1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
19 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
20 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
21 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
22 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
23 #include "llvm/CodeGen/GlobalISel/Utils.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/TargetFrameLowering.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetLowering.h"
29 #include "llvm/CodeGen/TargetOpcodes.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 
37 #define DEBUG_TYPE "legalizer"
38 
39 using namespace llvm;
40 using namespace LegalizeActions;
41 using namespace MIPatternMatch;
42 
43 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
44 ///
45 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
46 /// with any leftover piece as type \p LeftoverTy
47 ///
48 /// Returns -1 in the first element of the pair if the breakdown is not
49 /// satisfiable.
50 static std::pair<int, int>
51 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
52   assert(!LeftoverTy.isValid() && "this is an out argument");
53 
54   unsigned Size = OrigTy.getSizeInBits();
55   unsigned NarrowSize = NarrowTy.getSizeInBits();
56   unsigned NumParts = Size / NarrowSize;
57   unsigned LeftoverSize = Size - NumParts * NarrowSize;
58   assert(Size > NarrowSize);
59 
60   if (LeftoverSize == 0)
61     return {NumParts, 0};
62 
63   if (NarrowTy.isVector()) {
64     unsigned EltSize = OrigTy.getScalarSizeInBits();
65     if (LeftoverSize % EltSize != 0)
66       return {-1, -1};
67     LeftoverTy = LLT::scalarOrVector(
68         ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
69   } else {
70     LeftoverTy = LLT::scalar(LeftoverSize);
71   }
72 
73   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
74   return std::make_pair(NumParts, NumLeftover);
75 }
76 
77 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
78 
79   if (!Ty.isScalar())
80     return nullptr;
81 
82   switch (Ty.getSizeInBits()) {
83   case 16:
84     return Type::getHalfTy(Ctx);
85   case 32:
86     return Type::getFloatTy(Ctx);
87   case 64:
88     return Type::getDoubleTy(Ctx);
89   case 80:
90     return Type::getX86_FP80Ty(Ctx);
91   case 128:
92     return Type::getFP128Ty(Ctx);
93   default:
94     return nullptr;
95   }
96 }
97 
98 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
99                                  GISelChangeObserver &Observer,
100                                  MachineIRBuilder &Builder)
101     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
102       LI(*MF.getSubtarget().getLegalizerInfo()),
103       TLI(*MF.getSubtarget().getTargetLowering()) { }
104 
105 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
106                                  GISelChangeObserver &Observer,
107                                  MachineIRBuilder &B)
108   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
109     TLI(*MF.getSubtarget().getTargetLowering()) { }
110 
111 LegalizerHelper::LegalizeResult
112 LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
113                                    LostDebugLocObserver &LocObserver) {
114   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
115 
116   MIRBuilder.setInstrAndDebugLoc(MI);
117 
118   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
119       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
120     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
121   auto Step = LI.getAction(MI, MRI);
122   switch (Step.Action) {
123   case Legal:
124     LLVM_DEBUG(dbgs() << ".. Already legal\n");
125     return AlreadyLegal;
126   case Libcall:
127     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
128     return libcall(MI, LocObserver);
129   case NarrowScalar:
130     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
131     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
132   case WidenScalar:
133     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
134     return widenScalar(MI, Step.TypeIdx, Step.NewType);
135   case Bitcast:
136     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
137     return bitcast(MI, Step.TypeIdx, Step.NewType);
138   case Lower:
139     LLVM_DEBUG(dbgs() << ".. Lower\n");
140     return lower(MI, Step.TypeIdx, Step.NewType);
141   case FewerElements:
142     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
143     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
144   case MoreElements:
145     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
146     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
147   case Custom:
148     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
149     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
150   default:
151     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
152     return UnableToLegalize;
153   }
154 }
155 
156 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
157                                    SmallVectorImpl<Register> &VRegs) {
158   for (int i = 0; i < NumParts; ++i)
159     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
160   MIRBuilder.buildUnmerge(VRegs, Reg);
161 }
162 
163 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
164                                    LLT MainTy, LLT &LeftoverTy,
165                                    SmallVectorImpl<Register> &VRegs,
166                                    SmallVectorImpl<Register> &LeftoverRegs) {
167   assert(!LeftoverTy.isValid() && "this is an out argument");
168 
169   unsigned RegSize = RegTy.getSizeInBits();
170   unsigned MainSize = MainTy.getSizeInBits();
171   unsigned NumParts = RegSize / MainSize;
172   unsigned LeftoverSize = RegSize - NumParts * MainSize;
173 
174   // Use an unmerge when possible.
175   if (LeftoverSize == 0) {
176     for (unsigned I = 0; I < NumParts; ++I)
177       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
178     MIRBuilder.buildUnmerge(VRegs, Reg);
179     return true;
180   }
181 
182   // Perform irregular split. Leftover is last element of RegPieces.
183   if (MainTy.isVector()) {
184     SmallVector<Register, 8> RegPieces;
185     extractVectorParts(Reg, MainTy.getNumElements(), RegPieces);
186     for (unsigned i = 0; i < RegPieces.size() - 1; ++i)
187       VRegs.push_back(RegPieces[i]);
188     LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]);
189     LeftoverTy = MRI.getType(LeftoverRegs[0]);
190     return true;
191   }
192 
193   LeftoverTy = LLT::scalar(LeftoverSize);
194   // For irregular sizes, extract the individual parts.
195   for (unsigned I = 0; I != NumParts; ++I) {
196     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
197     VRegs.push_back(NewReg);
198     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
199   }
200 
201   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
202        Offset += LeftoverSize) {
203     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
204     LeftoverRegs.push_back(NewReg);
205     MIRBuilder.buildExtract(NewReg, Reg, Offset);
206   }
207 
208   return true;
209 }
210 
211 void LegalizerHelper::extractVectorParts(Register Reg, unsigned NumElts,
212                                          SmallVectorImpl<Register> &VRegs) {
213   LLT RegTy = MRI.getType(Reg);
214   assert(RegTy.isVector() && "Expected a vector type");
215 
216   LLT EltTy = RegTy.getElementType();
217   LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy);
218   unsigned RegNumElts = RegTy.getNumElements();
219   unsigned LeftoverNumElts = RegNumElts % NumElts;
220   unsigned NumNarrowTyPieces = RegNumElts / NumElts;
221 
222   // Perfect split without leftover
223   if (LeftoverNumElts == 0)
224     return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs);
225 
226   // Irregular split. Provide direct access to all elements for artifact
227   // combiner using unmerge to elements. Then build vectors with NumElts
228   // elements. Remaining element(s) will be (used to build vector) Leftover.
229   SmallVector<Register, 8> Elts;
230   extractParts(Reg, EltTy, RegNumElts, Elts);
231 
232   unsigned Offset = 0;
233   // Requested sub-vectors of NarrowTy.
234   for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) {
235     ArrayRef<Register> Pieces(&Elts[Offset], NumElts);
236     VRegs.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0));
237   }
238 
239   // Leftover element(s).
240   if (LeftoverNumElts == 1) {
241     VRegs.push_back(Elts[Offset]);
242   } else {
243     LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy);
244     ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts);
245     VRegs.push_back(MIRBuilder.buildMerge(LeftoverTy, Pieces).getReg(0));
246   }
247 }
248 
249 void LegalizerHelper::insertParts(Register DstReg,
250                                   LLT ResultTy, LLT PartTy,
251                                   ArrayRef<Register> PartRegs,
252                                   LLT LeftoverTy,
253                                   ArrayRef<Register> LeftoverRegs) {
254   if (!LeftoverTy.isValid()) {
255     assert(LeftoverRegs.empty());
256 
257     if (!ResultTy.isVector()) {
258       MIRBuilder.buildMerge(DstReg, PartRegs);
259       return;
260     }
261 
262     if (PartTy.isVector())
263       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
264     else
265       MIRBuilder.buildBuildVector(DstReg, PartRegs);
266     return;
267   }
268 
269   // Merge sub-vectors with different number of elements and insert into DstReg.
270   if (ResultTy.isVector()) {
271     assert(LeftoverRegs.size() == 1 && "Expected one leftover register");
272     SmallVector<Register, 8> AllRegs;
273     for (auto Reg : concat<const Register>(PartRegs, LeftoverRegs))
274       AllRegs.push_back(Reg);
275     return mergeMixedSubvectors(DstReg, AllRegs);
276   }
277 
278   SmallVector<Register> GCDRegs;
279   LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy);
280   for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs))
281     extractGCDType(GCDRegs, GCDTy, PartReg);
282   LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs);
283   buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs);
284 }
285 
286 void LegalizerHelper::appendVectorElts(SmallVectorImpl<Register> &Elts,
287                                        Register Reg) {
288   LLT Ty = MRI.getType(Reg);
289   SmallVector<Register, 8> RegElts;
290   extractParts(Reg, Ty.getScalarType(), Ty.getNumElements(), RegElts);
291   Elts.append(RegElts);
292 }
293 
294 /// Merge \p PartRegs with different types into \p DstReg.
295 void LegalizerHelper::mergeMixedSubvectors(Register DstReg,
296                                            ArrayRef<Register> PartRegs) {
297   SmallVector<Register, 8> AllElts;
298   for (unsigned i = 0; i < PartRegs.size() - 1; ++i)
299     appendVectorElts(AllElts, PartRegs[i]);
300 
301   Register Leftover = PartRegs[PartRegs.size() - 1];
302   if (MRI.getType(Leftover).isScalar())
303     AllElts.push_back(Leftover);
304   else
305     appendVectorElts(AllElts, Leftover);
306 
307   MIRBuilder.buildMerge(DstReg, AllElts);
308 }
309 
310 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
311 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
312                               const MachineInstr &MI) {
313   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
314 
315   const int StartIdx = Regs.size();
316   const int NumResults = MI.getNumOperands() - 1;
317   Regs.resize(Regs.size() + NumResults);
318   for (int I = 0; I != NumResults; ++I)
319     Regs[StartIdx + I] = MI.getOperand(I).getReg();
320 }
321 
322 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
323                                      LLT GCDTy, Register SrcReg) {
324   LLT SrcTy = MRI.getType(SrcReg);
325   if (SrcTy == GCDTy) {
326     // If the source already evenly divides the result type, we don't need to do
327     // anything.
328     Parts.push_back(SrcReg);
329   } else {
330     // Need to split into common type sized pieces.
331     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
332     getUnmergeResults(Parts, *Unmerge);
333   }
334 }
335 
336 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
337                                     LLT NarrowTy, Register SrcReg) {
338   LLT SrcTy = MRI.getType(SrcReg);
339   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
340   extractGCDType(Parts, GCDTy, SrcReg);
341   return GCDTy;
342 }
343 
344 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
345                                          SmallVectorImpl<Register> &VRegs,
346                                          unsigned PadStrategy) {
347   LLT LCMTy = getLCMType(DstTy, NarrowTy);
348 
349   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
350   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
351   int NumOrigSrc = VRegs.size();
352 
353   Register PadReg;
354 
355   // Get a value we can use to pad the source value if the sources won't evenly
356   // cover the result type.
357   if (NumOrigSrc < NumParts * NumSubParts) {
358     if (PadStrategy == TargetOpcode::G_ZEXT)
359       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
360     else if (PadStrategy == TargetOpcode::G_ANYEXT)
361       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
362     else {
363       assert(PadStrategy == TargetOpcode::G_SEXT);
364 
365       // Shift the sign bit of the low register through the high register.
366       auto ShiftAmt =
367         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
368       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
369     }
370   }
371 
372   // Registers for the final merge to be produced.
373   SmallVector<Register, 4> Remerge(NumParts);
374 
375   // Registers needed for intermediate merges, which will be merged into a
376   // source for Remerge.
377   SmallVector<Register, 4> SubMerge(NumSubParts);
378 
379   // Once we've fully read off the end of the original source bits, we can reuse
380   // the same high bits for remaining padding elements.
381   Register AllPadReg;
382 
383   // Build merges to the LCM type to cover the original result type.
384   for (int I = 0; I != NumParts; ++I) {
385     bool AllMergePartsArePadding = true;
386 
387     // Build the requested merges to the requested type.
388     for (int J = 0; J != NumSubParts; ++J) {
389       int Idx = I * NumSubParts + J;
390       if (Idx >= NumOrigSrc) {
391         SubMerge[J] = PadReg;
392         continue;
393       }
394 
395       SubMerge[J] = VRegs[Idx];
396 
397       // There are meaningful bits here we can't reuse later.
398       AllMergePartsArePadding = false;
399     }
400 
401     // If we've filled up a complete piece with padding bits, we can directly
402     // emit the natural sized constant if applicable, rather than a merge of
403     // smaller constants.
404     if (AllMergePartsArePadding && !AllPadReg) {
405       if (PadStrategy == TargetOpcode::G_ANYEXT)
406         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
407       else if (PadStrategy == TargetOpcode::G_ZEXT)
408         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
409 
410       // If this is a sign extension, we can't materialize a trivial constant
411       // with the right type and have to produce a merge.
412     }
413 
414     if (AllPadReg) {
415       // Avoid creating additional instructions if we're just adding additional
416       // copies of padding bits.
417       Remerge[I] = AllPadReg;
418       continue;
419     }
420 
421     if (NumSubParts == 1)
422       Remerge[I] = SubMerge[0];
423     else
424       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
425 
426     // In the sign extend padding case, re-use the first all-signbit merge.
427     if (AllMergePartsArePadding && !AllPadReg)
428       AllPadReg = Remerge[I];
429   }
430 
431   VRegs = std::move(Remerge);
432   return LCMTy;
433 }
434 
435 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
436                                                ArrayRef<Register> RemergeRegs) {
437   LLT DstTy = MRI.getType(DstReg);
438 
439   // Create the merge to the widened source, and extract the relevant bits into
440   // the result.
441 
442   if (DstTy == LCMTy) {
443     MIRBuilder.buildMerge(DstReg, RemergeRegs);
444     return;
445   }
446 
447   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
448   if (DstTy.isScalar() && LCMTy.isScalar()) {
449     MIRBuilder.buildTrunc(DstReg, Remerge);
450     return;
451   }
452 
453   if (LCMTy.isVector()) {
454     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
455     SmallVector<Register, 8> UnmergeDefs(NumDefs);
456     UnmergeDefs[0] = DstReg;
457     for (unsigned I = 1; I != NumDefs; ++I)
458       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
459 
460     MIRBuilder.buildUnmerge(UnmergeDefs,
461                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
462     return;
463   }
464 
465   llvm_unreachable("unhandled case");
466 }
467 
468 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
469 #define RTLIBCASE_INT(LibcallPrefix)                                           \
470   do {                                                                         \
471     switch (Size) {                                                            \
472     case 32:                                                                   \
473       return RTLIB::LibcallPrefix##32;                                         \
474     case 64:                                                                   \
475       return RTLIB::LibcallPrefix##64;                                         \
476     case 128:                                                                  \
477       return RTLIB::LibcallPrefix##128;                                        \
478     default:                                                                   \
479       llvm_unreachable("unexpected size");                                     \
480     }                                                                          \
481   } while (0)
482 
483 #define RTLIBCASE(LibcallPrefix)                                               \
484   do {                                                                         \
485     switch (Size) {                                                            \
486     case 32:                                                                   \
487       return RTLIB::LibcallPrefix##32;                                         \
488     case 64:                                                                   \
489       return RTLIB::LibcallPrefix##64;                                         \
490     case 80:                                                                   \
491       return RTLIB::LibcallPrefix##80;                                         \
492     case 128:                                                                  \
493       return RTLIB::LibcallPrefix##128;                                        \
494     default:                                                                   \
495       llvm_unreachable("unexpected size");                                     \
496     }                                                                          \
497   } while (0)
498 
499   switch (Opcode) {
500   case TargetOpcode::G_SDIV:
501     RTLIBCASE_INT(SDIV_I);
502   case TargetOpcode::G_UDIV:
503     RTLIBCASE_INT(UDIV_I);
504   case TargetOpcode::G_SREM:
505     RTLIBCASE_INT(SREM_I);
506   case TargetOpcode::G_UREM:
507     RTLIBCASE_INT(UREM_I);
508   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
509     RTLIBCASE_INT(CTLZ_I);
510   case TargetOpcode::G_FADD:
511     RTLIBCASE(ADD_F);
512   case TargetOpcode::G_FSUB:
513     RTLIBCASE(SUB_F);
514   case TargetOpcode::G_FMUL:
515     RTLIBCASE(MUL_F);
516   case TargetOpcode::G_FDIV:
517     RTLIBCASE(DIV_F);
518   case TargetOpcode::G_FEXP:
519     RTLIBCASE(EXP_F);
520   case TargetOpcode::G_FEXP2:
521     RTLIBCASE(EXP2_F);
522   case TargetOpcode::G_FREM:
523     RTLIBCASE(REM_F);
524   case TargetOpcode::G_FPOW:
525     RTLIBCASE(POW_F);
526   case TargetOpcode::G_FMA:
527     RTLIBCASE(FMA_F);
528   case TargetOpcode::G_FSIN:
529     RTLIBCASE(SIN_F);
530   case TargetOpcode::G_FCOS:
531     RTLIBCASE(COS_F);
532   case TargetOpcode::G_FLOG10:
533     RTLIBCASE(LOG10_F);
534   case TargetOpcode::G_FLOG:
535     RTLIBCASE(LOG_F);
536   case TargetOpcode::G_FLOG2:
537     RTLIBCASE(LOG2_F);
538   case TargetOpcode::G_FCEIL:
539     RTLIBCASE(CEIL_F);
540   case TargetOpcode::G_FFLOOR:
541     RTLIBCASE(FLOOR_F);
542   case TargetOpcode::G_FMINNUM:
543     RTLIBCASE(FMIN_F);
544   case TargetOpcode::G_FMAXNUM:
545     RTLIBCASE(FMAX_F);
546   case TargetOpcode::G_FSQRT:
547     RTLIBCASE(SQRT_F);
548   case TargetOpcode::G_FRINT:
549     RTLIBCASE(RINT_F);
550   case TargetOpcode::G_FNEARBYINT:
551     RTLIBCASE(NEARBYINT_F);
552   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
553     RTLIBCASE(ROUNDEVEN_F);
554   }
555   llvm_unreachable("Unknown libcall function");
556 }
557 
558 /// True if an instruction is in tail position in its caller. Intended for
559 /// legalizing libcalls as tail calls when possible.
560 static bool isLibCallInTailPosition(MachineInstr &MI,
561                                     const TargetInstrInfo &TII,
562                                     MachineRegisterInfo &MRI) {
563   MachineBasicBlock &MBB = *MI.getParent();
564   const Function &F = MBB.getParent()->getFunction();
565 
566   // Conservatively require the attributes of the call to match those of
567   // the return. Ignore NoAlias and NonNull because they don't affect the
568   // call sequence.
569   AttributeList CallerAttrs = F.getAttributes();
570   if (AttrBuilder(F.getContext(), CallerAttrs.getRetAttrs())
571           .removeAttribute(Attribute::NoAlias)
572           .removeAttribute(Attribute::NonNull)
573           .hasAttributes())
574     return false;
575 
576   // It's not safe to eliminate the sign / zero extension of the return value.
577   if (CallerAttrs.hasRetAttr(Attribute::ZExt) ||
578       CallerAttrs.hasRetAttr(Attribute::SExt))
579     return false;
580 
581   // Only tail call if the following instruction is a standard return or if we
582   // have a `thisreturn` callee, and a sequence like:
583   //
584   //   G_MEMCPY %0, %1, %2
585   //   $x0 = COPY %0
586   //   RET_ReallyLR implicit $x0
587   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
588   if (Next != MBB.instr_end() && Next->isCopy()) {
589     switch (MI.getOpcode()) {
590     default:
591       llvm_unreachable("unsupported opcode");
592     case TargetOpcode::G_BZERO:
593       return false;
594     case TargetOpcode::G_MEMCPY:
595     case TargetOpcode::G_MEMMOVE:
596     case TargetOpcode::G_MEMSET:
597       break;
598     }
599 
600     Register VReg = MI.getOperand(0).getReg();
601     if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg())
602       return false;
603 
604     Register PReg = Next->getOperand(0).getReg();
605     if (!PReg.isPhysical())
606       return false;
607 
608     auto Ret = next_nodbg(Next, MBB.instr_end());
609     if (Ret == MBB.instr_end() || !Ret->isReturn())
610       return false;
611 
612     if (Ret->getNumImplicitOperands() != 1)
613       return false;
614 
615     if (PReg != Ret->getOperand(0).getReg())
616       return false;
617 
618     // Skip over the COPY that we just validated.
619     Next = Ret;
620   }
621 
622   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
623     return false;
624 
625   return true;
626 }
627 
628 LegalizerHelper::LegalizeResult
629 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
630                     const CallLowering::ArgInfo &Result,
631                     ArrayRef<CallLowering::ArgInfo> Args,
632                     const CallingConv::ID CC) {
633   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
634 
635   CallLowering::CallLoweringInfo Info;
636   Info.CallConv = CC;
637   Info.Callee = MachineOperand::CreateES(Name);
638   Info.OrigRet = Result;
639   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
640   if (!CLI.lowerCall(MIRBuilder, Info))
641     return LegalizerHelper::UnableToLegalize;
642 
643   return LegalizerHelper::Legalized;
644 }
645 
646 LegalizerHelper::LegalizeResult
647 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
648                     const CallLowering::ArgInfo &Result,
649                     ArrayRef<CallLowering::ArgInfo> Args) {
650   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
651   const char *Name = TLI.getLibcallName(Libcall);
652   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
653   return createLibcall(MIRBuilder, Name, Result, Args, CC);
654 }
655 
656 // Useful for libcalls where all operands have the same type.
657 static LegalizerHelper::LegalizeResult
658 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
659               Type *OpType) {
660   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
661 
662   // FIXME: What does the original arg index mean here?
663   SmallVector<CallLowering::ArgInfo, 3> Args;
664   for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
665     Args.push_back({MO.getReg(), OpType, 0});
666   return createLibcall(MIRBuilder, Libcall,
667                        {MI.getOperand(0).getReg(), OpType, 0}, Args);
668 }
669 
670 LegalizerHelper::LegalizeResult
671 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
672                        MachineInstr &MI, LostDebugLocObserver &LocObserver) {
673   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
674 
675   SmallVector<CallLowering::ArgInfo, 3> Args;
676   // Add all the args, except for the last which is an imm denoting 'tail'.
677   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
678     Register Reg = MI.getOperand(i).getReg();
679 
680     // Need derive an IR type for call lowering.
681     LLT OpLLT = MRI.getType(Reg);
682     Type *OpTy = nullptr;
683     if (OpLLT.isPointer())
684       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
685     else
686       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
687     Args.push_back({Reg, OpTy, 0});
688   }
689 
690   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
691   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
692   RTLIB::Libcall RTLibcall;
693   unsigned Opc = MI.getOpcode();
694   switch (Opc) {
695   case TargetOpcode::G_BZERO:
696     RTLibcall = RTLIB::BZERO;
697     break;
698   case TargetOpcode::G_MEMCPY:
699     RTLibcall = RTLIB::MEMCPY;
700     Args[0].Flags[0].setReturned();
701     break;
702   case TargetOpcode::G_MEMMOVE:
703     RTLibcall = RTLIB::MEMMOVE;
704     Args[0].Flags[0].setReturned();
705     break;
706   case TargetOpcode::G_MEMSET:
707     RTLibcall = RTLIB::MEMSET;
708     Args[0].Flags[0].setReturned();
709     break;
710   default:
711     llvm_unreachable("unsupported opcode");
712   }
713   const char *Name = TLI.getLibcallName(RTLibcall);
714 
715   // Unsupported libcall on the target.
716   if (!Name) {
717     LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
718                       << MIRBuilder.getTII().getName(Opc) << "\n");
719     return LegalizerHelper::UnableToLegalize;
720   }
721 
722   CallLowering::CallLoweringInfo Info;
723   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
724   Info.Callee = MachineOperand::CreateES(Name);
725   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0);
726   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
727                     isLibCallInTailPosition(MI, MIRBuilder.getTII(), MRI);
728 
729   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
730   if (!CLI.lowerCall(MIRBuilder, Info))
731     return LegalizerHelper::UnableToLegalize;
732 
733   if (Info.LoweredTailCall) {
734     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
735 
736     // Check debug locations before removing the return.
737     LocObserver.checkpoint(true);
738 
739     // We must have a return following the call (or debug insts) to get past
740     // isLibCallInTailPosition.
741     do {
742       MachineInstr *Next = MI.getNextNode();
743       assert(Next &&
744              (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) &&
745              "Expected instr following MI to be return or debug inst?");
746       // We lowered a tail call, so the call is now the return from the block.
747       // Delete the old return.
748       Next->eraseFromParent();
749     } while (MI.getNextNode());
750 
751     // We expect to lose the debug location from the return.
752     LocObserver.checkpoint(false);
753   }
754 
755   return LegalizerHelper::Legalized;
756 }
757 
758 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
759                                        Type *FromType) {
760   auto ToMVT = MVT::getVT(ToType);
761   auto FromMVT = MVT::getVT(FromType);
762 
763   switch (Opcode) {
764   case TargetOpcode::G_FPEXT:
765     return RTLIB::getFPEXT(FromMVT, ToMVT);
766   case TargetOpcode::G_FPTRUNC:
767     return RTLIB::getFPROUND(FromMVT, ToMVT);
768   case TargetOpcode::G_FPTOSI:
769     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
770   case TargetOpcode::G_FPTOUI:
771     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
772   case TargetOpcode::G_SITOFP:
773     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
774   case TargetOpcode::G_UITOFP:
775     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
776   }
777   llvm_unreachable("Unsupported libcall function");
778 }
779 
780 static LegalizerHelper::LegalizeResult
781 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
782                   Type *FromType) {
783   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
784   return createLibcall(MIRBuilder, Libcall,
785                        {MI.getOperand(0).getReg(), ToType, 0},
786                        {{MI.getOperand(1).getReg(), FromType, 0}});
787 }
788 
789 LegalizerHelper::LegalizeResult
790 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) {
791   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
792   unsigned Size = LLTy.getSizeInBits();
793   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
794 
795   switch (MI.getOpcode()) {
796   default:
797     return UnableToLegalize;
798   case TargetOpcode::G_SDIV:
799   case TargetOpcode::G_UDIV:
800   case TargetOpcode::G_SREM:
801   case TargetOpcode::G_UREM:
802   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
803     Type *HLTy = IntegerType::get(Ctx, Size);
804     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
805     if (Status != Legalized)
806       return Status;
807     break;
808   }
809   case TargetOpcode::G_FADD:
810   case TargetOpcode::G_FSUB:
811   case TargetOpcode::G_FMUL:
812   case TargetOpcode::G_FDIV:
813   case TargetOpcode::G_FMA:
814   case TargetOpcode::G_FPOW:
815   case TargetOpcode::G_FREM:
816   case TargetOpcode::G_FCOS:
817   case TargetOpcode::G_FSIN:
818   case TargetOpcode::G_FLOG10:
819   case TargetOpcode::G_FLOG:
820   case TargetOpcode::G_FLOG2:
821   case TargetOpcode::G_FEXP:
822   case TargetOpcode::G_FEXP2:
823   case TargetOpcode::G_FCEIL:
824   case TargetOpcode::G_FFLOOR:
825   case TargetOpcode::G_FMINNUM:
826   case TargetOpcode::G_FMAXNUM:
827   case TargetOpcode::G_FSQRT:
828   case TargetOpcode::G_FRINT:
829   case TargetOpcode::G_FNEARBYINT:
830   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
831     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
832     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
833       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
834       return UnableToLegalize;
835     }
836     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
837     if (Status != Legalized)
838       return Status;
839     break;
840   }
841   case TargetOpcode::G_FPEXT:
842   case TargetOpcode::G_FPTRUNC: {
843     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
844     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
845     if (!FromTy || !ToTy)
846       return UnableToLegalize;
847     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
848     if (Status != Legalized)
849       return Status;
850     break;
851   }
852   case TargetOpcode::G_FPTOSI:
853   case TargetOpcode::G_FPTOUI: {
854     // FIXME: Support other types
855     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
856     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
857     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
858       return UnableToLegalize;
859     LegalizeResult Status = conversionLibcall(
860         MI, MIRBuilder,
861         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
862         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
863     if (Status != Legalized)
864       return Status;
865     break;
866   }
867   case TargetOpcode::G_SITOFP:
868   case TargetOpcode::G_UITOFP: {
869     // FIXME: Support other types
870     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
871     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
872     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
873       return UnableToLegalize;
874     LegalizeResult Status = conversionLibcall(
875         MI, MIRBuilder,
876         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
877         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
878     if (Status != Legalized)
879       return Status;
880     break;
881   }
882   case TargetOpcode::G_BZERO:
883   case TargetOpcode::G_MEMCPY:
884   case TargetOpcode::G_MEMMOVE:
885   case TargetOpcode::G_MEMSET: {
886     LegalizeResult Result =
887         createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver);
888     if (Result != Legalized)
889       return Result;
890     MI.eraseFromParent();
891     return Result;
892   }
893   }
894 
895   MI.eraseFromParent();
896   return Legalized;
897 }
898 
899 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
900                                                               unsigned TypeIdx,
901                                                               LLT NarrowTy) {
902   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
903   uint64_t NarrowSize = NarrowTy.getSizeInBits();
904 
905   switch (MI.getOpcode()) {
906   default:
907     return UnableToLegalize;
908   case TargetOpcode::G_IMPLICIT_DEF: {
909     Register DstReg = MI.getOperand(0).getReg();
910     LLT DstTy = MRI.getType(DstReg);
911 
912     // If SizeOp0 is not an exact multiple of NarrowSize, emit
913     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
914     // FIXME: Although this would also be legal for the general case, it causes
915     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
916     //  combines not being hit). This seems to be a problem related to the
917     //  artifact combiner.
918     if (SizeOp0 % NarrowSize != 0) {
919       LLT ImplicitTy = NarrowTy;
920       if (DstTy.isVector())
921         ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy);
922 
923       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
924       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
925 
926       MI.eraseFromParent();
927       return Legalized;
928     }
929 
930     int NumParts = SizeOp0 / NarrowSize;
931 
932     SmallVector<Register, 2> DstRegs;
933     for (int i = 0; i < NumParts; ++i)
934       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
935 
936     if (DstTy.isVector())
937       MIRBuilder.buildBuildVector(DstReg, DstRegs);
938     else
939       MIRBuilder.buildMerge(DstReg, DstRegs);
940     MI.eraseFromParent();
941     return Legalized;
942   }
943   case TargetOpcode::G_CONSTANT: {
944     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
945     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
946     unsigned TotalSize = Ty.getSizeInBits();
947     unsigned NarrowSize = NarrowTy.getSizeInBits();
948     int NumParts = TotalSize / NarrowSize;
949 
950     SmallVector<Register, 4> PartRegs;
951     for (int I = 0; I != NumParts; ++I) {
952       unsigned Offset = I * NarrowSize;
953       auto K = MIRBuilder.buildConstant(NarrowTy,
954                                         Val.lshr(Offset).trunc(NarrowSize));
955       PartRegs.push_back(K.getReg(0));
956     }
957 
958     LLT LeftoverTy;
959     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
960     SmallVector<Register, 1> LeftoverRegs;
961     if (LeftoverBits != 0) {
962       LeftoverTy = LLT::scalar(LeftoverBits);
963       auto K = MIRBuilder.buildConstant(
964         LeftoverTy,
965         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
966       LeftoverRegs.push_back(K.getReg(0));
967     }
968 
969     insertParts(MI.getOperand(0).getReg(),
970                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
971 
972     MI.eraseFromParent();
973     return Legalized;
974   }
975   case TargetOpcode::G_SEXT:
976   case TargetOpcode::G_ZEXT:
977   case TargetOpcode::G_ANYEXT:
978     return narrowScalarExt(MI, TypeIdx, NarrowTy);
979   case TargetOpcode::G_TRUNC: {
980     if (TypeIdx != 1)
981       return UnableToLegalize;
982 
983     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
984     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
985       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
986       return UnableToLegalize;
987     }
988 
989     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
990     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
991     MI.eraseFromParent();
992     return Legalized;
993   }
994 
995   case TargetOpcode::G_FREEZE: {
996     if (TypeIdx != 0)
997       return UnableToLegalize;
998 
999     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1000     // Should widen scalar first
1001     if (Ty.getSizeInBits() % NarrowTy.getSizeInBits() != 0)
1002       return UnableToLegalize;
1003 
1004     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg());
1005     SmallVector<Register, 8> Parts;
1006     for (unsigned i = 0; i < Unmerge->getNumDefs(); ++i) {
1007       Parts.push_back(
1008           MIRBuilder.buildFreeze(NarrowTy, Unmerge.getReg(i)).getReg(0));
1009     }
1010 
1011     MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Parts);
1012     MI.eraseFromParent();
1013     return Legalized;
1014   }
1015   case TargetOpcode::G_ADD:
1016   case TargetOpcode::G_SUB:
1017   case TargetOpcode::G_SADDO:
1018   case TargetOpcode::G_SSUBO:
1019   case TargetOpcode::G_SADDE:
1020   case TargetOpcode::G_SSUBE:
1021   case TargetOpcode::G_UADDO:
1022   case TargetOpcode::G_USUBO:
1023   case TargetOpcode::G_UADDE:
1024   case TargetOpcode::G_USUBE:
1025     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
1026   case TargetOpcode::G_MUL:
1027   case TargetOpcode::G_UMULH:
1028     return narrowScalarMul(MI, NarrowTy);
1029   case TargetOpcode::G_EXTRACT:
1030     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
1031   case TargetOpcode::G_INSERT:
1032     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
1033   case TargetOpcode::G_LOAD: {
1034     auto &LoadMI = cast<GLoad>(MI);
1035     Register DstReg = LoadMI.getDstReg();
1036     LLT DstTy = MRI.getType(DstReg);
1037     if (DstTy.isVector())
1038       return UnableToLegalize;
1039 
1040     if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) {
1041       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1042       MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO());
1043       MIRBuilder.buildAnyExt(DstReg, TmpReg);
1044       LoadMI.eraseFromParent();
1045       return Legalized;
1046     }
1047 
1048     return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy);
1049   }
1050   case TargetOpcode::G_ZEXTLOAD:
1051   case TargetOpcode::G_SEXTLOAD: {
1052     auto &LoadMI = cast<GExtLoad>(MI);
1053     Register DstReg = LoadMI.getDstReg();
1054     Register PtrReg = LoadMI.getPointerReg();
1055 
1056     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1057     auto &MMO = LoadMI.getMMO();
1058     unsigned MemSize = MMO.getSizeInBits();
1059 
1060     if (MemSize == NarrowSize) {
1061       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
1062     } else if (MemSize < NarrowSize) {
1063       MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO);
1064     } else if (MemSize > NarrowSize) {
1065       // FIXME: Need to split the load.
