1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 #define DEBUG_TYPE "legalizer"
30 
31 using namespace llvm;
32 using namespace LegalizeActions;
33 using namespace MIPatternMatch;
34 
35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
36 ///
37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
38 /// with any leftover piece as type \p LeftoverTy
39 ///
40 /// Returns -1 in the first element of the pair if the breakdown is not
41 /// satisfiable.
42 static std::pair<int, int>
43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
44   assert(!LeftoverTy.isValid() && "this is an out argument");
45 
46   unsigned Size = OrigTy.getSizeInBits();
47   unsigned NarrowSize = NarrowTy.getSizeInBits();
48   unsigned NumParts = Size / NarrowSize;
49   unsigned LeftoverSize = Size - NumParts * NarrowSize;
50   assert(Size > NarrowSize);
51 
52   if (LeftoverSize == 0)
53     return {NumParts, 0};
54 
55   if (NarrowTy.isVector()) {
56     unsigned EltSize = OrigTy.getScalarSizeInBits();
57     if (LeftoverSize % EltSize != 0)
58       return {-1, -1};
59     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
60   } else {
61     LeftoverTy = LLT::scalar(LeftoverSize);
62   }
63 
64   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
65   return std::make_pair(NumParts, NumLeftover);
66 }
67 
68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
69 
70   if (!Ty.isScalar())
71     return nullptr;
72 
73   switch (Ty.getSizeInBits()) {
74   case 16:
75     return Type::getHalfTy(Ctx);
76   case 32:
77     return Type::getFloatTy(Ctx);
78   case 64:
79     return Type::getDoubleTy(Ctx);
80   case 80:
81     return Type::getX86_FP80Ty(Ctx);
82   case 128:
83     return Type::getFP128Ty(Ctx);
84   default:
85     return nullptr;
86   }
87 }
88 
89 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
90                                  GISelChangeObserver &Observer,
91                                  MachineIRBuilder &Builder)
92     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
93       LI(*MF.getSubtarget().getLegalizerInfo()),
94       TLI(*MF.getSubtarget().getTargetLowering()) {
95   MIRBuilder.setChangeObserver(Observer);
96 }
97 
98 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
99                                  GISelChangeObserver &Observer,
100                                  MachineIRBuilder &B)
101   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
102     TLI(*MF.getSubtarget().getTargetLowering()) {
103   MIRBuilder.setChangeObserver(Observer);
104 }
105 LegalizerHelper::LegalizeResult
106 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
107   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
108 
109   MIRBuilder.setInstrAndDebugLoc(MI);
110 
111   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
112       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
113     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
114   auto Step = LI.getAction(MI, MRI);
115   switch (Step.Action) {
116   case Legal:
117     LLVM_DEBUG(dbgs() << ".. Already legal\n");
118     return AlreadyLegal;
119   case Libcall:
120     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
121     return libcall(MI);
122   case NarrowScalar:
123     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
124     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
125   case WidenScalar:
126     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
127     return widenScalar(MI, Step.TypeIdx, Step.NewType);
128   case Bitcast:
129     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
130     return bitcast(MI, Step.TypeIdx, Step.NewType);
131   case Lower:
132     LLVM_DEBUG(dbgs() << ".. Lower\n");
133     return lower(MI, Step.TypeIdx, Step.NewType);
134   case FewerElements:
135     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
136     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
137   case MoreElements:
138     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
139     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
140   case Custom:
141     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
142     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
143   default:
144     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
145     return UnableToLegalize;
146   }
147 }
148 
149 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
150                                    SmallVectorImpl<Register> &VRegs) {
151   for (int i = 0; i < NumParts; ++i)
152     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
153   MIRBuilder.buildUnmerge(VRegs, Reg);
154 }
155 
156 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
157                                    LLT MainTy, LLT &LeftoverTy,
158                                    SmallVectorImpl<Register> &VRegs,
159                                    SmallVectorImpl<Register> &LeftoverRegs) {
160   assert(!LeftoverTy.isValid() && "this is an out argument");
161 
162   unsigned RegSize = RegTy.getSizeInBits();
163   unsigned MainSize = MainTy.getSizeInBits();
164   unsigned NumParts = RegSize / MainSize;
165   unsigned LeftoverSize = RegSize - NumParts * MainSize;
166 
167   // Use an unmerge when possible.
168   if (LeftoverSize == 0) {
169     for (unsigned I = 0; I < NumParts; ++I)
170       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
171     MIRBuilder.buildUnmerge(VRegs, Reg);
172     return true;
173   }
174 
175   if (MainTy.isVector()) {
176     unsigned EltSize = MainTy.getScalarSizeInBits();
177     if (LeftoverSize % EltSize != 0)
178       return false;
179     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
180   } else {
181     LeftoverTy = LLT::scalar(LeftoverSize);
182   }
183 
184   // For irregular sizes, extract the individual parts.
185   for (unsigned I = 0; I != NumParts; ++I) {
186     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
187     VRegs.push_back(NewReg);
188     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
189   }
190 
191   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
192        Offset += LeftoverSize) {
193     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
194     LeftoverRegs.push_back(NewReg);
195     MIRBuilder.buildExtract(NewReg, Reg, Offset);
196   }
197 
198   return true;
199 }
200 
201 void LegalizerHelper::insertParts(Register DstReg,
202                                   LLT ResultTy, LLT PartTy,
203                                   ArrayRef<Register> PartRegs,
204                                   LLT LeftoverTy,
205                                   ArrayRef<Register> LeftoverRegs) {
206   if (!LeftoverTy.isValid()) {
207     assert(LeftoverRegs.empty());
208 
209     if (!ResultTy.isVector()) {
210       MIRBuilder.buildMerge(DstReg, PartRegs);
211       return;
212     }
213 
214     if (PartTy.isVector())
215       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
216     else
217       MIRBuilder.buildBuildVector(DstReg, PartRegs);
218     return;
219   }
220 
221   unsigned PartSize = PartTy.getSizeInBits();
222   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
223 
224   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
225   MIRBuilder.buildUndef(CurResultReg);
226 
227   unsigned Offset = 0;
228   for (Register PartReg : PartRegs) {
229     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
230     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
231     CurResultReg = NewResultReg;
232     Offset += PartSize;
233   }
234 
235   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
236     // Use the original output register for the final insert to avoid a copy.
237     Register NewResultReg = (I + 1 == E) ?
238       DstReg : MRI.createGenericVirtualRegister(ResultTy);
239 
240     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
241     CurResultReg = NewResultReg;
242     Offset += LeftoverPartSize;
243   }
244 }
245 
246 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
247 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
248                               const MachineInstr &MI) {
249   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
250 
251   const int StartIdx = Regs.size();
252   const int NumResults = MI.getNumOperands() - 1;
253   Regs.resize(Regs.size() + NumResults);
254   for (int I = 0; I != NumResults; ++I)
255     Regs[StartIdx + I] = MI.getOperand(I).getReg();
256 }
257 
258 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
259                                      LLT GCDTy, Register SrcReg) {
260   LLT SrcTy = MRI.getType(SrcReg);
261   if (SrcTy == GCDTy) {
262     // If the source already evenly divides the result type, we don't need to do
263     // anything.
264     Parts.push_back(SrcReg);
265   } else {
266     // Need to split into common type sized pieces.
267     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
268     getUnmergeResults(Parts, *Unmerge);
269   }
270 }
271 
272 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
273                                     LLT NarrowTy, Register SrcReg) {
274   LLT SrcTy = MRI.getType(SrcReg);
275   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
276   extractGCDType(Parts, GCDTy, SrcReg);
277   return GCDTy;
278 }
279 
280 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
281                                          SmallVectorImpl<Register> &VRegs,
282                                          unsigned PadStrategy) {
283   LLT LCMTy = getLCMType(DstTy, NarrowTy);
284 
285   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
286   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
287   int NumOrigSrc = VRegs.size();
288 
289   Register PadReg;
290 
291   // Get a value we can use to pad the source value if the sources won't evenly
292   // cover the result type.
293   if (NumOrigSrc < NumParts * NumSubParts) {
294     if (PadStrategy == TargetOpcode::G_ZEXT)
295       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
296     else if (PadStrategy == TargetOpcode::G_ANYEXT)
297       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
298     else {
299       assert(PadStrategy == TargetOpcode::G_SEXT);
300 
301       // Shift the sign bit of the low register through the high register.
302       auto ShiftAmt =
303         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
304       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
305     }
306   }
307 
308   // Registers for the final merge to be produced.
309   SmallVector<Register, 4> Remerge(NumParts);
310 
311   // Registers needed for intermediate merges, which will be merged into a
312   // source for Remerge.
313   SmallVector<Register, 4> SubMerge(NumSubParts);
314 
315   // Once we've fully read off the end of the original source bits, we can reuse
316   // the same high bits for remaining padding elements.
317   Register AllPadReg;
318 
319   // Build merges to the LCM type to cover the original result type.
320   for (int I = 0; I != NumParts; ++I) {
321     bool AllMergePartsArePadding = true;
322 
323     // Build the requested merges to the requested type.
324     for (int J = 0; J != NumSubParts; ++J) {
325       int Idx = I * NumSubParts + J;
326       if (Idx >= NumOrigSrc) {
327         SubMerge[J] = PadReg;
328         continue;
329       }
330 
331       SubMerge[J] = VRegs[Idx];
332 
333       // There are meaningful bits here we can't reuse later.
334       AllMergePartsArePadding = false;
335     }
336 
337     // If we've filled up a complete piece with padding bits, we can directly
338     // emit the natural sized constant if applicable, rather than a merge of
339     // smaller constants.
340     if (AllMergePartsArePadding && !AllPadReg) {
341       if (PadStrategy == TargetOpcode::G_ANYEXT)
342         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
343       else if (PadStrategy == TargetOpcode::G_ZEXT)
344         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
345 
346       // If this is a sign extension, we can't materialize a trivial constant
347       // with the right type and have to produce a merge.
348     }
349 
350     if (AllPadReg) {
351       // Avoid creating additional instructions if we're just adding additional
352       // copies of padding bits.
353       Remerge[I] = AllPadReg;
354       continue;
355     }
356 
357     if (NumSubParts == 1)
358       Remerge[I] = SubMerge[0];
359     else
360       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
361 
362     // In the sign extend padding case, re-use the first all-signbit merge.
363     if (AllMergePartsArePadding && !AllPadReg)
364       AllPadReg = Remerge[I];
365   }
366 
367   VRegs = std::move(Remerge);
368   return LCMTy;
369 }
370 
371 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
372                                                ArrayRef<Register> RemergeRegs) {
373   LLT DstTy = MRI.getType(DstReg);
374 
375   // Create the merge to the widened source, and extract the relevant bits into
376   // the result.
377 
378   if (DstTy == LCMTy) {
379     MIRBuilder.buildMerge(DstReg, RemergeRegs);
380     return;
381   }
382 
383   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
384   if (DstTy.isScalar() && LCMTy.isScalar()) {
385     MIRBuilder.buildTrunc(DstReg, Remerge);
386     return;
387   }
388 
389   if (LCMTy.isVector()) {
390     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
391     SmallVector<Register, 8> UnmergeDefs(NumDefs);
392     UnmergeDefs[0] = DstReg;
393     for (unsigned I = 1; I != NumDefs; ++I)
394       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
395 
396     MIRBuilder.buildUnmerge(UnmergeDefs,
397                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
398     return;
399   }
400 
401   llvm_unreachable("unhandled case");
402 }
403 
404 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
405 #define RTLIBCASE_INT(LibcallPrefix)                                           \
406   do {                                                                         \
407     switch (Size) {                                                            \
408     case 32:                                                                   \
409       return RTLIB::LibcallPrefix##32;                                         \
410     case 64:                                                                   \
411       return RTLIB::LibcallPrefix##64;                                         \
412     case 128:                                                                  \
413       return RTLIB::LibcallPrefix##128;                                        \
414     default:                                                                   \
415       llvm_unreachable("unexpected size");                                     \
416     }                                                                          \
417   } while (0)
418 
419 #define RTLIBCASE(LibcallPrefix)                                               \
420   do {                                                                         \
421     switch (Size) {                                                            \
422     case 32:                                                                   \
423       return RTLIB::LibcallPrefix##32;                                         \
424     case 64:                                                                   \
425       return RTLIB::LibcallPrefix##64;                                         \
426     case 80:                                                                   \
427       return RTLIB::LibcallPrefix##80;                                         \
428     case 128:                                                                  \
429       return RTLIB::LibcallPrefix##128;                                        \
430     default:                                                                   \
431       llvm_unreachable("unexpected size");                                     \
432     }                                                                          \
433   } while (0)
434 
435   switch (Opcode) {
436   case TargetOpcode::G_SDIV:
437     RTLIBCASE_INT(SDIV_I);
438   case TargetOpcode::G_UDIV:
439     RTLIBCASE_INT(UDIV_I);
440   case TargetOpcode::G_SREM:
441     RTLIBCASE_INT(SREM_I);
442   case TargetOpcode::G_UREM:
443     RTLIBCASE_INT(UREM_I);
444   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
445     RTLIBCASE_INT(CTLZ_I);
446   case TargetOpcode::G_FADD:
447     RTLIBCASE(ADD_F);
448   case TargetOpcode::G_FSUB:
449     RTLIBCASE(SUB_F);
450   case TargetOpcode::G_FMUL:
451     RTLIBCASE(MUL_F);
452   case TargetOpcode::G_FDIV:
453     RTLIBCASE(DIV_F);
454   case TargetOpcode::G_FEXP:
455     RTLIBCASE(EXP_F);
456   case TargetOpcode::G_FEXP2:
457     RTLIBCASE(EXP2_F);
458   case TargetOpcode::G_FREM:
459     RTLIBCASE(REM_F);
460   case TargetOpcode::G_FPOW:
461     RTLIBCASE(POW_F);
462   case TargetOpcode::G_FMA:
463     RTLIBCASE(FMA_F);
464   case TargetOpcode::G_FSIN:
465     RTLIBCASE(SIN_F);
466   case TargetOpcode::G_FCOS:
467     RTLIBCASE(COS_F);
468   case TargetOpcode::G_FLOG10:
469     RTLIBCASE(LOG10_F);
470   case TargetOpcode::G_FLOG:
471     RTLIBCASE(LOG_F);
472   case TargetOpcode::G_FLOG2:
473     RTLIBCASE(LOG2_F);
474   case TargetOpcode::G_FCEIL:
475     RTLIBCASE(CEIL_F);
476   case TargetOpcode::G_FFLOOR:
477     RTLIBCASE(FLOOR_F);
478   case TargetOpcode::G_FMINNUM:
479     RTLIBCASE(FMIN_F);
480   case TargetOpcode::G_FMAXNUM:
481     RTLIBCASE(FMAX_F);
482   case TargetOpcode::G_FSQRT:
483     RTLIBCASE(SQRT_F);
484   case TargetOpcode::G_FRINT:
485     RTLIBCASE(RINT_F);
486   case TargetOpcode::G_FNEARBYINT:
487     RTLIBCASE(NEARBYINT_F);
488   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
489     RTLIBCASE(ROUNDEVEN_F);
490   }
491   llvm_unreachable("Unknown libcall function");
492 }
493 
494 /// True if an instruction is in tail position in its caller. Intended for
495 /// legalizing libcalls as tail calls when possible.
