1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 19 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 20 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 21 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 22 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 23 #include "llvm/CodeGen/GlobalISel/Utils.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/TargetFrameLowering.h" 27 #include "llvm/CodeGen/TargetInstrInfo.h" 28 #include "llvm/CodeGen/TargetLowering.h" 29 #include "llvm/CodeGen/TargetOpcodes.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetMachine.h" 36 37 #define DEBUG_TYPE "legalizer" 38 39 using namespace llvm; 40 using namespace LegalizeActions; 41 using namespace MIPatternMatch; 42 43 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 44 /// 45 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 46 /// with any leftover piece as type \p LeftoverTy 47 /// 48 /// Returns -1 in the first element of the pair if the breakdown is not 49 /// satisfiable. 50 static std::pair<int, int> 51 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 52 assert(!LeftoverTy.isValid() && "this is an out argument"); 53 54 unsigned Size = OrigTy.getSizeInBits(); 55 unsigned NarrowSize = NarrowTy.getSizeInBits(); 56 unsigned NumParts = Size / NarrowSize; 57 unsigned LeftoverSize = Size - NumParts * NarrowSize; 58 assert(Size > NarrowSize); 59 60 if (LeftoverSize == 0) 61 return {NumParts, 0}; 62 63 if (NarrowTy.isVector()) { 64 unsigned EltSize = OrigTy.getScalarSizeInBits(); 65 if (LeftoverSize % EltSize != 0) 66 return {-1, -1}; 67 LeftoverTy = LLT::scalarOrVector( 68 ElementCount::getFixed(LeftoverSize / EltSize), EltSize); 69 } else { 70 LeftoverTy = LLT::scalar(LeftoverSize); 71 } 72 73 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 74 return std::make_pair(NumParts, NumLeftover); 75 } 76 77 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 78 79 if (!Ty.isScalar()) 80 return nullptr; 81 82 switch (Ty.getSizeInBits()) { 83 case 16: 84 return Type::getHalfTy(Ctx); 85 case 32: 86 return Type::getFloatTy(Ctx); 87 case 64: 88 return Type::getDoubleTy(Ctx); 89 case 80: 90 return Type::getX86_FP80Ty(Ctx); 91 case 128: 92 return Type::getFP128Ty(Ctx); 93 default: 94 return nullptr; 95 } 96 } 97 98 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 99 GISelChangeObserver &Observer, 100 MachineIRBuilder &Builder) 101 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 102 LI(*MF.getSubtarget().getLegalizerInfo()), 103 TLI(*MF.getSubtarget().getTargetLowering()) { } 104 105 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 106 GISelChangeObserver &Observer, 107 MachineIRBuilder &B) 108 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 109 TLI(*MF.getSubtarget().getTargetLowering()) { } 110 111 LegalizerHelper::LegalizeResult 112 LegalizerHelper::legalizeInstrStep(MachineInstr &MI, 113 LostDebugLocObserver &LocObserver) { 114 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 115 116 MIRBuilder.setInstrAndDebugLoc(MI); 117 118 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 119 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 120 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 121 auto Step = LI.getAction(MI, MRI); 122 switch (Step.Action) { 123 case Legal: 124 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 125 return AlreadyLegal; 126 case Libcall: 127 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 128 return libcall(MI, LocObserver); 129 case NarrowScalar: 130 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 131 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 132 case WidenScalar: 133 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 134 return widenScalar(MI, Step.TypeIdx, Step.NewType); 135 case Bitcast: 136 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 137 return bitcast(MI, Step.TypeIdx, Step.NewType); 138 case Lower: 139 LLVM_DEBUG(dbgs() << ".. Lower\n"); 140 return lower(MI, Step.TypeIdx, Step.NewType); 141 case FewerElements: 142 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 143 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 144 case MoreElements: 145 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 146 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 147 case Custom: 148 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 149 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 150 default: 151 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 152 return UnableToLegalize; 153 } 154 } 155 156 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 157 SmallVectorImpl<Register> &VRegs) { 158 for (int i = 0; i < NumParts; ++i) 159 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 160 MIRBuilder.buildUnmerge(VRegs, Reg); 161 } 162 163 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 164 LLT MainTy, LLT &LeftoverTy, 165 SmallVectorImpl<Register> &VRegs, 166 SmallVectorImpl<Register> &LeftoverRegs) { 167 assert(!LeftoverTy.isValid() && "this is an out argument"); 168 169 unsigned RegSize = RegTy.getSizeInBits(); 170 unsigned MainSize = MainTy.getSizeInBits(); 171 unsigned NumParts = RegSize / MainSize; 172 unsigned LeftoverSize = RegSize - NumParts * MainSize; 173 174 // Use an unmerge when possible. 175 if (LeftoverSize == 0) { 176 for (unsigned I = 0; I < NumParts; ++I) 177 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 178 MIRBuilder.buildUnmerge(VRegs, Reg); 179 return true; 180 } 181 182 // Perform irregular split. Leftover is last element of RegPieces. 183 if (MainTy.isVector()) { 184 SmallVector<Register, 8> RegPieces; 185 extractVectorParts(Reg, MainTy.getNumElements(), RegPieces); 186 for (unsigned i = 0; i < RegPieces.size() - 1; ++i) 187 VRegs.push_back(RegPieces[i]); 188 LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]); 189 LeftoverTy = MRI.getType(LeftoverRegs[0]); 190 return true; 191 } 192 193 LeftoverTy = LLT::scalar(LeftoverSize); 194 // For irregular sizes, extract the individual parts. 195 for (unsigned I = 0; I != NumParts; ++I) { 196 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 197 VRegs.push_back(NewReg); 198 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 199 } 200 201 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 202 Offset += LeftoverSize) { 203 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 204 LeftoverRegs.push_back(NewReg); 205 MIRBuilder.buildExtract(NewReg, Reg, Offset); 206 } 207 208 return true; 209 } 210 211 void LegalizerHelper::extractVectorParts(Register Reg, unsigned NumElts, 212 SmallVectorImpl<Register> &VRegs) { 213 LLT RegTy = MRI.getType(Reg); 214 assert(RegTy.isVector() && "Expected a vector type"); 215 216 LLT EltTy = RegTy.getElementType(); 217 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); 218 unsigned RegNumElts = RegTy.getNumElements(); 219 unsigned LeftoverNumElts = RegNumElts % NumElts; 220 unsigned NumNarrowTyPieces = RegNumElts / NumElts; 221 222 // Perfect split without leftover 223 if (LeftoverNumElts == 0) 224 return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs); 225 226 // Irregular split. Provide direct access to all elements for artifact 227 // combiner using unmerge to elements. Then build vectors with NumElts 228 // elements. Remaining element(s) will be (used to build vector) Leftover. 229 SmallVector<Register, 8> Elts; 230 extractParts(Reg, EltTy, RegNumElts, Elts); 231 232 unsigned Offset = 0; 233 // Requested sub-vectors of NarrowTy. 234 for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) { 235 ArrayRef<Register> Pieces(&Elts[Offset], NumElts); 236 VRegs.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0)); 237 } 238 239 // Leftover element(s). 240 if (LeftoverNumElts == 1) { 241 VRegs.push_back(Elts[Offset]); 242 } else { 243 LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy); 244 ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts); 245 VRegs.push_back(MIRBuilder.buildMerge(LeftoverTy, Pieces).getReg(0)); 246 } 247 } 248 249 void LegalizerHelper::insertParts(Register DstReg, 250 LLT ResultTy, LLT PartTy, 251 ArrayRef<Register> PartRegs, 252 LLT LeftoverTy, 253 ArrayRef<Register> LeftoverRegs) { 254 if (!LeftoverTy.isValid()) { 255 assert(LeftoverRegs.empty()); 256 257 if (!ResultTy.isVector()) { 258 MIRBuilder.buildMerge(DstReg, PartRegs); 259 return; 260 } 261 262 if (PartTy.isVector()) 263 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 264 else 265 MIRBuilder.buildBuildVector(DstReg, PartRegs); 266 return; 267 } 268 269 // Merge sub-vectors with different number of elements and insert into DstReg. 270 if (ResultTy.isVector()) { 271 assert(LeftoverRegs.size() == 1 && "Expected one leftover register"); 272 SmallVector<Register, 8> AllRegs; 273 for (auto Reg : concat<const Register>(PartRegs, LeftoverRegs)) 274 AllRegs.push_back(Reg); 275 return mergeMixedSubvectors(DstReg, AllRegs); 276 } 277 278 SmallVector<Register> GCDRegs; 279 LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy); 280 for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs)) 281 extractGCDType(GCDRegs, GCDTy, PartReg); 282 LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs); 283 buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs); 284 } 285 286 void LegalizerHelper::appendVectorElts(SmallVectorImpl<Register> &Elts, 287 Register Reg) { 288 LLT Ty = MRI.getType(Reg); 289 SmallVector<Register, 8> RegElts; 290 extractParts(Reg, Ty.getScalarType(), Ty.getNumElements(), RegElts); 291 Elts.append(RegElts); 292 } 293 294 /// Merge \p PartRegs with different types into \p DstReg. 295 void LegalizerHelper::mergeMixedSubvectors(Register DstReg, 296 ArrayRef<Register> PartRegs) { 297 SmallVector<Register, 8> AllElts; 298 for (unsigned i = 0; i < PartRegs.size() - 1; ++i) 299 appendVectorElts(AllElts, PartRegs[i]); 300 301 Register Leftover = PartRegs[PartRegs.size() - 1]; 302 if (MRI.getType(Leftover).isScalar()) 303 AllElts.push_back(Leftover); 304 else 305 appendVectorElts(AllElts, Leftover); 306 307 MIRBuilder.buildMerge(DstReg, AllElts); 308 } 309 310 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 311 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 312 const MachineInstr &MI) { 313 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 314 315 const int StartIdx = Regs.size(); 316 const int NumResults = MI.getNumOperands() - 1; 317 Regs.resize(Regs.size() + NumResults); 318 for (int I = 0; I != NumResults; ++I) 319 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 320 } 321 322 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 323 LLT GCDTy, Register SrcReg) { 324 LLT SrcTy = MRI.getType(SrcReg); 325 if (SrcTy == GCDTy) { 326 // If the source already evenly divides the result type, we don't need to do 327 // anything. 328 Parts.push_back(SrcReg); 329 } else { 330 // Need to split into common type sized pieces. 331 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 332 getUnmergeResults(Parts, *Unmerge); 333 } 334 } 335 336 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 337 LLT NarrowTy, Register SrcReg) { 338 LLT SrcTy = MRI.getType(SrcReg); 339 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 340 extractGCDType(Parts, GCDTy, SrcReg); 341 return GCDTy; 342 } 343 344 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 345 SmallVectorImpl<Register> &VRegs, 346 unsigned PadStrategy) { 347 LLT LCMTy = getLCMType(DstTy, NarrowTy); 348 349 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 350 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 351 int NumOrigSrc = VRegs.size(); 352 353 Register PadReg; 354 355 // Get a value we can use to pad the source value if the sources won't evenly 356 // cover the result type. 357 if (NumOrigSrc < NumParts * NumSubParts) { 358 if (PadStrategy == TargetOpcode::G_ZEXT) 359 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 360 else if (PadStrategy == TargetOpcode::G_ANYEXT) 361 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 362 else { 363 assert(PadStrategy == TargetOpcode::G_SEXT); 364 365 // Shift the sign bit of the low register through the high register. 366 auto ShiftAmt = 367 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 368 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 369 } 370 } 371 372 // Registers for the final merge to be produced. 373 SmallVector<Register, 4> Remerge(NumParts); 374 375 // Registers needed for intermediate merges, which will be merged into a 376 // source for Remerge. 377 SmallVector<Register, 4> SubMerge(NumSubParts); 378 379 // Once we've fully read off the end of the original source bits, we can reuse 380 // the same high bits for remaining padding elements. 381 Register AllPadReg; 382 383 // Build merges to the LCM type to cover the original result type. 384 for (int I = 0; I != NumParts; ++I) { 385 bool AllMergePartsArePadding = true; 386 387 // Build the requested merges to the requested type. 388 for (int J = 0; J != NumSubParts; ++J) { 389 int Idx = I * NumSubParts + J; 390 if (Idx >= NumOrigSrc) { 391 SubMerge[J] = PadReg; 392 continue; 393 } 394 395 SubMerge[J] = VRegs[Idx]; 396 397 // There are meaningful bits here we can't reuse later. 398 AllMergePartsArePadding = false; 399 } 400 401 // If we've filled up a complete piece with padding bits, we can directly 402 // emit the natural sized constant if applicable, rather than a merge of 403 // smaller constants. 404 if (AllMergePartsArePadding && !AllPadReg) { 405 if (PadStrategy == TargetOpcode::G_ANYEXT) 406 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 407 else if (PadStrategy == TargetOpcode::G_ZEXT) 408 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 409 410 // If this is a sign extension, we can't materialize a trivial constant 411 // with the right type and have to produce a merge. 412 } 413 414 if (AllPadReg) { 415 // Avoid creating additional instructions if we're just adding additional 416 // copies of padding bits. 417 Remerge[I] = AllPadReg; 418 continue; 419 } 420 421 if (NumSubParts == 1) 422 Remerge[I] = SubMerge[0]; 423 else 424 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 425 426 // In the sign extend padding case, re-use the first all-signbit merge. 427 if (AllMergePartsArePadding && !AllPadReg) 428 AllPadReg = Remerge[I]; 429 } 430 431 VRegs = std::move(Remerge); 432 return LCMTy; 433 } 434 435 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 436 ArrayRef<Register> RemergeRegs) { 437 LLT DstTy = MRI.getType(DstReg); 438 439 // Create the merge to the widened source, and extract the relevant bits into 440 // the result. 441 442 if (DstTy == LCMTy) { 443 MIRBuilder.buildMerge(DstReg, RemergeRegs); 444 return; 445 } 446 447 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 448 if (DstTy.isScalar() && LCMTy.isScalar()) { 449 MIRBuilder.buildTrunc(DstReg, Remerge); 450 return; 451 } 452 453 if (LCMTy.isVector()) { 454 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 455 SmallVector<Register, 8> UnmergeDefs(NumDefs); 456 UnmergeDefs[0] = DstReg; 457 for (unsigned I = 1; I != NumDefs; ++I) 458 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 459 460 MIRBuilder.buildUnmerge(UnmergeDefs, 461 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 462 return; 463 } 464 465 llvm_unreachable("unhandled case"); 466 } 467 468 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 469 #define RTLIBCASE_INT(LibcallPrefix) \ 470 do { \ 471 switch (Size) { \ 472 case 32: \ 473 return RTLIB::LibcallPrefix##32; \ 474 case 64: \ 475 return RTLIB::LibcallPrefix##64; \ 476 case 128: \ 477 return RTLIB::LibcallPrefix##128; \ 478 default: \ 479 llvm_unreachable("unexpected size"); \ 480 } \ 481 } while (0) 482 483 #define RTLIBCASE(LibcallPrefix) \ 484 do { \ 485 switch (Size) { \ 486 case 32: \ 487 return RTLIB::LibcallPrefix##32; \ 488 case 64: \ 489 return RTLIB::LibcallPrefix##64; \ 490 case 80: \ 491 return RTLIB::LibcallPrefix##80; \ 492 case 128: \ 493 return RTLIB::LibcallPrefix##128; \ 494 default: \ 495 llvm_unreachable("unexpected size"); \ 496 } \ 497 } while (0) 498 499 switch (Opcode) { 500 case TargetOpcode::G_SDIV: 501 RTLIBCASE_INT(SDIV_I); 502 case TargetOpcode::G_UDIV: 503 RTLIBCASE_INT(UDIV_I); 504 case TargetOpcode::G_SREM: 505 RTLIBCASE_INT(SREM_I); 506 case TargetOpcode::G_UREM: 507 RTLIBCASE_INT(UREM_I); 508 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 509 RTLIBCASE_INT(CTLZ_I); 510 case TargetOpcode::G_FADD: 511 RTLIBCASE(ADD_F); 512 case TargetOpcode::G_FSUB: 513 RTLIBCASE(SUB_F); 514 case TargetOpcode::G_FMUL: 515 RTLIBCASE(MUL_F); 516 case TargetOpcode::G_FDIV: 517 RTLIBCASE(DIV_F); 518 case TargetOpcode::G_FEXP: 519 RTLIBCASE(EXP_F); 520 case TargetOpcode::G_FEXP2: 521 RTLIBCASE(EXP2_F); 522 case TargetOpcode::G_FREM: 523 RTLIBCASE(REM_F); 524 case TargetOpcode::G_FPOW: 525 RTLIBCASE(POW_F); 526 case TargetOpcode::G_FMA: 527 RTLIBCASE(FMA_F); 528 case TargetOpcode::G_FSIN: 529 RTLIBCASE(SIN_F); 530 case TargetOpcode::G_FCOS: 531 RTLIBCASE(COS_F); 532 case TargetOpcode::G_FLOG10: 533 RTLIBCASE(LOG10_F); 534 case TargetOpcode::G_FLOG: 535 RTLIBCASE(LOG_F); 536 case TargetOpcode::G_FLOG2: 537 RTLIBCASE(LOG2_F); 538 case TargetOpcode::G_FCEIL: 539 RTLIBCASE(CEIL_F); 540 case TargetOpcode::G_FFLOOR: 541 RTLIBCASE(FLOOR_F); 542 case TargetOpcode::G_FMINNUM: 543 RTLIBCASE(FMIN_F); 544 case TargetOpcode::G_FMAXNUM: 545 RTLIBCASE(FMAX_F); 546 case TargetOpcode::G_FSQRT: 547 RTLIBCASE(SQRT_F); 548 case TargetOpcode::G_FRINT: 549 RTLIBCASE(RINT_F); 550 case TargetOpcode::G_FNEARBYINT: 551 RTLIBCASE(NEARBYINT_F); 552 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 553 RTLIBCASE(ROUNDEVEN_F); 554 } 555 llvm_unreachable("Unknown libcall function"); 556 } 557 558 /// True if an instruction is in tail position in its caller. Intended for 559 /// legalizing libcalls as tail calls when possible. 560 static bool isLibCallInTailPosition(MachineInstr &MI, 561 const TargetInstrInfo &TII, 562 MachineRegisterInfo &MRI) { 563 MachineBasicBlock &MBB = *MI.getParent(); 564 const Function &F = MBB.getParent()->getFunction(); 565 566 // Conservatively require the attributes of the call to match those of 567 // the return. Ignore NoAlias and NonNull because they don't affect the 568 // call sequence. 569 AttributeList CallerAttrs = F.getAttributes(); 570 if (AttrBuilder(F.getContext(), CallerAttrs.getRetAttrs()) 571 .removeAttribute(Attribute::NoAlias) 572 .removeAttribute(Attribute::NonNull) 573 .hasAttributes()) 574 return false; 575 576 // It's not safe to eliminate the sign / zero extension of the return value. 577 if (CallerAttrs.hasRetAttr(Attribute::ZExt) || 578 CallerAttrs.hasRetAttr(Attribute::SExt)) 579 return false; 580 581 // Only tail call if the following instruction is a standard return or if we 582 // have a `thisreturn` callee, and a sequence like: 583 // 584 // G_MEMCPY %0, %1, %2 585 // $x0 = COPY %0 586 // RET_ReallyLR implicit $x0 587 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 588 if (Next != MBB.instr_end() && Next->isCopy()) { 589 switch (MI.getOpcode()) { 590 default: 591 llvm_unreachable("unsupported opcode"); 592 case TargetOpcode::G_BZERO: 593 return false; 594 case TargetOpcode::G_MEMCPY: 595 case TargetOpcode::G_MEMMOVE: 596 case TargetOpcode::G_MEMSET: 597 break; 598 } 599 600 Register VReg = MI.getOperand(0).getReg(); 601 if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg()) 602 return false; 603 604 Register PReg = Next->getOperand(0).getReg(); 605 if (!PReg.isPhysical()) 606 return false; 607 608 auto Ret = next_nodbg(Next, MBB.instr_end()); 609 if (Ret == MBB.instr_end() || !Ret->isReturn()) 610 return false; 611 612 if (Ret->getNumImplicitOperands() != 1) 613 return false; 614 615 if (PReg != Ret->getOperand(0).getReg()) 616 return false; 617 618 // Skip over the COPY that we just validated. 619 Next = Ret; 620 } 621 622 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 623 return false; 624 625 return true; 626 } 627 628 LegalizerHelper::LegalizeResult 629 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 630 const CallLowering::ArgInfo &Result, 631 ArrayRef<CallLowering::ArgInfo> Args, 632 const CallingConv::ID CC) { 633 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 634 635 CallLowering::CallLoweringInfo Info; 636 Info.CallConv = CC; 637 Info.Callee = MachineOperand::CreateES(Name); 638 Info.OrigRet = Result; 639 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 640 if (!CLI.lowerCall(MIRBuilder, Info)) 641 return LegalizerHelper::UnableToLegalize; 642 643 return LegalizerHelper::Legalized; 644 } 645 646 LegalizerHelper::LegalizeResult 647 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 648 const CallLowering::ArgInfo &Result, 649 ArrayRef<CallLowering::ArgInfo> Args) { 650 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 651 const char *Name = TLI.getLibcallName(Libcall); 652 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 653 return createLibcall(MIRBuilder, Name, Result, Args, CC); 654 } 655 656 // Useful for libcalls where all operands have the same type. 657 static LegalizerHelper::LegalizeResult 658 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 659 Type *OpType) { 660 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 661 662 // FIXME: What does the original arg index mean here? 663 SmallVector<CallLowering::ArgInfo, 3> Args; 664 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) 665 Args.push_back({MO.getReg(), OpType, 0}); 666 return createLibcall(MIRBuilder, Libcall, 667 {MI.getOperand(0).getReg(), OpType, 0}, Args); 668 } 669 670 LegalizerHelper::LegalizeResult 671 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 672 MachineInstr &MI, LostDebugLocObserver &LocObserver) { 673 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 674 675 SmallVector<CallLowering::ArgInfo, 3> Args; 676 // Add all the args, except for the last which is an imm denoting 'tail'. 677 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 678 Register Reg = MI.getOperand(i).getReg(); 679 680 // Need derive an IR type for call lowering. 681 LLT OpLLT = MRI.getType(Reg); 682 Type *OpTy = nullptr; 683 if (OpLLT.isPointer()) 684 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 685 else 686 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 687 Args.push_back({Reg, OpTy, 0}); 688 } 689 690 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 691 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 692 RTLIB::Libcall RTLibcall; 693 unsigned Opc = MI.getOpcode(); 694 switch (Opc) { 695 case TargetOpcode::G_BZERO: 696 RTLibcall = RTLIB::BZERO; 697 break; 698 case TargetOpcode::G_MEMCPY: 699 RTLibcall = RTLIB::MEMCPY; 700 Args[0].Flags[0].setReturned(); 701 break; 702 case TargetOpcode::G_MEMMOVE: 703 RTLibcall = RTLIB::MEMMOVE; 704 Args[0].Flags[0].setReturned(); 705 break; 706 case TargetOpcode::G_MEMSET: 707 RTLibcall = RTLIB::MEMSET; 708 Args[0].Flags[0].setReturned(); 709 break; 710 default: 711 llvm_unreachable("unsupported opcode"); 712 } 713 const char *Name = TLI.getLibcallName(RTLibcall); 714 715 // Unsupported libcall on the target. 716 if (!Name) { 717 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " 718 << MIRBuilder.getTII().getName(Opc) << "\n"); 719 return LegalizerHelper::UnableToLegalize; 720 } 721 722 CallLowering::CallLoweringInfo Info; 723 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 724 Info.Callee = MachineOperand::CreateES(Name); 725 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0); 726 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 727 isLibCallInTailPosition(MI, MIRBuilder.getTII(), MRI); 728 729 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 730 if (!CLI.lowerCall(MIRBuilder, Info)) 731 return LegalizerHelper::UnableToLegalize; 732 733 if (Info.LoweredTailCall) { 734 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 735 736 // Check debug locations before removing the return. 737 LocObserver.checkpoint(true); 738 739 // We must have a return following the call (or debug insts) to get past 740 // isLibCallInTailPosition. 741 do { 742 MachineInstr *Next = MI.getNextNode(); 743 assert(Next && 744 (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) && 745 "Expected instr following MI to be return or debug inst?"); 746 // We lowered a tail call, so the call is now the return from the block. 747 // Delete the old return. 748 Next->eraseFromParent(); 749 } while (MI.getNextNode()); 750 751 // We expect to lose the debug location from the return. 752 LocObserver.checkpoint(false); 753 } 754 755 return LegalizerHelper::Legalized; 756 } 757 758 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 759 Type *FromType) { 760 auto ToMVT = MVT::getVT(ToType); 761 auto FromMVT = MVT::getVT(FromType); 762 763 switch (Opcode) { 764 case TargetOpcode::G_FPEXT: 765 return RTLIB::getFPEXT(FromMVT, ToMVT); 766 case TargetOpcode::G_FPTRUNC: 767 return RTLIB::getFPROUND(FromMVT, ToMVT); 768 case TargetOpcode::G_FPTOSI: 769 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 770 case TargetOpcode::G_FPTOUI: 771 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 772 case TargetOpcode::G_SITOFP: 773 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 774 case TargetOpcode::G_UITOFP: 775 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 776 } 777 llvm_unreachable("Unsupported libcall function"); 778 } 779 780 static LegalizerHelper::LegalizeResult 781 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 782 Type *FromType) { 783 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 784 return createLibcall(MIRBuilder, Libcall, 785 {MI.getOperand(0).getReg(), ToType, 0}, 786 {{MI.getOperand(1).getReg(), FromType, 0}}); 787 } 788 789 LegalizerHelper::LegalizeResult 790 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) { 791 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 792 unsigned Size = LLTy.getSizeInBits(); 793 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 794 795 switch (MI.getOpcode()) { 796 default: 797 return UnableToLegalize; 798 case TargetOpcode::G_SDIV: 799 case TargetOpcode::G_UDIV: 800 case TargetOpcode::G_SREM: 801 case TargetOpcode::G_UREM: 802 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 803 Type *HLTy = IntegerType::get(Ctx, Size); 804 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 805 if (Status != Legalized) 806 return Status; 807 break; 808 } 809 case TargetOpcode::G_FADD: 810 case TargetOpcode::G_FSUB: 811 case TargetOpcode::G_FMUL: 812 case TargetOpcode::G_FDIV: 813 case TargetOpcode::G_FMA: 814 case TargetOpcode::G_FPOW: 815 case TargetOpcode::G_FREM: 816 case TargetOpcode::G_FCOS: 817 case TargetOpcode::G_FSIN: 818 case TargetOpcode::G_FLOG10: 819 case TargetOpcode::G_FLOG: 820 case TargetOpcode::G_FLOG2: 821 case TargetOpcode::G_FEXP: 822 case TargetOpcode::G_FEXP2: 823 case TargetOpcode::G_FCEIL: 824 case TargetOpcode::G_FFLOOR: 825 case TargetOpcode::G_FMINNUM: 826 case TargetOpcode::G_FMAXNUM: 827 case TargetOpcode::G_FSQRT: 828 case TargetOpcode::G_FRINT: 829 case TargetOpcode::G_FNEARBYINT: 830 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 831 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 832 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 833 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 834 return UnableToLegalize; 835 } 836 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 837 if (Status != Legalized) 838 return Status; 839 break; 840 } 841 case TargetOpcode::G_FPEXT: 842 case TargetOpcode::G_FPTRUNC: { 843 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 844 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 845 if (!FromTy || !ToTy) 846 return UnableToLegalize; 847 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 848 if (Status != Legalized) 849 return Status; 850 break; 851 } 852 case TargetOpcode::G_FPTOSI: 853 case TargetOpcode::G_FPTOUI: { 854 // FIXME: Support other types 855 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 856 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 857 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 858 return UnableToLegalize; 859 LegalizeResult Status = conversionLibcall( 860 MI, MIRBuilder, 861 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 862 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 863 if (Status != Legalized) 864 return Status; 865 break; 866 } 867 case TargetOpcode::G_SITOFP: 868 case TargetOpcode::G_UITOFP: { 869 // FIXME: Support other types 870 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 871 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 872 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 873 return UnableToLegalize; 874 LegalizeResult Status = conversionLibcall( 875 MI, MIRBuilder, 876 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 877 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 878 if (Status != Legalized) 879 return Status; 880 break; 881 } 882 case TargetOpcode::G_BZERO: 883 case TargetOpcode::G_MEMCPY: 884 case TargetOpcode::G_MEMMOVE: 885 case TargetOpcode::G_MEMSET: { 886 LegalizeResult Result = 887 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver); 888 if (Result != Legalized) 889 return Result; 890 MI.eraseFromParent(); 891 return Result; 892 } 893 } 894 895 MI.eraseFromParent(); 896 return Legalized; 897 } 898 899 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 900 unsigned TypeIdx, 901 LLT NarrowTy) { 902 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 903 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 904 905 switch (MI.getOpcode()) { 906 default: 907 return UnableToLegalize; 908 case TargetOpcode::G_IMPLICIT_DEF: { 909 Register DstReg = MI.getOperand(0).getReg(); 910 LLT DstTy = MRI.getType(DstReg); 911 912 // If SizeOp0 is not an exact multiple of NarrowSize, emit 913 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 914 // FIXME: Although this would also be legal for the general case, it causes 915 // a lot of regressions in the emitted code (superfluous COPYs, artifact 916 // combines not being hit). This seems to be a problem related to the 917 // artifact combiner. 918 if (SizeOp0 % NarrowSize != 0) { 919 LLT ImplicitTy = NarrowTy; 920 if (DstTy.isVector()) 921 ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy); 922 923 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 924 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 925 926 MI.eraseFromParent(); 927 return Legalized; 928 } 929 930 int NumParts = SizeOp0 / NarrowSize; 931 932 SmallVector<Register, 2> DstRegs; 933 for (int i = 0; i < NumParts; ++i) 934 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 935 936 if (DstTy.isVector()) 937 MIRBuilder.buildBuildVector(DstReg, DstRegs); 938 else 939 MIRBuilder.buildMerge(DstReg, DstRegs); 940 MI.eraseFromParent(); 941 return Legalized; 942 } 943 case TargetOpcode::G_CONSTANT: { 944 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 945 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 946 unsigned TotalSize = Ty.getSizeInBits(); 947 unsigned NarrowSize = NarrowTy.getSizeInBits(); 948 int NumParts = TotalSize / NarrowSize; 949 950 SmallVector<Register, 4> PartRegs; 951 for (int I = 0; I != NumParts; ++I) { 952 unsigned Offset = I * NarrowSize; 953 auto K = MIRBuilder.buildConstant(NarrowTy, 954 Val.lshr(Offset).trunc(NarrowSize)); 955 PartRegs.push_back(K.getReg(0)); 956 } 957 958 LLT LeftoverTy; 959 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 960 SmallVector<Register, 1> LeftoverRegs; 961 if (LeftoverBits != 0) { 962 LeftoverTy = LLT::scalar(LeftoverBits); 963 auto K = MIRBuilder.buildConstant( 964 LeftoverTy, 965 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 966 LeftoverRegs.push_back(K.getReg(0)); 967 } 968 969 insertParts(MI.getOperand(0).getReg(), 970 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 971 972 MI.eraseFromParent(); 973 return Legalized; 974 } 975 case TargetOpcode::G_SEXT: 976 case TargetOpcode::G_ZEXT: 977 case TargetOpcode::G_ANYEXT: 978 return narrowScalarExt(MI, TypeIdx, NarrowTy); 979 case TargetOpcode::G_TRUNC: { 980 if (TypeIdx != 1) 981 return UnableToLegalize; 982 983 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 984 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 985 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 986 return UnableToLegalize; 987 } 988 989 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 990 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 991 MI.eraseFromParent(); 992 return Legalized; 993 } 994 995 case TargetOpcode::G_FREEZE: { 996 if (TypeIdx != 0) 997 return UnableToLegalize; 998 999 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1000 // Should widen scalar first 1001 if (Ty.getSizeInBits() % NarrowTy.getSizeInBits() != 0) 1002 return UnableToLegalize; 1003 1004 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg()); 1005 SmallVector<Register, 8> Parts; 1006 for (unsigned i = 0; i < Unmerge->getNumDefs(); ++i) { 1007 Parts.push_back( 1008 MIRBuilder.buildFreeze(NarrowTy, Unmerge.getReg(i)).getReg(0)); 1009 } 1010 1011 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Parts); 1012 MI.eraseFromParent(); 1013 return Legalized; 1014 } 1015 case TargetOpcode::G_ADD: 1016 case TargetOpcode::G_SUB: 1017 case TargetOpcode::G_SADDO: 1018 case TargetOpcode::G_SSUBO: 1019 case TargetOpcode::G_SADDE: 1020 case TargetOpcode::G_SSUBE: 1021 case TargetOpcode::G_UADDO: 1022 case TargetOpcode::G_USUBO: 1023 case TargetOpcode::G_UADDE: 1024 case TargetOpcode::G_USUBE: 1025 return narrowScalarAddSub(MI, TypeIdx, NarrowTy); 1026 case TargetOpcode::G_MUL: 1027 case TargetOpcode::G_UMULH: 1028 return narrowScalarMul(MI, NarrowTy); 1029 case TargetOpcode::G_EXTRACT: 1030 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 1031 case TargetOpcode::G_INSERT: 1032 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 1033 case TargetOpcode::G_LOAD: { 1034 auto &LoadMI = cast<GLoad>(MI); 1035 Register DstReg = LoadMI.getDstReg(); 1036 LLT DstTy = MRI.getType(DstReg); 1037 if (DstTy.isVector()) 1038 return UnableToLegalize; 1039 1040 if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) { 1041 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1042 MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO()); 1043 MIRBuilder.buildAnyExt(DstReg, TmpReg); 1044 LoadMI.eraseFromParent(); 1045 return Legalized; 1046 } 1047 1048 return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy); 1049 } 1050 case TargetOpcode::G_ZEXTLOAD: 1051 case TargetOpcode::G_SEXTLOAD: { 1052 auto &LoadMI = cast<GExtLoad>(MI); 1053 Register DstReg = LoadMI.getDstReg(); 1054 Register PtrReg = LoadMI.getPointerReg(); 1055 1056 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1057 auto &MMO = LoadMI.getMMO(); 1058 unsigned MemSize = MMO.getSizeInBits(); 1059 1060 if (MemSize == NarrowSize) { 1061 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 1062 } else if (MemSize < NarrowSize) { 1063 MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO); 1064 } else if (MemSize > NarrowSize) { 1065 // FIXME: Need to split the load. 1066 return UnableToLegalize; 1067 } 1068 1069 if (isa<GZExtLoad>(LoadMI)) 1070 MIRBuilder.buildZExt(DstReg, TmpReg); 1071 else 1072 MIRBuilder.buildSExt(DstReg, TmpReg); 1073 1074 LoadMI.eraseFromParent(); 1075 return Legalized; 1076 } 1077 case TargetOpcode::G_STORE: { 1078 auto &StoreMI = cast<GStore>(MI); 1079 1080 Register SrcReg = StoreMI.getValueReg(); 1081 LLT SrcTy = MRI.getType(SrcReg); 1082 if (SrcTy.isVector()) 1083 return UnableToLegalize; 1084 1085 int NumParts = SizeOp0 / NarrowSize; 1086 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 1087 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 1088 if (SrcTy.isVector() && LeftoverBits != 0) 1089 return UnableToLegalize; 1090 1091 if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) { 1092 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1093 MIRBuilder.buildTrunc(TmpReg, SrcReg); 1094 MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO()); 1095 StoreMI.eraseFromParent(); 1096 return Legalized; 1097 } 1098 1099 return reduceLoadStoreWidth(StoreMI, 0, NarrowTy); 1100 } 1101 case TargetOpcode::G_SELECT: 1102 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 1103 case TargetOpcode::G_AND: 1104 case TargetOpcode::G_OR: 1105 case TargetOpcode::G_XOR: { 1106 // Legalize bitwise operation: 1107 // A = BinOp<Ty> B, C 1108 // into: 1109 // B1, ..., BN = G_UNMERGE_VALUES B 1110 // C1, ..., CN = G_UNMERGE_VALUES C 1111 // A1 = BinOp<Ty/N> B1, C2 1112 // ... 