1066       return UnableToLegalize;
1067     }
1068 
1069     if (isa<GZExtLoad>(LoadMI))
1070       MIRBuilder.buildZExt(DstReg, TmpReg);
1071     else
1072       MIRBuilder.buildSExt(DstReg, TmpReg);
1073 
1074     LoadMI.eraseFromParent();
1075     return Legalized;
1076   }
1077   case TargetOpcode::G_STORE: {
1078     auto &StoreMI = cast<GStore>(MI);
1079 
1080     Register SrcReg = StoreMI.getValueReg();
1081     LLT SrcTy = MRI.getType(SrcReg);
1082     if (SrcTy.isVector())
1083       return UnableToLegalize;
1084 
1085     int NumParts = SizeOp0 / NarrowSize;
1086     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
1087     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
1088     if (SrcTy.isVector() && LeftoverBits != 0)
1089       return UnableToLegalize;
1090 
1091     if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) {
1092       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1093       MIRBuilder.buildTrunc(TmpReg, SrcReg);
1094       MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO());
1095       StoreMI.eraseFromParent();
1096       return Legalized;
1097     }
1098 
1099     return reduceLoadStoreWidth(StoreMI, 0, NarrowTy);
1100   }
1101   case TargetOpcode::G_SELECT:
1102     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
1103   case TargetOpcode::G_AND:
1104   case TargetOpcode::G_OR:
1105   case TargetOpcode::G_XOR: {
1106     // Legalize bitwise operation:
1107     // A = BinOp<Ty> B, C
1108     // into:
1109     // B1, ..., BN = G_UNMERGE_VALUES B
1110     // C1, ..., CN = G_UNMERGE_VALUES C
1111     // A1 = BinOp<Ty/N> B1, C2
1112     // ...
1113     // AN = BinOp<Ty/N> BN, CN
1114     // A = G_MERGE_VALUES A1, ..., AN
1115     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1116   }
1117   case TargetOpcode::G_SHL:
1118   case TargetOpcode::G_LSHR:
1119   case TargetOpcode::G_ASHR:
1120     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1121   case TargetOpcode::G_CTLZ:
1122   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1123   case TargetOpcode::G_CTTZ:
1124   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1125   case TargetOpcode::G_CTPOP:
1126     if (TypeIdx == 1)
1127       switch (MI.getOpcode()) {
1128       case TargetOpcode::G_CTLZ:
1129       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1130         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1131       case TargetOpcode::G_CTTZ:
1132       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1133         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1134       case TargetOpcode::G_CTPOP:
1135         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1136       default:
1137         return UnableToLegalize;
1138       }
1139 
1140     Observer.changingInstr(MI);
1141     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1142     Observer.changedInstr(MI);
1143     return Legalized;
1144   case TargetOpcode::G_INTTOPTR:
1145     if (TypeIdx != 1)
1146       return UnableToLegalize;
1147 
1148     Observer.changingInstr(MI);
1149     narrowScalarSrc(MI, NarrowTy, 1);
1150     Observer.changedInstr(MI);
1151     return Legalized;
1152   case TargetOpcode::G_PTRTOINT:
1153     if (TypeIdx != 0)
1154       return UnableToLegalize;
1155 
1156     Observer.changingInstr(MI);
1157     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1158     Observer.changedInstr(MI);
1159     return Legalized;
1160   case TargetOpcode::G_PHI: {
1161     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1162     // NarrowSize.
1163     if (SizeOp0 % NarrowSize != 0)
1164       return UnableToLegalize;
1165 
1166     unsigned NumParts = SizeOp0 / NarrowSize;
1167     SmallVector<Register, 2> DstRegs(NumParts);
1168     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1169     Observer.changingInstr(MI);
1170     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1171       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1172       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1173       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1174                    SrcRegs[i / 2]);
1175     }
1176     MachineBasicBlock &MBB = *MI.getParent();
1177     MIRBuilder.setInsertPt(MBB, MI);
1178     for (unsigned i = 0; i < NumParts; ++i) {
1179       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1180       MachineInstrBuilder MIB =
1181           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1182       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1183         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1184     }
1185     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1186     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1187     Observer.changedInstr(MI);
1188     MI.eraseFromParent();
1189     return Legalized;
1190   }
1191   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1192   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1193     if (TypeIdx != 2)
1194       return UnableToLegalize;
1195 
1196     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1197     Observer.changingInstr(MI);
1198     narrowScalarSrc(MI, NarrowTy, OpIdx);
1199     Observer.changedInstr(MI);
1200     return Legalized;
1201   }
1202   case TargetOpcode::G_ICMP: {
1203     Register LHS = MI.getOperand(2).getReg();
1204     LLT SrcTy = MRI.getType(LHS);
1205     uint64_t SrcSize = SrcTy.getSizeInBits();
1206     CmpInst::Predicate Pred =
1207         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1208 
1209     // TODO: Handle the non-equality case for weird sizes.
1210     if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred))
1211       return UnableToLegalize;
1212 
1213     LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover)
1214     SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs;
1215     if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs,
1216                       LHSLeftoverRegs))
1217       return UnableToLegalize;
1218 
1219     LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type.
1220     SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs;
1221     if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused,
1222                       RHSPartRegs, RHSLeftoverRegs))
1223       return UnableToLegalize;
1224 
1225     // We now have the LHS and RHS of the compare split into narrow-type
1226     // registers, plus potentially some leftover type.
1227     Register Dst = MI.getOperand(0).getReg();
1228     LLT ResTy = MRI.getType(Dst);
1229     if (ICmpInst::isEquality(Pred)) {
1230       // For each part on the LHS and RHS, keep track of the result of XOR-ing
1231       // them together. For each equal part, the result should be all 0s. For
1232       // each non-equal part, we'll get at least one 1.
1233       auto Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1234       SmallVector<Register, 4> Xors;
1235       for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) {
1236         auto LHS = std::get<0>(LHSAndRHS);
1237         auto RHS = std::get<1>(LHSAndRHS);
1238         auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0);
1239         Xors.push_back(Xor);
1240       }
1241 
1242       // Build a G_XOR for each leftover register. Each G_XOR must be widened
1243       // to the desired narrow type so that we can OR them together later.
1244       SmallVector<Register, 4> WidenedXors;
1245       for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) {
1246         auto LHS = std::get<0>(LHSAndRHS);
1247         auto RHS = std::get<1>(LHSAndRHS);
1248         auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0);
1249         LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor);
1250         buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors,
1251                             /* PadStrategy = */ TargetOpcode::G_ZEXT);
1252         Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end());
1253       }
1254 
1255       // Now, for each part we broke up, we know if they are equal/not equal
1256       // based off the G_XOR. We can OR these all together and compare against
1257       // 0 to get the result.
1258       assert(Xors.size() >= 2 && "Should have gotten at least two Xors?");
1259       auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]);
1260       for (unsigned I = 2, E = Xors.size(); I < E; ++I)
1261         Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]);
1262       MIRBuilder.buildICmp(Pred, Dst, Or, Zero);
1263     } else {
1264       // TODO: Handle non-power-of-two types.
1265       assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?");
1266       assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?");
1267       Register LHSL = LHSPartRegs[0];
1268       Register LHSH = LHSPartRegs[1];
1269       Register RHSL = RHSPartRegs[0];
1270       Register RHSH = RHSPartRegs[1];
1271       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1272       MachineInstrBuilder CmpHEQ =
1273           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1274       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1275           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1276       MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH);
1277     }
1278     MI.eraseFromParent();
1279     return Legalized;
1280   }
1281   case TargetOpcode::G_SEXT_INREG: {
1282     if (TypeIdx != 0)
1283       return UnableToLegalize;
1284 
1285     int64_t SizeInBits = MI.getOperand(2).getImm();
1286 
1287     // So long as the new type has more bits than the bits we're extending we
1288     // don't need to break it apart.
1289     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1290       Observer.changingInstr(MI);
1291       // We don't lose any non-extension bits by truncating the src and
1292       // sign-extending the dst.
1293       MachineOperand &MO1 = MI.getOperand(1);
1294       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1295       MO1.setReg(TruncMIB.getReg(0));
1296 
1297       MachineOperand &MO2 = MI.getOperand(0);
1298       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1299       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1300       MIRBuilder.buildSExt(MO2, DstExt);
1301       MO2.setReg(DstExt);
1302       Observer.changedInstr(MI);
1303       return Legalized;
1304     }
1305 
1306     // Break it apart. Components below the extension point are unmodified. The
1307     // component containing the extension point becomes a narrower SEXT_INREG.
1308     // Components above it are ashr'd from the component containing the
1309     // extension point.
1310     if (SizeOp0 % NarrowSize != 0)
1311       return UnableToLegalize;
1312     int NumParts = SizeOp0 / NarrowSize;
1313 
1314     // List the registers where the destination will be scattered.
1315     SmallVector<Register, 2> DstRegs;
1316     // List the registers where the source will be split.
1317     SmallVector<Register, 2> SrcRegs;
1318 
1319     // Create all the temporary registers.
1320     for (int i = 0; i < NumParts; ++i) {
1321       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1322 
1323       SrcRegs.push_back(SrcReg);
1324     }
1325 
1326     // Explode the big arguments into smaller chunks.
1327     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1328 
1329     Register AshrCstReg =
1330         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1331             .getReg(0);
1332     Register FullExtensionReg = 0;
1333     Register PartialExtensionReg = 0;
1334 
1335     // Do the operation on each small part.
1336     for (int i = 0; i < NumParts; ++i) {
1337       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1338         DstRegs.push_back(SrcRegs[i]);
1339       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1340         assert(PartialExtensionReg &&
1341                "Expected to visit partial extension before full");
1342         if (FullExtensionReg) {
1343           DstRegs.push_back(FullExtensionReg);
1344           continue;
1345         }
1346         DstRegs.push_back(
1347             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1348                 .getReg(0));
1349         FullExtensionReg = DstRegs.back();
1350       } else {
1351         DstRegs.push_back(
1352             MIRBuilder
1353                 .buildInstr(
1354                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1355                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1356                 .getReg(0));
1357         PartialExtensionReg = DstRegs.back();
1358       }
1359     }
1360 
1361     // Gather the destination registers into the final destination.
1362     Register DstReg = MI.getOperand(0).getReg();
1363     MIRBuilder.buildMerge(DstReg, DstRegs);
1364     MI.eraseFromParent();
1365     return Legalized;
1366   }
1367   case TargetOpcode::G_BSWAP:
1368   case TargetOpcode::G_BITREVERSE: {
1369     if (SizeOp0 % NarrowSize != 0)
1370       return UnableToLegalize;
1371 
1372     Observer.changingInstr(MI);
1373     SmallVector<Register, 2> SrcRegs, DstRegs;
1374     unsigned NumParts = SizeOp0 / NarrowSize;
1375     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1376 
1377     for (unsigned i = 0; i < NumParts; ++i) {
1378       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1379                                            {SrcRegs[NumParts - 1 - i]});
1380       DstRegs.push_back(DstPart.getReg(0));
1381     }
1382 
1383     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1384 
1385     Observer.changedInstr(MI);
1386     MI.eraseFromParent();
1387     return Legalized;
1388   }
1389   case TargetOpcode::G_PTR_ADD:
1390   case TargetOpcode::G_PTRMASK: {
1391     if (TypeIdx != 1)
1392       return UnableToLegalize;
1393     Observer.changingInstr(MI);
1394     narrowScalarSrc(MI, NarrowTy, 2);
1395     Observer.changedInstr(MI);
1396     return Legalized;
1397   }
1398   case TargetOpcode::G_FPTOUI:
1399   case TargetOpcode::G_FPTOSI:
1400     return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1401   case TargetOpcode::G_FPEXT:
1402     if (TypeIdx != 0)
1403       return UnableToLegalize;
1404     Observer.changingInstr(MI);
1405     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1406     Observer.changedInstr(MI);
1407     return Legalized;
1408   }
1409 }
1410 
1411 Register LegalizerHelper::coerceToScalar(Register Val) {
1412   LLT Ty = MRI.getType(Val);
1413   if (Ty.isScalar())
1414     return Val;
1415 
1416   const DataLayout &DL = MIRBuilder.getDataLayout();
1417   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1418   if (Ty.isPointer()) {
1419     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1420       return Register();
1421     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1422   }
1423 
1424   Register NewVal = Val;
1425 
1426   assert(Ty.isVector());
1427   LLT EltTy = Ty.getElementType();
1428   if (EltTy.isPointer())
1429     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1430   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1431 }
1432 
1433 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1434                                      unsigned OpIdx, unsigned ExtOpcode) {
1435   MachineOperand &MO = MI.getOperand(OpIdx);
1436   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1437   MO.setReg(ExtB.getReg(0));
1438 }
1439 
1440 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1441                                       unsigned OpIdx) {
1442   MachineOperand &MO = MI.getOperand(OpIdx);
1443   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1444   MO.setReg(ExtB.getReg(0));
1445 }
1446 
1447 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1448                                      unsigned OpIdx, unsigned TruncOpcode) {
1449   MachineOperand &MO = MI.getOperand(OpIdx);
1450   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1451   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1452   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1453   MO.setReg(DstExt);
1454 }
1455 
1456 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1457                                       unsigned OpIdx, unsigned ExtOpcode) {
1458   MachineOperand &MO = MI.getOperand(OpIdx);
1459   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1460   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1461   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1462   MO.setReg(DstTrunc);
1463 }
1464 
1465 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1466                                             unsigned OpIdx) {
1467   MachineOperand &MO = MI.getOperand(OpIdx);
1468   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1469   Register Dst = MO.getReg();
1470   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1471   MO.setReg(DstExt);
1472   MIRBuilder.buildDeleteTrailingVectorElements(Dst, DstExt);
1473 }
1474 
1475 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1476                                             unsigned OpIdx) {
1477   MachineOperand &MO = MI.getOperand(OpIdx);
1478   SmallVector<Register, 8> Regs;
1479   MO.setReg(MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO).getReg(0));
1480 }
1481 
1482 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1483   MachineOperand &Op = MI.getOperand(OpIdx);
1484   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1485 }
1486 
1487 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1488   MachineOperand &MO = MI.getOperand(OpIdx);
1489   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1490   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1491   MIRBuilder.buildBitcast(MO, CastDst);
1492   MO.setReg(CastDst);
1493 }
1494 
1495 LegalizerHelper::LegalizeResult
1496 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1497                                         LLT WideTy) {
1498   if (TypeIdx != 1)
1499     return UnableToLegalize;
1500 
1501   Register DstReg = MI.getOperand(0).getReg();
1502   LLT DstTy = MRI.getType(DstReg);
1503   if (DstTy.isVector())
1504     return UnableToLegalize;
1505 
1506   Register Src1 = MI.getOperand(1).getReg();
1507   LLT SrcTy = MRI.getType(Src1);
1508   const int DstSize = DstTy.getSizeInBits();
1509   const int SrcSize = SrcTy.getSizeInBits();
1510   const int WideSize = WideTy.getSizeInBits();
1511   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1512 
1513   unsigned NumOps = MI.getNumOperands();
1514   unsigned NumSrc = MI.getNumOperands() - 1;
1515   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1516 
1517   if (WideSize >= DstSize) {
1518     // Directly pack the bits in the target type.
1519     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1520 
1521     for (unsigned I = 2; I != NumOps; ++I) {
1522       const unsigned Offset = (I - 1) * PartSize;
1523 
1524       Register SrcReg = MI.getOperand(I).getReg();
1525       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1526 
1527       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1528 
1529       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1530         MRI.createGenericVirtualRegister(WideTy);
1531 
1532       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1533       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1534       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1535       ResultReg = NextResult;
1536     }
1537 
1538     if (WideSize > DstSize)
1539       MIRBuilder.buildTrunc(DstReg, ResultReg);
1540     else if (DstTy.isPointer())
1541       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1542 
1543     MI.eraseFromParent();
1544     return Legalized;
1545   }
1546 
1547   // Unmerge the original values to the GCD type, and recombine to the next
1548   // multiple greater than the original type.
1549   //
1550   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1551   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1552   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1553   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1554   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1555   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1556   // %12:_(s12) = G_MERGE_VALUES %10, %11
1557   //
1558   // Padding with undef if necessary:
1559   //
1560   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1561   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1562   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1563   // %7:_(s2) = G_IMPLICIT_DEF
1564   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1565   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1566   // %10:_(s12) = G_MERGE_VALUES %8, %9
1567 
1568   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1569   LLT GCDTy = LLT::scalar(GCD);
1570 
1571   SmallVector<Register, 8> Parts;
1572   SmallVector<Register, 8> NewMergeRegs;
1573   SmallVector<Register, 8> Unmerges;
1574   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1575 
1576   // Decompose the original operands if they don't evenly divide.
1577   for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
1578     Register SrcReg = MO.getReg();
1579     if (GCD == SrcSize) {
1580       Unmerges.push_back(SrcReg);
1581     } else {
1582       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1583       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1584         Unmerges.push_back(Unmerge.getReg(J));
1585     }
1586   }
1587 
1588   // Pad with undef to the next size that is a multiple of the requested size.
1589   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1590     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1591     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1592       Unmerges.push_back(UndefReg);
1593   }
1594 
1595   const int PartsPerGCD = WideSize / GCD;
1596 
1597   // Build merges of each piece.
1598   ArrayRef<Register> Slicer(Unmerges);
1599   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1600     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1601     NewMergeRegs.push_back(Merge.getReg(0));
1602   }
1603 
1604   // A truncate may be necessary if the requested type doesn't evenly divide the
1605   // original result type.
1606   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1607     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1608   } else {
1609     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1610     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1611   }
1612 
1613   MI.eraseFromParent();
1614   return Legalized;
1615 }
1616 
1617 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1618   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1619   LLT OrigTy = MRI.getType(OrigReg);
1620   LLT LCMTy = getLCMType(WideTy, OrigTy);
1621 
1622   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1623   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1624 
1625   Register UnmergeSrc = WideReg;
1626 
1627   // Create a merge to the LCM type, padding with undef
1628   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1629   // =>
1630   // %1:_(<4 x s32>) = G_FOO
1631   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1632   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1633   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1634   if (NumMergeParts > 1) {
1635     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1636     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1637     MergeParts[0] = WideReg;
1638     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1639   }
1640 
1641   // Unmerge to the original register and pad with dead defs.
1642   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1643   UnmergeResults[0] = OrigReg;
1644   for (int I = 1; I != NumUnmergeParts; ++I)
1645     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1646 
1647   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1648   return WideReg;
1649 }
1650 
1651 LegalizerHelper::LegalizeResult
1652 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1653                                           LLT WideTy) {
1654   if (TypeIdx != 0)
1655     return UnableToLegalize;
1656 
1657   int NumDst = MI.getNumOperands() - 1;
1658   Register SrcReg = MI.getOperand(NumDst).getReg();
1659   LLT SrcTy = MRI.getType(SrcReg);
1660   if (SrcTy.isVector())
1661     return UnableToLegalize;
1662 
1663   Register Dst0Reg = MI.getOperand(0).getReg();
1664   LLT DstTy = MRI.getType(Dst0Reg);
1665   if (!DstTy.isScalar())
1666     return UnableToLegalize;
1667 
1668   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1669     if (SrcTy.isPointer()) {
1670       const DataLayout &DL = MIRBuilder.getDataLayout();
1671       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1672         LLVM_DEBUG(
1673             dbgs() << "Not casting non-integral address space integer\n");
1674         return UnableToLegalize;
1675       }
1676 
1677       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1678       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1679     }
1680 
1681     // Widen SrcTy to WideTy. This does not affect the result, but since the
1682     // user requested this size, it is probably better handled than SrcTy and
1683     // should reduce the total number of legalization artifacts.
1684     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1685       SrcTy = WideTy;
1686       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1687     }
1688 
1689     // Theres no unmerge type to target. Directly extract the bits from the
1690     // source type
1691     unsigned DstSize = DstTy.getSizeInBits();
1692 
1693     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1694     for (int I = 1; I != NumDst; ++I) {
1695       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1696       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1697       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1698     }
1699 
1700     MI.eraseFromParent();
1701     return Legalized;
1702   }
1703 
1704   // Extend the source to a wider type.
1705   LLT LCMTy = getLCMType(SrcTy, WideTy);
1706 
1707   Register WideSrc = SrcReg;
1708   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1709     // TODO: If this is an integral address space, cast to integer and anyext.
1710     if (SrcTy.isPointer()) {
1711       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1712       return UnableToLegalize;
1713     }
1714 
1715     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1716   }
1717 
1718   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1719 
1720   // Create a sequence of unmerges and merges to the original results. Since we
1721   // may have widened the source, we will need to pad the results with dead defs
1722   // to cover the source register.
1723   // e.g. widen s48 to s64:
1724   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1725   //
1726   // =>
1727   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1728   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1729   //  ; unpack to GCD type, with extra dead defs
1730   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1731   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1732   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1733   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1734   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1735   const LLT GCDTy = getGCDType(WideTy, DstTy);
1736   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1737   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1738 
1739   // Directly unmerge to the destination without going through a GCD type
1740   // if possible
1741   if (PartsPerRemerge == 1) {
1742     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1743 
1744     for (int I = 0; I != NumUnmerge; ++I) {
1745       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1746 
1747       for (int J = 0; J != PartsPerUnmerge; ++J) {
1748         int Idx = I * PartsPerUnmerge + J;
1749         if (Idx < NumDst)
1750           MIB.addDef(MI.getOperand(Idx).getReg());
1751         else {
1752           // Create dead def for excess components.
1753           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1754         }
1755       }
1756 
1757       MIB.addUse(Unmerge.getReg(I));
1758     }
1759   } else {
1760     SmallVector<Register, 16> Parts;
1761     for (int J = 0; J != NumUnmerge; ++J)
1762       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1763 
1764     SmallVector<Register, 8> RemergeParts;
1765     for (int I = 0; I != NumDst; ++I) {
1766       for (int J = 0; J < PartsPerRemerge; ++J) {
1767         const int Idx = I * PartsPerRemerge + J;
1768         RemergeParts.emplace_back(Parts[Idx]);
1769       }
1770 
1771       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1772       RemergeParts.clear();
1773     }
1774   }
1775 
1776   MI.eraseFromParent();
1777   return Legalized;
1778 }
1779 
1780 LegalizerHelper::LegalizeResult
1781 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1782                                     LLT WideTy) {
1783   Register DstReg = MI.getOperand(0).getReg();
1784   Register SrcReg = MI.getOperand(1).getReg();
1785   LLT SrcTy = MRI.getType(SrcReg);
1786 
1787   LLT DstTy = MRI.getType(DstReg);
1788   unsigned Offset = MI.getOperand(2).getImm();
1789 
1790   if (TypeIdx == 0) {
1791     if (SrcTy.isVector() || DstTy.isVector())
1792       return UnableToLegalize;
1793 
1794     SrcOp Src(SrcReg);
1795     if (SrcTy.isPointer()) {
1796       // Extracts from pointers can be handled only if they are really just
1797       // simple integers.
1798       const DataLayout &DL = MIRBuilder.getDataLayout();
1799       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1800         return UnableToLegalize;
1801 
1802       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1803       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1804       SrcTy = SrcAsIntTy;
1805     }
1806 
1807     if (DstTy.isPointer())
1808       return UnableToLegalize;
1809 
1810     if (Offset == 0) {
1811       // Avoid a shift in the degenerate case.
1812       MIRBuilder.buildTrunc(DstReg,
1813                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1814       MI.eraseFromParent();
1815       return Legalized;
1816     }
1817 
1818     // Do a shift in the source type.
1819     LLT ShiftTy = SrcTy;
1820     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1821       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1822       ShiftTy = WideTy;
1823     }
1824 
1825     auto LShr = MIRBuilder.buildLShr(
1826       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1827     MIRBuilder.buildTrunc(DstReg, LShr);
1828     MI.eraseFromParent();
1829     return Legalized;
1830   }
1831 
1832   if (SrcTy.isScalar()) {
1833     Observer.changingInstr(MI);
1834     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1835     Observer.changedInstr(MI);
1836     return Legalized;
1837   }
1838 
1839   if (!SrcTy.isVector())
1840     return UnableToLegalize;
1841 
1842   if (DstTy != SrcTy.getElementType())
1843     return UnableToLegalize;
1844 
1845   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1846     return UnableToLegalize;
1847 
1848   Observer.changingInstr(MI);
1849   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1850 
1851   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1852                           Offset);
1853   widenScalarDst(MI, WideTy.getScalarType(), 0);
1854   Observer.changedInstr(MI);
1855   return Legalized;
1856 }
1857 
1858 LegalizerHelper::LegalizeResult
1859 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1860                                    LLT WideTy) {
1861   if (TypeIdx != 0 || WideTy.isVector())
1862     return UnableToLegalize;
1863   Observer.changingInstr(MI);
1864   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1865   widenScalarDst(MI, WideTy);
1866   Observer.changedInstr(MI);
1867   return Legalized;
1868 }
1869 
1870 LegalizerHelper::LegalizeResult
1871 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1872                                            LLT WideTy) {
1873   unsigned Opcode;
1874   unsigned ExtOpcode;
1875   Optional<Register> CarryIn = None;
1876   switch (MI.getOpcode()) {
1877   default:
1878     llvm_unreachable("Unexpected opcode!");
1879   case TargetOpcode::G_SADDO:
1880     Opcode = TargetOpcode::G_ADD;
1881     ExtOpcode = TargetOpcode::G_SEXT;
1882     break;
1883   case TargetOpcode::G_SSUBO:
1884     Opcode = TargetOpcode::G_SUB;
1885     ExtOpcode = TargetOpcode::G_SEXT;
1886     break;
1887   case TargetOpcode::G_UADDO:
1888     Opcode = TargetOpcode::G_ADD;
1889     ExtOpcode = TargetOpcode::G_ZEXT;
1890     break;
1891   case TargetOpcode::G_USUBO:
1892     Opcode = TargetOpcode::G_SUB;
1893     ExtOpcode = TargetOpcode::G_ZEXT;
1894     break;
1895   case TargetOpcode::G_SADDE:
1896     Opcode = TargetOpcode::G_UADDE;
1897     ExtOpcode = TargetOpcode::G_SEXT;
1898     CarryIn = MI.getOperand(4).getReg();
1899     break;
1900   case TargetOpcode::G_SSUBE:
1901     Opcode = TargetOpcode::G_USUBE;
1902     ExtOpcode = TargetOpcode::G_SEXT;
1903     CarryIn = MI.getOperand(4).getReg();
1904     break;
1905   case TargetOpcode::G_UADDE:
1906     Opcode = TargetOpcode::G_UADDE;
1907     ExtOpcode = TargetOpcode::G_ZEXT;
1908     CarryIn = MI.getOperand(4).getReg();
1909     break;
1910   case TargetOpcode::G_USUBE:
1911     Opcode = TargetOpcode::G_USUBE;
1912     ExtOpcode = TargetOpcode::G_ZEXT;
1913     CarryIn = MI.getOperand(4).getReg();
1914     break;
1915   }
1916 
1917   if (TypeIdx == 1) {
1918     unsigned BoolExtOp = MIRBuilder.getBoolExtOp(WideTy.isVector(), false);
1919 
1920     Observer.changingInstr(MI);
1921     widenScalarDst(MI, WideTy, 1);
1922     if (CarryIn)
1923       widenScalarSrc(MI, WideTy, 4, BoolExtOp);
1924 
1925     Observer.changedInstr(MI);
1926     return Legalized;
1927   }
1928 
1929   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1930   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1931   // Do the arithmetic in the larger type.
1932   Register NewOp;
1933   if (CarryIn) {
1934     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1935     NewOp = MIRBuilder
1936                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1937                             {LHSExt, RHSExt, *CarryIn})
1938                 .getReg(0);
1939   } else {
1940     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1941   }
1942   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1943   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1944   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1945   // There is no overflow if the ExtOp is the same as NewOp.
1946   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1947   // Now trunc the NewOp to the original result.
1948   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1949   MI.eraseFromParent();
1950   return Legalized;
1951 }
1952 
1953 LegalizerHelper::LegalizeResult
1954 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1955                                          LLT WideTy) {
1956   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1957                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1958                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1959   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1960                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1961   // We can convert this to:
1962   //   1. Any extend iN to iM
1963   //   2. SHL by M-N
1964   //   3. [US][ADD|SUB|SHL]SAT
1965   //   4. L/ASHR by M-N
1966   //
1967   // It may be more efficient to lower this to a min and a max operation in
1968   // the higher precision arithmetic if the promoted operation isn't legal,
1969   // but this decision is up to the target's lowering request.
1970   Register DstReg = MI.getOperand(0).getReg();
1971 
1972   unsigned NewBits = WideTy.getScalarSizeInBits();
1973   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1974 
1975   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1976   // must not left shift the RHS to preserve the shift amount.
1977   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1978   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1979                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1980   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1981   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1982   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1983 
1984   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1985                                         {ShiftL, ShiftR}, MI.getFlags());
1986 
1987   // Use a shift that will preserve the number of sign bits when the trunc is
1988   // folded away.
1989   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1990                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1991 
1992   MIRBuilder.buildTrunc(DstReg, Result);
1993   MI.eraseFromParent();
1994   return Legalized;
1995 }
1996 
1997 LegalizerHelper::LegalizeResult
1998 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1999                                  LLT WideTy) {
2000   if (TypeIdx == 1) {
2001     Observer.changingInstr(MI);
2002     widenScalarDst(MI, WideTy, 1);
2003     Observer.changedInstr(MI);
2004     return Legalized;
2005   }
2006 
2007   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
2008   Register Result = MI.getOperand(0).getReg();
2009   Register OriginalOverflow = MI.getOperand(1).getReg();
2010   Register LHS = MI.getOperand(2).getReg();
2011   Register RHS = MI.getOperand(3).getReg();
2012   LLT SrcTy = MRI.getType(LHS);
2013   LLT OverflowTy = MRI.getType(OriginalOverflow);
2014   unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
2015 
2016   // To determine if the result overflowed in the larger type, we extend the
2017   // input to the larger type, do the multiply (checking if it overflows),
2018   // then also check the high bits of the result to see if overflow happened
2019   // there.
2020   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2021   auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
2022   auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
2023 
2024   auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
2025                                     {LeftOperand, RightOperand});
2026   auto Mul = Mulo->getOperand(0);
2027   MIRBuilder.buildTrunc(Result, Mul);
2028 
2029   MachineInstrBuilder ExtResult;
2030   // Overflow occurred if it occurred in the larger type, or if the high part
2031   // of the result does not zero/sign-extend the low part.  Check this second
2032   // possibility first.
2033   if (IsSigned) {
2034     // For signed, overflow occurred when the high part does not sign-extend
2035     // the low part.
2036     ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
2037   } else {
2038     // Unsigned overflow occurred when the high part does not zero-extend the
2039     // low part.
2040     ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
2041   }
2042 
2043   // Multiplication cannot overflow if the WideTy is >= 2 * original width,
2044   // so we don't need to check the overflow result of larger type Mulo.
2045   if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
2046     auto Overflow =
2047         MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
2048     // Finally check if the multiplication in the larger type itself overflowed.
