372 return Legalized; 2373 } 2374 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2375 MI.eraseFromParent(); 2376 return Legalized; 2377 } 2378 2379 if (DstTy.isScalar()) { 2380 Register TmpReg = 2381 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2382 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2383 switch (MI.getOpcode()) { 2384 default: 2385 llvm_unreachable("Unexpected opcode"); 2386 case TargetOpcode::G_LOAD: 2387 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2388 break; 2389 case TargetOpcode::G_SEXTLOAD: 2390 MIRBuilder.buildSExt(DstReg, TmpReg); 2391 break; 2392 case TargetOpcode::G_ZEXTLOAD: 2393 MIRBuilder.buildZExt(DstReg, TmpReg); 2394 break; 2395 } 2396 MI.eraseFromParent(); 2397 return Legalized; 2398 } 2399 2400 return UnableToLegalize; 2401 } 2402 case TargetOpcode::G_STORE: { 2403 // Lower a non-power of 2 store into multiple pow-2 stores. 2404 // E.g. split an i24 store into an i16 store + i8 store. 2405 // We do this by first extending the stored value to the next largest power 2406 // of 2 type, and then using truncating stores to store the components. 2407 // By doing this, likewise with G_LOAD, generate an extend that can be 2408 // artifact-combined away instead of leaving behind extracts. 2409 Register SrcReg = MI.getOperand(0).getReg(); 2410 Register PtrReg = MI.getOperand(1).getReg(); 2411 LLT SrcTy = MRI.getType(SrcReg); 2412 MachineMemOperand &MMO = **MI.memoperands_begin(); 2413 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2414 return UnableToLegalize; 2415 if (SrcTy.isVector()) 2416 return UnableToLegalize; 2417 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2418 return UnableToLegalize; // Don't know what we're being asked to do. 2419 2420 // Extend to the next pow-2. 2421 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2422 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2423 2424 // Obtain the smaller value by shifting away the larger value. 2425 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2426 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2427 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2428 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2429 2430 // Generate the PtrAdd and truncating stores. 2431 LLT PtrTy = MRI.getType(PtrReg); 2432 auto OffsetCst = MIRBuilder.buildConstant( 2433 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2434 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2435 auto SmallPtr = 2436 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2437 2438 MachineFunction &MF = MIRBuilder.getMF(); 2439 MachineMemOperand *LargeMMO = 2440 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2441 MachineMemOperand *SmallMMO = 2442 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2443 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2444 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2445 MI.eraseFromParent(); 2446 return Legalized; 2447 } 2448 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2449 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2450 case TargetOpcode::G_CTLZ: 2451 case TargetOpcode::G_CTTZ: 2452 case TargetOpcode::G_CTPOP: 2453 return lowerBitCount(MI, TypeIdx, Ty); 2454 case G_UADDO: { 2455 Register Res = MI.getOperand(0).getReg(); 2456 Register CarryOut = MI.getOperand(1).getReg(); 2457 Register LHS = MI.getOperand(2).getReg(); 2458 Register RHS = MI.getOperand(3).getReg(); 2459 2460 MIRBuilder.buildAdd(Res, LHS, RHS); 2461 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2462 2463 MI.eraseFromParent(); 2464 return Legalized; 2465 } 2466 case G_UADDE: { 2467 Register Res = MI.getOperand(0).getReg(); 2468 Register CarryOut = MI.getOperand(1).getReg(); 2469 Register LHS = MI.getOperand(2).getReg(); 2470 Register RHS = MI.getOperand(3).getReg(); 2471 Register CarryIn = MI.getOperand(4).getReg(); 2472 LLT Ty = MRI.getType(Res); 2473 2474 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2475 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2476 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2477 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2478 2479 MI.eraseFromParent(); 2480 return Legalized; 2481 } 2482 case G_USUBO: { 2483 Register Res = MI.getOperand(0).getReg(); 2484 Register BorrowOut = MI.getOperand(1).getReg(); 2485 Register LHS = MI.getOperand(2).getReg(); 2486 Register RHS = MI.getOperand(3).getReg(); 2487 2488 MIRBuilder.buildSub(Res, LHS, RHS); 2489 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2490 2491 MI.eraseFromParent(); 2492 return Legalized; 2493 } 2494 case G_USUBE: { 2495 Register Res = MI.getOperand(0).getReg(); 2496 Register BorrowOut = MI.getOperand(1).getReg(); 2497 Register LHS = MI.getOperand(2).getReg(); 2498 Register RHS = MI.getOperand(3).getReg(); 2499 Register BorrowIn = MI.getOperand(4).getReg(); 2500 const LLT CondTy = MRI.getType(BorrowOut); 2501 const LLT Ty = MRI.getType(Res); 2502 2503 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 2504 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 2505 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2506 2507 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 2508 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 2509 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2510 2511 MI.eraseFromParent(); 2512 return Legalized; 2513 } 2514 case G_UITOFP: 2515 return lowerUITOFP(MI, TypeIdx, Ty); 2516 case G_SITOFP: 2517 return lowerSITOFP(MI, TypeIdx, Ty); 2518 case G_FPTOUI: 2519 return lowerFPTOUI(MI, TypeIdx, Ty); 2520 case G_FPTOSI: 2521 return lowerFPTOSI(MI); 2522 case G_FPTRUNC: 2523 return lowerFPTRUNC(MI, TypeIdx, Ty); 2524 case G_SMIN: 2525 case G_SMAX: 2526 case G_UMIN: 2527 case G_UMAX: 2528 return lowerMinMax(MI, TypeIdx, Ty); 2529 case G_FCOPYSIGN: 2530 return lowerFCopySign(MI, TypeIdx, Ty); 2531 case G_FMINNUM: 2532 case G_FMAXNUM: 2533 return lowerFMinNumMaxNum(MI); 2534 case G_UNMERGE_VALUES: 2535 return lowerUnmergeValues(MI); 2536 case TargetOpcode::G_SEXT_INREG: { 2537 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2538 int64_t SizeInBits = MI.getOperand(2).getImm(); 2539 2540 Register DstReg = MI.getOperand(0).getReg(); 2541 Register SrcReg = MI.getOperand(1).getReg(); 2542 LLT DstTy = MRI.getType(DstReg); 2543 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2544 2545 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2546 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2547 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2548 MI.eraseFromParent(); 2549 return Legalized; 2550 } 2551 case G_SHUFFLE_VECTOR: 2552 return lowerShuffleVector(MI); 2553 case G_DYN_STACKALLOC: 2554 return lowerDynStackAlloc(MI); 2555 case G_EXTRACT: 2556 return lowerExtract(MI); 2557 case G_INSERT: 2558 return lowerInsert(MI); 2559 case G_BSWAP: 2560 return lowerBswap(MI); 2561 case G_BITREVERSE: 2562 return lowerBitreverse(MI); 2563 case G_READ_REGISTER: 2564 case G_WRITE_REGISTER: 2565 return lowerReadWriteRegister(MI); 2566 } 2567 } 2568 2569 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2570 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2571 SmallVector<Register, 2> DstRegs; 2572 2573 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2574 Register DstReg = MI.getOperand(0).getReg(); 2575 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2576 int NumParts = Size / NarrowSize; 2577 // FIXME: Don't know how to handle the situation where the small vectors 2578 // aren't all the same size yet. 2579 if (Size % NarrowSize != 0) 2580 return UnableToLegalize; 2581 2582 for (int i = 0; i < NumParts; ++i) { 2583 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2584 MIRBuilder.buildUndef(TmpReg); 2585 DstRegs.push_back(TmpReg); 2586 } 2587 2588 if (NarrowTy.isVector()) 2589 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2590 else 2591 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2592 2593 MI.eraseFromParent(); 2594 return Legalized; 2595 } 2596 2597 // Handles operands with different types, but all must have the same number of 2598 // elements. There will be multiple type indexes. NarrowTy is expected to have 2599 // the result element type. 2600 LegalizerHelper::LegalizeResult 2601 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 2602 LLT NarrowTy) { 2603 assert(TypeIdx == 0 && "only one type index expected"); 2604 2605 const unsigned Opc = MI.getOpcode(); 2606 const int NumOps = MI.getNumOperands() - 1; 2607 const Register DstReg = MI.getOperand(0).getReg(); 2608 const unsigned Flags = MI.getFlags(); 2609 2610 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 2611 2612 SmallVector<Register, 8> ExtractedRegs[3]; 2613 SmallVector<Register, 8> Parts; 2614 2615 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2616 2617 // Break down all the sources into NarrowTy pieces we can operate on. This may 2618 // involve creating merges to a wider type, padded with undef. 2619 for (int I = 0; I != NumOps; ++I) { 2620 Register SrcReg = MI.getOperand(I + 1).getReg(); 2621 LLT SrcTy = MRI.getType(SrcReg); 2622 2623 // Each operand may have its own type, but only the number of elements 2624 // matters. 2625 LLT OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 2626 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 2627 2628 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 2629 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, 2630 ExtractedRegs[I], TargetOpcode::G_ANYEXT); 2631 } 2632 2633 SmallVector<Register, 8> ResultRegs; 2634 2635 // Input operands for each sub-instruction. 2636 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 2637 2638 int NumParts = ExtractedRegs[0].size(); 2639 const LLT DstTy = MRI.getType(DstReg); 2640 const unsigned DstSize = DstTy.getSizeInBits(); 2641 LLT DstLCMTy = getLCMType(DstTy, NarrowTy); 2642 2643 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 2644 2645 // We widened the source registers to satisfy merge/unmerge size 2646 // constraints. We'll have some extra fully undef parts. 2647 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 2648 2649 for (int I = 0; I != NumRealParts; ++I) { 2650 // Emit this instruction on each of the split pieces. 2651 for (int J = 0; J != NumOps; ++J) 2652 InputRegs[J] = ExtractedRegs[J][I]; 2653 2654 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowTy}, InputRegs, Flags); 2655 ResultRegs.push_back(Inst.getReg(0)); 2656 } 2657 2658 // Fill out the widened result with undef instead of creating instructions 2659 // with undef inputs. 2660 int NumUndefParts = NumParts - NumRealParts; 2661 if (NumUndefParts != 0) 2662 ResultRegs.append(NumUndefParts, MIRBuilder.buildUndef(NarrowTy).getReg(0)); 2663 2664 // Extract the possibly padded result to the original result register. 2665 buildWidenedRemergeToDst(DstReg, DstLCMTy, ResultRegs); 2666 2667 MI.eraseFromParent(); 2668 return Legalized; 2669 } 2670 2671 // Handle splitting vector operations which need to have the same number of 2672 // elements in each type index, but each type index may have a different element 2673 // type. 2674 // 2675 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2676 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2677 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2678 // 2679 // Also handles some irregular breakdown cases, e.g. 2680 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2681 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2682 // s64 = G_SHL s64, s32 2683 LegalizerHelper::LegalizeResult 2684 LegalizerHelper::fewerElementsVectorMultiEltType( 2685 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2686 if (TypeIdx != 0) 2687 return UnableToLegalize; 2688 2689 const LLT NarrowTy0 = NarrowTyArg; 2690 const unsigned NewNumElts = 2691 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2692 2693 const Register DstReg = MI.getOperand(0).getReg(); 2694 LLT DstTy = MRI.getType(DstReg); 2695 LLT LeftoverTy0; 2696 2697 // All of the operands need to have the same number of elements, so if we can 2698 // determine a type breakdown for the result type, we can for all of the 2699 // source types. 