496 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
497                                     MachineInstr &MI) {
498   MachineBasicBlock &MBB = *MI.getParent();
499   const Function &F = MBB.getParent()->getFunction();
500 
501   // Conservatively require the attributes of the call to match those of
502   // the return. Ignore NoAlias and NonNull because they don't affect the
503   // call sequence.
504   AttributeList CallerAttrs = F.getAttributes();
505   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
506           .removeAttribute(Attribute::NoAlias)
507           .removeAttribute(Attribute::NonNull)
508           .hasAttributes())
509     return false;
510 
511   // It's not safe to eliminate the sign / zero extension of the return value.
512   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
513       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
514     return false;
515 
516   // Only tail call if the following instruction is a standard return.
517   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
518   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
519     return false;
520 
521   return true;
522 }
523 
524 LegalizerHelper::LegalizeResult
525 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
526                     const CallLowering::ArgInfo &Result,
527                     ArrayRef<CallLowering::ArgInfo> Args,
528                     const CallingConv::ID CC) {
529   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
530 
531   CallLowering::CallLoweringInfo Info;
532   Info.CallConv = CC;
533   Info.Callee = MachineOperand::CreateES(Name);
534   Info.OrigRet = Result;
535   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
536   if (!CLI.lowerCall(MIRBuilder, Info))
537     return LegalizerHelper::UnableToLegalize;
538 
539   return LegalizerHelper::Legalized;
540 }
541 
542 LegalizerHelper::LegalizeResult
543 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
544                     const CallLowering::ArgInfo &Result,
545                     ArrayRef<CallLowering::ArgInfo> Args) {
546   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
547   const char *Name = TLI.getLibcallName(Libcall);
548   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
549   return createLibcall(MIRBuilder, Name, Result, Args, CC);
550 }
551 
552 // Useful for libcalls where all operands have the same type.
553 static LegalizerHelper::LegalizeResult
554 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
555               Type *OpType) {
556   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
557 
558   SmallVector<CallLowering::ArgInfo, 3> Args;
559   for (unsigned i = 1; i < MI.getNumOperands(); i++)
560     Args.push_back({MI.getOperand(i).getReg(), OpType});
561   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
562                        Args);
563 }
564 
565 LegalizerHelper::LegalizeResult
566 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
567                        MachineInstr &MI) {
568   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
569 
570   SmallVector<CallLowering::ArgInfo, 3> Args;
571   // Add all the args, except for the last which is an imm denoting 'tail'.
572   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
573     Register Reg = MI.getOperand(i).getReg();
574 
575     // Need derive an IR type for call lowering.
576     LLT OpLLT = MRI.getType(Reg);
577     Type *OpTy = nullptr;
578     if (OpLLT.isPointer())
579       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
580     else
581       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
582     Args.push_back({Reg, OpTy});
583   }
584 
585   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
586   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
587   RTLIB::Libcall RTLibcall;
588   switch (MI.getOpcode()) {
589   case TargetOpcode::G_MEMCPY:
590     RTLibcall = RTLIB::MEMCPY;
591     break;
592   case TargetOpcode::G_MEMMOVE:
593     RTLibcall = RTLIB::MEMMOVE;
594     break;
595   case TargetOpcode::G_MEMSET:
596     RTLibcall = RTLIB::MEMSET;
597     break;
598   default:
599     return LegalizerHelper::UnableToLegalize;
600   }
601   const char *Name = TLI.getLibcallName(RTLibcall);
602 
603   CallLowering::CallLoweringInfo Info;
604   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
605   Info.Callee = MachineOperand::CreateES(Name);
606   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
607   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
608                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
609 
610   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
611   if (!CLI.lowerCall(MIRBuilder, Info))
612     return LegalizerHelper::UnableToLegalize;
613 
614   if (Info.LoweredTailCall) {
615     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
616     // We must have a return following the call (or debug insts) to get past
617     // isLibCallInTailPosition.
618     do {
619       MachineInstr *Next = MI.getNextNode();
620       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
621              "Expected instr following MI to be return or debug inst?");
622       // We lowered a tail call, so the call is now the return from the block.
623       // Delete the old return.
624       Next->eraseFromParent();
625     } while (MI.getNextNode());
626   }
627 
628   return LegalizerHelper::Legalized;
629 }
630 
631 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
632                                        Type *FromType) {
633   auto ToMVT = MVT::getVT(ToType);
634   auto FromMVT = MVT::getVT(FromType);
635 
636   switch (Opcode) {
637   case TargetOpcode::G_FPEXT:
638     return RTLIB::getFPEXT(FromMVT, ToMVT);
639   case TargetOpcode::G_FPTRUNC:
640     return RTLIB::getFPROUND(FromMVT, ToMVT);
641   case TargetOpcode::G_FPTOSI:
642     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
643   case TargetOpcode::G_FPTOUI:
644     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
645   case TargetOpcode::G_SITOFP:
646     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
647   case TargetOpcode::G_UITOFP:
648     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
649   }
650   llvm_unreachable("Unsupported libcall function");
651 }
652 
653 static LegalizerHelper::LegalizeResult
654 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
655                   Type *FromType) {
656   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
657   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
658                        {{MI.getOperand(1).getReg(), FromType}});
659 }
660 
661 LegalizerHelper::LegalizeResult
662 LegalizerHelper::libcall(MachineInstr &MI) {
663   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
664   unsigned Size = LLTy.getSizeInBits();
665   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
666 
667   switch (MI.getOpcode()) {
668   default:
669     return UnableToLegalize;
670   case TargetOpcode::G_SDIV:
671   case TargetOpcode::G_UDIV:
672   case TargetOpcode::G_SREM:
673   case TargetOpcode::G_UREM:
674   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
675     Type *HLTy = IntegerType::get(Ctx, Size);
676     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
677     if (Status != Legalized)
678       return Status;
679     break;
680   }
681   case TargetOpcode::G_FADD:
682   case TargetOpcode::G_FSUB:
683   case TargetOpcode::G_FMUL:
684   case TargetOpcode::G_FDIV:
685   case TargetOpcode::G_FMA:
686   case TargetOpcode::G_FPOW:
687   case TargetOpcode::G_FREM:
688   case TargetOpcode::G_FCOS:
689   case TargetOpcode::G_FSIN:
690   case TargetOpcode::G_FLOG10:
691   case TargetOpcode::G_FLOG:
692   case TargetOpcode::G_FLOG2:
693   case TargetOpcode::G_FEXP:
694   case TargetOpcode::G_FEXP2:
695   case TargetOpcode::G_FCEIL:
696   case TargetOpcode::G_FFLOOR:
697   case TargetOpcode::G_FMINNUM:
698   case TargetOpcode::G_FMAXNUM:
699   case TargetOpcode::G_FSQRT:
700   case TargetOpcode::G_FRINT:
701   case TargetOpcode::G_FNEARBYINT:
702   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
703     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
704     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
705       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
706       return UnableToLegalize;
707     }
708     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
709     if (Status != Legalized)
710       return Status;
711     break;
712   }
713   case TargetOpcode::G_FPEXT:
714   case TargetOpcode::G_FPTRUNC: {
715     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
716     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
717     if (!FromTy || !ToTy)
718       return UnableToLegalize;
719     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
720     if (Status != Legalized)
721       return Status;
722     break;
723   }
724   case TargetOpcode::G_FPTOSI:
725   case TargetOpcode::G_FPTOUI: {
726     // FIXME: Support other types
727     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
728     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
729     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
730       return UnableToLegalize;
731     LegalizeResult Status = conversionLibcall(
732         MI, MIRBuilder,
733         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
734         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
735     if (Status != Legalized)
736       return Status;
737     break;
738   }
739   case TargetOpcode::G_SITOFP:
740   case TargetOpcode::G_UITOFP: {
741     // FIXME: Support other types
742     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
743     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
744     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
745       return UnableToLegalize;
746     LegalizeResult Status = conversionLibcall(
747         MI, MIRBuilder,
748         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
749         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
750     if (Status != Legalized)
751       return Status;
752     break;
753   }
754   case TargetOpcode::G_MEMCPY:
755   case TargetOpcode::G_MEMMOVE:
756   case TargetOpcode::G_MEMSET: {
757     LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI);
758     MI.eraseFromParent();
759     return Result;
760   }
761   }
762 
763   MI.eraseFromParent();
764   return Legalized;
765 }
766 
767 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
768                                                               unsigned TypeIdx,
769                                                               LLT NarrowTy) {
770   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
771   uint64_t NarrowSize = NarrowTy.getSizeInBits();
772 
773   switch (MI.getOpcode()) {
774   default:
775     return UnableToLegalize;
776   case TargetOpcode::G_IMPLICIT_DEF: {
777     Register DstReg = MI.getOperand(0).getReg();
778     LLT DstTy = MRI.getType(DstReg);
779 
780     // If SizeOp0 is not an exact multiple of NarrowSize, emit
781     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
782     // FIXME: Although this would also be legal for the general case, it causes
783     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
784     //  combines not being hit). This seems to be a problem related to the
785     //  artifact combiner.
786     if (SizeOp0 % NarrowSize != 0) {
787       LLT ImplicitTy = NarrowTy;
788       if (DstTy.isVector())
789         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
790 
791       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
792       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
793 
794       MI.eraseFromParent();
795       return Legalized;
796     }
797 
798     int NumParts = SizeOp0 / NarrowSize;
799 
800     SmallVector<Register, 2> DstRegs;
801     for (int i = 0; i < NumParts; ++i)
802       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
803 
804     if (DstTy.isVector())
805       MIRBuilder.buildBuildVector(DstReg, DstRegs);
806     else
807       MIRBuilder.buildMerge(DstReg, DstRegs);
808     MI.eraseFromParent();
809     return Legalized;
810   }
811   case TargetOpcode::G_CONSTANT: {
812     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
813     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
814     unsigned TotalSize = Ty.getSizeInBits();
815     unsigned NarrowSize = NarrowTy.getSizeInBits();
816     int NumParts = TotalSize / NarrowSize;
817 
818     SmallVector<Register, 4> PartRegs;
819     for (int I = 0; I != NumParts; ++I) {
820       unsigned Offset = I * NarrowSize;
821       auto K = MIRBuilder.buildConstant(NarrowTy,
822                                         Val.lshr(Offset).trunc(NarrowSize));
823       PartRegs.push_back(K.getReg(0));
824     }
825 
826     LLT LeftoverTy;
827     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
828     SmallVector<Register, 1> LeftoverRegs;
829     if (LeftoverBits != 0) {
830       LeftoverTy = LLT::scalar(LeftoverBits);
831       auto K = MIRBuilder.buildConstant(
832         LeftoverTy,
833         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
834       LeftoverRegs.push_back(K.getReg(0));
835     }
836 
837     insertParts(MI.getOperand(0).getReg(),
838                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
839 
840     MI.eraseFromParent();
841     return Legalized;
842   }
843   case TargetOpcode::G_SEXT:
844   case TargetOpcode::G_ZEXT:
845   case TargetOpcode::G_ANYEXT:
846     return narrowScalarExt(MI, TypeIdx, NarrowTy);
847   case TargetOpcode::G_TRUNC: {
848     if (TypeIdx != 1)
849       return UnableToLegalize;
850 
851     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
852     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
853       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
854       return UnableToLegalize;
855     }
856 
857     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
858     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
859     MI.eraseFromParent();
860     return Legalized;
861   }
862 
863   case TargetOpcode::G_FREEZE:
864     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
865 
866   case TargetOpcode::G_ADD: {
867     // FIXME: add support for when SizeOp0 isn't an exact multiple of
868     // NarrowSize.