1113 // AN = BinOp<Ty/N> BN, CN 1114 // A = G_MERGE_VALUES A1, ..., AN 1115 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1116 } 1117 case TargetOpcode::G_SHL: 1118 case TargetOpcode::G_LSHR: 1119 case TargetOpcode::G_ASHR: 1120 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1121 case TargetOpcode::G_CTLZ: 1122 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1123 case TargetOpcode::G_CTTZ: 1124 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1125 case TargetOpcode::G_CTPOP: 1126 if (TypeIdx == 1) 1127 switch (MI.getOpcode()) { 1128 case TargetOpcode::G_CTLZ: 1129 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1130 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1131 case TargetOpcode::G_CTTZ: 1132 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1133 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1134 case TargetOpcode::G_CTPOP: 1135 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1136 default: 1137 return UnableToLegalize; 1138 } 1139 1140 Observer.changingInstr(MI); 1141 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1142 Observer.changedInstr(MI); 1143 return Legalized; 1144 case TargetOpcode::G_INTTOPTR: 1145 if (TypeIdx != 1) 1146 return UnableToLegalize; 1147 1148 Observer.changingInstr(MI); 1149 narrowScalarSrc(MI, NarrowTy, 1); 1150 Observer.changedInstr(MI); 1151 return Legalized; 1152 case TargetOpcode::G_PTRTOINT: 1153 if (TypeIdx != 0) 1154 return UnableToLegalize; 1155 1156 Observer.changingInstr(MI); 1157 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1158 Observer.changedInstr(MI); 1159 return Legalized; 1160 case TargetOpcode::G_PHI: { 1161 // FIXME: add support for when SizeOp0 isn't an exact multiple of 1162 // NarrowSize. 1163 if (SizeOp0 % NarrowSize != 0) 1164 return UnableToLegalize; 1165 1166 unsigned NumParts = SizeOp0 / NarrowSize; 1167 SmallVector<Register, 2> DstRegs(NumParts); 1168 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1169 Observer.changingInstr(MI); 1170 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1171 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1172 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1173 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1174 SrcRegs[i / 2]); 1175 } 1176 MachineBasicBlock &MBB = *MI.getParent(); 1177 MIRBuilder.setInsertPt(MBB, MI); 1178 for (unsigned i = 0; i < NumParts; ++i) { 1179 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1180 MachineInstrBuilder MIB = 1181 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1182 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1183 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1184 } 1185 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1186 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1187 Observer.changedInstr(MI); 1188 MI.eraseFromParent(); 1189 return Legalized; 1190 } 1191 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1192 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1193 if (TypeIdx != 2) 1194 return UnableToLegalize; 1195 1196 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1197 Observer.changingInstr(MI); 1198 narrowScalarSrc(MI, NarrowTy, OpIdx); 1199 Observer.changedInstr(MI); 1200 return Legalized; 1201 } 1202 case TargetOpcode::G_ICMP: { 1203 Register LHS = MI.getOperand(2).getReg(); 1204 LLT SrcTy = MRI.getType(LHS); 1205 uint64_t SrcSize = SrcTy.getSizeInBits(); 1206 CmpInst::Predicate Pred = 1207 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1208 1209 // TODO: Handle the non-equality case for weird sizes. 1210 if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred)) 1211 return UnableToLegalize; 1212 1213 LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover) 1214 SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs; 1215 if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs, 1216 LHSLeftoverRegs)) 1217 return UnableToLegalize; 1218 1219 LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type. 1220 SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs; 1221 if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused, 1222 RHSPartRegs, RHSLeftoverRegs)) 1223 return UnableToLegalize; 1224 1225 // We now have the LHS and RHS of the compare split into narrow-type 1226 // registers, plus potentially some leftover type. 1227 Register Dst = MI.getOperand(0).getReg(); 1228 LLT ResTy = MRI.getType(Dst); 1229 if (ICmpInst::isEquality(Pred)) { 1230 // For each part on the LHS and RHS, keep track of the result of XOR-ing 1231 // them together. For each equal part, the result should be all 0s. For 1232 // each non-equal part, we'll get at least one 1. 1233 auto Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1234 SmallVector<Register, 4> Xors; 1235 for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) { 1236 auto LHS = std::get<0>(LHSAndRHS); 1237 auto RHS = std::get<1>(LHSAndRHS); 1238 auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0); 1239 Xors.push_back(Xor); 1240 } 1241 1242 // Build a G_XOR for each leftover register. Each G_XOR must be widened 1243 // to the desired narrow type so that we can OR them together later. 1244 SmallVector<Register, 4> WidenedXors; 1245 for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) { 1246 auto LHS = std::get<0>(LHSAndRHS); 1247 auto RHS = std::get<1>(LHSAndRHS); 1248 auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0); 1249 LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor); 1250 buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors, 1251 /* PadStrategy = */ TargetOpcode::G_ZEXT); 1252 Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end()); 1253 } 1254 1255 // Now, for each part we broke up, we know if they are equal/not equal 1256 // based off the G_XOR. We can OR these all together and compare against 1257 // 0 to get the result. 1258 assert(Xors.size() >= 2 && "Should have gotten at least two Xors?"); 1259 auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]); 1260 for (unsigned I = 2, E = Xors.size(); I < E; ++I) 1261 Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]); 1262 MIRBuilder.buildICmp(Pred, Dst, Or, Zero); 1263 } else { 1264 // TODO: Handle non-power-of-two types. 1265 assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?"); 1266 assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?"); 1267 Register LHSL = LHSPartRegs[0]; 1268 Register LHSH = LHSPartRegs[1]; 1269 Register RHSL = RHSPartRegs[0]; 1270 Register RHSH = RHSPartRegs[1]; 1271 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1272 MachineInstrBuilder CmpHEQ = 1273 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1274 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1275 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1276 MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH); 1277 } 1278 MI.eraseFromParent(); 1279 return Legalized; 1280 } 1281 case TargetOpcode::G_SEXT_INREG: { 1282 if (TypeIdx != 0) 1283 return UnableToLegalize; 1284 1285 int64_t SizeInBits = MI.getOperand(2).getImm(); 1286 1287 // So long as the new type has more bits than the bits we're extending we 1288 // don't need to break it apart. 1289 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1290 Observer.changingInstr(MI); 1291 // We don't lose any non-extension bits by truncating the src and 1292 // sign-extending the dst. 1293 MachineOperand &MO1 = MI.getOperand(1); 1294 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1295 MO1.setReg(TruncMIB.getReg(0)); 1296 1297 MachineOperand &MO2 = MI.getOperand(0); 1298 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1299 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1300 MIRBuilder.buildSExt(MO2, DstExt); 1301 MO2.setReg(DstExt); 1302 Observer.changedInstr(MI); 1303 return Legalized; 1304 } 1305 1306 // Break it apart. Components below the extension point are unmodified. The 1307 // component containing the extension point becomes a narrower SEXT_INREG. 1308 // Components above it are ashr'd from the component containing the 1309 // extension point. 1310 if (SizeOp0 % NarrowSize != 0) 1311 return UnableToLegalize; 1312 int NumParts = SizeOp0 / NarrowSize; 1313 1314 // List the registers where the destination will be scattered. 1315 SmallVector<Register, 2> DstRegs; 1316 // List the registers where the source will be split. 1317 SmallVector<Register, 2> SrcRegs; 1318 1319 // Create all the temporary registers. 1320 for (int i = 0; i < NumParts; ++i) { 1321 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1322 1323 SrcRegs.push_back(SrcReg); 1324 } 1325 1326 // Explode the big arguments into smaller chunks. 1327 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1328 1329 Register AshrCstReg = 1330 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1331 .getReg(0); 1332 Register FullExtensionReg = 0; 1333 Register PartialExtensionReg = 0; 1334 1335 // Do the operation on each small part. 1336 for (int i = 0; i < NumParts; ++i) { 1337 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1338 DstRegs.push_back(SrcRegs[i]); 1339 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1340 assert(PartialExtensionReg && 1341 "Expected to visit partial extension before full"); 1342 if (FullExtensionReg) { 1343 DstRegs.push_back(FullExtensionReg); 1344 continue; 1345 } 1346 DstRegs.push_back( 1347 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1348 .getReg(0)); 1349 FullExtensionReg = DstRegs.back(); 1350 } else { 1351 DstRegs.push_back( 1352 MIRBuilder 1353 .buildInstr( 1354 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1355 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1356 .getReg(0)); 1357 PartialExtensionReg = DstRegs.back(); 1358 } 1359 } 1360 1361 // Gather the destination registers into the final destination. 1362 Register DstReg = MI.getOperand(0).getReg(); 1363 MIRBuilder.buildMerge(DstReg, DstRegs); 1364 MI.eraseFromParent(); 1365 return Legalized; 1366 } 1367 case TargetOpcode::G_BSWAP: 1368 case TargetOpcode::G_BITREVERSE: { 1369 if (SizeOp0 % NarrowSize != 0) 1370 return UnableToLegalize; 1371 1372 Observer.changingInstr(MI); 1373 SmallVector<Register, 2> SrcRegs, DstRegs; 1374 unsigned NumParts = SizeOp0 / NarrowSize; 1375 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1376 1377 for (unsigned i = 0; i < NumParts; ++i) { 1378 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1379 {SrcRegs[NumParts - 1 - i]}); 1380 DstRegs.push_back(DstPart.getReg(0)); 1381 } 1382 1383 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1384 1385 Observer.changedInstr(MI); 1386 MI.eraseFromParent(); 1387 return Legalized; 1388 } 1389 case TargetOpcode::G_PTR_ADD: 1390 case TargetOpcode::G_PTRMASK: { 1391 if (TypeIdx != 1) 1392 return UnableToLegalize; 1393 Observer.changingInstr(MI); 1394 narrowScalarSrc(MI, NarrowTy, 2); 1395 Observer.changedInstr(MI); 1396 return Legalized; 1397 } 1398 case TargetOpcode::G_FPTOUI: 1399 case TargetOpcode::G_FPTOSI: 1400 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy); 1401 case TargetOpcode::G_FPEXT: 1402 if (TypeIdx != 0) 1403 return UnableToLegalize; 1404 Observer.changingInstr(MI); 1405 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1406 Observer.changedInstr(MI); 1407 return Legalized; 1408 } 1409 } 1410 1411 Register LegalizerHelper::coerceToScalar(Register Val) { 1412 LLT Ty = MRI.getType(Val); 1413 if (Ty.isScalar()) 1414 return Val; 1415 1416 const DataLayout &DL = MIRBuilder.getDataLayout(); 1417 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1418 if (Ty.isPointer()) { 1419 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1420 return Register(); 1421 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1422 } 1423 1424 Register NewVal = Val; 1425 1426 assert(Ty.isVector()); 1427 LLT EltTy = Ty.getElementType(); 1428 if (EltTy.isPointer()) 1429 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1430 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1431 } 1432 1433 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1434 unsigned OpIdx, unsigned ExtOpcode) { 1435 MachineOperand &MO = MI.getOperand(OpIdx); 1436 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1437 MO.setReg(ExtB.getReg(0)); 1438 } 1439 1440 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1441 unsigned OpIdx) { 1442 MachineOperand &MO = MI.getOperand(OpIdx); 1443 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1444 MO.setReg(ExtB.getReg(0)); 1445 } 1446 1447 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1448 unsigned OpIdx, unsigned TruncOpcode) { 1449 MachineOperand &MO = MI.getOperand(OpIdx); 1450 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1451 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1452 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1453 MO.setReg(DstExt); 1454 } 1455 1456 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1457 unsigned OpIdx, unsigned ExtOpcode) { 1458 MachineOperand &MO = MI.getOperand(OpIdx); 1459 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1460 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1461 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1462 MO.setReg(DstTrunc); 1463 } 1464 1465 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1466 unsigned OpIdx) { 1467 MachineOperand &MO = MI.getOperand(OpIdx); 1468 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1469 Register Dst = MO.getReg(); 1470 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1471 MO.setReg(DstExt); 1472 MIRBuilder.buildDeleteTrailingVectorElements(Dst, DstExt); 1473 } 1474 1475 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1476 unsigned OpIdx) { 1477 MachineOperand &MO = MI.getOperand(OpIdx); 1478 SmallVector<Register, 8> Regs; 1479 MO.setReg(MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO).getReg(0)); 1480 } 1481 1482 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1483 MachineOperand &Op = MI.getOperand(OpIdx); 1484 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1485 } 1486 1487 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1488 MachineOperand &MO = MI.getOperand(OpIdx); 1489 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1490 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1491 MIRBuilder.buildBitcast(MO, CastDst); 1492 MO.setReg(CastDst); 1493 } 1494 1495 LegalizerHelper::LegalizeResult 1496 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1497 LLT WideTy) { 1498 if (TypeIdx != 1) 1499 return UnableToLegalize; 1500 1501 Register DstReg = MI.getOperand(0).getReg(); 1502 LLT DstTy = MRI.getType(DstReg); 1503 if (DstTy.isVector()) 1504 return UnableToLegalize; 1505 1506 Register Src1 = MI.getOperand(1).getReg(); 1507 LLT SrcTy = MRI.getType(Src1); 1508 const int DstSize = DstTy.getSizeInBits(); 1509 const int SrcSize = SrcTy.getSizeInBits(); 1510 const int WideSize = WideTy.getSizeInBits(); 1511 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1512 1513 unsigned NumOps = MI.getNumOperands(); 1514 unsigned NumSrc = MI.getNumOperands() - 1; 1515 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1516 1517 if (WideSize >= DstSize) { 1518 // Directly pack the bits in the target type. 1519 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1520 1521 for (unsigned I = 2; I != NumOps; ++I) { 1522 const unsigned Offset = (I - 1) * PartSize; 1523 1524 Register SrcReg = MI.getOperand(I).getReg(); 1525 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1526 1527 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1528 1529 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1530 MRI.createGenericVirtualRegister(WideTy); 1531 1532 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1533 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1534 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1535 ResultReg = NextResult; 1536 } 1537 1538 if (WideSize > DstSize) 1539 MIRBuilder.buildTrunc(DstReg, ResultReg); 1540 else if (DstTy.isPointer()) 1541 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1542 1543 MI.eraseFromParent(); 1544 return Legalized; 1545 } 1546 1547 // Unmerge the original values to the GCD type, and recombine to the next 1548 // multiple greater than the original type. 1549 // 1550 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1551 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1552 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1553 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1554 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1555 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1556 // %12:_(s12) = G_MERGE_VALUES %10, %11 1557 // 1558 // Padding with undef if necessary: 1559 // 1560 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1561 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1562 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1563 // %7:_(s2) = G_IMPLICIT_DEF 1564 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1565 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1566 // %10:_(s12) = G_MERGE_VALUES %8, %9 1567 1568 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1569 LLT GCDTy = LLT::scalar(GCD); 1570 1571 SmallVector<Register, 8> Parts; 1572 SmallVector<Register, 8> NewMergeRegs; 1573 SmallVector<Register, 8> Unmerges; 1574 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1575 1576 // Decompose the original operands if they don't evenly divide. 1577 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 1578 Register SrcReg = MO.getReg(); 1579 if (GCD == SrcSize) { 1580 Unmerges.push_back(SrcReg); 1581 } else { 1582 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1583 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1584 Unmerges.push_back(Unmerge.getReg(J)); 1585 } 1586 } 1587 1588 // Pad with undef to the next size that is a multiple of the requested size. 1589 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1590 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1591 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1592 Unmerges.push_back(UndefReg); 1593 } 1594 1595 const int PartsPerGCD = WideSize / GCD; 1596 1597 // Build merges of each piece. 1598 ArrayRef<Register> Slicer(Unmerges); 1599 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1600 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1601 NewMergeRegs.push_back(Merge.getReg(0)); 1602 } 1603 1604 // A truncate may be necessary if the requested type doesn't evenly divide the 1605 // original result type. 1606 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1607 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1608 } else { 1609 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1610 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1611 } 1612 1613 MI.eraseFromParent(); 1614 return Legalized; 1615 } 1616 1617 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1618 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1619 LLT OrigTy = MRI.getType(OrigReg); 1620 LLT LCMTy = getLCMType(WideTy, OrigTy); 1621 1622 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1623 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1624 1625 Register UnmergeSrc = WideReg; 1626 1627 // Create a merge to the LCM type, padding with undef 1628 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1629 // => 1630 // %1:_(<4 x s32>) = G_FOO 1631 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1632 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1633 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1634 if (NumMergeParts > 1) { 1635 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1636 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1637 MergeParts[0] = WideReg; 1638 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1639 } 1640 1641 // Unmerge to the original register and pad with dead defs. 1642 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1643 UnmergeResults[0] = OrigReg; 1644 for (int I = 1; I != NumUnmergeParts; ++I) 1645 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1646 1647 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1648 return WideReg; 1649 } 1650 1651 LegalizerHelper::LegalizeResult 1652 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1653 LLT WideTy) { 1654 if (TypeIdx != 0) 1655 return UnableToLegalize; 1656 1657 int NumDst = MI.getNumOperands() - 1; 1658 Register SrcReg = MI.getOperand(NumDst).getReg(); 1659 LLT SrcTy = MRI.getType(SrcReg); 1660 if (SrcTy.isVector()) 1661 return UnableToLegalize; 1662 1663 Register Dst0Reg = MI.getOperand(0).getReg(); 1664 LLT DstTy = MRI.getType(Dst0Reg); 1665 if (!DstTy.isScalar()) 1666 return UnableToLegalize; 1667 1668 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1669 if (SrcTy.isPointer()) { 1670 const DataLayout &DL = MIRBuilder.getDataLayout(); 1671 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1672 LLVM_DEBUG( 1673 dbgs() << "Not casting non-integral address space integer\n"); 1674 return UnableToLegalize; 1675 } 1676 1677 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1678 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1679 } 1680 1681 // Widen SrcTy to WideTy. This does not affect the result, but since the 1682 // user requested this size, it is probably better handled than SrcTy and 1683 // should reduce the total number of legalization artifacts. 1684 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1685 SrcTy = WideTy; 1686 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1687 } 1688 1689 // Theres no unmerge type to target. Directly extract the bits from the 1690 // source type 1691 unsigned DstSize = DstTy.getSizeInBits(); 1692 1693 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1694 for (int I = 1; I != NumDst; ++I) { 1695 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1696 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1697 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1698 } 1699 1700 MI.eraseFromParent(); 1701 return Legalized; 1702 } 1703 1704 // Extend the source to a wider type. 1705 LLT LCMTy = getLCMType(SrcTy, WideTy); 1706 1707 Register WideSrc = SrcReg; 1708 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1709 // TODO: If this is an integral address space, cast to integer and anyext. 1710 if (SrcTy.isPointer()) { 1711 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1712 return UnableToLegalize; 1713 } 1714 1715 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1716 } 1717 1718 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1719 1720 // Create a sequence of unmerges and merges to the original results. Since we 1721 // may have widened the source, we will need to pad the results with dead defs 1722 // to cover the source register. 1723 // e.g. widen s48 to s64: 1724 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1725 // 1726 // => 1727 // %4:_(s192) = G_ANYEXT %0:_(s96) 1728 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1729 // ; unpack to GCD type, with extra dead defs 1730 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1731 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1732 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1733 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1734 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1735 const LLT GCDTy = getGCDType(WideTy, DstTy); 1736 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1737 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1738 1739 // Directly unmerge to the destination without going through a GCD type 1740 // if possible 1741 if (PartsPerRemerge == 1) { 1742 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1743 1744 for (int I = 0; I != NumUnmerge; ++I) { 1745 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1746 1747 for (int J = 0; J != PartsPerUnmerge; ++J) { 1748 int Idx = I * PartsPerUnmerge + J; 1749 if (Idx < NumDst) 1750 MIB.addDef(MI.getOperand(Idx).getReg()); 1751 else { 1752 // Create dead def for excess components. 1753 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1754 } 1755 } 1756 1757 MIB.addUse(Unmerge.getReg(I)); 1758 } 1759 } else { 1760 SmallVector<Register, 16> Parts; 1761 for (int J = 0; J != NumUnmerge; ++J) 1762 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1763 1764 SmallVector<Register, 8> RemergeParts; 1765 for (int I = 0; I != NumDst; ++I) { 1766 for (int J = 0; J < PartsPerRemerge; ++J) { 1767 const int Idx = I * PartsPerRemerge + J; 1768 RemergeParts.emplace_back(Parts[Idx]); 1769 } 1770 1771 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1772 RemergeParts.clear(); 1773 } 1774 } 1775 1776 MI.eraseFromParent(); 1777 return Legalized; 1778 } 1779 1780 LegalizerHelper::LegalizeResult 1781 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1782 LLT WideTy) { 1783 Register DstReg = MI.getOperand(0).getReg(); 1784 Register SrcReg = MI.getOperand(1).getReg(); 1785 LLT SrcTy = MRI.getType(SrcReg); 1786 1787 LLT DstTy = MRI.getType(DstReg); 1788 unsigned Offset = MI.getOperand(2).getImm(); 1789 1790 if (TypeIdx == 0) { 1791 if (SrcTy.isVector() || DstTy.isVector()) 1792 return UnableToLegalize; 1793 1794 SrcOp Src(SrcReg); 1795 if (SrcTy.isPointer()) { 1796 // Extracts from pointers can be handled only if they are really just 1797 // simple integers. 1798 const DataLayout &DL = MIRBuilder.getDataLayout(); 1799 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1800 return UnableToLegalize; 1801 1802 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1803 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1804 SrcTy = SrcAsIntTy; 1805 } 1806 1807 if (DstTy.isPointer()) 1808 return UnableToLegalize; 1809 1810 if (Offset == 0) { 1811 // Avoid a shift in the degenerate case. 1812 MIRBuilder.buildTrunc(DstReg, 1813 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1814 MI.eraseFromParent(); 1815 return Legalized; 1816 } 1817 1818 // Do a shift in the source type. 1819 LLT ShiftTy = SrcTy; 1820 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1821 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1822 ShiftTy = WideTy; 1823 } 1824 1825 auto LShr = MIRBuilder.buildLShr( 1826 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1827 MIRBuilder.buildTrunc(DstReg, LShr); 1828 MI.eraseFromParent(); 1829 return Legalized; 1830 } 1831 1832 if (SrcTy.isScalar()) { 1833 Observer.changingInstr(MI); 1834 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1835 Observer.changedInstr(MI); 1836 return Legalized; 1837 } 1838 1839 if (!SrcTy.isVector()) 1840 return UnableToLegalize; 1841 1842 if (DstTy != SrcTy.getElementType()) 1843 return UnableToLegalize; 1844 1845 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1846 return UnableToLegalize; 1847 1848 Observer.changingInstr(MI); 1849 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1850 1851 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1852 Offset); 1853 widenScalarDst(MI, WideTy.getScalarType(), 0); 1854 Observer.changedInstr(MI); 1855 return Legalized; 1856 } 1857 1858 LegalizerHelper::LegalizeResult 1859 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1860 LLT WideTy) { 1861 if (TypeIdx != 0 || WideTy.isVector()) 1862 return UnableToLegalize; 1863 Observer.changingInstr(MI); 1864 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1865 widenScalarDst(MI, WideTy); 1866 Observer.changedInstr(MI); 1867 return Legalized; 1868 } 1869 1870 LegalizerHelper::LegalizeResult 1871 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, 1872 LLT WideTy) { 1873 unsigned Opcode; 1874 unsigned ExtOpcode; 1875 Optional<Register> CarryIn = None; 1876 switch (MI.getOpcode()) { 1877 default: 1878 llvm_unreachable("Unexpected opcode!"); 1879 case TargetOpcode::G_SADDO: 1880 Opcode = TargetOpcode::G_ADD; 1881 ExtOpcode = TargetOpcode::G_SEXT; 1882 break; 1883 case TargetOpcode::G_SSUBO: 1884 Opcode = TargetOpcode::G_SUB; 1885 ExtOpcode = TargetOpcode::G_SEXT; 1886 break; 1887 case TargetOpcode::G_UADDO: 1888 Opcode = TargetOpcode::G_ADD; 1889 ExtOpcode = TargetOpcode::G_ZEXT; 1890 break; 1891 case TargetOpcode::G_USUBO: 1892 Opcode = TargetOpcode::G_SUB; 1893 ExtOpcode = TargetOpcode::G_ZEXT; 1894 break; 1895 case TargetOpcode::G_SADDE: 1896 Opcode = TargetOpcode::G_UADDE; 1897 ExtOpcode = TargetOpcode::G_SEXT; 1898 CarryIn = MI.getOperand(4).getReg(); 1899 break; 1900 case TargetOpcode::G_SSUBE: 1901 Opcode = TargetOpcode::G_USUBE; 1902 ExtOpcode = TargetOpcode::G_SEXT; 1903 CarryIn = MI.getOperand(4).getReg(); 1904 break; 1905 case TargetOpcode::G_UADDE: 1906 Opcode = TargetOpcode::G_UADDE; 1907 ExtOpcode = TargetOpcode::G_ZEXT; 1908 CarryIn = MI.getOperand(4).getReg(); 1909 break; 1910 case TargetOpcode::G_USUBE: 1911 Opcode = TargetOpcode::G_USUBE; 1912 ExtOpcode = TargetOpcode::G_ZEXT; 1913 CarryIn = MI.getOperand(4).getReg(); 1914 break; 1915 } 1916 1917 if (TypeIdx == 1) { 1918 unsigned BoolExtOp = MIRBuilder.getBoolExtOp(WideTy.isVector(), false); 1919 1920 Observer.changingInstr(MI); 1921 widenScalarDst(MI, WideTy, 1); 1922 if (CarryIn) 1923 widenScalarSrc(MI, WideTy, 4, BoolExtOp); 1924 1925 Observer.changedInstr(MI); 1926 return Legalized; 1927 } 1928 1929 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 1930 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 1931 // Do the arithmetic in the larger type. 1932 Register NewOp; 1933 if (CarryIn) { 1934 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); 1935 NewOp = MIRBuilder 1936 .buildInstr(Opcode, {WideTy, CarryOutTy}, 1937 {LHSExt, RHSExt, *CarryIn}) 1938 .getReg(0); 1939 } else { 1940 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); 1941 } 1942 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1943 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 1944 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 1945 // There is no overflow if the ExtOp is the same as NewOp. 1946 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 1947 // Now trunc the NewOp to the original result. 1948 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1949 MI.eraseFromParent(); 1950 return Legalized; 1951 } 1952 1953 LegalizerHelper::LegalizeResult 1954 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1955 LLT WideTy) { 1956 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1957 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1958 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1959 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1960 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1961 // We can convert this to: 1962 // 1. Any extend iN to iM 1963 // 2. SHL by M-N 1964 // 3. [US][ADD|SUB|SHL]SAT 1965 // 4. L/ASHR by M-N 1966 // 1967 // It may be more efficient to lower this to a min and a max operation in 1968 // the higher precision arithmetic if the promoted operation isn't legal, 1969 // but this decision is up to the target's lowering request. 1970 Register DstReg = MI.getOperand(0).getReg(); 1971 1972 unsigned NewBits = WideTy.getScalarSizeInBits(); 1973 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1974 1975 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1976 // must not left shift the RHS to preserve the shift amount. 1977 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1978 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1979 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1980 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1981 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1982 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1983 1984 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1985 {ShiftL, ShiftR}, MI.getFlags()); 1986 1987 // Use a shift that will preserve the number of sign bits when the trunc is 1988 // folded away. 1989 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1990 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1991 1992 MIRBuilder.buildTrunc(DstReg, Result); 1993 MI.eraseFromParent(); 1994 return Legalized; 1995 } 1996 1997 LegalizerHelper::LegalizeResult 1998 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx, 1999 LLT WideTy) { 2000 if (TypeIdx == 1) { 2001 Observer.changingInstr(MI); 2002 widenScalarDst(MI, WideTy, 1); 2003 Observer.changedInstr(MI); 2004 return Legalized; 2005 } 2006 2007 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO; 2008 Register Result = MI.getOperand(0).getReg(); 2009 Register OriginalOverflow = MI.getOperand(1).getReg(); 2010 Register LHS = MI.getOperand(2).getReg(); 2011 Register RHS = MI.getOperand(3).getReg(); 2012 LLT SrcTy = MRI.getType(LHS); 2013 LLT OverflowTy = MRI.getType(OriginalOverflow); 2014 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits(); 2015 2016 // To determine if the result overflowed in the larger type, we extend the 2017 // input to the larger type, do the multiply (checking if it overflows), 2018 // then also check the high bits of the result to see if overflow happened 2019 // there. 2020 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2021 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS}); 2022 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS}); 2023 2024 auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy}, 2025 {LeftOperand, RightOperand}); 2026 auto Mul = Mulo->getOperand(0); 2027 MIRBuilder.buildTrunc(Result, Mul); 2028 2029 MachineInstrBuilder ExtResult; 2030 // Overflow occurred if it occurred in the larger type, or if the high part 2031 // of the result does not zero/sign-extend the low part. Check this second 2032 // possibility first. 2033 if (IsSigned) { 2034 // For signed, overflow occurred when the high part does not sign-extend 2035 // the low part. 2036 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth); 2037 } else { 2038 // Unsigned overflow occurred when the high part does not zero-extend the 2039 // low part. 2040 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth); 2041 } 2042 2043 // Multiplication cannot overflow if the WideTy is >= 2 * original width, 2044 // so we don't need to check the overflow result of larger type Mulo. 2045 if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) { 2046 auto Overflow = 2047 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult); 2048 // Finally check if the multiplication in the larger type itself overflowed. 