2700 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2701 if (NumParts < 0) 2702 return UnableToLegalize; 2703 2704 SmallVector<MachineInstrBuilder, 4> NewInsts; 2705 2706 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2707 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2708 2709 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2710 LLT LeftoverTy; 2711 Register SrcReg = MI.getOperand(I).getReg(); 2712 LLT SrcTyI = MRI.getType(SrcReg); 2713 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2714 LLT LeftoverTyI; 2715 2716 // Split this operand into the requested typed registers, and any leftover 2717 // required to reproduce the original type. 2718 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2719 LeftoverRegs)) 2720 return UnableToLegalize; 2721 2722 if (I == 1) { 2723 // For the first operand, create an instruction for each part and setup 2724 // the result. 2725 for (Register PartReg : PartRegs) { 2726 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2727 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2728 .addDef(PartDstReg) 2729 .addUse(PartReg)); 2730 DstRegs.push_back(PartDstReg); 2731 } 2732 2733 for (Register LeftoverReg : LeftoverRegs) { 2734 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2735 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2736 .addDef(PartDstReg) 2737 .addUse(LeftoverReg)); 2738 LeftoverDstRegs.push_back(PartDstReg); 2739 } 2740 } else { 2741 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2742 2743 // Add the newly created operand splits to the existing instructions. The 2744 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2745 // pieces. 2746 unsigned InstCount = 0; 2747 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2748 NewInsts[InstCount++].addUse(PartRegs[J]); 2749 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2750 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2751 } 2752 2753 PartRegs.clear(); 2754 LeftoverRegs.clear(); 2755 } 2756 2757 // Insert the newly built operations and rebuild the result register. 2758 for (auto &MIB : NewInsts) 2759 MIRBuilder.insertInstr(MIB); 2760 2761 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2762 2763 MI.eraseFromParent(); 2764 return Legalized; 2765 } 2766 2767 LegalizerHelper::LegalizeResult 2768 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2769 LLT NarrowTy) { 2770 if (TypeIdx != 0) 2771 return UnableToLegalize; 2772 2773 Register DstReg = MI.getOperand(0).getReg(); 2774 Register SrcReg = MI.getOperand(1).getReg(); 2775 LLT DstTy = MRI.getType(DstReg); 2776 LLT SrcTy = MRI.getType(SrcReg); 2777 2778 LLT NarrowTy0 = NarrowTy; 2779 LLT NarrowTy1; 2780 unsigned NumParts; 2781 2782 if (NarrowTy.isVector()) { 2783 // Uneven breakdown not handled. 2784 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2785 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2786 return UnableToLegalize; 2787 2788 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2789 } else { 2790 NumParts = DstTy.getNumElements(); 2791 NarrowTy1 = SrcTy.getElementType(); 2792 } 2793 2794 SmallVector<Register, 4> SrcRegs, DstRegs; 2795 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2796 2797 for (unsigned I = 0; I < NumParts; ++I) { 2798 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2799 MachineInstr *NewInst = 2800 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2801 2802 NewInst->setFlags(MI.getFlags()); 2803 DstRegs.push_back(DstReg); 2804 } 2805 2806 if (NarrowTy.isVector()) 2807 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2808 else 2809 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2810 2811 MI.eraseFromParent(); 2812 return Legalized; 2813 } 2814 2815 LegalizerHelper::LegalizeResult 2816 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2817 LLT NarrowTy) { 2818 Register DstReg = MI.getOperand(0).getReg(); 2819 Register Src0Reg = MI.getOperand(2).getReg(); 2820 LLT DstTy = MRI.getType(DstReg); 2821 LLT SrcTy = MRI.getType(Src0Reg); 2822 2823 unsigned NumParts; 2824 LLT NarrowTy0, NarrowTy1; 2825 2826 if (TypeIdx == 0) { 2827 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2828 unsigned OldElts = DstTy.getNumElements(); 2829 2830 NarrowTy0 = NarrowTy; 2831 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2832 NarrowTy1 = NarrowTy.isVector() ? 2833 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2834 SrcTy.getElementType(); 2835 2836 } else { 2837 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2838 unsigned OldElts = SrcTy.getNumElements(); 2839 2840 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2841 NarrowTy.getNumElements(); 2842 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2843 DstTy.getScalarSizeInBits()); 2844 NarrowTy1 = NarrowTy; 2845 } 2846 2847 // FIXME: Don't know how to handle the situation where the small vectors 2848 // aren't all the same size yet. 2849 if (NarrowTy1.isVector() && 2850 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2851 return UnableToLegalize; 2852 2853 CmpInst::Predicate Pred 2854 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2855 2856 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2857 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2858 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2859 2860 for (unsigned I = 0; I < NumParts; ++I) { 2861 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2862 DstRegs.push_back(DstReg); 2863 2864 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2865 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2866 else { 2867 MachineInstr *NewCmp 2868 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2869 NewCmp->setFlags(MI.getFlags()); 2870 } 2871 } 2872 2873 if (NarrowTy1.isVector()) 2874 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2875 else 2876 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2877 2878 MI.eraseFromParent(); 2879 return Legalized; 2880 } 2881 2882 LegalizerHelper::LegalizeResult 2883 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2884 LLT NarrowTy) { 2885 Register DstReg = MI.getOperand(0).getReg(); 2886 Register CondReg = MI.getOperand(1).getReg(); 2887 2888 unsigned NumParts = 0; 2889 LLT NarrowTy0, NarrowTy1; 2890 2891 LLT DstTy = MRI.getType(DstReg); 2892 LLT CondTy = MRI.getType(CondReg); 2893 unsigned Size = DstTy.getSizeInBits(); 2894 2895 assert(TypeIdx == 0 || CondTy.isVector()); 2896 2897 if (TypeIdx == 0) { 2898 NarrowTy0 = NarrowTy; 2899 NarrowTy1 = CondTy; 2900 2901 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2902 // FIXME: Don't know how to handle the situation where the small vectors 2903 // aren't all the same size yet. 2904 if (Size % NarrowSize != 0) 2905 return UnableToLegalize; 2906 2907 NumParts = Size / NarrowSize; 2908 2909 // Need to break down the condition type 2910 if (CondTy.isVector()) { 2911 if (CondTy.getNumElements() == NumParts) 2912 NarrowTy1 = CondTy.getElementType(); 2913 else 2914 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2915 CondTy.getScalarSizeInBits()); 2916 } 2917 } else { 2918 NumParts = CondTy.getNumElements(); 2919 if (NarrowTy.isVector()) { 2920 // TODO: Handle uneven breakdown. 2921 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2922 return UnableToLegalize; 2923 2924 return UnableToLegalize; 2925 } else { 2926 NarrowTy0 = DstTy.getElementType(); 2927 NarrowTy1 = NarrowTy; 2928 } 2929 } 2930 2931 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2932 if (CondTy.isVector()) 2933 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2934 2935 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2936 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2937 2938 for (unsigned i = 0; i < NumParts; ++i) { 2939 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2940 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2941 Src1Regs[i], Src2Regs[i]); 2942 DstRegs.push_back(DstReg); 2943 } 2944 2945 if (NarrowTy0.isVector()) 2946 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2947 else 2948 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2949 2950 MI.eraseFromParent(); 2951 return Legalized; 2952 } 2953 2954 LegalizerHelper::LegalizeResult 2955 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2956 LLT NarrowTy) { 2957 const Register DstReg = MI.getOperand(0).getReg(); 2958 LLT PhiTy = MRI.getType(DstReg); 2959 LLT LeftoverTy; 2960 2961 // All of the operands need to have the same number of elements, so if we can 2962 // determine a type breakdown for the result type, we can for all of the 2963 // source types. 2964 int NumParts, NumLeftover; 2965 std::tie(NumParts, NumLeftover) 2966 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2967 if (NumParts < 0) 2968 return UnableToLegalize; 2969 2970 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2971 SmallVector<MachineInstrBuilder, 4> NewInsts; 2972 2973 const int TotalNumParts = NumParts + NumLeftover; 2974 2975 // Insert the new phis in the result block first. 2976 for (int I = 0; I != TotalNumParts; ++I) { 2977 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2978 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2979 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2980 .addDef(PartDstReg)); 2981 if (I < NumParts) 2982 DstRegs.push_back(PartDstReg); 2983 else 2984 LeftoverDstRegs.push_back(PartDstReg); 2985 } 2986 2987 MachineBasicBlock *MBB = MI.getParent(); 2988 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2989 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2990 2991 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2992 2993 // Insert code to extract the incoming values in each predecessor block. 2994 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2995 PartRegs.clear(); 2996 LeftoverRegs.clear(); 2997 2998 Register SrcReg = MI.getOperand(I).getReg(); 2999 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3000 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3001 3002 LLT Unused; 3003 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3004 LeftoverRegs)) 3005 return UnableToLegalize; 3006 3007 // Add the newly created operand splits to the existing instructions. The 3008 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3009 // pieces. 3010 for (int J = 0; J != TotalNumParts; ++J) { 3011 MachineInstrBuilder MIB = NewInsts[J]; 3012 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3013 MIB.addMBB(&OpMBB); 3014 } 3015 } 3016 3017 MI.eraseFromParent(); 3018 return Legalized; 3019 } 3020 3021 LegalizerHelper::LegalizeResult 3022 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3023 unsigned TypeIdx, 3024 LLT NarrowTy) { 3025 if (TypeIdx != 1) 3026 return UnableToLegalize; 3027 3028 const int NumDst = MI.getNumOperands() - 1; 3029 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3030 LLT SrcTy = MRI.getType(SrcReg); 3031 3032 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3033 3034 // TODO: Create sequence of extracts. 3035 if (DstTy == NarrowTy) 3036 return UnableToLegalize; 3037 3038 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3039 if (DstTy == GCDTy) { 3040 // This would just be a copy of the same unmerge. 3041 // TODO: Create extracts, pad with undef and create intermediate merges. 3042 return UnableToLegalize; 3043 } 3044 3045 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3046 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3047 const int PartsPerUnmerge = NumDst / NumUnmerge; 3048 3049 for (int I = 0; I != NumUnmerge; ++I) { 3050 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3051 3052 for (int J = 0; J != PartsPerUnmerge; ++J) 3053 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3054 MIB.addUse(Unmerge.getReg(I)); 3055 } 3056 3057 MI.eraseFromParent(); 3058 return Legalized; 3059 } 3060 3061 LegalizerHelper::LegalizeResult 3062 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 3063 unsigned TypeIdx, 3064 LLT NarrowTy) { 3065 assert(TypeIdx == 0 && "not a vector type index"); 3066 Register DstReg = MI.getOperand(0).getReg(); 3067 LLT DstTy = MRI.getType(DstReg); 3068 LLT SrcTy = DstTy.getElementType(); 3069 3070 int DstNumElts = DstTy.getNumElements(); 3071 int NarrowNumElts = NarrowTy.getNumElements(); 3072 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3073 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3074 3075 SmallVector<Register, 8> ConcatOps; 3076 SmallVector<Register, 8> SubBuildVector; 3077 3078 Register UndefReg; 3079 if (WidenedDstTy != DstTy) 3080 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3081 3082 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3083 // necessary. 