869     if (SizeOp0 % NarrowSize != 0)
870       return UnableToLegalize;
871     // Expand in terms of carry-setting/consuming G_ADDE instructions.
872     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
873 
874     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
875     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
876     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
877 
878     Register CarryIn;
879     for (int i = 0; i < NumParts; ++i) {
880       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
881       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
882 
883       if (i == 0)
884         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
885       else {
886         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
887                               Src2Regs[i], CarryIn);
888       }
889 
890       DstRegs.push_back(DstReg);
891       CarryIn = CarryOut;
892     }
893     Register DstReg = MI.getOperand(0).getReg();
894     if(MRI.getType(DstReg).isVector())
895       MIRBuilder.buildBuildVector(DstReg, DstRegs);
896     else
897       MIRBuilder.buildMerge(DstReg, DstRegs);
898     MI.eraseFromParent();
899     return Legalized;
900   }
901   case TargetOpcode::G_SUB: {
902     // FIXME: add support for when SizeOp0 isn't an exact multiple of
903     // NarrowSize.
904     if (SizeOp0 % NarrowSize != 0)
905       return UnableToLegalize;
906 
907     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
908 
909     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
910     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
911     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
912 
913     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
914     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
915     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
916                           {Src1Regs[0], Src2Regs[0]});
917     DstRegs.push_back(DstReg);
918     Register BorrowIn = BorrowOut;
919     for (int i = 1; i < NumParts; ++i) {
920       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
921       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
922 
923       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
924                             {Src1Regs[i], Src2Regs[i], BorrowIn});
925 
926       DstRegs.push_back(DstReg);
927       BorrowIn = BorrowOut;
928     }
929     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
930     MI.eraseFromParent();
931     return Legalized;
932   }
933   case TargetOpcode::G_MUL:
934   case TargetOpcode::G_UMULH:
935     return narrowScalarMul(MI, NarrowTy);
936   case TargetOpcode::G_EXTRACT:
937     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
938   case TargetOpcode::G_INSERT:
939     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
940   case TargetOpcode::G_LOAD: {
941     auto &MMO = **MI.memoperands_begin();
942     Register DstReg = MI.getOperand(0).getReg();
943     LLT DstTy = MRI.getType(DstReg);
944     if (DstTy.isVector())
945       return UnableToLegalize;
946 
947     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
948       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
949       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
950       MIRBuilder.buildAnyExt(DstReg, TmpReg);
951       MI.eraseFromParent();
952       return Legalized;
953     }
954 
955     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
956   }
957   case TargetOpcode::G_ZEXTLOAD:
958   case TargetOpcode::G_SEXTLOAD: {
959     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
960     Register DstReg = MI.getOperand(0).getReg();
961     Register PtrReg = MI.getOperand(1).getReg();
962 
963     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
964     auto &MMO = **MI.memoperands_begin();
965     if (MMO.getSizeInBits() == NarrowSize) {
966       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
967     } else {
968       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
969     }
970 
971     if (ZExt)
972       MIRBuilder.buildZExt(DstReg, TmpReg);
973     else
974       MIRBuilder.buildSExt(DstReg, TmpReg);
975 
976     MI.eraseFromParent();
977     return Legalized;
978   }
979   case TargetOpcode::G_STORE: {
980     const auto &MMO = **MI.memoperands_begin();
981 
982     Register SrcReg = MI.getOperand(0).getReg();
983     LLT SrcTy = MRI.getType(SrcReg);
984     if (SrcTy.isVector())
985       return UnableToLegalize;
986 
987     int NumParts = SizeOp0 / NarrowSize;
988     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
989     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
990     if (SrcTy.isVector() && LeftoverBits != 0)
991       return UnableToLegalize;
992 
993     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
994       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
995       auto &MMO = **MI.memoperands_begin();
996       MIRBuilder.buildTrunc(TmpReg, SrcReg);
997       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
998       MI.eraseFromParent();
999       return Legalized;
1000     }
1001 
1002     return reduceLoadStoreWidth(MI, 0, NarrowTy);
1003   }
1004   case TargetOpcode::G_SELECT:
1005     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
1006   case TargetOpcode::G_AND:
1007   case TargetOpcode::G_OR:
1008   case TargetOpcode::G_XOR: {
1009     // Legalize bitwise operation:
1010     // A = BinOp<Ty> B, C
1011     // into:
1012     // B1, ..., BN = G_UNMERGE_VALUES B
1013     // C1, ..., CN = G_UNMERGE_VALUES C
1014     // A1 = BinOp<Ty/N> B1, C2
1015     // ...
1016     // AN = BinOp<Ty/N> BN, CN
1017     // A = G_MERGE_VALUES A1, ..., AN
1018     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1019   }
1020   case TargetOpcode::G_SHL:
1021   case TargetOpcode::G_LSHR:
1022   case TargetOpcode::G_ASHR:
1023     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1024   case TargetOpcode::G_CTLZ:
1025   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1026   case TargetOpcode::G_CTTZ:
1027   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1028   case TargetOpcode::G_CTPOP:
1029     if (TypeIdx == 1)
1030       switch (MI.getOpcode()) {
1031       case TargetOpcode::G_CTLZ:
1032       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1033         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1034       case TargetOpcode::G_CTTZ:
1035       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1036         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1037       case TargetOpcode::G_CTPOP:
1038         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1039       default:
1040         return UnableToLegalize;
1041       }
1042 
1043     Observer.changingInstr(MI);
1044     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1045     Observer.changedInstr(MI);
1046     return Legalized;
1047   case TargetOpcode::G_INTTOPTR:
1048     if (TypeIdx != 1)
1049       return UnableToLegalize;
1050 
1051     Observer.changingInstr(MI);
1052     narrowScalarSrc(MI, NarrowTy, 1);
1053     Observer.changedInstr(MI);
1054     return Legalized;
1055   case TargetOpcode::G_PTRTOINT:
1056     if (TypeIdx != 0)
1057       return UnableToLegalize;
1058 
1059     Observer.changingInstr(MI);
1060     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1061     Observer.changedInstr(MI);
1062     return Legalized;
1063   case TargetOpcode::G_PHI: {
1064     unsigned NumParts = SizeOp0 / NarrowSize;
1065     SmallVector<Register, 2> DstRegs(NumParts);
1066     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1067     Observer.changingInstr(MI);
1068     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1069       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1070       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1071       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1072                    SrcRegs[i / 2]);
1073     }
1074     MachineBasicBlock &MBB = *MI.getParent();
1075     MIRBuilder.setInsertPt(MBB, MI);
1076     for (unsigned i = 0; i < NumParts; ++i) {
1077       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1078       MachineInstrBuilder MIB =
1079           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1080       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1081         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1082     }
1083     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1084     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1085     Observer.changedInstr(MI);
1086     MI.eraseFromParent();
1087     return Legalized;
1088   }
1089   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1090   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1091     if (TypeIdx != 2)
1092       return UnableToLegalize;
1093 
1094     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1095     Observer.changingInstr(MI);
1096     narrowScalarSrc(MI, NarrowTy, OpIdx);
1097     Observer.changedInstr(MI);
1098     return Legalized;
1099   }
1100   case TargetOpcode::G_ICMP: {
1101     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1102     if (NarrowSize * 2 != SrcSize)
1103       return UnableToLegalize;
1104 
1105     Observer.changingInstr(MI);
1106     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1107     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1108     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1109 
1110     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1111     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1112     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1113 
1114     CmpInst::Predicate Pred =
1115         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1116     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1117 
1118     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1119       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1120       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1121       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1122       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1123       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1124     } else {
1125       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1126       MachineInstrBuilder CmpHEQ =
1127           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1128       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1129           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1130       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1131     }
1132     Observer.changedInstr(MI);
1133     MI.eraseFromParent();
1134     return Legalized;
1135   }
1136   case TargetOpcode::G_SEXT_INREG: {
1137     if (TypeIdx != 0)
1138       return UnableToLegalize;
1139 
1140     int64_t SizeInBits = MI.getOperand(2).getImm();
1141 
1142     // So long as the new type has more bits than the bits we're extending we
1143     // don't need to break it apart.
1144     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1145       Observer.changingInstr(MI);
1146       // We don't lose any non-extension bits by truncating the src and
1147       // sign-extending the dst.
1148       MachineOperand &MO1 = MI.getOperand(1);
1149       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1150       MO1.setReg(TruncMIB.getReg(0));
1151 
1152       MachineOperand &MO2 = MI.getOperand(0);
1153       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1154       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1155       MIRBuilder.buildSExt(MO2, DstExt);
1156       MO2.setReg(DstExt);
1157       Observer.changedInstr(MI);
1158       return Legalized;
1159     }
1160 
1161     // Break it apart. Components below the extension point are unmodified. The
1162     // component containing the extension point becomes a narrower SEXT_INREG.
1163     // Components above it are ashr'd from the component containing the
1164     // extension point.
1165     if (SizeOp0 % NarrowSize != 0)
1166       return UnableToLegalize;
1167     int NumParts = SizeOp0 / NarrowSize;
1168 
1169     // List the registers where the destination will be scattered.
1170     SmallVector<Register, 2> DstRegs;
1171     // List the registers where the source will be split.
1172     SmallVector<Register, 2> SrcRegs;
1173 
1174     // Create all the temporary registers.
1175     for (int i = 0; i < NumParts; ++i) {
1176       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1177 
1178       SrcRegs.push_back(SrcReg);
1179     }
1180 
1181     // Explode the big arguments into smaller chunks.
1182     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1183 
1184     Register AshrCstReg =
1185         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1186             .getReg(0);
1187     Register FullExtensionReg = 0;
1188     Register PartialExtensionReg = 0;
1189 
1190     // Do the operation on each small part.
1191     for (int i = 0; i < NumParts; ++i) {
1192       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1193         DstRegs.push_back(SrcRegs[i]);
1194       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1195         assert(PartialExtensionReg &&
1196                "Expected to visit partial extension before full");
1197         if (FullExtensionReg) {
1198           DstRegs.push_back(FullExtensionReg);
1199           continue;
1200         }
1201         DstRegs.push_back(
1202             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1203                 .getReg(0));
1204         FullExtensionReg = DstRegs.back();
1205       } else {
1206         DstRegs.push_back(
1207             MIRBuilder
1208                 .buildInstr(
1209                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1210                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1211                 .getReg(0));
1212         PartialExtensionReg = DstRegs.back();
1213       }
1214     }
1215 
1216     // Gather the destination registers into the final destination.
1217     Register DstReg = MI.getOperand(0).getReg();
1218     MIRBuilder.buildMerge(DstReg, DstRegs);
1219     MI.eraseFromParent();
1220     return Legalized;
1221   }
1222   case TargetOpcode::G_BSWAP:
1223   case TargetOpcode::G_BITREVERSE: {
1224     if (SizeOp0 % NarrowSize != 0)
1225       return UnableToLegalize;
1226 
1227     Observer.changingInstr(MI);
1228     SmallVector<Register, 2> SrcRegs, DstRegs;
1229     unsigned NumParts = SizeOp0 / NarrowSize;
1230     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1231 
1232     for (unsigned i = 0; i < NumParts; ++i) {
1233       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1234                                            {SrcRegs[NumParts - 1 - i]});
1235       DstRegs.push_back(DstPart.getReg(0));
1236     }
1237 
1238     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1239 
1240     Observer.changedInstr(MI);
1241     MI.eraseFromParent();
1242     return Legalized;
1243   }
1244   case TargetOpcode::G_PTR_ADD:
1245   case TargetOpcode::G_PTRMASK: {
1246     if (TypeIdx != 1)
1247       return UnableToLegalize;
1248     Observer.changingInstr(MI);
1249     narrowScalarSrc(MI, NarrowTy, 2);
1250     Observer.changedInstr(MI);
1251     return Legalized;
1252   }
1253   case TargetOpcode::G_FPTOUI: {
1254     if (TypeIdx != 0)
1255       return UnableToLegalize;
1256     Observer.changingInstr(MI);
1257     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1258     Observer.changedInstr(MI);
1259     return Legalized;
1260   }
1261   case TargetOpcode::G_FPTOSI: {
1262     if (TypeIdx != 0)
1263       return UnableToLegalize;
1264     Observer.changingInstr(MI);
1265     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT);
1266     Observer.changedInstr(MI);
1267     return Legalized;
1268   }
1269   case TargetOpcode::G_FPEXT:
1270     if (TypeIdx != 0)
1271       return UnableToLegalize;
1272     Observer.changingInstr(MI);
1273     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1274     Observer.changedInstr(MI);
1275     return Legalized;
1276   }
1277 }
1278 
1279 Register LegalizerHelper::coerceToScalar(Register Val) {
1280   LLT Ty = MRI.getType(Val);
1281   if (Ty.isScalar())
1282     return Val;
1283 
1284   const DataLayout &DL = MIRBuilder.getDataLayout();
1285   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1286   if (Ty.isPointer()) {
1287     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1288       return Register();
1289     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1290   }
1291 
1292   Register NewVal = Val;
1293 
1294   assert(Ty.isVector());
1295   LLT EltTy = Ty.getElementType();
1296   if (EltTy.isPointer())
1297     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1298   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1299 }
1300 
1301 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1302                                      unsigned OpIdx, unsigned ExtOpcode) {
1303   MachineOperand &MO = MI.getOperand(OpIdx);
1304   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1305   MO.setReg(ExtB.getReg(0));
1306 }
1307 
1308 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1309                                       unsigned OpIdx) {
1310   MachineOperand &MO = MI.getOperand(OpIdx);
1311   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1312   MO.setReg(ExtB.getReg(0));
1313 }
1314 
1315 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1316                                      unsigned OpIdx, unsigned TruncOpcode) {
1317   MachineOperand &MO = MI.getOperand(OpIdx);
1318   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1319   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1320   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1321   MO.setReg(DstExt);
1322 }
1323 
1324 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1325                                       unsigned OpIdx, unsigned ExtOpcode) {
1326   MachineOperand &MO = MI.getOperand(OpIdx);
1327   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1328   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1329   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1330   MO.setReg(DstTrunc);
1331 }
1332 
1333 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1334                                             unsigned OpIdx) {
1335   MachineOperand &MO = MI.getOperand(OpIdx);
1336   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1337   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1338 }
1339 
1340 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1341                                             unsigned OpIdx) {
1342   MachineOperand &MO = MI.getOperand(OpIdx);
1343 
1344   LLT OldTy = MRI.getType(MO.getReg());
1345   unsigned OldElts = OldTy.getNumElements();
1346   unsigned NewElts = MoreTy.getNumElements();
1347 
1348   unsigned NumParts = NewElts / OldElts;
1349 
1350   // Use concat_vectors if the result is a multiple of the number of elements.