2049 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow); 2050 } else { 2051 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult); 2052 } 2053 MI.eraseFromParent(); 2054 return Legalized; 2055 } 2056 2057 LegalizerHelper::LegalizeResult 2058 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 2059 switch (MI.getOpcode()) { 2060 default: 2061 return UnableToLegalize; 2062 case TargetOpcode::G_ATOMICRMW_XCHG: 2063 case TargetOpcode::G_ATOMICRMW_ADD: 2064 case TargetOpcode::G_ATOMICRMW_SUB: 2065 case TargetOpcode::G_ATOMICRMW_AND: 2066 case TargetOpcode::G_ATOMICRMW_OR: 2067 case TargetOpcode::G_ATOMICRMW_XOR: 2068 case TargetOpcode::G_ATOMICRMW_MIN: 2069 case TargetOpcode::G_ATOMICRMW_MAX: 2070 case TargetOpcode::G_ATOMICRMW_UMIN: 2071 case TargetOpcode::G_ATOMICRMW_UMAX: 2072 assert(TypeIdx == 0 && "atomicrmw with second scalar type"); 2073 Observer.changingInstr(MI); 2074 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2075 widenScalarDst(MI, WideTy, 0); 2076 Observer.changedInstr(MI); 2077 return Legalized; 2078 case TargetOpcode::G_ATOMIC_CMPXCHG: 2079 assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type"); 2080 Observer.changingInstr(MI); 2081 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2082 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2083 widenScalarDst(MI, WideTy, 0); 2084 Observer.changedInstr(MI); 2085 return Legalized; 2086 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: 2087 if (TypeIdx == 0) { 2088 Observer.changingInstr(MI); 2089 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2090 widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT); 2091 widenScalarDst(MI, WideTy, 0); 2092 Observer.changedInstr(MI); 2093 return Legalized; 2094 } 2095 assert(TypeIdx == 1 && 2096 "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type"); 2097 Observer.changingInstr(MI); 2098 widenScalarDst(MI, WideTy, 1); 2099 Observer.changedInstr(MI); 2100 return Legalized; 2101 case TargetOpcode::G_EXTRACT: 2102 return widenScalarExtract(MI, TypeIdx, WideTy); 2103 case TargetOpcode::G_INSERT: 2104 return widenScalarInsert(MI, TypeIdx, WideTy); 2105 case TargetOpcode::G_MERGE_VALUES: 2106 return widenScalarMergeValues(MI, TypeIdx, WideTy); 2107 case TargetOpcode::G_UNMERGE_VALUES: 2108 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 2109 case TargetOpcode::G_SADDO: 2110 case TargetOpcode::G_SSUBO: 2111 case TargetOpcode::G_UADDO: 2112 case TargetOpcode::G_USUBO: 2113 case TargetOpcode::G_SADDE: 2114 case TargetOpcode::G_SSUBE: 2115 case TargetOpcode::G_UADDE: 2116 case TargetOpcode::G_USUBE: 2117 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); 2118 case TargetOpcode::G_UMULO: 2119 case TargetOpcode::G_SMULO: 2120 return widenScalarMulo(MI, TypeIdx, WideTy); 2121 case TargetOpcode::G_SADDSAT: 2122 case TargetOpcode::G_SSUBSAT: 2123 case TargetOpcode::G_SSHLSAT: 2124 case TargetOpcode::G_UADDSAT: 2125 case TargetOpcode::G_USUBSAT: 2126 case TargetOpcode::G_USHLSAT: 2127 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 2128 case TargetOpcode::G_CTTZ: 2129 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2130 case TargetOpcode::G_CTLZ: 2131 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2132 case TargetOpcode::G_CTPOP: { 2133 if (TypeIdx == 0) { 2134 Observer.changingInstr(MI); 2135 widenScalarDst(MI, WideTy, 0); 2136 Observer.changedInstr(MI); 2137 return Legalized; 2138 } 2139 2140 Register SrcReg = MI.getOperand(1).getReg(); 2141 2142 // First extend the input. 2143 unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ || 2144 MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF 2145 ? TargetOpcode::G_ANYEXT 2146 : TargetOpcode::G_ZEXT; 2147 auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg}); 2148 LLT CurTy = MRI.getType(SrcReg); 2149 unsigned NewOpc = MI.getOpcode(); 2150 if (NewOpc == TargetOpcode::G_CTTZ) { 2151 // The count is the same in the larger type except if the original 2152 // value was zero. This can be handled by setting the bit just off 2153 // the top of the original type. 2154 auto TopBit = 2155 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 2156 MIBSrc = MIRBuilder.buildOr( 2157 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 2158 // Now we know the operand is non-zero, use the more relaxed opcode. 2159 NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF; 2160 } 2161 2162 // Perform the operation at the larger size. 2163 auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc}); 2164 // This is already the correct result for CTPOP and CTTZs 2165 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 2166 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 2167 // The correct result is NewOp - (Difference in widety and current ty). 2168 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 2169 MIBNewOp = MIRBuilder.buildSub( 2170 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 2171 } 2172 2173 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 2174 MI.eraseFromParent(); 2175 return Legalized; 2176 } 2177 case TargetOpcode::G_BSWAP: { 2178 Observer.changingInstr(MI); 2179 Register DstReg = MI.getOperand(0).getReg(); 2180 2181 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 2182 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2183 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 2184 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2185 2186 MI.getOperand(0).setReg(DstExt); 2187 2188 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2189 2190 LLT Ty = MRI.getType(DstReg); 2191 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2192 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 2193 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 2194 2195 MIRBuilder.buildTrunc(DstReg, ShrReg); 2196 Observer.changedInstr(MI); 2197 return Legalized; 2198 } 2199 case TargetOpcode::G_BITREVERSE: { 2200 Observer.changingInstr(MI); 2201 2202 Register DstReg = MI.getOperand(0).getReg(); 2203 LLT Ty = MRI.getType(DstReg); 2204 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2205 2206 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2207 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2208 MI.getOperand(0).setReg(DstExt); 2209 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2210 2211 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 2212 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 2213 MIRBuilder.buildTrunc(DstReg, Shift); 2214 Observer.changedInstr(MI); 2215 return Legalized; 2216 } 2217 case TargetOpcode::G_FREEZE: 2218 Observer.changingInstr(MI); 2219 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2220 widenScalarDst(MI, WideTy); 2221 Observer.changedInstr(MI); 2222 return Legalized; 2223 2224 case TargetOpcode::G_ABS: 2225 Observer.changingInstr(MI); 2226 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2227 widenScalarDst(MI, WideTy); 2228 Observer.changedInstr(MI); 2229 return Legalized; 2230 2231 case TargetOpcode::G_ADD: 2232 case TargetOpcode::G_AND: 2233 case TargetOpcode::G_MUL: 2234 case TargetOpcode::G_OR: 2235 case TargetOpcode::G_XOR: 2236 case TargetOpcode::G_SUB: 2237 // Perform operation at larger width (any extension is fines here, high bits 2238 // don't affect the result) and then truncate the result back to the 2239 // original type. 2240 Observer.changingInstr(MI); 2241 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2242 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2243 widenScalarDst(MI, WideTy); 2244 Observer.changedInstr(MI); 2245 return Legalized; 2246 2247 case TargetOpcode::G_SBFX: 2248 case TargetOpcode::G_UBFX: 2249 Observer.changingInstr(MI); 2250 2251 if (TypeIdx == 0) { 2252 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2253 widenScalarDst(MI, WideTy); 2254 } else { 2255 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2256 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2257 } 2258 2259 Observer.changedInstr(MI); 2260 return Legalized; 2261 2262 case TargetOpcode::G_SHL: 2263 Observer.changingInstr(MI); 2264 2265 if (TypeIdx == 0) { 2266 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2267 widenScalarDst(MI, WideTy); 2268 } else { 2269 assert(TypeIdx == 1); 2270 // The "number of bits to shift" operand must preserve its value as an 2271 // unsigned integer: 2272 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2273 } 2274 2275 Observer.changedInstr(MI); 2276 return Legalized; 2277 2278 case TargetOpcode::G_SDIV: 2279 case TargetOpcode::G_SREM: 2280 case TargetOpcode::G_SMIN: 2281 case TargetOpcode::G_SMAX: 2282 Observer.changingInstr(MI); 2283 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2284 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2285 widenScalarDst(MI, WideTy); 2286 Observer.changedInstr(MI); 2287 return Legalized; 2288 2289 case TargetOpcode::G_SDIVREM: 2290 Observer.changingInstr(MI); 2291 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2292 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2293 widenScalarDst(MI, WideTy); 2294 widenScalarDst(MI, WideTy, 1); 2295 Observer.changedInstr(MI); 2296 return Legalized; 2297 2298 case TargetOpcode::G_ASHR: 2299 case TargetOpcode::G_LSHR: 2300 Observer.changingInstr(MI); 2301 2302 if (TypeIdx == 0) { 2303 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 2304 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2305 2306 widenScalarSrc(MI, WideTy, 1, CvtOp); 2307 widenScalarDst(MI, WideTy); 2308 } else { 2309 assert(TypeIdx == 1); 2310 // The "number of bits to shift" operand must preserve its value as an 2311 // unsigned integer: 2312 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2313 } 2314 2315 Observer.changedInstr(MI); 2316 return Legalized; 2317 case TargetOpcode::G_UDIV: 2318 case TargetOpcode::G_UREM: 2319 case TargetOpcode::G_UMIN: 2320 case TargetOpcode::G_UMAX: 2321 Observer.changingInstr(MI); 2322 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2323 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2324 widenScalarDst(MI, WideTy); 2325 Observer.changedInstr(MI); 2326 return Legalized; 2327 2328 case TargetOpcode::G_UDIVREM: 2329 Observer.changingInstr(MI); 2330 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2331 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2332 widenScalarDst(MI, WideTy); 2333 widenScalarDst(MI, WideTy, 1); 2334 Observer.changedInstr(MI); 2335 return Legalized; 2336 2337 case TargetOpcode::G_SELECT: 2338 Observer.changingInstr(MI); 2339 if (TypeIdx == 0) { 2340 // Perform operation at larger width (any extension is fine here, high 2341 // bits don't affect the result) and then truncate the result back to the 2342 // original type. 2343 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2344 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2345 widenScalarDst(MI, WideTy); 2346 } else { 2347 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2348 // Explicit extension is required here since high bits affect the result. 2349 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2350 } 2351 Observer.changedInstr(MI); 2352 return Legalized; 2353 2354 case TargetOpcode::G_FPTOSI: 2355 case TargetOpcode::G_FPTOUI: 2356 Observer.changingInstr(MI); 2357 2358 if (TypeIdx == 0) 2359 widenScalarDst(MI, WideTy); 2360 else 2361 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2362 2363 Observer.changedInstr(MI); 2364 return Legalized; 2365 case TargetOpcode::G_SITOFP: 2366 Observer.changingInstr(MI); 2367 2368 if (TypeIdx == 0) 2369 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2370 else 2371 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2372 2373 Observer.changedInstr(MI); 2374 return Legalized; 2375 case TargetOpcode::G_UITOFP: 2376 Observer.changingInstr(MI); 2377 2378 if (TypeIdx == 0) 2379 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2380 else 2381 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2382 2383 Observer.changedInstr(MI); 2384 return Legalized; 2385 case TargetOpcode::G_LOAD: 2386 case TargetOpcode::G_SEXTLOAD: 2387 case TargetOpcode::G_ZEXTLOAD: 2388 Observer.changingInstr(MI); 2389 widenScalarDst(MI, WideTy); 2390 Observer.changedInstr(MI); 2391 return Legalized; 2392 2393 case TargetOpcode::G_STORE: { 2394 if (TypeIdx != 0) 2395 return UnableToLegalize; 2396 2397 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2398 if (!Ty.isScalar()) 2399 return UnableToLegalize; 2400 2401 Observer.changingInstr(MI); 2402 2403 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2404 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2405 widenScalarSrc(MI, WideTy, 0, ExtType); 2406 2407 Observer.changedInstr(MI); 2408 return Legalized; 2409 } 2410 case TargetOpcode::G_CONSTANT: { 2411 MachineOperand &SrcMO = MI.getOperand(1); 2412 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2413 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2414 MRI.getType(MI.getOperand(0).getReg())); 2415 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2416 ExtOpc == TargetOpcode::G_ANYEXT) && 2417 "Illegal Extend"); 2418 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2419 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2420 ? SrcVal.sext(WideTy.getSizeInBits()) 2421 : SrcVal.zext(WideTy.getSizeInBits()); 2422 Observer.changingInstr(MI); 2423 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2424 2425 widenScalarDst(MI, WideTy); 2426 Observer.changedInstr(MI); 2427 return Legalized; 2428 } 2429 case TargetOpcode::G_FCONSTANT: { 2430 MachineOperand &SrcMO = MI.getOperand(1); 2431 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2432 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2433 bool LosesInfo; 2434 switch (WideTy.getSizeInBits()) { 2435 case 32: 2436 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2437 &LosesInfo); 2438 break; 2439 case 64: 2440 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2441 &LosesInfo); 2442 break; 2443 default: 2444 return UnableToLegalize; 2445 } 2446 2447 assert(!LosesInfo && "extend should always be lossless"); 2448 2449 Observer.changingInstr(MI); 2450 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2451 2452 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2453 Observer.changedInstr(MI); 2454 return Legalized; 2455 } 2456 case TargetOpcode::G_IMPLICIT_DEF: { 2457 Observer.changingInstr(MI); 2458 widenScalarDst(MI, WideTy); 2459 Observer.changedInstr(MI); 2460 return Legalized; 2461 } 2462 case TargetOpcode::G_BRCOND: 2463 Observer.changingInstr(MI); 2464 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2465 Observer.changedInstr(MI); 2466 return Legalized; 2467 2468 case TargetOpcode::G_FCMP: 2469 Observer.changingInstr(MI); 2470 if (TypeIdx == 0) 2471 widenScalarDst(MI, WideTy); 2472 else { 2473 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2474 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2475 } 2476 Observer.changedInstr(MI); 2477 return Legalized; 2478 2479 case TargetOpcode::G_ICMP: 2480 Observer.changingInstr(MI); 2481 if (TypeIdx == 0) 2482 widenScalarDst(MI, WideTy); 2483 else { 2484 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2485 MI.getOperand(1).getPredicate())) 2486 ? TargetOpcode::G_SEXT 2487 : TargetOpcode::G_ZEXT; 2488 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2489 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2490 } 2491 Observer.changedInstr(MI); 2492 return Legalized; 2493 2494 case TargetOpcode::G_PTR_ADD: 2495 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2496 Observer.changingInstr(MI); 2497 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2498 Observer.changedInstr(MI); 2499 return Legalized; 2500 2501 case TargetOpcode::G_PHI: { 2502 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2503 2504 Observer.changingInstr(MI); 2505 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2506 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2507 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2508 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2509 } 2510 2511 MachineBasicBlock &MBB = *MI.getParent(); 2512 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2513 widenScalarDst(MI, WideTy); 2514 Observer.changedInstr(MI); 2515 return Legalized; 2516 } 2517 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2518 if (TypeIdx == 0) { 2519 Register VecReg = MI.getOperand(1).getReg(); 2520 LLT VecTy = MRI.getType(VecReg); 2521 Observer.changingInstr(MI); 2522 2523 widenScalarSrc( 2524 MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1, 2525 TargetOpcode::G_ANYEXT); 2526 2527 widenScalarDst(MI, WideTy, 0); 2528 Observer.changedInstr(MI); 2529 return Legalized; 2530 } 2531 2532 if (TypeIdx != 2) 2533 return UnableToLegalize; 2534 Observer.changingInstr(MI); 2535 // TODO: Probably should be zext 2536 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2537 Observer.changedInstr(MI); 2538 return Legalized; 2539 } 2540 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2541 if (TypeIdx == 1) { 2542 Observer.changingInstr(MI); 2543 2544 Register VecReg = MI.getOperand(1).getReg(); 2545 LLT VecTy = MRI.getType(VecReg); 2546 LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy); 2547 2548 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2549 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2550 widenScalarDst(MI, WideVecTy, 0); 2551 Observer.changedInstr(MI); 2552 return Legalized; 2553 } 2554 2555 if (TypeIdx == 2) { 2556 Observer.changingInstr(MI); 2557 // TODO: Probably should be zext 2558 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2559 Observer.changedInstr(MI); 2560 return Legalized; 2561 } 2562 2563 return UnableToLegalize; 2564 } 2565 case TargetOpcode::G_FADD: 2566 case TargetOpcode::G_FMUL: 2567 case TargetOpcode::G_FSUB: 2568 case TargetOpcode::G_FMA: 2569 case TargetOpcode::G_FMAD: 2570 case TargetOpcode::G_FNEG: 2571 case TargetOpcode::G_FABS: 2572 case TargetOpcode::G_FCANONICALIZE: 2573 case TargetOpcode::G_FMINNUM: 2574 case TargetOpcode::G_FMAXNUM: 2575 case TargetOpcode::G_FMINNUM_IEEE: 2576 case TargetOpcode::G_FMAXNUM_IEEE: 2577 case TargetOpcode::G_FMINIMUM: 2578 case TargetOpcode::G_FMAXIMUM: 2579 case TargetOpcode::G_FDIV: 2580 case TargetOpcode::G_FREM: 2581 case TargetOpcode::G_FCEIL: 2582 case TargetOpcode::G_FFLOOR: 2583 case TargetOpcode::G_FCOS: 2584 case TargetOpcode::G_FSIN: 2585 case TargetOpcode::G_FLOG10: 2586 case TargetOpcode::G_FLOG: 2587 case TargetOpcode::G_FLOG2: 2588 case TargetOpcode::G_FRINT: 2589 case TargetOpcode::G_FNEARBYINT: 2590 case TargetOpcode::G_FSQRT: 2591 case TargetOpcode::G_FEXP: 2592 case TargetOpcode::G_FEXP2: 2593 case TargetOpcode::G_FPOW: 2594 case TargetOpcode::G_INTRINSIC_TRUNC: 2595 case TargetOpcode::G_INTRINSIC_ROUND: 2596 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2597 assert(TypeIdx == 0); 2598 Observer.changingInstr(MI); 2599 2600 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2601 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2602 2603 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2604 Observer.changedInstr(MI); 2605 return Legalized; 2606 case TargetOpcode::G_FPOWI: { 2607 if (TypeIdx != 0) 2608 return UnableToLegalize; 2609 Observer.changingInstr(MI); 2610 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2611 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2612 Observer.changedInstr(MI); 2613 return Legalized; 2614 } 2615 case TargetOpcode::G_INTTOPTR: 2616 if (TypeIdx != 1) 2617 return UnableToLegalize; 2618 2619 Observer.changingInstr(MI); 2620 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2621 Observer.changedInstr(MI); 2622 return Legalized; 2623 case TargetOpcode::G_PTRTOINT: 2624 if (TypeIdx != 0) 2625 return UnableToLegalize; 2626 2627 Observer.changingInstr(MI); 2628 widenScalarDst(MI, WideTy, 0); 2629 Observer.changedInstr(MI); 2630 return Legalized; 2631 case TargetOpcode::G_BUILD_VECTOR: { 2632 Observer.changingInstr(MI); 2633 2634 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2635 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2636 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2637 2638 // Avoid changing the result vector type if the source element type was 2639 // requested. 2640 if (TypeIdx == 1) { 2641 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2642 } else { 2643 widenScalarDst(MI, WideTy, 0); 2644 } 2645 2646 Observer.changedInstr(MI); 2647 return Legalized; 2648 } 2649 case TargetOpcode::G_SEXT_INREG: 2650 if (TypeIdx != 0) 2651 return UnableToLegalize; 2652 2653 Observer.changingInstr(MI); 2654 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2655 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2656 Observer.changedInstr(MI); 2657 return Legalized; 2658 case TargetOpcode::G_PTRMASK: { 2659 if (TypeIdx != 1) 2660 return UnableToLegalize; 2661 Observer.changingInstr(MI); 2662 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2663 Observer.changedInstr(MI); 2664 return Legalized; 2665 } 2666 } 2667 } 2668 2669 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2670 MachineIRBuilder &B, Register Src, LLT Ty) { 2671 auto Unmerge = B.buildUnmerge(Ty, Src); 2672 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2673 Pieces.push_back(Unmerge.getReg(I)); 2674 } 2675 2676 LegalizerHelper::LegalizeResult 2677 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2678 Register Dst = MI.getOperand(0).getReg(); 2679 Register Src = MI.getOperand(1).getReg(); 2680 LLT DstTy = MRI.getType(Dst); 2681 LLT SrcTy = MRI.getType(Src); 2682 2683 if (SrcTy.isVector()) { 2684 LLT SrcEltTy = SrcTy.getElementType(); 2685 SmallVector<Register, 8> SrcRegs; 2686 2687 if (DstTy.isVector()) { 2688 int NumDstElt = DstTy.getNumElements(); 2689 int NumSrcElt = SrcTy.getNumElements(); 2690 2691 LLT DstEltTy = DstTy.getElementType(); 2692 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2693 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2694 2695 // If there's an element size mismatch, insert intermediate casts to match 2696 // the result element type. 2697 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2698 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2699 // 2700 // => 2701 // 2702 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2703 // %3:_(<2 x s8>) = G_BITCAST %2 2704 // %4:_(<2 x s8>) = G_BITCAST %3 2705 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2706 DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy); 2707 SrcPartTy = SrcEltTy; 2708 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2709 // 2710 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2711 // 2712 // => 2713 // 2714 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2715 // %3:_(s16) = G_BITCAST %2 2716 // %4:_(s16) = G_BITCAST %3 2717 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2718 SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy); 2719 DstCastTy = DstEltTy; 2720 } 2721 2722 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2723 for (Register &SrcReg : SrcRegs) 2724 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2725 } else 2726 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2727 2728 MIRBuilder.buildMerge(Dst, SrcRegs); 2729 MI.eraseFromParent(); 2730 return Legalized; 2731 } 2732 2733 if (DstTy.isVector()) { 2734 SmallVector<Register, 8> SrcRegs; 2735 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2736 MIRBuilder.buildMerge(Dst, SrcRegs); 2737 MI.eraseFromParent(); 2738 return Legalized; 2739 } 2740 2741 return UnableToLegalize; 2742 } 2743 2744 /// Figure out the bit offset into a register when coercing a vector index for 2745 /// the wide element type. This is only for the case when promoting vector to 2746 /// one with larger elements. 2747 // 2748 /// 2749 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2750 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2751 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2752 Register Idx, 2753 unsigned NewEltSize, 2754 unsigned OldEltSize) { 2755 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2756 LLT IdxTy = B.getMRI()->getType(Idx); 2757 2758 // Now figure out the amount we need to shift to get the target bits. 2759 auto OffsetMask = B.buildConstant( 2760 IdxTy, ~(APInt::getAllOnes(IdxTy.getSizeInBits()) << Log2EltRatio)); 2761 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2762 return B.buildShl(IdxTy, OffsetIdx, 2763 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2764 } 2765 2766 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2767 /// is casting to a vector with a smaller element size, perform multiple element 2768 /// extracts and merge the results. If this is coercing to a vector with larger 2769 /// elements, index the bitcasted vector and extract the target element with bit 2770 /// operations. This is intended to force the indexing in the native register 2771 /// size for architectures that can dynamically index the register file. 2772 LegalizerHelper::LegalizeResult 2773 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2774 LLT CastTy) { 2775 if (TypeIdx != 1) 2776 return UnableToLegalize; 2777 2778 Register Dst = MI.getOperand(0).getReg(); 2779 Register SrcVec = MI.getOperand(1).getReg(); 2780 Register Idx = MI.getOperand(2).getReg(); 2781 LLT SrcVecTy = MRI.getType(SrcVec); 2782 LLT IdxTy = MRI.getType(Idx); 2783 2784 LLT SrcEltTy = SrcVecTy.getElementType(); 2785 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2786 unsigned OldNumElts = SrcVecTy.getNumElements(); 2787 2788 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2789 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2790 2791 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2792 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2793 if (NewNumElts > OldNumElts) { 2794 // Decreasing the vector element size 2795 // 2796 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2797 // => 2798 // v4i32:castx = bitcast x:v2i64 2799 // 2800 // i64 = bitcast 2801 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2802 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2803 // 2804 if (NewNumElts % OldNumElts != 0) 2805 return UnableToLegalize; 2806 2807 // Type of the intermediate result vector. 2808 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2809 LLT MidTy = 2810 LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy); 2811 2812 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2813 2814 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2815 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2816 2817 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2818 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2819 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2820 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2821 NewOps[I] = Elt.getReg(0); 2822 } 2823 2824 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2825 MIRBuilder.buildBitcast(Dst, NewVec); 2826 MI.eraseFromParent(); 2827 return Legalized; 2828 } 2829 2830 if (NewNumElts < OldNumElts) { 2831 if (NewEltSize % OldEltSize != 0) 2832 return UnableToLegalize; 2833 2834 // This only depends on powers of 2 because we use bit tricks to figure out 2835 // the bit offset we need to shift to get the target element. A general 2836 // expansion could emit division/multiply. 2837 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2838 return UnableToLegalize; 2839 2840 // Increasing the vector element size. 2841 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2842 // 2843 // => 2844 // 2845 // %cast = G_BITCAST %vec 2846 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2847 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2848 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2849 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2850 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2851 // %elt = G_TRUNC %elt_bits 2852 2853 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2854 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2855 2856 // Divide to get the index in the wider element type. 2857 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2858 2859 Register WideElt = CastVec; 2860 if (CastTy.isVector()) { 2861 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2862 ScaledIdx).getReg(0); 2863 } 2864 2865 // Compute the bit offset into the register of the target element. 2866 Register OffsetBits = getBitcastWiderVectorElementOffset( 2867 MIRBuilder, Idx, NewEltSize, OldEltSize); 2868 2869 // Shift the wide element to get the target element. 2870 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2871 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2872 MI.eraseFromParent(); 2873 return Legalized; 2874 } 2875 2876 return UnableToLegalize; 2877 } 2878 2879 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2880 /// TargetReg, while preserving other bits in \p TargetReg. 2881 /// 2882 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2883 static Register buildBitFieldInsert(MachineIRBuilder &B, 2884 Register TargetReg, Register InsertReg, 2885 Register OffsetBits) { 2886 LLT TargetTy = B.getMRI()->getType(TargetReg); 2887 LLT InsertTy = B.getMRI()->getType(InsertReg); 2888 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2889 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2890 2891 // Produce a bitmask of the value to insert 2892 auto EltMask = B.buildConstant( 2893 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2894 InsertTy.getSizeInBits())); 2895 // Shift it into position 2896 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2897 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2898 2899 // Clear out the bits in the wide element 2900 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2901 2902 // The value to insert has all zeros already, so stick it into the masked 2903 // wide element. 2904 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2905 } 2906 2907 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2908 /// is increasing the element size, perform the indexing in the target element 2909 /// type, and use bit operations to insert at the element position. This is 2910 /// intended for architectures that can dynamically index the register file and 2911 /// want to force indexing in the native register size. 2912 LegalizerHelper::LegalizeResult 2913 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2914 LLT CastTy) { 2915 if (TypeIdx != 0) 2916 return UnableToLegalize; 2917 2918 Register Dst = MI.getOperand(0).getReg(); 2919 Register SrcVec = MI.getOperand(1).getReg(); 2920 Register Val = MI.getOperand(2).getReg(); 2921 Register Idx = MI.getOperand(3).getReg(); 2922 2923 LLT VecTy = MRI.getType(Dst); 2924 LLT IdxTy = MRI.getType(Idx); 2925 2926 LLT VecEltTy = VecTy.getElementType(); 2927 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2928 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2929 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2930 2931 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2932 unsigned OldNumElts = VecTy.getNumElements(); 2933 2934 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2935 if (NewNumElts < OldNumElts) { 2936 if (NewEltSize % OldEltSize != 0) 2937 return UnableToLegalize; 2938 2939 // This only depends on powers of 2 because we use bit tricks to figure out 2940 // the bit offset we need to shift to get the target element. A general 2941 // expansion could emit division/multiply. 2942 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2943 return UnableToLegalize; 2944 2945 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2946 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2947 2948 // Divide to get the index in the wider element type. 2949 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2950 2951 Register ExtractedElt = CastVec; 2952 if (CastTy.isVector()) { 2953 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2954 ScaledIdx).getReg(0); 2955 } 2956 2957 // Compute the bit offset into the register of the target element. 2958 Register OffsetBits = getBitcastWiderVectorElementOffset( 2959 MIRBuilder, Idx, NewEltSize, OldEltSize); 2960 2961 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2962 Val, OffsetBits); 2963 if (CastTy.isVector()) { 2964 InsertedElt = MIRBuilder.buildInsertVectorElement( 2965 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2966 } 2967 2968 MIRBuilder.buildBitcast(Dst, InsertedElt); 2969 MI.eraseFromParent(); 2970 return Legalized; 2971 } 2972 2973 return UnableToLegalize; 2974 } 2975 2976 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) { 2977 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2978 Register DstReg = LoadMI.getDstReg(); 2979 Register PtrReg = LoadMI.getPointerReg(); 2980 LLT DstTy = MRI.getType(DstReg); 2981 MachineMemOperand &MMO = LoadMI.getMMO(); 2982 LLT MemTy = MMO.getMemoryType(); 2983 MachineFunction &MF = MIRBuilder.getMF(); 2984 2985 unsigned MemSizeInBits = MemTy.getSizeInBits(); 2986 unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes(); 2987 2988 if (MemSizeInBits != MemStoreSizeInBits) { 2989 if (MemTy.isVector()) 2990 return UnableToLegalize; 2991 2992 // Promote to a byte-sized load if not loading an integral number of 2993 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 2994 LLT WideMemTy = LLT::scalar(MemStoreSizeInBits); 2995 MachineMemOperand *NewMMO = 2996 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy); 2997 2998 Register LoadReg = DstReg; 2999 LLT LoadTy = DstTy; 3000 3001 // If this wasn't already an extending load, we need to widen the result 3002 // register to avoid creating a load with a narrower result than the source. 3003 if (MemStoreSizeInBits > DstTy.getSizeInBits()) { 3004 LoadTy = WideMemTy; 3005 LoadReg = MRI.createGenericVirtualRegister(WideMemTy); 3006 } 3007 3008 if (isa<GSExtLoad>(LoadMI)) { 3009 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 3010 MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits); 3011 } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == LoadTy) { 3012 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 3013 // The extra bits are guaranteed to be zero, since we stored them that 3014 // way. A zext load from Wide thus automatically gives zext from MemVT. 3015 MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits); 3016 } else { 3017 MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO); 3018 } 3019 3020 if (DstTy != LoadTy) 3021 MIRBuilder.buildTrunc(DstReg, LoadReg); 3022 3023 LoadMI.eraseFromParent(); 3024 return Legalized; 3025 } 3026 3027 // Big endian lowering not implemented. 3028 if (MIRBuilder.getDataLayout().isBigEndian()) 3029 return UnableToLegalize; 3030 3031 // This load needs splitting into power of 2 sized loads. 3032 // 3033 // Our strategy here is to generate anyextending loads for the smaller 3034 // types up to next power-2 result type, and then combine the two larger 3035 // result values together, before truncating back down to the non-pow-2 3036 // type. 3037 // E.g. v1 = i24 load => 3038 // v2 = i32 zextload (2 byte) 3039 // v3 = i32 load (1 byte) 3040 // v4 = i32 shl v3, 16 3041 // v5 = i32 or v4, v2 3042 // v1 = i24 trunc v5 3043 // By doing this we generate the correct truncate which should get 3044 // combined away as an artifact with a matching extend. 3045 3046 uint64_t LargeSplitSize, SmallSplitSize; 3047 3048 if (!isPowerOf2_32(MemSizeInBits)) { 3049 // This load needs splitting into power of 2 sized loads. 