2049     MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
2050   } else {
2051     MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
2052   }
2053   MI.eraseFromParent();
2054   return Legalized;
2055 }
2056 
2057 LegalizerHelper::LegalizeResult
2058 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
2059   switch (MI.getOpcode()) {
2060   default:
2061     return UnableToLegalize;
2062   case TargetOpcode::G_ATOMICRMW_XCHG:
2063   case TargetOpcode::G_ATOMICRMW_ADD:
2064   case TargetOpcode::G_ATOMICRMW_SUB:
2065   case TargetOpcode::G_ATOMICRMW_AND:
2066   case TargetOpcode::G_ATOMICRMW_OR:
2067   case TargetOpcode::G_ATOMICRMW_XOR:
2068   case TargetOpcode::G_ATOMICRMW_MIN:
2069   case TargetOpcode::G_ATOMICRMW_MAX:
2070   case TargetOpcode::G_ATOMICRMW_UMIN:
2071   case TargetOpcode::G_ATOMICRMW_UMAX:
2072     assert(TypeIdx == 0 && "atomicrmw with second scalar type");
2073     Observer.changingInstr(MI);
2074     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2075     widenScalarDst(MI, WideTy, 0);
2076     Observer.changedInstr(MI);
2077     return Legalized;
2078   case TargetOpcode::G_ATOMIC_CMPXCHG:
2079     assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type");
2080     Observer.changingInstr(MI);
2081     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2082     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2083     widenScalarDst(MI, WideTy, 0);
2084     Observer.changedInstr(MI);
2085     return Legalized;
2086   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS:
2087     if (TypeIdx == 0) {
2088       Observer.changingInstr(MI);
2089       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2090       widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT);
2091       widenScalarDst(MI, WideTy, 0);
2092       Observer.changedInstr(MI);
2093       return Legalized;
2094     }
2095     assert(TypeIdx == 1 &&
2096            "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type");
2097     Observer.changingInstr(MI);
2098     widenScalarDst(MI, WideTy, 1);
2099     Observer.changedInstr(MI);
2100     return Legalized;
2101   case TargetOpcode::G_EXTRACT:
2102     return widenScalarExtract(MI, TypeIdx, WideTy);
2103   case TargetOpcode::G_INSERT:
2104     return widenScalarInsert(MI, TypeIdx, WideTy);
2105   case TargetOpcode::G_MERGE_VALUES:
2106     return widenScalarMergeValues(MI, TypeIdx, WideTy);
2107   case TargetOpcode::G_UNMERGE_VALUES:
2108     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
2109   case TargetOpcode::G_SADDO:
2110   case TargetOpcode::G_SSUBO:
2111   case TargetOpcode::G_UADDO:
2112   case TargetOpcode::G_USUBO:
2113   case TargetOpcode::G_SADDE:
2114   case TargetOpcode::G_SSUBE:
2115   case TargetOpcode::G_UADDE:
2116   case TargetOpcode::G_USUBE:
2117     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
2118   case TargetOpcode::G_UMULO:
2119   case TargetOpcode::G_SMULO:
2120     return widenScalarMulo(MI, TypeIdx, WideTy);
2121   case TargetOpcode::G_SADDSAT:
2122   case TargetOpcode::G_SSUBSAT:
2123   case TargetOpcode::G_SSHLSAT:
2124   case TargetOpcode::G_UADDSAT:
2125   case TargetOpcode::G_USUBSAT:
2126   case TargetOpcode::G_USHLSAT:
2127     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
2128   case TargetOpcode::G_CTTZ:
2129   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2130   case TargetOpcode::G_CTLZ:
2131   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2132   case TargetOpcode::G_CTPOP: {
2133     if (TypeIdx == 0) {
2134       Observer.changingInstr(MI);
2135       widenScalarDst(MI, WideTy, 0);
2136       Observer.changedInstr(MI);
2137       return Legalized;
2138     }
2139 
2140     Register SrcReg = MI.getOperand(1).getReg();
2141 
2142     // First extend the input.
2143     unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ ||
2144                               MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF
2145                           ? TargetOpcode::G_ANYEXT
2146                           : TargetOpcode::G_ZEXT;
2147     auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg});
2148     LLT CurTy = MRI.getType(SrcReg);
2149     unsigned NewOpc = MI.getOpcode();
2150     if (NewOpc == TargetOpcode::G_CTTZ) {
2151       // The count is the same in the larger type except if the original
2152       // value was zero.  This can be handled by setting the bit just off
2153       // the top of the original type.
2154       auto TopBit =
2155           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
2156       MIBSrc = MIRBuilder.buildOr(
2157         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
2158       // Now we know the operand is non-zero, use the more relaxed opcode.
2159       NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF;
2160     }
2161 
2162     // Perform the operation at the larger size.
2163     auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc});
2164     // This is already the correct result for CTPOP and CTTZs
2165     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
2166         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
2167       // The correct result is NewOp - (Difference in widety and current ty).
2168       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
2169       MIBNewOp = MIRBuilder.buildSub(
2170           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
2171     }
2172 
2173     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
2174     MI.eraseFromParent();
2175     return Legalized;
2176   }
2177   case TargetOpcode::G_BSWAP: {
2178     Observer.changingInstr(MI);
2179     Register DstReg = MI.getOperand(0).getReg();
2180 
2181     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
2182     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2183     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
2184     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2185 
2186     MI.getOperand(0).setReg(DstExt);
2187 
2188     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2189 
2190     LLT Ty = MRI.getType(DstReg);
2191     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2192     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
2193     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
2194 
2195     MIRBuilder.buildTrunc(DstReg, ShrReg);
2196     Observer.changedInstr(MI);
2197     return Legalized;
2198   }
2199   case TargetOpcode::G_BITREVERSE: {
2200     Observer.changingInstr(MI);
2201 
2202     Register DstReg = MI.getOperand(0).getReg();
2203     LLT Ty = MRI.getType(DstReg);
2204     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2205 
2206     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2207     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2208     MI.getOperand(0).setReg(DstExt);
2209     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2210 
2211     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
2212     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
2213     MIRBuilder.buildTrunc(DstReg, Shift);
2214     Observer.changedInstr(MI);
2215     return Legalized;
2216   }
2217   case TargetOpcode::G_FREEZE:
2218     Observer.changingInstr(MI);
2219     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2220     widenScalarDst(MI, WideTy);
2221     Observer.changedInstr(MI);
2222     return Legalized;
2223 
2224   case TargetOpcode::G_ABS:
2225     Observer.changingInstr(MI);
2226     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2227     widenScalarDst(MI, WideTy);
2228     Observer.changedInstr(MI);
2229     return Legalized;
2230 
2231   case TargetOpcode::G_ADD:
2232   case TargetOpcode::G_AND:
2233   case TargetOpcode::G_MUL:
2234   case TargetOpcode::G_OR:
2235   case TargetOpcode::G_XOR:
2236   case TargetOpcode::G_SUB:
2237     // Perform operation at larger width (any extension is fines here, high bits
2238     // don't affect the result) and then truncate the result back to the
2239     // original type.
2240     Observer.changingInstr(MI);
2241     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2242     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2243     widenScalarDst(MI, WideTy);
2244     Observer.changedInstr(MI);
2245     return Legalized;
2246 
2247   case TargetOpcode::G_SBFX:
2248   case TargetOpcode::G_UBFX:
2249     Observer.changingInstr(MI);
2250 
2251     if (TypeIdx == 0) {
2252       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2253       widenScalarDst(MI, WideTy);
2254     } else {
2255       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2256       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2257     }
2258 
2259     Observer.changedInstr(MI);
2260     return Legalized;
2261 
2262   case TargetOpcode::G_SHL:
2263     Observer.changingInstr(MI);
2264 
2265     if (TypeIdx == 0) {
2266       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2267       widenScalarDst(MI, WideTy);
2268     } else {
2269       assert(TypeIdx == 1);
2270       // The "number of bits to shift" operand must preserve its value as an
2271       // unsigned integer:
2272       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2273     }
2274 
2275     Observer.changedInstr(MI);
2276     return Legalized;
2277 
2278   case TargetOpcode::G_SDIV:
2279   case TargetOpcode::G_SREM:
2280   case TargetOpcode::G_SMIN:
2281   case TargetOpcode::G_SMAX:
2282     Observer.changingInstr(MI);
2283     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2284     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2285     widenScalarDst(MI, WideTy);
2286     Observer.changedInstr(MI);
2287     return Legalized;
2288 
2289   case TargetOpcode::G_SDIVREM:
2290     Observer.changingInstr(MI);
2291     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2292     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2293     widenScalarDst(MI, WideTy);
2294     widenScalarDst(MI, WideTy, 1);
2295     Observer.changedInstr(MI);
2296     return Legalized;
2297 
2298   case TargetOpcode::G_ASHR:
2299   case TargetOpcode::G_LSHR:
2300     Observer.changingInstr(MI);
2301 
2302     if (TypeIdx == 0) {
2303       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2304         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2305 
2306       widenScalarSrc(MI, WideTy, 1, CvtOp);
2307       widenScalarDst(MI, WideTy);
2308     } else {
2309       assert(TypeIdx == 1);
2310       // The "number of bits to shift" operand must preserve its value as an
2311       // unsigned integer:
2312       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2313     }
2314 
2315     Observer.changedInstr(MI);
2316     return Legalized;
2317   case TargetOpcode::G_UDIV:
2318   case TargetOpcode::G_UREM:
2319   case TargetOpcode::G_UMIN:
2320   case TargetOpcode::G_UMAX:
2321     Observer.changingInstr(MI);
2322     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2323     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2324     widenScalarDst(MI, WideTy);
2325     Observer.changedInstr(MI);
2326     return Legalized;
2327 
2328   case TargetOpcode::G_UDIVREM:
2329     Observer.changingInstr(MI);
2330     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2331     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2332     widenScalarDst(MI, WideTy);
2333     widenScalarDst(MI, WideTy, 1);
2334     Observer.changedInstr(MI);
2335     return Legalized;
2336 
2337   case TargetOpcode::G_SELECT:
2338     Observer.changingInstr(MI);
2339     if (TypeIdx == 0) {
2340       // Perform operation at larger width (any extension is fine here, high
2341       // bits don't affect the result) and then truncate the result back to the
2342       // original type.
2343       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2344       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2345       widenScalarDst(MI, WideTy);
2346     } else {
2347       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2348       // Explicit extension is required here since high bits affect the result.
2349       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2350     }
2351     Observer.changedInstr(MI);
2352     return Legalized;
2353 
2354   case TargetOpcode::G_FPTOSI:
2355   case TargetOpcode::G_FPTOUI:
2356     Observer.changingInstr(MI);
2357 
2358     if (TypeIdx == 0)
2359       widenScalarDst(MI, WideTy);
2360     else
2361       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2362 
2363     Observer.changedInstr(MI);
2364     return Legalized;
2365   case TargetOpcode::G_SITOFP:
2366     Observer.changingInstr(MI);
2367 
2368     if (TypeIdx == 0)
2369       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2370     else
2371       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2372 
2373     Observer.changedInstr(MI);
2374     return Legalized;
2375   case TargetOpcode::G_UITOFP:
2376     Observer.changingInstr(MI);
2377 
2378     if (TypeIdx == 0)
2379       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2380     else
2381       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2382 
2383     Observer.changedInstr(MI);
2384     return Legalized;
2385   case TargetOpcode::G_LOAD:
2386   case TargetOpcode::G_SEXTLOAD:
2387   case TargetOpcode::G_ZEXTLOAD:
2388     Observer.changingInstr(MI);
2389     widenScalarDst(MI, WideTy);
2390     Observer.changedInstr(MI);
2391     return Legalized;
2392 
2393   case TargetOpcode::G_STORE: {
2394     if (TypeIdx != 0)
2395       return UnableToLegalize;
2396 
2397     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2398     if (!Ty.isScalar())
2399       return UnableToLegalize;
2400 
2401     Observer.changingInstr(MI);
2402 
2403     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2404       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2405     widenScalarSrc(MI, WideTy, 0, ExtType);
2406 
2407     Observer.changedInstr(MI);
2408     return Legalized;
2409   }
2410   case TargetOpcode::G_CONSTANT: {
2411     MachineOperand &SrcMO = MI.getOperand(1);
2412     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2413     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2414         MRI.getType(MI.getOperand(0).getReg()));
2415     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2416             ExtOpc == TargetOpcode::G_ANYEXT) &&
2417            "Illegal Extend");
2418     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2419     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2420                            ? SrcVal.sext(WideTy.getSizeInBits())
2421                            : SrcVal.zext(WideTy.getSizeInBits());
2422     Observer.changingInstr(MI);
2423     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2424 
2425     widenScalarDst(MI, WideTy);
2426     Observer.changedInstr(MI);
2427     return Legalized;
2428   }
2429   case TargetOpcode::G_FCONSTANT: {
2430     MachineOperand &SrcMO = MI.getOperand(1);
2431     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2432     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2433     bool LosesInfo;
2434     switch (WideTy.getSizeInBits()) {
2435     case 32:
2436       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2437                   &LosesInfo);
2438       break;
2439     case 64:
2440       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2441                   &LosesInfo);
2442       break;
2443     default:
2444       return UnableToLegalize;
2445     }
2446 
2447     assert(!LosesInfo && "extend should always be lossless");
2448 
2449     Observer.changingInstr(MI);
2450     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2451 
2452     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2453     Observer.changedInstr(MI);
2454     return Legalized;
2455   }
2456   case TargetOpcode::G_IMPLICIT_DEF: {
2457     Observer.changingInstr(MI);
2458     widenScalarDst(MI, WideTy);
2459     Observer.changedInstr(MI);
2460     return Legalized;
2461   }
2462   case TargetOpcode::G_BRCOND:
2463     Observer.changingInstr(MI);
2464     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2465     Observer.changedInstr(MI);
2466     return Legalized;
2467 
2468   case TargetOpcode::G_FCMP:
2469     Observer.changingInstr(MI);
2470     if (TypeIdx == 0)
2471       widenScalarDst(MI, WideTy);
2472     else {
2473       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2474       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2475     }
2476     Observer.changedInstr(MI);
2477     return Legalized;
2478 
2479   case TargetOpcode::G_ICMP:
2480     Observer.changingInstr(MI);
2481     if (TypeIdx == 0)
2482       widenScalarDst(MI, WideTy);
2483     else {
2484       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2485                                MI.getOperand(1).getPredicate()))
2486                                ? TargetOpcode::G_SEXT
2487                                : TargetOpcode::G_ZEXT;
2488       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2489       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2490     }
2491     Observer.changedInstr(MI);
2492     return Legalized;
2493 
2494   case TargetOpcode::G_PTR_ADD:
2495     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2496     Observer.changingInstr(MI);
2497     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2498     Observer.changedInstr(MI);
2499     return Legalized;
2500 
2501   case TargetOpcode::G_PHI: {
2502     assert(TypeIdx == 0 && "Expecting only Idx 0");
2503 
2504     Observer.changingInstr(MI);
2505     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2506       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2507       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2508       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2509     }
2510 
2511     MachineBasicBlock &MBB = *MI.getParent();
2512     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2513     widenScalarDst(MI, WideTy);
2514     Observer.changedInstr(MI);
2515     return Legalized;
2516   }
2517   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2518     if (TypeIdx == 0) {
2519       Register VecReg = MI.getOperand(1).getReg();
2520       LLT VecTy = MRI.getType(VecReg);
2521       Observer.changingInstr(MI);
2522 
2523       widenScalarSrc(
2524           MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1,
2525           TargetOpcode::G_ANYEXT);
2526 
2527       widenScalarDst(MI, WideTy, 0);
2528       Observer.changedInstr(MI);
2529       return Legalized;
2530     }
2531 
2532     if (TypeIdx != 2)
2533       return UnableToLegalize;
2534     Observer.changingInstr(MI);
2535     // TODO: Probably should be zext
2536     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2537     Observer.changedInstr(MI);
2538     return Legalized;
2539   }
2540   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2541     if (TypeIdx == 1) {
2542       Observer.changingInstr(MI);
2543 
2544       Register VecReg = MI.getOperand(1).getReg();
2545       LLT VecTy = MRI.getType(VecReg);
2546       LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy);
2547 
2548       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2549       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2550       widenScalarDst(MI, WideVecTy, 0);
2551       Observer.changedInstr(MI);
2552       return Legalized;
2553     }
2554 
2555     if (TypeIdx == 2) {
2556       Observer.changingInstr(MI);
2557       // TODO: Probably should be zext
2558       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2559       Observer.changedInstr(MI);
2560       return Legalized;
2561     }
2562 
2563     return UnableToLegalize;
2564   }
2565   case TargetOpcode::G_FADD:
2566   case TargetOpcode::G_FMUL:
2567   case TargetOpcode::G_FSUB:
2568   case TargetOpcode::G_FMA:
2569   case TargetOpcode::G_FMAD:
2570   case TargetOpcode::G_FNEG:
2571   case TargetOpcode::G_FABS:
2572   case TargetOpcode::G_FCANONICALIZE:
2573   case TargetOpcode::G_FMINNUM:
2574   case TargetOpcode::G_FMAXNUM:
2575   case TargetOpcode::G_FMINNUM_IEEE:
2576   case TargetOpcode::G_FMAXNUM_IEEE:
2577   case TargetOpcode::G_FMINIMUM:
2578   case TargetOpcode::G_FMAXIMUM:
2579   case TargetOpcode::G_FDIV:
2580   case TargetOpcode::G_FREM:
2581   case TargetOpcode::G_FCEIL:
2582   case TargetOpcode::G_FFLOOR:
2583   case TargetOpcode::G_FCOS:
2584   case TargetOpcode::G_FSIN:
2585   case TargetOpcode::G_FLOG10:
2586   case TargetOpcode::G_FLOG:
2587   case TargetOpcode::G_FLOG2:
2588   case TargetOpcode::G_FRINT:
2589   case TargetOpcode::G_FNEARBYINT:
2590   case TargetOpcode::G_FSQRT:
2591   case TargetOpcode::G_FEXP:
2592   case TargetOpcode::G_FEXP2:
2593   case TargetOpcode::G_FPOW:
2594   case TargetOpcode::G_INTRINSIC_TRUNC:
2595   case TargetOpcode::G_INTRINSIC_ROUND:
2596   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2597     assert(TypeIdx == 0);
2598     Observer.changingInstr(MI);
2599 
2600     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2601       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2602 
2603     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2604     Observer.changedInstr(MI);
2605     return Legalized;
2606   case TargetOpcode::G_FPOWI: {
2607     if (TypeIdx != 0)
2608       return UnableToLegalize;
2609     Observer.changingInstr(MI);
2610     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2611     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2612     Observer.changedInstr(MI);
2613     return Legalized;
2614   }
2615   case TargetOpcode::G_INTTOPTR:
2616     if (TypeIdx != 1)
2617       return UnableToLegalize;
2618 
2619     Observer.changingInstr(MI);
2620     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2621     Observer.changedInstr(MI);
2622     return Legalized;
2623   case TargetOpcode::G_PTRTOINT:
2624     if (TypeIdx != 0)
2625       return UnableToLegalize;
2626 
2627     Observer.changingInstr(MI);
2628     widenScalarDst(MI, WideTy, 0);
2629     Observer.changedInstr(MI);
2630     return Legalized;
2631   case TargetOpcode::G_BUILD_VECTOR: {
2632     Observer.changingInstr(MI);
2633 
2634     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2635     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2636       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2637 
2638     // Avoid changing the result vector type if the source element type was
2639     // requested.
2640     if (TypeIdx == 1) {
2641       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2642     } else {
2643       widenScalarDst(MI, WideTy, 0);
2644     }
2645 
2646     Observer.changedInstr(MI);
2647     return Legalized;
2648   }
2649   case TargetOpcode::G_SEXT_INREG:
2650     if (TypeIdx != 0)
2651       return UnableToLegalize;
2652 
2653     Observer.changingInstr(MI);
2654     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2655     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2656     Observer.changedInstr(MI);
2657     return Legalized;
2658   case TargetOpcode::G_PTRMASK: {
2659     if (TypeIdx != 1)
2660       return UnableToLegalize;
2661     Observer.changingInstr(MI);
2662     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2663     Observer.changedInstr(MI);
2664     return Legalized;
2665   }
2666   }
2667 }
2668 
2669 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2670                              MachineIRBuilder &B, Register Src, LLT Ty) {
2671   auto Unmerge = B.buildUnmerge(Ty, Src);
2672   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2673     Pieces.push_back(Unmerge.getReg(I));
2674 }
2675 
2676 LegalizerHelper::LegalizeResult
2677 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2678   Register Dst = MI.getOperand(0).getReg();
2679   Register Src = MI.getOperand(1).getReg();
2680   LLT DstTy = MRI.getType(Dst);
2681   LLT SrcTy = MRI.getType(Src);
2682 
2683   if (SrcTy.isVector()) {
2684     LLT SrcEltTy = SrcTy.getElementType();
2685     SmallVector<Register, 8> SrcRegs;
2686 
2687     if (DstTy.isVector()) {
2688       int NumDstElt = DstTy.getNumElements();
2689       int NumSrcElt = SrcTy.getNumElements();
2690 
2691       LLT DstEltTy = DstTy.getElementType();
2692       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2693       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2694 
2695       // If there's an element size mismatch, insert intermediate casts to match
2696       // the result element type.
2697       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2698         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2699         //
2700         // =>
2701         //
2702         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2703         // %3:_(<2 x s8>) = G_BITCAST %2
2704         // %4:_(<2 x s8>) = G_BITCAST %3
2705         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2706         DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy);
2707         SrcPartTy = SrcEltTy;
2708       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2709         //
2710         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2711         //
2712         // =>
2713         //
2714         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2715         // %3:_(s16) = G_BITCAST %2
2716         // %4:_(s16) = G_BITCAST %3
2717         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2718         SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy);
2719         DstCastTy = DstEltTy;
2720       }
2721 
2722       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2723       for (Register &SrcReg : SrcRegs)
2724         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2725     } else
2726       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2727 
2728     MIRBuilder.buildMerge(Dst, SrcRegs);
2729     MI.eraseFromParent();
2730     return Legalized;
2731   }
2732 
2733   if (DstTy.isVector()) {
2734     SmallVector<Register, 8> SrcRegs;
2735     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2736     MIRBuilder.buildMerge(Dst, SrcRegs);
2737     MI.eraseFromParent();
2738     return Legalized;
2739   }
2740 
2741   return UnableToLegalize;
2742 }
2743 
2744 /// Figure out the bit offset into a register when coercing a vector index for
2745 /// the wide element type. This is only for the case when promoting vector to
2746 /// one with larger elements.
2747 //
2748 ///
2749 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2750 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2751 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2752                                                    Register Idx,
2753                                                    unsigned NewEltSize,
2754                                                    unsigned OldEltSize) {
2755   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2756   LLT IdxTy = B.getMRI()->getType(Idx);
2757 
2758   // Now figure out the amount we need to shift to get the target bits.
2759   auto OffsetMask = B.buildConstant(
2760       IdxTy, ~(APInt::getAllOnes(IdxTy.getSizeInBits()) << Log2EltRatio));
2761   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2762   return B.buildShl(IdxTy, OffsetIdx,
2763                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2764 }
2765 
2766 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2767 /// is casting to a vector with a smaller element size, perform multiple element
2768 /// extracts and merge the results. If this is coercing to a vector with larger
2769 /// elements, index the bitcasted vector and extract the target element with bit
2770 /// operations. This is intended to force the indexing in the native register
2771 /// size for architectures that can dynamically index the register file.
2772 LegalizerHelper::LegalizeResult
2773 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2774                                          LLT CastTy) {
2775   if (TypeIdx != 1)
2776     return UnableToLegalize;
2777 
2778   Register Dst = MI.getOperand(0).getReg();
2779   Register SrcVec = MI.getOperand(1).getReg();
2780   Register Idx = MI.getOperand(2).getReg();
2781   LLT SrcVecTy = MRI.getType(SrcVec);
2782   LLT IdxTy = MRI.getType(Idx);
2783 
2784   LLT SrcEltTy = SrcVecTy.getElementType();
2785   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2786   unsigned OldNumElts = SrcVecTy.getNumElements();
2787 
2788   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2789   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2790 
2791   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2792   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2793   if (NewNumElts > OldNumElts) {
2794     // Decreasing the vector element size
2795     //
2796     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2797     //  =>
2798     //  v4i32:castx = bitcast x:v2i64
2799     //
2800     // i64 = bitcast
2801     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2802     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2803     //
2804     if (NewNumElts % OldNumElts != 0)
2805       return UnableToLegalize;
2806 
2807     // Type of the intermediate result vector.
2808     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2809     LLT MidTy =
2810         LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy);
2811 
2812     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2813 
2814     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2815     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2816 
2817     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2818       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2819       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2820       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2821       NewOps[I] = Elt.getReg(0);
2822     }
2823 
2824     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2825     MIRBuilder.buildBitcast(Dst, NewVec);
2826     MI.eraseFromParent();
2827     return Legalized;
2828   }
2829 
2830   if (NewNumElts < OldNumElts) {
2831     if (NewEltSize % OldEltSize != 0)
2832       return UnableToLegalize;
2833 
2834     // This only depends on powers of 2 because we use bit tricks to figure out
2835     // the bit offset we need to shift to get the target element. A general
2836     // expansion could emit division/multiply.
2837     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2838       return UnableToLegalize;
2839 
2840     // Increasing the vector element size.
2841     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2842     //
2843     //   =>
2844     //
2845     // %cast = G_BITCAST %vec
2846     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2847     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2848     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2849     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2850     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2851     // %elt = G_TRUNC %elt_bits
2852 
2853     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2854     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2855 
2856     // Divide to get the index in the wider element type.
2857     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2858 
2859     Register WideElt = CastVec;
2860     if (CastTy.isVector()) {
2861       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2862                                                      ScaledIdx).getReg(0);
2863     }
2864 
2865     // Compute the bit offset into the register of the target element.
2866     Register OffsetBits = getBitcastWiderVectorElementOffset(
2867       MIRBuilder, Idx, NewEltSize, OldEltSize);
2868 
2869     // Shift the wide element to get the target element.
2870     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2871     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2872     MI.eraseFromParent();
2873     return Legalized;
2874   }
2875 
2876   return UnableToLegalize;
2877 }
2878 
2879 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2880 /// TargetReg, while preserving other bits in \p TargetReg.
2881 ///
2882 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2883 static Register buildBitFieldInsert(MachineIRBuilder &B,
2884                                     Register TargetReg, Register InsertReg,
2885                                     Register OffsetBits) {
2886   LLT TargetTy = B.getMRI()->getType(TargetReg);
2887   LLT InsertTy = B.getMRI()->getType(InsertReg);
2888   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2889   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2890 
2891   // Produce a bitmask of the value to insert
2892   auto EltMask = B.buildConstant(
2893     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2894                                    InsertTy.getSizeInBits()));
2895   // Shift it into position
2896   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2897   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2898 
2899   // Clear out the bits in the wide element
2900   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2901 
2902   // The value to insert has all zeros already, so stick it into the masked
2903   // wide element.
2904   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2905 }
2906 
2907 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2908 /// is increasing the element size, perform the indexing in the target element
2909 /// type, and use bit operations to insert at the element position. This is
2910 /// intended for architectures that can dynamically index the register file and
2911 /// want to force indexing in the native register size.
2912 LegalizerHelper::LegalizeResult
2913 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2914                                         LLT CastTy) {
2915   if (TypeIdx != 0)
2916     return UnableToLegalize;
2917 
2918   Register Dst = MI.getOperand(0).getReg();
2919   Register SrcVec = MI.getOperand(1).getReg();
2920   Register Val = MI.getOperand(2).getReg();
2921   Register Idx = MI.getOperand(3).getReg();
2922 
2923   LLT VecTy = MRI.getType(Dst);
2924   LLT IdxTy = MRI.getType(Idx);
2925 
2926   LLT VecEltTy = VecTy.getElementType();
2927   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2928   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2929   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2930 
2931   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2932   unsigned OldNumElts = VecTy.getNumElements();
2933 
2934   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2935   if (NewNumElts < OldNumElts) {
2936     if (NewEltSize % OldEltSize != 0)
2937       return UnableToLegalize;
2938 
2939     // This only depends on powers of 2 because we use bit tricks to figure out
2940     // the bit offset we need to shift to get the target element. A general
2941     // expansion could emit division/multiply.
2942     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2943       return UnableToLegalize;
2944 
2945     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2946     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2947 
2948     // Divide to get the index in the wider element type.
2949     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2950 
2951     Register ExtractedElt = CastVec;
2952     if (CastTy.isVector()) {
2953       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2954                                                           ScaledIdx).getReg(0);
2955     }
2956 
2957     // Compute the bit offset into the register of the target element.
2958     Register OffsetBits = getBitcastWiderVectorElementOffset(
2959       MIRBuilder, Idx, NewEltSize, OldEltSize);
2960 
2961     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2962                                                Val, OffsetBits);
2963     if (CastTy.isVector()) {
2964       InsertedElt = MIRBuilder.buildInsertVectorElement(
2965         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2966     }
2967 
2968     MIRBuilder.buildBitcast(Dst, InsertedElt);
2969     MI.eraseFromParent();
2970     return Legalized;
2971   }
2972 
2973   return UnableToLegalize;
2974 }
2975 
2976 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) {
2977   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2978   Register DstReg = LoadMI.getDstReg();
2979   Register PtrReg = LoadMI.getPointerReg();
2980   LLT DstTy = MRI.getType(DstReg);
2981   MachineMemOperand &MMO = LoadMI.getMMO();
2982   LLT MemTy = MMO.getMemoryType();
2983   MachineFunction &MF = MIRBuilder.getMF();
2984 
2985   unsigned MemSizeInBits = MemTy.getSizeInBits();
2986   unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes();
2987 
2988   if (MemSizeInBits != MemStoreSizeInBits) {
2989     if (MemTy.isVector())
2990       return UnableToLegalize;
2991 
2992     // Promote to a byte-sized load if not loading an integral number of
2993     // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
2994     LLT WideMemTy = LLT::scalar(MemStoreSizeInBits);
2995     MachineMemOperand *NewMMO =
2996         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy);
2997 
2998     Register LoadReg = DstReg;
2999     LLT LoadTy = DstTy;
3000 
3001     // If this wasn't already an extending load, we need to widen the result
3002     // register to avoid creating a load with a narrower result than the source.
3003     if (MemStoreSizeInBits > DstTy.getSizeInBits()) {
3004       LoadTy = WideMemTy;
3005       LoadReg = MRI.createGenericVirtualRegister(WideMemTy);
3006     }
3007 
3008     if (isa<GSExtLoad>(LoadMI)) {
3009       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
3010       MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits);
3011     } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == LoadTy) {
3012       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
3013       // The extra bits are guaranteed to be zero, since we stored them that
3014       // way.  A zext load from Wide thus automatically gives zext from MemVT.
3015       MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits);
3016     } else {
3017       MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO);
3018     }
3019 
3020     if (DstTy != LoadTy)
3021       MIRBuilder.buildTrunc(DstReg, LoadReg);
3022 
3023     LoadMI.eraseFromParent();
3024     return Legalized;
3025   }
3026 
3027   // Big endian lowering not implemented.
3028   if (MIRBuilder.getDataLayout().isBigEndian())
3029     return UnableToLegalize;
3030 
3031   // This load needs splitting into power of 2 sized loads.
3032   //
3033   // Our strategy here is to generate anyextending loads for the smaller
3034   // types up to next power-2 result type, and then combine the two larger
3035   // result values together, before truncating back down to the non-pow-2
3036   // type.
3037   // E.g. v1 = i24 load =>
3038   // v2 = i32 zextload (2 byte)
3039   // v3 = i32 load (1 byte)
3040   // v4 = i32 shl v3, 16
3041   // v5 = i32 or v4, v2
3042   // v1 = i24 trunc v5
3043   // By doing this we generate the correct truncate which should get
3044   // combined away as an artifact with a matching extend.
3045 
3046   uint64_t LargeSplitSize, SmallSplitSize;
3047 
3048   if (!isPowerOf2_32(MemSizeInBits)) {
3049     // This load needs splitting into power of 2 sized loads.
3050     LargeSplitSize = PowerOf2Floor(MemSizeInBits);
3051     SmallSplitSize = MemSizeInBits - LargeSplitSize;
3052   } else {
3053     // This is already a power of 2, but we still need to split this in half.
3054     //
3055     // Assume we're being asked to decompose an unaligned load.
3056     // TODO: If this requires multiple splits, handle them all at once.
3057     auto &Ctx = MF.getFunction().getContext();
3058     if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
3059       return UnableToLegalize;
3060 
3061     SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
3062   }
3063 
3064   if (MemTy.isVector()) {
3065     // TODO: Handle vector extloads
3066     if (MemTy != DstTy)
3067       return UnableToLegalize;
3068 
3069     // TODO: We can do better than scalarizing the vector and at least split it
3070     // in half.
3071     return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType());
3072   }
3073 
3074   MachineMemOperand *LargeMMO =
3075       MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
3076   MachineMemOperand *SmallMMO =
3077       MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
3078 
3079   LLT PtrTy = MRI.getType(PtrReg);
3080   unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits());
3081   LLT AnyExtTy = LLT::scalar(AnyExtSize);
3082   auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy,
3083                                              PtrReg, *LargeMMO);
3084 
3085   auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()),
3086                                             LargeSplitSize / 8);
3087   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
3088   auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
3089   auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy,
3090                                              SmallPtr, *SmallMMO);
3091 
3092   auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
3093   auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
3094 
3095   if (AnyExtTy == DstTy)
3096     MIRBuilder.buildOr(DstReg, Shift, LargeLoad);
3097   else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) {
3098     auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
3099     MIRBuilder.buildTrunc(DstReg, {Or});
3100   } else {
3101     assert(DstTy.isPointer() && "expected pointer");
3102     auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
3103 
3104     // FIXME: We currently consider this to be illegal for non-integral address
3105     // spaces, but we need still need a way to reinterpret the bits.