3084 // 3085 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3086 // -> <2 x s16> 3087 // 3088 // %4:_(s16) = G_IMPLICIT_DEF 3089 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3090 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3091 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3092 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3093 for (int I = 0; I != NumConcat; ++I) { 3094 for (int J = 0; J != NarrowNumElts; ++J) { 3095 int SrcIdx = NarrowNumElts * I + J; 3096 3097 if (SrcIdx < DstNumElts) { 3098 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3099 SubBuildVector.push_back(SrcReg); 3100 } else 3101 SubBuildVector.push_back(UndefReg); 3102 } 3103 3104 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3105 ConcatOps.push_back(BuildVec.getReg(0)); 3106 SubBuildVector.clear(); 3107 } 3108 3109 if (DstTy == WidenedDstTy) 3110 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3111 else { 3112 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3113 MIRBuilder.buildExtract(DstReg, Concat, 0); 3114 } 3115 3116 MI.eraseFromParent(); 3117 return Legalized; 3118 } 3119 3120 LegalizerHelper::LegalizeResult 3121 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3122 LLT NarrowTy) { 3123 // FIXME: Don't know how to handle secondary types yet. 3124 if (TypeIdx != 0) 3125 return UnableToLegalize; 3126 3127 MachineMemOperand *MMO = *MI.memoperands_begin(); 3128 3129 // This implementation doesn't work for atomics. Give up instead of doing 3130 // something invalid. 3131 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3132 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3133 return UnableToLegalize; 3134 3135 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3136 Register ValReg = MI.getOperand(0).getReg(); 3137 Register AddrReg = MI.getOperand(1).getReg(); 3138 LLT ValTy = MRI.getType(ValReg); 3139 3140 // FIXME: Do we need a distinct NarrowMemory legalize action? 3141 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3142 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3143 return UnableToLegalize; 3144 } 3145 3146 int NumParts = -1; 3147 int NumLeftover = -1; 3148 LLT LeftoverTy; 3149 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3150 if (IsLoad) { 3151 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3152 } else { 3153 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3154 NarrowLeftoverRegs)) { 3155 NumParts = NarrowRegs.size(); 3156 NumLeftover = NarrowLeftoverRegs.size(); 3157 } 3158 } 3159 3160 if (NumParts == -1) 3161 return UnableToLegalize; 3162 3163 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3164 3165 unsigned TotalSize = ValTy.getSizeInBits(); 3166 3167 // Split the load/store into PartTy sized pieces starting at Offset. If this 3168 // is a load, return the new registers in ValRegs. For a store, each elements 3169 // of ValRegs should be PartTy. Returns the next offset that needs to be 3170 // handled. 3171 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3172 unsigned Offset) -> unsigned { 3173 MachineFunction &MF = MIRBuilder.getMF(); 3174 unsigned PartSize = PartTy.getSizeInBits(); 3175 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3176 Offset += PartSize, ++Idx) { 3177 unsigned ByteSize = PartSize / 8; 3178 unsigned ByteOffset = Offset / 8; 3179 Register NewAddrReg; 3180 3181 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3182 3183 MachineMemOperand *NewMMO = 3184 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3185 3186 if (IsLoad) { 3187 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3188 ValRegs.push_back(Dst); 3189 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3190 } else { 3191 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3192 } 3193 } 3194 3195 return Offset; 3196 }; 3197 3198 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3199 3200 // Handle the rest of the register if this isn't an even type breakdown. 3201 if (LeftoverTy.isValid()) 3202 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3203 3204 if (IsLoad) { 3205 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3206 LeftoverTy, NarrowLeftoverRegs); 3207 } 3208 3209 MI.eraseFromParent(); 3210 return Legalized; 3211 } 3212 3213 LegalizerHelper::LegalizeResult 3214 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3215 LLT NarrowTy) { 3216 Register DstReg = MI.getOperand(0).getReg(); 3217 Register SrcReg = MI.getOperand(1).getReg(); 3218 int64_t Imm = MI.getOperand(2).getImm(); 3219 3220 LLT DstTy = MRI.getType(DstReg); 3221 3222 SmallVector<Register, 8> Parts; 3223 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3224 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3225 3226 for (Register &R : Parts) 3227 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3228 3229 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3230 3231 MI.eraseFromParent(); 3232 return Legalized; 3233 } 3234 3235 LegalizerHelper::LegalizeResult 3236 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3237 LLT NarrowTy) { 3238 using namespace TargetOpcode; 3239 3240 MIRBuilder.setInstrAndDebugLoc(MI); 3241 switch (MI.getOpcode()) { 3242 case G_IMPLICIT_DEF: 3243 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3244 case G_TRUNC: 3245 case G_AND: 3246 case G_OR: 3247 case G_XOR: 3248 case G_ADD: 3249 case G_SUB: 3250 case G_MUL: 3251 case G_SMULH: 3252 case G_UMULH: 3253 case G_FADD: 3254 case G_FMUL: 3255 case G_FSUB: 3256 case G_FNEG: 3257 case G_FABS: 3258 case G_FCANONICALIZE: 3259 case G_FDIV: 3260 case G_FREM: 3261 case G_FMA: 3262 case G_FMAD: 3263 case G_FPOW: 3264 case G_FEXP: 3265 case G_FEXP2: 3266 case G_FLOG: 3267 case G_FLOG2: 3268 case G_FLOG10: 3269 case G_FNEARBYINT: 3270 case G_FCEIL: 3271 case G_FFLOOR: 3272 case G_FRINT: 3273 case G_INTRINSIC_ROUND: 3274 case G_INTRINSIC_TRUNC: 3275 case G_FCOS: 3276 case G_FSIN: 3277 case G_FSQRT: 3278 case G_BSWAP: 3279 case G_BITREVERSE: 3280 case G_SDIV: 3281 case G_UDIV: 3282 case G_SREM: 3283 case G_UREM: 3284 case G_SMIN: 3285 case G_SMAX: 3286 case G_UMIN: 3287 case G_UMAX: 3288 case G_FMINNUM: 3289 case G_FMAXNUM: 3290 case G_FMINNUM_IEEE: 3291 case G_FMAXNUM_IEEE: 3292 case G_FMINIMUM: 3293 case G_FMAXIMUM: 3294 case G_FSHL: 3295 case G_FSHR: 3296 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 3297 case G_SHL: 3298 case G_LSHR: 3299 case G_ASHR: 3300 case G_CTLZ: 3301 case G_CTLZ_ZERO_UNDEF: 3302 case G_CTTZ: 3303 case G_CTTZ_ZERO_UNDEF: 3304 case G_CTPOP: 3305 case G_FCOPYSIGN: 3306 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3307 case G_ZEXT: 3308 case G_SEXT: 3309 case G_ANYEXT: 3310 case G_FPEXT: 3311 case G_FPTRUNC: 3312 case G_SITOFP: 3313 case G_UITOFP: 3314 case G_FPTOSI: 3315 case G_FPTOUI: 3316 case G_INTTOPTR: 3317 case G_PTRTOINT: 3318 case G_ADDRSPACE_CAST: 3319 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3320 case G_ICMP: 3321 case G_FCMP: 3322 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3323 case G_SELECT: 3324 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3325 case G_PHI: 3326 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3327 case G_UNMERGE_VALUES: 3328 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3329 case G_BUILD_VECTOR: 3330 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3331 case G_LOAD: 3332 case G_STORE: 3333 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3334 case G_SEXT_INREG: 3335 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3336 default: 3337 return UnableToLegalize; 3338 } 3339 } 3340 3341 LegalizerHelper::LegalizeResult 3342 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3343 const LLT HalfTy, const LLT AmtTy) { 3344 3345 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3346 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3347 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3348 3349 if (Amt.isNullValue()) { 3350 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3351 MI.eraseFromParent(); 3352 return Legalized; 3353 } 3354 3355 LLT NVT = HalfTy; 3356 unsigned NVTBits = HalfTy.getSizeInBits(); 3357 unsigned VTBits = 2 * NVTBits; 3358 3359 SrcOp Lo(Register(0)), Hi(Register(0)); 3360 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3361 if (Amt.ugt(VTBits)) { 3362 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3363 } else if (Amt.ugt(NVTBits)) { 3364 Lo = MIRBuilder.buildConstant(NVT, 0); 3365 Hi = MIRBuilder.buildShl(NVT, InL, 3366 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3367 } else if (Amt == NVTBits) { 3368 Lo = MIRBuilder.buildConstant(NVT, 0); 3369 Hi = InL; 3370 } else { 3371 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3372 auto OrLHS = 3373 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3374 auto OrRHS = MIRBuilder.buildLShr( 3375 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3376 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3377 } 3378 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3379 if (Amt.ugt(VTBits)) { 3380 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3381 } else if (Amt.ugt(NVTBits)) { 3382 Lo = MIRBuilder.buildLShr(NVT, InH, 3383 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3384 Hi = MIRBuilder.buildConstant(NVT, 0); 3385 } else if (Amt == NVTBits) { 3386 Lo = InH; 3387 Hi = MIRBuilder.buildConstant(NVT, 0); 3388 } else { 3389 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3390 3391 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3392 auto OrRHS = MIRBuilder.buildShl( 3393 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3394 3395 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3396 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3397 } 3398 } else { 3399 if (Amt.ugt(VTBits)) { 3400 Hi = Lo = MIRBuilder.buildAShr( 3401 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3402 } else if (Amt.ugt(NVTBits)) { 3403 Lo = MIRBuilder.buildAShr(NVT, InH, 3404 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3405 Hi = MIRBuilder.buildAShr(NVT, InH, 3406 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3407 } else if (Amt == NVTBits) { 3408 Lo = InH; 3409 Hi = MIRBuilder.buildAShr(NVT, InH, 3410 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3411 } else { 3412 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3413 3414 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3415 auto OrRHS = MIRBuilder.buildShl( 3416 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3417 3418 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3419 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3420 } 3421 } 3422 3423 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 3424 MI.eraseFromParent(); 3425 3426 return Legalized; 3427 } 3428 3429 // TODO: Optimize if constant shift amount. 3430 LegalizerHelper::LegalizeResult 3431 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3432 LLT RequestedTy) { 3433 if (TypeIdx == 1) { 3434 Observer.changingInstr(MI); 3435 narrowScalarSrc(MI, RequestedTy, 2); 3436 Observer.changedInstr(MI); 3437 return Legalized; 3438 } 3439 3440 Register DstReg = MI.getOperand(0).getReg(); 3441 LLT DstTy = MRI.getType(DstReg); 3442 if (DstTy.isVector()) 3443 return UnableToLegalize; 3444 3445 Register Amt = MI.getOperand(2).getReg(); 3446 LLT ShiftAmtTy = MRI.getType(Amt); 3447 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3448 if (DstEltSize % 2 != 0) 3449 return UnableToLegalize; 3450 3451 // Ignore the input type. We can only go to exactly half the size of the 3452 // input. If that isn't small enough, the resulting pieces will be further 3453 // legalized. 3454 const unsigned NewBitSize = DstEltSize / 2; 3455 const LLT HalfTy = LLT::scalar(NewBitSize); 3456 const LLT CondTy = LLT::scalar(1); 3457 3458 if (const MachineInstr *KShiftAmt = 3459 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3460 return narrowScalarShiftByConstant( 3461 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3462 } 3463 3464 // TODO: Expand with known bits. 3465 3466 // Handle the fully general expansion by an unknown amount. 