3050 LargeSplitSize = PowerOf2Floor(MemSizeInBits); 3051 SmallSplitSize = MemSizeInBits - LargeSplitSize; 3052 } else { 3053 // This is already a power of 2, but we still need to split this in half. 3054 // 3055 // Assume we're being asked to decompose an unaligned load. 3056 // TODO: If this requires multiple splits, handle them all at once. 3057 auto &Ctx = MF.getFunction().getContext(); 3058 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) 3059 return UnableToLegalize; 3060 3061 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; 3062 } 3063 3064 if (MemTy.isVector()) { 3065 // TODO: Handle vector extloads 3066 if (MemTy != DstTy) 3067 return UnableToLegalize; 3068 3069 // TODO: We can do better than scalarizing the vector and at least split it 3070 // in half. 3071 return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType()); 3072 } 3073 3074 MachineMemOperand *LargeMMO = 3075 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 3076 MachineMemOperand *SmallMMO = 3077 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 3078 3079 LLT PtrTy = MRI.getType(PtrReg); 3080 unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits()); 3081 LLT AnyExtTy = LLT::scalar(AnyExtSize); 3082 auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy, 3083 PtrReg, *LargeMMO); 3084 3085 auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), 3086 LargeSplitSize / 8); 3087 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 3088 auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); 3089 auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy, 3090 SmallPtr, *SmallMMO); 3091 3092 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 3093 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 3094 3095 if (AnyExtTy == DstTy) 3096 MIRBuilder.buildOr(DstReg, Shift, LargeLoad); 3097 else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) { 3098 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 3099 MIRBuilder.buildTrunc(DstReg, {Or}); 3100 } else { 3101 assert(DstTy.isPointer() && "expected pointer"); 3102 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 3103 3104 // FIXME: We currently consider this to be illegal for non-integral address 3105 // spaces, but we need still need a way to reinterpret the bits. 3106 MIRBuilder.buildIntToPtr(DstReg, Or); 3107 } 3108 3109 LoadMI.eraseFromParent(); 3110 return Legalized; 3111 } 3112 3113 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) { 3114 // Lower a non-power of 2 store into multiple pow-2 stores. 3115 // E.g. split an i24 store into an i16 store + i8 store. 3116 // We do this by first extending the stored value to the next largest power 3117 // of 2 type, and then using truncating stores to store the components. 3118 // By doing this, likewise with G_LOAD, generate an extend that can be 3119 // artifact-combined away instead of leaving behind extracts. 3120 Register SrcReg = StoreMI.getValueReg(); 3121 Register PtrReg = StoreMI.getPointerReg(); 3122 LLT SrcTy = MRI.getType(SrcReg); 3123 MachineFunction &MF = MIRBuilder.getMF(); 3124 MachineMemOperand &MMO = **StoreMI.memoperands_begin(); 3125 LLT MemTy = MMO.getMemoryType(); 3126 3127 unsigned StoreWidth = MemTy.getSizeInBits(); 3128 unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes(); 3129 3130 if (StoreWidth != StoreSizeInBits) { 3131 if (SrcTy.isVector()) 3132 return UnableToLegalize; 3133 3134 // Promote to a byte-sized store with upper bits zero if not 3135 // storing an integral number of bytes. For example, promote 3136 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 3137 LLT WideTy = LLT::scalar(StoreSizeInBits); 3138 3139 if (StoreSizeInBits > SrcTy.getSizeInBits()) { 3140 // Avoid creating a store with a narrower source than result. 3141 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 3142 SrcTy = WideTy; 3143 } 3144 3145 auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth); 3146 3147 MachineMemOperand *NewMMO = 3148 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy); 3149 MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO); 3150 StoreMI.eraseFromParent(); 3151 return Legalized; 3152 } 3153 3154 if (MemTy.isVector()) { 3155 // TODO: Handle vector trunc stores 3156 if (MemTy != SrcTy) 3157 return UnableToLegalize; 3158 3159 // TODO: We can do better than scalarizing the vector and at least split it 3160 // in half. 3161 return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType()); 3162 } 3163 3164 unsigned MemSizeInBits = MemTy.getSizeInBits(); 3165 uint64_t LargeSplitSize, SmallSplitSize; 3166 3167 if (!isPowerOf2_32(MemSizeInBits)) { 3168 LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits()); 3169 SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize; 3170 } else { 3171 auto &Ctx = MF.getFunction().getContext(); 3172 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) 3173 return UnableToLegalize; // Don't know what we're being asked to do. 3174 3175 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; 3176 } 3177 3178 // Extend to the next pow-2. If this store was itself the result of lowering, 3179 // e.g. an s56 store being broken into s32 + s24, we might have a stored type 3180 // that's wider than the stored size. 3181 unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits()); 3182 const LLT NewSrcTy = LLT::scalar(AnyExtSize); 3183 3184 if (SrcTy.isPointer()) { 3185 const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits()); 3186 SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0); 3187 } 3188 3189 auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg); 3190 3191 // Obtain the smaller value by shifting away the larger value. 3192 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize); 3193 auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt); 3194 3195 // Generate the PtrAdd and truncating stores. 3196 LLT PtrTy = MRI.getType(PtrReg); 3197 auto OffsetCst = MIRBuilder.buildConstant( 3198 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 3199 auto SmallPtr = 3200 MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst); 3201 3202 MachineMemOperand *LargeMMO = 3203 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 3204 MachineMemOperand *SmallMMO = 3205 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 3206 MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO); 3207 MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO); 3208 StoreMI.eraseFromParent(); 3209 return Legalized; 3210 } 3211 3212 LegalizerHelper::LegalizeResult 3213 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 3214 switch (MI.getOpcode()) { 3215 case TargetOpcode::G_LOAD: { 3216 if (TypeIdx != 0) 3217 return UnableToLegalize; 3218 MachineMemOperand &MMO = **MI.memoperands_begin(); 3219 3220 // Not sure how to interpret a bitcast of an extending load. 3221 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 3222 return UnableToLegalize; 3223 3224 Observer.changingInstr(MI); 3225 bitcastDst(MI, CastTy, 0); 3226 MMO.setType(CastTy); 3227 Observer.changedInstr(MI); 3228 return Legalized; 3229 } 3230 case TargetOpcode::G_STORE: { 3231 if (TypeIdx != 0) 3232 return UnableToLegalize; 3233 3234 MachineMemOperand &MMO = **MI.memoperands_begin(); 3235 3236 // Not sure how to interpret a bitcast of a truncating store. 3237 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 3238 return UnableToLegalize; 3239 3240 Observer.changingInstr(MI); 3241 bitcastSrc(MI, CastTy, 0); 3242 MMO.setType(CastTy); 3243 Observer.changedInstr(MI); 3244 return Legalized; 3245 } 3246 case TargetOpcode::G_SELECT: { 3247 if (TypeIdx != 0) 3248 return UnableToLegalize; 3249 3250 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 3251 LLVM_DEBUG( 3252 dbgs() << "bitcast action not implemented for vector select\n"); 3253 return UnableToLegalize; 3254 } 3255 3256 Observer.changingInstr(MI); 3257 bitcastSrc(MI, CastTy, 2); 3258 bitcastSrc(MI, CastTy, 3); 3259 bitcastDst(MI, CastTy, 0); 3260 Observer.changedInstr(MI); 3261 return Legalized; 3262 } 3263 case TargetOpcode::G_AND: 3264 case TargetOpcode::G_OR: 3265 case TargetOpcode::G_XOR: { 3266 Observer.changingInstr(MI); 3267 bitcastSrc(MI, CastTy, 1); 3268 bitcastSrc(MI, CastTy, 2); 3269 bitcastDst(MI, CastTy, 0); 3270 Observer.changedInstr(MI); 3271 return Legalized; 3272 } 3273 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 3274 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 3275 case TargetOpcode::G_INSERT_VECTOR_ELT: 3276 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 3277 default: 3278 return UnableToLegalize; 3279 } 3280 } 3281 3282 // Legalize an instruction by changing the opcode in place. 3283 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 3284 Observer.changingInstr(MI); 3285 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 3286 Observer.changedInstr(MI); 3287 } 3288 3289 LegalizerHelper::LegalizeResult 3290 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 3291 using namespace TargetOpcode; 3292 3293 switch(MI.getOpcode()) { 3294 default: 3295 return UnableToLegalize; 3296 case TargetOpcode::G_BITCAST: 3297 return lowerBitcast(MI); 3298 case TargetOpcode::G_SREM: 3299 case TargetOpcode::G_UREM: { 3300 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3301 auto Quot = 3302 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 3303 {MI.getOperand(1), MI.getOperand(2)}); 3304 3305 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 3306 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 3307 MI.eraseFromParent(); 3308 return Legalized; 3309 } 3310 case TargetOpcode::G_SADDO: 3311 case TargetOpcode::G_SSUBO: 3312 return lowerSADDO_SSUBO(MI); 3313 case TargetOpcode::G_UMULH: 3314 case TargetOpcode::G_SMULH: 3315 return lowerSMULH_UMULH(MI); 3316 case TargetOpcode::G_SMULO: 3317 case TargetOpcode::G_UMULO: { 3318 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 3319 // result. 3320 Register Res = MI.getOperand(0).getReg(); 3321 Register Overflow = MI.getOperand(1).getReg(); 3322 Register LHS = MI.getOperand(2).getReg(); 3323 Register RHS = MI.getOperand(3).getReg(); 3324 LLT Ty = MRI.getType(Res); 3325 3326 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 3327 ? TargetOpcode::G_SMULH 3328 : TargetOpcode::G_UMULH; 3329 3330 Observer.changingInstr(MI); 3331 const auto &TII = MIRBuilder.getTII(); 3332 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 3333 MI.removeOperand(1); 3334 Observer.changedInstr(MI); 3335 3336 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 3337 auto Zero = MIRBuilder.buildConstant(Ty, 0); 3338 3339 // Move insert point forward so we can use the Res register if needed. 3340 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 3341 3342 // For *signed* multiply, overflow is detected by checking: 3343 // (hi != (lo >> bitwidth-1)) 3344 if (Opcode == TargetOpcode::G_SMULH) { 3345 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 3346 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 3347 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 3348 } else { 3349 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 3350 } 3351 return Legalized; 3352 } 3353 case TargetOpcode::G_FNEG: { 3354 Register Res = MI.getOperand(0).getReg(); 3355 LLT Ty = MRI.getType(Res); 3356 3357 // TODO: Handle vector types once we are able to 3358 // represent them. 3359 if (Ty.isVector()) 3360 return UnableToLegalize; 3361 auto SignMask = 3362 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 3363 Register SubByReg = MI.getOperand(1).getReg(); 3364 MIRBuilder.buildXor(Res, SubByReg, SignMask); 3365 MI.eraseFromParent(); 3366 return Legalized; 3367 } 3368 case TargetOpcode::G_FSUB: { 3369 Register Res = MI.getOperand(0).getReg(); 3370 LLT Ty = MRI.getType(Res); 3371 3372 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 3373 // First, check if G_FNEG is marked as Lower. If so, we may 3374 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 3375 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 3376 return UnableToLegalize; 3377 Register LHS = MI.getOperand(1).getReg(); 3378 Register RHS = MI.getOperand(2).getReg(); 3379 Register Neg = MRI.createGenericVirtualRegister(Ty); 3380 MIRBuilder.buildFNeg(Neg, RHS); 3381 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 3382 MI.eraseFromParent(); 3383 return Legalized; 3384 } 3385 case TargetOpcode::G_FMAD: 3386 return lowerFMad(MI); 3387 case TargetOpcode::G_FFLOOR: 3388 return lowerFFloor(MI); 3389 case TargetOpcode::G_INTRINSIC_ROUND: 3390 return lowerIntrinsicRound(MI); 3391 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 3392 // Since round even is the assumed rounding mode for unconstrained FP 3393 // operations, rint and roundeven are the same operation. 3394 changeOpcode(MI, TargetOpcode::G_FRINT); 3395 return Legalized; 3396 } 3397 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 3398 Register OldValRes = MI.getOperand(0).getReg(); 3399 Register SuccessRes = MI.getOperand(1).getReg(); 3400 Register Addr = MI.getOperand(2).getReg(); 3401 Register CmpVal = MI.getOperand(3).getReg(); 3402 Register NewVal = MI.getOperand(4).getReg(); 3403 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 3404 **MI.memoperands_begin()); 3405 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 3406 MI.eraseFromParent(); 3407 return Legalized; 3408 } 3409 case TargetOpcode::G_LOAD: 3410 case TargetOpcode::G_SEXTLOAD: 3411 case TargetOpcode::G_ZEXTLOAD: 3412 return lowerLoad(cast<GAnyLoad>(MI)); 3413 case TargetOpcode::G_STORE: 3414 return lowerStore(cast<GStore>(MI)); 3415 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 3416 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 3417 case TargetOpcode::G_CTLZ: 3418 case TargetOpcode::G_CTTZ: 3419 case TargetOpcode::G_CTPOP: 3420 return lowerBitCount(MI); 3421 case G_UADDO: { 3422 Register Res = MI.getOperand(0).getReg(); 3423 Register CarryOut = MI.getOperand(1).getReg(); 3424 Register LHS = MI.getOperand(2).getReg(); 3425 Register RHS = MI.getOperand(3).getReg(); 3426 3427 MIRBuilder.buildAdd(Res, LHS, RHS); 3428 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 3429 3430 MI.eraseFromParent(); 3431 return Legalized; 3432 } 3433 case G_UADDE: { 3434 Register Res = MI.getOperand(0).getReg(); 3435 Register CarryOut = MI.getOperand(1).getReg(); 3436 Register LHS = MI.getOperand(2).getReg(); 3437 Register RHS = MI.getOperand(3).getReg(); 3438 Register CarryIn = MI.getOperand(4).getReg(); 3439 LLT Ty = MRI.getType(Res); 3440 3441 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3442 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3443 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3444 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3445 3446 MI.eraseFromParent(); 3447 return Legalized; 3448 } 3449 case G_USUBO: { 3450 Register Res = MI.getOperand(0).getReg(); 3451 Register BorrowOut = MI.getOperand(1).getReg(); 3452 Register LHS = MI.getOperand(2).getReg(); 3453 Register RHS = MI.getOperand(3).getReg(); 3454 3455 MIRBuilder.buildSub(Res, LHS, RHS); 3456 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3457 3458 MI.eraseFromParent(); 3459 return Legalized; 3460 } 3461 case G_USUBE: { 3462 Register Res = MI.getOperand(0).getReg(); 3463 Register BorrowOut = MI.getOperand(1).getReg(); 3464 Register LHS = MI.getOperand(2).getReg(); 3465 Register RHS = MI.getOperand(3).getReg(); 3466 Register BorrowIn = MI.getOperand(4).getReg(); 3467 const LLT CondTy = MRI.getType(BorrowOut); 3468 const LLT Ty = MRI.getType(Res); 3469 3470 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3471 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3472 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3473 3474 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3475 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3476 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3477 3478 MI.eraseFromParent(); 3479 return Legalized; 3480 } 3481 case G_UITOFP: 3482 return lowerUITOFP(MI); 3483 case G_SITOFP: 3484 return lowerSITOFP(MI); 3485 case G_FPTOUI: 3486 return lowerFPTOUI(MI); 3487 case G_FPTOSI: 3488 return lowerFPTOSI(MI); 3489 case G_FPTRUNC: 3490 return lowerFPTRUNC(MI); 3491 case G_FPOWI: 3492 return lowerFPOWI(MI); 3493 case G_SMIN: 3494 case G_SMAX: 3495 case G_UMIN: 3496 case G_UMAX: 3497 return lowerMinMax(MI); 3498 case G_FCOPYSIGN: 3499 return lowerFCopySign(MI); 3500 case G_FMINNUM: 3501 case G_FMAXNUM: 3502 return lowerFMinNumMaxNum(MI); 3503 case G_MERGE_VALUES: 3504 return lowerMergeValues(MI); 3505 case G_UNMERGE_VALUES: 3506 return lowerUnmergeValues(MI); 3507 case TargetOpcode::G_SEXT_INREG: { 3508 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3509 int64_t SizeInBits = MI.getOperand(2).getImm(); 3510 3511 Register DstReg = MI.getOperand(0).getReg(); 3512 Register SrcReg = MI.getOperand(1).getReg(); 3513 LLT DstTy = MRI.getType(DstReg); 3514 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3515 3516 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3517 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3518 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3519 MI.eraseFromParent(); 3520 return Legalized; 3521 } 3522 case G_EXTRACT_VECTOR_ELT: 3523 case G_INSERT_VECTOR_ELT: 3524 return lowerExtractInsertVectorElt(MI); 3525 case G_SHUFFLE_VECTOR: 3526 return lowerShuffleVector(MI); 3527 case G_DYN_STACKALLOC: 3528 return lowerDynStackAlloc(MI); 3529 case G_EXTRACT: 3530 return lowerExtract(MI); 3531 case G_INSERT: 3532 return lowerInsert(MI); 3533 case G_BSWAP: 3534 return lowerBswap(MI); 3535 case G_BITREVERSE: 3536 return lowerBitreverse(MI); 3537 case G_READ_REGISTER: 3538 case G_WRITE_REGISTER: 3539 return lowerReadWriteRegister(MI); 3540 case G_UADDSAT: 3541 case G_USUBSAT: { 3542 // Try to make a reasonable guess about which lowering strategy to use. The 3543 // target can override this with custom lowering and calling the 3544 // implementation functions. 3545 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3546 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3547 return lowerAddSubSatToMinMax(MI); 3548 return lowerAddSubSatToAddoSubo(MI); 3549 } 3550 case G_SADDSAT: 3551 case G_SSUBSAT: { 3552 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3553 3554 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3555 // since it's a shorter expansion. However, we would need to figure out the 3556 // preferred boolean type for the carry out for the query. 3557 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3558 return lowerAddSubSatToMinMax(MI); 3559 return lowerAddSubSatToAddoSubo(MI); 3560 } 3561 case G_SSHLSAT: 3562 case G_USHLSAT: 3563 return lowerShlSat(MI); 3564 case G_ABS: 3565 return lowerAbsToAddXor(MI); 3566 case G_SELECT: 3567 return lowerSelect(MI); 3568 case G_SDIVREM: 3569 case G_UDIVREM: 3570 return lowerDIVREM(MI); 3571 case G_FSHL: 3572 case G_FSHR: 3573 return lowerFunnelShift(MI); 3574 case G_ROTL: 3575 case G_ROTR: 3576 return lowerRotate(MI); 3577 case G_MEMSET: 3578 case G_MEMCPY: 3579 case G_MEMMOVE: 3580 return lowerMemCpyFamily(MI); 3581 case G_MEMCPY_INLINE: 3582 return lowerMemcpyInline(MI); 3583 GISEL_VECREDUCE_CASES_NONSEQ 3584 return lowerVectorReduction(MI); 3585 } 3586 } 3587 3588 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3589 Align MinAlign) const { 3590 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3591 // datalayout for the preferred alignment. Also there should be a target hook 3592 // for this to allow targets to reduce the alignment and ignore the 3593 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3594 // the type. 3595 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3596 } 3597 3598 MachineInstrBuilder 3599 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3600 MachinePointerInfo &PtrInfo) { 3601 MachineFunction &MF = MIRBuilder.getMF(); 3602 const DataLayout &DL = MIRBuilder.getDataLayout(); 3603 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3604 3605 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3606 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3607 3608 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3609 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3610 } 3611 3612 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3613 LLT VecTy) { 3614 int64_t IdxVal; 3615 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3616 return IdxReg; 3617 3618 LLT IdxTy = B.getMRI()->getType(IdxReg); 3619 unsigned NElts = VecTy.getNumElements(); 3620 if (isPowerOf2_32(NElts)) { 3621 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3622 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3623 } 3624 3625 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3626 .getReg(0); 3627 } 3628 3629 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3630 Register Index) { 3631 LLT EltTy = VecTy.getElementType(); 3632 3633 // Calculate the element offset and add it to the pointer. 3634 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3635 assert(EltSize * 8 == EltTy.getSizeInBits() && 3636 "Converting bits to bytes lost precision"); 3637 3638 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3639 3640 LLT IdxTy = MRI.getType(Index); 3641 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3642 MIRBuilder.buildConstant(IdxTy, EltSize)); 3643 3644 LLT PtrTy = MRI.getType(VecPtr); 3645 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3646 } 3647 3648 #ifndef NDEBUG 3649 /// Check that all vector operands have same number of elements. Other operands 3650 /// should be listed in NonVecOp. 3651 static bool hasSameNumEltsOnAllVectorOperands( 3652 GenericMachineInstr &MI, MachineRegisterInfo &MRI, 3653 std::initializer_list<unsigned> NonVecOpIndices) { 3654 if (MI.getNumMemOperands() != 0) 3655 return false; 3656 3657 LLT VecTy = MRI.getType(MI.getReg(0)); 3658 if (!VecTy.isVector()) 3659 return false; 3660 unsigned NumElts = VecTy.getNumElements(); 3661 3662 for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) { 3663 MachineOperand &Op = MI.getOperand(OpIdx); 3664 if (!Op.isReg()) { 3665 if (!is_contained(NonVecOpIndices, OpIdx)) 3666 return false; 3667 continue; 3668 } 3669 3670 LLT Ty = MRI.getType(Op.getReg()); 3671 if (!Ty.isVector()) { 3672 if (!is_contained(NonVecOpIndices, OpIdx)) 3673 return false; 3674 continue; 3675 } 3676 3677 if (Ty.getNumElements() != NumElts) 3678 return false; 3679 } 3680 3681 return true; 3682 } 3683 #endif 3684 3685 /// Fill \p DstOps with DstOps that have same number of elements combined as 3686 /// the Ty. These DstOps have either scalar type when \p NumElts = 1 or are 3687 /// vectors with \p NumElts elements. When Ty.getNumElements() is not multiple 3688 /// of \p NumElts last DstOp (leftover) has fewer then \p NumElts elements. 3689 static void makeDstOps(SmallVectorImpl<DstOp> &DstOps, LLT Ty, 3690 unsigned NumElts) { 3691 LLT LeftoverTy; 3692 assert(Ty.isVector() && "Expected vector type"); 3693 LLT EltTy = Ty.getElementType(); 3694 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); 3695 int NumParts, NumLeftover; 3696 std::tie(NumParts, NumLeftover) = 3697 getNarrowTypeBreakDown(Ty, NarrowTy, LeftoverTy); 3698 3699 assert(NumParts > 0 && "Error in getNarrowTypeBreakDown"); 3700 for (int i = 0; i < NumParts; ++i) { 3701 DstOps.push_back(NarrowTy); 3702 } 3703 3704 if (LeftoverTy.isValid()) { 3705 assert(NumLeftover == 1 && "expected exactly one leftover"); 3706 DstOps.push_back(LeftoverTy); 3707 } 3708 } 3709 3710 /// Operand \p Op is used on \p N sub-instructions. Fill \p Ops with \p N SrcOps 3711 /// made from \p Op depending on operand type. 3712 static void broadcastSrcOp(SmallVectorImpl<SrcOp> &Ops, unsigned N, 3713 MachineOperand &Op) { 3714 for (unsigned i = 0; i < N; ++i) { 3715 if (Op.isReg()) 3716 Ops.push_back(Op.getReg()); 3717 else if (Op.isImm()) 3718 Ops.push_back(Op.getImm()); 3719 else if (Op.isPredicate()) 3720 Ops.push_back(static_cast<CmpInst::Predicate>(Op.getPredicate())); 3721 else 3722 llvm_unreachable("Unsupported type"); 3723 } 3724 } 3725 3726 // Handle splitting vector operations which need to have the same number of 3727 // elements in each type index, but each type index may have a different element 3728 // type. 3729 // 3730 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3731 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3732 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3733 // 3734 // Also handles some irregular breakdown cases, e.g. 3735 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3736 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3737 // s64 = G_SHL s64, s32 3738 LegalizerHelper::LegalizeResult 3739 LegalizerHelper::fewerElementsVectorMultiEltType( 3740 GenericMachineInstr &MI, unsigned NumElts, 3741 std::initializer_list<unsigned> NonVecOpIndices) { 3742 assert(hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) && 3743 "Non-compatible opcode or not specified non-vector operands"); 3744 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); 3745 3746 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); 3747 unsigned NumDefs = MI.getNumDefs(); 3748 3749 // Create DstOps (sub-vectors with NumElts elts + Leftover) for each output. 3750 // Build instructions with DstOps to use instruction found by CSE directly. 3751 // CSE copies found instruction into given vreg when building with vreg dest. 3752 SmallVector<SmallVector<DstOp, 8>, 2> OutputOpsPieces(NumDefs); 3753 // Output registers will be taken from created instructions. 3754 SmallVector<SmallVector<Register, 8>, 2> OutputRegs(NumDefs); 3755 for (unsigned i = 0; i < NumDefs; ++i) { 3756 makeDstOps(OutputOpsPieces[i], MRI.getType(MI.getReg(i)), NumElts); 3757 } 3758 3759 // Split vector input operands into sub-vectors with NumElts elts + Leftover. 3760 // Operands listed in NonVecOpIndices will be used as is without splitting; 3761 // examples: compare predicate in icmp and fcmp (op 1), vector select with i1 3762 // scalar condition (op 1), immediate in sext_inreg (op 2). 3763 SmallVector<SmallVector<SrcOp, 8>, 3> InputOpsPieces(NumInputs); 3764 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); 3765 ++UseIdx, ++UseNo) { 3766 if (is_contained(NonVecOpIndices, UseIdx)) { 3767 broadcastSrcOp(InputOpsPieces[UseNo], OutputOpsPieces[0].size(), 3768 MI.getOperand(UseIdx)); 3769 } else { 3770 SmallVector<Register, 8> SplitPieces; 3771 extractVectorParts(MI.getReg(UseIdx), NumElts, SplitPieces); 3772 for (auto Reg : SplitPieces) 3773 InputOpsPieces[UseNo].push_back(Reg); 3774 } 3775 } 3776 3777 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; 3778 3779 // Take i-th piece of each input operand split and build sub-vector/scalar 3780 // instruction. Set i-th DstOp(s) from OutputOpsPieces as destination(s). 3781 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { 3782 SmallVector<DstOp, 2> Defs; 3783 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) 3784 Defs.push_back(OutputOpsPieces[DstNo][i]); 3785 3786 SmallVector<SrcOp, 3> Uses; 3787 for (unsigned InputNo = 0; InputNo < NumInputs; ++InputNo) 3788 Uses.push_back(InputOpsPieces[InputNo][i]); 3789 3790 auto I = MIRBuilder.buildInstr(MI.getOpcode(), Defs, Uses, MI.getFlags()); 3791 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) 3792 OutputRegs[DstNo].push_back(I.getReg(DstNo)); 3793 } 3794 3795 // Merge small outputs into MI's output for each def operand. 3796 if (NumLeftovers) { 3797 for (unsigned i = 0; i < NumDefs; ++i) 3798 mergeMixedSubvectors(MI.getReg(i), OutputRegs[i]); 3799 } else { 3800 for (unsigned i = 0; i < NumDefs; ++i) 3801 MIRBuilder.buildMerge(MI.getReg(i), OutputRegs[i]); 3802 } 3803 3804 MI.eraseFromParent(); 3805 return Legalized; 3806 } 3807 3808 LegalizerHelper::LegalizeResult 3809 LegalizerHelper::fewerElementsVectorPhi(GenericMachineInstr &MI, 3810 unsigned NumElts) { 3811 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); 3812 3813 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); 3814 unsigned NumDefs = MI.getNumDefs(); 3815 3816 SmallVector<DstOp, 8> OutputOpsPieces; 3817 SmallVector<Register, 8> OutputRegs; 3818 makeDstOps(OutputOpsPieces, MRI.getType(MI.getReg(0)), NumElts); 3819 3820 // Instructions that perform register split will be inserted in basic block 3821 // where register is defined (basic block is in the next operand). 3822 SmallVector<SmallVector<Register, 8>, 3> InputOpsPieces(NumInputs / 2); 3823 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); 3824 UseIdx += 2, ++UseNo) { 3825 MachineBasicBlock &OpMBB = *MI.getOperand(UseIdx + 1).getMBB(); 3826 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3827 extractVectorParts(MI.getReg(UseIdx), NumElts, InputOpsPieces[UseNo]); 3828 } 3829 3830 // Build PHIs with fewer elements. 3831 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; 3832 MIRBuilder.setInsertPt(*MI.getParent(), MI); 3833 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { 3834 auto Phi = MIRBuilder.buildInstr(TargetOpcode::G_PHI); 3835 Phi.addDef( 3836 MRI.createGenericVirtualRegister(OutputOpsPieces[i].getLLTTy(MRI))); 3837 OutputRegs.push_back(Phi.getReg(0)); 3838 3839 for (unsigned j = 0; j < NumInputs / 2; ++j) { 3840 Phi.addUse(InputOpsPieces[j][i]); 3841 Phi.add(MI.getOperand(1 + j * 2 + 1)); 3842 } 3843 } 3844 3845 // Merge small outputs into MI's def. 3846 if (NumLeftovers) { 3847 mergeMixedSubvectors(MI.getReg(0), OutputRegs); 3848 } else { 3849 MIRBuilder.buildMerge(MI.getReg(0), OutputRegs); 3850 } 3851 3852 MI.eraseFromParent(); 3853 return Legalized; 3854 } 3855 3856 LegalizerHelper::LegalizeResult 3857 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3858 unsigned TypeIdx, 3859 LLT NarrowTy) { 3860 const int NumDst = MI.getNumOperands() - 1; 3861 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3862 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3863 LLT SrcTy = MRI.getType(SrcReg); 3864 3865 if (TypeIdx != 1 || NarrowTy == DstTy) 3866 return UnableToLegalize; 3867 3868 // Requires compatible types. Otherwise SrcReg should have been defined by 3869 // merge-like instruction that would get artifact combined. Most likely 3870 // instruction that defines SrcReg has to perform more/fewer elements 3871 // legalization compatible with NarrowTy. 3872 assert(SrcTy.isVector() && NarrowTy.isVector() && "Expected vector types"); 3873 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 3874 3875 if ((SrcTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || 3876 (NarrowTy.getSizeInBits() % DstTy.getSizeInBits() != 0)) 3877 return UnableToLegalize; 3878 3879 // This is most likely DstTy (smaller then register size) packed in SrcTy 3880 // (larger then register size) and since unmerge was not combined it will be 3881 // lowered to bit sequence extracts from register. Unpack SrcTy to NarrowTy 3882 // (register size) pieces first. Then unpack each of NarrowTy pieces to DstTy. 3883 3884 // %1:_(DstTy), %2, %3, %4 = G_UNMERGE_VALUES %0:_(SrcTy) 3885 // 3886 // %5:_(NarrowTy), %6 = G_UNMERGE_VALUES %0:_(SrcTy) - reg sequence 3887 // %1:_(DstTy), %2 = G_UNMERGE_VALUES %5:_(NarrowTy) - sequence of bits in reg 3888 // %3:_(DstTy), %4 = G_UNMERGE_VALUES %6:_(NarrowTy) 3889 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, SrcReg); 3890 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3891 const int PartsPerUnmerge = NumDst / NumUnmerge; 3892 3893 for (int I = 0; I != NumUnmerge; ++I) { 3894 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3895 3896 for (int J = 0; J != PartsPerUnmerge; ++J) 3897 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3898 MIB.addUse(Unmerge.getReg(I)); 3899 } 3900 3901 MI.eraseFromParent(); 3902 return Legalized; 3903 } 3904 3905 LegalizerHelper::LegalizeResult 3906 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3907 LLT NarrowTy) { 3908 Register DstReg = MI.getOperand(0).getReg(); 3909 LLT DstTy = MRI.getType(DstReg); 3910 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3911 // Requires compatible types. Otherwise user of DstReg did not perform unmerge 3912 // that should have been artifact combined. Most likely instruction that uses 3913 // DstReg has to do more/fewer elements legalization compatible with NarrowTy. 3914 assert(DstTy.isVector() && NarrowTy.isVector() && "Expected vector types"); 3915 assert((DstTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 3916 if (NarrowTy == SrcTy) 3917 return UnableToLegalize; 3918 3919 // This attempts to lower part of LCMTy merge/unmerge sequence. Intended use 3920 // is for old mir tests. Since the changes to more/fewer elements it should no 3921 // longer be possible to generate MIR like this when starting from llvm-ir 3922 // because LCMTy approach was replaced with merge/unmerge to vector elements. 3923 if (TypeIdx == 1) { 3924 assert(SrcTy.isVector() && "Expected vector types"); 3925 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 3926 if ((DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || 3927 (NarrowTy.getNumElements() >= SrcTy.getNumElements())) 3928 return UnableToLegalize; 3929 // %2:_(DstTy) = G_CONCAT_VECTORS %0:_(SrcTy), %1:_(SrcTy) 3930 // 3931 // %3:_(EltTy), %4, %5 = G_UNMERGE_VALUES %0:_(SrcTy) 3932 // %6:_(EltTy), %7, %8 = G_UNMERGE_VALUES %1:_(SrcTy) 3933 // %9:_(NarrowTy) = G_BUILD_VECTOR %3:_(EltTy), %4 3934 // %10:_(NarrowTy) = G_BUILD_VECTOR %5:_(EltTy), %6 3935 // %11:_(NarrowTy) = G_BUILD_VECTOR %7:_(EltTy), %8 3936 // %2:_(DstTy) = G_CONCAT_VECTORS %9:_(NarrowTy), %10, %11 3937 3938 SmallVector<Register, 8> Elts; 3939 LLT EltTy = MRI.getType(MI.getOperand(1).getReg()).getScalarType(); 3940 for (unsigned i = 1; i < MI.getNumOperands(); ++i) { 3941 auto Unmerge = MIRBuilder.buildUnmerge(EltTy, MI.getOperand(i).getReg()); 3942 for (unsigned j = 0; j < Unmerge->getNumDefs(); ++j) 3943 Elts.push_back(Unmerge.getReg(j)); 3944 } 3945 3946 SmallVector<Register, 8> NarrowTyElts; 3947 unsigned NumNarrowTyElts = NarrowTy.getNumElements(); 3948 unsigned NumNarrowTyPieces = DstTy.getNumElements() / NumNarrowTyElts; 3949 for (unsigned i = 0, Offset = 0; i < NumNarrowTyPieces; 3950 ++i, Offset += NumNarrowTyElts) { 3951 ArrayRef<Register> Pieces(&Elts[Offset], NumNarrowTyElts); 3952 NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0)); 3953 } 3954 3955 MIRBuilder.buildMerge(DstReg, NarrowTyElts); 3956 MI.eraseFromParent(); 3957 return Legalized; 3958 } 3959 3960 assert(TypeIdx == 0 && "Bad type index"); 3961 if ((NarrowTy.getSizeInBits() % SrcTy.getSizeInBits() != 0) || 3962 (DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0)) 3963 return UnableToLegalize; 3964 3965 // This is most likely SrcTy (smaller then register size) packed in DstTy 3966 // (larger then register size) and since merge was not combined it will be 3967 // lowered to bit sequence packing into register. Merge SrcTy to NarrowTy 3968 // (register size) pieces first. Then merge each of NarrowTy pieces to DstTy. 