1351   if (NumParts * OldElts == NewElts) {
1352     SmallVector<Register, 8> Parts;
1353     Parts.push_back(MO.getReg());
1354 
1355     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1356     for (unsigned I = 1; I != NumParts; ++I)
1357       Parts.push_back(ImpDef);
1358 
1359     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1360     MO.setReg(Concat.getReg(0));
1361     return;
1362   }
1363 
1364   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1365   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1366   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1367   MO.setReg(MoreReg);
1368 }
1369 
1370 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1371   MachineOperand &Op = MI.getOperand(OpIdx);
1372   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1373 }
1374 
1375 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1376   MachineOperand &MO = MI.getOperand(OpIdx);
1377   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1378   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1379   MIRBuilder.buildBitcast(MO, CastDst);
1380   MO.setReg(CastDst);
1381 }
1382 
1383 LegalizerHelper::LegalizeResult
1384 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1385                                         LLT WideTy) {
1386   if (TypeIdx != 1)
1387     return UnableToLegalize;
1388 
1389   Register DstReg = MI.getOperand(0).getReg();
1390   LLT DstTy = MRI.getType(DstReg);
1391   if (DstTy.isVector())
1392     return UnableToLegalize;
1393 
1394   Register Src1 = MI.getOperand(1).getReg();
1395   LLT SrcTy = MRI.getType(Src1);
1396   const int DstSize = DstTy.getSizeInBits();
1397   const int SrcSize = SrcTy.getSizeInBits();
1398   const int WideSize = WideTy.getSizeInBits();
1399   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1400 
1401   unsigned NumOps = MI.getNumOperands();
1402   unsigned NumSrc = MI.getNumOperands() - 1;
1403   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1404 
1405   if (WideSize >= DstSize) {
1406     // Directly pack the bits in the target type.
1407     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1408 
1409     for (unsigned I = 2; I != NumOps; ++I) {
1410       const unsigned Offset = (I - 1) * PartSize;
1411 
1412       Register SrcReg = MI.getOperand(I).getReg();
1413       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1414 
1415       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1416 
1417       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1418         MRI.createGenericVirtualRegister(WideTy);
1419 
1420       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1421       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1422       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1423       ResultReg = NextResult;
1424     }
1425 
1426     if (WideSize > DstSize)
1427       MIRBuilder.buildTrunc(DstReg, ResultReg);
1428     else if (DstTy.isPointer())
1429       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1430 
1431     MI.eraseFromParent();
1432     return Legalized;
1433   }
1434 
1435   // Unmerge the original values to the GCD type, and recombine to the next
1436   // multiple greater than the original type.
1437   //
1438   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1439   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1440   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1441   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1442   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1443   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1444   // %12:_(s12) = G_MERGE_VALUES %10, %11
1445   //
1446   // Padding with undef if necessary:
1447   //
1448   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1449   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1450   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1451   // %7:_(s2) = G_IMPLICIT_DEF
1452   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1453   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1454   // %10:_(s12) = G_MERGE_VALUES %8, %9
1455 
1456   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1457   LLT GCDTy = LLT::scalar(GCD);
1458 
1459   SmallVector<Register, 8> Parts;
1460   SmallVector<Register, 8> NewMergeRegs;
1461   SmallVector<Register, 8> Unmerges;
1462   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1463 
1464   // Decompose the original operands if they don't evenly divide.
1465   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1466     Register SrcReg = MI.getOperand(I).getReg();
1467     if (GCD == SrcSize) {
1468       Unmerges.push_back(SrcReg);
1469     } else {
1470       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1471       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1472         Unmerges.push_back(Unmerge.getReg(J));
1473     }
1474   }
1475 
1476   // Pad with undef to the next size that is a multiple of the requested size.
1477   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1478     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1479     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1480       Unmerges.push_back(UndefReg);
1481   }
1482 
1483   const int PartsPerGCD = WideSize / GCD;
1484 
1485   // Build merges of each piece.
1486   ArrayRef<Register> Slicer(Unmerges);
1487   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1488     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1489     NewMergeRegs.push_back(Merge.getReg(0));
1490   }
1491 
1492   // A truncate may be necessary if the requested type doesn't evenly divide the
1493   // original result type.
1494   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1495     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1496   } else {
1497     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1498     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1499   }
1500 
1501   MI.eraseFromParent();
1502   return Legalized;
1503 }
1504 
1505 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1506   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1507   LLT OrigTy = MRI.getType(OrigReg);
1508   LLT LCMTy = getLCMType(WideTy, OrigTy);
1509 
1510   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1511   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1512 
1513   Register UnmergeSrc = WideReg;
1514 
1515   // Create a merge to the LCM type, padding with undef
1516   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1517   // =>
1518   // %1:_(<4 x s32>) = G_FOO
1519   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1520   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1521   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1522   if (NumMergeParts > 1) {
1523     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1524     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1525     MergeParts[0] = WideReg;
1526     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1527   }
1528 
1529   // Unmerge to the original register and pad with dead defs.
1530   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1531   UnmergeResults[0] = OrigReg;
1532   for (int I = 1; I != NumUnmergeParts; ++I)
1533     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1534 
1535   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1536   return WideReg;
1537 }
1538 
1539 LegalizerHelper::LegalizeResult
1540 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1541                                           LLT WideTy) {
1542   if (TypeIdx != 0)
1543     return UnableToLegalize;
1544 
1545   int NumDst = MI.getNumOperands() - 1;
1546   Register SrcReg = MI.getOperand(NumDst).getReg();
1547   LLT SrcTy = MRI.getType(SrcReg);
1548   if (SrcTy.isVector())
1549     return UnableToLegalize;
1550 
1551   Register Dst0Reg = MI.getOperand(0).getReg();
1552   LLT DstTy = MRI.getType(Dst0Reg);
1553   if (!DstTy.isScalar())
1554     return UnableToLegalize;
1555 
1556   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1557     if (SrcTy.isPointer()) {
1558       const DataLayout &DL = MIRBuilder.getDataLayout();
1559       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1560         LLVM_DEBUG(
1561             dbgs() << "Not casting non-integral address space integer\n");
1562         return UnableToLegalize;
1563       }
1564 
1565       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1566       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1567     }
1568 
1569     // Widen SrcTy to WideTy. This does not affect the result, but since the
1570     // user requested this size, it is probably better handled than SrcTy and
1571     // should reduce the total number of legalization artifacts
1572     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1573       SrcTy = WideTy;
1574       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1575     }
1576 
1577     // Theres no unmerge type to target. Directly extract the bits from the
1578     // source type
1579     unsigned DstSize = DstTy.getSizeInBits();
1580 
1581     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1582     for (int I = 1; I != NumDst; ++I) {
1583       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1584       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1585       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1586     }
1587 
1588     MI.eraseFromParent();
1589     return Legalized;
1590   }
1591 
1592   // Extend the source to a wider type.
1593   LLT LCMTy = getLCMType(SrcTy, WideTy);
1594 
1595   Register WideSrc = SrcReg;
1596   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1597     // TODO: If this is an integral address space, cast to integer and anyext.
1598     if (SrcTy.isPointer()) {
1599       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1600       return UnableToLegalize;
1601     }
1602 
1603     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1604   }
1605 
1606   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1607 
1608   // Create a sequence of unmerges and merges to the original results. Since we
1609   // may have widened the source, we will need to pad the results with dead defs
1610   // to cover the source register.
1611   // e.g. widen s48 to s64:
1612   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1613   //
1614   // =>
1615   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1616   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1617   //  ; unpack to GCD type, with extra dead defs
1618   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1619   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1620   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1621   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1622   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1623   const LLT GCDTy = getGCDType(WideTy, DstTy);
1624   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1625   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1626 
1627   // Directly unmerge to the destination without going through a GCD type
1628   // if possible
1629   if (PartsPerRemerge == 1) {
1630     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1631 
1632     for (int I = 0; I != NumUnmerge; ++I) {
1633       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1634 
1635       for (int J = 0; J != PartsPerUnmerge; ++J) {
1636         int Idx = I * PartsPerUnmerge + J;
1637         if (Idx < NumDst)
1638           MIB.addDef(MI.getOperand(Idx).getReg());
1639         else {
1640           // Create dead def for excess components.
1641           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1642         }
1643       }
1644 
1645       MIB.addUse(Unmerge.getReg(I));
1646     }
1647   } else {
1648     SmallVector<Register, 16> Parts;
1649     for (int J = 0; J != NumUnmerge; ++J)
1650       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1651 
1652     SmallVector<Register, 8> RemergeParts;
1653     for (int I = 0; I != NumDst; ++I) {
1654       for (int J = 0; J < PartsPerRemerge; ++J) {
1655         const int Idx = I * PartsPerRemerge + J;
1656         RemergeParts.emplace_back(Parts[Idx]);
1657       }
1658 
1659       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1660       RemergeParts.clear();
1661     }
1662   }
1663 
1664   MI.eraseFromParent();
1665   return Legalized;
1666 }
1667 
1668 LegalizerHelper::LegalizeResult
1669 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1670                                     LLT WideTy) {
1671   Register DstReg = MI.getOperand(0).getReg();
1672   Register SrcReg = MI.getOperand(1).getReg();
1673   LLT SrcTy = MRI.getType(SrcReg);
1674 
1675   LLT DstTy = MRI.getType(DstReg);
1676   unsigned Offset = MI.getOperand(2).getImm();
1677 
1678   if (TypeIdx == 0) {
1679     if (SrcTy.isVector() || DstTy.isVector())
1680       return UnableToLegalize;
1681 
1682     SrcOp Src(SrcReg);
1683     if (SrcTy.isPointer()) {
1684       // Extracts from pointers can be handled only if they are really just
1685       // simple integers.
1686       const DataLayout &DL = MIRBuilder.getDataLayout();
1687       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1688         return UnableToLegalize;
1689 
1690       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1691       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1692       SrcTy = SrcAsIntTy;
1693     }
1694 
1695     if (DstTy.isPointer())
1696       return UnableToLegalize;
1697 
1698     if (Offset == 0) {
1699       // Avoid a shift in the degenerate case.
1700       MIRBuilder.buildTrunc(DstReg,
1701                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1702       MI.eraseFromParent();
1703       return Legalized;
1704     }
1705 
1706     // Do a shift in the source type.
1707     LLT ShiftTy = SrcTy;
1708     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1709       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1710       ShiftTy = WideTy;
1711     }
1712 
1713     auto LShr = MIRBuilder.buildLShr(
1714       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1715     MIRBuilder.buildTrunc(DstReg, LShr);
1716     MI.eraseFromParent();
1717     return Legalized;
1718   }
1719 
1720   if (SrcTy.isScalar()) {
1721     Observer.changingInstr(MI);
1722     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1723     Observer.changedInstr(MI);
1724     return Legalized;
1725   }
1726 
1727   if (!SrcTy.isVector())
1728     return UnableToLegalize;
1729 
1730   if (DstTy != SrcTy.getElementType())
1731     return UnableToLegalize;
1732 
1733   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1734     return UnableToLegalize;
1735 
1736   Observer.changingInstr(MI);
1737   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1738 
1739   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1740                           Offset);
1741   widenScalarDst(MI, WideTy.getScalarType(), 0);
1742   Observer.changedInstr(MI);
1743   return Legalized;
1744 }
1745 
1746 LegalizerHelper::LegalizeResult
1747 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1748                                    LLT WideTy) {
1749   if (TypeIdx != 0 || WideTy.isVector())
1750     return UnableToLegalize;
1751   Observer.changingInstr(MI);
1752   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1753   widenScalarDst(MI, WideTy);
1754   Observer.changedInstr(MI);
1755   return Legalized;
1756 }
1757 
1758 LegalizerHelper::LegalizeResult
1759 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1760                                          LLT WideTy) {
1761   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1762                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1763                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1764   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1765                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1766   // We can convert this to:
1767   //   1. Any extend iN to iM
1768   //   2. SHL by M-N
1769   //   3. [US][ADD|SUB|SHL]SAT
1770   //   4. L/ASHR by M-N
1771   //
1772   // It may be more efficient to lower this to a min and a max operation in
1773   // the higher precision arithmetic if the promoted operation isn't legal,
1774   // but this decision is up to the target's lowering request.