3106     MIRBuilder.buildIntToPtr(DstReg, Or);
3107   }
3108 
3109   LoadMI.eraseFromParent();
3110   return Legalized;
3111 }
3112 
3113 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) {
3114   // Lower a non-power of 2 store into multiple pow-2 stores.
3115   // E.g. split an i24 store into an i16 store + i8 store.
3116   // We do this by first extending the stored value to the next largest power
3117   // of 2 type, and then using truncating stores to store the components.
3118   // By doing this, likewise with G_LOAD, generate an extend that can be
3119   // artifact-combined away instead of leaving behind extracts.
3120   Register SrcReg = StoreMI.getValueReg();
3121   Register PtrReg = StoreMI.getPointerReg();
3122   LLT SrcTy = MRI.getType(SrcReg);
3123   MachineFunction &MF = MIRBuilder.getMF();
3124   MachineMemOperand &MMO = **StoreMI.memoperands_begin();
3125   LLT MemTy = MMO.getMemoryType();
3126 
3127   unsigned StoreWidth = MemTy.getSizeInBits();
3128   unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes();
3129 
3130   if (StoreWidth != StoreSizeInBits) {
3131     if (SrcTy.isVector())
3132       return UnableToLegalize;
3133 
3134     // Promote to a byte-sized store with upper bits zero if not
3135     // storing an integral number of bytes.  For example, promote
3136     // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
3137     LLT WideTy = LLT::scalar(StoreSizeInBits);
3138 
3139     if (StoreSizeInBits > SrcTy.getSizeInBits()) {
3140       // Avoid creating a store with a narrower source than result.
3141       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
3142       SrcTy = WideTy;
3143     }
3144 
3145     auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth);
3146 
3147     MachineMemOperand *NewMMO =
3148         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy);
3149     MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO);
3150     StoreMI.eraseFromParent();
3151     return Legalized;
3152   }
3153 
3154   if (MemTy.isVector()) {
3155     // TODO: Handle vector trunc stores
3156     if (MemTy != SrcTy)
3157       return UnableToLegalize;
3158 
3159     // TODO: We can do better than scalarizing the vector and at least split it
3160     // in half.
3161     return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType());
3162   }
3163 
3164   unsigned MemSizeInBits = MemTy.getSizeInBits();
3165   uint64_t LargeSplitSize, SmallSplitSize;
3166 
3167   if (!isPowerOf2_32(MemSizeInBits)) {
3168     LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits());
3169     SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize;
3170   } else {
3171     auto &Ctx = MF.getFunction().getContext();
3172     if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
3173       return UnableToLegalize; // Don't know what we're being asked to do.
3174 
3175     SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
3176   }
3177 
3178   // Extend to the next pow-2. If this store was itself the result of lowering,
3179   // e.g. an s56 store being broken into s32 + s24, we might have a stored type
3180   // that's wider than the stored size.
3181   unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits());
3182   const LLT NewSrcTy = LLT::scalar(AnyExtSize);
3183 
3184   if (SrcTy.isPointer()) {
3185     const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits());
3186     SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0);
3187   }
3188 
3189   auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg);
3190 
3191   // Obtain the smaller value by shifting away the larger value.
3192   auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize);
3193   auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt);
3194 
3195   // Generate the PtrAdd and truncating stores.
3196   LLT PtrTy = MRI.getType(PtrReg);
3197   auto OffsetCst = MIRBuilder.buildConstant(
3198     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
3199   auto SmallPtr =
3200     MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst);
3201 
3202   MachineMemOperand *LargeMMO =
3203     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
3204   MachineMemOperand *SmallMMO =
3205     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
3206   MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO);
3207   MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO);
3208   StoreMI.eraseFromParent();
3209   return Legalized;
3210 }
3211 
3212 LegalizerHelper::LegalizeResult
3213 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
3214   switch (MI.getOpcode()) {
3215   case TargetOpcode::G_LOAD: {
3216     if (TypeIdx != 0)
3217       return UnableToLegalize;
3218     MachineMemOperand &MMO = **MI.memoperands_begin();
3219 
3220     // Not sure how to interpret a bitcast of an extending load.
3221     if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3222       return UnableToLegalize;
3223 
3224     Observer.changingInstr(MI);
3225     bitcastDst(MI, CastTy, 0);
3226     MMO.setType(CastTy);
3227     Observer.changedInstr(MI);
3228     return Legalized;
3229   }
3230   case TargetOpcode::G_STORE: {
3231     if (TypeIdx != 0)
3232       return UnableToLegalize;
3233 
3234     MachineMemOperand &MMO = **MI.memoperands_begin();
3235 
3236     // Not sure how to interpret a bitcast of a truncating store.
3237     if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3238       return UnableToLegalize;
3239 
3240     Observer.changingInstr(MI);
3241     bitcastSrc(MI, CastTy, 0);
3242     MMO.setType(CastTy);
3243     Observer.changedInstr(MI);
3244     return Legalized;
3245   }
3246   case TargetOpcode::G_SELECT: {
3247     if (TypeIdx != 0)
3248       return UnableToLegalize;
3249 
3250     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
3251       LLVM_DEBUG(
3252           dbgs() << "bitcast action not implemented for vector select\n");
3253       return UnableToLegalize;
3254     }
3255 
3256     Observer.changingInstr(MI);
3257     bitcastSrc(MI, CastTy, 2);
3258     bitcastSrc(MI, CastTy, 3);
3259     bitcastDst(MI, CastTy, 0);
3260     Observer.changedInstr(MI);
3261     return Legalized;
3262   }
3263   case TargetOpcode::G_AND:
3264   case TargetOpcode::G_OR:
3265   case TargetOpcode::G_XOR: {
3266     Observer.changingInstr(MI);
3267     bitcastSrc(MI, CastTy, 1);
3268     bitcastSrc(MI, CastTy, 2);
3269     bitcastDst(MI, CastTy, 0);
3270     Observer.changedInstr(MI);
3271     return Legalized;
3272   }
3273   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
3274     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
3275   case TargetOpcode::G_INSERT_VECTOR_ELT:
3276     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
3277   default:
3278     return UnableToLegalize;
3279   }
3280 }
3281 
3282 // Legalize an instruction by changing the opcode in place.
3283 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
3284     Observer.changingInstr(MI);
3285     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
3286     Observer.changedInstr(MI);
3287 }
3288 
3289 LegalizerHelper::LegalizeResult
3290 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
3291   using namespace TargetOpcode;
3292 
3293   switch(MI.getOpcode()) {
3294   default:
3295     return UnableToLegalize;
3296   case TargetOpcode::G_BITCAST:
3297     return lowerBitcast(MI);
3298   case TargetOpcode::G_SREM:
3299   case TargetOpcode::G_UREM: {
3300     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3301     auto Quot =
3302         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
3303                               {MI.getOperand(1), MI.getOperand(2)});
3304 
3305     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
3306     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
3307     MI.eraseFromParent();
3308     return Legalized;
3309   }
3310   case TargetOpcode::G_SADDO:
3311   case TargetOpcode::G_SSUBO:
3312     return lowerSADDO_SSUBO(MI);
3313   case TargetOpcode::G_UMULH:
3314   case TargetOpcode::G_SMULH:
3315     return lowerSMULH_UMULH(MI);
3316   case TargetOpcode::G_SMULO:
3317   case TargetOpcode::G_UMULO: {
3318     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
3319     // result.
3320     Register Res = MI.getOperand(0).getReg();
3321     Register Overflow = MI.getOperand(1).getReg();
3322     Register LHS = MI.getOperand(2).getReg();
3323     Register RHS = MI.getOperand(3).getReg();
3324     LLT Ty = MRI.getType(Res);
3325 
3326     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
3327                           ? TargetOpcode::G_SMULH
3328                           : TargetOpcode::G_UMULH;
3329 
3330     Observer.changingInstr(MI);
3331     const auto &TII = MIRBuilder.getTII();
3332     MI.setDesc(TII.get(TargetOpcode::G_MUL));
3333     MI.removeOperand(1);
3334     Observer.changedInstr(MI);
3335 
3336     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
3337     auto Zero = MIRBuilder.buildConstant(Ty, 0);
3338 
3339     // Move insert point forward so we can use the Res register if needed.
3340     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
3341 
3342     // For *signed* multiply, overflow is detected by checking:
3343     // (hi != (lo >> bitwidth-1))
3344     if (Opcode == TargetOpcode::G_SMULH) {
3345       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
3346       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
3347       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
3348     } else {
3349       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
3350     }
3351     return Legalized;
3352   }
3353   case TargetOpcode::G_FNEG: {
3354     Register Res = MI.getOperand(0).getReg();
3355     LLT Ty = MRI.getType(Res);
3356 
3357     // TODO: Handle vector types once we are able to
3358     // represent them.
3359     if (Ty.isVector())
3360       return UnableToLegalize;
3361     auto SignMask =
3362         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
3363     Register SubByReg = MI.getOperand(1).getReg();
3364     MIRBuilder.buildXor(Res, SubByReg, SignMask);
3365     MI.eraseFromParent();
3366     return Legalized;
3367   }
3368   case TargetOpcode::G_FSUB: {
3369     Register Res = MI.getOperand(0).getReg();
3370     LLT Ty = MRI.getType(Res);
3371 
3372     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3373     // First, check if G_FNEG is marked as Lower. If so, we may
3374     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3375     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3376       return UnableToLegalize;
3377     Register LHS = MI.getOperand(1).getReg();
3378     Register RHS = MI.getOperand(2).getReg();
3379     Register Neg = MRI.createGenericVirtualRegister(Ty);
3380     MIRBuilder.buildFNeg(Neg, RHS);
3381     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3382     MI.eraseFromParent();
3383     return Legalized;
3384   }
3385   case TargetOpcode::G_FMAD:
3386     return lowerFMad(MI);
3387   case TargetOpcode::G_FFLOOR:
3388     return lowerFFloor(MI);
3389   case TargetOpcode::G_INTRINSIC_ROUND:
3390     return lowerIntrinsicRound(MI);
3391   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3392     // Since round even is the assumed rounding mode for unconstrained FP
3393     // operations, rint and roundeven are the same operation.
3394     changeOpcode(MI, TargetOpcode::G_FRINT);
3395     return Legalized;
3396   }
3397   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3398     Register OldValRes = MI.getOperand(0).getReg();
3399     Register SuccessRes = MI.getOperand(1).getReg();
3400     Register Addr = MI.getOperand(2).getReg();
3401     Register CmpVal = MI.getOperand(3).getReg();
3402     Register NewVal = MI.getOperand(4).getReg();
3403     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3404                                   **MI.memoperands_begin());
3405     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3406     MI.eraseFromParent();
3407     return Legalized;
3408   }
3409   case TargetOpcode::G_LOAD:
3410   case TargetOpcode::G_SEXTLOAD:
3411   case TargetOpcode::G_ZEXTLOAD:
3412     return lowerLoad(cast<GAnyLoad>(MI));
3413   case TargetOpcode::G_STORE:
3414     return lowerStore(cast<GStore>(MI));
3415   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3416   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3417   case TargetOpcode::G_CTLZ:
3418   case TargetOpcode::G_CTTZ:
3419   case TargetOpcode::G_CTPOP:
3420     return lowerBitCount(MI);
3421   case G_UADDO: {
3422     Register Res = MI.getOperand(0).getReg();
3423     Register CarryOut = MI.getOperand(1).getReg();
3424     Register LHS = MI.getOperand(2).getReg();
3425     Register RHS = MI.getOperand(3).getReg();
3426 
3427     MIRBuilder.buildAdd(Res, LHS, RHS);
3428     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3429 
3430     MI.eraseFromParent();
3431     return Legalized;
3432   }
3433   case G_UADDE: {
3434     Register Res = MI.getOperand(0).getReg();
3435     Register CarryOut = MI.getOperand(1).getReg();
3436     Register LHS = MI.getOperand(2).getReg();
3437     Register RHS = MI.getOperand(3).getReg();
3438     Register CarryIn = MI.getOperand(4).getReg();
3439     LLT Ty = MRI.getType(Res);
3440 
3441     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3442     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3443     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3444     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3445 
3446     MI.eraseFromParent();
3447     return Legalized;
3448   }
3449   case G_USUBO: {
3450     Register Res = MI.getOperand(0).getReg();
3451     Register BorrowOut = MI.getOperand(1).getReg();
3452     Register LHS = MI.getOperand(2).getReg();
3453     Register RHS = MI.getOperand(3).getReg();
3454 
3455     MIRBuilder.buildSub(Res, LHS, RHS);
3456     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3457 
3458     MI.eraseFromParent();
3459     return Legalized;
3460   }
3461   case G_USUBE: {
3462     Register Res = MI.getOperand(0).getReg();
3463     Register BorrowOut = MI.getOperand(1).getReg();
3464     Register LHS = MI.getOperand(2).getReg();
3465     Register RHS = MI.getOperand(3).getReg();
3466     Register BorrowIn = MI.getOperand(4).getReg();
3467     const LLT CondTy = MRI.getType(BorrowOut);
3468     const LLT Ty = MRI.getType(Res);
3469 
3470     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3471     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3472     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3473 
3474     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3475     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3476     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3477 
3478     MI.eraseFromParent();
3479     return Legalized;
3480   }
3481   case G_UITOFP:
3482     return lowerUITOFP(MI);
3483   case G_SITOFP:
3484     return lowerSITOFP(MI);
3485   case G_FPTOUI:
3486     return lowerFPTOUI(MI);
3487   case G_FPTOSI:
3488     return lowerFPTOSI(MI);
3489   case G_FPTRUNC:
3490     return lowerFPTRUNC(MI);
3491   case G_FPOWI:
3492     return lowerFPOWI(MI);
3493   case G_SMIN:
3494   case G_SMAX:
3495   case G_UMIN:
3496   case G_UMAX:
3497     return lowerMinMax(MI);
3498   case G_FCOPYSIGN:
3499     return lowerFCopySign(MI);
3500   case G_FMINNUM:
3501   case G_FMAXNUM:
3502     return lowerFMinNumMaxNum(MI);
3503   case G_MERGE_VALUES:
3504     return lowerMergeValues(MI);
3505   case G_UNMERGE_VALUES:
3506     return lowerUnmergeValues(MI);
3507   case TargetOpcode::G_SEXT_INREG: {
3508     assert(MI.getOperand(2).isImm() && "Expected immediate");
3509     int64_t SizeInBits = MI.getOperand(2).getImm();
3510 
3511     Register DstReg = MI.getOperand(0).getReg();
3512     Register SrcReg = MI.getOperand(1).getReg();
3513     LLT DstTy = MRI.getType(DstReg);
3514     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3515 
3516     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3517     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3518     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3519     MI.eraseFromParent();
3520     return Legalized;
3521   }
3522   case G_EXTRACT_VECTOR_ELT:
3523   case G_INSERT_VECTOR_ELT:
3524     return lowerExtractInsertVectorElt(MI);
3525   case G_SHUFFLE_VECTOR:
3526     return lowerShuffleVector(MI);
3527   case G_DYN_STACKALLOC:
3528     return lowerDynStackAlloc(MI);
3529   case G_EXTRACT:
3530     return lowerExtract(MI);
3531   case G_INSERT:
3532     return lowerInsert(MI);
3533   case G_BSWAP:
3534     return lowerBswap(MI);
3535   case G_BITREVERSE:
3536     return lowerBitreverse(MI);
3537   case G_READ_REGISTER:
3538   case G_WRITE_REGISTER:
3539     return lowerReadWriteRegister(MI);
3540   case G_UADDSAT:
3541   case G_USUBSAT: {
3542     // Try to make a reasonable guess about which lowering strategy to use. The
3543     // target can override this with custom lowering and calling the
3544     // implementation functions.
3545     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3546     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3547       return lowerAddSubSatToMinMax(MI);
3548     return lowerAddSubSatToAddoSubo(MI);
3549   }
3550   case G_SADDSAT:
3551   case G_SSUBSAT: {
3552     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3553 
3554     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3555     // since it's a shorter expansion. However, we would need to figure out the
3556     // preferred boolean type for the carry out for the query.
3557     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3558       return lowerAddSubSatToMinMax(MI);
3559     return lowerAddSubSatToAddoSubo(MI);
3560   }
3561   case G_SSHLSAT:
3562   case G_USHLSAT:
3563     return lowerShlSat(MI);
3564   case G_ABS:
3565     return lowerAbsToAddXor(MI);
3566   case G_SELECT:
3567     return lowerSelect(MI);
3568   case G_SDIVREM:
3569   case G_UDIVREM:
3570     return lowerDIVREM(MI);
3571   case G_FSHL:
3572   case G_FSHR:
3573     return lowerFunnelShift(MI);
3574   case G_ROTL:
3575   case G_ROTR:
3576     return lowerRotate(MI);
3577   case G_MEMSET:
3578   case G_MEMCPY:
3579   case G_MEMMOVE:
3580     return lowerMemCpyFamily(MI);
3581   case G_MEMCPY_INLINE:
3582     return lowerMemcpyInline(MI);
3583   GISEL_VECREDUCE_CASES_NONSEQ
3584     return lowerVectorReduction(MI);
3585   }
3586 }
3587 
3588 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3589                                                   Align MinAlign) const {
3590   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3591   // datalayout for the preferred alignment. Also there should be a target hook
3592   // for this to allow targets to reduce the alignment and ignore the
3593   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3594   // the type.
3595   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3596 }
3597 
3598 MachineInstrBuilder
3599 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3600                                       MachinePointerInfo &PtrInfo) {
3601   MachineFunction &MF = MIRBuilder.getMF();
3602   const DataLayout &DL = MIRBuilder.getDataLayout();
3603   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3604 
3605   unsigned AddrSpace = DL.getAllocaAddrSpace();
3606   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3607 
3608   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3609   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3610 }
3611 
3612 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3613                                         LLT VecTy) {
3614   int64_t IdxVal;
3615   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3616     return IdxReg;
3617 
3618   LLT IdxTy = B.getMRI()->getType(IdxReg);
3619   unsigned NElts = VecTy.getNumElements();
3620   if (isPowerOf2_32(NElts)) {
3621     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3622     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3623   }
3624 
3625   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3626       .getReg(0);
3627 }
3628 
3629 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3630                                                   Register Index) {
3631   LLT EltTy = VecTy.getElementType();
3632 
3633   // Calculate the element offset and add it to the pointer.
3634   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3635   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3636          "Converting bits to bytes lost precision");
3637 
3638   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3639 
3640   LLT IdxTy = MRI.getType(Index);
3641   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3642                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3643 
3644   LLT PtrTy = MRI.getType(VecPtr);
3645   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3646 }
3647 
3648 #ifndef NDEBUG
3649 /// Check that all vector operands have same number of elements. Other operands
3650 /// should be listed in NonVecOp.
3651 static bool hasSameNumEltsOnAllVectorOperands(
3652     GenericMachineInstr &MI, MachineRegisterInfo &MRI,
3653     std::initializer_list<unsigned> NonVecOpIndices) {
3654   if (MI.getNumMemOperands() != 0)
3655     return false;
3656 
3657   LLT VecTy = MRI.getType(MI.getReg(0));
3658   if (!VecTy.isVector())
3659     return false;
3660   unsigned NumElts = VecTy.getNumElements();
3661 
3662   for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) {
3663     MachineOperand &Op = MI.getOperand(OpIdx);
3664     if (!Op.isReg()) {
3665       if (!is_contained(NonVecOpIndices, OpIdx))
3666         return false;
3667       continue;
3668     }
3669 
3670     LLT Ty = MRI.getType(Op.getReg());
3671     if (!Ty.isVector()) {
3672       if (!is_contained(NonVecOpIndices, OpIdx))
3673         return false;
3674       continue;
3675     }
3676 
3677     if (Ty.getNumElements() != NumElts)
3678       return false;
3679   }
3680 
3681   return true;
3682 }
3683 #endif
3684 
3685 /// Fill \p DstOps with DstOps that have same number of elements combined as
3686 /// the Ty. These DstOps have either scalar type when \p NumElts = 1 or are
3687 /// vectors with \p NumElts elements. When Ty.getNumElements() is not multiple
3688 /// of \p NumElts last DstOp (leftover) has fewer then \p NumElts elements.
3689 static void makeDstOps(SmallVectorImpl<DstOp> &DstOps, LLT Ty,
3690                        unsigned NumElts) {
3691   LLT LeftoverTy;
3692   assert(Ty.isVector() && "Expected vector type");
3693   LLT EltTy = Ty.getElementType();
3694   LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy);
3695   int NumParts, NumLeftover;
3696   std::tie(NumParts, NumLeftover) =
3697       getNarrowTypeBreakDown(Ty, NarrowTy, LeftoverTy);
3698 
3699   assert(NumParts > 0 && "Error in getNarrowTypeBreakDown");
3700   for (int i = 0; i < NumParts; ++i) {
3701     DstOps.push_back(NarrowTy);
3702   }
3703 
3704   if (LeftoverTy.isValid()) {
3705     assert(NumLeftover == 1 && "expected exactly one leftover");
3706     DstOps.push_back(LeftoverTy);
3707   }
3708 }
3709 
3710 /// Operand \p Op is used on \p N sub-instructions. Fill \p Ops with \p N SrcOps
3711 /// made from \p Op depending on operand type.
3712 static void broadcastSrcOp(SmallVectorImpl<SrcOp> &Ops, unsigned N,
3713                            MachineOperand &Op) {
3714   for (unsigned i = 0; i < N; ++i) {
3715     if (Op.isReg())
3716       Ops.push_back(Op.getReg());
3717     else if (Op.isImm())
3718       Ops.push_back(Op.getImm());
3719     else if (Op.isPredicate())
3720       Ops.push_back(static_cast<CmpInst::Predicate>(Op.getPredicate()));
3721     else
3722       llvm_unreachable("Unsupported type");
3723   }
3724 }
3725 
3726 // Handle splitting vector operations which need to have the same number of
3727 // elements in each type index, but each type index may have a different element
3728 // type.
3729 //
3730 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3731 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3732 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3733 //
3734 // Also handles some irregular breakdown cases, e.g.
3735 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3736 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3737 //             s64 = G_SHL s64, s32
3738 LegalizerHelper::LegalizeResult
3739 LegalizerHelper::fewerElementsVectorMultiEltType(
3740     GenericMachineInstr &MI, unsigned NumElts,
3741     std::initializer_list<unsigned> NonVecOpIndices) {
3742   assert(hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) &&
3743          "Non-compatible opcode or not specified non-vector operands");
3744   unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements();
3745 
3746   unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs();
3747   unsigned NumDefs = MI.getNumDefs();
3748 
3749   // Create DstOps (sub-vectors with NumElts elts + Leftover) for each output.
3750   // Build instructions with DstOps to use instruction found by CSE directly.
3751   // CSE copies found instruction into given vreg when building with vreg dest.
3752   SmallVector<SmallVector<DstOp, 8>, 2> OutputOpsPieces(NumDefs);
3753   // Output registers will be taken from created instructions.
3754   SmallVector<SmallVector<Register, 8>, 2> OutputRegs(NumDefs);
3755   for (unsigned i = 0; i < NumDefs; ++i) {
3756     makeDstOps(OutputOpsPieces[i], MRI.getType(MI.getReg(i)), NumElts);
3757   }
3758 
3759   // Split vector input operands into sub-vectors with NumElts elts + Leftover.
3760   // Operands listed in NonVecOpIndices will be used as is without splitting;
3761   // examples: compare predicate in icmp and fcmp (op 1), vector select with i1
3762   // scalar condition (op 1), immediate in sext_inreg (op 2).
3763   SmallVector<SmallVector<SrcOp, 8>, 3> InputOpsPieces(NumInputs);
3764   for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands();
3765        ++UseIdx, ++UseNo) {
3766     if (is_contained(NonVecOpIndices, UseIdx)) {
3767       broadcastSrcOp(InputOpsPieces[UseNo], OutputOpsPieces[0].size(),
3768                      MI.getOperand(UseIdx));
3769     } else {
3770       SmallVector<Register, 8> SplitPieces;
3771       extractVectorParts(MI.getReg(UseIdx), NumElts, SplitPieces);
3772       for (auto Reg : SplitPieces)
3773         InputOpsPieces[UseNo].push_back(Reg);
3774     }
3775   }
3776 
3777   unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0;
3778 
3779   // Take i-th piece of each input operand split and build sub-vector/scalar
3780   // instruction. Set i-th DstOp(s) from OutputOpsPieces as destination(s).
3781   for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) {
3782     SmallVector<DstOp, 2> Defs;
3783     for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo)
3784       Defs.push_back(OutputOpsPieces[DstNo][i]);
3785 
3786     SmallVector<SrcOp, 3> Uses;
3787     for (unsigned InputNo = 0; InputNo < NumInputs; ++InputNo)
3788       Uses.push_back(InputOpsPieces[InputNo][i]);
3789 
3790     auto I = MIRBuilder.buildInstr(MI.getOpcode(), Defs, Uses, MI.getFlags());
3791     for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo)
3792       OutputRegs[DstNo].push_back(I.getReg(DstNo));
3793   }
3794 
3795   // Merge small outputs into MI's output for each def operand.
3796   if (NumLeftovers) {
3797     for (unsigned i = 0; i < NumDefs; ++i)
3798       mergeMixedSubvectors(MI.getReg(i), OutputRegs[i]);
3799   } else {
3800     for (unsigned i = 0; i < NumDefs; ++i)
3801       MIRBuilder.buildMerge(MI.getReg(i), OutputRegs[i]);
3802   }
3803 
3804   MI.eraseFromParent();
3805   return Legalized;
3806 }
3807 
3808 LegalizerHelper::LegalizeResult
3809 LegalizerHelper::fewerElementsVectorPhi(GenericMachineInstr &MI,
3810                                         unsigned NumElts) {
3811   unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements();
3812 
3813   unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs();
3814   unsigned NumDefs = MI.getNumDefs();
3815 
3816   SmallVector<DstOp, 8> OutputOpsPieces;
3817   SmallVector<Register, 8> OutputRegs;
3818   makeDstOps(OutputOpsPieces, MRI.getType(MI.getReg(0)), NumElts);
3819 
3820   // Instructions that perform register split will be inserted in basic block
3821   // where register is defined (basic block is in the next operand).
3822   SmallVector<SmallVector<Register, 8>, 3> InputOpsPieces(NumInputs / 2);
3823   for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands();
3824        UseIdx += 2, ++UseNo) {
3825     MachineBasicBlock &OpMBB = *MI.getOperand(UseIdx + 1).getMBB();
3826     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3827     extractVectorParts(MI.getReg(UseIdx), NumElts, InputOpsPieces[UseNo]);
3828   }
3829 
3830   // Build PHIs with fewer elements.
3831   unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0;
3832   MIRBuilder.setInsertPt(*MI.getParent(), MI);
3833   for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) {
3834     auto Phi = MIRBuilder.buildInstr(TargetOpcode::G_PHI);
3835     Phi.addDef(
3836         MRI.createGenericVirtualRegister(OutputOpsPieces[i].getLLTTy(MRI)));
3837     OutputRegs.push_back(Phi.getReg(0));
3838 
3839     for (unsigned j = 0; j < NumInputs / 2; ++j) {
3840       Phi.addUse(InputOpsPieces[j][i]);
3841       Phi.add(MI.getOperand(1 + j * 2 + 1));
3842     }
3843   }
3844 
3845   // Merge small outputs into MI's def.
3846   if (NumLeftovers) {
3847     mergeMixedSubvectors(MI.getReg(0), OutputRegs);
3848   } else {
3849     MIRBuilder.buildMerge(MI.getReg(0), OutputRegs);
3850   }
3851 
3852   MI.eraseFromParent();
3853   return Legalized;
3854 }
3855 
3856 LegalizerHelper::LegalizeResult
3857 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3858                                                   unsigned TypeIdx,
3859                                                   LLT NarrowTy) {
3860   const int NumDst = MI.getNumOperands() - 1;
3861   const Register SrcReg = MI.getOperand(NumDst).getReg();
3862   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3863   LLT SrcTy = MRI.getType(SrcReg);
3864 
3865   if (TypeIdx != 1 || NarrowTy == DstTy)
3866     return UnableToLegalize;
3867 
3868   // Requires compatible types. Otherwise SrcReg should have been defined by
3869   // merge-like instruction that would get artifact combined. Most likely
3870   // instruction that defines SrcReg has to perform more/fewer elements
3871   // legalization compatible with NarrowTy.
3872   assert(SrcTy.isVector() && NarrowTy.isVector() && "Expected vector types");
3873   assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
3874 
3875   if ((SrcTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) ||
3876       (NarrowTy.getSizeInBits() % DstTy.getSizeInBits() != 0))
3877     return UnableToLegalize;
3878 
3879   // This is most likely DstTy (smaller then register size) packed in SrcTy
3880   // (larger then register size) and since unmerge was not combined it will be
3881   // lowered to bit sequence extracts from register. Unpack SrcTy to NarrowTy
3882   // (register size) pieces first. Then unpack each of NarrowTy pieces to DstTy.
3883 
3884   // %1:_(DstTy), %2, %3, %4 = G_UNMERGE_VALUES %0:_(SrcTy)
3885   //
3886   // %5:_(NarrowTy), %6 = G_UNMERGE_VALUES %0:_(SrcTy) - reg sequence
3887   // %1:_(DstTy), %2 = G_UNMERGE_VALUES %5:_(NarrowTy) - sequence of bits in reg
3888   // %3:_(DstTy), %4 = G_UNMERGE_VALUES %6:_(NarrowTy)
3889   auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, SrcReg);
3890   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3891   const int PartsPerUnmerge = NumDst / NumUnmerge;
3892 
3893   for (int I = 0; I != NumUnmerge; ++I) {
3894     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3895 
3896     for (int J = 0; J != PartsPerUnmerge; ++J)
3897       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3898     MIB.addUse(Unmerge.getReg(I));
3899   }
3900 
3901   MI.eraseFromParent();
3902   return Legalized;
3903 }
3904 
3905 LegalizerHelper::LegalizeResult
3906 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3907                                           LLT NarrowTy) {
3908   Register DstReg = MI.getOperand(0).getReg();
3909   LLT DstTy = MRI.getType(DstReg);
3910   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3911   // Requires compatible types. Otherwise user of DstReg did not perform unmerge
3912   // that should have been artifact combined. Most likely instruction that uses
3913   // DstReg has to do more/fewer elements legalization compatible with NarrowTy.
3914   assert(DstTy.isVector() && NarrowTy.isVector() && "Expected vector types");
3915   assert((DstTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
3916   if (NarrowTy == SrcTy)
3917     return UnableToLegalize;
3918 
3919   // This attempts to lower part of LCMTy merge/unmerge sequence. Intended use
3920   // is for old mir tests. Since the changes to more/fewer elements it should no
3921   // longer be possible to generate MIR like this when starting from llvm-ir
3922   // because LCMTy approach was replaced with merge/unmerge to vector elements.
3923   if (TypeIdx == 1) {
3924     assert(SrcTy.isVector() && "Expected vector types");
3925     assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
3926     if ((DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) ||
3927         (NarrowTy.getNumElements() >= SrcTy.getNumElements()))
3928       return UnableToLegalize;
3929     // %2:_(DstTy) = G_CONCAT_VECTORS %0:_(SrcTy), %1:_(SrcTy)
3930     //
3931     // %3:_(EltTy), %4, %5 = G_UNMERGE_VALUES %0:_(SrcTy)
3932     // %6:_(EltTy), %7, %8 = G_UNMERGE_VALUES %1:_(SrcTy)
3933     // %9:_(NarrowTy) = G_BUILD_VECTOR %3:_(EltTy), %4
3934     // %10:_(NarrowTy) = G_BUILD_VECTOR %5:_(EltTy), %6
3935     // %11:_(NarrowTy) = G_BUILD_VECTOR %7:_(EltTy), %8
3936     // %2:_(DstTy) = G_CONCAT_VECTORS %9:_(NarrowTy), %10, %11
3937 
3938     SmallVector<Register, 8> Elts;
3939     LLT EltTy = MRI.getType(MI.getOperand(1).getReg()).getScalarType();
3940     for (unsigned i = 1; i < MI.getNumOperands(); ++i) {
3941       auto Unmerge = MIRBuilder.buildUnmerge(EltTy, MI.getOperand(i).getReg());
3942       for (unsigned j = 0; j < Unmerge->getNumDefs(); ++j)
3943         Elts.push_back(Unmerge.getReg(j));
3944     }
3945 
3946     SmallVector<Register, 8> NarrowTyElts;
3947     unsigned NumNarrowTyElts = NarrowTy.getNumElements();
3948     unsigned NumNarrowTyPieces = DstTy.getNumElements() / NumNarrowTyElts;
3949     for (unsigned i = 0, Offset = 0; i < NumNarrowTyPieces;
3950          ++i, Offset += NumNarrowTyElts) {
3951       ArrayRef<Register> Pieces(&Elts[Offset], NumNarrowTyElts);
3952       NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0));
3953     }
3954 
3955     MIRBuilder.buildMerge(DstReg, NarrowTyElts);
3956     MI.eraseFromParent();
3957     return Legalized;
3958   }
3959 
3960   assert(TypeIdx == 0 && "Bad type index");
3961   if ((NarrowTy.getSizeInBits() % SrcTy.getSizeInBits() != 0) ||
3962       (DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0))
3963     return UnableToLegalize;
3964 
3965   // This is most likely SrcTy (smaller then register size) packed in DstTy
3966   // (larger then register size) and since merge was not combined it will be
3967   // lowered to bit sequence packing into register. Merge SrcTy to NarrowTy
3968   // (register size) pieces first. Then merge each of NarrowTy pieces to DstTy.