3969 3970 // %0:_(DstTy) = G_MERGE_VALUES %1:_(SrcTy), %2, %3, %4 3971 // 3972 // %5:_(NarrowTy) = G_MERGE_VALUES %1:_(SrcTy), %2 - sequence of bits in reg 3973 // %6:_(NarrowTy) = G_MERGE_VALUES %3:_(SrcTy), %4 3974 // %0:_(DstTy) = G_MERGE_VALUES %5:_(NarrowTy), %6 - reg sequence 3975 SmallVector<Register, 8> NarrowTyElts; 3976 unsigned NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3977 unsigned NumSrcElts = SrcTy.isVector() ? SrcTy.getNumElements() : 1; 3978 unsigned NumElts = NarrowTy.getNumElements() / NumSrcElts; 3979 for (unsigned i = 0; i < NumParts; ++i) { 3980 SmallVector<Register, 8> Sources; 3981 for (unsigned j = 0; j < NumElts; ++j) 3982 Sources.push_back(MI.getOperand(1 + i * NumElts + j).getReg()); 3983 NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Sources).getReg(0)); 3984 } 3985 3986 MIRBuilder.buildMerge(DstReg, NarrowTyElts); 3987 MI.eraseFromParent(); 3988 return Legalized; 3989 } 3990 3991 LegalizerHelper::LegalizeResult 3992 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3993 unsigned TypeIdx, 3994 LLT NarrowVecTy) { 3995 Register DstReg = MI.getOperand(0).getReg(); 3996 Register SrcVec = MI.getOperand(1).getReg(); 3997 Register InsertVal; 3998 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3999 4000 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 4001 if (IsInsert) 4002 InsertVal = MI.getOperand(2).getReg(); 4003 4004 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 4005 4006 // TODO: Handle total scalarization case. 4007 if (!NarrowVecTy.isVector()) 4008 return UnableToLegalize; 4009 4010 LLT VecTy = MRI.getType(SrcVec); 4011 4012 // If the index is a constant, we can really break this down as you would 4013 // expect, and index into the target size pieces. 4014 int64_t IdxVal; 4015 auto MaybeCst = getIConstantVRegValWithLookThrough(Idx, MRI); 4016 if (MaybeCst) { 4017 IdxVal = MaybeCst->Value.getSExtValue(); 4018 // Avoid out of bounds indexing the pieces. 4019 if (IdxVal >= VecTy.getNumElements()) { 4020 MIRBuilder.buildUndef(DstReg); 4021 MI.eraseFromParent(); 4022 return Legalized; 4023 } 4024 4025 SmallVector<Register, 8> VecParts; 4026 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 4027 4028 // Build a sequence of NarrowTy pieces in VecParts for this operand. 4029 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 4030 TargetOpcode::G_ANYEXT); 4031 4032 unsigned NewNumElts = NarrowVecTy.getNumElements(); 4033 4034 LLT IdxTy = MRI.getType(Idx); 4035 int64_t PartIdx = IdxVal / NewNumElts; 4036 auto NewIdx = 4037 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 4038 4039 if (IsInsert) { 4040 LLT PartTy = MRI.getType(VecParts[PartIdx]); 4041 4042 // Use the adjusted index to insert into one of the subvectors. 4043 auto InsertPart = MIRBuilder.buildInsertVectorElement( 4044 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 4045 VecParts[PartIdx] = InsertPart.getReg(0); 4046 4047 // Recombine the inserted subvector with the others to reform the result 4048 // vector. 4049 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 4050 } else { 4051 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 4052 } 4053 4054 MI.eraseFromParent(); 4055 return Legalized; 4056 } 4057 4058 // With a variable index, we can't perform the operation in a smaller type, so 4059 // we're forced to expand this. 4060 // 4061 // TODO: We could emit a chain of compare/select to figure out which piece to 4062 // index. 4063 return lowerExtractInsertVectorElt(MI); 4064 } 4065 4066 LegalizerHelper::LegalizeResult 4067 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx, 4068 LLT NarrowTy) { 4069 // FIXME: Don't know how to handle secondary types yet. 4070 if (TypeIdx != 0) 4071 return UnableToLegalize; 4072 4073 // This implementation doesn't work for atomics. Give up instead of doing 4074 // something invalid. 4075 if (LdStMI.isAtomic()) 4076 return UnableToLegalize; 4077 4078 bool IsLoad = isa<GLoad>(LdStMI); 4079 Register ValReg = LdStMI.getReg(0); 4080 Register AddrReg = LdStMI.getPointerReg(); 4081 LLT ValTy = MRI.getType(ValReg); 4082 4083 // FIXME: Do we need a distinct NarrowMemory legalize action? 4084 if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) { 4085 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 4086 return UnableToLegalize; 4087 } 4088 4089 int NumParts = -1; 4090 int NumLeftover = -1; 4091 LLT LeftoverTy; 4092 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 4093 if (IsLoad) { 4094 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 4095 } else { 4096 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 4097 NarrowLeftoverRegs)) { 4098 NumParts = NarrowRegs.size(); 4099 NumLeftover = NarrowLeftoverRegs.size(); 4100 } 4101 } 4102 4103 if (NumParts == -1) 4104 return UnableToLegalize; 4105 4106 LLT PtrTy = MRI.getType(AddrReg); 4107 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 4108 4109 unsigned TotalSize = ValTy.getSizeInBits(); 4110 4111 // Split the load/store into PartTy sized pieces starting at Offset. If this 4112 // is a load, return the new registers in ValRegs. For a store, each elements 4113 // of ValRegs should be PartTy. Returns the next offset that needs to be 4114 // handled. 4115 bool isBigEndian = MIRBuilder.getDataLayout().isBigEndian(); 4116 auto MMO = LdStMI.getMMO(); 4117 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 4118 unsigned NumParts, unsigned Offset) -> unsigned { 4119 MachineFunction &MF = MIRBuilder.getMF(); 4120 unsigned PartSize = PartTy.getSizeInBits(); 4121 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 4122 ++Idx) { 4123 unsigned ByteOffset = Offset / 8; 4124 Register NewAddrReg; 4125 4126 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 4127 4128 MachineMemOperand *NewMMO = 4129 MF.getMachineMemOperand(&MMO, ByteOffset, PartTy); 4130 4131 if (IsLoad) { 4132 Register Dst = MRI.createGenericVirtualRegister(PartTy); 4133 ValRegs.push_back(Dst); 4134 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 4135 } else { 4136 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 4137 } 4138 Offset = isBigEndian ? Offset - PartSize : Offset + PartSize; 4139 } 4140 4141 return Offset; 4142 }; 4143 4144 unsigned Offset = isBigEndian ? TotalSize - NarrowTy.getSizeInBits() : 0; 4145 unsigned HandledOffset = 4146 splitTypePieces(NarrowTy, NarrowRegs, NumParts, Offset); 4147 4148 // Handle the rest of the register if this isn't an even type breakdown. 4149 if (LeftoverTy.isValid()) 4150 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, NumLeftover, HandledOffset); 4151 4152 if (IsLoad) { 4153 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 4154 LeftoverTy, NarrowLeftoverRegs); 4155 } 4156 4157 LdStMI.eraseFromParent(); 4158 return Legalized; 4159 } 4160 4161 LegalizerHelper::LegalizeResult 4162 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 4163 LLT NarrowTy) { 4164 using namespace TargetOpcode; 4165 GenericMachineInstr &GMI = cast<GenericMachineInstr>(MI); 4166 unsigned NumElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 4167 4168 switch (MI.getOpcode()) { 4169 case G_IMPLICIT_DEF: 4170 case G_TRUNC: 4171 case G_AND: 4172 case G_OR: 4173 case G_XOR: 4174 case G_ADD: 4175 case G_SUB: 4176 case G_MUL: 4177 case G_PTR_ADD: 4178 case G_SMULH: 4179 case G_UMULH: 4180 case G_FADD: 4181 case G_FMUL: 4182 case G_FSUB: 4183 case G_FNEG: 4184 case G_FABS: 4185 case G_FCANONICALIZE: 4186 case G_FDIV: 4187 case G_FREM: 4188 case G_FMA: 4189 case G_FMAD: 4190 case G_FPOW: 4191 case G_FEXP: 4192 case G_FEXP2: 4193 case G_FLOG: 4194 case G_FLOG2: 4195 case G_FLOG10: 4196 case G_FNEARBYINT: 4197 case G_FCEIL: 4198 case G_FFLOOR: 4199 case G_FRINT: 4200 case G_INTRINSIC_ROUND: 4201 case G_INTRINSIC_ROUNDEVEN: 4202 case G_INTRINSIC_TRUNC: 4203 case G_FCOS: 4204 case G_FSIN: 4205 case G_FSQRT: 4206 case G_BSWAP: 4207 case G_BITREVERSE: 4208 case G_SDIV: 4209 case G_UDIV: 4210 case G_SREM: 4211 case G_UREM: 4212 case G_SDIVREM: 4213 case G_UDIVREM: 4214 case G_SMIN: 4215 case G_SMAX: 4216 case G_UMIN: 4217 case G_UMAX: 4218 case G_ABS: 4219 case G_FMINNUM: 4220 case G_FMAXNUM: 4221 case G_FMINNUM_IEEE: 4222 case G_FMAXNUM_IEEE: 4223 case G_FMINIMUM: 4224 case G_FMAXIMUM: 4225 case G_FSHL: 4226 case G_FSHR: 4227 case G_ROTL: 4228 case G_ROTR: 4229 case G_FREEZE: 4230 case G_SADDSAT: 4231 case G_SSUBSAT: 4232 case G_UADDSAT: 4233 case G_USUBSAT: 4234 case G_UMULO: 4235 case G_SMULO: 4236 case G_SHL: 4237 case G_LSHR: 4238 case G_ASHR: 4239 case G_SSHLSAT: 4240 case G_USHLSAT: 4241 case G_CTLZ: 4242 case G_CTLZ_ZERO_UNDEF: 4243 case G_CTTZ: 4244 case G_CTTZ_ZERO_UNDEF: 4245 case G_CTPOP: 4246 case G_FCOPYSIGN: 4247 case G_ZEXT: 4248 case G_SEXT: 4249 case G_ANYEXT: 4250 case G_FPEXT: 4251 case G_FPTRUNC: 4252 case G_SITOFP: 4253 case G_UITOFP: 4254 case G_FPTOSI: 4255 case G_FPTOUI: 4256 case G_INTTOPTR: 4257 case G_PTRTOINT: 4258 case G_ADDRSPACE_CAST: 4259 case G_UADDO: 4260 case G_USUBO: 4261 case G_UADDE: 4262 case G_USUBE: 4263 case G_SADDO: 4264 case G_SSUBO: 4265 case G_SADDE: 4266 case G_SSUBE: 4267 return fewerElementsVectorMultiEltType(GMI, NumElts); 4268 case G_ICMP: 4269 case G_FCMP: 4270 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*cpm predicate*/}); 4271 case G_SELECT: 4272 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4273 return fewerElementsVectorMultiEltType(GMI, NumElts); 4274 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*scalar cond*/}); 4275 case G_PHI: 4276 return fewerElementsVectorPhi(GMI, NumElts); 4277 case G_UNMERGE_VALUES: 4278 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4279 case G_BUILD_VECTOR: 4280 assert(TypeIdx == 0 && "not a vector type index"); 4281 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4282 case G_CONCAT_VECTORS: 4283 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4284 return UnableToLegalize; 4285 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4286 case G_EXTRACT_VECTOR_ELT: 4287 case G_INSERT_VECTOR_ELT: 4288 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4289 case G_LOAD: 4290 case G_STORE: 4291 return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy); 4292 case G_SEXT_INREG: 4293 return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*imm*/}); 4294 GISEL_VECREDUCE_CASES_NONSEQ 4295 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy); 4296 case G_SHUFFLE_VECTOR: 4297 return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy); 4298 default: 4299 return UnableToLegalize; 4300 } 4301 } 4302 4303 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle( 4304 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4305 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 4306 if (TypeIdx != 0) 4307 return UnableToLegalize; 4308 4309 Register DstReg = MI.getOperand(0).getReg(); 4310 Register Src1Reg = MI.getOperand(1).getReg(); 4311 Register Src2Reg = MI.getOperand(2).getReg(); 4312 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4313 LLT DstTy = MRI.getType(DstReg); 4314 LLT Src1Ty = MRI.getType(Src1Reg); 4315 LLT Src2Ty = MRI.getType(Src2Reg); 4316 // The shuffle should be canonicalized by now. 4317 if (DstTy != Src1Ty) 4318 return UnableToLegalize; 4319 if (DstTy != Src2Ty) 4320 return UnableToLegalize; 4321 4322 if (!isPowerOf2_32(DstTy.getNumElements())) 4323 return UnableToLegalize; 4324 4325 // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly. 4326 // Further legalization attempts will be needed to do split further. 4327 NarrowTy = 4328 DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2)); 4329 unsigned NewElts = NarrowTy.getNumElements(); 4330 4331 SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs; 4332 extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs); 4333 extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs); 4334 Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0], 4335 SplitSrc2Regs[1]}; 4336 4337 Register Hi, Lo; 4338 4339 // If Lo or Hi uses elements from at most two of the four input vectors, then 4340 // express it as a vector shuffle of those two inputs. Otherwise extract the 4341 // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR. 4342 SmallVector<int, 16> Ops; 4343 for (unsigned High = 0; High < 2; ++High) { 4344 Register &Output = High ? Hi : Lo; 4345 4346 // Build a shuffle mask for the output, discovering on the fly which 4347 // input vectors to use as shuffle operands (recorded in InputUsed). 4348 // If building a suitable shuffle vector proves too hard, then bail 4349 // out with useBuildVector set. 4350 unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered. 4351 unsigned FirstMaskIdx = High * NewElts; 4352 bool UseBuildVector = false; 4353 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4354 // The mask element. This indexes into the input. 4355 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4356 4357 // The input vector this mask element indexes into. 4358 unsigned Input = (unsigned)Idx / NewElts; 4359 4360 if (Input >= array_lengthof(Inputs)) { 4361 // The mask element does not index into any input vector. 4362 Ops.push_back(-1); 4363 continue; 4364 } 4365 4366 // Turn the index into an offset from the start of the input vector. 4367 Idx -= Input * NewElts; 4368 4369 // Find or create a shuffle vector operand to hold this input. 4370 unsigned OpNo; 4371 for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) { 4372 if (InputUsed[OpNo] == Input) { 4373 // This input vector is already an operand. 4374 break; 4375 } else if (InputUsed[OpNo] == -1U) { 4376 // Create a new operand for this input vector. 4377 InputUsed[OpNo] = Input; 4378 break; 4379 } 4380 } 4381 4382 if (OpNo >= array_lengthof(InputUsed)) { 4383 // More than two input vectors used! Give up on trying to create a 4384 // shuffle vector. Insert all elements into a BUILD_VECTOR instead. 4385 UseBuildVector = true; 4386 break; 4387 } 4388 4389 // Add the mask index for the new shuffle vector. 4390 Ops.push_back(Idx + OpNo * NewElts); 4391 } 4392 4393 if (UseBuildVector) { 4394 LLT EltTy = NarrowTy.getElementType(); 4395 SmallVector<Register, 16> SVOps; 4396 4397 // Extract the input elements by hand. 4398 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4399 // The mask element. This indexes into the input. 4400 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4401 4402 // The input vector this mask element indexes into. 4403 unsigned Input = (unsigned)Idx / NewElts; 4404 4405 if (Input >= array_lengthof(Inputs)) { 4406 // The mask element is "undef" or indexes off the end of the input. 4407 SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0)); 4408 continue; 4409 } 4410 4411 // Turn the index into an offset from the start of the input vector. 4412 Idx -= Input * NewElts; 4413 4414 // Extract the vector element by hand. 4415 SVOps.push_back(MIRBuilder 4416 .buildExtractVectorElement( 4417 EltTy, Inputs[Input], 4418 MIRBuilder.buildConstant(LLT::scalar(32), Idx)) 4419 .getReg(0)); 4420 } 4421 4422 // Construct the Lo/Hi output using a G_BUILD_VECTOR. 4423 Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0); 4424 } else if (InputUsed[0] == -1U) { 4425 // No input vectors were used! The result is undefined. 4426 Output = MIRBuilder.buildUndef(NarrowTy).getReg(0); 4427 } else { 4428 Register Op0 = Inputs[InputUsed[0]]; 4429 // If only one input was used, use an undefined vector for the other. 4430 Register Op1 = InputUsed[1] == -1U 4431 ? MIRBuilder.buildUndef(NarrowTy).getReg(0) 4432 : Inputs[InputUsed[1]]; 4433 // At least one input vector was used. Create a new shuffle vector. 4434 Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0); 4435 } 4436 4437 Ops.clear(); 4438 } 4439 4440 MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi}); 4441 MI.eraseFromParent(); 4442 return Legalized; 4443 } 4444 4445 static unsigned getScalarOpcForReduction(unsigned Opc) { 4446 unsigned ScalarOpc; 4447 switch (Opc) { 4448 case TargetOpcode::G_VECREDUCE_FADD: 4449 ScalarOpc = TargetOpcode::G_FADD; 4450 break; 4451 case TargetOpcode::G_VECREDUCE_FMUL: 4452 ScalarOpc = TargetOpcode::G_FMUL; 4453 break; 4454 case TargetOpcode::G_VECREDUCE_FMAX: 4455 ScalarOpc = TargetOpcode::G_FMAXNUM; 4456 break; 4457 case TargetOpcode::G_VECREDUCE_FMIN: 4458 ScalarOpc = TargetOpcode::G_FMINNUM; 4459 break; 4460 case TargetOpcode::G_VECREDUCE_ADD: 4461 ScalarOpc = TargetOpcode::G_ADD; 4462 break; 4463 case TargetOpcode::G_VECREDUCE_MUL: 4464 ScalarOpc = TargetOpcode::G_MUL; 4465 break; 4466 case TargetOpcode::G_VECREDUCE_AND: 4467 ScalarOpc = TargetOpcode::G_AND; 4468 break; 4469 case TargetOpcode::G_VECREDUCE_OR: 4470 ScalarOpc = TargetOpcode::G_OR; 4471 break; 4472 case TargetOpcode::G_VECREDUCE_XOR: 4473 ScalarOpc = TargetOpcode::G_XOR; 4474 break; 4475 case TargetOpcode::G_VECREDUCE_SMAX: 4476 ScalarOpc = TargetOpcode::G_SMAX; 4477 break; 4478 case TargetOpcode::G_VECREDUCE_SMIN: 4479 ScalarOpc = TargetOpcode::G_SMIN; 4480 break; 4481 case TargetOpcode::G_VECREDUCE_UMAX: 4482 ScalarOpc = TargetOpcode::G_UMAX; 4483 break; 4484 case TargetOpcode::G_VECREDUCE_UMIN: 4485 ScalarOpc = TargetOpcode::G_UMIN; 4486 break; 4487 default: 4488 llvm_unreachable("Unhandled reduction"); 4489 } 4490 return ScalarOpc; 4491 } 4492 4493 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions( 4494 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4495 unsigned Opc = MI.getOpcode(); 4496 assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD && 4497 Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL && 4498 "Sequential reductions not expected"); 4499 4500 if (TypeIdx != 1) 4501 return UnableToLegalize; 4502 4503 // The semantics of the normal non-sequential reductions allow us to freely 4504 // re-associate the operation. 4505 Register SrcReg = MI.getOperand(1).getReg(); 4506 LLT SrcTy = MRI.getType(SrcReg); 4507 Register DstReg = MI.getOperand(0).getReg(); 4508 LLT DstTy = MRI.getType(DstReg); 4509 4510 if (NarrowTy.isVector() && 4511 (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)) 4512 return UnableToLegalize; 4513 4514 unsigned ScalarOpc = getScalarOpcForReduction(Opc); 4515 SmallVector<Register> SplitSrcs; 4516 // If NarrowTy is a scalar then we're being asked to scalarize. 4517 const unsigned NumParts = 4518 NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements() 4519 : SrcTy.getNumElements(); 4520 4521 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs); 4522 if (NarrowTy.isScalar()) { 4523 if (DstTy != NarrowTy) 4524 return UnableToLegalize; // FIXME: handle implicit extensions. 4525 4526 if (isPowerOf2_32(NumParts)) { 4527 // Generate a tree of scalar operations to reduce the critical path. 4528 SmallVector<Register> PartialResults; 4529 unsigned NumPartsLeft = NumParts; 4530 while (NumPartsLeft > 1) { 4531 for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) { 4532 PartialResults.emplace_back( 4533 MIRBuilder 4534 .buildInstr(ScalarOpc, {NarrowTy}, 4535 {SplitSrcs[Idx], SplitSrcs[Idx + 1]}) 4536 .getReg(0)); 4537 } 4538 SplitSrcs = PartialResults; 4539 PartialResults.clear(); 4540 NumPartsLeft = SplitSrcs.size(); 4541 } 4542 assert(SplitSrcs.size() == 1); 4543 MIRBuilder.buildCopy(DstReg, SplitSrcs[0]); 4544 MI.eraseFromParent(); 4545 return Legalized; 4546 } 4547 // If we can't generate a tree, then just do sequential operations. 4548 Register Acc = SplitSrcs[0]; 4549 for (unsigned Idx = 1; Idx < NumParts; ++Idx) 4550 Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]}) 4551 .getReg(0); 4552 MIRBuilder.buildCopy(DstReg, Acc); 4553 MI.eraseFromParent(); 4554 return Legalized; 4555 } 4556 SmallVector<Register> PartialReductions; 4557 for (unsigned Part = 0; Part < NumParts; ++Part) { 4558 PartialReductions.push_back( 4559 MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0)); 4560 } 4561 4562 4563 // If the types involved are powers of 2, we can generate intermediate vector 4564 // ops, before generating a final reduction operation. 4565 if (isPowerOf2_32(SrcTy.getNumElements()) && 4566 isPowerOf2_32(NarrowTy.getNumElements())) { 4567 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc); 4568 } 4569 4570 Register Acc = PartialReductions[0]; 4571 for (unsigned Part = 1; Part < NumParts; ++Part) { 4572 if (Part == NumParts - 1) { 4573 MIRBuilder.buildInstr(ScalarOpc, {DstReg}, 4574 {Acc, PartialReductions[Part]}); 4575 } else { 4576 Acc = MIRBuilder 4577 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]}) 4578 .getReg(0); 4579 } 4580 } 4581 MI.eraseFromParent(); 4582 return Legalized; 4583 } 4584 4585 LegalizerHelper::LegalizeResult 4586 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg, 4587 LLT SrcTy, LLT NarrowTy, 4588 unsigned ScalarOpc) { 4589 SmallVector<Register> SplitSrcs; 4590 // Split the sources into NarrowTy size pieces. 4591 extractParts(SrcReg, NarrowTy, 4592 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs); 4593 // We're going to do a tree reduction using vector operations until we have 4594 // one NarrowTy size value left. 4595 while (SplitSrcs.size() > 1) { 4596 SmallVector<Register> PartialRdxs; 4597 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) { 4598 Register LHS = SplitSrcs[Idx]; 4599 Register RHS = SplitSrcs[Idx + 1]; 4600 // Create the intermediate vector op. 4601 Register Res = 4602 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0); 4603 PartialRdxs.push_back(Res); 4604 } 4605 SplitSrcs = std::move(PartialRdxs); 4606 } 4607 // Finally generate the requested NarrowTy based reduction. 4608 Observer.changingInstr(MI); 4609 MI.getOperand(1).setReg(SplitSrcs[0]); 4610 Observer.changedInstr(MI); 4611 return Legalized; 4612 } 4613 4614 LegalizerHelper::LegalizeResult 4615 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4616 const LLT HalfTy, const LLT AmtTy) { 4617 4618 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4619 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4620 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4621 4622 if (Amt.isZero()) { 4623 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4624 MI.eraseFromParent(); 4625 return Legalized; 4626 } 4627 4628 LLT NVT = HalfTy; 4629 unsigned NVTBits = HalfTy.getSizeInBits(); 4630 unsigned VTBits = 2 * NVTBits; 4631 4632 SrcOp Lo(Register(0)), Hi(Register(0)); 4633 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4634 if (Amt.ugt(VTBits)) { 4635 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4636 } else if (Amt.ugt(NVTBits)) { 4637 Lo = MIRBuilder.buildConstant(NVT, 0); 4638 Hi = MIRBuilder.buildShl(NVT, InL, 4639 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4640 } else if (Amt == NVTBits) { 4641 Lo = MIRBuilder.buildConstant(NVT, 0); 4642 Hi = InL; 4643 } else { 4644 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4645 auto OrLHS = 4646 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4647 auto OrRHS = MIRBuilder.buildLShr( 4648 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4649 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4650 } 4651 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4652 if (Amt.ugt(VTBits)) { 4653 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4654 } else if (Amt.ugt(NVTBits)) { 4655 Lo = MIRBuilder.buildLShr(NVT, InH, 4656 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4657 Hi = MIRBuilder.buildConstant(NVT, 0); 4658 } else if (Amt == NVTBits) { 4659 Lo = InH; 4660 Hi = MIRBuilder.buildConstant(NVT, 0); 4661 } else { 4662 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4663 4664 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4665 auto OrRHS = MIRBuilder.buildShl( 4666 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4667 4668 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4669 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4670 } 4671 } else { 4672 if (Amt.ugt(VTBits)) { 4673 Hi = Lo = MIRBuilder.buildAShr( 4674 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4675 } else if (Amt.ugt(NVTBits)) { 4676 Lo = MIRBuilder.buildAShr(NVT, InH, 4677 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4678 Hi = MIRBuilder.buildAShr(NVT, InH, 4679 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4680 } else if (Amt == NVTBits) { 4681 Lo = InH; 4682 Hi = MIRBuilder.buildAShr(NVT, InH, 4683 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4684 } else { 4685 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4686 4687 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4688 auto OrRHS = MIRBuilder.buildShl( 4689 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4690 4691 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4692 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4693 } 4694 } 4695 4696 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4697 MI.eraseFromParent(); 4698 4699 return Legalized; 4700 } 4701 4702 // TODO: Optimize if constant shift amount. 4703 LegalizerHelper::LegalizeResult 4704 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4705 LLT RequestedTy) { 4706 if (TypeIdx == 1) { 4707 Observer.changingInstr(MI); 4708 narrowScalarSrc(MI, RequestedTy, 2); 4709 Observer.changedInstr(MI); 4710 return Legalized; 4711 } 4712 4713 Register DstReg = MI.getOperand(0).getReg(); 4714 LLT DstTy = MRI.getType(DstReg); 4715 if (DstTy.isVector()) 4716 return UnableToLegalize; 4717 4718 Register Amt = MI.getOperand(2).getReg(); 4719 LLT ShiftAmtTy = MRI.getType(Amt); 4720 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4721 if (DstEltSize % 2 != 0) 4722 return UnableToLegalize; 4723 4724 // Ignore the input type. We can only go to exactly half the size of the 4725 // input. If that isn't small enough, the resulting pieces will be further 4726 // legalized. 4727 const unsigned NewBitSize = DstEltSize / 2; 4728 const LLT HalfTy = LLT::scalar(NewBitSize); 4729 const LLT CondTy = LLT::scalar(1); 4730 4731 if (auto VRegAndVal = getIConstantVRegValWithLookThrough(Amt, MRI)) { 4732 return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy, 4733 ShiftAmtTy); 4734 } 4735 4736 // TODO: Expand with known bits. 4737 4738 // Handle the fully general expansion by an unknown amount. 4739 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4740 4741 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4742 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4743 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4744 4745 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4746 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4747 4748 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4749 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4750 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4751 4752 Register ResultRegs[2]; 4753 switch (MI.getOpcode()) { 4754 case TargetOpcode::G_SHL: { 4755 // Short: ShAmt < NewBitSize 4756 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4757 4758 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4759 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4760 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4761 4762 // Long: ShAmt >= NewBitSize 4763 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4764 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4765 4766 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4767 auto Hi = MIRBuilder.buildSelect( 4768 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4769 4770 ResultRegs[0] = Lo.getReg(0); 4771 ResultRegs[1] = Hi.getReg(0); 4772 break; 4773 } 4774 case TargetOpcode::G_LSHR: 4775 case TargetOpcode::G_ASHR: { 4776 // Short: ShAmt < NewBitSize 4777 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4778 4779 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4780 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4781 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4782 4783 // Long: ShAmt >= NewBitSize 4784 MachineInstrBuilder HiL; 4785 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4786 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4787 } else { 4788 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4789 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4790 } 4791 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4792 {InH, AmtExcess}); // Lo from Hi part. 4793 4794 auto Lo = MIRBuilder.buildSelect( 4795 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4796 4797 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4798 4799 ResultRegs[0] = Lo.getReg(0); 4800 ResultRegs[1] = Hi.getReg(0); 4801 break; 4802 } 4803 default: 4804 llvm_unreachable("not a shift"); 4805 } 4806 4807 MIRBuilder.buildMerge(DstReg, ResultRegs); 4808 MI.eraseFromParent(); 4809 return Legalized; 4810 } 4811 4812 LegalizerHelper::LegalizeResult 4813 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4814 LLT MoreTy) { 4815 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4816 4817 Observer.changingInstr(MI); 4818 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4819 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4820 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4821 moreElementsVectorSrc(MI, MoreTy, I); 4822 } 4823 4824 MachineBasicBlock &MBB = *MI.getParent(); 4825 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4826 moreElementsVectorDst(MI, MoreTy, 0); 4827 Observer.changedInstr(MI); 4828 return Legalized; 4829 } 4830 4831 LegalizerHelper::LegalizeResult 4832 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4833 LLT MoreTy) { 4834 unsigned Opc = MI.getOpcode(); 4835 switch (Opc) { 4836 case TargetOpcode::G_IMPLICIT_DEF: 4837 case TargetOpcode::G_LOAD: { 4838 if (TypeIdx != 0) 4839 return UnableToLegalize; 4840 Observer.changingInstr(MI); 4841 moreElementsVectorDst(MI, MoreTy, 0); 4842 Observer.changedInstr(MI); 4843 return Legalized; 4844 } 4845 case TargetOpcode::G_STORE: 4846 if (TypeIdx != 0) 4847 return UnableToLegalize; 4848 Observer.changingInstr(MI); 4849 moreElementsVectorSrc(MI, MoreTy, 0); 4850 Observer.changedInstr(MI); 4851 return Legalized; 4852 case TargetOpcode::G_AND: 4853 case TargetOpcode::G_OR: 4854 case TargetOpcode::G_XOR: 4855 case TargetOpcode::G_ADD: 4856 case TargetOpcode::G_SUB: 4857 case TargetOpcode::G_MUL: 4858 case TargetOpcode::G_FADD: 4859 case TargetOpcode::G_FMUL: 4860 case TargetOpcode::G_UADDSAT: 4861 case TargetOpcode::G_USUBSAT: 4862 case TargetOpcode::G_SADDSAT: 4863 case TargetOpcode::G_SSUBSAT: 4864 case TargetOpcode::G_SMIN: 4865 case TargetOpcode::G_SMAX: 4866 case TargetOpcode::G_UMIN: 4867 case TargetOpcode::G_UMAX: 4868 case TargetOpcode::G_FMINNUM: 4869 case TargetOpcode::G_FMAXNUM: 4870 case TargetOpcode::G_FMINNUM_IEEE: 4871 case TargetOpcode::G_FMAXNUM_IEEE: 4872 case TargetOpcode::G_FMINIMUM: 4873 case TargetOpcode::G_FMAXIMUM: { 4874 Observer.changingInstr(MI); 4875 moreElementsVectorSrc(MI, MoreTy, 1); 4876 moreElementsVectorSrc(MI, MoreTy, 2); 4877 moreElementsVectorDst(MI, MoreTy, 0); 4878 Observer.changedInstr(MI); 4879 return Legalized; 4880 } 4881 case TargetOpcode::G_FMA: 4882 case TargetOpcode::G_FSHR: 4883 case TargetOpcode::G_FSHL: { 4884 Observer.changingInstr(MI); 4885 moreElementsVectorSrc(MI, MoreTy, 1); 4886 moreElementsVectorSrc(MI, MoreTy, 2); 4887 moreElementsVectorSrc(MI, MoreTy, 3); 4888 moreElementsVectorDst(MI, MoreTy, 0); 4889 Observer.changedInstr(MI); 4890 return Legalized; 4891 } 4892 case TargetOpcode::G_EXTRACT: 4893 if (TypeIdx != 1) 4894 return UnableToLegalize; 4895 Observer.changingInstr(MI); 4896 moreElementsVectorSrc(MI, MoreTy, 1); 4897 Observer.changedInstr(MI); 4898 return Legalized; 4899 case TargetOpcode::G_INSERT: 4900 case TargetOpcode::G_FREEZE: 4901 case TargetOpcode::G_FNEG: 4902 case TargetOpcode::G_FABS: 4903 case TargetOpcode::G_BSWAP: 4904 case TargetOpcode::G_FCANONICALIZE: 4905 case TargetOpcode::G_SEXT_INREG: 4906 if (TypeIdx != 0) 4907 return UnableToLegalize; 4908 Observer.changingInstr(MI); 4909 moreElementsVectorSrc(MI, MoreTy, 1); 4910 moreElementsVectorDst(MI, MoreTy, 0); 4911 Observer.changedInstr(MI); 4912 return Legalized; 4913 case TargetOpcode::G_SELECT: { 4914 Register DstReg = MI.getOperand(0).getReg(); 4915 Register CondReg = MI.getOperand(1).getReg(); 4916 LLT DstTy = MRI.getType(DstReg); 4917 LLT CondTy = MRI.getType(CondReg); 4918 if (TypeIdx == 1) { 4919 if (!CondTy.isScalar() || 4920 DstTy.getElementCount() != MoreTy.getElementCount()) 4921 return UnableToLegalize; 4922 4923 // This is turning a scalar select of vectors into a vector 4924 // select. Broadcast the select condition. 4925 auto ShufSplat = MIRBuilder.buildShuffleSplat(MoreTy, CondReg); 4926 Observer.changingInstr(MI); 4927 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 4928 Observer.changedInstr(MI); 4929 return Legalized; 4930 } 4931 4932 if (CondTy.isVector()) 4933 return UnableToLegalize; 4934 4935 Observer.changingInstr(MI); 4936 moreElementsVectorSrc(MI, MoreTy, 2); 4937 moreElementsVectorSrc(MI, MoreTy, 3); 4938 moreElementsVectorDst(MI, MoreTy, 0); 4939 Observer.changedInstr(MI); 4940 return Legalized; 4941 } 4942 case TargetOpcode::G_UNMERGE_VALUES: 4943 return UnableToLegalize; 4944 case TargetOpcode::G_PHI: 4945 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4946 case TargetOpcode::G_SHUFFLE_VECTOR: 4947 return moreElementsVectorShuffle(MI, TypeIdx, MoreTy); 4948 case TargetOpcode::G_BUILD_VECTOR: { 4949 SmallVector<SrcOp, 8> Elts; 4950 for (auto Op : MI.uses()) { 4951 Elts.push_back(Op.getReg()); 4952 } 4953 4954 for (unsigned i = Elts.size(); i < MoreTy.getNumElements(); ++i) { 4955 Elts.push_back(MIRBuilder.buildUndef(MoreTy.getScalarType())); 4956 } 4957 4958 MIRBuilder.buildDeleteTrailingVectorElements( 4959 MI.getOperand(0).getReg(), MIRBuilder.buildInstr(Opc, {MoreTy}, Elts)); 4960 MI.eraseFromParent(); 4961 return Legalized; 4962 } 4963 case TargetOpcode::G_TRUNC: { 4964 Observer.changingInstr(MI); 4965 moreElementsVectorSrc(MI, MoreTy, 1); 4966 moreElementsVectorDst(MI, MoreTy, 0); 4967 Observer.changedInstr(MI); 4968 return Legalized; 4969 } 4970 default: 4971 return UnableToLegalize; 4972 } 4973 } 4974 4975 LegalizerHelper::LegalizeResult 4976 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI, 4977 unsigned int TypeIdx, LLT MoreTy) { 4978 if (TypeIdx != 0) 4979 return UnableToLegalize; 4980 4981 Register DstReg = MI.getOperand(0).getReg(); 4982 Register Src1Reg = MI.getOperand(1).getReg(); 4983 Register Src2Reg = MI.getOperand(2).getReg(); 4984 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4985 LLT DstTy = MRI.getType(DstReg); 4986 LLT Src1Ty = MRI.getType(Src1Reg); 4987 LLT Src2Ty = MRI.getType(Src2Reg); 4988 unsigned NumElts = DstTy.getNumElements(); 4989 unsigned WidenNumElts = MoreTy.getNumElements(); 4990 4991 // Expect a canonicalized shuffle. 4992 if (DstTy != Src1Ty || DstTy != Src2Ty) 4993 return UnableToLegalize; 4994 4995 moreElementsVectorSrc(MI, MoreTy, 1); 4996 moreElementsVectorSrc(MI, MoreTy, 2); 4997 4998 // Adjust mask based on new input vector length. 4999 SmallVector<int, 16> NewMask; 5000 for (unsigned I = 0; I != NumElts; ++I) { 5001 int Idx = Mask[I]; 5002 if (Idx < static_cast<int>(NumElts)) 5003 NewMask.push_back(Idx); 5004 else 5005 NewMask.push_back(Idx - NumElts + WidenNumElts); 5006 } 5007 for (unsigned I = NumElts; I != WidenNumElts; ++I) 5008 NewMask.push_back(-1); 5009 moreElementsVectorDst(MI, MoreTy, 0); 5010 MIRBuilder.setInstrAndDebugLoc(MI); 5011 MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(), 5012 MI.getOperand(1).getReg(), 5013 MI.getOperand(2).getReg(), NewMask); 5014 MI.eraseFromParent(); 5015 return Legalized; 5016 } 5017 5018 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 5019 ArrayRef<Register> Src1Regs, 5020 ArrayRef<Register> Src2Regs, 5021 LLT NarrowTy) { 5022 MachineIRBuilder &B = MIRBuilder; 5023 unsigned SrcParts = Src1Regs.size(); 5024 unsigned DstParts = DstRegs.size(); 5025 5026 unsigned DstIdx = 0; // Low bits of the result. 