3467 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3468 3469 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3470 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3471 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3472 3473 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3474 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3475 3476 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3477 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3478 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3479 3480 Register ResultRegs[2]; 3481 switch (MI.getOpcode()) { 3482 case TargetOpcode::G_SHL: { 3483 // Short: ShAmt < NewBitSize 3484 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3485 3486 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3487 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3488 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3489 3490 // Long: ShAmt >= NewBitSize 3491 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3492 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3493 3494 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3495 auto Hi = MIRBuilder.buildSelect( 3496 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3497 3498 ResultRegs[0] = Lo.getReg(0); 3499 ResultRegs[1] = Hi.getReg(0); 3500 break; 3501 } 3502 case TargetOpcode::G_LSHR: 3503 case TargetOpcode::G_ASHR: { 3504 // Short: ShAmt < NewBitSize 3505 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3506 3507 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3508 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3509 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3510 3511 // Long: ShAmt >= NewBitSize 3512 MachineInstrBuilder HiL; 3513 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3514 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3515 } else { 3516 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3517 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3518 } 3519 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3520 {InH, AmtExcess}); // Lo from Hi part. 3521 3522 auto Lo = MIRBuilder.buildSelect( 3523 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3524 3525 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3526 3527 ResultRegs[0] = Lo.getReg(0); 3528 ResultRegs[1] = Hi.getReg(0); 3529 break; 3530 } 3531 default: 3532 llvm_unreachable("not a shift"); 3533 } 3534 3535 MIRBuilder.buildMerge(DstReg, ResultRegs); 3536 MI.eraseFromParent(); 3537 return Legalized; 3538 } 3539 3540 LegalizerHelper::LegalizeResult 3541 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3542 LLT MoreTy) { 3543 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3544 3545 Observer.changingInstr(MI); 3546 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3547 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3548 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3549 moreElementsVectorSrc(MI, MoreTy, I); 3550 } 3551 3552 MachineBasicBlock &MBB = *MI.getParent(); 3553 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3554 moreElementsVectorDst(MI, MoreTy, 0); 3555 Observer.changedInstr(MI); 3556 return Legalized; 3557 } 3558 3559 LegalizerHelper::LegalizeResult 3560 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3561 LLT MoreTy) { 3562 MIRBuilder.setInstr(MI); 3563 unsigned Opc = MI.getOpcode(); 3564 switch (Opc) { 3565 case TargetOpcode::G_IMPLICIT_DEF: 3566 case TargetOpcode::G_LOAD: { 3567 if (TypeIdx != 0) 3568 return UnableToLegalize; 3569 Observer.changingInstr(MI); 3570 moreElementsVectorDst(MI, MoreTy, 0); 3571 Observer.changedInstr(MI); 3572 return Legalized; 3573 } 3574 case TargetOpcode::G_STORE: 3575 if (TypeIdx != 0) 3576 return UnableToLegalize; 3577 Observer.changingInstr(MI); 3578 moreElementsVectorSrc(MI, MoreTy, 0); 3579 Observer.changedInstr(MI); 3580 return Legalized; 3581 case TargetOpcode::G_AND: 3582 case TargetOpcode::G_OR: 3583 case TargetOpcode::G_XOR: 3584 case TargetOpcode::G_SMIN: 3585 case TargetOpcode::G_SMAX: 3586 case TargetOpcode::G_UMIN: 3587 case TargetOpcode::G_UMAX: 3588 case TargetOpcode::G_FMINNUM: 3589 case TargetOpcode::G_FMAXNUM: 3590 case TargetOpcode::G_FMINNUM_IEEE: 3591 case TargetOpcode::G_FMAXNUM_IEEE: 3592 case TargetOpcode::G_FMINIMUM: 3593 case TargetOpcode::G_FMAXIMUM: { 3594 Observer.changingInstr(MI); 3595 moreElementsVectorSrc(MI, MoreTy, 1); 3596 moreElementsVectorSrc(MI, MoreTy, 2); 3597 moreElementsVectorDst(MI, MoreTy, 0); 3598 Observer.changedInstr(MI); 3599 return Legalized; 3600 } 3601 case TargetOpcode::G_EXTRACT: 3602 if (TypeIdx != 1) 3603 return UnableToLegalize; 3604 Observer.changingInstr(MI); 3605 moreElementsVectorSrc(MI, MoreTy, 1); 3606 Observer.changedInstr(MI); 3607 return Legalized; 3608 case TargetOpcode::G_INSERT: 3609 if (TypeIdx != 0) 3610 return UnableToLegalize; 3611 Observer.changingInstr(MI); 3612 moreElementsVectorSrc(MI, MoreTy, 1); 3613 moreElementsVectorDst(MI, MoreTy, 0); 3614 Observer.changedInstr(MI); 3615 return Legalized; 3616 case TargetOpcode::G_SELECT: 3617 if (TypeIdx != 0) 3618 return UnableToLegalize; 3619 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3620 return UnableToLegalize; 3621 3622 Observer.changingInstr(MI); 3623 moreElementsVectorSrc(MI, MoreTy, 2); 3624 moreElementsVectorSrc(MI, MoreTy, 3); 3625 moreElementsVectorDst(MI, MoreTy, 0); 3626 Observer.changedInstr(MI); 3627 return Legalized; 3628 case TargetOpcode::G_UNMERGE_VALUES: { 3629 if (TypeIdx != 1) 3630 return UnableToLegalize; 3631 3632 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3633 int NumDst = MI.getNumOperands() - 1; 3634 moreElementsVectorSrc(MI, MoreTy, NumDst); 3635 3636 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3637 for (int I = 0; I != NumDst; ++I) 3638 MIB.addDef(MI.getOperand(I).getReg()); 3639 3640 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3641 for (int I = NumDst; I != NewNumDst; ++I) 3642 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3643 3644 MIB.addUse(MI.getOperand(NumDst).getReg()); 3645 MI.eraseFromParent(); 3646 return Legalized; 3647 } 3648 case TargetOpcode::G_PHI: 3649 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3650 default: 3651 return UnableToLegalize; 3652 } 3653 } 3654 3655 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3656 ArrayRef<Register> Src1Regs, 3657 ArrayRef<Register> Src2Regs, 3658 LLT NarrowTy) { 3659 MachineIRBuilder &B = MIRBuilder; 3660 unsigned SrcParts = Src1Regs.size(); 3661 unsigned DstParts = DstRegs.size(); 3662 3663 unsigned DstIdx = 0; // Low bits of the result. 3664 Register FactorSum = 3665 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3666 DstRegs[DstIdx] = FactorSum; 3667 3668 unsigned CarrySumPrevDstIdx; 3669 SmallVector<Register, 4> Factors; 3670 3671 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3672 // Collect low parts of muls for DstIdx. 3673 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3674 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3675 MachineInstrBuilder Mul = 3676 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3677 Factors.push_back(Mul.getReg(0)); 3678 } 3679 // Collect high parts of muls from previous DstIdx. 3680 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3681 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3682 MachineInstrBuilder Umulh = 3683 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3684 Factors.push_back(Umulh.getReg(0)); 3685 } 3686 // Add CarrySum from additions calculated for previous DstIdx. 3687 if (DstIdx != 1) { 3688 Factors.push_back(CarrySumPrevDstIdx); 3689 } 3690 3691 Register CarrySum; 3692 // Add all factors and accumulate all carries into CarrySum. 3693 if (DstIdx != DstParts - 1) { 3694 MachineInstrBuilder Uaddo = 3695 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3696 FactorSum = Uaddo.getReg(0); 3697 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3698 for (unsigned i = 2; i < Factors.size(); ++i) { 3699 MachineInstrBuilder Uaddo = 3700 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3701 FactorSum = Uaddo.getReg(0); 3702 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3703 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3704 } 3705 } else { 3706 // Since value for the next index is not calculated, neither is CarrySum. 3707 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3708 for (unsigned i = 2; i < Factors.size(); ++i) 3709 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3710 } 3711 3712 CarrySumPrevDstIdx = CarrySum; 3713 DstRegs[DstIdx] = FactorSum; 3714 Factors.clear(); 3715 } 3716 } 3717 3718 LegalizerHelper::LegalizeResult 3719 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3720 Register DstReg = MI.getOperand(0).getReg(); 3721 Register Src1 = MI.getOperand(1).getReg(); 3722 Register Src2 = MI.getOperand(2).getReg(); 3723 3724 LLT Ty = MRI.getType(DstReg); 3725 if (Ty.isVector()) 3726 return UnableToLegalize; 3727 3728 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3729 unsigned DstSize = Ty.getSizeInBits(); 3730 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3731 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3732 return UnableToLegalize; 3733 3734 unsigned NumDstParts = DstSize / NarrowSize; 3735 unsigned NumSrcParts = SrcSize / NarrowSize; 3736 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3737 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3738 3739 SmallVector<Register, 2> Src1Parts, Src2Parts; 3740 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 3741 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3742 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3743 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3744 3745 // Take only high half of registers if this is high mul. 3746 ArrayRef<Register> DstRegs( 3747 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3748 MIRBuilder.buildMerge(DstReg, DstRegs); 3749 MI.eraseFromParent(); 3750 return Legalized; 3751 } 3752 3753 LegalizerHelper::LegalizeResult 3754 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3755 LLT NarrowTy) { 3756 if (TypeIdx != 1) 3757 return UnableToLegalize; 3758 3759 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3760 3761 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3762 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3763 // NarrowSize. 3764 if (SizeOp1 % NarrowSize != 0) 3765 return UnableToLegalize; 3766 int NumParts = SizeOp1 / NarrowSize; 3767 3768 SmallVector<Register, 2> SrcRegs, DstRegs; 3769 SmallVector<uint64_t, 2> Indexes; 3770 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3771 3772 Register OpReg = MI.getOperand(0).getReg(); 3773 uint64_t OpStart = MI.getOperand(2).getImm(); 3774 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3775 for (int i = 0; i < NumParts; ++i) { 3776 unsigned SrcStart = i * NarrowSize; 3777 3778 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3779 // No part of the extract uses this subregister, ignore it. 3780 continue; 3781 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3782 // The entire subregister is extracted, forward the value. 3783 DstRegs.push_back(SrcRegs[i]); 3784 continue; 3785 } 3786 3787 // OpSegStart is where this destination segment would start in OpReg if it 3788 // extended infinitely in both directions. 3789 int64_t ExtractOffset; 3790 uint64_t SegSize; 3791 if (OpStart < SrcStart) { 3792 ExtractOffset = 0; 3793 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3794 } else { 3795 ExtractOffset = OpStart - SrcStart; 3796 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3797 } 3798 3799 Register SegReg = SrcRegs[i]; 3800 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3801 // A genuine extract is needed. 3802 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3803 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3804 } 3805 3806 DstRegs.push_back(SegReg); 3807 } 3808 3809 Register DstReg = MI.getOperand(0).getReg(); 3810 if (MRI.getType(DstReg).isVector()) 3811 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3812 else if (DstRegs.size() > 1) 3813 MIRBuilder.buildMerge(DstReg, DstRegs); 3814 else 3815 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 3816 MI.eraseFromParent(); 3817 return Legalized; 3818 } 3819 3820 LegalizerHelper::LegalizeResult 3821 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3822 LLT NarrowTy) { 3823 // FIXME: Don't know how to handle secondary types yet. 3824 if (TypeIdx != 0) 3825 return UnableToLegalize; 3826 3827 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3828 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3829 3830 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3831 // NarrowSize. 