3969 
3970   // %0:_(DstTy) = G_MERGE_VALUES %1:_(SrcTy), %2, %3, %4
3971   //
3972   // %5:_(NarrowTy) = G_MERGE_VALUES %1:_(SrcTy), %2 - sequence of bits in reg
3973   // %6:_(NarrowTy) = G_MERGE_VALUES %3:_(SrcTy), %4
3974   // %0:_(DstTy)  = G_MERGE_VALUES %5:_(NarrowTy), %6 - reg sequence
3975   SmallVector<Register, 8> NarrowTyElts;
3976   unsigned NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3977   unsigned NumSrcElts = SrcTy.isVector() ? SrcTy.getNumElements() : 1;
3978   unsigned NumElts = NarrowTy.getNumElements() / NumSrcElts;
3979   for (unsigned i = 0; i < NumParts; ++i) {
3980     SmallVector<Register, 8> Sources;
3981     for (unsigned j = 0; j < NumElts; ++j)
3982       Sources.push_back(MI.getOperand(1 + i * NumElts + j).getReg());
3983     NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Sources).getReg(0));
3984   }
3985 
3986   MIRBuilder.buildMerge(DstReg, NarrowTyElts);
3987   MI.eraseFromParent();
3988   return Legalized;
3989 }
3990 
3991 LegalizerHelper::LegalizeResult
3992 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3993                                                            unsigned TypeIdx,
3994                                                            LLT NarrowVecTy) {
3995   Register DstReg = MI.getOperand(0).getReg();
3996   Register SrcVec = MI.getOperand(1).getReg();
3997   Register InsertVal;
3998   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3999 
4000   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
4001   if (IsInsert)
4002     InsertVal = MI.getOperand(2).getReg();
4003 
4004   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
4005 
4006   // TODO: Handle total scalarization case.
4007   if (!NarrowVecTy.isVector())
4008     return UnableToLegalize;
4009 
4010   LLT VecTy = MRI.getType(SrcVec);
4011 
4012   // If the index is a constant, we can really break this down as you would
4013   // expect, and index into the target size pieces.
4014   int64_t IdxVal;
4015   auto MaybeCst = getIConstantVRegValWithLookThrough(Idx, MRI);
4016   if (MaybeCst) {
4017     IdxVal = MaybeCst->Value.getSExtValue();
4018     // Avoid out of bounds indexing the pieces.
4019     if (IdxVal >= VecTy.getNumElements()) {
4020       MIRBuilder.buildUndef(DstReg);
4021       MI.eraseFromParent();
4022       return Legalized;
4023     }
4024 
4025     SmallVector<Register, 8> VecParts;
4026     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
4027 
4028     // Build a sequence of NarrowTy pieces in VecParts for this operand.
4029     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
4030                                     TargetOpcode::G_ANYEXT);
4031 
4032     unsigned NewNumElts = NarrowVecTy.getNumElements();
4033 
4034     LLT IdxTy = MRI.getType(Idx);
4035     int64_t PartIdx = IdxVal / NewNumElts;
4036     auto NewIdx =
4037         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
4038 
4039     if (IsInsert) {
4040       LLT PartTy = MRI.getType(VecParts[PartIdx]);
4041 
4042       // Use the adjusted index to insert into one of the subvectors.
4043       auto InsertPart = MIRBuilder.buildInsertVectorElement(
4044           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
4045       VecParts[PartIdx] = InsertPart.getReg(0);
4046 
4047       // Recombine the inserted subvector with the others to reform the result
4048       // vector.
4049       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
4050     } else {
4051       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
4052     }
4053 
4054     MI.eraseFromParent();
4055     return Legalized;
4056   }
4057 
4058   // With a variable index, we can't perform the operation in a smaller type, so
4059   // we're forced to expand this.
4060   //
4061   // TODO: We could emit a chain of compare/select to figure out which piece to
4062   // index.
4063   return lowerExtractInsertVectorElt(MI);
4064 }
4065 
4066 LegalizerHelper::LegalizeResult
4067 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx,
4068                                       LLT NarrowTy) {
4069   // FIXME: Don't know how to handle secondary types yet.
4070   if (TypeIdx != 0)
4071     return UnableToLegalize;
4072 
4073   // This implementation doesn't work for atomics. Give up instead of doing
4074   // something invalid.
4075   if (LdStMI.isAtomic())
4076     return UnableToLegalize;
4077 
4078   bool IsLoad = isa<GLoad>(LdStMI);
4079   Register ValReg = LdStMI.getReg(0);
4080   Register AddrReg = LdStMI.getPointerReg();
4081   LLT ValTy = MRI.getType(ValReg);
4082 
4083   // FIXME: Do we need a distinct NarrowMemory legalize action?
4084   if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) {
4085     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
4086     return UnableToLegalize;
4087   }
4088 
4089   int NumParts = -1;
4090   int NumLeftover = -1;
4091   LLT LeftoverTy;
4092   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
4093   if (IsLoad) {
4094     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
4095   } else {
4096     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
4097                      NarrowLeftoverRegs)) {
4098       NumParts = NarrowRegs.size();
4099       NumLeftover = NarrowLeftoverRegs.size();
4100     }
4101   }
4102 
4103   if (NumParts == -1)
4104     return UnableToLegalize;
4105 
4106   LLT PtrTy = MRI.getType(AddrReg);
4107   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
4108 
4109   unsigned TotalSize = ValTy.getSizeInBits();
4110 
4111   // Split the load/store into PartTy sized pieces starting at Offset. If this
4112   // is a load, return the new registers in ValRegs. For a store, each elements
4113   // of ValRegs should be PartTy. Returns the next offset that needs to be
4114   // handled.
4115   bool isBigEndian = MIRBuilder.getDataLayout().isBigEndian();
4116   auto MMO = LdStMI.getMMO();
4117   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
4118                              unsigned NumParts, unsigned Offset) -> unsigned {
4119     MachineFunction &MF = MIRBuilder.getMF();
4120     unsigned PartSize = PartTy.getSizeInBits();
4121     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
4122          ++Idx) {
4123       unsigned ByteOffset = Offset / 8;
4124       Register NewAddrReg;
4125 
4126       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
4127 
4128       MachineMemOperand *NewMMO =
4129           MF.getMachineMemOperand(&MMO, ByteOffset, PartTy);
4130 
4131       if (IsLoad) {
4132         Register Dst = MRI.createGenericVirtualRegister(PartTy);
4133         ValRegs.push_back(Dst);
4134         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
4135       } else {
4136         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
4137       }
4138       Offset = isBigEndian ? Offset - PartSize : Offset + PartSize;
4139     }
4140 
4141     return Offset;
4142   };
4143 
4144   unsigned Offset = isBigEndian ? TotalSize - NarrowTy.getSizeInBits() : 0;
4145   unsigned HandledOffset =
4146       splitTypePieces(NarrowTy, NarrowRegs, NumParts, Offset);
4147 
4148   // Handle the rest of the register if this isn't an even type breakdown.
4149   if (LeftoverTy.isValid())
4150     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, NumLeftover, HandledOffset);
4151 
4152   if (IsLoad) {
4153     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
4154                 LeftoverTy, NarrowLeftoverRegs);
4155   }
4156 
4157   LdStMI.eraseFromParent();
4158   return Legalized;
4159 }
4160 
4161 LegalizerHelper::LegalizeResult
4162 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4163                                      LLT NarrowTy) {
4164   using namespace TargetOpcode;
4165   GenericMachineInstr &GMI = cast<GenericMachineInstr>(MI);
4166   unsigned NumElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
4167 
4168   switch (MI.getOpcode()) {
4169   case G_IMPLICIT_DEF:
4170   case G_TRUNC:
4171   case G_AND:
4172   case G_OR:
4173   case G_XOR:
4174   case G_ADD:
4175   case G_SUB:
4176   case G_MUL:
4177   case G_PTR_ADD:
4178   case G_SMULH:
4179   case G_UMULH:
4180   case G_FADD:
4181   case G_FMUL:
4182   case G_FSUB:
4183   case G_FNEG:
4184   case G_FABS:
4185   case G_FCANONICALIZE:
4186   case G_FDIV:
4187   case G_FREM:
4188   case G_FMA:
4189   case G_FMAD:
4190   case G_FPOW:
4191   case G_FEXP:
4192   case G_FEXP2:
4193   case G_FLOG:
4194   case G_FLOG2:
4195   case G_FLOG10:
4196   case G_FNEARBYINT:
4197   case G_FCEIL:
4198   case G_FFLOOR:
4199   case G_FRINT:
4200   case G_INTRINSIC_ROUND:
4201   case G_INTRINSIC_ROUNDEVEN:
4202   case G_INTRINSIC_TRUNC:
4203   case G_FCOS:
4204   case G_FSIN:
4205   case G_FSQRT:
4206   case G_BSWAP:
4207   case G_BITREVERSE:
4208   case G_SDIV:
4209   case G_UDIV:
4210   case G_SREM:
4211   case G_UREM:
4212   case G_SDIVREM:
4213   case G_UDIVREM:
4214   case G_SMIN:
4215   case G_SMAX:
4216   case G_UMIN:
4217   case G_UMAX:
4218   case G_ABS:
4219   case G_FMINNUM:
4220   case G_FMAXNUM:
4221   case G_FMINNUM_IEEE:
4222   case G_FMAXNUM_IEEE:
4223   case G_FMINIMUM:
4224   case G_FMAXIMUM:
4225   case G_FSHL:
4226   case G_FSHR:
4227   case G_ROTL:
4228   case G_ROTR:
4229   case G_FREEZE:
4230   case G_SADDSAT:
4231   case G_SSUBSAT:
4232   case G_UADDSAT:
4233   case G_USUBSAT:
4234   case G_UMULO:
4235   case G_SMULO:
4236   case G_SHL:
4237   case G_LSHR:
4238   case G_ASHR:
4239   case G_SSHLSAT:
4240   case G_USHLSAT:
4241   case G_CTLZ:
4242   case G_CTLZ_ZERO_UNDEF:
4243   case G_CTTZ:
4244   case G_CTTZ_ZERO_UNDEF:
4245   case G_CTPOP:
4246   case G_FCOPYSIGN:
4247   case G_ZEXT:
4248   case G_SEXT:
4249   case G_ANYEXT:
4250   case G_FPEXT:
4251   case G_FPTRUNC:
4252   case G_SITOFP:
4253   case G_UITOFP:
4254   case G_FPTOSI:
4255   case G_FPTOUI:
4256   case G_INTTOPTR:
4257   case G_PTRTOINT:
4258   case G_ADDRSPACE_CAST:
4259   case G_UADDO:
4260   case G_USUBO:
4261   case G_UADDE:
4262   case G_USUBE:
4263   case G_SADDO:
4264   case G_SSUBO:
4265   case G_SADDE:
4266   case G_SSUBE:
4267     return fewerElementsVectorMultiEltType(GMI, NumElts);
4268   case G_ICMP:
4269   case G_FCMP:
4270     return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*cpm predicate*/});
4271   case G_SELECT:
4272     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4273       return fewerElementsVectorMultiEltType(GMI, NumElts);
4274     return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*scalar cond*/});
4275   case G_PHI:
4276     return fewerElementsVectorPhi(GMI, NumElts);
4277   case G_UNMERGE_VALUES:
4278     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4279   case G_BUILD_VECTOR:
4280     assert(TypeIdx == 0 && "not a vector type index");
4281     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4282   case G_CONCAT_VECTORS:
4283     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4284       return UnableToLegalize;
4285     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4286   case G_EXTRACT_VECTOR_ELT:
4287   case G_INSERT_VECTOR_ELT:
4288     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4289   case G_LOAD:
4290   case G_STORE:
4291     return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy);
4292   case G_SEXT_INREG:
4293     return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*imm*/});
4294   GISEL_VECREDUCE_CASES_NONSEQ
4295     return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4296   case G_SHUFFLE_VECTOR:
4297     return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy);
4298   default:
4299     return UnableToLegalize;
4300   }
4301 }
4302 
4303 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle(
4304     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4305   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
4306   if (TypeIdx != 0)
4307     return UnableToLegalize;
4308 
4309   Register DstReg = MI.getOperand(0).getReg();
4310   Register Src1Reg = MI.getOperand(1).getReg();
4311   Register Src2Reg = MI.getOperand(2).getReg();
4312   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4313   LLT DstTy = MRI.getType(DstReg);
4314   LLT Src1Ty = MRI.getType(Src1Reg);
4315   LLT Src2Ty = MRI.getType(Src2Reg);
4316   // The shuffle should be canonicalized by now.
4317   if (DstTy != Src1Ty)
4318     return UnableToLegalize;
4319   if (DstTy != Src2Ty)
4320     return UnableToLegalize;
4321 
4322   if (!isPowerOf2_32(DstTy.getNumElements()))
4323     return UnableToLegalize;
4324 
4325   // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly.
4326   // Further legalization attempts will be needed to do split further.
4327   NarrowTy =
4328       DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2));
4329   unsigned NewElts = NarrowTy.getNumElements();
4330 
4331   SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs;
4332   extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs);
4333   extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs);
4334   Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0],
4335                         SplitSrc2Regs[1]};
4336 
4337   Register Hi, Lo;
4338 
4339   // If Lo or Hi uses elements from at most two of the four input vectors, then
4340   // express it as a vector shuffle of those two inputs.  Otherwise extract the
4341   // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
4342   SmallVector<int, 16> Ops;
4343   for (unsigned High = 0; High < 2; ++High) {
4344     Register &Output = High ? Hi : Lo;
4345 
4346     // Build a shuffle mask for the output, discovering on the fly which
4347     // input vectors to use as shuffle operands (recorded in InputUsed).
4348     // If building a suitable shuffle vector proves too hard, then bail
4349     // out with useBuildVector set.
4350     unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered.
4351     unsigned FirstMaskIdx = High * NewElts;
4352     bool UseBuildVector = false;
4353     for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4354       // The mask element.  This indexes into the input.
4355       int Idx = Mask[FirstMaskIdx + MaskOffset];
4356 
4357       // The input vector this mask element indexes into.
4358       unsigned Input = (unsigned)Idx / NewElts;
4359 
4360       if (Input >= array_lengthof(Inputs)) {
4361         // The mask element does not index into any input vector.
4362         Ops.push_back(-1);
4363         continue;
4364       }
4365 
4366       // Turn the index into an offset from the start of the input vector.
4367       Idx -= Input * NewElts;
4368 
4369       // Find or create a shuffle vector operand to hold this input.
4370       unsigned OpNo;
4371       for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
4372         if (InputUsed[OpNo] == Input) {
4373           // This input vector is already an operand.
4374           break;
4375         } else if (InputUsed[OpNo] == -1U) {
4376           // Create a new operand for this input vector.
4377           InputUsed[OpNo] = Input;
4378           break;
4379         }
4380       }
4381 
4382       if (OpNo >= array_lengthof(InputUsed)) {
4383         // More than two input vectors used!  Give up on trying to create a
4384         // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
4385         UseBuildVector = true;
4386         break;
4387       }
4388 
4389       // Add the mask index for the new shuffle vector.
4390       Ops.push_back(Idx + OpNo * NewElts);
4391     }
4392 
4393     if (UseBuildVector) {
4394       LLT EltTy = NarrowTy.getElementType();
4395       SmallVector<Register, 16> SVOps;
4396 
4397       // Extract the input elements by hand.
4398       for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4399         // The mask element.  This indexes into the input.
4400         int Idx = Mask[FirstMaskIdx + MaskOffset];
4401 
4402         // The input vector this mask element indexes into.
4403         unsigned Input = (unsigned)Idx / NewElts;
4404 
4405         if (Input >= array_lengthof(Inputs)) {
4406           // The mask element is "undef" or indexes off the end of the input.
4407           SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0));
4408           continue;
4409         }
4410 
4411         // Turn the index into an offset from the start of the input vector.
4412         Idx -= Input * NewElts;
4413 
4414         // Extract the vector element by hand.
4415         SVOps.push_back(MIRBuilder
4416                             .buildExtractVectorElement(
4417                                 EltTy, Inputs[Input],
4418                                 MIRBuilder.buildConstant(LLT::scalar(32), Idx))
4419                             .getReg(0));
4420       }
4421 
4422       // Construct the Lo/Hi output using a G_BUILD_VECTOR.
4423       Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0);
4424     } else if (InputUsed[0] == -1U) {
4425       // No input vectors were used! The result is undefined.
4426       Output = MIRBuilder.buildUndef(NarrowTy).getReg(0);
4427     } else {
4428       Register Op0 = Inputs[InputUsed[0]];
4429       // If only one input was used, use an undefined vector for the other.
4430       Register Op1 = InputUsed[1] == -1U
4431                          ? MIRBuilder.buildUndef(NarrowTy).getReg(0)
4432                          : Inputs[InputUsed[1]];
4433       // At least one input vector was used. Create a new shuffle vector.
4434       Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0);
4435     }
4436 
4437     Ops.clear();
4438   }
4439 
4440   MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi});
4441   MI.eraseFromParent();
4442   return Legalized;
4443 }
4444 
4445 static unsigned getScalarOpcForReduction(unsigned Opc) {
4446   unsigned ScalarOpc;
4447   switch (Opc) {
4448   case TargetOpcode::G_VECREDUCE_FADD:
4449     ScalarOpc = TargetOpcode::G_FADD;
4450     break;
4451   case TargetOpcode::G_VECREDUCE_FMUL:
4452     ScalarOpc = TargetOpcode::G_FMUL;
4453     break;
4454   case TargetOpcode::G_VECREDUCE_FMAX:
4455     ScalarOpc = TargetOpcode::G_FMAXNUM;
4456     break;
4457   case TargetOpcode::G_VECREDUCE_FMIN:
4458     ScalarOpc = TargetOpcode::G_FMINNUM;
4459     break;
4460   case TargetOpcode::G_VECREDUCE_ADD:
4461     ScalarOpc = TargetOpcode::G_ADD;
4462     break;
4463   case TargetOpcode::G_VECREDUCE_MUL:
4464     ScalarOpc = TargetOpcode::G_MUL;
4465     break;
4466   case TargetOpcode::G_VECREDUCE_AND:
4467     ScalarOpc = TargetOpcode::G_AND;
4468     break;
4469   case TargetOpcode::G_VECREDUCE_OR:
4470     ScalarOpc = TargetOpcode::G_OR;
4471     break;
4472   case TargetOpcode::G_VECREDUCE_XOR:
4473     ScalarOpc = TargetOpcode::G_XOR;
4474     break;
4475   case TargetOpcode::G_VECREDUCE_SMAX:
4476     ScalarOpc = TargetOpcode::G_SMAX;
4477     break;
4478   case TargetOpcode::G_VECREDUCE_SMIN:
4479     ScalarOpc = TargetOpcode::G_SMIN;
4480     break;
4481   case TargetOpcode::G_VECREDUCE_UMAX:
4482     ScalarOpc = TargetOpcode::G_UMAX;
4483     break;
4484   case TargetOpcode::G_VECREDUCE_UMIN:
4485     ScalarOpc = TargetOpcode::G_UMIN;
4486     break;
4487   default:
4488     llvm_unreachable("Unhandled reduction");
4489   }
4490   return ScalarOpc;
4491 }
4492 
4493 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4494     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4495   unsigned Opc = MI.getOpcode();
4496   assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&
4497          Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
4498          "Sequential reductions not expected");
4499 
4500   if (TypeIdx != 1)
4501     return UnableToLegalize;
4502 
4503   // The semantics of the normal non-sequential reductions allow us to freely
4504   // re-associate the operation.
4505   Register SrcReg = MI.getOperand(1).getReg();
4506   LLT SrcTy = MRI.getType(SrcReg);
4507   Register DstReg = MI.getOperand(0).getReg();
4508   LLT DstTy = MRI.getType(DstReg);
4509 
4510   if (NarrowTy.isVector() &&
4511       (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0))
4512     return UnableToLegalize;
4513 
4514   unsigned ScalarOpc = getScalarOpcForReduction(Opc);
4515   SmallVector<Register> SplitSrcs;
4516   // If NarrowTy is a scalar then we're being asked to scalarize.
4517   const unsigned NumParts =
4518       NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements()
4519                           : SrcTy.getNumElements();
4520 
4521   extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
4522   if (NarrowTy.isScalar()) {
4523     if (DstTy != NarrowTy)
4524       return UnableToLegalize; // FIXME: handle implicit extensions.
4525 
4526     if (isPowerOf2_32(NumParts)) {
4527       // Generate a tree of scalar operations to reduce the critical path.
4528       SmallVector<Register> PartialResults;
4529       unsigned NumPartsLeft = NumParts;
4530       while (NumPartsLeft > 1) {
4531         for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) {
4532           PartialResults.emplace_back(
4533               MIRBuilder
4534                   .buildInstr(ScalarOpc, {NarrowTy},
4535                               {SplitSrcs[Idx], SplitSrcs[Idx + 1]})
4536                   .getReg(0));
4537         }
4538         SplitSrcs = PartialResults;
4539         PartialResults.clear();
4540         NumPartsLeft = SplitSrcs.size();
4541       }
4542       assert(SplitSrcs.size() == 1);
4543       MIRBuilder.buildCopy(DstReg, SplitSrcs[0]);
4544       MI.eraseFromParent();
4545       return Legalized;
4546     }
4547     // If we can't generate a tree, then just do sequential operations.
4548     Register Acc = SplitSrcs[0];
4549     for (unsigned Idx = 1; Idx < NumParts; ++Idx)
4550       Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]})
4551                 .getReg(0);
4552     MIRBuilder.buildCopy(DstReg, Acc);
4553     MI.eraseFromParent();
4554     return Legalized;
4555   }
4556   SmallVector<Register> PartialReductions;
4557   for (unsigned Part = 0; Part < NumParts; ++Part) {
4558     PartialReductions.push_back(
4559         MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
4560   }
4561 
4562 
4563   // If the types involved are powers of 2, we can generate intermediate vector
4564   // ops, before generating a final reduction operation.
4565   if (isPowerOf2_32(SrcTy.getNumElements()) &&
4566       isPowerOf2_32(NarrowTy.getNumElements())) {
4567     return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4568   }
4569 
4570   Register Acc = PartialReductions[0];
4571   for (unsigned Part = 1; Part < NumParts; ++Part) {
4572     if (Part == NumParts - 1) {
4573       MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4574                             {Acc, PartialReductions[Part]});
4575     } else {
4576       Acc = MIRBuilder
4577                 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4578                 .getReg(0);
4579     }
4580   }
4581   MI.eraseFromParent();
4582   return Legalized;
4583 }
4584 
4585 LegalizerHelper::LegalizeResult
4586 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4587                                         LLT SrcTy, LLT NarrowTy,
4588                                         unsigned ScalarOpc) {
4589   SmallVector<Register> SplitSrcs;
4590   // Split the sources into NarrowTy size pieces.
4591   extractParts(SrcReg, NarrowTy,
4592                SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
4593   // We're going to do a tree reduction using vector operations until we have
4594   // one NarrowTy size value left.
4595   while (SplitSrcs.size() > 1) {
4596     SmallVector<Register> PartialRdxs;
4597     for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4598       Register LHS = SplitSrcs[Idx];
4599       Register RHS = SplitSrcs[Idx + 1];
4600       // Create the intermediate vector op.
4601       Register Res =
4602           MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4603       PartialRdxs.push_back(Res);
4604     }
4605     SplitSrcs = std::move(PartialRdxs);
4606   }
4607   // Finally generate the requested NarrowTy based reduction.
4608   Observer.changingInstr(MI);
4609   MI.getOperand(1).setReg(SplitSrcs[0]);
4610   Observer.changedInstr(MI);
4611   return Legalized;
4612 }
4613 
4614 LegalizerHelper::LegalizeResult
4615 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4616                                              const LLT HalfTy, const LLT AmtTy) {
4617 
4618   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4619   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4620   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4621 
4622   if (Amt.isZero()) {
4623     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4624     MI.eraseFromParent();
4625     return Legalized;
4626   }
4627 
4628   LLT NVT = HalfTy;
4629   unsigned NVTBits = HalfTy.getSizeInBits();
4630   unsigned VTBits = 2 * NVTBits;
4631 
4632   SrcOp Lo(Register(0)), Hi(Register(0));
4633   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4634     if (Amt.ugt(VTBits)) {
4635       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4636     } else if (Amt.ugt(NVTBits)) {
4637       Lo = MIRBuilder.buildConstant(NVT, 0);
4638       Hi = MIRBuilder.buildShl(NVT, InL,
4639                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4640     } else if (Amt == NVTBits) {
4641       Lo = MIRBuilder.buildConstant(NVT, 0);
4642       Hi = InL;
4643     } else {
4644       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4645       auto OrLHS =
4646           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4647       auto OrRHS = MIRBuilder.buildLShr(
4648           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4649       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4650     }
4651   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4652     if (Amt.ugt(VTBits)) {
4653       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4654     } else if (Amt.ugt(NVTBits)) {
4655       Lo = MIRBuilder.buildLShr(NVT, InH,
4656                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4657       Hi = MIRBuilder.buildConstant(NVT, 0);
4658     } else if (Amt == NVTBits) {
4659       Lo = InH;
4660       Hi = MIRBuilder.buildConstant(NVT, 0);
4661     } else {
4662       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4663 
4664       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4665       auto OrRHS = MIRBuilder.buildShl(
4666           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4667 
4668       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4669       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4670     }
4671   } else {
4672     if (Amt.ugt(VTBits)) {
4673       Hi = Lo = MIRBuilder.buildAShr(
4674           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4675     } else if (Amt.ugt(NVTBits)) {
4676       Lo = MIRBuilder.buildAShr(NVT, InH,
4677                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4678       Hi = MIRBuilder.buildAShr(NVT, InH,
4679                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4680     } else if (Amt == NVTBits) {
4681       Lo = InH;
4682       Hi = MIRBuilder.buildAShr(NVT, InH,
4683                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4684     } else {
4685       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4686 
4687       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4688       auto OrRHS = MIRBuilder.buildShl(
4689           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4690 
4691       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4692       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4693     }
4694   }
4695 
4696   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4697   MI.eraseFromParent();
4698 
4699   return Legalized;
4700 }
4701 
4702 // TODO: Optimize if constant shift amount.
4703 LegalizerHelper::LegalizeResult
4704 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4705                                    LLT RequestedTy) {
4706   if (TypeIdx == 1) {
4707     Observer.changingInstr(MI);
4708     narrowScalarSrc(MI, RequestedTy, 2);
4709     Observer.changedInstr(MI);
4710     return Legalized;
4711   }
4712 
4713   Register DstReg = MI.getOperand(0).getReg();
4714   LLT DstTy = MRI.getType(DstReg);
4715   if (DstTy.isVector())
4716     return UnableToLegalize;
4717 
4718   Register Amt = MI.getOperand(2).getReg();
4719   LLT ShiftAmtTy = MRI.getType(Amt);
4720   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4721   if (DstEltSize % 2 != 0)
4722     return UnableToLegalize;
4723 
4724   // Ignore the input type. We can only go to exactly half the size of the
4725   // input. If that isn't small enough, the resulting pieces will be further
4726   // legalized.
4727   const unsigned NewBitSize = DstEltSize / 2;
4728   const LLT HalfTy = LLT::scalar(NewBitSize);
4729   const LLT CondTy = LLT::scalar(1);
4730 
4731   if (auto VRegAndVal = getIConstantVRegValWithLookThrough(Amt, MRI)) {
4732     return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy,
4733                                        ShiftAmtTy);
4734   }
4735 
4736   // TODO: Expand with known bits.
4737 
4738   // Handle the fully general expansion by an unknown amount.
4739   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4740 
4741   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4742   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4743   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4744 
4745   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4746   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4747 
4748   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4749   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4750   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4751 
4752   Register ResultRegs[2];
4753   switch (MI.getOpcode()) {
4754   case TargetOpcode::G_SHL: {
4755     // Short: ShAmt < NewBitSize
4756     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4757 
4758     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4759     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4760     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4761 
4762     // Long: ShAmt >= NewBitSize
4763     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4764     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4765 
4766     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4767     auto Hi = MIRBuilder.buildSelect(
4768         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4769 
4770     ResultRegs[0] = Lo.getReg(0);
4771     ResultRegs[1] = Hi.getReg(0);
4772     break;
4773   }
4774   case TargetOpcode::G_LSHR:
4775   case TargetOpcode::G_ASHR: {
4776     // Short: ShAmt < NewBitSize
4777     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4778 
4779     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4780     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4781     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4782 
4783     // Long: ShAmt >= NewBitSize
4784     MachineInstrBuilder HiL;
4785     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4786       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4787     } else {
4788       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4789       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4790     }
4791     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4792                                      {InH, AmtExcess});     // Lo from Hi part.
4793 
4794     auto Lo = MIRBuilder.buildSelect(
4795         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4796 
4797     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4798 
4799     ResultRegs[0] = Lo.getReg(0);
4800     ResultRegs[1] = Hi.getReg(0);
4801     break;
4802   }
4803   default:
4804     llvm_unreachable("not a shift");
4805   }
4806 
4807   MIRBuilder.buildMerge(DstReg, ResultRegs);
4808   MI.eraseFromParent();
4809   return Legalized;
4810 }
4811 
4812 LegalizerHelper::LegalizeResult
4813 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4814                                        LLT MoreTy) {
4815   assert(TypeIdx == 0 && "Expecting only Idx 0");
4816 
4817   Observer.changingInstr(MI);
4818   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4819     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4820     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4821     moreElementsVectorSrc(MI, MoreTy, I);
4822   }
4823 
4824   MachineBasicBlock &MBB = *MI.getParent();
4825   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4826   moreElementsVectorDst(MI, MoreTy, 0);
4827   Observer.changedInstr(MI);
4828   return Legalized;
4829 }
4830 
4831 LegalizerHelper::LegalizeResult
4832 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4833                                     LLT MoreTy) {
4834   unsigned Opc = MI.getOpcode();
4835   switch (Opc) {
4836   case TargetOpcode::G_IMPLICIT_DEF:
4837   case TargetOpcode::G_LOAD: {
4838     if (TypeIdx != 0)
4839       return UnableToLegalize;
4840     Observer.changingInstr(MI);
4841     moreElementsVectorDst(MI, MoreTy, 0);
4842     Observer.changedInstr(MI);
4843     return Legalized;
4844   }
4845   case TargetOpcode::G_STORE:
4846     if (TypeIdx != 0)
4847       return UnableToLegalize;
4848     Observer.changingInstr(MI);
4849     moreElementsVectorSrc(MI, MoreTy, 0);
4850     Observer.changedInstr(MI);
4851     return Legalized;
4852   case TargetOpcode::G_AND:
4853   case TargetOpcode::G_OR:
4854   case TargetOpcode::G_XOR:
4855   case TargetOpcode::G_ADD:
4856   case TargetOpcode::G_SUB:
4857   case TargetOpcode::G_MUL:
4858   case TargetOpcode::G_FADD:
4859   case TargetOpcode::G_FMUL:
4860   case TargetOpcode::G_UADDSAT:
4861   case TargetOpcode::G_USUBSAT:
4862   case TargetOpcode::G_SADDSAT:
4863   case TargetOpcode::G_SSUBSAT:
4864   case TargetOpcode::G_SMIN:
4865   case TargetOpcode::G_SMAX:
4866   case TargetOpcode::G_UMIN:
4867   case TargetOpcode::G_UMAX:
4868   case TargetOpcode::G_FMINNUM:
4869   case TargetOpcode::G_FMAXNUM:
4870   case TargetOpcode::G_FMINNUM_IEEE:
4871   case TargetOpcode::G_FMAXNUM_IEEE:
4872   case TargetOpcode::G_FMINIMUM:
4873   case TargetOpcode::G_FMAXIMUM: {
4874     Observer.changingInstr(MI);
4875     moreElementsVectorSrc(MI, MoreTy, 1);
4876     moreElementsVectorSrc(MI, MoreTy, 2);
4877     moreElementsVectorDst(MI, MoreTy, 0);
4878     Observer.changedInstr(MI);
4879     return Legalized;
4880   }
4881   case TargetOpcode::G_FMA:
4882   case TargetOpcode::G_FSHR:
4883   case TargetOpcode::G_FSHL: {
4884     Observer.changingInstr(MI);
4885     moreElementsVectorSrc(MI, MoreTy, 1);
4886     moreElementsVectorSrc(MI, MoreTy, 2);
4887     moreElementsVectorSrc(MI, MoreTy, 3);
4888     moreElementsVectorDst(MI, MoreTy, 0);
4889     Observer.changedInstr(MI);
4890     return Legalized;
4891   }
4892   case TargetOpcode::G_EXTRACT:
4893     if (TypeIdx != 1)
4894       return UnableToLegalize;
4895     Observer.changingInstr(MI);
4896     moreElementsVectorSrc(MI, MoreTy, 1);
4897     Observer.changedInstr(MI);
4898     return Legalized;
4899   case TargetOpcode::G_INSERT:
4900   case TargetOpcode::G_FREEZE:
4901   case TargetOpcode::G_FNEG:
4902   case TargetOpcode::G_FABS:
4903   case TargetOpcode::G_BSWAP:
4904   case TargetOpcode::G_FCANONICALIZE:
4905   case TargetOpcode::G_SEXT_INREG:
4906     if (TypeIdx != 0)
4907       return UnableToLegalize;
4908     Observer.changingInstr(MI);
4909     moreElementsVectorSrc(MI, MoreTy, 1);
4910     moreElementsVectorDst(MI, MoreTy, 0);
4911     Observer.changedInstr(MI);
4912     return Legalized;
4913   case TargetOpcode::G_SELECT: {
4914     Register DstReg = MI.getOperand(0).getReg();
4915     Register CondReg = MI.getOperand(1).getReg();
4916     LLT DstTy = MRI.getType(DstReg);
4917     LLT CondTy = MRI.getType(CondReg);
4918     if (TypeIdx == 1) {
4919       if (!CondTy.isScalar() ||
4920           DstTy.getElementCount() != MoreTy.getElementCount())
4921         return UnableToLegalize;
4922 
4923       // This is turning a scalar select of vectors into a vector
4924       // select. Broadcast the select condition.