5027 Register FactorSum = 5028 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 5029 DstRegs[DstIdx] = FactorSum; 5030 5031 unsigned CarrySumPrevDstIdx; 5032 SmallVector<Register, 4> Factors; 5033 5034 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 5035 // Collect low parts of muls for DstIdx. 5036 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 5037 i <= std::min(DstIdx, SrcParts - 1); ++i) { 5038 MachineInstrBuilder Mul = 5039 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 5040 Factors.push_back(Mul.getReg(0)); 5041 } 5042 // Collect high parts of muls from previous DstIdx. 5043 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 5044 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 5045 MachineInstrBuilder Umulh = 5046 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 5047 Factors.push_back(Umulh.getReg(0)); 5048 } 5049 // Add CarrySum from additions calculated for previous DstIdx. 5050 if (DstIdx != 1) { 5051 Factors.push_back(CarrySumPrevDstIdx); 5052 } 5053 5054 Register CarrySum; 5055 // Add all factors and accumulate all carries into CarrySum. 5056 if (DstIdx != DstParts - 1) { 5057 MachineInstrBuilder Uaddo = 5058 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 5059 FactorSum = Uaddo.getReg(0); 5060 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 5061 for (unsigned i = 2; i < Factors.size(); ++i) { 5062 MachineInstrBuilder Uaddo = 5063 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 5064 FactorSum = Uaddo.getReg(0); 5065 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 5066 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 5067 } 5068 } else { 5069 // Since value for the next index is not calculated, neither is CarrySum. 5070 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 5071 for (unsigned i = 2; i < Factors.size(); ++i) 5072 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 5073 } 5074 5075 CarrySumPrevDstIdx = CarrySum; 5076 DstRegs[DstIdx] = FactorSum; 5077 Factors.clear(); 5078 } 5079 } 5080 5081 LegalizerHelper::LegalizeResult 5082 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, 5083 LLT NarrowTy) { 5084 if (TypeIdx != 0) 5085 return UnableToLegalize; 5086 5087 Register DstReg = MI.getOperand(0).getReg(); 5088 LLT DstType = MRI.getType(DstReg); 5089 // FIXME: add support for vector types 5090 if (DstType.isVector()) 5091 return UnableToLegalize; 5092 5093 unsigned Opcode = MI.getOpcode(); 5094 unsigned OpO, OpE, OpF; 5095 switch (Opcode) { 5096 case TargetOpcode::G_SADDO: 5097 case TargetOpcode::G_SADDE: 5098 case TargetOpcode::G_UADDO: 5099 case TargetOpcode::G_UADDE: 5100 case TargetOpcode::G_ADD: 5101 OpO = TargetOpcode::G_UADDO; 5102 OpE = TargetOpcode::G_UADDE; 5103 OpF = TargetOpcode::G_UADDE; 5104 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) 5105 OpF = TargetOpcode::G_SADDE; 5106 break; 5107 case TargetOpcode::G_SSUBO: 5108 case TargetOpcode::G_SSUBE: 5109 case TargetOpcode::G_USUBO: 5110 case TargetOpcode::G_USUBE: 5111 case TargetOpcode::G_SUB: 5112 OpO = TargetOpcode::G_USUBO; 5113 OpE = TargetOpcode::G_USUBE; 5114 OpF = TargetOpcode::G_USUBE; 5115 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) 5116 OpF = TargetOpcode::G_SSUBE; 5117 break; 5118 default: 5119 llvm_unreachable("Unexpected add/sub opcode!"); 5120 } 5121 5122 // 1 for a plain add/sub, 2 if this is an operation with a carry-out. 5123 unsigned NumDefs = MI.getNumExplicitDefs(); 5124 Register Src1 = MI.getOperand(NumDefs).getReg(); 5125 Register Src2 = MI.getOperand(NumDefs + 1).getReg(); 5126 Register CarryDst, CarryIn; 5127 if (NumDefs == 2) 5128 CarryDst = MI.getOperand(1).getReg(); 5129 if (MI.getNumOperands() == NumDefs + 3) 5130 CarryIn = MI.getOperand(NumDefs + 2).getReg(); 5131 5132 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5133 LLT LeftoverTy, DummyTy; 5134 SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs; 5135 extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left); 5136 extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left); 5137 5138 int NarrowParts = Src1Regs.size(); 5139 for (int I = 0, E = Src1Left.size(); I != E; ++I) { 5140 Src1Regs.push_back(Src1Left[I]); 5141 Src2Regs.push_back(Src2Left[I]); 5142 } 5143 DstRegs.reserve(Src1Regs.size()); 5144 5145 for (int i = 0, e = Src1Regs.size(); i != e; ++i) { 5146 Register DstReg = 5147 MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i])); 5148 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 5149 // Forward the final carry-out to the destination register 5150 if (i == e - 1 && CarryDst) 5151 CarryOut = CarryDst; 5152 5153 if (!CarryIn) { 5154 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, 5155 {Src1Regs[i], Src2Regs[i]}); 5156 } else if (i == e - 1) { 5157 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, 5158 {Src1Regs[i], Src2Regs[i], CarryIn}); 5159 } else { 5160 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, 5161 {Src1Regs[i], Src2Regs[i], CarryIn}); 5162 } 5163 5164 DstRegs.push_back(DstReg); 5165 CarryIn = CarryOut; 5166 } 5167 insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy, 5168 makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy, 5169 makeArrayRef(DstRegs).drop_front(NarrowParts)); 5170 5171 MI.eraseFromParent(); 5172 return Legalized; 5173 } 5174 5175 LegalizerHelper::LegalizeResult 5176 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 5177 Register DstReg = MI.getOperand(0).getReg(); 5178 Register Src1 = MI.getOperand(1).getReg(); 5179 Register Src2 = MI.getOperand(2).getReg(); 5180 5181 LLT Ty = MRI.getType(DstReg); 5182 if (Ty.isVector()) 5183 return UnableToLegalize; 5184 5185 unsigned Size = Ty.getSizeInBits(); 5186 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5187 if (Size % NarrowSize != 0) 5188 return UnableToLegalize; 5189 5190 unsigned NumParts = Size / NarrowSize; 5191 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 5192 unsigned DstTmpParts = NumParts * (IsMulHigh ? 2 : 1); 5193 5194 SmallVector<Register, 2> Src1Parts, Src2Parts; 5195 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 5196 extractParts(Src1, NarrowTy, NumParts, Src1Parts); 5197 extractParts(Src2, NarrowTy, NumParts, Src2Parts); 5198 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 5199 5200 // Take only high half of registers if this is high mul. 5201 ArrayRef<Register> DstRegs(&DstTmpRegs[DstTmpParts - NumParts], NumParts); 5202 MIRBuilder.buildMerge(DstReg, DstRegs); 5203 MI.eraseFromParent(); 5204 return Legalized; 5205 } 5206 5207 LegalizerHelper::LegalizeResult 5208 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, 5209 LLT NarrowTy) { 5210 if (TypeIdx != 0) 5211 return UnableToLegalize; 5212 5213 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI; 5214 5215 Register Src = MI.getOperand(1).getReg(); 5216 LLT SrcTy = MRI.getType(Src); 5217 5218 // If all finite floats fit into the narrowed integer type, we can just swap 5219 // out the result type. This is practically only useful for conversions from 5220 // half to at least 16-bits, so just handle the one case. 5221 if (SrcTy.getScalarType() != LLT::scalar(16) || 5222 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u)) 5223 return UnableToLegalize; 5224 5225 Observer.changingInstr(MI); 5226 narrowScalarDst(MI, NarrowTy, 0, 5227 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT); 5228 Observer.changedInstr(MI); 5229 return Legalized; 5230 } 5231 5232 LegalizerHelper::LegalizeResult 5233 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 5234 LLT NarrowTy) { 5235 if (TypeIdx != 1) 5236 return UnableToLegalize; 5237 5238 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5239 5240 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 5241 // FIXME: add support for when SizeOp1 isn't an exact multiple of 5242 // NarrowSize. 5243 if (SizeOp1 % NarrowSize != 0) 5244 return UnableToLegalize; 5245 int NumParts = SizeOp1 / NarrowSize; 5246 5247 SmallVector<Register, 2> SrcRegs, DstRegs; 5248 SmallVector<uint64_t, 2> Indexes; 5249 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 5250 5251 Register OpReg = MI.getOperand(0).getReg(); 5252 uint64_t OpStart = MI.getOperand(2).getImm(); 5253 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5254 for (int i = 0; i < NumParts; ++i) { 5255 unsigned SrcStart = i * NarrowSize; 5256 5257 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 5258 // No part of the extract uses this subregister, ignore it. 5259 continue; 5260 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5261 // The entire subregister is extracted, forward the value. 5262 DstRegs.push_back(SrcRegs[i]); 5263 continue; 5264 } 5265 5266 // OpSegStart is where this destination segment would start in OpReg if it 5267 // extended infinitely in both directions. 5268 int64_t ExtractOffset; 5269 uint64_t SegSize; 5270 if (OpStart < SrcStart) { 5271 ExtractOffset = 0; 5272 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 5273 } else { 5274 ExtractOffset = OpStart - SrcStart; 5275 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 5276 } 5277 5278 Register SegReg = SrcRegs[i]; 5279 if (ExtractOffset != 0 || SegSize != NarrowSize) { 5280 // A genuine extract is needed. 5281 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5282 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 5283 } 5284 5285 DstRegs.push_back(SegReg); 5286 } 5287 5288 Register DstReg = MI.getOperand(0).getReg(); 5289 if (MRI.getType(DstReg).isVector()) 5290 MIRBuilder.buildBuildVector(DstReg, DstRegs); 5291 else if (DstRegs.size() > 1) 5292 MIRBuilder.buildMerge(DstReg, DstRegs); 5293 else 5294 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 5295 MI.eraseFromParent(); 5296 return Legalized; 5297 } 5298 5299 LegalizerHelper::LegalizeResult 5300 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 5301 LLT NarrowTy) { 5302 // FIXME: Don't know how to handle secondary types yet. 5303 if (TypeIdx != 0) 5304 return UnableToLegalize; 5305 5306 SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs; 5307 SmallVector<uint64_t, 2> Indexes; 5308 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5309 LLT LeftoverTy; 5310 extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs, 5311 LeftoverRegs); 5312 5313 for (Register Reg : LeftoverRegs) 5314 SrcRegs.push_back(Reg); 5315 5316 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5317 Register OpReg = MI.getOperand(2).getReg(); 5318 uint64_t OpStart = MI.getOperand(3).getImm(); 5319 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5320 for (int I = 0, E = SrcRegs.size(); I != E; ++I) { 5321 unsigned DstStart = I * NarrowSize; 5322 5323 if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5324 // The entire subregister is defined by this insert, forward the new 5325 // value. 5326 DstRegs.push_back(OpReg); 5327 continue; 5328 } 5329 5330 Register SrcReg = SrcRegs[I]; 5331 if (MRI.getType(SrcRegs[I]) == LeftoverTy) { 5332 // The leftover reg is smaller than NarrowTy, so we need to extend it. 5333 SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 5334 MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]); 5335 } 5336 5337 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 5338 // No part of the insert affects this subregister, forward the original. 5339 DstRegs.push_back(SrcReg); 5340 continue; 5341 } 5342 5343 // OpSegStart is where this destination segment would start in OpReg if it 5344 // extended infinitely in both directions. 5345 int64_t ExtractOffset, InsertOffset; 5346 uint64_t SegSize; 5347 if (OpStart < DstStart) { 5348 InsertOffset = 0; 5349 ExtractOffset = DstStart - OpStart; 5350 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 5351 } else { 5352 InsertOffset = OpStart - DstStart; 5353 ExtractOffset = 0; 5354 SegSize = 5355 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 5356 } 5357 5358 Register SegReg = OpReg; 5359 if (ExtractOffset != 0 || SegSize != OpSize) { 5360 // A genuine extract is needed. 5361 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5362 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 5363 } 5364 5365 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 5366 MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset); 5367 DstRegs.push_back(DstReg); 5368 } 5369 5370 uint64_t WideSize = DstRegs.size() * NarrowSize; 5371 Register DstReg = MI.getOperand(0).getReg(); 5372 if (WideSize > RegTy.getSizeInBits()) { 5373 Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize)); 5374 MIRBuilder.buildMerge(MergeReg, DstRegs); 5375 MIRBuilder.buildTrunc(DstReg, MergeReg); 5376 } else 5377 MIRBuilder.buildMerge(DstReg, DstRegs); 5378 5379 MI.eraseFromParent(); 5380 return Legalized; 5381 } 5382 5383 LegalizerHelper::LegalizeResult 5384 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 5385 LLT NarrowTy) { 5386 Register DstReg = MI.getOperand(0).getReg(); 5387 LLT DstTy = MRI.getType(DstReg); 5388 5389 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 5390 5391 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5392 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 5393 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5394 LLT LeftoverTy; 5395 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 5396 Src0Regs, Src0LeftoverRegs)) 5397 return UnableToLegalize; 5398 5399 LLT Unused; 5400 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 5401 Src1Regs, Src1LeftoverRegs)) 5402 llvm_unreachable("inconsistent extractParts result"); 5403 5404 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5405 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 5406 {Src0Regs[I], Src1Regs[I]}); 5407 DstRegs.push_back(Inst.getReg(0)); 5408 } 5409 5410 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5411 auto Inst = MIRBuilder.buildInstr( 5412 MI.getOpcode(), 5413 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 5414 DstLeftoverRegs.push_back(Inst.getReg(0)); 5415 } 5416 5417 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5418 LeftoverTy, DstLeftoverRegs); 5419 5420 MI.eraseFromParent(); 5421 return Legalized; 5422 } 5423 5424 LegalizerHelper::LegalizeResult 5425 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 5426 LLT NarrowTy) { 5427 if (TypeIdx != 0) 5428 return UnableToLegalize; 5429 5430 Register DstReg = MI.getOperand(0).getReg(); 5431 Register SrcReg = MI.getOperand(1).getReg(); 5432 5433 LLT DstTy = MRI.getType(DstReg); 5434 if (DstTy.isVector()) 5435 return UnableToLegalize; 5436 5437 SmallVector<Register, 8> Parts; 5438 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 5439 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 5440 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 5441 5442 MI.eraseFromParent(); 5443 return Legalized; 5444 } 5445 5446 LegalizerHelper::LegalizeResult 5447 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 5448 LLT NarrowTy) { 5449 if (TypeIdx != 0) 5450 return UnableToLegalize; 5451 5452 Register CondReg = MI.getOperand(1).getReg(); 5453 LLT CondTy = MRI.getType(CondReg); 5454 if (CondTy.isVector()) // TODO: Handle vselect 5455 return UnableToLegalize; 5456 5457 Register DstReg = MI.getOperand(0).getReg(); 5458 LLT DstTy = MRI.getType(DstReg); 5459 5460 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5461 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5462 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 5463 LLT LeftoverTy; 5464 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 5465 Src1Regs, Src1LeftoverRegs)) 5466 return UnableToLegalize; 5467 5468 LLT Unused; 5469 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 5470 Src2Regs, Src2LeftoverRegs)) 5471 llvm_unreachable("inconsistent extractParts result"); 5472 5473 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5474 auto Select = MIRBuilder.buildSelect(NarrowTy, 5475 CondReg, Src1Regs[I], Src2Regs[I]); 5476 DstRegs.push_back(Select.getReg(0)); 5477 } 5478 5479 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5480 auto Select = MIRBuilder.buildSelect( 5481 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 5482 DstLeftoverRegs.push_back(Select.getReg(0)); 5483 } 5484 5485 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5486 LeftoverTy, DstLeftoverRegs); 5487 5488 MI.eraseFromParent(); 5489 return Legalized; 5490 } 5491 5492 LegalizerHelper::LegalizeResult 5493 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 5494 LLT NarrowTy) { 5495 if (TypeIdx != 1) 5496 return UnableToLegalize; 5497 5498 Register DstReg = MI.getOperand(0).getReg(); 5499 Register SrcReg = MI.getOperand(1).getReg(); 5500 LLT DstTy = MRI.getType(DstReg); 5501 LLT SrcTy = MRI.getType(SrcReg); 5502 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5503 5504 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5505 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 5506 5507 MachineIRBuilder &B = MIRBuilder; 5508 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5509 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 5510 auto C_0 = B.buildConstant(NarrowTy, 0); 5511 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5512 UnmergeSrc.getReg(1), C_0); 5513 auto LoCTLZ = IsUndef ? 5514 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 5515 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 5516 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5517 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 5518 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 5519 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 5520 5521 MI.eraseFromParent(); 5522 return Legalized; 5523 } 5524 5525 return UnableToLegalize; 5526 } 5527 5528 LegalizerHelper::LegalizeResult 5529 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 5530 LLT NarrowTy) { 5531 if (TypeIdx != 1) 5532 return UnableToLegalize; 5533 5534 Register DstReg = MI.getOperand(0).getReg(); 5535 Register SrcReg = MI.getOperand(1).getReg(); 5536 LLT DstTy = MRI.getType(DstReg); 5537 LLT SrcTy = MRI.getType(SrcReg); 5538 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5539 5540 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5541 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 5542 5543 MachineIRBuilder &B = MIRBuilder; 5544 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5545 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 5546 auto C_0 = B.buildConstant(NarrowTy, 0); 5547 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5548 UnmergeSrc.getReg(0), C_0); 5549 auto HiCTTZ = IsUndef ? 5550 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 5551 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 5552 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5553 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 5554 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 5555 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 5556 5557 MI.eraseFromParent(); 5558 return Legalized; 5559 } 5560 5561 return UnableToLegalize; 5562 } 5563 5564 LegalizerHelper::LegalizeResult 5565 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 5566 LLT NarrowTy) { 5567 if (TypeIdx != 1) 5568 return UnableToLegalize; 5569 5570 Register DstReg = MI.getOperand(0).getReg(); 5571 LLT DstTy = MRI.getType(DstReg); 5572 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 5573 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5574 5575 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5576 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 5577 5578 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 5579 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 5580 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 5581 5582 MI.eraseFromParent(); 5583 return Legalized; 5584 } 5585 5586 return UnableToLegalize; 5587 } 5588 5589 LegalizerHelper::LegalizeResult 5590 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 5591 unsigned Opc = MI.getOpcode(); 5592 const auto &TII = MIRBuilder.getTII(); 5593 auto isSupported = [this](const LegalityQuery &Q) { 5594 auto QAction = LI.getAction(Q).Action; 5595 return QAction == Legal || QAction == Libcall || QAction == Custom; 5596 }; 5597 switch (Opc) { 5598 default: 5599 return UnableToLegalize; 5600 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 5601 // This trivially expands to CTLZ. 5602 Observer.changingInstr(MI); 5603 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 5604 Observer.changedInstr(MI); 5605 return Legalized; 5606 } 5607 case TargetOpcode::G_CTLZ: { 5608 Register DstReg = MI.getOperand(0).getReg(); 5609 Register SrcReg = MI.getOperand(1).getReg(); 5610 LLT DstTy = MRI.getType(DstReg); 5611 LLT SrcTy = MRI.getType(SrcReg); 5612 unsigned Len = SrcTy.getSizeInBits(); 5613 5614 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5615 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 5616 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 5617 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 5618 auto ICmp = MIRBuilder.buildICmp( 5619 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 5620 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5621 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 5622 MI.eraseFromParent(); 5623 return Legalized; 5624 } 5625 // for now, we do this: 5626 // NewLen = NextPowerOf2(Len); 5627 // x = x | (x >> 1); 5628 // x = x | (x >> 2); 5629 // ... 5630 // x = x | (x >>16); 5631 // x = x | (x >>32); // for 64-bit input 5632 // Upto NewLen/2 5633 // return Len - popcount(x); 5634 // 5635 // Ref: "Hacker's Delight" by Henry Warren 5636 Register Op = SrcReg; 5637 unsigned NewLen = PowerOf2Ceil(Len); 5638 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 5639 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 5640 auto MIBOp = MIRBuilder.buildOr( 5641 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 5642 Op = MIBOp.getReg(0); 5643 } 5644 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 5645 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 5646 MIBPop); 5647 MI.eraseFromParent(); 5648 return Legalized; 5649 } 5650 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 5651 // This trivially expands to CTTZ. 5652 Observer.changingInstr(MI); 5653 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 5654 Observer.changedInstr(MI); 5655 return Legalized; 5656 } 5657 case TargetOpcode::G_CTTZ: { 5658 Register DstReg = MI.getOperand(0).getReg(); 5659 Register SrcReg = MI.getOperand(1).getReg(); 5660 LLT DstTy = MRI.getType(DstReg); 5661 LLT SrcTy = MRI.getType(SrcReg); 5662 5663 unsigned Len = SrcTy.getSizeInBits(); 5664 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5665 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 5666 // zero. 5667 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 5668 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 5669 auto ICmp = MIRBuilder.buildICmp( 5670 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 5671 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5672 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 5673 MI.eraseFromParent(); 5674 return Legalized; 5675 } 5676 // for now, we use: { return popcount(~x & (x - 1)); } 5677 // unless the target has ctlz but not ctpop, in which case we use: 5678 // { return 32 - nlz(~x & (x-1)); } 5679 // Ref: "Hacker's Delight" by Henry Warren 5680 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 5681 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 5682 auto MIBTmp = MIRBuilder.buildAnd( 5683 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 5684 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 5685 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 5686 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 5687 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 5688 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 5689 MI.eraseFromParent(); 5690 return Legalized; 5691 } 5692 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 5693 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 5694 return Legalized; 5695 } 5696 case TargetOpcode::G_CTPOP: { 5697 Register SrcReg = MI.getOperand(1).getReg(); 5698 LLT Ty = MRI.getType(SrcReg); 5699 unsigned Size = Ty.getSizeInBits(); 5700 MachineIRBuilder &B = MIRBuilder; 5701 5702 // Count set bits in blocks of 2 bits. Default approach would be 5703 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 5704 // We use following formula instead: 5705 // B2Count = val - { (val >> 1) & 0x55555555 } 5706 // since it gives same result in blocks of 2 with one instruction less. 5707 auto C_1 = B.buildConstant(Ty, 1); 5708 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 5709 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 5710 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 5711 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 5712 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 5713 5714 // In order to get count in blocks of 4 add values from adjacent block of 2. 5715 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 5716 auto C_2 = B.buildConstant(Ty, 2); 5717 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 5718 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 5719 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 5720 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 5721 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 5722 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 5723 5724 // For count in blocks of 8 bits we don't have to mask high 4 bits before 5725 // addition since count value sits in range {0,...,8} and 4 bits are enough 5726 // to hold such binary values. After addition high 4 bits still hold count 5727 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 5728 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 5729 auto C_4 = B.buildConstant(Ty, 4); 5730 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 5731 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 5732 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 5733 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 5734 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 5735 5736 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 5737 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 5738 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 5739 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 5740 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 5741 5742 // Shift count result from 8 high bits to low bits. 5743 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 5744 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 5745 5746 MI.eraseFromParent(); 5747 return Legalized; 5748 } 5749 } 5750 } 5751 5752 // Check that (every element of) Reg is undef or not an exact multiple of BW. 5753 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, 5754 Register Reg, unsigned BW) { 5755 return matchUnaryPredicate( 5756 MRI, Reg, 5757 [=](const Constant *C) { 5758 // Null constant here means an undef. 5759 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C); 5760 return !CI || CI->getValue().urem(BW) != 0; 5761 }, 5762 /*AllowUndefs*/ true); 5763 } 5764 5765 LegalizerHelper::LegalizeResult 5766 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) { 5767 Register Dst = MI.getOperand(0).getReg(); 5768 Register X = MI.getOperand(1).getReg(); 5769 Register Y = MI.getOperand(2).getReg(); 5770 Register Z = MI.getOperand(3).getReg(); 5771 LLT Ty = MRI.getType(Dst); 5772 LLT ShTy = MRI.getType(Z); 5773 5774 unsigned BW = Ty.getScalarSizeInBits(); 5775 5776 if (!isPowerOf2_32(BW)) 5777 return UnableToLegalize; 5778 5779 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5780 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5781 5782 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5783 // fshl X, Y, Z -> fshr X, Y, -Z 5784 // fshr X, Y, Z -> fshl X, Y, -Z 5785 auto Zero = MIRBuilder.buildConstant(ShTy, 0); 5786 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0); 5787 } else { 5788 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 5789 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 5790 auto One = MIRBuilder.buildConstant(ShTy, 1); 5791 if (IsFSHL) { 5792 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5793 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0); 5794 } else { 5795 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5796 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0); 5797 } 5798 5799 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0); 5800 } 5801 5802 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z}); 5803 MI.eraseFromParent(); 5804 return Legalized; 5805 } 5806 5807 LegalizerHelper::LegalizeResult 5808 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) { 5809 Register Dst = MI.getOperand(0).getReg(); 5810 Register X = MI.getOperand(1).getReg(); 5811 Register Y = MI.getOperand(2).getReg(); 5812 Register Z = MI.getOperand(3).getReg(); 5813 LLT Ty = MRI.getType(Dst); 5814 LLT ShTy = MRI.getType(Z); 5815 5816 const unsigned BW = Ty.getScalarSizeInBits(); 5817 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5818 5819 Register ShX, ShY; 5820 Register ShAmt, InvShAmt; 5821 5822 // FIXME: Emit optimized urem by constant instead of letting it expand later. 5823 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5824 // fshl: X << C | Y >> (BW - C) 5825 // fshr: X << (BW - C) | Y >> C 5826 // where C = Z % BW is not zero 5827 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5828 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5829 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0); 5830 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0); 5831 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0); 5832 } else { 5833 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 5834 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 5835 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1); 5836 if (isPowerOf2_32(BW)) { 5837 // Z % BW -> Z & (BW - 1) 5838 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0); 5839 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 5840 auto NotZ = MIRBuilder.buildNot(ShTy, Z); 5841 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0); 5842 } else { 5843 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5844 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5845 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0); 5846 } 5847 5848 auto One = MIRBuilder.buildConstant(ShTy, 1); 5849 if (IsFSHL) { 5850 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0); 5851 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One); 5852 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0); 5853 } else { 5854 auto ShX1 = MIRBuilder.buildShl(Ty, X, One); 5855 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0); 5856 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0); 5857 } 5858 } 5859 5860 MIRBuilder.buildOr(Dst, ShX, ShY); 5861 MI.eraseFromParent(); 5862 return Legalized; 5863 } 5864 5865 LegalizerHelper::LegalizeResult 5866 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) { 5867 // These operations approximately do the following (while avoiding undefined 5868 // shifts by BW): 5869 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5870 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5871 Register Dst = MI.getOperand(0).getReg(); 5872 LLT Ty = MRI.getType(Dst); 5873 LLT ShTy = MRI.getType(MI.getOperand(3).getReg()); 5874 5875 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5876 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5877 5878 // TODO: Use smarter heuristic that accounts for vector legalization. 5879 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower) 5880 return lowerFunnelShiftAsShifts(MI); 5881 5882 // This only works for powers of 2, fallback to shifts if it fails. 5883 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI); 5884 if (Result == UnableToLegalize) 5885 return lowerFunnelShiftAsShifts(MI); 5886 return Result; 5887 } 5888 5889 LegalizerHelper::LegalizeResult 5890 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) { 5891 Register Dst = MI.getOperand(0).getReg(); 5892 Register Src = MI.getOperand(1).getReg(); 5893 Register Amt = MI.getOperand(2).getReg(); 5894 LLT AmtTy = MRI.getType(Amt); 5895 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5896 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5897 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5898 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5899 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg}); 5900 MI.eraseFromParent(); 5901 return Legalized; 5902 } 5903 5904 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) { 5905 Register Dst = MI.getOperand(0).getReg(); 5906 Register Src = MI.getOperand(1).getReg(); 5907 Register Amt = MI.getOperand(2).getReg(); 5908 LLT DstTy = MRI.getType(Dst); 5909 LLT SrcTy = MRI.getType(Src); 5910 LLT AmtTy = MRI.getType(Amt); 5911 5912 unsigned EltSizeInBits = DstTy.getScalarSizeInBits(); 5913 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5914 5915 MIRBuilder.setInstrAndDebugLoc(MI); 5916 5917 // If a rotate in the other direction is supported, use it. 5918 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5919 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) && 5920 isPowerOf2_32(EltSizeInBits)) 5921 return lowerRotateWithReverseRotate(MI); 5922 5923 // If a funnel shift is supported, use it. 5924 unsigned FShOpc = IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; 5925 unsigned RevFsh = !IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; 5926 bool IsFShLegal = false; 5927 if ((IsFShLegal = LI.isLegalOrCustom({FShOpc, {DstTy, AmtTy}})) || 5928 LI.isLegalOrCustom({RevFsh, {DstTy, AmtTy}})) { 5929 auto buildFunnelShift = [&](unsigned Opc, Register R1, Register R2, 5930 Register R3) { 5931 MIRBuilder.buildInstr(Opc, {R1}, {R2, R2, R3}); 5932 MI.eraseFromParent(); 5933 return Legalized; 5934 }; 5935 // If a funnel shift in the other direction is supported, use it. 5936 if (IsFShLegal) { 5937 return buildFunnelShift(FShOpc, Dst, Src, Amt); 5938 } else if (isPowerOf2_32(EltSizeInBits)) { 5939 Amt = MIRBuilder.buildNeg(DstTy, Amt).getReg(0); 5940 return buildFunnelShift(RevFsh, Dst, Src, Amt); 5941 } 5942 } 5943 5944 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5945 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR; 5946 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL; 5947 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1); 5948 Register ShVal; 5949 Register RevShiftVal; 5950 if (isPowerOf2_32(EltSizeInBits)) { 5951 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 5952 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 5953 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5954 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC); 5955 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5956 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC); 5957 RevShiftVal = 5958 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0); 5959 } else { 5960 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 5961 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 5962 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits); 5963 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC); 5964 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5965 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt); 5966 auto One = MIRBuilder.buildConstant(AmtTy, 1); 5967 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One}); 5968 RevShiftVal = 5969 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0); 5970 } 5971 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal); 5972 MI.eraseFromParent(); 5973 return Legalized; 5974 } 5975 5976 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 5977 // representation. 