1775   Register DstReg = MI.getOperand(0).getReg();
1776 
1777   unsigned NewBits = WideTy.getScalarSizeInBits();
1778   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1779 
1780   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1781   // must not left shift the RHS to preserve the shift amount.
1782   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1783   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1784                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1785   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1786   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1787   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1788 
1789   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1790                                         {ShiftL, ShiftR}, MI.getFlags());
1791 
1792   // Use a shift that will preserve the number of sign bits when the trunc is
1793   // folded away.
1794   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1795                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1796 
1797   MIRBuilder.buildTrunc(DstReg, Result);
1798   MI.eraseFromParent();
1799   return Legalized;
1800 }
1801 
1802 LegalizerHelper::LegalizeResult
1803 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1804   switch (MI.getOpcode()) {
1805   default:
1806     return UnableToLegalize;
1807   case TargetOpcode::G_EXTRACT:
1808     return widenScalarExtract(MI, TypeIdx, WideTy);
1809   case TargetOpcode::G_INSERT:
1810     return widenScalarInsert(MI, TypeIdx, WideTy);
1811   case TargetOpcode::G_MERGE_VALUES:
1812     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1813   case TargetOpcode::G_UNMERGE_VALUES:
1814     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1815   case TargetOpcode::G_UADDO:
1816   case TargetOpcode::G_USUBO: {
1817     if (TypeIdx == 1)
1818       return UnableToLegalize; // TODO
1819     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1820     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1821     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1822                           ? TargetOpcode::G_ADD
1823                           : TargetOpcode::G_SUB;
1824     // Do the arithmetic in the larger type.
1825     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1826     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1827     APInt Mask =
1828         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1829     auto AndOp = MIRBuilder.buildAnd(
1830         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1831     // There is no overflow if the AndOp is the same as NewOp.
1832     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1833     // Now trunc the NewOp to the original result.
1834     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1835     MI.eraseFromParent();
1836     return Legalized;
1837   }
1838   case TargetOpcode::G_SADDSAT:
1839   case TargetOpcode::G_SSUBSAT:
1840   case TargetOpcode::G_SSHLSAT:
1841   case TargetOpcode::G_UADDSAT:
1842   case TargetOpcode::G_USUBSAT:
1843   case TargetOpcode::G_USHLSAT:
1844     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1845   case TargetOpcode::G_CTTZ:
1846   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1847   case TargetOpcode::G_CTLZ:
1848   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1849   case TargetOpcode::G_CTPOP: {
1850     if (TypeIdx == 0) {
1851       Observer.changingInstr(MI);
1852       widenScalarDst(MI, WideTy, 0);
1853       Observer.changedInstr(MI);
1854       return Legalized;
1855     }
1856 
1857     Register SrcReg = MI.getOperand(1).getReg();
1858 
1859     // First ZEXT the input.
1860     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1861     LLT CurTy = MRI.getType(SrcReg);
1862     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1863       // The count is the same in the larger type except if the original
1864       // value was zero.  This can be handled by setting the bit just off
1865       // the top of the original type.
1866       auto TopBit =
1867           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1868       MIBSrc = MIRBuilder.buildOr(
1869         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1870     }
1871 
1872     // Perform the operation at the larger size.
1873     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1874     // This is already the correct result for CTPOP and CTTZs
1875     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1876         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1877       // The correct result is NewOp - (Difference in widety and current ty).
1878       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1879       MIBNewOp = MIRBuilder.buildSub(
1880           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1881     }
1882 
1883     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1884     MI.eraseFromParent();
1885     return Legalized;
1886   }
1887   case TargetOpcode::G_BSWAP: {
1888     Observer.changingInstr(MI);
1889     Register DstReg = MI.getOperand(0).getReg();
1890 
1891     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1892     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1893     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1894     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1895 
1896     MI.getOperand(0).setReg(DstExt);
1897 
1898     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1899 
1900     LLT Ty = MRI.getType(DstReg);
1901     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1902     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1903     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1904 
1905     MIRBuilder.buildTrunc(DstReg, ShrReg);
1906     Observer.changedInstr(MI);
1907     return Legalized;
1908   }
1909   case TargetOpcode::G_BITREVERSE: {
1910     Observer.changingInstr(MI);
1911 
1912     Register DstReg = MI.getOperand(0).getReg();
1913     LLT Ty = MRI.getType(DstReg);
1914     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1915 
1916     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1917     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1918     MI.getOperand(0).setReg(DstExt);
1919     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1920 
1921     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1922     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1923     MIRBuilder.buildTrunc(DstReg, Shift);
1924     Observer.changedInstr(MI);
1925     return Legalized;
1926   }
1927   case TargetOpcode::G_FREEZE:
1928     Observer.changingInstr(MI);
1929     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1930     widenScalarDst(MI, WideTy);
1931     Observer.changedInstr(MI);
1932     return Legalized;
1933 
1934   case TargetOpcode::G_ADD:
1935   case TargetOpcode::G_AND:
1936   case TargetOpcode::G_MUL:
1937   case TargetOpcode::G_OR:
1938   case TargetOpcode::G_XOR:
1939   case TargetOpcode::G_SUB:
1940     // Perform operation at larger width (any extension is fines here, high bits
1941     // don't affect the result) and then truncate the result back to the
1942     // original type.
1943     Observer.changingInstr(MI);
1944     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1945     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1946     widenScalarDst(MI, WideTy);
1947     Observer.changedInstr(MI);
1948     return Legalized;
1949 
1950   case TargetOpcode::G_SHL:
1951     Observer.changingInstr(MI);
1952 
1953     if (TypeIdx == 0) {
1954       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1955       widenScalarDst(MI, WideTy);
1956     } else {
1957       assert(TypeIdx == 1);
1958       // The "number of bits to shift" operand must preserve its value as an
1959       // unsigned integer:
1960       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1961     }
1962 
1963     Observer.changedInstr(MI);
1964     return Legalized;
1965 
1966   case TargetOpcode::G_SDIV:
1967   case TargetOpcode::G_SREM:
1968   case TargetOpcode::G_SMIN:
1969   case TargetOpcode::G_SMAX:
1970     Observer.changingInstr(MI);
1971     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1972     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1973     widenScalarDst(MI, WideTy);
1974     Observer.changedInstr(MI);
1975     return Legalized;
1976 
1977   case TargetOpcode::G_ASHR:
1978   case TargetOpcode::G_LSHR:
1979     Observer.changingInstr(MI);
1980 
1981     if (TypeIdx == 0) {
1982       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1983         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1984 
1985       widenScalarSrc(MI, WideTy, 1, CvtOp);
1986       widenScalarDst(MI, WideTy);
1987     } else {
1988       assert(TypeIdx == 1);
1989       // The "number of bits to shift" operand must preserve its value as an
1990       // unsigned integer:
1991       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1992     }
1993 
1994     Observer.changedInstr(MI);
1995     return Legalized;
1996   case TargetOpcode::G_UDIV:
1997   case TargetOpcode::G_UREM:
1998   case TargetOpcode::G_UMIN:
1999   case TargetOpcode::G_UMAX:
2000     Observer.changingInstr(MI);
2001     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2002     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2003     widenScalarDst(MI, WideTy);
2004     Observer.changedInstr(MI);
2005     return Legalized;
2006 
2007   case TargetOpcode::G_SELECT:
2008     Observer.changingInstr(MI);
2009     if (TypeIdx == 0) {
2010       // Perform operation at larger width (any extension is fine here, high
2011       // bits don't affect the result) and then truncate the result back to the
2012       // original type.
2013       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2014       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2015       widenScalarDst(MI, WideTy);
2016     } else {
2017       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2018       // Explicit extension is required here since high bits affect the result.
2019       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2020     }
2021     Observer.changedInstr(MI);
2022     return Legalized;
2023 
2024   case TargetOpcode::G_FPTOSI:
2025   case TargetOpcode::G_FPTOUI:
2026     Observer.changingInstr(MI);
2027 
2028     if (TypeIdx == 0)
2029       widenScalarDst(MI, WideTy);
2030     else
2031       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2032 
2033     Observer.changedInstr(MI);
2034     return Legalized;
2035   case TargetOpcode::G_SITOFP:
2036     Observer.changingInstr(MI);
2037 
2038     if (TypeIdx == 0)
2039       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2040     else
2041       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2042 
2043     Observer.changedInstr(MI);
2044     return Legalized;
2045   case TargetOpcode::G_UITOFP:
2046     Observer.changingInstr(MI);
2047 
2048     if (TypeIdx == 0)
2049       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2050     else
2051       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2052 
2053     Observer.changedInstr(MI);
2054     return Legalized;
2055   case TargetOpcode::G_LOAD:
2056   case TargetOpcode::G_SEXTLOAD:
2057   case TargetOpcode::G_ZEXTLOAD:
2058     Observer.changingInstr(MI);
2059     widenScalarDst(MI, WideTy);
2060     Observer.changedInstr(MI);
2061     return Legalized;
2062 
2063   case TargetOpcode::G_STORE: {
2064     if (TypeIdx != 0)
2065       return UnableToLegalize;
2066 
2067     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2068     if (!Ty.isScalar())
2069       return UnableToLegalize;
2070 
2071     Observer.changingInstr(MI);
2072 
2073     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2074       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2075     widenScalarSrc(MI, WideTy, 0, ExtType);
2076 
2077     Observer.changedInstr(MI);
2078     return Legalized;
2079   }
2080   case TargetOpcode::G_CONSTANT: {
2081     MachineOperand &SrcMO = MI.getOperand(1);
2082     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2083     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2084         MRI.getType(MI.getOperand(0).getReg()));
2085     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2086             ExtOpc == TargetOpcode::G_ANYEXT) &&
2087            "Illegal Extend");
2088     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2089     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2090                            ? SrcVal.sext(WideTy.getSizeInBits())
2091                            : SrcVal.zext(WideTy.getSizeInBits());
2092     Observer.changingInstr(MI);
2093     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2094 
2095     widenScalarDst(MI, WideTy);
2096     Observer.changedInstr(MI);
2097     return Legalized;
2098   }
2099   case TargetOpcode::G_FCONSTANT: {
2100     MachineOperand &SrcMO = MI.getOperand(1);
2101     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2102     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2103     bool LosesInfo;
2104     switch (WideTy.getSizeInBits()) {
2105     case 32:
2106       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2107                   &LosesInfo);
2108       break;
2109     case 64:
2110       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2111                   &LosesInfo);
2112       break;
2113     default:
2114       return UnableToLegalize;
2115     }
2116 
2117     assert(!LosesInfo && "extend should always be lossless");
2118 
2119     Observer.changingInstr(MI);
2120     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2121 
2122     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2123     Observer.changedInstr(MI);
2124     return Legalized;
2125   }
2126   case TargetOpcode::G_IMPLICIT_DEF: {
2127     Observer.changingInstr(MI);
2128     widenScalarDst(MI, WideTy);
2129     Observer.changedInstr(MI);
2130     return Legalized;
2131   }
2132   case TargetOpcode::G_BRCOND:
2133     Observer.changingInstr(MI);
2134     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2135     Observer.changedInstr(MI);
2136     return Legalized;
2137 
2138   case TargetOpcode::G_FCMP:
2139     Observer.changingInstr(MI);
2140     if (TypeIdx == 0)
2141       widenScalarDst(MI, WideTy);
2142     else {
2143       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2144       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2145     }
2146     Observer.changedInstr(MI);
2147     return Legalized;
2148 
2149   case TargetOpcode::G_ICMP:
2150     Observer.changingInstr(MI);
2151     if (TypeIdx == 0)
2152       widenScalarDst(MI, WideTy);
2153     else {
2154       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2155                                MI.getOperand(1).getPredicate()))
2156                                ? TargetOpcode::G_SEXT
2157                                : TargetOpcode::G_ZEXT;
2158       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2159       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2160     }
2161     Observer.changedInstr(MI);
2162     return Legalized;
2163 
2164   case TargetOpcode::G_PTR_ADD:
2165     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2166     Observer.changingInstr(MI);
2167     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2168     Observer.changedInstr(MI);
2169     return Legalized;
2170 
2171   case TargetOpcode::G_PHI: {
2172     assert(TypeIdx == 0 && "Expecting only Idx 0");
2173 
2174     Observer.changingInstr(MI);
2175     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2176       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2177       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2178       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2179     }
2180 
2181     MachineBasicBlock &MBB = *MI.getParent();
2182     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2183     widenScalarDst(MI, WideTy);
2184     Observer.changedInstr(MI);
2185     return Legalized;
2186   }
2187   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2188     if (TypeIdx == 0) {
2189       Register VecReg = MI.getOperand(1).getReg();
2190       LLT VecTy = MRI.getType(VecReg);
2191       Observer.changingInstr(MI);
2192 
2193       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2194                                      WideTy.getSizeInBits()),
2195                      1, TargetOpcode::G_SEXT);
2196 
2197       widenScalarDst(MI, WideTy, 0);
2198       Observer.changedInstr(MI);
2199       return Legalized;
2200     }
2201 
2202     if (TypeIdx != 2)
2203       return UnableToLegalize;
2204     Observer.changingInstr(MI);
2205     // TODO: Probably should be zext
2206     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2207     Observer.changedInstr(MI);
2208     return Legalized;
2209   }
2210   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2211     if (TypeIdx == 1) {
2212       Observer.changingInstr(MI);
2213 
2214       Register VecReg = MI.getOperand(1).getReg();
2215       LLT VecTy = MRI.getType(VecReg);
2216       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2217 
2218       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2219       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2220       widenScalarDst(MI, WideVecTy, 0);
2221       Observer.changedInstr(MI);
2222       return Legalized;
2223     }
2224 
2225     if (TypeIdx == 2) {
2226       Observer.changingInstr(MI);
2227       // TODO: Probably should be zext
2228       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2229       Observer.changedInstr(MI);
2230       return Legalized;
2231     }
2232 
2233     return UnableToLegalize;
2234   }
2235   case TargetOpcode::G_FADD:
2236   case TargetOpcode::G_FMUL:
2237   case TargetOpcode::G_FSUB:
2238   case TargetOpcode::G_FMA:
2239   case TargetOpcode::G_FMAD:
2240   case TargetOpcode::G_FNEG:
2241   case TargetOpcode::G_FABS:
2242   case TargetOpcode::G_FCANONICALIZE:
2243   case TargetOpcode::G_FMINNUM:
2244   case TargetOpcode::G_FMAXNUM:
2245   case TargetOpcode::G_FMINNUM_IEEE:
2246   case TargetOpcode::G_FMAXNUM_IEEE:
2247   case TargetOpcode::G_FMINIMUM:
2248   case TargetOpcode::G_FMAXIMUM:
2249   case TargetOpcode::G_FDIV:
2250   case TargetOpcode::G_FREM:
2251   case TargetOpcode::G_FCEIL:
2252   case TargetOpcode::G_FFLOOR:
2253   case TargetOpcode::G_FCOS:
2254   case TargetOpcode::G_FSIN:
2255   case TargetOpcode::G_FLOG10:
2256   case TargetOpcode::G_FLOG:
2257   case TargetOpcode::G_FLOG2:
2258   case TargetOpcode::G_FRINT:
2259   case TargetOpcode::G_FNEARBYINT:
2260   case TargetOpcode::G_FSQRT:
2261   case TargetOpcode::G_FEXP:
2262   case TargetOpcode::G_FEXP2:
2263   case TargetOpcode::G_FPOW:
2264   case TargetOpcode::G_INTRINSIC_TRUNC:
2265   case TargetOpcode::G_INTRINSIC_ROUND:
2266   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2267     assert(TypeIdx == 0);
2268     Observer.changingInstr(MI);
2269 
2270     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2271       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2272 
2273     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2274     Observer.changedInstr(MI);
2275     return Legalized;
2276   case TargetOpcode::G_FPOWI: {
2277     if (TypeIdx != 0)
2278       return UnableToLegalize;
2279     Observer.changingInstr(MI);
2280     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2281     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2282     Observer.changedInstr(MI);
2283     return Legalized;
2284   }
2285   case TargetOpcode::G_INTTOPTR:
2286     if (TypeIdx != 1)
2287       return UnableToLegalize;
2288 
2289     Observer.changingInstr(MI);
2290     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2291     Observer.changedInstr(MI);
2292     return Legalized;
2293   case TargetOpcode::G_PTRTOINT:
2294     if (TypeIdx != 0)
2295       return UnableToLegalize;
2296 
2297     Observer.changingInstr(MI);
2298     widenScalarDst(MI, WideTy, 0);
2299     Observer.changedInstr(MI);
2300     return Legalized;
2301   case TargetOpcode::G_BUILD_VECTOR: {
2302     Observer.changingInstr(MI);
2303 
2304     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2305     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2306       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2307 
2308     // Avoid changing the result vector type if the source element type was
2309     // requested.