3832 if (SizeOp0 % NarrowSize != 0) 3833 return UnableToLegalize; 3834 3835 int NumParts = SizeOp0 / NarrowSize; 3836 3837 SmallVector<Register, 2> SrcRegs, DstRegs; 3838 SmallVector<uint64_t, 2> Indexes; 3839 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3840 3841 Register OpReg = MI.getOperand(2).getReg(); 3842 uint64_t OpStart = MI.getOperand(3).getImm(); 3843 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3844 for (int i = 0; i < NumParts; ++i) { 3845 unsigned DstStart = i * NarrowSize; 3846 3847 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3848 // No part of the insert affects this subregister, forward the original. 3849 DstRegs.push_back(SrcRegs[i]); 3850 continue; 3851 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3852 // The entire subregister is defined by this insert, forward the new 3853 // value. 3854 DstRegs.push_back(OpReg); 3855 continue; 3856 } 3857 3858 // OpSegStart is where this destination segment would start in OpReg if it 3859 // extended infinitely in both directions. 3860 int64_t ExtractOffset, InsertOffset; 3861 uint64_t SegSize; 3862 if (OpStart < DstStart) { 3863 InsertOffset = 0; 3864 ExtractOffset = DstStart - OpStart; 3865 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3866 } else { 3867 InsertOffset = OpStart - DstStart; 3868 ExtractOffset = 0; 3869 SegSize = 3870 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3871 } 3872 3873 Register SegReg = OpReg; 3874 if (ExtractOffset != 0 || SegSize != OpSize) { 3875 // A genuine extract is needed. 3876 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3877 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3878 } 3879 3880 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3881 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3882 DstRegs.push_back(DstReg); 3883 } 3884 3885 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3886 Register DstReg = MI.getOperand(0).getReg(); 3887 if(MRI.getType(DstReg).isVector()) 3888 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3889 else 3890 MIRBuilder.buildMerge(DstReg, DstRegs); 3891 MI.eraseFromParent(); 3892 return Legalized; 3893 } 3894 3895 LegalizerHelper::LegalizeResult 3896 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3897 LLT NarrowTy) { 3898 Register DstReg = MI.getOperand(0).getReg(); 3899 LLT DstTy = MRI.getType(DstReg); 3900 3901 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3902 3903 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3904 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3905 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3906 LLT LeftoverTy; 3907 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3908 Src0Regs, Src0LeftoverRegs)) 3909 return UnableToLegalize; 3910 3911 LLT Unused; 3912 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3913 Src1Regs, Src1LeftoverRegs)) 3914 llvm_unreachable("inconsistent extractParts result"); 3915 3916 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3917 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3918 {Src0Regs[I], Src1Regs[I]}); 3919 DstRegs.push_back(Inst.getReg(0)); 3920 } 3921 3922 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3923 auto Inst = MIRBuilder.buildInstr( 3924 MI.getOpcode(), 3925 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 3926 DstLeftoverRegs.push_back(Inst.getReg(0)); 3927 } 3928 3929 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3930 LeftoverTy, DstLeftoverRegs); 3931 3932 MI.eraseFromParent(); 3933 return Legalized; 3934 } 3935 3936 LegalizerHelper::LegalizeResult 3937 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 3938 LLT NarrowTy) { 3939 if (TypeIdx != 0) 3940 return UnableToLegalize; 3941 3942 Register DstReg = MI.getOperand(0).getReg(); 3943 Register SrcReg = MI.getOperand(1).getReg(); 3944 3945 LLT DstTy = MRI.getType(DstReg); 3946 if (DstTy.isVector()) 3947 return UnableToLegalize; 3948 3949 SmallVector<Register, 8> Parts; 3950 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3951 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 3952 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3953 3954 MI.eraseFromParent(); 3955 return Legalized; 3956 } 3957 3958 LegalizerHelper::LegalizeResult 3959 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 3960 LLT NarrowTy) { 3961 if (TypeIdx != 0) 3962 return UnableToLegalize; 3963 3964 Register CondReg = MI.getOperand(1).getReg(); 3965 LLT CondTy = MRI.getType(CondReg); 3966 if (CondTy.isVector()) // TODO: Handle vselect 3967 return UnableToLegalize; 3968 3969 Register DstReg = MI.getOperand(0).getReg(); 3970 LLT DstTy = MRI.getType(DstReg); 3971 3972 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3973 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3974 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 3975 LLT LeftoverTy; 3976 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 3977 Src1Regs, Src1LeftoverRegs)) 3978 return UnableToLegalize; 3979 3980 LLT Unused; 3981 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 3982 Src2Regs, Src2LeftoverRegs)) 3983 llvm_unreachable("inconsistent extractParts result"); 3984 3985 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3986 auto Select = MIRBuilder.buildSelect(NarrowTy, 3987 CondReg, Src1Regs[I], Src2Regs[I]); 3988 DstRegs.push_back(Select.getReg(0)); 3989 } 3990 3991 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3992 auto Select = MIRBuilder.buildSelect( 3993 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 3994 DstLeftoverRegs.push_back(Select.getReg(0)); 3995 } 3996 3997 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3998 LeftoverTy, DstLeftoverRegs); 3999 4000 MI.eraseFromParent(); 4001 return Legalized; 4002 } 4003 4004 LegalizerHelper::LegalizeResult 4005 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4006 LLT NarrowTy) { 4007 if (TypeIdx != 1) 4008 return UnableToLegalize; 4009 4010 Register DstReg = MI.getOperand(0).getReg(); 4011 Register SrcReg = MI.getOperand(1).getReg(); 4012 LLT DstTy = MRI.getType(DstReg); 4013 LLT SrcTy = MRI.getType(SrcReg); 4014 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4015 4016 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4017 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4018 4019 MachineIRBuilder &B = MIRBuilder; 4020 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4021 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4022 auto C_0 = B.buildConstant(NarrowTy, 0); 4023 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4024 UnmergeSrc.getReg(1), C_0); 4025 auto LoCTLZ = IsUndef ? 4026 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4027 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4028 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4029 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4030 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4031 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4032 4033 MI.eraseFromParent(); 4034 return Legalized; 4035 } 4036 4037 return UnableToLegalize; 4038 } 4039 4040 LegalizerHelper::LegalizeResult 4041 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4042 LLT NarrowTy) { 4043 if (TypeIdx != 1) 4044 return UnableToLegalize; 4045 4046 Register DstReg = MI.getOperand(0).getReg(); 4047 Register SrcReg = MI.getOperand(1).getReg(); 4048 LLT DstTy = MRI.getType(DstReg); 4049 LLT SrcTy = MRI.getType(SrcReg); 4050 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4051 4052 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4053 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4054 4055 MachineIRBuilder &B = MIRBuilder; 4056 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4057 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4058 auto C_0 = B.buildConstant(NarrowTy, 0); 4059 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4060 UnmergeSrc.getReg(0), C_0); 4061 auto HiCTTZ = IsUndef ? 4062 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4063 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4064 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4065 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4066 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4067 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4068 4069 MI.eraseFromParent(); 4070 return Legalized; 4071 } 4072 4073 return UnableToLegalize; 4074 } 4075 4076 LegalizerHelper::LegalizeResult 4077 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4078 LLT NarrowTy) { 4079 if (TypeIdx != 1) 4080 return UnableToLegalize; 4081 4082 Register DstReg = MI.getOperand(0).getReg(); 4083 LLT DstTy = MRI.getType(DstReg); 4084 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4085 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4086 4087 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4088 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4089 4090 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4091 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4092 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4093 4094 MI.eraseFromParent(); 4095 return Legalized; 4096 } 4097 4098 return UnableToLegalize; 4099 } 4100 4101 LegalizerHelper::LegalizeResult 4102 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4103 unsigned Opc = MI.getOpcode(); 4104 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 4105 auto isSupported = [this](const LegalityQuery &Q) { 4106 auto QAction = LI.getAction(Q).Action; 4107 return QAction == Legal || QAction == Libcall || QAction == Custom; 4108 }; 4109 switch (Opc) { 4110 default: 4111 return UnableToLegalize; 4112 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4113 // This trivially expands to CTLZ. 4114 Observer.changingInstr(MI); 4115 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4116 Observer.changedInstr(MI); 4117 return Legalized; 4118 } 4119 case TargetOpcode::G_CTLZ: { 4120 Register DstReg = MI.getOperand(0).getReg(); 4121 Register SrcReg = MI.getOperand(1).getReg(); 4122 LLT DstTy = MRI.getType(DstReg); 4123 LLT SrcTy = MRI.getType(SrcReg); 4124 unsigned Len = SrcTy.getSizeInBits(); 4125 4126 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4127 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4128 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4129 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4130 auto ICmp = MIRBuilder.buildICmp( 4131 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4132 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4133 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4134 MI.eraseFromParent(); 4135 return Legalized; 4136 } 4137 // for now, we do this: 4138 // NewLen = NextPowerOf2(Len); 4139 // x = x | (x >> 1); 4140 // x = x | (x >> 2); 4141 // ... 