5978 LegalizerHelper::LegalizeResult 5979 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 5980 Register Dst = MI.getOperand(0).getReg(); 5981 Register Src = MI.getOperand(1).getReg(); 5982 const LLT S64 = LLT::scalar(64); 5983 const LLT S32 = LLT::scalar(32); 5984 const LLT S1 = LLT::scalar(1); 5985 5986 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 5987 5988 // unsigned cul2f(ulong u) { 5989 // uint lz = clz(u); 5990 // uint e = (u != 0) ? 127U + 63U - lz : 0; 5991 // u = (u << lz) & 0x7fffffffffffffffUL; 5992 // ulong t = u & 0xffffffffffUL; 5993 // uint v = (e << 23) | (uint)(u >> 40); 5994 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 5995 // return as_float(v + r); 5996 // } 5997 5998 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 5999 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 6000 6001 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 6002 6003 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 6004 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 6005 6006 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 6007 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 6008 6009 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 6010 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 6011 6012 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 6013 6014 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 6015 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 6016 6017 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 6018 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 6019 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 6020 6021 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 6022 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 6023 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 6024 auto One = MIRBuilder.buildConstant(S32, 1); 6025 6026 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 6027 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 6028 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 6029 MIRBuilder.buildAdd(Dst, V, R); 6030 6031 MI.eraseFromParent(); 6032 return Legalized; 6033 } 6034 6035 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 6036 Register Dst = MI.getOperand(0).getReg(); 6037 Register Src = MI.getOperand(1).getReg(); 6038 LLT DstTy = MRI.getType(Dst); 6039 LLT SrcTy = MRI.getType(Src); 6040 6041 if (SrcTy == LLT::scalar(1)) { 6042 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 6043 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 6044 MIRBuilder.buildSelect(Dst, Src, True, False); 6045 MI.eraseFromParent(); 6046 return Legalized; 6047 } 6048 6049 if (SrcTy != LLT::scalar(64)) 6050 return UnableToLegalize; 6051 6052 if (DstTy == LLT::scalar(32)) { 6053 // TODO: SelectionDAG has several alternative expansions to port which may 6054 // be more reasonble depending on the available instructions. If a target 6055 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 6056 // intermediate type, this is probably worse. 6057 return lowerU64ToF32BitOps(MI); 6058 } 6059 6060 return UnableToLegalize; 6061 } 6062 6063 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 6064 Register Dst = MI.getOperand(0).getReg(); 6065 Register Src = MI.getOperand(1).getReg(); 6066 LLT DstTy = MRI.getType(Dst); 6067 LLT SrcTy = MRI.getType(Src); 6068 6069 const LLT S64 = LLT::scalar(64); 6070 const LLT S32 = LLT::scalar(32); 6071 const LLT S1 = LLT::scalar(1); 6072 6073 if (SrcTy == S1) { 6074 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 6075 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 6076 MIRBuilder.buildSelect(Dst, Src, True, False); 6077 MI.eraseFromParent(); 6078 return Legalized; 6079 } 6080 6081 if (SrcTy != S64) 6082 return UnableToLegalize; 6083 6084 if (DstTy == S32) { 6085 // signed cl2f(long l) { 6086 // long s = l >> 63; 6087 // float r = cul2f((l + s) ^ s); 6088 // return s ? -r : r; 6089 // } 6090 Register L = Src; 6091 auto SignBit = MIRBuilder.buildConstant(S64, 63); 6092 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 6093 6094 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 6095 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 6096 auto R = MIRBuilder.buildUITOFP(S32, Xor); 6097 6098 auto RNeg = MIRBuilder.buildFNeg(S32, R); 6099 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 6100 MIRBuilder.buildConstant(S64, 0)); 6101 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 6102 MI.eraseFromParent(); 6103 return Legalized; 6104 } 6105 6106 return UnableToLegalize; 6107 } 6108 6109 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 6110 Register Dst = MI.getOperand(0).getReg(); 6111 Register Src = MI.getOperand(1).getReg(); 6112 LLT DstTy = MRI.getType(Dst); 6113 LLT SrcTy = MRI.getType(Src); 6114 const LLT S64 = LLT::scalar(64); 6115 const LLT S32 = LLT::scalar(32); 6116 6117 if (SrcTy != S64 && SrcTy != S32) 6118 return UnableToLegalize; 6119 if (DstTy != S32 && DstTy != S64) 6120 return UnableToLegalize; 6121 6122 // FPTOSI gives same result as FPTOUI for positive signed integers. 6123 // FPTOUI needs to deal with fp values that convert to unsigned integers 6124 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 6125 6126 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 6127 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 6128 : APFloat::IEEEdouble(), 6129 APInt::getZero(SrcTy.getSizeInBits())); 6130 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 6131 6132 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 6133 6134 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 6135 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 6136 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 6137 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 6138 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 6139 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 6140 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 6141 6142 const LLT S1 = LLT::scalar(1); 6143 6144 MachineInstrBuilder FCMP = 6145 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 6146 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 6147 6148 MI.eraseFromParent(); 6149 return Legalized; 6150 } 6151 6152 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 6153 Register Dst = MI.getOperand(0).getReg(); 6154 Register Src = MI.getOperand(1).getReg(); 6155 LLT DstTy = MRI.getType(Dst); 6156 LLT SrcTy = MRI.getType(Src); 6157 const LLT S64 = LLT::scalar(64); 6158 const LLT S32 = LLT::scalar(32); 6159 6160 // FIXME: Only f32 to i64 conversions are supported. 6161 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 6162 return UnableToLegalize; 6163 6164 // Expand f32 -> i64 conversion 6165 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6166 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6167 6168 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 6169 6170 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 6171 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 6172 6173 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 6174 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 6175 6176 auto SignMask = MIRBuilder.buildConstant(SrcTy, 6177 APInt::getSignMask(SrcEltBits)); 6178 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 6179 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 6180 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 6181 Sign = MIRBuilder.buildSExt(DstTy, Sign); 6182 6183 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 6184 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 6185 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 6186 6187 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 6188 R = MIRBuilder.buildZExt(DstTy, R); 6189 6190 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 6191 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 6192 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 6193 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 6194 6195 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 6196 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 6197 6198 const LLT S1 = LLT::scalar(1); 6199 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 6200 S1, Exponent, ExponentLoBit); 6201 6202 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 6203 6204 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 6205 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 6206 6207 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 6208 6209 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 6210 S1, Exponent, ZeroSrcTy); 6211 6212 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 6213 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 6214 6215 MI.eraseFromParent(); 6216 return Legalized; 6217 } 6218 6219 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 6220 LegalizerHelper::LegalizeResult 6221 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 6222 Register Dst = MI.getOperand(0).getReg(); 6223 Register Src = MI.getOperand(1).getReg(); 6224 6225 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 6226 return UnableToLegalize; 6227 6228 const unsigned ExpMask = 0x7ff; 6229 const unsigned ExpBiasf64 = 1023; 6230 const unsigned ExpBiasf16 = 15; 6231 const LLT S32 = LLT::scalar(32); 6232 const LLT S1 = LLT::scalar(1); 6233 6234 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 6235 Register U = Unmerge.getReg(0); 6236 Register UH = Unmerge.getReg(1); 6237 6238 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 6239 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 6240 6241 // Subtract the fp64 exponent bias (1023) to get the real exponent and 6242 // add the f16 bias (15) to get the biased exponent for the f16 format. 6243 E = MIRBuilder.buildAdd( 6244 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 6245 6246 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 6247 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 6248 6249 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 6250 MIRBuilder.buildConstant(S32, 0x1ff)); 6251 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 6252 6253 auto Zero = MIRBuilder.buildConstant(S32, 0); 6254 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 6255 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 6256 M = MIRBuilder.buildOr(S32, M, Lo40Set); 6257 6258 // (M != 0 ? 0x0200 : 0) | 0x7c00; 6259 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 6260 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 6261 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 6262 6263 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 6264 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 6265 6266 // N = M | (E << 12); 6267 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 6268 auto N = MIRBuilder.buildOr(S32, M, EShl12); 6269 6270 // B = clamp(1-E, 0, 13); 6271 auto One = MIRBuilder.buildConstant(S32, 1); 6272 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 6273 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 6274 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 6275 6276 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 6277 MIRBuilder.buildConstant(S32, 0x1000)); 6278 6279 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 6280 auto D0 = MIRBuilder.buildShl(S32, D, B); 6281 6282 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 6283 D0, SigSetHigh); 6284 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 6285 D = MIRBuilder.buildOr(S32, D, D1); 6286 6287 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 6288 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 6289 6290 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 6291 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 6292 6293 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 6294 MIRBuilder.buildConstant(S32, 3)); 6295 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 6296 6297 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 6298 MIRBuilder.buildConstant(S32, 5)); 6299 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 6300 6301 V1 = MIRBuilder.buildOr(S32, V0, V1); 6302 V = MIRBuilder.buildAdd(S32, V, V1); 6303 6304 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 6305 E, MIRBuilder.buildConstant(S32, 30)); 6306 V = MIRBuilder.buildSelect(S32, CmpEGt30, 6307 MIRBuilder.buildConstant(S32, 0x7c00), V); 6308 6309 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 6310 E, MIRBuilder.buildConstant(S32, 1039)); 6311 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 6312 6313 // Extract the sign bit. 6314 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 6315 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 6316 6317 // Insert the sign bit 6318 V = MIRBuilder.buildOr(S32, Sign, V); 6319 6320 MIRBuilder.buildTrunc(Dst, V); 6321 MI.eraseFromParent(); 6322 return Legalized; 6323 } 6324 6325 LegalizerHelper::LegalizeResult 6326 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 6327 Register Dst = MI.getOperand(0).getReg(); 6328 Register Src = MI.getOperand(1).getReg(); 6329 6330 LLT DstTy = MRI.getType(Dst); 6331 LLT SrcTy = MRI.getType(Src); 6332 const LLT S64 = LLT::scalar(64); 6333 const LLT S16 = LLT::scalar(16); 6334 6335 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 6336 return lowerFPTRUNC_F64_TO_F16(MI); 6337 6338 return UnableToLegalize; 6339 } 6340 6341 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 6342 // multiplication tree. 6343 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 6344 Register Dst = MI.getOperand(0).getReg(); 6345 Register Src0 = MI.getOperand(1).getReg(); 6346 Register Src1 = MI.getOperand(2).getReg(); 6347 LLT Ty = MRI.getType(Dst); 6348 6349 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 6350 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 6351 MI.eraseFromParent(); 6352 return Legalized; 6353 } 6354 6355 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 6356 switch (Opc) { 6357 case TargetOpcode::G_SMIN: 6358 return CmpInst::ICMP_SLT; 6359 case TargetOpcode::G_SMAX: 6360 return CmpInst::ICMP_SGT; 6361 case TargetOpcode::G_UMIN: 6362 return CmpInst::ICMP_ULT; 6363 case TargetOpcode::G_UMAX: 6364 return CmpInst::ICMP_UGT; 6365 default: 6366 llvm_unreachable("not in integer min/max"); 6367 } 6368 } 6369 6370 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 6371 Register Dst = MI.getOperand(0).getReg(); 6372 Register Src0 = MI.getOperand(1).getReg(); 6373 Register Src1 = MI.getOperand(2).getReg(); 6374 6375 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 6376 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 6377 6378 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 6379 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 6380 6381 MI.eraseFromParent(); 6382 return Legalized; 6383 } 6384 6385 LegalizerHelper::LegalizeResult 6386 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 6387 Register Dst = MI.getOperand(0).getReg(); 6388 Register Src0 = MI.getOperand(1).getReg(); 6389 Register Src1 = MI.getOperand(2).getReg(); 6390 6391 const LLT Src0Ty = MRI.getType(Src0); 6392 const LLT Src1Ty = MRI.getType(Src1); 6393 6394 const int Src0Size = Src0Ty.getScalarSizeInBits(); 6395 const int Src1Size = Src1Ty.getScalarSizeInBits(); 6396 6397 auto SignBitMask = MIRBuilder.buildConstant( 6398 Src0Ty, APInt::getSignMask(Src0Size)); 6399 6400 auto NotSignBitMask = MIRBuilder.buildConstant( 6401 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 6402 6403 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); 6404 Register And1; 6405 if (Src0Ty == Src1Ty) { 6406 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); 6407 } else if (Src0Size > Src1Size) { 6408 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 6409 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 6410 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 6411 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); 6412 } else { 6413 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 6414 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 6415 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 6416 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); 6417 } 6418 6419 // Be careful about setting nsz/nnan/ninf on every instruction, since the 6420 // constants are a nan and -0.0, but the final result should preserve 6421 // everything. 6422 unsigned Flags = MI.getFlags(); 6423 MIRBuilder.buildOr(Dst, And0, And1, Flags); 6424 6425 MI.eraseFromParent(); 6426 return Legalized; 6427 } 6428 6429 LegalizerHelper::LegalizeResult 6430 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 6431 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 6432 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 6433 6434 Register Dst = MI.getOperand(0).getReg(); 6435 Register Src0 = MI.getOperand(1).getReg(); 6436 Register Src1 = MI.getOperand(2).getReg(); 6437 LLT Ty = MRI.getType(Dst); 6438 6439 if (!MI.getFlag(MachineInstr::FmNoNans)) { 6440 // Insert canonicalizes if it's possible we need to quiet to get correct 6441 // sNaN behavior. 6442 6443 // Note this must be done here, and not as an optimization combine in the 6444 // absence of a dedicate quiet-snan instruction as we're using an 6445 // omni-purpose G_FCANONICALIZE. 6446 if (!isKnownNeverSNaN(Src0, MRI)) 6447 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 6448 6449 if (!isKnownNeverSNaN(Src1, MRI)) 6450 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 6451 } 6452 6453 // If there are no nans, it's safe to simply replace this with the non-IEEE 6454 // version. 6455 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 6456 MI.eraseFromParent(); 6457 return Legalized; 6458 } 6459 6460 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 6461 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 6462 Register DstReg = MI.getOperand(0).getReg(); 6463 LLT Ty = MRI.getType(DstReg); 6464 unsigned Flags = MI.getFlags(); 6465 6466 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 6467 Flags); 6468 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 6469 MI.eraseFromParent(); 6470 return Legalized; 6471 } 6472 6473 LegalizerHelper::LegalizeResult 6474 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 6475 Register DstReg = MI.getOperand(0).getReg(); 6476 Register X = MI.getOperand(1).getReg(); 6477 const unsigned Flags = MI.getFlags(); 6478 const LLT Ty = MRI.getType(DstReg); 6479 const LLT CondTy = Ty.changeElementSize(1); 6480 6481 // round(x) => 6482 // t = trunc(x); 6483 // d = fabs(x - t); 6484 // o = copysign(1.0f, x); 6485 // return t + (d >= 0.5 ? o : 0.0); 6486 6487 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 6488 6489 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 6490 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 6491 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6492 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 6493 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 6494 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 6495 6496 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 6497 Flags); 6498 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 6499 6500 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 6501 6502 MI.eraseFromParent(); 6503 return Legalized; 6504 } 6505 6506 LegalizerHelper::LegalizeResult 6507 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 6508 Register DstReg = MI.getOperand(0).getReg(); 6509 Register SrcReg = MI.getOperand(1).getReg(); 6510 unsigned Flags = MI.getFlags(); 6511 LLT Ty = MRI.getType(DstReg); 6512 const LLT CondTy = Ty.changeElementSize(1); 6513 6514 // result = trunc(src); 6515 // if (src < 0.0 && src != result) 6516 // result += -1.0. 6517 6518 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 6519 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6520 6521 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 6522 SrcReg, Zero, Flags); 6523 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 6524 SrcReg, Trunc, Flags); 6525 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 6526 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 6527 6528 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 6529 MI.eraseFromParent(); 6530 return Legalized; 6531 } 6532 6533 LegalizerHelper::LegalizeResult 6534 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 6535 const unsigned NumOps = MI.getNumOperands(); 6536 Register DstReg = MI.getOperand(0).getReg(); 6537 Register Src0Reg = MI.getOperand(1).getReg(); 6538 LLT DstTy = MRI.getType(DstReg); 6539 LLT SrcTy = MRI.getType(Src0Reg); 6540 unsigned PartSize = SrcTy.getSizeInBits(); 6541 6542 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 6543 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 6544 6545 for (unsigned I = 2; I != NumOps; ++I) { 6546 const unsigned Offset = (I - 1) * PartSize; 6547 6548 Register SrcReg = MI.getOperand(I).getReg(); 6549 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 6550 6551 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 6552 MRI.createGenericVirtualRegister(WideTy); 6553 6554 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 6555 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 6556 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 6557 ResultReg = NextResult; 6558 } 6559 6560 if (DstTy.isPointer()) { 6561 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 6562 DstTy.getAddressSpace())) { 6563 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 6564 return UnableToLegalize; 6565 } 6566 6567 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 6568 } 6569 6570 MI.eraseFromParent(); 6571 return Legalized; 6572 } 6573 6574 LegalizerHelper::LegalizeResult 6575 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 6576 const unsigned NumDst = MI.getNumOperands() - 1; 6577 Register SrcReg = MI.getOperand(NumDst).getReg(); 6578 Register Dst0Reg = MI.getOperand(0).getReg(); 6579 LLT DstTy = MRI.getType(Dst0Reg); 6580 if (DstTy.isPointer()) 6581 return UnableToLegalize; // TODO 6582 6583 SrcReg = coerceToScalar(SrcReg); 6584 if (!SrcReg) 6585 return UnableToLegalize; 6586 6587 // Expand scalarizing unmerge as bitcast to integer and shift. 6588 LLT IntTy = MRI.getType(SrcReg); 6589 6590 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 6591 6592 const unsigned DstSize = DstTy.getSizeInBits(); 6593 unsigned Offset = DstSize; 6594 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 6595 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 6596 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 6597 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 6598 } 6599 6600 MI.eraseFromParent(); 6601 return Legalized; 6602 } 6603 6604 /// Lower a vector extract or insert by writing the vector to a stack temporary 6605 /// and reloading the element or vector. 6606 /// 6607 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 6608 /// => 6609 /// %stack_temp = G_FRAME_INDEX 6610 /// G_STORE %vec, %stack_temp 6611 /// %idx = clamp(%idx, %vec.getNumElements()) 6612 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 6613 /// %dst = G_LOAD %element_ptr 6614 LegalizerHelper::LegalizeResult 6615 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 6616 Register DstReg = MI.getOperand(0).getReg(); 6617 Register SrcVec = MI.getOperand(1).getReg(); 6618 Register InsertVal; 6619 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 6620 InsertVal = MI.getOperand(2).getReg(); 6621 6622 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 6623 6624 LLT VecTy = MRI.getType(SrcVec); 6625 LLT EltTy = VecTy.getElementType(); 6626 unsigned NumElts = VecTy.getNumElements(); 6627 6628 int64_t IdxVal; 6629 if (mi_match(Idx, MRI, m_ICst(IdxVal)) && IdxVal <= NumElts) { 6630 SmallVector<Register, 8> SrcRegs; 6631 extractParts(SrcVec, EltTy, NumElts, SrcRegs); 6632 6633 if (InsertVal) { 6634 SrcRegs[IdxVal] = MI.getOperand(2).getReg(); 6635 MIRBuilder.buildMerge(DstReg, SrcRegs); 6636 } else { 6637 MIRBuilder.buildCopy(DstReg, SrcRegs[IdxVal]); 6638 } 6639 6640 MI.eraseFromParent(); 6641 return Legalized; 6642 } 6643 6644 if (!EltTy.isByteSized()) { // Not implemented. 6645 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 6646 return UnableToLegalize; 6647 } 6648 6649 unsigned EltBytes = EltTy.getSizeInBytes(); 6650 Align VecAlign = getStackTemporaryAlignment(VecTy); 6651 Align EltAlign; 6652 6653 MachinePointerInfo PtrInfo; 6654 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 6655 VecAlign, PtrInfo); 6656 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 6657 6658 // Get the pointer to the element, and be sure not to hit undefined behavior 6659 // if the index is out of bounds. 6660 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 6661 6662 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 6663 int64_t Offset = IdxVal * EltBytes; 6664 PtrInfo = PtrInfo.getWithOffset(Offset); 6665 EltAlign = commonAlignment(VecAlign, Offset); 6666 } else { 6667 // We lose information with a variable offset. 6668 EltAlign = getStackTemporaryAlignment(EltTy); 6669 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 6670 } 6671 6672 if (InsertVal) { 6673 // Write the inserted element 6674 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 6675 6676 // Reload the whole vector. 6677 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 6678 } else { 6679 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 6680 } 6681 6682 MI.eraseFromParent(); 6683 return Legalized; 6684 } 6685 6686 LegalizerHelper::LegalizeResult 6687 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 6688 Register DstReg = MI.getOperand(0).getReg(); 6689 Register Src0Reg = MI.getOperand(1).getReg(); 6690 Register Src1Reg = MI.getOperand(2).getReg(); 6691 LLT Src0Ty = MRI.getType(Src0Reg); 6692 LLT DstTy = MRI.getType(DstReg); 6693 LLT IdxTy = LLT::scalar(32); 6694 6695 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 6696 6697 if (DstTy.isScalar()) { 6698 if (Src0Ty.isVector()) 6699 return UnableToLegalize; 6700 6701 // This is just a SELECT. 6702 assert(Mask.size() == 1 && "Expected a single mask element"); 6703 Register Val; 6704 if (Mask[0] < 0 || Mask[0] > 1) 6705 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 6706 else 6707 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 6708 MIRBuilder.buildCopy(DstReg, Val); 6709 MI.eraseFromParent(); 6710 return Legalized; 6711 } 6712 6713 Register Undef; 6714 SmallVector<Register, 32> BuildVec; 6715 LLT EltTy = DstTy.getElementType(); 6716 6717 for (int Idx : Mask) { 6718 if (Idx < 0) { 6719 if (!Undef.isValid()) 6720 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 6721 BuildVec.push_back(Undef); 6722 continue; 6723 } 6724 6725 if (Src0Ty.isScalar()) { 6726 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 6727 } else { 6728 int NumElts = Src0Ty.getNumElements(); 6729 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 6730 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 6731 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 6732 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 6733 BuildVec.push_back(Extract.getReg(0)); 6734 } 6735 } 6736 6737 MIRBuilder.buildBuildVector(DstReg, BuildVec); 6738 MI.eraseFromParent(); 6739 return Legalized; 6740 } 6741 6742 LegalizerHelper::LegalizeResult 6743 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 6744 const auto &MF = *MI.getMF(); 6745 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 6746 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 6747 return UnableToLegalize; 6748 6749 Register Dst = MI.getOperand(0).getReg(); 6750 Register AllocSize = MI.getOperand(1).getReg(); 6751 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 6752 6753 LLT PtrTy = MRI.getType(Dst); 6754 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 6755 6756 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 6757 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 6758 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 6759 6760 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 6761 // have to generate an extra instruction to negate the alloc and then use 6762 // G_PTR_ADD to add the negative offset. 6763 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 6764 if (Alignment > Align(1)) { 6765 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 6766 AlignMask.negate(); 6767 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 6768 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 6769 } 6770 6771 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 6772 MIRBuilder.buildCopy(SPReg, SPTmp); 6773 MIRBuilder.buildCopy(Dst, SPTmp); 6774 6775 MI.eraseFromParent(); 6776 return Legalized; 6777 } 6778 6779 LegalizerHelper::LegalizeResult 6780 LegalizerHelper::lowerExtract(MachineInstr &MI) { 6781 Register Dst = MI.getOperand(0).getReg(); 6782 Register Src = MI.getOperand(1).getReg(); 6783 unsigned Offset = MI.getOperand(2).getImm(); 6784 6785 LLT DstTy = MRI.getType(Dst); 6786 LLT SrcTy = MRI.getType(Src); 6787 6788 // Extract sub-vector or one element 6789 if (SrcTy.isVector()) { 6790 unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits(); 6791 unsigned DstSize = DstTy.getSizeInBits(); 6792 6793 if ((Offset % SrcEltSize == 0) && (DstSize % SrcEltSize == 0) && 6794 (Offset + DstSize <= SrcTy.getSizeInBits())) { 6795 // Unmerge and allow access to each Src element for the artifact combiner. 6796 auto Unmerge = MIRBuilder.buildUnmerge(SrcTy.getElementType(), Src); 6797 6798 // Take element(s) we need to extract and copy it (merge them). 6799 SmallVector<Register, 8> SubVectorElts; 6800 for (unsigned Idx = Offset / SrcEltSize; 6801 Idx < (Offset + DstSize) / SrcEltSize; ++Idx) { 6802 SubVectorElts.push_back(Unmerge.getReg(Idx)); 6803 } 6804 if (SubVectorElts.size() == 1) 6805 MIRBuilder.buildCopy(Dst, SubVectorElts[0]); 6806 else 6807 MIRBuilder.buildMerge(Dst, SubVectorElts); 6808 6809 MI.eraseFromParent(); 6810 return Legalized; 6811 } 6812 } 6813 6814 if (DstTy.isScalar() && 6815 (SrcTy.isScalar() || 6816 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 6817 LLT SrcIntTy = SrcTy; 6818 if (!SrcTy.isScalar()) { 6819 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 6820 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 6821 } 6822 6823 if (Offset == 0) 6824 MIRBuilder.buildTrunc(Dst, Src); 6825 else { 6826 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 6827 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 6828 MIRBuilder.buildTrunc(Dst, Shr); 6829 } 6830 6831 MI.eraseFromParent(); 6832 return Legalized; 6833 } 6834 6835 return UnableToLegalize; 6836 } 6837 6838 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 6839 Register Dst = MI.getOperand(0).getReg(); 6840 Register Src = MI.getOperand(1).getReg(); 6841 Register InsertSrc = MI.getOperand(2).getReg(); 6842 uint64_t Offset = MI.getOperand(3).getImm(); 6843 6844 LLT DstTy = MRI.getType(Src); 6845 LLT InsertTy = MRI.getType(InsertSrc); 6846 6847 // Insert sub-vector or one element 6848 if (DstTy.isVector() && !InsertTy.isPointer()) { 6849 LLT EltTy = DstTy.getElementType(); 6850 unsigned EltSize = EltTy.getSizeInBits(); 6851 unsigned InsertSize = InsertTy.getSizeInBits(); 6852 6853 if ((Offset % EltSize == 0) && (InsertSize % EltSize == 0) && 6854 (Offset + InsertSize <= DstTy.getSizeInBits())) { 6855 auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, Src); 6856 SmallVector<Register, 8> DstElts; 6857 unsigned Idx = 0; 6858 // Elements from Src before insert start Offset 6859 for (; Idx < Offset / EltSize; ++Idx) { 6860 DstElts.push_back(UnmergeSrc.getReg(Idx)); 6861 } 6862 6863 // Replace elements in Src with elements from InsertSrc 6864 if (InsertTy.getSizeInBits() > EltSize) { 6865 auto UnmergeInsertSrc = MIRBuilder.buildUnmerge(EltTy, InsertSrc); 6866 for (unsigned i = 0; Idx < (Offset + InsertSize) / EltSize; 6867 ++Idx, ++i) { 6868 DstElts.push_back(UnmergeInsertSrc.getReg(i)); 6869 } 6870 } else { 6871 DstElts.push_back(InsertSrc); 6872 ++Idx; 6873 } 6874 6875 // Remaining elements from Src after insert 6876 for (; Idx < DstTy.getNumElements(); ++Idx) { 6877 DstElts.push_back(UnmergeSrc.getReg(Idx)); 6878 } 6879 6880 MIRBuilder.buildMerge(Dst, DstElts); 6881 MI.eraseFromParent(); 6882 return Legalized; 6883 } 6884 } 6885 6886 if (InsertTy.isVector() || 6887 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 6888 return UnableToLegalize; 6889 6890 const DataLayout &DL = MIRBuilder.getDataLayout(); 6891 if ((DstTy.isPointer() && 6892 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 6893 (InsertTy.isPointer() && 6894 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 6895 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 6896 return UnableToLegalize; 6897 } 6898 6899 LLT IntDstTy = DstTy; 6900 6901 if (!DstTy.isScalar()) { 6902 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 6903 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 6904 } 6905 6906 if (!InsertTy.isScalar()) { 6907 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 6908 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 6909 } 6910 6911 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 6912 if (Offset != 0) { 6913 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 6914 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 6915 } 6916 6917 APInt MaskVal = APInt::getBitsSetWithWrap( 6918 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 6919 6920 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 6921 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 6922 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 6923 6924 MIRBuilder.buildCast(Dst, Or); 6925 MI.eraseFromParent(); 6926 return Legalized; 6927 } 6928 6929 LegalizerHelper::LegalizeResult 6930 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 6931 Register Dst0 = MI.getOperand(0).getReg(); 6932 Register Dst1 = MI.getOperand(1).getReg(); 6933 Register LHS = MI.getOperand(2).getReg(); 6934 Register RHS = MI.getOperand(3).getReg(); 6935 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 6936 6937 LLT Ty = MRI.getType(Dst0); 6938 LLT BoolTy = MRI.getType(Dst1); 6939 6940 if (IsAdd) 6941 MIRBuilder.buildAdd(Dst0, LHS, RHS); 6942 else 6943 MIRBuilder.buildSub(Dst0, LHS, RHS); 6944 6945 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 6946 6947 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6948 6949 // For an addition, the result should be less than one of the operands (LHS) 6950 // if and only if the other operand (RHS) is negative, otherwise there will 6951 // be overflow. 6952 // For a subtraction, the result should be less than one of the operands 6953 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 6954 // otherwise there will be overflow. 