4925       auto ShufSplat = MIRBuilder.buildShuffleSplat(MoreTy, CondReg);
4926       Observer.changingInstr(MI);
4927       MI.getOperand(1).setReg(ShufSplat.getReg(0));
4928       Observer.changedInstr(MI);
4929       return Legalized;
4930     }
4931 
4932     if (CondTy.isVector())
4933       return UnableToLegalize;
4934 
4935     Observer.changingInstr(MI);
4936     moreElementsVectorSrc(MI, MoreTy, 2);
4937     moreElementsVectorSrc(MI, MoreTy, 3);
4938     moreElementsVectorDst(MI, MoreTy, 0);
4939     Observer.changedInstr(MI);
4940     return Legalized;
4941   }
4942   case TargetOpcode::G_UNMERGE_VALUES:
4943     return UnableToLegalize;
4944   case TargetOpcode::G_PHI:
4945     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4946   case TargetOpcode::G_SHUFFLE_VECTOR:
4947     return moreElementsVectorShuffle(MI, TypeIdx, MoreTy);
4948   case TargetOpcode::G_BUILD_VECTOR: {
4949     SmallVector<SrcOp, 8> Elts;
4950     for (auto Op : MI.uses()) {
4951       Elts.push_back(Op.getReg());
4952     }
4953 
4954     for (unsigned i = Elts.size(); i < MoreTy.getNumElements(); ++i) {
4955       Elts.push_back(MIRBuilder.buildUndef(MoreTy.getScalarType()));
4956     }
4957 
4958     MIRBuilder.buildDeleteTrailingVectorElements(
4959         MI.getOperand(0).getReg(), MIRBuilder.buildInstr(Opc, {MoreTy}, Elts));
4960     MI.eraseFromParent();
4961     return Legalized;
4962   }
4963   case TargetOpcode::G_TRUNC: {
4964     Observer.changingInstr(MI);
4965     moreElementsVectorSrc(MI, MoreTy, 1);
4966     moreElementsVectorDst(MI, MoreTy, 0);
4967     Observer.changedInstr(MI);
4968     return Legalized;
4969   }
4970   default:
4971     return UnableToLegalize;
4972   }
4973 }
4974 
4975 LegalizerHelper::LegalizeResult
4976 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI,
4977                                            unsigned int TypeIdx, LLT MoreTy) {
4978   if (TypeIdx != 0)
4979     return UnableToLegalize;
4980 
4981   Register DstReg = MI.getOperand(0).getReg();
4982   Register Src1Reg = MI.getOperand(1).getReg();
4983   Register Src2Reg = MI.getOperand(2).getReg();
4984   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4985   LLT DstTy = MRI.getType(DstReg);
4986   LLT Src1Ty = MRI.getType(Src1Reg);
4987   LLT Src2Ty = MRI.getType(Src2Reg);
4988   unsigned NumElts = DstTy.getNumElements();
4989   unsigned WidenNumElts = MoreTy.getNumElements();
4990 
4991   // Expect a canonicalized shuffle.
4992   if (DstTy != Src1Ty || DstTy != Src2Ty)
4993     return UnableToLegalize;
4994 
4995   moreElementsVectorSrc(MI, MoreTy, 1);
4996   moreElementsVectorSrc(MI, MoreTy, 2);
4997 
4998   // Adjust mask based on new input vector length.
4999   SmallVector<int, 16> NewMask;
5000   for (unsigned I = 0; I != NumElts; ++I) {
5001     int Idx = Mask[I];
5002     if (Idx < static_cast<int>(NumElts))
5003       NewMask.push_back(Idx);
5004     else
5005       NewMask.push_back(Idx - NumElts + WidenNumElts);
5006   }
5007   for (unsigned I = NumElts; I != WidenNumElts; ++I)
5008     NewMask.push_back(-1);
5009   moreElementsVectorDst(MI, MoreTy, 0);
5010   MIRBuilder.setInstrAndDebugLoc(MI);
5011   MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(),
5012                                 MI.getOperand(1).getReg(),
5013                                 MI.getOperand(2).getReg(), NewMask);
5014   MI.eraseFromParent();
5015   return Legalized;
5016 }
5017 
5018 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
5019                                         ArrayRef<Register> Src1Regs,
5020                                         ArrayRef<Register> Src2Regs,
5021                                         LLT NarrowTy) {
5022   MachineIRBuilder &B = MIRBuilder;
5023   unsigned SrcParts = Src1Regs.size();
5024   unsigned DstParts = DstRegs.size();
5025 
5026   unsigned DstIdx = 0; // Low bits of the result.
5027   Register FactorSum =
5028       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
5029   DstRegs[DstIdx] = FactorSum;
5030 
5031   unsigned CarrySumPrevDstIdx;
5032   SmallVector<Register, 4> Factors;
5033 
5034   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
5035     // Collect low parts of muls for DstIdx.
5036     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
5037          i <= std::min(DstIdx, SrcParts - 1); ++i) {
5038       MachineInstrBuilder Mul =
5039           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
5040       Factors.push_back(Mul.getReg(0));
5041     }
5042     // Collect high parts of muls from previous DstIdx.
5043     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
5044          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
5045       MachineInstrBuilder Umulh =
5046           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
5047       Factors.push_back(Umulh.getReg(0));
5048     }
5049     // Add CarrySum from additions calculated for previous DstIdx.
5050     if (DstIdx != 1) {
5051       Factors.push_back(CarrySumPrevDstIdx);
5052     }
5053 
5054     Register CarrySum;
5055     // Add all factors and accumulate all carries into CarrySum.
5056     if (DstIdx != DstParts - 1) {
5057       MachineInstrBuilder Uaddo =
5058           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
5059       FactorSum = Uaddo.getReg(0);
5060       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
5061       for (unsigned i = 2; i < Factors.size(); ++i) {
5062         MachineInstrBuilder Uaddo =
5063             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
5064         FactorSum = Uaddo.getReg(0);
5065         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
5066         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
5067       }
5068     } else {
5069       // Since value for the next index is not calculated, neither is CarrySum.
5070       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
5071       for (unsigned i = 2; i < Factors.size(); ++i)
5072         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
5073     }
5074 
5075     CarrySumPrevDstIdx = CarrySum;
5076     DstRegs[DstIdx] = FactorSum;
5077     Factors.clear();
5078   }
5079 }
5080 
5081 LegalizerHelper::LegalizeResult
5082 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
5083                                     LLT NarrowTy) {
5084   if (TypeIdx != 0)
5085     return UnableToLegalize;
5086 
5087   Register DstReg = MI.getOperand(0).getReg();
5088   LLT DstType = MRI.getType(DstReg);
5089   // FIXME: add support for vector types
5090   if (DstType.isVector())
5091     return UnableToLegalize;
5092 
5093   unsigned Opcode = MI.getOpcode();
5094   unsigned OpO, OpE, OpF;
5095   switch (Opcode) {
5096   case TargetOpcode::G_SADDO:
5097   case TargetOpcode::G_SADDE:
5098   case TargetOpcode::G_UADDO:
5099   case TargetOpcode::G_UADDE:
5100   case TargetOpcode::G_ADD:
5101     OpO = TargetOpcode::G_UADDO;
5102     OpE = TargetOpcode::G_UADDE;
5103     OpF = TargetOpcode::G_UADDE;
5104     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
5105       OpF = TargetOpcode::G_SADDE;
5106     break;
5107   case TargetOpcode::G_SSUBO:
5108   case TargetOpcode::G_SSUBE:
5109   case TargetOpcode::G_USUBO:
5110   case TargetOpcode::G_USUBE:
5111   case TargetOpcode::G_SUB:
5112     OpO = TargetOpcode::G_USUBO;
5113     OpE = TargetOpcode::G_USUBE;
5114     OpF = TargetOpcode::G_USUBE;
5115     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
5116       OpF = TargetOpcode::G_SSUBE;
5117     break;
5118   default:
5119     llvm_unreachable("Unexpected add/sub opcode!");
5120   }
5121 
5122   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
5123   unsigned NumDefs = MI.getNumExplicitDefs();
5124   Register Src1 = MI.getOperand(NumDefs).getReg();
5125   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
5126   Register CarryDst, CarryIn;
5127   if (NumDefs == 2)
5128     CarryDst = MI.getOperand(1).getReg();
5129   if (MI.getNumOperands() == NumDefs + 3)
5130     CarryIn = MI.getOperand(NumDefs + 2).getReg();
5131 
5132   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5133   LLT LeftoverTy, DummyTy;
5134   SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs;
5135   extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left);
5136   extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left);
5137 
5138   int NarrowParts = Src1Regs.size();
5139   for (int I = 0, E = Src1Left.size(); I != E; ++I) {
5140     Src1Regs.push_back(Src1Left[I]);
5141     Src2Regs.push_back(Src2Left[I]);
5142   }
5143   DstRegs.reserve(Src1Regs.size());
5144 
5145   for (int i = 0, e = Src1Regs.size(); i != e; ++i) {
5146     Register DstReg =
5147         MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i]));
5148     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
5149     // Forward the final carry-out to the destination register
5150     if (i == e - 1 && CarryDst)
5151       CarryOut = CarryDst;
5152 
5153     if (!CarryIn) {
5154       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
5155                             {Src1Regs[i], Src2Regs[i]});
5156     } else if (i == e - 1) {
5157       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
5158                             {Src1Regs[i], Src2Regs[i], CarryIn});
5159     } else {
5160       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
5161                             {Src1Regs[i], Src2Regs[i], CarryIn});
5162     }
5163 
5164     DstRegs.push_back(DstReg);
5165     CarryIn = CarryOut;
5166   }
5167   insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy,
5168               makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy,
5169               makeArrayRef(DstRegs).drop_front(NarrowParts));
5170 
5171   MI.eraseFromParent();
5172   return Legalized;
5173 }
5174 
5175 LegalizerHelper::LegalizeResult
5176 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
5177   Register DstReg = MI.getOperand(0).getReg();
5178   Register Src1 = MI.getOperand(1).getReg();
5179   Register Src2 = MI.getOperand(2).getReg();
5180 
5181   LLT Ty = MRI.getType(DstReg);
5182   if (Ty.isVector())
5183     return UnableToLegalize;
5184 
5185   unsigned Size = Ty.getSizeInBits();
5186   unsigned NarrowSize = NarrowTy.getSizeInBits();
5187   if (Size % NarrowSize != 0)
5188     return UnableToLegalize;
5189 
5190   unsigned NumParts = Size / NarrowSize;
5191   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
5192   unsigned DstTmpParts = NumParts * (IsMulHigh ? 2 : 1);
5193 
5194   SmallVector<Register, 2> Src1Parts, Src2Parts;
5195   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
5196   extractParts(Src1, NarrowTy, NumParts, Src1Parts);
5197   extractParts(Src2, NarrowTy, NumParts, Src2Parts);
5198   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
5199 
5200   // Take only high half of registers if this is high mul.
5201   ArrayRef<Register> DstRegs(&DstTmpRegs[DstTmpParts - NumParts], NumParts);
5202   MIRBuilder.buildMerge(DstReg, DstRegs);
5203   MI.eraseFromParent();
5204   return Legalized;
5205 }
5206 
5207 LegalizerHelper::LegalizeResult
5208 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
5209                                    LLT NarrowTy) {
5210   if (TypeIdx != 0)
5211     return UnableToLegalize;
5212 
5213   bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
5214 
5215   Register Src = MI.getOperand(1).getReg();
5216   LLT SrcTy = MRI.getType(Src);
5217 
5218   // If all finite floats fit into the narrowed integer type, we can just swap
5219   // out the result type. This is practically only useful for conversions from
5220   // half to at least 16-bits, so just handle the one case.
5221   if (SrcTy.getScalarType() != LLT::scalar(16) ||
5222       NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
5223     return UnableToLegalize;
5224 
5225   Observer.changingInstr(MI);
5226   narrowScalarDst(MI, NarrowTy, 0,
5227                   IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
5228   Observer.changedInstr(MI);
5229   return Legalized;
5230 }
5231 
5232 LegalizerHelper::LegalizeResult
5233 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
5234                                      LLT NarrowTy) {
5235   if (TypeIdx != 1)
5236     return UnableToLegalize;
5237 
5238   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5239 
5240   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5241   // FIXME: add support for when SizeOp1 isn't an exact multiple of
5242   // NarrowSize.
5243   if (SizeOp1 % NarrowSize != 0)
5244     return UnableToLegalize;
5245   int NumParts = SizeOp1 / NarrowSize;
5246 
5247   SmallVector<Register, 2> SrcRegs, DstRegs;
5248   SmallVector<uint64_t, 2> Indexes;
5249   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
5250 
5251   Register OpReg = MI.getOperand(0).getReg();
5252   uint64_t OpStart = MI.getOperand(2).getImm();
5253   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5254   for (int i = 0; i < NumParts; ++i) {
5255     unsigned SrcStart = i * NarrowSize;
5256 
5257     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
5258       // No part of the extract uses this subregister, ignore it.
5259       continue;
5260     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5261       // The entire subregister is extracted, forward the value.
5262       DstRegs.push_back(SrcRegs[i]);
5263       continue;
5264     }
5265 
5266     // OpSegStart is where this destination segment would start in OpReg if it
5267     // extended infinitely in both directions.
5268     int64_t ExtractOffset;
5269     uint64_t SegSize;
5270     if (OpStart < SrcStart) {
5271       ExtractOffset = 0;
5272       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
5273     } else {
5274       ExtractOffset = OpStart - SrcStart;
5275       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
5276     }
5277 
5278     Register SegReg = SrcRegs[i];
5279     if (ExtractOffset != 0 || SegSize != NarrowSize) {
5280       // A genuine extract is needed.
5281       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5282       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
5283     }
5284 
5285     DstRegs.push_back(SegReg);
5286   }
5287 
5288   Register DstReg = MI.getOperand(0).getReg();
5289   if (MRI.getType(DstReg).isVector())
5290     MIRBuilder.buildBuildVector(DstReg, DstRegs);
5291   else if (DstRegs.size() > 1)
5292     MIRBuilder.buildMerge(DstReg, DstRegs);
5293   else
5294     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
5295   MI.eraseFromParent();
5296   return Legalized;
5297 }
5298 
5299 LegalizerHelper::LegalizeResult
5300 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
5301                                     LLT NarrowTy) {
5302   // FIXME: Don't know how to handle secondary types yet.
5303   if (TypeIdx != 0)
5304     return UnableToLegalize;
5305 
5306   SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs;
5307   SmallVector<uint64_t, 2> Indexes;
5308   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5309   LLT LeftoverTy;
5310   extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs,
5311                LeftoverRegs);
5312 
5313   for (Register Reg : LeftoverRegs)
5314     SrcRegs.push_back(Reg);
5315 
5316   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5317   Register OpReg = MI.getOperand(2).getReg();
5318   uint64_t OpStart = MI.getOperand(3).getImm();
5319   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5320   for (int I = 0, E = SrcRegs.size(); I != E; ++I) {
5321     unsigned DstStart = I * NarrowSize;
5322 
5323     if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5324       // The entire subregister is defined by this insert, forward the new
5325       // value.
5326       DstRegs.push_back(OpReg);
5327       continue;
5328     }
5329 
5330     Register SrcReg = SrcRegs[I];
5331     if (MRI.getType(SrcRegs[I]) == LeftoverTy) {
5332       // The leftover reg is smaller than NarrowTy, so we need to extend it.
5333       SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
5334       MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]);
5335     }
5336 
5337     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
5338       // No part of the insert affects this subregister, forward the original.
5339       DstRegs.push_back(SrcReg);
5340       continue;
5341     }
5342 
5343     // OpSegStart is where this destination segment would start in OpReg if it
5344     // extended infinitely in both directions.
5345     int64_t ExtractOffset, InsertOffset;
5346     uint64_t SegSize;
5347     if (OpStart < DstStart) {
5348       InsertOffset = 0;
5349       ExtractOffset = DstStart - OpStart;
5350       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
5351     } else {
5352       InsertOffset = OpStart - DstStart;
5353       ExtractOffset = 0;
5354       SegSize =
5355         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
5356     }
5357 
5358     Register SegReg = OpReg;
5359     if (ExtractOffset != 0 || SegSize != OpSize) {
5360       // A genuine extract is needed.
5361       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5362       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
5363     }
5364 
5365     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
5366     MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset);
5367     DstRegs.push_back(DstReg);
5368   }
5369 
5370   uint64_t WideSize = DstRegs.size() * NarrowSize;
5371   Register DstReg = MI.getOperand(0).getReg();
5372   if (WideSize > RegTy.getSizeInBits()) {
5373     Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize));
5374     MIRBuilder.buildMerge(MergeReg, DstRegs);
5375     MIRBuilder.buildTrunc(DstReg, MergeReg);
5376   } else
5377     MIRBuilder.buildMerge(DstReg, DstRegs);
5378 
5379   MI.eraseFromParent();
5380   return Legalized;
5381 }
5382 
5383 LegalizerHelper::LegalizeResult
5384 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5385                                    LLT NarrowTy) {
5386   Register DstReg = MI.getOperand(0).getReg();
5387   LLT DstTy = MRI.getType(DstReg);
5388 
5389   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
5390 
5391   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5392   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5393   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5394   LLT LeftoverTy;
5395   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5396                     Src0Regs, Src0LeftoverRegs))
5397     return UnableToLegalize;
5398 
5399   LLT Unused;
5400   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5401                     Src1Regs, Src1LeftoverRegs))
5402     llvm_unreachable("inconsistent extractParts result");
5403 
5404   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5405     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5406                                         {Src0Regs[I], Src1Regs[I]});
5407     DstRegs.push_back(Inst.getReg(0));
5408   }
5409 
5410   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5411     auto Inst = MIRBuilder.buildInstr(
5412       MI.getOpcode(),
5413       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5414     DstLeftoverRegs.push_back(Inst.getReg(0));
5415   }
5416 
5417   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5418               LeftoverTy, DstLeftoverRegs);
5419 
5420   MI.eraseFromParent();
5421   return Legalized;
5422 }
5423 
5424 LegalizerHelper::LegalizeResult
5425 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5426                                  LLT NarrowTy) {
5427   if (TypeIdx != 0)
5428     return UnableToLegalize;
5429 
5430   Register DstReg = MI.getOperand(0).getReg();
5431   Register SrcReg = MI.getOperand(1).getReg();
5432 
5433   LLT DstTy = MRI.getType(DstReg);
5434   if (DstTy.isVector())
5435     return UnableToLegalize;
5436 
5437   SmallVector<Register, 8> Parts;
5438   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5439   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5440   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5441 
5442   MI.eraseFromParent();
5443   return Legalized;
5444 }
5445 
5446 LegalizerHelper::LegalizeResult
5447 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5448                                     LLT NarrowTy) {
5449   if (TypeIdx != 0)
5450     return UnableToLegalize;
5451 
5452   Register CondReg = MI.getOperand(1).getReg();
5453   LLT CondTy = MRI.getType(CondReg);
5454   if (CondTy.isVector()) // TODO: Handle vselect
5455     return UnableToLegalize;
5456 
5457   Register DstReg = MI.getOperand(0).getReg();
5458   LLT DstTy = MRI.getType(DstReg);
5459 
5460   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5461   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5462   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5463   LLT LeftoverTy;
5464   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5465                     Src1Regs, Src1LeftoverRegs))
5466     return UnableToLegalize;
5467 
5468   LLT Unused;
5469   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5470                     Src2Regs, Src2LeftoverRegs))
5471     llvm_unreachable("inconsistent extractParts result");
5472 
5473   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5474     auto Select = MIRBuilder.buildSelect(NarrowTy,
5475                                          CondReg, Src1Regs[I], Src2Regs[I]);
5476     DstRegs.push_back(Select.getReg(0));
5477   }
5478 
5479   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5480     auto Select = MIRBuilder.buildSelect(
5481       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5482     DstLeftoverRegs.push_back(Select.getReg(0));
5483   }
5484 
5485   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5486               LeftoverTy, DstLeftoverRegs);
5487 
5488   MI.eraseFromParent();
5489   return Legalized;
5490 }
5491 
5492 LegalizerHelper::LegalizeResult
5493 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5494                                   LLT NarrowTy) {
5495   if (TypeIdx != 1)
5496     return UnableToLegalize;
5497 
5498   Register DstReg = MI.getOperand(0).getReg();
5499   Register SrcReg = MI.getOperand(1).getReg();
5500   LLT DstTy = MRI.getType(DstReg);
5501   LLT SrcTy = MRI.getType(SrcReg);
5502   unsigned NarrowSize = NarrowTy.getSizeInBits();
5503 
5504   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5505     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5506 
5507     MachineIRBuilder &B = MIRBuilder;
5508     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5509     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5510     auto C_0 = B.buildConstant(NarrowTy, 0);
5511     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5512                                 UnmergeSrc.getReg(1), C_0);
5513     auto LoCTLZ = IsUndef ?
5514       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5515       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5516     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5517     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5518     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5519     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5520 
5521     MI.eraseFromParent();
5522     return Legalized;
5523   }
5524 
5525   return UnableToLegalize;
5526 }
5527 
5528 LegalizerHelper::LegalizeResult
5529 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5530                                   LLT NarrowTy) {
5531   if (TypeIdx != 1)
5532     return UnableToLegalize;
5533 
5534   Register DstReg = MI.getOperand(0).getReg();
5535   Register SrcReg = MI.getOperand(1).getReg();
5536   LLT DstTy = MRI.getType(DstReg);
5537   LLT SrcTy = MRI.getType(SrcReg);
5538   unsigned NarrowSize = NarrowTy.getSizeInBits();
5539 
5540   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5541     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5542 
5543     MachineIRBuilder &B = MIRBuilder;
5544     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5545     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5546     auto C_0 = B.buildConstant(NarrowTy, 0);
5547     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5548                                 UnmergeSrc.getReg(0), C_0);
5549     auto HiCTTZ = IsUndef ?
5550       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5551       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5552     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5553     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5554     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5555     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5556 
5557     MI.eraseFromParent();
5558     return Legalized;
5559   }
5560 
5561   return UnableToLegalize;
5562 }
5563 
5564 LegalizerHelper::LegalizeResult
5565 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5566                                    LLT NarrowTy) {
5567   if (TypeIdx != 1)
5568     return UnableToLegalize;
5569 
5570   Register DstReg = MI.getOperand(0).getReg();
5571   LLT DstTy = MRI.getType(DstReg);
5572   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5573   unsigned NarrowSize = NarrowTy.getSizeInBits();
5574 
5575   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5576     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5577 
5578     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5579     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5580     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5581 
5582     MI.eraseFromParent();
5583     return Legalized;
5584   }
5585 
5586   return UnableToLegalize;
5587 }
5588 
5589 LegalizerHelper::LegalizeResult
5590 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5591   unsigned Opc = MI.getOpcode();
5592   const auto &TII = MIRBuilder.getTII();
5593   auto isSupported = [this](const LegalityQuery &Q) {
5594     auto QAction = LI.getAction(Q).Action;
5595     return QAction == Legal || QAction == Libcall || QAction == Custom;
5596   };
5597   switch (Opc) {
5598   default:
5599     return UnableToLegalize;
5600   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5601     // This trivially expands to CTLZ.
5602     Observer.changingInstr(MI);
5603     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5604     Observer.changedInstr(MI);
5605     return Legalized;
5606   }
5607   case TargetOpcode::G_CTLZ: {
5608     Register DstReg = MI.getOperand(0).getReg();
5609     Register SrcReg = MI.getOperand(1).getReg();
5610     LLT DstTy = MRI.getType(DstReg);
5611     LLT SrcTy = MRI.getType(SrcReg);
5612     unsigned Len = SrcTy.getSizeInBits();
5613 
5614     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5615       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5616       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5617       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5618       auto ICmp = MIRBuilder.buildICmp(
5619           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5620       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5621       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5622       MI.eraseFromParent();
5623       return Legalized;
5624     }
5625     // for now, we do this:
5626     // NewLen = NextPowerOf2(Len);
5627     // x = x | (x >> 1);
5628     // x = x | (x >> 2);
5629     // ...
5630     // x = x | (x >>16);
5631     // x = x | (x >>32); // for 64-bit input
5632     // Upto NewLen/2
5633     // return Len - popcount(x);
5634     //
5635     // Ref: "Hacker's Delight" by Henry Warren
5636     Register Op = SrcReg;
5637     unsigned NewLen = PowerOf2Ceil(Len);
5638     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5639       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5640       auto MIBOp = MIRBuilder.buildOr(
5641           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5642       Op = MIBOp.getReg(0);
5643     }
5644     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5645     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5646                         MIBPop);
5647     MI.eraseFromParent();
5648     return Legalized;
5649   }
5650   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5651     // This trivially expands to CTTZ.
5652     Observer.changingInstr(MI);
5653     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5654     Observer.changedInstr(MI);
5655     return Legalized;
5656   }
5657   case TargetOpcode::G_CTTZ: {
5658     Register DstReg = MI.getOperand(0).getReg();
5659     Register SrcReg = MI.getOperand(1).getReg();
5660     LLT DstTy = MRI.getType(DstReg);
5661     LLT SrcTy = MRI.getType(SrcReg);
5662 
5663     unsigned Len = SrcTy.getSizeInBits();
5664     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5665       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5666       // zero.
5667       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5668       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5669       auto ICmp = MIRBuilder.buildICmp(
5670           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5671       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5672       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5673       MI.eraseFromParent();
5674       return Legalized;
5675     }
5676     // for now, we use: { return popcount(~x & (x - 1)); }
5677     // unless the target has ctlz but not ctpop, in which case we use:
5678     // { return 32 - nlz(~x & (x-1)); }
5679     // Ref: "Hacker's Delight" by Henry Warren
5680     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5681     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5682     auto MIBTmp = MIRBuilder.buildAnd(
5683         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5684     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5685         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5686       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5687       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5688                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5689       MI.eraseFromParent();
5690       return Legalized;
5691     }
5692     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5693     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5694     return Legalized;
5695   }
5696   case TargetOpcode::G_CTPOP: {
5697     Register SrcReg = MI.getOperand(1).getReg();
5698     LLT Ty = MRI.getType(SrcReg);
5699     unsigned Size = Ty.getSizeInBits();
5700     MachineIRBuilder &B = MIRBuilder;
5701 
5702     // Count set bits in blocks of 2 bits. Default approach would be
5703     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5704     // We use following formula instead:
5705     // B2Count = val - { (val >> 1) & 0x55555555 }
5706     // since it gives same result in blocks of 2 with one instruction less.
5707     auto C_1 = B.buildConstant(Ty, 1);
5708     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5709     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5710     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5711     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5712     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5713 
5714     // In order to get count in blocks of 4 add values from adjacent block of 2.
5715     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5716     auto C_2 = B.buildConstant(Ty, 2);
5717     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5718     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5719     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5720     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5721     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5722     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5723 
5724     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5725     // addition since count value sits in range {0,...,8} and 4 bits are enough
5726     // to hold such binary values. After addition high 4 bits still hold count
5727     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5728     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5729     auto C_4 = B.buildConstant(Ty, 4);
5730     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5731     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5732     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5733     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5734     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5735 
5736     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5737     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5738     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5739     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5740     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5741 
5742     // Shift count result from 8 high bits to low bits.
5743     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5744     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5745 
5746     MI.eraseFromParent();
5747     return Legalized;
5748   }
5749   }
5750 }
5751 
5752 // Check that (every element of) Reg is undef or not an exact multiple of BW.
5753 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5754                                         Register Reg, unsigned BW) {
5755   return matchUnaryPredicate(
5756       MRI, Reg,
5757       [=](const Constant *C) {
5758         // Null constant here means an undef.
5759         const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5760         return !CI || CI->getValue().urem(BW) != 0;
5761       },
5762       /*AllowUndefs*/ true);
5763 }
5764 
5765 LegalizerHelper::LegalizeResult
5766 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5767   Register Dst = MI.getOperand(0).getReg();
5768   Register X = MI.getOperand(1).getReg();
5769   Register Y = MI.getOperand(2).getReg();
5770   Register Z = MI.getOperand(3).getReg();
5771   LLT Ty = MRI.getType(Dst);
5772   LLT ShTy = MRI.getType(Z);
5773 
5774   unsigned BW = Ty.getScalarSizeInBits();
5775 
5776   if (!isPowerOf2_32(BW))
5777     return UnableToLegalize;
5778 
5779   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5780   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5781 
5782   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5783     // fshl X, Y, Z -> fshr X, Y, -Z
5784     // fshr X, Y, Z -> fshl X, Y, -Z
5785     auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5786     Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5787   } else {
5788     // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5789     // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5790     auto One = MIRBuilder.buildConstant(ShTy, 1);
5791     if (IsFSHL) {
5792       Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5793       X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5794     } else {
5795       X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5796       Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5797     }
5798 
5799     Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5800   }
5801 
5802   MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5803   MI.eraseFromParent();
5804   return Legalized;
5805 }
5806 
5807 LegalizerHelper::LegalizeResult
5808 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5809   Register Dst = MI.getOperand(0).getReg();
5810   Register X = MI.getOperand(1).getReg();
5811   Register Y = MI.getOperand(2).getReg();
5812   Register Z = MI.getOperand(3).getReg();
5813   LLT Ty = MRI.getType(Dst);
5814   LLT ShTy = MRI.getType(Z);
5815 
5816   const unsigned BW = Ty.getScalarSizeInBits();
5817   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5818 
5819   Register ShX, ShY;
5820   Register ShAmt, InvShAmt;
5821 
5822   // FIXME: Emit optimized urem by constant instead of letting it expand later.
5823   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5824     // fshl: X << C | Y >> (BW - C)
5825     // fshr: X << (BW - C) | Y >> C
5826     // where C = Z % BW is not zero
5827     auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5828     ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5829     InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5830     ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5831     ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5832   } else {
5833     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5834     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5835     auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5836     if (isPowerOf2_32(BW)) {
5837       // Z % BW -> Z & (BW - 1)
5838       ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5839       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5840       auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5841       InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5842     } else {
5843       auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5844       ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5845       InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5846     }
5847 
5848     auto One = MIRBuilder.buildConstant(ShTy, 1);
5849     if (IsFSHL) {
5850       ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5851       auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5852       ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5853     } else {
5854       auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5855       ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5856       ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5857     }
5858   }
5859 
5860   MIRBuilder.buildOr(Dst, ShX, ShY);
5861   MI.eraseFromParent();
5862   return Legalized;
5863 }
5864 
5865 LegalizerHelper::LegalizeResult
5866 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5867   // These operations approximately do the following (while avoiding undefined
5868   // shifts by BW):
5869   // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5870   // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5871   Register Dst = MI.getOperand(0).getReg();
5872   LLT Ty = MRI.getType(Dst);
5873   LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5874 
5875   bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5876   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5877 
5878   // TODO: Use smarter heuristic that accounts for vector legalization.
5879   if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5880     return lowerFunnelShiftAsShifts(MI);
5881 
5882   // This only works for powers of 2, fallback to shifts if it fails.
5883   LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
5884   if (Result == UnableToLegalize)
5885     return lowerFunnelShiftAsShifts(MI);
5886   return Result;
5887 }
5888 
5889 LegalizerHelper::LegalizeResult
5890 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
5891   Register Dst = MI.getOperand(0).getReg();
5892   Register Src = MI.getOperand(1).getReg();
5893   Register Amt = MI.getOperand(2).getReg();
5894   LLT AmtTy = MRI.getType(Amt);
5895   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5896   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5897   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5898   auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5899   MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
5900   MI.eraseFromParent();
5901   return Legalized;
5902 }
5903 
5904 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
5905   Register Dst = MI.getOperand(0).getReg();
5906   Register Src = MI.getOperand(1).getReg();
5907   Register Amt = MI.getOperand(2).getReg();
5908   LLT DstTy = MRI.getType(Dst);
5909   LLT SrcTy = MRI.getType(Src);
5910   LLT AmtTy = MRI.getType(Amt);
5911 
5912   unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
5913   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5914 
5915   MIRBuilder.setInstrAndDebugLoc(MI);
5916 
5917   // If a rotate in the other direction is supported, use it.