4142 // x = x | (x >>16); 4143 // x = x | (x >>32); // for 64-bit input 4144 // Upto NewLen/2 4145 // return Len - popcount(x); 4146 // 4147 // Ref: "Hacker's Delight" by Henry Warren 4148 Register Op = SrcReg; 4149 unsigned NewLen = PowerOf2Ceil(Len); 4150 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4151 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4152 auto MIBOp = MIRBuilder.buildOr( 4153 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4154 Op = MIBOp.getReg(0); 4155 } 4156 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4157 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4158 MIBPop); 4159 MI.eraseFromParent(); 4160 return Legalized; 4161 } 4162 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4163 // This trivially expands to CTTZ. 4164 Observer.changingInstr(MI); 4165 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4166 Observer.changedInstr(MI); 4167 return Legalized; 4168 } 4169 case TargetOpcode::G_CTTZ: { 4170 Register DstReg = MI.getOperand(0).getReg(); 4171 Register SrcReg = MI.getOperand(1).getReg(); 4172 LLT DstTy = MRI.getType(DstReg); 4173 LLT SrcTy = MRI.getType(SrcReg); 4174 4175 unsigned Len = SrcTy.getSizeInBits(); 4176 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4177 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4178 // zero. 4179 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4180 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4181 auto ICmp = MIRBuilder.buildICmp( 4182 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4183 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4184 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4185 MI.eraseFromParent(); 4186 return Legalized; 4187 } 4188 // for now, we use: { return popcount(~x & (x - 1)); } 4189 // unless the target has ctlz but not ctpop, in which case we use: 4190 // { return 32 - nlz(~x & (x-1)); } 4191 // Ref: "Hacker's Delight" by Henry Warren 4192 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4193 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4194 auto MIBTmp = MIRBuilder.buildAnd( 4195 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4196 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4197 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4198 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4199 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4200 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4201 MI.eraseFromParent(); 4202 return Legalized; 4203 } 4204 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4205 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4206 return Legalized; 4207 } 4208 case TargetOpcode::G_CTPOP: { 4209 unsigned Size = Ty.getSizeInBits(); 4210 MachineIRBuilder &B = MIRBuilder; 4211 4212 // Count set bits in blocks of 2 bits. Default approach would be 4213 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4214 // We use following formula instead: 4215 // B2Count = val - { (val >> 1) & 0x55555555 } 4216 // since it gives same result in blocks of 2 with one instruction less. 4217 auto C_1 = B.buildConstant(Ty, 1); 4218 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4219 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4220 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4221 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4222 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4223 4224 // In order to get count in blocks of 4 add values from adjacent block of 2. 4225 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4226 auto C_2 = B.buildConstant(Ty, 2); 4227 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4228 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4229 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4230 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4231 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4232 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4233 4234 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4235 // addition since count value sits in range {0,...,8} and 4 bits are enough 4236 // to hold such binary values. After addition high 4 bits still hold count 4237 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4238 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4239 auto C_4 = B.buildConstant(Ty, 4); 4240 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4241 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4242 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4243 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4244 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4245 4246 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4247 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4248 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4249 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4250 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4251 4252 // Shift count result from 8 high bits to low bits. 4253 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4254 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4255 4256 MI.eraseFromParent(); 4257 return Legalized; 4258 } 4259 } 4260 } 4261 4262 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4263 // representation. 4264 LegalizerHelper::LegalizeResult 4265 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4266 Register Dst = MI.getOperand(0).getReg(); 4267 Register Src = MI.getOperand(1).getReg(); 4268 const LLT S64 = LLT::scalar(64); 4269 const LLT S32 = LLT::scalar(32); 4270 const LLT S1 = LLT::scalar(1); 4271 4272 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4273 4274 // unsigned cul2f(ulong u) { 4275 // uint lz = clz(u); 4276 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4277 // u = (u << lz) & 0x7fffffffffffffffUL; 4278 // ulong t = u & 0xffffffffffUL; 4279 // uint v = (e << 23) | (uint)(u >> 40); 4280 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4281 // return as_float(v + r); 4282 // } 4283 4284 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4285 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4286 4287 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4288 4289 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4290 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4291 4292 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4293 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4294 4295 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4296 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4297 4298 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4299 4300 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4301 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4302 4303 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4304 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4305 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4306 4307 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4308 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4309 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4310 auto One = MIRBuilder.buildConstant(S32, 1); 4311 4312 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4313 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4314 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4315 MIRBuilder.buildAdd(Dst, V, R); 4316 4317 return Legalized; 4318 } 4319 4320 LegalizerHelper::LegalizeResult 4321 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4322 Register Dst = MI.getOperand(0).getReg(); 4323 Register Src = MI.getOperand(1).getReg(); 4324 LLT DstTy = MRI.getType(Dst); 4325 LLT SrcTy = MRI.getType(Src); 4326 4327 if (SrcTy == LLT::scalar(1)) { 4328 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4329 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4330 MIRBuilder.buildSelect(Dst, Src, True, False); 4331 MI.eraseFromParent(); 4332 return Legalized; 4333 } 4334 4335 if (SrcTy != LLT::scalar(64)) 4336 return UnableToLegalize; 4337 4338 if (DstTy == LLT::scalar(32)) { 4339 // TODO: SelectionDAG has several alternative expansions to port which may 4340 // be more reasonble depending on the available instructions. If a target 4341 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4342 // intermediate type, this is probably worse. 4343 return lowerU64ToF32BitOps(MI); 4344 } 4345 4346 return UnableToLegalize; 4347 } 4348 4349 LegalizerHelper::LegalizeResult 4350 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4351 Register Dst = MI.getOperand(0).getReg(); 4352 Register Src = MI.getOperand(1).getReg(); 4353 LLT DstTy = MRI.getType(Dst); 4354 LLT SrcTy = MRI.getType(Src); 4355 4356 const LLT S64 = LLT::scalar(64); 4357 const LLT S32 = LLT::scalar(32); 4358 const LLT S1 = LLT::scalar(1); 4359 4360 if (SrcTy == S1) { 4361 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4362 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4363 MIRBuilder.buildSelect(Dst, Src, True, False); 4364 MI.eraseFromParent(); 4365 return Legalized; 4366 } 4367 4368 if (SrcTy != S64) 4369 return UnableToLegalize; 4370 4371 if (DstTy == S32) { 4372 // signed cl2f(long l) { 4373 // long s = l >> 63; 4374 // float r = cul2f((l + s) ^ s); 4375 // return s ? -r : r; 4376 // } 4377 Register L = Src; 4378 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4379 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4380 4381 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4382 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4383 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4384 4385 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4386 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4387 MIRBuilder.buildConstant(S64, 0)); 4388 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4389 return Legalized; 4390 } 4391 4392 return UnableToLegalize; 4393 } 4394 4395 LegalizerHelper::LegalizeResult 4396 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4397 Register Dst = MI.getOperand(0).getReg(); 4398 Register Src = MI.getOperand(1).getReg(); 4399 LLT DstTy = MRI.getType(Dst); 4400 LLT SrcTy = MRI.getType(Src); 4401 const LLT S64 = LLT::scalar(64); 4402 const LLT S32 = LLT::scalar(32); 4403 4404 if (SrcTy != S64 && SrcTy != S32) 4405 return UnableToLegalize; 4406 if (DstTy != S32 && DstTy != S64) 4407 return UnableToLegalize; 4408 4409 // FPTOSI gives same result as FPTOUI for positive signed integers. 4410 // FPTOUI needs to deal with fp values that convert to unsigned integers 4411 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4412 4413 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4414 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4415 : APFloat::IEEEdouble(), 4416 APInt::getNullValue(SrcTy.getSizeInBits())); 4417 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4418 4419 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4420 4421 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4422 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4423 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4424 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4425 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4426 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4427 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4428 4429 const LLT S1 = LLT::scalar(1); 4430 4431 MachineInstrBuilder FCMP = 4432 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4433 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4434 4435 MI.eraseFromParent(); 4436 return Legalized; 4437 } 4438 4439 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4440 Register Dst = MI.getOperand(0).getReg(); 4441 Register Src = MI.getOperand(1).getReg(); 4442 LLT DstTy = MRI.getType(Dst); 4443 LLT SrcTy = MRI.getType(Src); 4444 const LLT S64 = LLT::scalar(64); 4445 const LLT S32 = LLT::scalar(32); 4446 4447 // FIXME: Only f32 to i64 conversions are supported. 