6955 auto ResultLowerThanLHS = 6956 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 6957 auto ConditionRHS = MIRBuilder.buildICmp( 6958 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 6959 6960 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 6961 MI.eraseFromParent(); 6962 return Legalized; 6963 } 6964 6965 LegalizerHelper::LegalizeResult 6966 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 6967 Register Res = MI.getOperand(0).getReg(); 6968 Register LHS = MI.getOperand(1).getReg(); 6969 Register RHS = MI.getOperand(2).getReg(); 6970 LLT Ty = MRI.getType(Res); 6971 bool IsSigned; 6972 bool IsAdd; 6973 unsigned BaseOp; 6974 switch (MI.getOpcode()) { 6975 default: 6976 llvm_unreachable("unexpected addsat/subsat opcode"); 6977 case TargetOpcode::G_UADDSAT: 6978 IsSigned = false; 6979 IsAdd = true; 6980 BaseOp = TargetOpcode::G_ADD; 6981 break; 6982 case TargetOpcode::G_SADDSAT: 6983 IsSigned = true; 6984 IsAdd = true; 6985 BaseOp = TargetOpcode::G_ADD; 6986 break; 6987 case TargetOpcode::G_USUBSAT: 6988 IsSigned = false; 6989 IsAdd = false; 6990 BaseOp = TargetOpcode::G_SUB; 6991 break; 6992 case TargetOpcode::G_SSUBSAT: 6993 IsSigned = true; 6994 IsAdd = false; 6995 BaseOp = TargetOpcode::G_SUB; 6996 break; 6997 } 6998 6999 if (IsSigned) { 7000 // sadd.sat(a, b) -> 7001 // hi = 0x7fffffff - smax(a, 0) 7002 // lo = 0x80000000 - smin(a, 0) 7003 // a + smin(smax(lo, b), hi) 7004 // ssub.sat(a, b) -> 7005 // lo = smax(a, -1) - 0x7fffffff 7006 // hi = smin(a, -1) - 0x80000000 7007 // a - smin(smax(lo, b), hi) 7008 // TODO: AMDGPU can use a "median of 3" instruction here: 7009 // a +/- med3(lo, b, hi) 7010 uint64_t NumBits = Ty.getScalarSizeInBits(); 7011 auto MaxVal = 7012 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 7013 auto MinVal = 7014 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 7015 MachineInstrBuilder Hi, Lo; 7016 if (IsAdd) { 7017 auto Zero = MIRBuilder.buildConstant(Ty, 0); 7018 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 7019 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 7020 } else { 7021 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 7022 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 7023 MaxVal); 7024 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 7025 MinVal); 7026 } 7027 auto RHSClamped = 7028 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 7029 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 7030 } else { 7031 // uadd.sat(a, b) -> a + umin(~a, b) 7032 // usub.sat(a, b) -> a - umin(a, b) 7033 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 7034 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 7035 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 7036 } 7037 7038 MI.eraseFromParent(); 7039 return Legalized; 7040 } 7041 7042 LegalizerHelper::LegalizeResult 7043 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 7044 Register Res = MI.getOperand(0).getReg(); 7045 Register LHS = MI.getOperand(1).getReg(); 7046 Register RHS = MI.getOperand(2).getReg(); 7047 LLT Ty = MRI.getType(Res); 7048 LLT BoolTy = Ty.changeElementSize(1); 7049 bool IsSigned; 7050 bool IsAdd; 7051 unsigned OverflowOp; 7052 switch (MI.getOpcode()) { 7053 default: 7054 llvm_unreachable("unexpected addsat/subsat opcode"); 7055 case TargetOpcode::G_UADDSAT: 7056 IsSigned = false; 7057 IsAdd = true; 7058 OverflowOp = TargetOpcode::G_UADDO; 7059 break; 7060 case TargetOpcode::G_SADDSAT: 7061 IsSigned = true; 7062 IsAdd = true; 7063 OverflowOp = TargetOpcode::G_SADDO; 7064 break; 7065 case TargetOpcode::G_USUBSAT: 7066 IsSigned = false; 7067 IsAdd = false; 7068 OverflowOp = TargetOpcode::G_USUBO; 7069 break; 7070 case TargetOpcode::G_SSUBSAT: 7071 IsSigned = true; 7072 IsAdd = false; 7073 OverflowOp = TargetOpcode::G_SSUBO; 7074 break; 7075 } 7076 7077 auto OverflowRes = 7078 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 7079 Register Tmp = OverflowRes.getReg(0); 7080 Register Ov = OverflowRes.getReg(1); 7081 MachineInstrBuilder Clamp; 7082 if (IsSigned) { 7083 // sadd.sat(a, b) -> 7084 // {tmp, ov} = saddo(a, b) 7085 // ov ? (tmp >>s 31) + 0x80000000 : r 7086 // ssub.sat(a, b) -> 7087 // {tmp, ov} = ssubo(a, b) 7088 // ov ? (tmp >>s 31) + 0x80000000 : r 7089 uint64_t NumBits = Ty.getScalarSizeInBits(); 7090 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 7091 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 7092 auto MinVal = 7093 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 7094 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 7095 } else { 7096 // uadd.sat(a, b) -> 7097 // {tmp, ov} = uaddo(a, b) 7098 // ov ? 0xffffffff : tmp 7099 // usub.sat(a, b) -> 7100 // {tmp, ov} = usubo(a, b) 7101 // ov ? 0 : tmp 7102 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 7103 } 7104 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 7105 7106 MI.eraseFromParent(); 7107 return Legalized; 7108 } 7109 7110 LegalizerHelper::LegalizeResult 7111 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 7112 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 7113 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 7114 "Expected shlsat opcode!"); 7115 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 7116 Register Res = MI.getOperand(0).getReg(); 7117 Register LHS = MI.getOperand(1).getReg(); 7118 Register RHS = MI.getOperand(2).getReg(); 7119 LLT Ty = MRI.getType(Res); 7120 LLT BoolTy = Ty.changeElementSize(1); 7121 7122 unsigned BW = Ty.getScalarSizeInBits(); 7123 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 7124 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 7125 : MIRBuilder.buildLShr(Ty, Result, RHS); 7126 7127 MachineInstrBuilder SatVal; 7128 if (IsSigned) { 7129 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 7130 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 7131 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 7132 MIRBuilder.buildConstant(Ty, 0)); 7133 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 7134 } else { 7135 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 7136 } 7137 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 7138 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 7139 7140 MI.eraseFromParent(); 7141 return Legalized; 7142 } 7143 7144 LegalizerHelper::LegalizeResult 7145 LegalizerHelper::lowerBswap(MachineInstr &MI) { 7146 Register Dst = MI.getOperand(0).getReg(); 7147 Register Src = MI.getOperand(1).getReg(); 7148 const LLT Ty = MRI.getType(Src); 7149 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 7150 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 7151 7152 // Swap most and least significant byte, set remaining bytes in Res to zero. 7153 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 7154 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 7155 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 7156 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 7157 7158 // Set i-th high/low byte in Res to i-th low/high byte from Src. 7159 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 7160 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 7161 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 7162 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 7163 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 7164 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 7165 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 7166 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 7167 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 7168 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 7169 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 7170 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 7171 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 7172 } 7173 Res.getInstr()->getOperand(0).setReg(Dst); 7174 7175 MI.eraseFromParent(); 7176 return Legalized; 7177 } 7178 7179 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 7180 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 7181 MachineInstrBuilder Src, APInt Mask) { 7182 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 7183 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 7184 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 7185 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 7186 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 7187 return B.buildOr(Dst, LHS, RHS); 7188 } 7189 7190 LegalizerHelper::LegalizeResult 7191 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 7192 Register Dst = MI.getOperand(0).getReg(); 7193 Register Src = MI.getOperand(1).getReg(); 7194 const LLT Ty = MRI.getType(Src); 7195 unsigned Size = Ty.getSizeInBits(); 7196 7197 MachineInstrBuilder BSWAP = 7198 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 7199 7200 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 7201 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 7202 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 7203 MachineInstrBuilder Swap4 = 7204 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 7205 7206 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 7207 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 7208 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 7209 MachineInstrBuilder Swap2 = 7210 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 7211 7212 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 7213 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 7214 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 7215 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 7216 7217 MI.eraseFromParent(); 7218 return Legalized; 7219 } 7220 7221 LegalizerHelper::LegalizeResult 7222 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 7223 MachineFunction &MF = MIRBuilder.getMF(); 7224 7225 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 7226 int NameOpIdx = IsRead ? 1 : 0; 7227 int ValRegIndex = IsRead ? 0 : 1; 7228 7229 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 7230 const LLT Ty = MRI.getType(ValReg); 7231 const MDString *RegStr = cast<MDString>( 7232 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 7233 7234 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 7235 if (!PhysReg.isValid()) 7236 return UnableToLegalize; 7237 7238 if (IsRead) 7239 MIRBuilder.buildCopy(ValReg, PhysReg); 7240 else 7241 MIRBuilder.buildCopy(PhysReg, ValReg); 7242 7243 MI.eraseFromParent(); 7244 return Legalized; 7245 } 7246 7247 LegalizerHelper::LegalizeResult 7248 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 7249 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 7250 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 7251 Register Result = MI.getOperand(0).getReg(); 7252 LLT OrigTy = MRI.getType(Result); 7253 auto SizeInBits = OrigTy.getScalarSizeInBits(); 7254 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 7255 7256 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 7257 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 7258 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 7259 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 7260 7261 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 7262 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 7263 MIRBuilder.buildTrunc(Result, Shifted); 7264 7265 MI.eraseFromParent(); 7266 return Legalized; 7267 } 7268 7269 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 7270 // Implement vector G_SELECT in terms of XOR, AND, OR. 7271 Register DstReg = MI.getOperand(0).getReg(); 7272 Register MaskReg = MI.getOperand(1).getReg(); 7273 Register Op1Reg = MI.getOperand(2).getReg(); 7274 Register Op2Reg = MI.getOperand(3).getReg(); 7275 LLT DstTy = MRI.getType(DstReg); 7276 LLT MaskTy = MRI.getType(MaskReg); 7277 if (!DstTy.isVector()) 7278 return UnableToLegalize; 7279 7280 if (MaskTy.isScalar()) { 7281 // Turn the scalar condition into a vector condition mask. 7282 7283 Register MaskElt = MaskReg; 7284 7285 // The condition was potentially zero extended before, but we want a sign 7286 // extended boolean. 7287 if (MaskTy.getSizeInBits() <= DstTy.getScalarSizeInBits() && 7288 MaskTy != LLT::scalar(1)) { 7289 MaskElt = MIRBuilder.buildSExtInReg(MaskTy, MaskElt, 1).getReg(0); 7290 } 7291 7292 // Continue the sign extension (or truncate) to match the data type. 7293 MaskElt = MIRBuilder.buildSExtOrTrunc(DstTy.getElementType(), 7294 MaskElt).getReg(0); 7295 7296 // Generate a vector splat idiom. 7297 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 7298 MaskReg = ShufSplat.getReg(0); 7299 MaskTy = DstTy; 7300 } 7301 7302 if (MaskTy.getSizeInBits() != DstTy.getSizeInBits()) { 7303 return UnableToLegalize; 7304 } 7305 7306 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 7307 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 7308 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 7309 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 7310 MI.eraseFromParent(); 7311 return Legalized; 7312 } 7313 7314 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) { 7315 // Split DIVREM into individual instructions. 7316 unsigned Opcode = MI.getOpcode(); 7317 7318 MIRBuilder.buildInstr( 7319 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV 7320 : TargetOpcode::G_UDIV, 7321 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7322 MIRBuilder.buildInstr( 7323 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM 7324 : TargetOpcode::G_UREM, 7325 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7326 MI.eraseFromParent(); 7327 return Legalized; 7328 } 7329 7330 LegalizerHelper::LegalizeResult 7331 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) { 7332 // Expand %res = G_ABS %a into: 7333 // %v1 = G_ASHR %a, scalar_size-1 7334 // %v2 = G_ADD %a, %v1 7335 // %res = G_XOR %v2, %v1 7336 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 7337 Register OpReg = MI.getOperand(1).getReg(); 7338 auto ShiftAmt = 7339 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 7340 auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 7341 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 7342 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 7343 MI.eraseFromParent(); 7344 return Legalized; 7345 } 7346 7347 LegalizerHelper::LegalizeResult 7348 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) { 7349 // Expand %res = G_ABS %a into: 7350 // %v1 = G_CONSTANT 0 7351 // %v2 = G_SUB %v1, %a 7352 // %res = G_SMAX %a, %v2 7353 Register SrcReg = MI.getOperand(1).getReg(); 7354 LLT Ty = MRI.getType(SrcReg); 7355 auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0); 7356 auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0); 7357 MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub); 7358 MI.eraseFromParent(); 7359 return Legalized; 7360 } 7361 7362 LegalizerHelper::LegalizeResult 7363 LegalizerHelper::lowerVectorReduction(MachineInstr &MI) { 7364 Register SrcReg = MI.getOperand(1).getReg(); 7365 LLT SrcTy = MRI.getType(SrcReg); 7366 LLT DstTy = MRI.getType(SrcReg); 7367 7368 // The source could be a scalar if the IR type was <1 x sN>. 7369 if (SrcTy.isScalar()) { 7370 if (DstTy.getSizeInBits() > SrcTy.getSizeInBits()) 7371 return UnableToLegalize; // FIXME: handle extension. 7372 // This can be just a plain copy. 7373 Observer.changingInstr(MI); 7374 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY)); 7375 Observer.changedInstr(MI); 7376 return Legalized; 7377 } 7378 return UnableToLegalize;; 7379 } 7380 7381 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 7382 // On Darwin, -Os means optimize for size without hurting performance, so 7383 // only really optimize for size when -Oz (MinSize) is used. 7384 if (MF.getTarget().getTargetTriple().isOSDarwin()) 7385 return MF.getFunction().hasMinSize(); 7386 return MF.getFunction().hasOptSize(); 7387 } 7388 7389 // Returns a list of types to use for memory op lowering in MemOps. A partial 7390 // port of findOptimalMemOpLowering in TargetLowering. 7391 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 7392 unsigned Limit, const MemOp &Op, 7393 unsigned DstAS, unsigned SrcAS, 7394 const AttributeList &FuncAttributes, 7395 const TargetLowering &TLI) { 7396 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 7397 return false; 7398 7399 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 7400 7401 if (Ty == LLT()) { 7402 // Use the largest scalar type whose alignment constraints are satisfied. 7403 // We only need to check DstAlign here as SrcAlign is always greater or 7404 // equal to DstAlign (or zero). 7405 Ty = LLT::scalar(64); 7406 if (Op.isFixedDstAlign()) 7407 while (Op.getDstAlign() < Ty.getSizeInBytes() && 7408 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 7409 Ty = LLT::scalar(Ty.getSizeInBytes()); 7410 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 7411 // FIXME: check for the largest legal type we can load/store to. 7412 } 7413 7414 unsigned NumMemOps = 0; 7415 uint64_t Size = Op.size(); 7416 while (Size) { 7417 unsigned TySize = Ty.getSizeInBytes(); 7418 while (TySize > Size) { 7419 // For now, only use non-vector load / store's for the left-over pieces. 7420 LLT NewTy = Ty; 7421 // FIXME: check for mem op safety and legality of the types. Not all of 7422 // SDAGisms map cleanly to GISel concepts. 7423 if (NewTy.isVector()) 7424 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 7425 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 7426 unsigned NewTySize = NewTy.getSizeInBytes(); 7427 assert(NewTySize > 0 && "Could not find appropriate type"); 7428 7429 // If the new LLT cannot cover all of the remaining bits, then consider 7430 // issuing a (or a pair of) unaligned and overlapping load / store. 7431 bool Fast; 7432 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 7433 MVT VT = getMVTForLLT(Ty); 7434 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 7435 TLI.allowsMisalignedMemoryAccesses( 7436 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 7437 MachineMemOperand::MONone, &Fast) && 7438 Fast) 7439 TySize = Size; 7440 else { 7441 Ty = NewTy; 7442 TySize = NewTySize; 7443 } 7444 } 7445 7446 if (++NumMemOps > Limit) 7447 return false; 7448 7449 MemOps.push_back(Ty); 7450 Size -= TySize; 7451 } 7452 7453 return true; 7454 } 7455 7456 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 7457 if (Ty.isVector()) 7458 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 7459 Ty.getNumElements()); 7460 return IntegerType::get(C, Ty.getSizeInBits()); 7461 } 7462 7463 // Get a vectorized representation of the memset value operand, GISel edition. 7464 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 7465 MachineRegisterInfo &MRI = *MIB.getMRI(); 7466 unsigned NumBits = Ty.getScalarSizeInBits(); 7467 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); 7468 if (!Ty.isVector() && ValVRegAndVal) { 7469 APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8); 7470 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 7471 return MIB.buildConstant(Ty, SplatVal).getReg(0); 7472 } 7473 7474 // Extend the byte value to the larger type, and then multiply by a magic 7475 // value 0x010101... in order to replicate it across every byte. 7476 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 7477 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 7478 return MIB.buildConstant(Ty, 0).getReg(0); 7479 } 7480 7481 LLT ExtType = Ty.getScalarType(); 7482 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 7483 if (NumBits > 8) { 7484 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 7485 auto MagicMI = MIB.buildConstant(ExtType, Magic); 7486 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 7487 } 7488 7489 // For vector types create a G_BUILD_VECTOR. 7490 if (Ty.isVector()) 7491 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 7492 7493 return Val; 7494 } 7495 7496 LegalizerHelper::LegalizeResult 7497 LegalizerHelper::lowerMemset(MachineInstr &MI, Register Dst, Register Val, 7498 uint64_t KnownLen, Align Alignment, 7499 bool IsVolatile) { 7500 auto &MF = *MI.getParent()->getParent(); 7501 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7502 auto &DL = MF.getDataLayout(); 7503 LLVMContext &C = MF.getFunction().getContext(); 7504 7505 assert(KnownLen != 0 && "Have a zero length memset length!"); 7506 7507 bool DstAlignCanChange = false; 7508 MachineFrameInfo &MFI = MF.getFrameInfo(); 7509 bool OptSize = shouldLowerMemFuncForSize(MF); 7510 7511 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 7512 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 7513 DstAlignCanChange = true; 7514 7515 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 7516 std::vector<LLT> MemOps; 7517 7518 const auto &DstMMO = **MI.memoperands_begin(); 7519 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 7520 7521 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); 7522 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 7523 7524 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 7525 MemOp::Set(KnownLen, DstAlignCanChange, 7526 Alignment, 7527 /*IsZeroMemset=*/IsZeroVal, 7528 /*IsVolatile=*/IsVolatile), 7529 DstPtrInfo.getAddrSpace(), ~0u, 7530 MF.getFunction().getAttributes(), TLI)) 7531 return UnableToLegalize; 7532 7533 if (DstAlignCanChange) { 7534 // Get an estimate of the type from the LLT. 7535 Type *IRTy = getTypeForLLT(MemOps[0], C); 7536 Align NewAlign = DL.getABITypeAlign(IRTy); 7537 if (NewAlign > Alignment) { 7538 Alignment = NewAlign; 7539 unsigned FI = FIDef->getOperand(1).getIndex(); 7540 // Give the stack frame object a larger alignment if needed. 7541 if (MFI.getObjectAlign(FI) < Alignment) 7542 MFI.setObjectAlignment(FI, Alignment); 7543 } 7544 } 7545 7546 MachineIRBuilder MIB(MI); 7547 // Find the largest store and generate the bit pattern for it. 7548 LLT LargestTy = MemOps[0]; 7549 for (unsigned i = 1; i < MemOps.size(); i++) 7550 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 7551 LargestTy = MemOps[i]; 7552 7553 // The memset stored value is always defined as an s8, so in order to make it 7554 // work with larger store types we need to repeat the bit pattern across the 7555 // wider type. 7556 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 7557 7558 if (!MemSetValue) 7559 return UnableToLegalize; 7560 7561 // Generate the stores. For each store type in the list, we generate the 7562 // matching store of that type to the destination address. 7563 LLT PtrTy = MRI.getType(Dst); 7564 unsigned DstOff = 0; 7565 unsigned Size = KnownLen; 7566 for (unsigned I = 0; I < MemOps.size(); I++) { 7567 LLT Ty = MemOps[I]; 7568 unsigned TySize = Ty.getSizeInBytes(); 7569 if (TySize > Size) { 7570 // Issuing an unaligned load / store pair that overlaps with the previous 7571 // pair. Adjust the offset accordingly. 7572 assert(I == MemOps.size() - 1 && I != 0); 7573 DstOff -= TySize - Size; 7574 } 7575 7576 // If this store is smaller than the largest store see whether we can get 7577 // the smaller value for free with a truncate. 7578 Register Value = MemSetValue; 7579 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 7580 MVT VT = getMVTForLLT(Ty); 7581 MVT LargestVT = getMVTForLLT(LargestTy); 7582 if (!LargestTy.isVector() && !Ty.isVector() && 7583 TLI.isTruncateFree(LargestVT, VT)) 7584 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 7585 else 7586 Value = getMemsetValue(Val, Ty, MIB); 7587 if (!Value) 7588 return UnableToLegalize; 7589 } 7590 7591 auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty); 7592 7593 Register Ptr = Dst; 7594 if (DstOff != 0) { 7595 auto Offset = 7596 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 7597 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 7598 } 7599 7600 MIB.buildStore(Value, Ptr, *StoreMMO); 7601 DstOff += Ty.getSizeInBytes(); 7602 Size -= TySize; 7603 } 7604 7605 MI.eraseFromParent(); 7606 return Legalized; 7607 } 7608 7609 LegalizerHelper::LegalizeResult 7610 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI) { 7611 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 7612 7613 Register Dst = MI.getOperand(0).getReg(); 7614 Register Src = MI.getOperand(1).getReg(); 7615 Register Len = MI.getOperand(2).getReg(); 7616 7617 const auto *MMOIt = MI.memoperands_begin(); 7618 const MachineMemOperand *MemOp = *MMOIt; 7619 bool IsVolatile = MemOp->isVolatile(); 7620 7621 // See if this is a constant length copy 7622 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); 7623 // FIXME: support dynamically sized G_MEMCPY_INLINE 7624 assert(LenVRegAndVal.hasValue() && 7625 "inline memcpy with dynamic size is not yet supported"); 7626 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 7627 if (KnownLen == 0) { 7628 MI.eraseFromParent(); 7629 return Legalized; 7630 } 7631 7632 const auto &DstMMO = **MI.memoperands_begin(); 7633 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 7634 Align DstAlign = DstMMO.getBaseAlign(); 7635 Align SrcAlign = SrcMMO.getBaseAlign(); 7636 7637 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 7638 IsVolatile); 7639 } 7640 7641 LegalizerHelper::LegalizeResult 7642 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI, Register Dst, Register Src, 7643 uint64_t KnownLen, Align DstAlign, 7644 Align SrcAlign, bool IsVolatile) { 7645 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 7646 return lowerMemcpy(MI, Dst, Src, KnownLen, 7647 std::numeric_limits<uint64_t>::max(), DstAlign, SrcAlign, 7648 IsVolatile); 7649 } 7650 7651 LegalizerHelper::LegalizeResult 7652 LegalizerHelper::lowerMemcpy(MachineInstr &MI, Register Dst, Register Src, 7653 uint64_t KnownLen, uint64_t Limit, Align DstAlign, 7654 Align SrcAlign, bool IsVolatile) { 7655 auto &MF = *MI.getParent()->getParent(); 7656 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7657 auto &DL = MF.getDataLayout(); 7658 LLVMContext &C = MF.getFunction().getContext(); 7659 7660 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 7661 7662 bool DstAlignCanChange = false; 7663 MachineFrameInfo &MFI = MF.getFrameInfo(); 7664 Align Alignment = commonAlignment(DstAlign, SrcAlign); 7665 7666 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 7667 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 7668 DstAlignCanChange = true; 7669 7670 // FIXME: infer better src pointer alignment like SelectionDAG does here. 7671 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 7672 // if the memcpy is in a tail call position. 7673 7674 std::vector<LLT> MemOps; 7675 7676 const auto &DstMMO = **MI.memoperands_begin(); 7677 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 7678 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 7679 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 7680 7681 if (!findGISelOptimalMemOpLowering( 7682 MemOps, Limit, 7683 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 7684 IsVolatile), 7685 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 7686 MF.getFunction().getAttributes(), TLI)) 7687 return UnableToLegalize; 7688 7689 if (DstAlignCanChange) { 7690 // Get an estimate of the type from the LLT. 7691 Type *IRTy = getTypeForLLT(MemOps[0], C); 7692 Align NewAlign = DL.getABITypeAlign(IRTy); 7693 7694 // Don't promote to an alignment that would require dynamic stack 7695 // realignment. 7696 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 7697 if (!TRI->hasStackRealignment(MF)) 7698 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 7699 NewAlign = NewAlign / 2; 7700 7701 if (NewAlign > Alignment) { 7702 Alignment = NewAlign; 7703 unsigned FI = FIDef->getOperand(1).getIndex(); 7704 // Give the stack frame object a larger alignment if needed. 7705 if (MFI.getObjectAlign(FI) < Alignment) 7706 MFI.setObjectAlignment(FI, Alignment); 7707 } 7708 } 7709 7710 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 7711 7712 MachineIRBuilder MIB(MI); 7713 // Now we need to emit a pair of load and stores for each of the types we've 7714 // collected. I.e. for each type, generate a load from the source pointer of 7715 // that type width, and then generate a corresponding store to the dest buffer 7716 // of that value loaded. This can result in a sequence of loads and stores 7717 // mixed types, depending on what the target specifies as good types to use. 7718 unsigned CurrOffset = 0; 7719 unsigned Size = KnownLen; 7720 for (auto CopyTy : MemOps) { 7721 // Issuing an unaligned load / store pair that overlaps with the previous 7722 // pair. Adjust the offset accordingly. 7723 if (CopyTy.getSizeInBytes() > Size) 7724 CurrOffset -= CopyTy.getSizeInBytes() - Size; 7725 7726 // Construct MMOs for the accesses. 7727 auto *LoadMMO = 7728 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 7729 auto *StoreMMO = 7730 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 7731 7732 // Create the load. 7733 Register LoadPtr = Src; 7734 Register Offset; 7735 if (CurrOffset != 0) { 7736 LLT SrcTy = MRI.getType(Src); 7737 Offset = MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset) 7738 .getReg(0); 7739 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); 7740 } 7741 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 7742 7743 // Create the store. 7744 Register StorePtr = Dst; 7745 if (CurrOffset != 0) { 7746 LLT DstTy = MRI.getType(Dst); 7747 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); 7748 } 7749 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 7750 CurrOffset += CopyTy.getSizeInBytes(); 7751 Size -= CopyTy.getSizeInBytes(); 7752 } 7753 7754 MI.eraseFromParent(); 7755 return Legalized; 7756 } 7757 7758 LegalizerHelper::LegalizeResult 7759 LegalizerHelper::lowerMemmove(MachineInstr &MI, Register Dst, Register Src, 7760 uint64_t KnownLen, Align DstAlign, Align SrcAlign, 7761 bool IsVolatile) { 7762 auto &MF = *MI.getParent()->getParent(); 7763 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7764 auto &DL = MF.getDataLayout(); 7765 LLVMContext &C = MF.getFunction().getContext(); 7766 7767 assert(KnownLen != 0 && "Have a zero length memmove length!"); 7768 7769 bool DstAlignCanChange = false; 7770 MachineFrameInfo &MFI = MF.getFrameInfo(); 7771 bool OptSize = shouldLowerMemFuncForSize(MF); 7772 Align Alignment = commonAlignment(DstAlign, SrcAlign); 7773 7774 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 7775 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 7776 DstAlignCanChange = true; 7777 7778 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 7779 std::vector<LLT> MemOps; 7780 7781 const auto &DstMMO = **MI.memoperands_begin(); 7782 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 7783 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 7784 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 7785 7786 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 7787 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 7788 // same thing here. 7789 if (!findGISelOptimalMemOpLowering( 7790 MemOps, Limit, 7791 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 7792 /*IsVolatile*/ true), 7793 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 7794 MF.getFunction().getAttributes(), TLI)) 7795 return UnableToLegalize; 7796 7797 if (DstAlignCanChange) { 7798 // Get an estimate of the type from the LLT. 7799 Type *IRTy = getTypeForLLT(MemOps[0], C); 7800 Align NewAlign = DL.getABITypeAlign(IRTy); 7801 7802 // Don't promote to an alignment that would require dynamic stack 7803 // realignment. 7804 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 7805 if (!TRI->hasStackRealignment(MF)) 7806 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 7807 NewAlign = NewAlign / 2; 7808 7809 if (NewAlign > Alignment) { 7810 Alignment = NewAlign; 7811 unsigned FI = FIDef->getOperand(1).getIndex(); 7812 // Give the stack frame object a larger alignment if needed. 7813 if (MFI.getObjectAlign(FI) < Alignment) 7814 MFI.setObjectAlignment(FI, Alignment); 7815 } 7816 } 7817 7818 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 7819 7820 MachineIRBuilder MIB(MI); 7821 // Memmove requires that we perform the loads first before issuing the stores. 7822 // Apart from that, this loop is pretty much doing the same thing as the 7823 // memcpy codegen function. 7824 unsigned CurrOffset = 0; 7825 SmallVector<Register, 16> LoadVals; 7826 for (auto CopyTy : MemOps) { 7827 // Construct MMO for the load. 7828 auto *LoadMMO = 7829 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 7830 7831 // Create the load. 7832 Register LoadPtr = Src; 7833 if (CurrOffset != 0) { 7834 LLT SrcTy = MRI.getType(Src); 7835 auto Offset = 7836 MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset); 7837 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); 7838 } 7839 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 7840 CurrOffset += CopyTy.getSizeInBytes(); 7841 } 7842 7843 CurrOffset = 0; 7844 for (unsigned I = 0; I < MemOps.size(); ++I) { 7845 LLT CopyTy = MemOps[I]; 7846 // Now store the values loaded. 7847 auto *StoreMMO = 7848 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 7849 7850 Register StorePtr = Dst; 7851 if (CurrOffset != 0) { 7852 LLT DstTy = MRI.getType(Dst); 7853 auto Offset = 7854 MIB.buildConstant(LLT::scalar(DstTy.getSizeInBits()), CurrOffset); 7855 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); 7856 } 7857 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 7858 CurrOffset += CopyTy.getSizeInBytes(); 7859 } 7860 MI.eraseFromParent(); 7861 return Legalized; 7862 } 7863 7864 LegalizerHelper::LegalizeResult 7865 LegalizerHelper::lowerMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 7866 const unsigned Opc = MI.getOpcode(); 7867 // This combine is fairly complex so it's not written with a separate 7868 // matcher function. 7869 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 7870 Opc == TargetOpcode::G_MEMSET) && 7871 "Expected memcpy like instruction"); 7872 7873 auto MMOIt = MI.memoperands_begin(); 7874 const MachineMemOperand *MemOp = *MMOIt; 7875 7876 Align DstAlign = MemOp->getBaseAlign(); 7877 Align SrcAlign; 7878 Register Dst = MI.getOperand(0).getReg(); 7879 Register Src = MI.getOperand(1).getReg(); 7880 Register Len = MI.getOperand(2).getReg(); 7881 7882 if (Opc != TargetOpcode::G_MEMSET) { 7883 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 7884 MemOp = *(++MMOIt); 7885 SrcAlign = MemOp->getBaseAlign(); 7886 } 7887 7888 // See if this is a constant length copy 7889 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); 7890 if (!LenVRegAndVal) 7891 return UnableToLegalize; 7892 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 7893 7894 if (KnownLen == 0) { 7895 MI.eraseFromParent(); 7896 return Legalized; 7897 } 7898 7899 bool IsVolatile = MemOp->isVolatile(); 7900 if (Opc == TargetOpcode::G_MEMCPY_INLINE) 7901 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 7902 IsVolatile); 7903 7904 // Don't try to optimize volatile. 7905 if (IsVolatile) 7906 return UnableToLegalize; 7907 7908 if (MaxLen && KnownLen > MaxLen) 7909 return UnableToLegalize; 7910 7911 if (Opc == TargetOpcode::G_MEMCPY) { 7912 auto &MF = *MI.getParent()->getParent(); 7913 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7914 bool OptSize = shouldLowerMemFuncForSize(MF); 7915 uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize); 7916 return lowerMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign, 7917 IsVolatile); 7918 } 7919 if (Opc == TargetOpcode::G_MEMMOVE) 7920 return lowerMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 7921 if (Opc == TargetOpcode::G_MEMSET) 7922 return lowerMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 7923 return UnableToLegalize; 7924 } 7925