2310     if (TypeIdx == 1) {
2311       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2312     } else {
2313       widenScalarDst(MI, WideTy, 0);
2314     }
2315 
2316     Observer.changedInstr(MI);
2317     return Legalized;
2318   }
2319   case TargetOpcode::G_SEXT_INREG:
2320     if (TypeIdx != 0)
2321       return UnableToLegalize;
2322 
2323     Observer.changingInstr(MI);
2324     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2325     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2326     Observer.changedInstr(MI);
2327     return Legalized;
2328   case TargetOpcode::G_PTRMASK: {
2329     if (TypeIdx != 1)
2330       return UnableToLegalize;
2331     Observer.changingInstr(MI);
2332     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2333     Observer.changedInstr(MI);
2334     return Legalized;
2335   }
2336   }
2337 }
2338 
2339 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2340                              MachineIRBuilder &B, Register Src, LLT Ty) {
2341   auto Unmerge = B.buildUnmerge(Ty, Src);
2342   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2343     Pieces.push_back(Unmerge.getReg(I));
2344 }
2345 
2346 LegalizerHelper::LegalizeResult
2347 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2348   Register Dst = MI.getOperand(0).getReg();
2349   Register Src = MI.getOperand(1).getReg();
2350   LLT DstTy = MRI.getType(Dst);
2351   LLT SrcTy = MRI.getType(Src);
2352 
2353   if (SrcTy.isVector()) {
2354     LLT SrcEltTy = SrcTy.getElementType();
2355     SmallVector<Register, 8> SrcRegs;
2356 
2357     if (DstTy.isVector()) {
2358       int NumDstElt = DstTy.getNumElements();
2359       int NumSrcElt = SrcTy.getNumElements();
2360 
2361       LLT DstEltTy = DstTy.getElementType();
2362       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2363       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2364 
2365       // If there's an element size mismatch, insert intermediate casts to match
2366       // the result element type.
2367       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2368         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2369         //
2370         // =>
2371         //
2372         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2373         // %3:_(<2 x s8>) = G_BITCAST %2
2374         // %4:_(<2 x s8>) = G_BITCAST %3
2375         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2376         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2377         SrcPartTy = SrcEltTy;
2378       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2379         //
2380         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2381         //
2382         // =>
2383         //
2384         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2385         // %3:_(s16) = G_BITCAST %2
2386         // %4:_(s16) = G_BITCAST %3
2387         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2388         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2389         DstCastTy = DstEltTy;
2390       }
2391 
2392       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2393       for (Register &SrcReg : SrcRegs)
2394         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2395     } else
2396       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2397 
2398     MIRBuilder.buildMerge(Dst, SrcRegs);
2399     MI.eraseFromParent();
2400     return Legalized;
2401   }
2402 
2403   if (DstTy.isVector()) {
2404     SmallVector<Register, 8> SrcRegs;
2405     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2406     MIRBuilder.buildMerge(Dst, SrcRegs);
2407     MI.eraseFromParent();
2408     return Legalized;
2409   }
2410 
2411   return UnableToLegalize;
2412 }
2413 
2414 /// Figure out the bit offset into a register when coercing a vector index for
2415 /// the wide element type. This is only for the case when promoting vector to
2416 /// one with larger elements.
2417 //
2418 ///
2419 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2420 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2421 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2422                                                    Register Idx,
2423                                                    unsigned NewEltSize,
2424                                                    unsigned OldEltSize) {
2425   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2426   LLT IdxTy = B.getMRI()->getType(Idx);
2427 
2428   // Now figure out the amount we need to shift to get the target bits.
2429   auto OffsetMask = B.buildConstant(
2430     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2431   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2432   return B.buildShl(IdxTy, OffsetIdx,
2433                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2434 }
2435 
2436 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2437 /// is casting to a vector with a smaller element size, perform multiple element
2438 /// extracts and merge the results. If this is coercing to a vector with larger
2439 /// elements, index the bitcasted vector and extract the target element with bit
2440 /// operations. This is intended to force the indexing in the native register
2441 /// size for architectures that can dynamically index the register file.
2442 LegalizerHelper::LegalizeResult
2443 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2444                                          LLT CastTy) {
2445   if (TypeIdx != 1)
2446     return UnableToLegalize;
2447 
2448   Register Dst = MI.getOperand(0).getReg();
2449   Register SrcVec = MI.getOperand(1).getReg();
2450   Register Idx = MI.getOperand(2).getReg();
2451   LLT SrcVecTy = MRI.getType(SrcVec);
2452   LLT IdxTy = MRI.getType(Idx);
2453 
2454   LLT SrcEltTy = SrcVecTy.getElementType();
2455   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2456   unsigned OldNumElts = SrcVecTy.getNumElements();
2457 
2458   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2459   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2460 
2461   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2462   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2463   if (NewNumElts > OldNumElts) {
2464     // Decreasing the vector element size
2465     //
2466     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2467     //  =>
2468     //  v4i32:castx = bitcast x:v2i64
2469     //
2470     // i64 = bitcast
2471     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2472     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2473     //
2474     if (NewNumElts % OldNumElts != 0)
2475       return UnableToLegalize;
2476 
2477     // Type of the intermediate result vector.
2478     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2479     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2480 
2481     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2482 
2483     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2484     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2485 
2486     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2487       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2488       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2489       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2490       NewOps[I] = Elt.getReg(0);
2491     }
2492 
2493     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2494     MIRBuilder.buildBitcast(Dst, NewVec);
2495     MI.eraseFromParent();
2496     return Legalized;
2497   }
2498 
2499   if (NewNumElts < OldNumElts) {
2500     if (NewEltSize % OldEltSize != 0)
2501       return UnableToLegalize;
2502 
2503     // This only depends on powers of 2 because we use bit tricks to figure out
2504     // the bit offset we need to shift to get the target element. A general
2505     // expansion could emit division/multiply.
2506     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2507       return UnableToLegalize;
2508 
2509     // Increasing the vector element size.
2510     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2511     //
2512     //   =>
2513     //
2514     // %cast = G_BITCAST %vec
2515     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2516     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2517     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2518     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2519     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2520     // %elt = G_TRUNC %elt_bits
2521 
2522     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2523     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2524 
2525     // Divide to get the index in the wider element type.
2526     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2527 
2528     Register WideElt = CastVec;
2529     if (CastTy.isVector()) {
2530       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2531                                                      ScaledIdx).getReg(0);
2532     }
2533 
2534     // Compute the bit offset into the register of the target element.
2535     Register OffsetBits = getBitcastWiderVectorElementOffset(
2536       MIRBuilder, Idx, NewEltSize, OldEltSize);
2537 
2538     // Shift the wide element to get the target element.
2539     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2540     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2541     MI.eraseFromParent();
2542     return Legalized;
2543   }
2544 
2545   return UnableToLegalize;
2546 }
2547 
2548 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2549 /// TargetReg, while preserving other bits in \p TargetReg.
2550 ///
2551 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2552 static Register buildBitFieldInsert(MachineIRBuilder &B,
2553                                     Register TargetReg, Register InsertReg,
2554                                     Register OffsetBits) {
2555   LLT TargetTy = B.getMRI()->getType(TargetReg);
2556   LLT InsertTy = B.getMRI()->getType(InsertReg);
2557   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2558   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2559 
2560   // Produce a bitmask of the value to insert
2561   auto EltMask = B.buildConstant(
2562     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2563                                    InsertTy.getSizeInBits()));
2564   // Shift it into position
2565   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2566   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2567 
2568   // Clear out the bits in the wide element
2569   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2570 
2571   // The value to insert has all zeros already, so stick it into the masked
2572   // wide element.
2573   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2574 }
2575 
2576 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2577 /// is increasing the element size, perform the indexing in the target element
2578 /// type, and use bit operations to insert at the element position. This is
2579 /// intended for architectures that can dynamically index the register file and
2580 /// want to force indexing in the native register size.
2581 LegalizerHelper::LegalizeResult
2582 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2583                                         LLT CastTy) {
2584   if (TypeIdx != 0)
2585     return UnableToLegalize;
2586 
2587   Register Dst = MI.getOperand(0).getReg();
2588   Register SrcVec = MI.getOperand(1).getReg();
2589   Register Val = MI.getOperand(2).getReg();
2590   Register Idx = MI.getOperand(3).getReg();
2591 
2592   LLT VecTy = MRI.getType(Dst);
2593   LLT IdxTy = MRI.getType(Idx);
2594 
2595   LLT VecEltTy = VecTy.getElementType();
2596   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2597   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2598   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2599 
2600   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2601   unsigned OldNumElts = VecTy.getNumElements();
2602 
2603   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2604   if (NewNumElts < OldNumElts) {
2605     if (NewEltSize % OldEltSize != 0)
2606       return UnableToLegalize;
2607 
2608     // This only depends on powers of 2 because we use bit tricks to figure out
2609     // the bit offset we need to shift to get the target element. A general
2610     // expansion could emit division/multiply.
2611     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2612       return UnableToLegalize;
2613 
2614     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2615     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2616 
2617     // Divide to get the index in the wider element type.
2618     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2619 
2620     Register ExtractedElt = CastVec;
2621     if (CastTy.isVector()) {
2622       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2623                                                           ScaledIdx).getReg(0);
2624     }
2625 
2626     // Compute the bit offset into the register of the target element.