4448 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4449 return UnableToLegalize; 4450 4451 // Expand f32 -> i64 conversion 4452 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4453 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4454 4455 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 4456 4457 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 4458 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 4459 4460 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 4461 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 4462 4463 auto SignMask = MIRBuilder.buildConstant(SrcTy, 4464 APInt::getSignMask(SrcEltBits)); 4465 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 4466 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 4467 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 4468 Sign = MIRBuilder.buildSExt(DstTy, Sign); 4469 4470 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 4471 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 4472 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 4473 4474 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 4475 R = MIRBuilder.buildZExt(DstTy, R); 4476 4477 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 4478 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 4479 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 4480 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 4481 4482 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 4483 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 4484 4485 const LLT S1 = LLT::scalar(1); 4486 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 4487 S1, Exponent, ExponentLoBit); 4488 4489 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 4490 4491 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 4492 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 4493 4494 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 4495 4496 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 4497 S1, Exponent, ZeroSrcTy); 4498 4499 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 4500 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 4501 4502 MI.eraseFromParent(); 4503 return Legalized; 4504 } 4505 4506 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 4507 LegalizerHelper::LegalizeResult 4508 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 4509 Register Dst = MI.getOperand(0).getReg(); 4510 Register Src = MI.getOperand(1).getReg(); 4511 4512 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 4513 return UnableToLegalize; 4514 4515 const unsigned ExpMask = 0x7ff; 4516 const unsigned ExpBiasf64 = 1023; 4517 const unsigned ExpBiasf16 = 15; 4518 const LLT S32 = LLT::scalar(32); 4519 const LLT S1 = LLT::scalar(1); 4520 4521 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 4522 Register U = Unmerge.getReg(0); 4523 Register UH = Unmerge.getReg(1); 4524 4525 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 4526 4527 // Subtract the fp64 exponent bias (1023) to get the real exponent and 4528 // add the f16 bias (15) to get the biased exponent for the f16 format. 4529 E = MIRBuilder.buildAdd( 4530 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 4531 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 4532 4533 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 4534 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 4535 4536 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 4537 MIRBuilder.buildConstant(S32, 0x1ff)); 4538 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 4539 4540 auto Zero = MIRBuilder.buildConstant(S32, 0); 4541 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 4542 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 4543 M = MIRBuilder.buildOr(S32, M, Lo40Set); 4544 4545 // (M != 0 ? 0x0200 : 0) | 0x7c00; 4546 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 4547 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 4548 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 4549 4550 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 4551 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 4552 4553 // N = M | (E << 12); 4554 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 4555 auto N = MIRBuilder.buildOr(S32, M, EShl12); 4556 4557 // B = clamp(1-E, 0, 13); 4558 auto One = MIRBuilder.buildConstant(S32, 1); 4559 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 4560 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 4561 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 4562 4563 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 4564 MIRBuilder.buildConstant(S32, 0x1000)); 4565 4566 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 4567 auto D0 = MIRBuilder.buildShl(S32, D, B); 4568 4569 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 4570 D0, SigSetHigh); 4571 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 4572 D = MIRBuilder.buildOr(S32, D, D1); 4573 4574 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 4575 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 4576 4577 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 4578 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 4579 4580 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 4581 MIRBuilder.buildConstant(S32, 3)); 4582 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 4583 4584 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 4585 MIRBuilder.buildConstant(S32, 5)); 4586 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 4587 4588 V1 = MIRBuilder.buildOr(S32, V0, V1); 4589 V = MIRBuilder.buildAdd(S32, V, V1); 4590 4591 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 4592 E, MIRBuilder.buildConstant(S32, 30)); 4593 V = MIRBuilder.buildSelect(S32, CmpEGt30, 4594 MIRBuilder.buildConstant(S32, 0x7c00), V); 4595 4596 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 4597 E, MIRBuilder.buildConstant(S32, 1039)); 4598 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 4599 4600 // Extract the sign bit. 4601 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 4602 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 4603 4604 // Insert the sign bit 4605 V = MIRBuilder.buildOr(S32, Sign, V); 4606 4607 MIRBuilder.buildTrunc(Dst, V); 4608 MI.eraseFromParent(); 4609 return Legalized; 4610 } 4611 4612 LegalizerHelper::LegalizeResult 4613 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4614 Register Dst = MI.getOperand(0).getReg(); 4615 Register Src = MI.getOperand(1).getReg(); 4616 4617 LLT DstTy = MRI.getType(Dst); 4618 LLT SrcTy = MRI.getType(Src); 4619 const LLT S64 = LLT::scalar(64); 4620 const LLT S16 = LLT::scalar(16); 4621 4622 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 4623 return lowerFPTRUNC_F64_TO_F16(MI); 4624 4625 return UnableToLegalize; 4626 } 4627 4628 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4629 switch (Opc) { 4630 case TargetOpcode::G_SMIN: 4631 return CmpInst::ICMP_SLT; 4632 case TargetOpcode::G_SMAX: 4633 return CmpInst::ICMP_SGT; 4634 case TargetOpcode::G_UMIN: 4635 return CmpInst::ICMP_ULT; 4636 case TargetOpcode::G_UMAX: 4637 return CmpInst::ICMP_UGT; 4638 default: 4639 llvm_unreachable("not in integer min/max"); 4640 } 4641 } 4642 4643 LegalizerHelper::LegalizeResult 4644 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4645 Register Dst = MI.getOperand(0).getReg(); 4646 Register Src0 = MI.getOperand(1).getReg(); 4647 Register Src1 = MI.getOperand(2).getReg(); 4648 4649 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4650 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4651 4652 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4653 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4654 4655 MI.eraseFromParent(); 4656 return Legalized; 4657 } 4658 4659 LegalizerHelper::LegalizeResult 4660 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4661 Register Dst = MI.getOperand(0).getReg(); 4662 Register Src0 = MI.getOperand(1).getReg(); 4663 Register Src1 = MI.getOperand(2).getReg(); 4664 4665 const LLT Src0Ty = MRI.getType(Src0); 4666 const LLT Src1Ty = MRI.getType(Src1); 4667 4668 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4669 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4670 4671 auto SignBitMask = MIRBuilder.buildConstant( 4672 Src0Ty, APInt::getSignMask(Src0Size)); 4673 4674 auto NotSignBitMask = MIRBuilder.buildConstant( 4675 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4676 4677 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4678 MachineInstr *Or; 4679 4680 if (Src0Ty == Src1Ty) { 4681 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); 4682 Or = MIRBuilder.buildOr(Dst, And0, And1); 4683 } else if (Src0Size > Src1Size) { 4684 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4685 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4686 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4687 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4688 Or = MIRBuilder.buildOr(Dst, And0, And1); 4689 } else { 4690 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4691 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4692 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4693 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4694 Or = MIRBuilder.buildOr(Dst, And0, And1); 4695 } 4696 4697 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4698 // constants are a nan and -0.0, but the final result should preserve 4699 // everything. 4700 if (unsigned Flags = MI.getFlags()) 4701 Or->setFlags(Flags); 4702 4703 MI.eraseFromParent(); 4704 return Legalized; 4705 } 4706 4707 LegalizerHelper::LegalizeResult 4708 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4709 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4710 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4711 4712 Register Dst = MI.getOperand(0).getReg(); 4713 Register Src0 = MI.getOperand(1).getReg(); 4714 Register Src1 = MI.getOperand(2).getReg(); 4715 LLT Ty = MRI.getType(Dst); 4716 4717 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4718 // Insert canonicalizes if it's possible we need to quiet to get correct 4719 // sNaN behavior. 4720 4721 // Note this must be done here, and not as an optimization combine in the 4722 // absence of a dedicate quiet-snan instruction as we're using an 4723 // omni-purpose G_FCANONICALIZE. 4724 if (!isKnownNeverSNaN(Src0, MRI)) 4725 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4726 4727 if (!isKnownNeverSNaN(Src1, MRI)) 4728 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4729 } 4730 4731 // If there are no nans, it's safe to simply replace this with the non-IEEE 4732 // version. 4733 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4734 MI.eraseFromParent(); 4735 return Legalized; 4736 } 4737 4738 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4739 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4740 Register DstReg = MI.getOperand(0).getReg(); 4741 LLT Ty = MRI.getType(DstReg); 4742 unsigned Flags = MI.getFlags(); 4743 4744 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4745 Flags); 4746 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4747 MI.eraseFromParent(); 4748 return Legalized; 4749 } 4750 4751 LegalizerHelper::LegalizeResult 4752 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4753 Register DstReg = MI.getOperand(0).getReg(); 4754 Register X = MI.getOperand(1).getReg(); 4755 const unsigned Flags = MI.getFlags(); 4756 const LLT Ty = MRI.getType(DstReg); 4757 const LLT CondTy = Ty.changeElementSize(1); 4758 4759 // round(x) => 4760 // t = trunc(x); 4761 // d = fabs(x - t); 4762 // o = copysign(1.0f, x); 4763 // return t + (d >= 0.5 ? o : 0.0); 4764 4765 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 4766 4767 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 4768 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 4769 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4770 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 4771 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 4772 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 4773 4774 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 4775 Flags); 4776 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 4777 4778 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 4779 4780 MI.eraseFromParent(); 4781 return Legalized; 4782 } 4783 4784 LegalizerHelper::LegalizeResult 4785 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 4786 Register DstReg = MI.getOperand(0).getReg(); 4787 Register SrcReg = MI.getOperand(1).getReg(); 4788 unsigned Flags = MI.getFlags(); 4789 LLT Ty = MRI.getType(DstReg); 4790 const LLT CondTy = Ty.changeElementSize(1); 4791 4792 // result = trunc(src); 4793 // if (src < 0.0 && src != result) 4794 // result += -1.0. 4795 4796 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 4797 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4798 4799 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 4800 SrcReg, Zero, Flags); 4801 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 4802 SrcReg, Trunc, Flags); 4803 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 4804 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 4805 4806 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 4807 MI.eraseFromParent(); 4808 return Legalized; 4809 } 4810 4811 LegalizerHelper::LegalizeResult 4812 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 4813 const unsigned NumDst = MI.getNumOperands() - 1; 4814 const Register SrcReg = MI.getOperand(NumDst).getReg(); 4815 LLT SrcTy = MRI.getType(SrcReg); 4816 4817 Register Dst0Reg = MI.getOperand(0).getReg(); 4818 LLT DstTy = MRI.getType(Dst0Reg); 4819 4820 4821 // Expand scalarizing unmerge as bitcast to integer and shift. 