5918   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5919   if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
5920       isPowerOf2_32(EltSizeInBits))
5921     return lowerRotateWithReverseRotate(MI);
5922 
5923   // If a funnel shift is supported, use it.
5924   unsigned FShOpc = IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR;
5925   unsigned RevFsh = !IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR;
5926   bool IsFShLegal = false;
5927   if ((IsFShLegal = LI.isLegalOrCustom({FShOpc, {DstTy, AmtTy}})) ||
5928       LI.isLegalOrCustom({RevFsh, {DstTy, AmtTy}})) {
5929     auto buildFunnelShift = [&](unsigned Opc, Register R1, Register R2,
5930                                 Register R3) {
5931       MIRBuilder.buildInstr(Opc, {R1}, {R2, R2, R3});
5932       MI.eraseFromParent();
5933       return Legalized;
5934     };
5935     // If a funnel shift in the other direction is supported, use it.
5936     if (IsFShLegal) {
5937       return buildFunnelShift(FShOpc, Dst, Src, Amt);
5938     } else if (isPowerOf2_32(EltSizeInBits)) {
5939       Amt = MIRBuilder.buildNeg(DstTy, Amt).getReg(0);
5940       return buildFunnelShift(RevFsh, Dst, Src, Amt);
5941     }
5942   }
5943 
5944   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5945   unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
5946   unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
5947   auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
5948   Register ShVal;
5949   Register RevShiftVal;
5950   if (isPowerOf2_32(EltSizeInBits)) {
5951     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
5952     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
5953     auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5954     auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
5955     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5956     auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
5957     RevShiftVal =
5958         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
5959   } else {
5960     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
5961     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
5962     auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
5963     auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
5964     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5965     auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
5966     auto One = MIRBuilder.buildConstant(AmtTy, 1);
5967     auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
5968     RevShiftVal =
5969         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
5970   }
5971   MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
5972   MI.eraseFromParent();
5973   return Legalized;
5974 }
5975 
5976 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5977 // representation.
5978 LegalizerHelper::LegalizeResult
5979 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5980   Register Dst = MI.getOperand(0).getReg();
5981   Register Src = MI.getOperand(1).getReg();
5982   const LLT S64 = LLT::scalar(64);
5983   const LLT S32 = LLT::scalar(32);
5984   const LLT S1 = LLT::scalar(1);
5985 
5986   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5987 
5988   // unsigned cul2f(ulong u) {
5989   //   uint lz = clz(u);
5990   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5991   //   u = (u << lz) & 0x7fffffffffffffffUL;
5992   //   ulong t = u & 0xffffffffffUL;
5993   //   uint v = (e << 23) | (uint)(u >> 40);
5994   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5995   //   return as_float(v + r);
5996   // }
5997 
5998   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5999   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
6000 
6001   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
6002 
6003   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
6004   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
6005 
6006   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
6007   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
6008 
6009   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
6010   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
6011 
6012   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
6013 
6014   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
6015   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
6016 
6017   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
6018   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
6019   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
6020 
6021   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
6022   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
6023   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
6024   auto One = MIRBuilder.buildConstant(S32, 1);
6025 
6026   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
6027   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
6028   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
6029   MIRBuilder.buildAdd(Dst, V, R);
6030 
6031   MI.eraseFromParent();
6032   return Legalized;
6033 }
6034 
6035 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
6036   Register Dst = MI.getOperand(0).getReg();
6037   Register Src = MI.getOperand(1).getReg();
6038   LLT DstTy = MRI.getType(Dst);
6039   LLT SrcTy = MRI.getType(Src);
6040 
6041   if (SrcTy == LLT::scalar(1)) {
6042     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
6043     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6044     MIRBuilder.buildSelect(Dst, Src, True, False);
6045     MI.eraseFromParent();
6046     return Legalized;
6047   }
6048 
6049   if (SrcTy != LLT::scalar(64))
6050     return UnableToLegalize;
6051 
6052   if (DstTy == LLT::scalar(32)) {
6053     // TODO: SelectionDAG has several alternative expansions to port which may
6054     // be more reasonble depending on the available instructions. If a target
6055     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
6056     // intermediate type, this is probably worse.
6057     return lowerU64ToF32BitOps(MI);
6058   }
6059 
6060   return UnableToLegalize;
6061 }
6062 
6063 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
6064   Register Dst = MI.getOperand(0).getReg();
6065   Register Src = MI.getOperand(1).getReg();
6066   LLT DstTy = MRI.getType(Dst);
6067   LLT SrcTy = MRI.getType(Src);
6068 
6069   const LLT S64 = LLT::scalar(64);
6070   const LLT S32 = LLT::scalar(32);
6071   const LLT S1 = LLT::scalar(1);
6072 
6073   if (SrcTy == S1) {
6074     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
6075     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6076     MIRBuilder.buildSelect(Dst, Src, True, False);
6077     MI.eraseFromParent();
6078     return Legalized;
6079   }
6080 
6081   if (SrcTy != S64)
6082     return UnableToLegalize;
6083 
6084   if (DstTy == S32) {
6085     // signed cl2f(long l) {
6086     //   long s = l >> 63;
6087     //   float r = cul2f((l + s) ^ s);
6088     //   return s ? -r : r;
6089     // }
6090     Register L = Src;
6091     auto SignBit = MIRBuilder.buildConstant(S64, 63);
6092     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
6093 
6094     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
6095     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
6096     auto R = MIRBuilder.buildUITOFP(S32, Xor);
6097 
6098     auto RNeg = MIRBuilder.buildFNeg(S32, R);
6099     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
6100                                             MIRBuilder.buildConstant(S64, 0));
6101     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
6102     MI.eraseFromParent();
6103     return Legalized;
6104   }
6105 
6106   return UnableToLegalize;
6107 }
6108 
6109 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
6110   Register Dst = MI.getOperand(0).getReg();
6111   Register Src = MI.getOperand(1).getReg();
6112   LLT DstTy = MRI.getType(Dst);
6113   LLT SrcTy = MRI.getType(Src);
6114   const LLT S64 = LLT::scalar(64);
6115   const LLT S32 = LLT::scalar(32);
6116 
6117   if (SrcTy != S64 && SrcTy != S32)
6118     return UnableToLegalize;
6119   if (DstTy != S32 && DstTy != S64)
6120     return UnableToLegalize;
6121 
6122   // FPTOSI gives same result as FPTOUI for positive signed integers.
6123   // FPTOUI needs to deal with fp values that convert to unsigned integers
6124   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
6125 
6126   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
6127   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
6128                                                 : APFloat::IEEEdouble(),
6129                     APInt::getZero(SrcTy.getSizeInBits()));
6130   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
6131 
6132   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
6133 
6134   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
6135   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
6136   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
6137   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
6138   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
6139   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
6140   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
6141 
6142   const LLT S1 = LLT::scalar(1);
6143 
6144   MachineInstrBuilder FCMP =
6145       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
6146   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
6147 
6148   MI.eraseFromParent();
6149   return Legalized;
6150 }
6151 
6152 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
6153   Register Dst = MI.getOperand(0).getReg();
6154   Register Src = MI.getOperand(1).getReg();
6155   LLT DstTy = MRI.getType(Dst);
6156   LLT SrcTy = MRI.getType(Src);
6157   const LLT S64 = LLT::scalar(64);
6158   const LLT S32 = LLT::scalar(32);
6159 
6160   // FIXME: Only f32 to i64 conversions are supported.
6161   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
6162     return UnableToLegalize;
6163 
6164   // Expand f32 -> i64 conversion
6165   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6166   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6167 
6168   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
6169 
6170   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
6171   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
6172 
6173   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
6174   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
6175 
6176   auto SignMask = MIRBuilder.buildConstant(SrcTy,
6177                                            APInt::getSignMask(SrcEltBits));
6178   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
6179   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
6180   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
6181   Sign = MIRBuilder.buildSExt(DstTy, Sign);
6182 
6183   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
6184   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
6185   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
6186 
6187   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
6188   R = MIRBuilder.buildZExt(DstTy, R);
6189 
6190   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
6191   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
6192   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
6193   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
6194 
6195   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
6196   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
6197 
6198   const LLT S1 = LLT::scalar(1);
6199   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
6200                                     S1, Exponent, ExponentLoBit);
6201 
6202   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
6203 
6204   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
6205   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
6206 
6207   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
6208 
6209   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
6210                                           S1, Exponent, ZeroSrcTy);
6211 
6212   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
6213   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
6214 
6215   MI.eraseFromParent();
6216   return Legalized;
6217 }
6218 
6219 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
6220 LegalizerHelper::LegalizeResult
6221 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
6222   Register Dst = MI.getOperand(0).getReg();
6223   Register Src = MI.getOperand(1).getReg();
6224 
6225   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
6226     return UnableToLegalize;
6227 
6228   const unsigned ExpMask = 0x7ff;
6229   const unsigned ExpBiasf64 = 1023;
6230   const unsigned ExpBiasf16 = 15;
6231   const LLT S32 = LLT::scalar(32);
6232   const LLT S1 = LLT::scalar(1);
6233 
6234   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
6235   Register U = Unmerge.getReg(0);
6236   Register UH = Unmerge.getReg(1);
6237 
6238   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
6239   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
6240 
6241   // Subtract the fp64 exponent bias (1023) to get the real exponent and
6242   // add the f16 bias (15) to get the biased exponent for the f16 format.
6243   E = MIRBuilder.buildAdd(
6244     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
6245 
6246   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
6247   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
6248 
6249   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
6250                                        MIRBuilder.buildConstant(S32, 0x1ff));
6251   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
6252 
6253   auto Zero = MIRBuilder.buildConstant(S32, 0);
6254   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
6255   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
6256   M = MIRBuilder.buildOr(S32, M, Lo40Set);
6257 
6258   // (M != 0 ? 0x0200 : 0) | 0x7c00;
6259   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
6260   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
6261   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
6262 
6263   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
6264   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
6265 
6266   // N = M | (E << 12);
6267   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
6268   auto N = MIRBuilder.buildOr(S32, M, EShl12);
6269 
6270   // B = clamp(1-E, 0, 13);
6271   auto One = MIRBuilder.buildConstant(S32, 1);
6272   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
6273   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
6274   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
6275 
6276   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
6277                                        MIRBuilder.buildConstant(S32, 0x1000));
6278 
6279   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
6280   auto D0 = MIRBuilder.buildShl(S32, D, B);
6281 
6282   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
6283                                              D0, SigSetHigh);
6284   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
6285   D = MIRBuilder.buildOr(S32, D, D1);
6286 
6287   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
6288   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
6289 
6290   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
6291   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
6292 
6293   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
6294                                        MIRBuilder.buildConstant(S32, 3));
6295   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
6296 
6297   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
6298                                        MIRBuilder.buildConstant(S32, 5));
6299   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
6300 
6301   V1 = MIRBuilder.buildOr(S32, V0, V1);
6302   V = MIRBuilder.buildAdd(S32, V, V1);
6303 
6304   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
6305                                        E, MIRBuilder.buildConstant(S32, 30));
6306   V = MIRBuilder.buildSelect(S32, CmpEGt30,
6307                              MIRBuilder.buildConstant(S32, 0x7c00), V);
6308 
6309   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
6310                                          E, MIRBuilder.buildConstant(S32, 1039));
6311   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
6312 
6313   // Extract the sign bit.
6314   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
6315   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
6316 
6317   // Insert the sign bit
6318   V = MIRBuilder.buildOr(S32, Sign, V);
6319 
6320   MIRBuilder.buildTrunc(Dst, V);
6321   MI.eraseFromParent();
6322   return Legalized;
6323 }
6324 
6325 LegalizerHelper::LegalizeResult
6326 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
6327   Register Dst = MI.getOperand(0).getReg();
6328   Register Src = MI.getOperand(1).getReg();
6329 
6330   LLT DstTy = MRI.getType(Dst);
6331   LLT SrcTy = MRI.getType(Src);
6332   const LLT S64 = LLT::scalar(64);
6333   const LLT S16 = LLT::scalar(16);
6334 
6335   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
6336     return lowerFPTRUNC_F64_TO_F16(MI);
6337 
6338   return UnableToLegalize;
6339 }
6340 
6341 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
6342 // multiplication tree.
6343 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
6344   Register Dst = MI.getOperand(0).getReg();
6345   Register Src0 = MI.getOperand(1).getReg();
6346   Register Src1 = MI.getOperand(2).getReg();
6347   LLT Ty = MRI.getType(Dst);
6348 
6349   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
6350   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
6351   MI.eraseFromParent();
6352   return Legalized;
6353 }
6354 
6355 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
6356   switch (Opc) {
6357   case TargetOpcode::G_SMIN:
6358     return CmpInst::ICMP_SLT;
6359   case TargetOpcode::G_SMAX:
6360     return CmpInst::ICMP_SGT;
6361   case TargetOpcode::G_UMIN:
6362     return CmpInst::ICMP_ULT;
6363   case TargetOpcode::G_UMAX:
6364     return CmpInst::ICMP_UGT;
6365   default:
6366     llvm_unreachable("not in integer min/max");
6367   }
6368 }
6369 
6370 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
6371   Register Dst = MI.getOperand(0).getReg();
6372   Register Src0 = MI.getOperand(1).getReg();
6373   Register Src1 = MI.getOperand(2).getReg();
6374 
6375   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
6376   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
6377 
6378   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
6379   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
6380 
6381   MI.eraseFromParent();
6382   return Legalized;
6383 }
6384 
6385 LegalizerHelper::LegalizeResult
6386 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
6387   Register Dst = MI.getOperand(0).getReg();
6388   Register Src0 = MI.getOperand(1).getReg();
6389   Register Src1 = MI.getOperand(2).getReg();
6390 
6391   const LLT Src0Ty = MRI.getType(Src0);
6392   const LLT Src1Ty = MRI.getType(Src1);
6393 
6394   const int Src0Size = Src0Ty.getScalarSizeInBits();
6395   const int Src1Size = Src1Ty.getScalarSizeInBits();
6396 
6397   auto SignBitMask = MIRBuilder.buildConstant(
6398     Src0Ty, APInt::getSignMask(Src0Size));
6399 
6400   auto NotSignBitMask = MIRBuilder.buildConstant(
6401     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6402 
6403   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6404   Register And1;
6405   if (Src0Ty == Src1Ty) {
6406     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6407   } else if (Src0Size > Src1Size) {
6408     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6409     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6410     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6411     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6412   } else {
6413     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6414     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6415     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6416     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6417   }
6418 
6419   // Be careful about setting nsz/nnan/ninf on every instruction, since the
6420   // constants are a nan and -0.0, but the final result should preserve
6421   // everything.
6422   unsigned Flags = MI.getFlags();
6423   MIRBuilder.buildOr(Dst, And0, And1, Flags);
6424 
6425   MI.eraseFromParent();
6426   return Legalized;
6427 }
6428 
6429 LegalizerHelper::LegalizeResult
6430 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6431   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6432     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6433 
6434   Register Dst = MI.getOperand(0).getReg();
6435   Register Src0 = MI.getOperand(1).getReg();
6436   Register Src1 = MI.getOperand(2).getReg();
6437   LLT Ty = MRI.getType(Dst);
6438 
6439   if (!MI.getFlag(MachineInstr::FmNoNans)) {
6440     // Insert canonicalizes if it's possible we need to quiet to get correct
6441     // sNaN behavior.
6442 
6443     // Note this must be done here, and not as an optimization combine in the
6444     // absence of a dedicate quiet-snan instruction as we're using an
6445     // omni-purpose G_FCANONICALIZE.
6446     if (!isKnownNeverSNaN(Src0, MRI))
6447       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6448 
6449     if (!isKnownNeverSNaN(Src1, MRI))
6450       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6451   }
6452 
6453   // If there are no nans, it's safe to simply replace this with the non-IEEE
6454   // version.
6455   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6456   MI.eraseFromParent();
6457   return Legalized;
6458 }
6459 
6460 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6461   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6462   Register DstReg = MI.getOperand(0).getReg();
6463   LLT Ty = MRI.getType(DstReg);
6464   unsigned Flags = MI.getFlags();
6465 
6466   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6467                                   Flags);
6468   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6469   MI.eraseFromParent();
6470   return Legalized;
6471 }
6472 
6473 LegalizerHelper::LegalizeResult
6474 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6475   Register DstReg = MI.getOperand(0).getReg();
6476   Register X = MI.getOperand(1).getReg();
6477   const unsigned Flags = MI.getFlags();
6478   const LLT Ty = MRI.getType(DstReg);
6479   const LLT CondTy = Ty.changeElementSize(1);
6480 
6481   // round(x) =>
6482   //  t = trunc(x);
6483   //  d = fabs(x - t);
6484   //  o = copysign(1.0f, x);
6485   //  return t + (d >= 0.5 ? o : 0.0);
6486 
6487   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
6488 
6489   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
6490   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
6491   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6492   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
6493   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
6494   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
6495 
6496   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
6497                                   Flags);
6498   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
6499 
6500   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
6501 
6502   MI.eraseFromParent();
6503   return Legalized;
6504 }
6505 
6506 LegalizerHelper::LegalizeResult
6507 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
6508   Register DstReg = MI.getOperand(0).getReg();
6509   Register SrcReg = MI.getOperand(1).getReg();
6510   unsigned Flags = MI.getFlags();
6511   LLT Ty = MRI.getType(DstReg);
6512   const LLT CondTy = Ty.changeElementSize(1);
6513 
6514   // result = trunc(src);
6515   // if (src < 0.0 && src != result)
6516   //   result += -1.0.
6517 
6518   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
6519   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6520 
6521   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
6522                                   SrcReg, Zero, Flags);
6523   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
6524                                       SrcReg, Trunc, Flags);
6525   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
6526   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
6527 
6528   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
6529   MI.eraseFromParent();
6530   return Legalized;
6531 }
6532 
6533 LegalizerHelper::LegalizeResult
6534 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
6535   const unsigned NumOps = MI.getNumOperands();
6536   Register DstReg = MI.getOperand(0).getReg();
6537   Register Src0Reg = MI.getOperand(1).getReg();
6538   LLT DstTy = MRI.getType(DstReg);
6539   LLT SrcTy = MRI.getType(Src0Reg);
6540   unsigned PartSize = SrcTy.getSizeInBits();
6541 
6542   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
6543   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
6544 
6545   for (unsigned I = 2; I != NumOps; ++I) {
6546     const unsigned Offset = (I - 1) * PartSize;
6547 
6548     Register SrcReg = MI.getOperand(I).getReg();
6549     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
6550 
6551     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
6552       MRI.createGenericVirtualRegister(WideTy);
6553 
6554     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
6555     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
6556     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
6557     ResultReg = NextResult;
6558   }
6559 
6560   if (DstTy.isPointer()) {
6561     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
6562           DstTy.getAddressSpace())) {
6563       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
6564       return UnableToLegalize;
6565     }
6566 
6567     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
6568   }
6569 
6570   MI.eraseFromParent();
6571   return Legalized;
6572 }
6573 
6574 LegalizerHelper::LegalizeResult
6575 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
6576   const unsigned NumDst = MI.getNumOperands() - 1;
6577   Register SrcReg = MI.getOperand(NumDst).getReg();
6578   Register Dst0Reg = MI.getOperand(0).getReg();
6579   LLT DstTy = MRI.getType(Dst0Reg);
6580   if (DstTy.isPointer())
6581     return UnableToLegalize; // TODO
6582 
6583   SrcReg = coerceToScalar(SrcReg);
6584   if (!SrcReg)
6585     return UnableToLegalize;
6586 
6587   // Expand scalarizing unmerge as bitcast to integer and shift.
6588   LLT IntTy = MRI.getType(SrcReg);
6589 
6590   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
6591 
6592   const unsigned DstSize = DstTy.getSizeInBits();
6593   unsigned Offset = DstSize;
6594   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
6595     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
6596     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
6597     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
6598   }
6599 
6600   MI.eraseFromParent();
6601   return Legalized;
6602 }
6603 
6604 /// Lower a vector extract or insert by writing the vector to a stack temporary
6605 /// and reloading the element or vector.
6606 ///
6607 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
6608 ///  =>
6609 ///  %stack_temp = G_FRAME_INDEX
6610 ///  G_STORE %vec, %stack_temp
6611 ///  %idx = clamp(%idx, %vec.getNumElements())
6612 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
6613 ///  %dst = G_LOAD %element_ptr
6614 LegalizerHelper::LegalizeResult
6615 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
6616   Register DstReg = MI.getOperand(0).getReg();
6617   Register SrcVec = MI.getOperand(1).getReg();
6618   Register InsertVal;
6619   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
6620     InsertVal = MI.getOperand(2).getReg();
6621 
6622   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6623 
6624   LLT VecTy = MRI.getType(SrcVec);
6625   LLT EltTy = VecTy.getElementType();
6626   unsigned NumElts = VecTy.getNumElements();
6627 
6628   int64_t IdxVal;
6629   if (mi_match(Idx, MRI, m_ICst(IdxVal)) && IdxVal <= NumElts) {
6630     SmallVector<Register, 8> SrcRegs;
6631     extractParts(SrcVec, EltTy, NumElts, SrcRegs);
6632 
6633     if (InsertVal) {
6634       SrcRegs[IdxVal] = MI.getOperand(2).getReg();
6635       MIRBuilder.buildMerge(DstReg, SrcRegs);
6636     } else {
6637       MIRBuilder.buildCopy(DstReg, SrcRegs[IdxVal]);
6638     }
6639 
6640     MI.eraseFromParent();
6641     return Legalized;
6642   }
6643 
6644   if (!EltTy.isByteSized()) { // Not implemented.
6645     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
6646     return UnableToLegalize;
6647   }
6648 
6649   unsigned EltBytes = EltTy.getSizeInBytes();
6650   Align VecAlign = getStackTemporaryAlignment(VecTy);
6651   Align EltAlign;
6652 
6653   MachinePointerInfo PtrInfo;
6654   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6655                                         VecAlign, PtrInfo);
6656   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6657 
6658   // Get the pointer to the element, and be sure not to hit undefined behavior
6659   // if the index is out of bounds.
6660   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6661 
6662   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6663     int64_t Offset = IdxVal * EltBytes;
6664     PtrInfo = PtrInfo.getWithOffset(Offset);
6665     EltAlign = commonAlignment(VecAlign, Offset);
6666   } else {
6667     // We lose information with a variable offset.
6668     EltAlign = getStackTemporaryAlignment(EltTy);
6669     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6670   }
6671 
6672   if (InsertVal) {
6673     // Write the inserted element
6674     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6675 
6676     // Reload the whole vector.
6677     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6678   } else {
6679     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6680   }
6681 
6682   MI.eraseFromParent();
6683   return Legalized;
6684 }
6685 
6686 LegalizerHelper::LegalizeResult
6687 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6688   Register DstReg = MI.getOperand(0).getReg();
6689   Register Src0Reg = MI.getOperand(1).getReg();
6690   Register Src1Reg = MI.getOperand(2).getReg();
6691   LLT Src0Ty = MRI.getType(Src0Reg);
6692   LLT DstTy = MRI.getType(DstReg);
6693   LLT IdxTy = LLT::scalar(32);
6694 
6695   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6696 
6697   if (DstTy.isScalar()) {
6698     if (Src0Ty.isVector())
6699       return UnableToLegalize;
6700 
6701     // This is just a SELECT.
6702     assert(Mask.size() == 1 && "Expected a single mask element");
6703     Register Val;
6704     if (Mask[0] < 0 || Mask[0] > 1)
6705       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6706     else
6707       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6708     MIRBuilder.buildCopy(DstReg, Val);
6709     MI.eraseFromParent();
6710     return Legalized;
6711   }
6712 
6713   Register Undef;
6714   SmallVector<Register, 32> BuildVec;
6715   LLT EltTy = DstTy.getElementType();
6716 
6717   for (int Idx : Mask) {
6718     if (Idx < 0) {
6719       if (!Undef.isValid())
6720         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6721       BuildVec.push_back(Undef);
6722       continue;
6723     }
6724 
6725     if (Src0Ty.isScalar()) {
6726       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6727     } else {
6728       int NumElts = Src0Ty.getNumElements();
6729       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6730       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6731       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6732       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6733       BuildVec.push_back(Extract.getReg(0));
6734     }
6735   }
6736 
6737   MIRBuilder.buildBuildVector(DstReg, BuildVec);
6738   MI.eraseFromParent();
6739   return Legalized;
6740 }
6741 
6742 LegalizerHelper::LegalizeResult
6743 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6744   const auto &MF = *MI.getMF();
6745   const auto &TFI = *MF.getSubtarget().getFrameLowering();
6746   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6747     return UnableToLegalize;
6748 
6749   Register Dst = MI.getOperand(0).getReg();
6750   Register AllocSize = MI.getOperand(1).getReg();
6751   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6752 
6753   LLT PtrTy = MRI.getType(Dst);
6754   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6755 
6756   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6757   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6758   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6759 
6760   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6761   // have to generate an extra instruction to negate the alloc and then use
6762   // G_PTR_ADD to add the negative offset.
6763   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6764   if (Alignment > Align(1)) {
6765     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6766     AlignMask.negate();
6767     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6768     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6769   }
6770 
6771   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6772   MIRBuilder.buildCopy(SPReg, SPTmp);
6773   MIRBuilder.buildCopy(Dst, SPTmp);
6774 
6775   MI.eraseFromParent();
6776   return Legalized;
6777 }
6778 
6779 LegalizerHelper::LegalizeResult
6780 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6781   Register Dst = MI.getOperand(0).getReg();
6782   Register Src = MI.getOperand(1).getReg();
6783   unsigned Offset = MI.getOperand(2).getImm();
6784 
6785   LLT DstTy = MRI.getType(Dst);
6786   LLT SrcTy = MRI.getType(Src);
6787 
6788   // Extract sub-vector or one element
6789   if (SrcTy.isVector()) {
6790     unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits();
6791     unsigned DstSize = DstTy.getSizeInBits();
6792 
6793     if ((Offset % SrcEltSize == 0) && (DstSize % SrcEltSize == 0) &&
6794         (Offset + DstSize <= SrcTy.getSizeInBits())) {
6795       // Unmerge and allow access to each Src element for the artifact combiner.
6796       auto Unmerge = MIRBuilder.buildUnmerge(SrcTy.getElementType(), Src);
6797 
6798       // Take element(s) we need to extract and copy it (merge them).
6799       SmallVector<Register, 8> SubVectorElts;
6800       for (unsigned Idx = Offset / SrcEltSize;
6801            Idx < (Offset + DstSize) / SrcEltSize; ++Idx) {
6802         SubVectorElts.push_back(Unmerge.getReg(Idx));
6803       }
6804       if (SubVectorElts.size() == 1)
6805         MIRBuilder.buildCopy(Dst, SubVectorElts[0]);
6806       else
6807         MIRBuilder.buildMerge(Dst, SubVectorElts);
6808 
6809       MI.eraseFromParent();
6810       return Legalized;
6811     }
6812   }
6813 
6814   if (DstTy.isScalar() &&
6815       (SrcTy.isScalar() ||
6816        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6817     LLT SrcIntTy = SrcTy;
6818     if (!SrcTy.isScalar()) {
6819       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6820       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6821     }
6822 
6823     if (Offset == 0)
6824       MIRBuilder.buildTrunc(Dst, Src);
6825     else {
6826       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6827       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6828       MIRBuilder.buildTrunc(Dst, Shr);
6829     }
6830 
6831     MI.eraseFromParent();
6832     return Legalized;
6833   }
6834 
6835   return UnableToLegalize;
6836 }
6837 
6838 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6839   Register Dst = MI.getOperand(0).getReg();
6840   Register Src = MI.getOperand(1).getReg();
6841   Register InsertSrc = MI.getOperand(2).getReg();
6842   uint64_t Offset = MI.getOperand(3).getImm();
6843 
6844   LLT DstTy = MRI.getType(Src);
6845   LLT InsertTy = MRI.getType(InsertSrc);
6846 
6847   // Insert sub-vector or one element
6848   if (DstTy.isVector() && !InsertTy.isPointer()) {
6849     LLT EltTy = DstTy.getElementType();
6850     unsigned EltSize = EltTy.getSizeInBits();
6851     unsigned InsertSize = InsertTy.getSizeInBits();
6852 
6853     if ((Offset % EltSize == 0) && (InsertSize % EltSize == 0) &&
6854         (Offset + InsertSize <= DstTy.getSizeInBits())) {
6855       auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, Src);
6856       SmallVector<Register, 8> DstElts;
6857       unsigned Idx = 0;
6858       // Elements from Src before insert start Offset
6859       for (; Idx < Offset / EltSize; ++Idx) {
6860         DstElts.push_back(UnmergeSrc.getReg(Idx));
6861       }
6862 
6863       // Replace elements in Src with elements from InsertSrc
6864       if (InsertTy.getSizeInBits() > EltSize) {
6865         auto UnmergeInsertSrc = MIRBuilder.buildUnmerge(EltTy, InsertSrc);
6866         for (unsigned i = 0; Idx < (Offset + InsertSize) / EltSize;
6867              ++Idx, ++i) {
6868           DstElts.push_back(UnmergeInsertSrc.getReg(i));
6869         }
6870       } else {
6871         DstElts.push_back(InsertSrc);
6872         ++Idx;
6873       }
6874 
6875       // Remaining elements from Src after insert
6876       for (; Idx < DstTy.getNumElements(); ++Idx) {
6877         DstElts.push_back(UnmergeSrc.getReg(Idx));
6878       }
6879 
6880       MIRBuilder.buildMerge(Dst, DstElts);
6881       MI.eraseFromParent();
6882       return Legalized;
6883     }
6884   }
6885 
6886   if (InsertTy.isVector() ||
6887       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6888     return UnableToLegalize;
6889 
6890   const DataLayout &DL = MIRBuilder.getDataLayout();
6891   if ((DstTy.isPointer() &&
6892        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6893       (InsertTy.isPointer() &&
6894        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6895     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6896     return UnableToLegalize;
6897   }
6898 
6899   LLT IntDstTy = DstTy;
6900 
6901   if (!DstTy.isScalar()) {
6902     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6903     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6904   }
6905 
6906   if (!InsertTy.isScalar()) {
6907     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6908     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6909   }
6910 
6911   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6912   if (Offset != 0) {
6913     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6914     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6915   }
6916 
6917   APInt MaskVal = APInt::getBitsSetWithWrap(
6918       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6919 
6920   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6921   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6922   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6923 
6924   MIRBuilder.buildCast(Dst, Or);
6925   MI.eraseFromParent();
6926   return Legalized;
6927 }
6928 
6929 LegalizerHelper::LegalizeResult
6930 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6931   Register Dst0 = MI.getOperand(0).getReg();
6932   Register Dst1 = MI.getOperand(1).getReg();
6933   Register LHS = MI.getOperand(2).getReg();
6934   Register RHS = MI.getOperand(3).getReg();
6935   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6936 
6937   LLT Ty = MRI.getType(Dst0);
6938   LLT BoolTy = MRI.getType(Dst1);
6939 
6940   if (IsAdd)
6941     MIRBuilder.buildAdd(Dst0, LHS, RHS);
6942   else
6943     MIRBuilder.buildSub(Dst0, LHS, RHS);
6944 
6945   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6946 
6947   auto Zero = MIRBuilder.buildConstant(Ty, 0);
6948 
6949   // For an addition, the result should be less than one of the operands (LHS)
6950   // if and only if the other operand (RHS) is negative, otherwise there will
6951   // be overflow.
6952   // For a subtraction, the result should be less than one of the operands
6953   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6954   // otherwise there will be overflow.