2627     Register OffsetBits = getBitcastWiderVectorElementOffset(
2628       MIRBuilder, Idx, NewEltSize, OldEltSize);
2629 
2630     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2631                                                Val, OffsetBits);
2632     if (CastTy.isVector()) {
2633       InsertedElt = MIRBuilder.buildInsertVectorElement(
2634         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2635     }
2636 
2637     MIRBuilder.buildBitcast(Dst, InsertedElt);
2638     MI.eraseFromParent();
2639     return Legalized;
2640   }
2641 
2642   return UnableToLegalize;
2643 }
2644 
2645 LegalizerHelper::LegalizeResult
2646 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2647   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2648   Register DstReg = MI.getOperand(0).getReg();
2649   Register PtrReg = MI.getOperand(1).getReg();
2650   LLT DstTy = MRI.getType(DstReg);
2651   auto &MMO = **MI.memoperands_begin();
2652 
2653   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2654     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2655       // This load needs splitting into power of 2 sized loads.
2656       if (DstTy.isVector())
2657         return UnableToLegalize;
2658       if (isPowerOf2_32(DstTy.getSizeInBits()))
2659         return UnableToLegalize; // Don't know what we're being asked to do.
2660 
2661       // Our strategy here is to generate anyextending loads for the smaller
2662       // types up to next power-2 result type, and then combine the two larger
2663       // result values together, before truncating back down to the non-pow-2
2664       // type.
2665       // E.g. v1 = i24 load =>
2666       // v2 = i32 zextload (2 byte)
2667       // v3 = i32 load (1 byte)
2668       // v4 = i32 shl v3, 16
2669       // v5 = i32 or v4, v2
2670       // v1 = i24 trunc v5
2671       // By doing this we generate the correct truncate which should get
2672       // combined away as an artifact with a matching extend.
2673       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2674       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2675 
2676       MachineFunction &MF = MIRBuilder.getMF();
2677       MachineMemOperand *LargeMMO =
2678         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2679       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2680         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2681 
2682       LLT PtrTy = MRI.getType(PtrReg);
2683       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2684       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2685       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2686       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2687       auto LargeLoad = MIRBuilder.buildLoadInstr(
2688         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2689 
2690       auto OffsetCst = MIRBuilder.buildConstant(
2691         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2692       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2693       auto SmallPtr =
2694         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2695       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2696                                             *SmallMMO);
2697 
2698       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2699       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2700       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2701       MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2702       MI.eraseFromParent();
2703       return Legalized;
2704     }
2705 
2706     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2707     MI.eraseFromParent();
2708     return Legalized;
2709   }
2710 
2711   if (DstTy.isScalar()) {
2712     Register TmpReg =
2713       MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2714     MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2715     switch (MI.getOpcode()) {
2716     default:
2717       llvm_unreachable("Unexpected opcode");
2718     case TargetOpcode::G_LOAD:
2719       MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg);
2720       break;
2721     case TargetOpcode::G_SEXTLOAD:
2722       MIRBuilder.buildSExt(DstReg, TmpReg);
2723       break;
2724     case TargetOpcode::G_ZEXTLOAD:
2725       MIRBuilder.buildZExt(DstReg, TmpReg);
2726       break;
2727     }
2728 
2729     MI.eraseFromParent();
2730     return Legalized;
2731   }
2732 
2733   return UnableToLegalize;
2734 }
2735 
2736 LegalizerHelper::LegalizeResult
2737 LegalizerHelper::lowerStore(MachineInstr &MI) {
2738   // Lower a non-power of 2 store into multiple pow-2 stores.
2739   // E.g. split an i24 store into an i16 store + i8 store.
2740   // We do this by first extending the stored value to the next largest power
2741   // of 2 type, and then using truncating stores to store the components.
2742   // By doing this, likewise with G_LOAD, generate an extend that can be
2743   // artifact-combined away instead of leaving behind extracts.
2744   Register SrcReg = MI.getOperand(0).getReg();
2745   Register PtrReg = MI.getOperand(1).getReg();
2746   LLT SrcTy = MRI.getType(SrcReg);
2747   MachineMemOperand &MMO = **MI.memoperands_begin();
2748   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2749     return UnableToLegalize;
2750   if (SrcTy.isVector())
2751     return UnableToLegalize;
2752   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2753     return UnableToLegalize; // Don't know what we're being asked to do.
2754 
2755   // Extend to the next pow-2.
2756   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2757   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2758 
2759   // Obtain the smaller value by shifting away the larger value.
2760   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2761   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2762   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2763   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2764 
2765   // Generate the PtrAdd and truncating stores.
2766   LLT PtrTy = MRI.getType(PtrReg);
2767   auto OffsetCst = MIRBuilder.buildConstant(
2768     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2769   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2770   auto SmallPtr =
2771     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2772 
2773   MachineFunction &MF = MIRBuilder.getMF();
2774   MachineMemOperand *LargeMMO =
2775     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2776   MachineMemOperand *SmallMMO =
2777     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2778   MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2779   MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2780   MI.eraseFromParent();
2781   return Legalized;
2782 }
2783 
2784 LegalizerHelper::LegalizeResult
2785 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2786   switch (MI.getOpcode()) {
2787   case TargetOpcode::G_LOAD: {
2788     if (TypeIdx != 0)
2789       return UnableToLegalize;
2790 
2791     Observer.changingInstr(MI);
2792     bitcastDst(MI, CastTy, 0);
2793     Observer.changedInstr(MI);
2794     return Legalized;
2795   }
2796   case TargetOpcode::G_STORE: {
2797     if (TypeIdx != 0)
2798       return UnableToLegalize;
2799 
2800     Observer.changingInstr(MI);
2801     bitcastSrc(MI, CastTy, 0);
2802     Observer.changedInstr(MI);
2803     return Legalized;
2804   }
2805   case TargetOpcode::G_SELECT: {
2806     if (TypeIdx != 0)
2807       return UnableToLegalize;
2808 
2809     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2810       LLVM_DEBUG(
2811           dbgs() << "bitcast action not implemented for vector select\n");
2812       return UnableToLegalize;
2813     }
2814 
2815     Observer.changingInstr(MI);
2816     bitcastSrc(MI, CastTy, 2);
2817     bitcastSrc(MI, CastTy, 3);
2818     bitcastDst(MI, CastTy, 0);
2819     Observer.changedInstr(MI);
2820     return Legalized;
2821   }
2822   case TargetOpcode::G_AND:
2823   case TargetOpcode::G_OR:
2824   case TargetOpcode::G_XOR: {
2825     Observer.changingInstr(MI);
2826     bitcastSrc(MI, CastTy, 1);
2827     bitcastSrc(MI, CastTy, 2);
2828     bitcastDst(MI, CastTy, 0);
2829     Observer.changedInstr(MI);
2830     return Legalized;
2831   }
2832   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2833     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2834   case TargetOpcode::G_INSERT_VECTOR_ELT:
2835     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2836   default:
2837     return UnableToLegalize;
2838   }
2839 }
2840 
2841 // Legalize an instruction by changing the opcode in place.
2842 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2843     Observer.changingInstr(MI);
2844     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2845     Observer.changedInstr(MI);
2846 }
2847 
2848 LegalizerHelper::LegalizeResult
2849 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2850   using namespace TargetOpcode;
2851 
2852   switch(MI.getOpcode()) {
2853   default:
2854     return UnableToLegalize;
2855   case TargetOpcode::G_BITCAST:
2856     return lowerBitcast(MI);
2857   case TargetOpcode::G_SREM:
2858   case TargetOpcode::G_UREM: {
2859     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2860     auto Quot =
2861         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2862                               {MI.getOperand(1), MI.getOperand(2)});
2863 
2864     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2865     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2866     MI.eraseFromParent();
2867     return Legalized;
2868   }
2869   case TargetOpcode::G_SADDO:
2870   case TargetOpcode::G_SSUBO:
2871     return lowerSADDO_SSUBO(MI);
2872   case TargetOpcode::G_UMULH:
2873   case TargetOpcode::G_SMULH:
2874     return lowerSMULH_UMULH(MI);
2875   case TargetOpcode::G_SMULO:
2876   case TargetOpcode::G_UMULO: {
2877     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2878     // result.
2879     Register Res = MI.getOperand(0).getReg();
2880     Register Overflow = MI.getOperand(1).getReg();
2881     Register LHS = MI.getOperand(2).getReg();
2882     Register RHS = MI.getOperand(3).getReg();
2883     LLT Ty = MRI.getType(Res);
2884 
2885     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2886                           ? TargetOpcode::G_SMULH
2887                           : TargetOpcode::G_UMULH;
2888 
2889     Observer.changingInstr(MI);
2890     const auto &TII = MIRBuilder.getTII();
2891     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2892     MI.RemoveOperand(1);
2893     Observer.changedInstr(MI);
2894 
2895     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2896 
2897     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2898     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2899 
2900     // For *signed* multiply, overflow is detected by checking:
2901     // (hi != (lo >> bitwidth-1))
2902     if (Opcode == TargetOpcode::G_SMULH) {
2903       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2904       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2905       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2906     } else {
2907       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2908     }
2909     return Legalized;
2910   }
2911   case TargetOpcode::G_FNEG: {
2912     Register Res = MI.getOperand(0).getReg();
2913     LLT Ty = MRI.getType(Res);
2914 
2915     // TODO: Handle vector types once we are able to
2916     // represent them.
2917     if (Ty.isVector())
2918       return UnableToLegalize;
2919     auto SignMask =
2920         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
2921     Register SubByReg = MI.getOperand(1).getReg();
2922     MIRBuilder.buildXor(Res, SubByReg, SignMask);
2923     MI.eraseFromParent();
2924     return Legalized;
2925   }
2926   case TargetOpcode::G_FSUB: {
2927     Register Res = MI.getOperand(0).getReg();
2928     LLT Ty = MRI.getType(Res);
2929 
2930     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2931     // First, check if G_FNEG is marked as Lower. If so, we may
2932     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2933     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2934       return UnableToLegalize;
2935     Register LHS = MI.getOperand(1).getReg();
2936     Register RHS = MI.getOperand(2).getReg();
2937     Register Neg = MRI.createGenericVirtualRegister(Ty);
2938     MIRBuilder.buildFNeg(Neg, RHS);
2939     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2940     MI.eraseFromParent();
2941     return Legalized;
2942   }
2943   case TargetOpcode::G_FMAD:
2944     return lowerFMad(MI);
2945   case TargetOpcode::G_FFLOOR:
2946     return lowerFFloor(MI);
2947   case TargetOpcode::G_INTRINSIC_ROUND:
2948     return lowerIntrinsicRound(MI);
2949   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
2950     // Since round even is the assumed rounding mode for unconstrained FP
2951     // operations, rint and roundeven are the same operation.
2952     changeOpcode(MI, TargetOpcode::G_FRINT);
2953     return Legalized;
2954   }
2955   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2956     Register OldValRes = MI.getOperand(0).getReg();
2957     Register SuccessRes = MI.getOperand(1).getReg();
2958     Register Addr = MI.getOperand(2).getReg();
2959     Register CmpVal = MI.getOperand(3).getReg();
2960     Register NewVal = MI.getOperand(4).getReg();
2961     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2962                                   **MI.memoperands_begin());
2963     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2964     MI.eraseFromParent();
2965     return Legalized;
2966   }
2967   case TargetOpcode::G_LOAD:
2968   case TargetOpcode::G_SEXTLOAD:
2969   case TargetOpcode::G_ZEXTLOAD:
2970     return lowerLoad(MI);
2971   case TargetOpcode::G_STORE:
2972     return lowerStore(MI);
2973   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2974   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2975   case TargetOpcode::G_CTLZ:
2976   case TargetOpcode::G_CTTZ:
2977   case TargetOpcode::G_CTPOP:
2978     return lowerBitCount(MI);
2979   case G_UADDO: {
2980     Register Res = MI.getOperand(0).getReg();
2981     Register CarryOut = MI.getOperand(1).getReg();
2982     Register LHS = MI.getOperand(2).getReg();
2983     Register RHS = MI.getOperand(3).getReg();
2984 
2985     MIRBuilder.buildAdd(Res, LHS, RHS);
2986     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2987 
2988     MI.eraseFromParent();
2989     return Legalized;
2990   }
2991   case G_UADDE: {
2992     Register Res = MI.getOperand(0).getReg();
2993     Register CarryOut = MI.getOperand(1).getReg();
2994     Register LHS = MI.getOperand(2).getReg();
2995     Register RHS = MI.getOperand(3).getReg();
2996     Register CarryIn = MI.getOperand(4).getReg();
2997     LLT Ty = MRI.getType(Res);
2998 
2999     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3000     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3001     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3002     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3003 
3004     MI.eraseFromParent();
3005     return Legalized;
3006   }
3007   case G_USUBO: {
3008     Register Res = MI.getOperand(0).getReg();
3009     Register BorrowOut = MI.getOperand(1).getReg();
3010     Register LHS = MI.getOperand(2).getReg();
3011     Register RHS = MI.getOperand(3).getReg();
3012 
3013     MIRBuilder.buildSub(Res, LHS, RHS);
3014     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3015 
3016     MI.eraseFromParent();
3017     return Legalized;
3018   }
3019   case G_USUBE: {
3020     Register Res = MI.getOperand(0).getReg();
3021     Register BorrowOut = MI.getOperand(1).getReg();
3022     Register LHS = MI.getOperand(2).getReg();
3023     Register RHS = MI.getOperand(3).getReg();
3024     Register BorrowIn = MI.getOperand(4).getReg();
3025     const LLT CondTy = MRI.getType(BorrowOut);
3026     const LLT Ty = MRI.getType(Res);
3027 
3028     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3029     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3030     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3031 
3032     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3033     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3034     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3035 
3036     MI.eraseFromParent();
3037     return Legalized;
3038   }
3039   case G_UITOFP:
3040     return lowerUITOFP(MI);
3041   case G_SITOFP:
3042     return lowerSITOFP(MI);
3043   case G_FPTOUI:
3044     return lowerFPTOUI(MI);
3045   case G_FPTOSI:
3046     return lowerFPTOSI(MI);
3047   case G_FPTRUNC:
3048     return lowerFPTRUNC(MI);
3049   case G_FPOWI:
3050     return lowerFPOWI(MI);
3051   case G_SMIN:
3052   case G_SMAX:
3053   case G_UMIN:
3054   case G_UMAX:
3055     return lowerMinMax(MI);
3056   case G_FCOPYSIGN:
3057     return lowerFCopySign(MI);
3058   case G_FMINNUM:
3059   case G_FMAXNUM:
3060     return lowerFMinNumMaxNum(MI);
3061   case G_MERGE_VALUES:
3062     return lowerMergeValues(MI);
3063   case G_UNMERGE_VALUES:
3064     return lowerUnmergeValues(MI);
3065   case TargetOpcode::G_SEXT_INREG: {
3066     assert(MI.getOperand(2).isImm() && "Expected immediate");
3067     int64_t SizeInBits = MI.getOperand(2).getImm();
3068 
3069     Register DstReg = MI.getOperand(0).getReg();
3070     Register SrcReg = MI.getOperand(1).getReg();
3071     LLT DstTy = MRI.getType(DstReg);
3072     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3073 
3074     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3075     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3076     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3077     MI.eraseFromParent();
3078     return Legalized;
3079   }
3080   case G_EXTRACT_VECTOR_ELT:
3081   case G_INSERT_VECTOR_ELT:
3082     return lowerExtractInsertVectorElt(MI);
3083   case G_SHUFFLE_VECTOR:
3084     return lowerShuffleVector(MI);
3085   case G_DYN_STACKALLOC:
3086     return lowerDynStackAlloc(MI);
3087   case G_EXTRACT:
3088     return lowerExtract(MI);
3089   case G_INSERT:
3090     return lowerInsert(MI);
3091   case G_BSWAP:
3092     return lowerBswap(MI);
3093   case G_BITREVERSE:
3094     return lowerBitreverse(MI);
3095   case G_READ_REGISTER:
3096   case G_WRITE_REGISTER:
3097     return lowerReadWriteRegister(MI);
3098   case G_UADDSAT:
3099   case G_USUBSAT: {
3100     // Try to make a reasonable guess about which lowering strategy to use. The
3101     // target can override this with custom lowering and calling the
3102     // implementation functions.