4822 if (!DstTy.isVector() && SrcTy.isVector() && 4823 SrcTy.getElementType() == DstTy) { 4824 LLT IntTy = LLT::scalar(SrcTy.getSizeInBits()); 4825 Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0); 4826 4827 MIRBuilder.buildTrunc(Dst0Reg, Cast); 4828 4829 const unsigned DstSize = DstTy.getSizeInBits(); 4830 unsigned Offset = DstSize; 4831 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 4832 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 4833 auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt); 4834 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 4835 } 4836 4837 MI.eraseFromParent(); 4838 return Legalized; 4839 } 4840 4841 return UnableToLegalize; 4842 } 4843 4844 LegalizerHelper::LegalizeResult 4845 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 4846 Register DstReg = MI.getOperand(0).getReg(); 4847 Register Src0Reg = MI.getOperand(1).getReg(); 4848 Register Src1Reg = MI.getOperand(2).getReg(); 4849 LLT Src0Ty = MRI.getType(Src0Reg); 4850 LLT DstTy = MRI.getType(DstReg); 4851 LLT IdxTy = LLT::scalar(32); 4852 4853 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4854 4855 if (DstTy.isScalar()) { 4856 if (Src0Ty.isVector()) 4857 return UnableToLegalize; 4858 4859 // This is just a SELECT. 4860 assert(Mask.size() == 1 && "Expected a single mask element"); 4861 Register Val; 4862 if (Mask[0] < 0 || Mask[0] > 1) 4863 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 4864 else 4865 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 4866 MIRBuilder.buildCopy(DstReg, Val); 4867 MI.eraseFromParent(); 4868 return Legalized; 4869 } 4870 4871 Register Undef; 4872 SmallVector<Register, 32> BuildVec; 4873 LLT EltTy = DstTy.getElementType(); 4874 4875 for (int Idx : Mask) { 4876 if (Idx < 0) { 4877 if (!Undef.isValid()) 4878 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 4879 BuildVec.push_back(Undef); 4880 continue; 4881 } 4882 4883 if (Src0Ty.isScalar()) { 4884 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 4885 } else { 4886 int NumElts = Src0Ty.getNumElements(); 4887 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 4888 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 4889 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 4890 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 4891 BuildVec.push_back(Extract.getReg(0)); 4892 } 4893 } 4894 4895 MIRBuilder.buildBuildVector(DstReg, BuildVec); 4896 MI.eraseFromParent(); 4897 return Legalized; 4898 } 4899 4900 LegalizerHelper::LegalizeResult 4901 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 4902 Register Dst = MI.getOperand(0).getReg(); 4903 Register AllocSize = MI.getOperand(1).getReg(); 4904 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 4905 4906 const auto &MF = *MI.getMF(); 4907 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 4908 4909 LLT PtrTy = MRI.getType(Dst); 4910 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 4911 4912 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 4913 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 4914 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 4915 4916 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 4917 // have to generate an extra instruction to negate the alloc and then use 4918 // G_PTR_ADD to add the negative offset. 4919 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 4920 if (Alignment > Align(1)) { 4921 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 4922 AlignMask.negate(); 4923 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 4924 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 4925 } 4926 4927 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 4928 MIRBuilder.buildCopy(SPReg, SPTmp); 4929 MIRBuilder.buildCopy(Dst, SPTmp); 4930 4931 MI.eraseFromParent(); 4932 return Legalized; 4933 } 4934 4935 LegalizerHelper::LegalizeResult 4936 LegalizerHelper::lowerExtract(MachineInstr &MI) { 4937 Register Dst = MI.getOperand(0).getReg(); 4938 Register Src = MI.getOperand(1).getReg(); 4939 unsigned Offset = MI.getOperand(2).getImm(); 4940 4941 LLT DstTy = MRI.getType(Dst); 4942 LLT SrcTy = MRI.getType(Src); 4943 4944 if (DstTy.isScalar() && 4945 (SrcTy.isScalar() || 4946 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 4947 LLT SrcIntTy = SrcTy; 4948 if (!SrcTy.isScalar()) { 4949 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 4950 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 4951 } 4952 4953 if (Offset == 0) 4954 MIRBuilder.buildTrunc(Dst, Src); 4955 else { 4956 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 4957 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 4958 MIRBuilder.buildTrunc(Dst, Shr); 4959 } 4960 4961 MI.eraseFromParent(); 4962 return Legalized; 4963 } 4964 4965 return UnableToLegalize; 4966 } 4967 4968 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 4969 Register Dst = MI.getOperand(0).getReg(); 4970 Register Src = MI.getOperand(1).getReg(); 4971 Register InsertSrc = MI.getOperand(2).getReg(); 4972 uint64_t Offset = MI.getOperand(3).getImm(); 4973 4974 LLT DstTy = MRI.getType(Src); 4975 LLT InsertTy = MRI.getType(InsertSrc); 4976 4977 if (InsertTy.isVector() || 4978 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 4979 return UnableToLegalize; 4980 4981 const DataLayout &DL = MIRBuilder.getDataLayout(); 4982 if ((DstTy.isPointer() && 4983 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 4984 (InsertTy.isPointer() && 4985 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 4986 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 4987 return UnableToLegalize; 4988 } 4989 4990 LLT IntDstTy = DstTy; 4991 4992 if (!DstTy.isScalar()) { 4993 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 4994 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 4995 } 4996 4997 if (!InsertTy.isScalar()) { 4998 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 4999 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5000 } 5001 5002 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5003 if (Offset != 0) { 5004 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5005 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5006 } 5007 5008 APInt MaskVal = APInt::getBitsSetWithWrap( 5009 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5010 5011 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5012 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5013 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5014 5015 MIRBuilder.buildCast(Dst, Or); 5016 MI.eraseFromParent(); 5017 return Legalized; 5018 } 5019 5020 LegalizerHelper::LegalizeResult 5021 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5022 Register Dst0 = MI.getOperand(0).getReg(); 5023 Register Dst1 = MI.getOperand(1).getReg(); 5024 Register LHS = MI.getOperand(2).getReg(); 5025 Register RHS = MI.getOperand(3).getReg(); 5026 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5027 5028 LLT Ty = MRI.getType(Dst0); 5029 LLT BoolTy = MRI.getType(Dst1); 5030 5031 if (IsAdd) 5032 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5033 else 5034 MIRBuilder.buildSub(Dst0, LHS, RHS); 5035 5036 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5037 5038 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5039 5040 // For an addition, the result should be less than one of the operands (LHS) 5041 // if and only if the other operand (RHS) is negative, otherwise there will 5042 // be overflow. 5043 // For a subtraction, the result should be less than one of the operands 5044 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5045 // otherwise there will be overflow. 5046 auto ResultLowerThanLHS = 5047 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5048 auto ConditionRHS = MIRBuilder.buildICmp( 5049 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5050 5051 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5052 MI.eraseFromParent(); 5053 return Legalized; 5054 } 5055 5056 LegalizerHelper::LegalizeResult 5057 LegalizerHelper::lowerBswap(MachineInstr &MI) { 5058 Register Dst = MI.getOperand(0).getReg(); 5059 Register Src = MI.getOperand(1).getReg(); 5060 const LLT Ty = MRI.getType(Src); 5061 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 5062 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 5063 5064 // Swap most and least significant byte, set remaining bytes in Res to zero. 5065 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 5066 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 5067 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5068 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 5069 5070 // Set i-th high/low byte in Res to i-th low/high byte from Src. 5071 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 5072 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 5073 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 5074 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 5075 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 5076 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 5077 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 5078 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 5079 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 5080 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 5081 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5082 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 5083 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 5084 } 5085 Res.getInstr()->getOperand(0).setReg(Dst); 5086 5087 MI.eraseFromParent(); 5088 return Legalized; 5089 } 5090 5091 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 5092 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 5093 MachineInstrBuilder Src, APInt Mask) { 5094 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 5095 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 5096 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 5097 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 5098 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 5099 return B.buildOr(Dst, LHS, RHS); 5100 } 5101 5102 LegalizerHelper::LegalizeResult 5103 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 5104 Register Dst = MI.getOperand(0).getReg(); 5105 Register Src = MI.getOperand(1).getReg(); 5106 const LLT Ty = MRI.getType(Src); 5107 unsigned Size = Ty.getSizeInBits(); 5108 5109 MachineInstrBuilder BSWAP = 5110 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 5111 5112 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 5113 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 5114 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 5115 MachineInstrBuilder Swap4 = 5116 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 5117 5118 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 5119 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 5120 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 5121 MachineInstrBuilder Swap2 = 5122 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 5123 5124 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 5125 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 5126 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 5127 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 5128 5129 MI.eraseFromParent(); 5130 return Legalized; 5131 } 5132 5133 LegalizerHelper::LegalizeResult 5134 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 5135 MachineFunction &MF = MIRBuilder.getMF(); 5136 const TargetSubtargetInfo &STI = MF.getSubtarget(); 5137 const TargetLowering *TLI = STI.getTargetLowering(); 5138 5139 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 5140 int NameOpIdx = IsRead ? 1 : 0; 5141 int ValRegIndex = IsRead ? 0 : 1; 5142 5143 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 5144 const LLT Ty = MRI.getType(ValReg); 5145 const MDString *RegStr = cast<MDString>( 5146 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 5147 5148 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 5149 if (!PhysReg.isValid()) 5150 return UnableToLegalize; 5151 5152 if (IsRead) 5153 MIRBuilder.buildCopy(ValReg, PhysReg); 5154 else 5155 MIRBuilder.buildCopy(PhysReg, ValReg); 5156 5157 MI.eraseFromParent(); 5158 return Legalized; 5159 } 5160