6955   auto ResultLowerThanLHS =
6956       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
6957   auto ConditionRHS = MIRBuilder.buildICmp(
6958       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6959 
6960   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6961   MI.eraseFromParent();
6962   return Legalized;
6963 }
6964 
6965 LegalizerHelper::LegalizeResult
6966 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6967   Register Res = MI.getOperand(0).getReg();
6968   Register LHS = MI.getOperand(1).getReg();
6969   Register RHS = MI.getOperand(2).getReg();
6970   LLT Ty = MRI.getType(Res);
6971   bool IsSigned;
6972   bool IsAdd;
6973   unsigned BaseOp;
6974   switch (MI.getOpcode()) {
6975   default:
6976     llvm_unreachable("unexpected addsat/subsat opcode");
6977   case TargetOpcode::G_UADDSAT:
6978     IsSigned = false;
6979     IsAdd = true;
6980     BaseOp = TargetOpcode::G_ADD;
6981     break;
6982   case TargetOpcode::G_SADDSAT:
6983     IsSigned = true;
6984     IsAdd = true;
6985     BaseOp = TargetOpcode::G_ADD;
6986     break;
6987   case TargetOpcode::G_USUBSAT:
6988     IsSigned = false;
6989     IsAdd = false;
6990     BaseOp = TargetOpcode::G_SUB;
6991     break;
6992   case TargetOpcode::G_SSUBSAT:
6993     IsSigned = true;
6994     IsAdd = false;
6995     BaseOp = TargetOpcode::G_SUB;
6996     break;
6997   }
6998 
6999   if (IsSigned) {
7000     // sadd.sat(a, b) ->
7001     //   hi = 0x7fffffff - smax(a, 0)
7002     //   lo = 0x80000000 - smin(a, 0)
7003     //   a + smin(smax(lo, b), hi)
7004     // ssub.sat(a, b) ->
7005     //   lo = smax(a, -1) - 0x7fffffff
7006     //   hi = smin(a, -1) - 0x80000000
7007     //   a - smin(smax(lo, b), hi)
7008     // TODO: AMDGPU can use a "median of 3" instruction here:
7009     //   a +/- med3(lo, b, hi)
7010     uint64_t NumBits = Ty.getScalarSizeInBits();
7011     auto MaxVal =
7012         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
7013     auto MinVal =
7014         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
7015     MachineInstrBuilder Hi, Lo;
7016     if (IsAdd) {
7017       auto Zero = MIRBuilder.buildConstant(Ty, 0);
7018       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
7019       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
7020     } else {
7021       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
7022       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
7023                                MaxVal);
7024       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
7025                                MinVal);
7026     }
7027     auto RHSClamped =
7028         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
7029     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
7030   } else {
7031     // uadd.sat(a, b) -> a + umin(~a, b)
7032     // usub.sat(a, b) -> a - umin(a, b)
7033     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
7034     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
7035     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
7036   }
7037 
7038   MI.eraseFromParent();
7039   return Legalized;
7040 }
7041 
7042 LegalizerHelper::LegalizeResult
7043 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
7044   Register Res = MI.getOperand(0).getReg();
7045   Register LHS = MI.getOperand(1).getReg();
7046   Register RHS = MI.getOperand(2).getReg();
7047   LLT Ty = MRI.getType(Res);
7048   LLT BoolTy = Ty.changeElementSize(1);
7049   bool IsSigned;
7050   bool IsAdd;
7051   unsigned OverflowOp;
7052   switch (MI.getOpcode()) {
7053   default:
7054     llvm_unreachable("unexpected addsat/subsat opcode");
7055   case TargetOpcode::G_UADDSAT:
7056     IsSigned = false;
7057     IsAdd = true;
7058     OverflowOp = TargetOpcode::G_UADDO;
7059     break;
7060   case TargetOpcode::G_SADDSAT:
7061     IsSigned = true;
7062     IsAdd = true;
7063     OverflowOp = TargetOpcode::G_SADDO;
7064     break;
7065   case TargetOpcode::G_USUBSAT:
7066     IsSigned = false;
7067     IsAdd = false;
7068     OverflowOp = TargetOpcode::G_USUBO;
7069     break;
7070   case TargetOpcode::G_SSUBSAT:
7071     IsSigned = true;
7072     IsAdd = false;
7073     OverflowOp = TargetOpcode::G_SSUBO;
7074     break;
7075   }
7076 
7077   auto OverflowRes =
7078       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
7079   Register Tmp = OverflowRes.getReg(0);
7080   Register Ov = OverflowRes.getReg(1);
7081   MachineInstrBuilder Clamp;
7082   if (IsSigned) {
7083     // sadd.sat(a, b) ->
7084     //   {tmp, ov} = saddo(a, b)
7085     //   ov ? (tmp >>s 31) + 0x80000000 : r
7086     // ssub.sat(a, b) ->
7087     //   {tmp, ov} = ssubo(a, b)
7088     //   ov ? (tmp >>s 31) + 0x80000000 : r
7089     uint64_t NumBits = Ty.getScalarSizeInBits();
7090     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
7091     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
7092     auto MinVal =
7093         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
7094     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
7095   } else {
7096     // uadd.sat(a, b) ->
7097     //   {tmp, ov} = uaddo(a, b)
7098     //   ov ? 0xffffffff : tmp
7099     // usub.sat(a, b) ->
7100     //   {tmp, ov} = usubo(a, b)
7101     //   ov ? 0 : tmp
7102     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
7103   }
7104   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
7105 
7106   MI.eraseFromParent();
7107   return Legalized;
7108 }
7109 
7110 LegalizerHelper::LegalizeResult
7111 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
7112   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
7113           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
7114          "Expected shlsat opcode!");
7115   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
7116   Register Res = MI.getOperand(0).getReg();
7117   Register LHS = MI.getOperand(1).getReg();
7118   Register RHS = MI.getOperand(2).getReg();
7119   LLT Ty = MRI.getType(Res);
7120   LLT BoolTy = Ty.changeElementSize(1);
7121 
7122   unsigned BW = Ty.getScalarSizeInBits();
7123   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
7124   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
7125                        : MIRBuilder.buildLShr(Ty, Result, RHS);
7126 
7127   MachineInstrBuilder SatVal;
7128   if (IsSigned) {
7129     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
7130     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
7131     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
7132                                     MIRBuilder.buildConstant(Ty, 0));
7133     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
7134   } else {
7135     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
7136   }
7137   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
7138   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
7139 
7140   MI.eraseFromParent();
7141   return Legalized;
7142 }
7143 
7144 LegalizerHelper::LegalizeResult
7145 LegalizerHelper::lowerBswap(MachineInstr &MI) {
7146   Register Dst = MI.getOperand(0).getReg();
7147   Register Src = MI.getOperand(1).getReg();
7148   const LLT Ty = MRI.getType(Src);
7149   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
7150   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
7151 
7152   // Swap most and least significant byte, set remaining bytes in Res to zero.
7153   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
7154   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
7155   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7156   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
7157 
7158   // Set i-th high/low byte in Res to i-th low/high byte from Src.
7159   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
7160     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
7161     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
7162     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
7163     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
7164     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
7165     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
7166     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
7167     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
7168     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
7169     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7170     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
7171     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
7172   }
7173   Res.getInstr()->getOperand(0).setReg(Dst);
7174 
7175   MI.eraseFromParent();
7176   return Legalized;
7177 }
7178 
7179 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
7180 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
7181                                  MachineInstrBuilder Src, APInt Mask) {
7182   const LLT Ty = Dst.getLLTTy(*B.getMRI());
7183   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
7184   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
7185   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
7186   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
7187   return B.buildOr(Dst, LHS, RHS);
7188 }
7189 
7190 LegalizerHelper::LegalizeResult
7191 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
7192   Register Dst = MI.getOperand(0).getReg();
7193   Register Src = MI.getOperand(1).getReg();
7194   const LLT Ty = MRI.getType(Src);
7195   unsigned Size = Ty.getSizeInBits();
7196 
7197   MachineInstrBuilder BSWAP =
7198       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
7199 
7200   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
7201   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
7202   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
7203   MachineInstrBuilder Swap4 =
7204       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
7205 
7206   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
7207   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
7208   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
7209   MachineInstrBuilder Swap2 =
7210       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
7211 
7212   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
7213   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
7214   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
7215   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
7216 
7217   MI.eraseFromParent();
7218   return Legalized;
7219 }
7220 
7221 LegalizerHelper::LegalizeResult
7222 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
7223   MachineFunction &MF = MIRBuilder.getMF();
7224 
7225   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
7226   int NameOpIdx = IsRead ? 1 : 0;
7227   int ValRegIndex = IsRead ? 0 : 1;
7228 
7229   Register ValReg = MI.getOperand(ValRegIndex).getReg();
7230   const LLT Ty = MRI.getType(ValReg);
7231   const MDString *RegStr = cast<MDString>(
7232     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
7233 
7234   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
7235   if (!PhysReg.isValid())
7236     return UnableToLegalize;
7237 
7238   if (IsRead)
7239     MIRBuilder.buildCopy(ValReg, PhysReg);
7240   else
7241     MIRBuilder.buildCopy(PhysReg, ValReg);
7242 
7243   MI.eraseFromParent();
7244   return Legalized;
7245 }
7246 
7247 LegalizerHelper::LegalizeResult
7248 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
7249   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
7250   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
7251   Register Result = MI.getOperand(0).getReg();
7252   LLT OrigTy = MRI.getType(Result);
7253   auto SizeInBits = OrigTy.getScalarSizeInBits();
7254   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
7255 
7256   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
7257   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
7258   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
7259   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
7260 
7261   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
7262   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
7263   MIRBuilder.buildTrunc(Result, Shifted);
7264 
7265   MI.eraseFromParent();
7266   return Legalized;
7267 }
7268 
7269 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
7270   // Implement vector G_SELECT in terms of XOR, AND, OR.
7271   Register DstReg = MI.getOperand(0).getReg();
7272   Register MaskReg = MI.getOperand(1).getReg();
7273   Register Op1Reg = MI.getOperand(2).getReg();
7274   Register Op2Reg = MI.getOperand(3).getReg();
7275   LLT DstTy = MRI.getType(DstReg);
7276   LLT MaskTy = MRI.getType(MaskReg);
7277   if (!DstTy.isVector())
7278     return UnableToLegalize;
7279 
7280   if (MaskTy.isScalar()) {
7281     // Turn the scalar condition into a vector condition mask.
7282 
7283     Register MaskElt = MaskReg;
7284 
7285     // The condition was potentially zero extended before, but we want a sign
7286     // extended boolean.
7287     if (MaskTy.getSizeInBits() <= DstTy.getScalarSizeInBits() &&
7288         MaskTy != LLT::scalar(1)) {
7289       MaskElt = MIRBuilder.buildSExtInReg(MaskTy, MaskElt, 1).getReg(0);
7290     }
7291 
7292     // Continue the sign extension (or truncate) to match the data type.
7293     MaskElt = MIRBuilder.buildSExtOrTrunc(DstTy.getElementType(),
7294                                           MaskElt).getReg(0);
7295 
7296     // Generate a vector splat idiom.
7297     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
7298     MaskReg = ShufSplat.getReg(0);
7299     MaskTy = DstTy;
7300   }
7301 
7302   if (MaskTy.getSizeInBits() != DstTy.getSizeInBits()) {
7303     return UnableToLegalize;
7304   }
7305 
7306   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
7307   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
7308   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
7309   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
7310   MI.eraseFromParent();
7311   return Legalized;
7312 }
7313 
7314 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
7315   // Split DIVREM into individual instructions.
7316   unsigned Opcode = MI.getOpcode();
7317 
7318   MIRBuilder.buildInstr(
7319       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
7320                                         : TargetOpcode::G_UDIV,
7321       {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7322   MIRBuilder.buildInstr(
7323       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
7324                                         : TargetOpcode::G_UREM,
7325       {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7326   MI.eraseFromParent();
7327   return Legalized;
7328 }
7329 
7330 LegalizerHelper::LegalizeResult
7331 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) {
7332   // Expand %res = G_ABS %a into:
7333   // %v1 = G_ASHR %a, scalar_size-1
7334   // %v2 = G_ADD %a, %v1
7335   // %res = G_XOR %v2, %v1
7336   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
7337   Register OpReg = MI.getOperand(1).getReg();
7338   auto ShiftAmt =
7339       MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
7340   auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
7341   auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
7342   MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
7343   MI.eraseFromParent();
7344   return Legalized;
7345 }
7346 
7347 LegalizerHelper::LegalizeResult
7348 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) {
7349   // Expand %res = G_ABS %a into:
7350   // %v1 = G_CONSTANT 0
7351   // %v2 = G_SUB %v1, %a
7352   // %res = G_SMAX %a, %v2
7353   Register SrcReg = MI.getOperand(1).getReg();
7354   LLT Ty = MRI.getType(SrcReg);
7355   auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0);
7356   auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0);
7357   MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub);
7358   MI.eraseFromParent();
7359   return Legalized;
7360 }
7361 
7362 LegalizerHelper::LegalizeResult
7363 LegalizerHelper::lowerVectorReduction(MachineInstr &MI) {
7364   Register SrcReg = MI.getOperand(1).getReg();
7365   LLT SrcTy = MRI.getType(SrcReg);
7366   LLT DstTy = MRI.getType(SrcReg);
7367 
7368   // The source could be a scalar if the IR type was <1 x sN>.
7369   if (SrcTy.isScalar()) {
7370     if (DstTy.getSizeInBits() > SrcTy.getSizeInBits())
7371       return UnableToLegalize; // FIXME: handle extension.
7372     // This can be just a plain copy.
7373     Observer.changingInstr(MI);
7374     MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY));
7375     Observer.changedInstr(MI);
7376     return Legalized;
7377   }
7378   return UnableToLegalize;;
7379 }
7380 
7381 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
7382   // On Darwin, -Os means optimize for size without hurting performance, so
7383   // only really optimize for size when -Oz (MinSize) is used.
7384   if (MF.getTarget().getTargetTriple().isOSDarwin())
7385     return MF.getFunction().hasMinSize();
7386   return MF.getFunction().hasOptSize();
7387 }
7388 
7389 // Returns a list of types to use for memory op lowering in MemOps. A partial
7390 // port of findOptimalMemOpLowering in TargetLowering.
7391 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps,
7392                                           unsigned Limit, const MemOp &Op,
7393                                           unsigned DstAS, unsigned SrcAS,
7394                                           const AttributeList &FuncAttributes,
7395                                           const TargetLowering &TLI) {
7396   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
7397     return false;
7398 
7399   LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes);
7400 
7401   if (Ty == LLT()) {
7402     // Use the largest scalar type whose alignment constraints are satisfied.
7403     // We only need to check DstAlign here as SrcAlign is always greater or
7404     // equal to DstAlign (or zero).
7405     Ty = LLT::scalar(64);
7406     if (Op.isFixedDstAlign())
7407       while (Op.getDstAlign() < Ty.getSizeInBytes() &&
7408              !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign()))
7409         Ty = LLT::scalar(Ty.getSizeInBytes());
7410     assert(Ty.getSizeInBits() > 0 && "Could not find valid type");
7411     // FIXME: check for the largest legal type we can load/store to.
7412   }
7413 
7414   unsigned NumMemOps = 0;
7415   uint64_t Size = Op.size();
7416   while (Size) {
7417     unsigned TySize = Ty.getSizeInBytes();
7418     while (TySize > Size) {
7419       // For now, only use non-vector load / store's for the left-over pieces.
7420       LLT NewTy = Ty;
7421       // FIXME: check for mem op safety and legality of the types. Not all of
7422       // SDAGisms map cleanly to GISel concepts.
7423       if (NewTy.isVector())
7424         NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32);
7425       NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1));
7426       unsigned NewTySize = NewTy.getSizeInBytes();
7427       assert(NewTySize > 0 && "Could not find appropriate type");
7428 
7429       // If the new LLT cannot cover all of the remaining bits, then consider
7430       // issuing a (or a pair of) unaligned and overlapping load / store.
7431       bool Fast;
7432       // Need to get a VT equivalent for allowMisalignedMemoryAccesses().
7433       MVT VT = getMVTForLLT(Ty);
7434       if (NumMemOps && Op.allowOverlap() && NewTySize < Size &&
7435           TLI.allowsMisalignedMemoryAccesses(
7436               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
7437               MachineMemOperand::MONone, &Fast) &&
7438           Fast)
7439         TySize = Size;
7440       else {
7441         Ty = NewTy;
7442         TySize = NewTySize;
7443       }
7444     }
7445 
7446     if (++NumMemOps > Limit)
7447       return false;
7448 
7449     MemOps.push_back(Ty);
7450     Size -= TySize;
7451   }
7452 
7453   return true;
7454 }
7455 
7456 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
7457   if (Ty.isVector())
7458     return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
7459                                 Ty.getNumElements());
7460   return IntegerType::get(C, Ty.getSizeInBits());
7461 }
7462 
7463 // Get a vectorized representation of the memset value operand, GISel edition.
7464 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) {
7465   MachineRegisterInfo &MRI = *MIB.getMRI();
7466   unsigned NumBits = Ty.getScalarSizeInBits();
7467   auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI);
7468   if (!Ty.isVector() && ValVRegAndVal) {
7469     APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8);
7470     APInt SplatVal = APInt::getSplat(NumBits, Scalar);
7471     return MIB.buildConstant(Ty, SplatVal).getReg(0);
7472   }
7473 
7474   // Extend the byte value to the larger type, and then multiply by a magic
7475   // value 0x010101... in order to replicate it across every byte.
7476   // Unless it's zero, in which case just emit a larger G_CONSTANT 0.
7477   if (ValVRegAndVal && ValVRegAndVal->Value == 0) {
7478     return MIB.buildConstant(Ty, 0).getReg(0);
7479   }
7480 
7481   LLT ExtType = Ty.getScalarType();
7482   auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val);
7483   if (NumBits > 8) {
7484     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
7485     auto MagicMI = MIB.buildConstant(ExtType, Magic);
7486     Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0);
7487   }
7488 
7489   // For vector types create a G_BUILD_VECTOR.
7490   if (Ty.isVector())
7491     Val = MIB.buildSplatVector(Ty, Val).getReg(0);
7492 
7493   return Val;
7494 }
7495 
7496 LegalizerHelper::LegalizeResult
7497 LegalizerHelper::lowerMemset(MachineInstr &MI, Register Dst, Register Val,
7498                              uint64_t KnownLen, Align Alignment,
7499                              bool IsVolatile) {
7500   auto &MF = *MI.getParent()->getParent();
7501   const auto &TLI = *MF.getSubtarget().getTargetLowering();
7502   auto &DL = MF.getDataLayout();
7503   LLVMContext &C = MF.getFunction().getContext();
7504 
7505   assert(KnownLen != 0 && "Have a zero length memset length!");
7506 
7507   bool DstAlignCanChange = false;
7508   MachineFrameInfo &MFI = MF.getFrameInfo();
7509   bool OptSize = shouldLowerMemFuncForSize(MF);
7510 
7511   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
7512   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
7513     DstAlignCanChange = true;
7514 
7515   unsigned Limit = TLI.getMaxStoresPerMemset(OptSize);
7516   std::vector<LLT> MemOps;
7517 
7518   const auto &DstMMO = **MI.memoperands_begin();
7519   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
7520 
7521   auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI);
7522   bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0;
7523 
7524   if (!findGISelOptimalMemOpLowering(MemOps, Limit,
7525                                      MemOp::Set(KnownLen, DstAlignCanChange,
7526                                                 Alignment,
7527                                                 /*IsZeroMemset=*/IsZeroVal,
7528                                                 /*IsVolatile=*/IsVolatile),
7529                                      DstPtrInfo.getAddrSpace(), ~0u,
7530                                      MF.getFunction().getAttributes(), TLI))
7531     return UnableToLegalize;
7532 
7533   if (DstAlignCanChange) {
7534     // Get an estimate of the type from the LLT.
7535     Type *IRTy = getTypeForLLT(MemOps[0], C);
7536     Align NewAlign = DL.getABITypeAlign(IRTy);
7537     if (NewAlign > Alignment) {
7538       Alignment = NewAlign;
7539       unsigned FI = FIDef->getOperand(1).getIndex();
7540       // Give the stack frame object a larger alignment if needed.
7541       if (MFI.getObjectAlign(FI) < Alignment)
7542         MFI.setObjectAlignment(FI, Alignment);
7543     }
7544   }
7545 
7546   MachineIRBuilder MIB(MI);
7547   // Find the largest store and generate the bit pattern for it.
7548   LLT LargestTy = MemOps[0];
7549   for (unsigned i = 1; i < MemOps.size(); i++)
7550     if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits())
7551       LargestTy = MemOps[i];
7552 
7553   // The memset stored value is always defined as an s8, so in order to make it
7554   // work with larger store types we need to repeat the bit pattern across the
7555   // wider type.
7556   Register MemSetValue = getMemsetValue(Val, LargestTy, MIB);
7557 
7558   if (!MemSetValue)
7559     return UnableToLegalize;
7560 
7561   // Generate the stores. For each store type in the list, we generate the
7562   // matching store of that type to the destination address.
7563   LLT PtrTy = MRI.getType(Dst);
7564   unsigned DstOff = 0;
7565   unsigned Size = KnownLen;
7566   for (unsigned I = 0; I < MemOps.size(); I++) {
7567     LLT Ty = MemOps[I];
7568     unsigned TySize = Ty.getSizeInBytes();
7569     if (TySize > Size) {
7570       // Issuing an unaligned load / store pair that overlaps with the previous
7571       // pair. Adjust the offset accordingly.
7572       assert(I == MemOps.size() - 1 && I != 0);
7573       DstOff -= TySize - Size;
7574     }
7575 
7576     // If this store is smaller than the largest store see whether we can get
7577     // the smaller value for free with a truncate.
7578     Register Value = MemSetValue;
7579     if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) {
7580       MVT VT = getMVTForLLT(Ty);
7581       MVT LargestVT = getMVTForLLT(LargestTy);
7582       if (!LargestTy.isVector() && !Ty.isVector() &&
7583           TLI.isTruncateFree(LargestVT, VT))
7584         Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0);
7585       else
7586         Value = getMemsetValue(Val, Ty, MIB);
7587       if (!Value)
7588         return UnableToLegalize;
7589     }
7590 
7591     auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty);
7592 
7593     Register Ptr = Dst;
7594     if (DstOff != 0) {
7595       auto Offset =
7596           MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff);
7597       Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
7598     }
7599 
7600     MIB.buildStore(Value, Ptr, *StoreMMO);
7601     DstOff += Ty.getSizeInBytes();
7602     Size -= TySize;
7603   }
7604 
7605   MI.eraseFromParent();
7606   return Legalized;
7607 }
7608 
7609 LegalizerHelper::LegalizeResult
7610 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI) {
7611   assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE);
7612 
7613   Register Dst = MI.getOperand(0).getReg();
7614   Register Src = MI.getOperand(1).getReg();
7615   Register Len = MI.getOperand(2).getReg();
7616 
7617   const auto *MMOIt = MI.memoperands_begin();
7618   const MachineMemOperand *MemOp = *MMOIt;
7619   bool IsVolatile = MemOp->isVolatile();
7620 
7621   // See if this is a constant length copy
7622   auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI);
7623   // FIXME: support dynamically sized G_MEMCPY_INLINE
7624   assert(LenVRegAndVal.hasValue() &&
7625          "inline memcpy with dynamic size is not yet supported");
7626   uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
7627   if (KnownLen == 0) {
7628     MI.eraseFromParent();
7629     return Legalized;
7630   }
7631 
7632   const auto &DstMMO = **MI.memoperands_begin();
7633   const auto &SrcMMO = **std::next(MI.memoperands_begin());
7634   Align DstAlign = DstMMO.getBaseAlign();
7635   Align SrcAlign = SrcMMO.getBaseAlign();
7636 
7637   return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
7638                            IsVolatile);
7639 }
7640 
7641 LegalizerHelper::LegalizeResult
7642 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI, Register Dst, Register Src,
7643                                    uint64_t KnownLen, Align DstAlign,
7644                                    Align SrcAlign, bool IsVolatile) {
7645   assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE);
7646   return lowerMemcpy(MI, Dst, Src, KnownLen,
7647                      std::numeric_limits<uint64_t>::max(), DstAlign, SrcAlign,
7648                      IsVolatile);
7649 }
7650 
7651 LegalizerHelper::LegalizeResult
7652 LegalizerHelper::lowerMemcpy(MachineInstr &MI, Register Dst, Register Src,
7653                              uint64_t KnownLen, uint64_t Limit, Align DstAlign,
7654                              Align SrcAlign, bool IsVolatile) {
7655   auto &MF = *MI.getParent()->getParent();
7656   const auto &TLI = *MF.getSubtarget().getTargetLowering();
7657   auto &DL = MF.getDataLayout();
7658   LLVMContext &C = MF.getFunction().getContext();
7659 
7660   assert(KnownLen != 0 && "Have a zero length memcpy length!");
7661 
7662   bool DstAlignCanChange = false;
7663   MachineFrameInfo &MFI = MF.getFrameInfo();
7664   Align Alignment = commonAlignment(DstAlign, SrcAlign);
7665 
7666   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
7667   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
7668     DstAlignCanChange = true;
7669 
7670   // FIXME: infer better src pointer alignment like SelectionDAG does here.
7671   // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining
7672   // if the memcpy is in a tail call position.
7673 
7674   std::vector<LLT> MemOps;
7675 
7676   const auto &DstMMO = **MI.memoperands_begin();
7677   const auto &SrcMMO = **std::next(MI.memoperands_begin());
7678   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
7679   MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
7680 
7681   if (!findGISelOptimalMemOpLowering(
7682           MemOps, Limit,
7683           MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
7684                       IsVolatile),
7685           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
7686           MF.getFunction().getAttributes(), TLI))
7687     return UnableToLegalize;
7688 
7689   if (DstAlignCanChange) {
7690     // Get an estimate of the type from the LLT.
7691     Type *IRTy = getTypeForLLT(MemOps[0], C);
7692     Align NewAlign = DL.getABITypeAlign(IRTy);
7693 
7694     // Don't promote to an alignment that would require dynamic stack
7695     // realignment.
7696     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
7697     if (!TRI->hasStackRealignment(MF))
7698       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
7699         NewAlign = NewAlign / 2;
7700 
7701     if (NewAlign > Alignment) {
7702       Alignment = NewAlign;
7703       unsigned FI = FIDef->getOperand(1).getIndex();
7704       // Give the stack frame object a larger alignment if needed.
7705       if (MFI.getObjectAlign(FI) < Alignment)
7706         MFI.setObjectAlignment(FI, Alignment);
7707     }
7708   }
7709 
7710   LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n");
7711 
7712   MachineIRBuilder MIB(MI);
7713   // Now we need to emit a pair of load and stores for each of the types we've
7714   // collected. I.e. for each type, generate a load from the source pointer of
7715   // that type width, and then generate a corresponding store to the dest buffer
7716   // of that value loaded. This can result in a sequence of loads and stores
7717   // mixed types, depending on what the target specifies as good types to use.
7718   unsigned CurrOffset = 0;
7719   unsigned Size = KnownLen;
7720   for (auto CopyTy : MemOps) {
7721     // Issuing an unaligned load / store pair  that overlaps with the previous
7722     // pair. Adjust the offset accordingly.
7723     if (CopyTy.getSizeInBytes() > Size)
7724       CurrOffset -= CopyTy.getSizeInBytes() - Size;
7725 
7726     // Construct MMOs for the accesses.
7727     auto *LoadMMO =
7728         MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
7729     auto *StoreMMO =
7730         MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
7731 
7732     // Create the load.
7733     Register LoadPtr = Src;
7734     Register Offset;
7735     if (CurrOffset != 0) {
7736       LLT SrcTy = MRI.getType(Src);
7737       Offset = MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset)
7738                    .getReg(0);
7739       LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0);
7740     }
7741     auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO);
7742 
7743     // Create the store.
7744     Register StorePtr = Dst;
7745     if (CurrOffset != 0) {
7746       LLT DstTy = MRI.getType(Dst);
7747       StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0);
7748     }
7749     MIB.buildStore(LdVal, StorePtr, *StoreMMO);
7750     CurrOffset += CopyTy.getSizeInBytes();
7751     Size -= CopyTy.getSizeInBytes();
7752   }
7753 
7754   MI.eraseFromParent();
7755   return Legalized;
7756 }
7757 
7758 LegalizerHelper::LegalizeResult
7759 LegalizerHelper::lowerMemmove(MachineInstr &MI, Register Dst, Register Src,
7760                               uint64_t KnownLen, Align DstAlign, Align SrcAlign,
7761                               bool IsVolatile) {
7762   auto &MF = *MI.getParent()->getParent();
7763   const auto &TLI = *MF.getSubtarget().getTargetLowering();
7764   auto &DL = MF.getDataLayout();
7765   LLVMContext &C = MF.getFunction().getContext();
7766 
7767   assert(KnownLen != 0 && "Have a zero length memmove length!");
7768 
7769   bool DstAlignCanChange = false;
7770   MachineFrameInfo &MFI = MF.getFrameInfo();
7771   bool OptSize = shouldLowerMemFuncForSize(MF);
7772   Align Alignment = commonAlignment(DstAlign, SrcAlign);
7773 
7774   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
7775   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
7776     DstAlignCanChange = true;
7777 
7778   unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize);
7779   std::vector<LLT> MemOps;
7780 
7781   const auto &DstMMO = **MI.memoperands_begin();
7782   const auto &SrcMMO = **std::next(MI.memoperands_begin());
7783   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
7784   MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
7785 
7786   // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due
7787   // to a bug in it's findOptimalMemOpLowering implementation. For now do the
7788   // same thing here.
7789   if (!findGISelOptimalMemOpLowering(
7790           MemOps, Limit,
7791           MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
7792                       /*IsVolatile*/ true),
7793           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
7794           MF.getFunction().getAttributes(), TLI))
7795     return UnableToLegalize;
7796 
7797   if (DstAlignCanChange) {
7798     // Get an estimate of the type from the LLT.
7799     Type *IRTy = getTypeForLLT(MemOps[0], C);
7800     Align NewAlign = DL.getABITypeAlign(IRTy);
7801 
7802     // Don't promote to an alignment that would require dynamic stack
7803     // realignment.
7804     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
7805     if (!TRI->hasStackRealignment(MF))
7806       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
7807         NewAlign = NewAlign / 2;
7808 
7809     if (NewAlign > Alignment) {
7810       Alignment = NewAlign;
7811       unsigned FI = FIDef->getOperand(1).getIndex();
7812       // Give the stack frame object a larger alignment if needed.
7813       if (MFI.getObjectAlign(FI) < Alignment)
7814         MFI.setObjectAlignment(FI, Alignment);
7815     }
7816   }
7817 
7818   LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n");
7819 
7820   MachineIRBuilder MIB(MI);
7821   // Memmove requires that we perform the loads first before issuing the stores.
7822   // Apart from that, this loop is pretty much doing the same thing as the
7823   // memcpy codegen function.
7824   unsigned CurrOffset = 0;
7825   SmallVector<Register, 16> LoadVals;
7826   for (auto CopyTy : MemOps) {
7827     // Construct MMO for the load.
7828     auto *LoadMMO =
7829         MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
7830 
7831     // Create the load.
7832     Register LoadPtr = Src;
7833     if (CurrOffset != 0) {
7834       LLT SrcTy = MRI.getType(Src);
7835       auto Offset =
7836           MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset);
7837       LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0);
7838     }
7839     LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0));
7840     CurrOffset += CopyTy.getSizeInBytes();
7841   }
7842 
7843   CurrOffset = 0;
7844   for (unsigned I = 0; I < MemOps.size(); ++I) {
7845     LLT CopyTy = MemOps[I];
7846     // Now store the values loaded.
7847     auto *StoreMMO =
7848         MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
7849 
7850     Register StorePtr = Dst;
7851     if (CurrOffset != 0) {
7852       LLT DstTy = MRI.getType(Dst);
7853       auto Offset =
7854           MIB.buildConstant(LLT::scalar(DstTy.getSizeInBits()), CurrOffset);
7855       StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0);
7856     }
7857     MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO);
7858     CurrOffset += CopyTy.getSizeInBytes();
7859   }
7860   MI.eraseFromParent();
7861   return Legalized;
7862 }
7863 
7864 LegalizerHelper::LegalizeResult
7865 LegalizerHelper::lowerMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
7866   const unsigned Opc = MI.getOpcode();
7867   // This combine is fairly complex so it's not written with a separate
7868   // matcher function.
7869   assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE ||
7870           Opc == TargetOpcode::G_MEMSET) &&
7871          "Expected memcpy like instruction");
7872 
7873   auto MMOIt = MI.memoperands_begin();
7874   const MachineMemOperand *MemOp = *MMOIt;
7875 
7876   Align DstAlign = MemOp->getBaseAlign();
7877   Align SrcAlign;
7878   Register Dst = MI.getOperand(0).getReg();
7879   Register Src = MI.getOperand(1).getReg();
7880   Register Len = MI.getOperand(2).getReg();
7881 
7882   if (Opc != TargetOpcode::G_MEMSET) {
7883     assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI");
7884     MemOp = *(++MMOIt);
7885     SrcAlign = MemOp->getBaseAlign();
7886   }
7887 
7888   // See if this is a constant length copy
7889   auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI);
7890   if (!LenVRegAndVal)
7891     return UnableToLegalize;
7892   uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
7893 
7894   if (KnownLen == 0) {
7895     MI.eraseFromParent();
7896     return Legalized;
7897   }
7898 
7899   bool IsVolatile = MemOp->isVolatile();
7900   if (Opc == TargetOpcode::G_MEMCPY_INLINE)
7901     return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
7902                              IsVolatile);
7903 
7904   // Don't try to optimize volatile.
7905   if (IsVolatile)
7906     return UnableToLegalize;
7907 
7908   if (MaxLen && KnownLen > MaxLen)
7909     return UnableToLegalize;
7910 
7911   if (Opc == TargetOpcode::G_MEMCPY) {
7912     auto &MF = *MI.getParent()->getParent();
7913     const auto &TLI = *MF.getSubtarget().getTargetLowering();
7914     bool OptSize = shouldLowerMemFuncForSize(MF);
7915     uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize);
7916     return lowerMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign,
7917                        IsVolatile);
7918   }
7919   if (Opc == TargetOpcode::G_MEMMOVE)
7920     return lowerMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
7921   if (Opc == TargetOpcode::G_MEMSET)
7922     return lowerMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile);
7923   return UnableToLegalize;
7924 }
7925