3103     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3104     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3105       return lowerAddSubSatToMinMax(MI);
3106     return lowerAddSubSatToAddoSubo(MI);
3107   }
3108   case G_SADDSAT:
3109   case G_SSUBSAT: {
3110     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3111 
3112     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3113     // since it's a shorter expansion. However, we would need to figure out the
3114     // preferred boolean type for the carry out for the query.
3115     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3116       return lowerAddSubSatToMinMax(MI);
3117     return lowerAddSubSatToAddoSubo(MI);
3118   }
3119   case G_SSHLSAT:
3120   case G_USHLSAT:
3121     return lowerShlSat(MI);
3122   case G_ABS: {
3123     // Expand %res = G_ABS %a into:
3124     // %v1 = G_ASHR %a, scalar_size-1
3125     // %v2 = G_ADD %a, %v1
3126     // %res = G_XOR %v2, %v1
3127     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3128     Register OpReg = MI.getOperand(1).getReg();
3129     auto ShiftAmt =
3130         MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
3131     auto Shift =
3132         MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
3133     auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
3134     MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
3135     MI.eraseFromParent();
3136     return Legalized;
3137   }
3138   case G_SELECT:
3139     return lowerSelect(MI);
3140   }
3141 }
3142 
3143 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3144                                                   Align MinAlign) const {
3145   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3146   // datalayout for the preferred alignment. Also there should be a target hook
3147   // for this to allow targets to reduce the alignment and ignore the
3148   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3149   // the type.
3150   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3151 }
3152 
3153 MachineInstrBuilder
3154 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3155                                       MachinePointerInfo &PtrInfo) {
3156   MachineFunction &MF = MIRBuilder.getMF();
3157   const DataLayout &DL = MIRBuilder.getDataLayout();
3158   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3159 
3160   unsigned AddrSpace = DL.getAllocaAddrSpace();
3161   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3162 
3163   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3164   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3165 }
3166 
3167 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3168                                         LLT VecTy) {
3169   int64_t IdxVal;
3170   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3171     return IdxReg;
3172 
3173   LLT IdxTy = B.getMRI()->getType(IdxReg);
3174   unsigned NElts = VecTy.getNumElements();
3175   if (isPowerOf2_32(NElts)) {
3176     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3177     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3178   }
3179 
3180   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3181       .getReg(0);
3182 }
3183 
3184 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3185                                                   Register Index) {
3186   LLT EltTy = VecTy.getElementType();
3187 
3188   // Calculate the element offset and add it to the pointer.
3189   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3190   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3191          "Converting bits to bytes lost precision");
3192 
3193   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3194 
3195   LLT IdxTy = MRI.getType(Index);
3196   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3197                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3198 
3199   LLT PtrTy = MRI.getType(VecPtr);
3200   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3201 }
3202 
3203 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3204     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3205   Register DstReg = MI.getOperand(0).getReg();
3206   LLT DstTy = MRI.getType(DstReg);
3207   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3208 
3209   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3210 
3211   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3212   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3213 
3214   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3215   MI.eraseFromParent();
3216   return Legalized;
3217 }
3218 
3219 // Handle splitting vector operations which need to have the same number of
3220 // elements in each type index, but each type index may have a different element
3221 // type.
3222 //
3223 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3224 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3225 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3226 //
3227 // Also handles some irregular breakdown cases, e.g.
3228 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3229 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3230 //             s64 = G_SHL s64, s32
3231 LegalizerHelper::LegalizeResult
3232 LegalizerHelper::fewerElementsVectorMultiEltType(
3233   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3234   if (TypeIdx != 0)
3235     return UnableToLegalize;
3236 
3237   const LLT NarrowTy0 = NarrowTyArg;
3238   const unsigned NewNumElts =
3239       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3240 
3241   const Register DstReg = MI.getOperand(0).getReg();
3242   LLT DstTy = MRI.getType(DstReg);
3243   LLT LeftoverTy0;
3244 
3245   // All of the operands need to have the same number of elements, so if we can
3246   // determine a type breakdown for the result type, we can for all of the
3247   // source types.
3248   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3249   if (NumParts < 0)
3250     return UnableToLegalize;
3251 
3252   SmallVector<MachineInstrBuilder, 4> NewInsts;
3253 
3254   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3255   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3256 
3257   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3258     Register SrcReg = MI.getOperand(I).getReg();
3259     LLT SrcTyI = MRI.getType(SrcReg);
3260     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3261     LLT LeftoverTyI;
3262 
3263     // Split this operand into the requested typed registers, and any leftover
3264     // required to reproduce the original type.
3265     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3266                       LeftoverRegs))
3267       return UnableToLegalize;
3268 
3269     if (I == 1) {
3270       // For the first operand, create an instruction for each part and setup
3271       // the result.
3272       for (Register PartReg : PartRegs) {
3273         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3274         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3275                                .addDef(PartDstReg)
3276                                .addUse(PartReg));
3277         DstRegs.push_back(PartDstReg);
3278       }
3279 
3280       for (Register LeftoverReg : LeftoverRegs) {
3281         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3282         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3283                                .addDef(PartDstReg)
3284                                .addUse(LeftoverReg));
3285         LeftoverDstRegs.push_back(PartDstReg);
3286       }
3287     } else {
3288       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3289 
3290       // Add the newly created operand splits to the existing instructions. The
3291       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3292       // pieces.
3293       unsigned InstCount = 0;
3294       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3295         NewInsts[InstCount++].addUse(PartRegs[J]);
3296       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3297         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3298     }
3299 
3300     PartRegs.clear();
3301     LeftoverRegs.clear();
3302   }
3303 
3304   // Insert the newly built operations and rebuild the result register.
3305   for (auto &MIB : NewInsts)
3306     MIRBuilder.insertInstr(MIB);
3307 
3308   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3309 
3310   MI.eraseFromParent();
3311   return Legalized;
3312 }
3313 
3314 LegalizerHelper::LegalizeResult
3315 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3316                                           LLT NarrowTy) {
3317   if (TypeIdx != 0)
3318     return UnableToLegalize;
3319 
3320   Register DstReg = MI.getOperand(0).getReg();
3321   Register SrcReg = MI.getOperand(1).getReg();
3322   LLT DstTy = MRI.getType(DstReg);
3323   LLT SrcTy = MRI.getType(SrcReg);
3324 
3325   LLT NarrowTy0 = NarrowTy;
3326   LLT NarrowTy1;
3327   unsigned NumParts;
3328 
3329   if (NarrowTy.isVector()) {
3330     // Uneven breakdown not handled.
3331     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3332     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3333       return UnableToLegalize;
3334 
3335     NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType());
3336   } else {
3337     NumParts = DstTy.getNumElements();
3338     NarrowTy1 = SrcTy.getElementType();
3339   }
3340 
3341   SmallVector<Register, 4> SrcRegs, DstRegs;
3342   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3343 
3344   for (unsigned I = 0; I < NumParts; ++I) {
3345     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3346     MachineInstr *NewInst =
3347         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3348 
3349     NewInst->setFlags(MI.getFlags());
3350     DstRegs.push_back(DstReg);
3351   }
3352 
3353   if (NarrowTy.isVector())
3354     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3355   else
3356     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3357 
3358   MI.eraseFromParent();
3359   return Legalized;
3360 }
3361 
3362 LegalizerHelper::LegalizeResult
3363 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3364                                         LLT NarrowTy) {
3365   Register DstReg = MI.getOperand(0).getReg();
3366   Register Src0Reg = MI.getOperand(2).getReg();
3367   LLT DstTy = MRI.getType(DstReg);
3368   LLT SrcTy = MRI.getType(Src0Reg);
3369 
3370   unsigned NumParts;
3371   LLT NarrowTy0, NarrowTy1;
3372 
3373   if (TypeIdx == 0) {
3374     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3375     unsigned OldElts = DstTy.getNumElements();
3376 
3377     NarrowTy0 = NarrowTy;
3378     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3379     NarrowTy1 = NarrowTy.isVector() ?
3380       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3381       SrcTy.getElementType();
3382 
3383   } else {
3384     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3385     unsigned OldElts = SrcTy.getNumElements();
3386 
3387     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3388       NarrowTy.getNumElements();
3389     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3390                             DstTy.getScalarSizeInBits());
3391     NarrowTy1 = NarrowTy;
3392   }
3393 
3394   // FIXME: Don't know how to handle the situation where the small vectors
3395   // aren't all the same size yet.
3396   if (NarrowTy1.isVector() &&
3397       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3398     return UnableToLegalize;
3399 
3400   CmpInst::Predicate Pred
3401     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3402 
3403   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3404   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3405   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3406 
3407   for (unsigned I = 0; I < NumParts; ++I) {
3408     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3409     DstRegs.push_back(DstReg);
3410 
3411     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3412       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3413     else {
3414       MachineInstr *NewCmp
3415         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3416       NewCmp->setFlags(MI.getFlags());
3417     }
3418   }
3419 
3420   if (NarrowTy1.isVector())
3421     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3422   else
3423     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3424 
3425   MI.eraseFromParent();
3426   return Legalized;
3427 }
3428 
3429 LegalizerHelper::LegalizeResult
3430 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3431                                            LLT NarrowTy) {
3432   Register DstReg = MI.getOperand(0).getReg();
3433   Register CondReg = MI.getOperand(1).getReg();
3434 
3435   unsigned NumParts = 0;
3436   LLT NarrowTy0, NarrowTy1;
3437 
3438   LLT DstTy = MRI.getType(DstReg);
3439   LLT CondTy = MRI.getType(CondReg);
3440   unsigned Size = DstTy.getSizeInBits();
3441 
3442   assert(TypeIdx == 0 || CondTy.isVector());
3443 
3444   if (TypeIdx == 0) {
3445     NarrowTy0 = NarrowTy;
3446     NarrowTy1 = CondTy;
3447 
3448     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3449     // FIXME: Don't know how to handle the situation where the small vectors
3450     // aren't all the same size yet.
3451     if (Size % NarrowSize != 0)
3452       return UnableToLegalize;
3453 
3454     NumParts = Size / NarrowSize;
3455 
3456     // Need to break down the condition type
3457     if (CondTy.isVector()) {
3458       if (CondTy.getNumElements() == NumParts)
3459         NarrowTy1 = CondTy.getElementType();
3460       else
3461         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3462                                 CondTy.getScalarSizeInBits());
3463     }
3464   } else {
3465     NumParts = CondTy.getNumElements();
3466     if (NarrowTy.isVector()) {
3467       // TODO: Handle uneven breakdown.
3468       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3469         return UnableToLegalize;
3470 
3471       return UnableToLegalize;
3472     } else {
3473       NarrowTy0 = DstTy.getElementType();
3474       NarrowTy1 = NarrowTy;
3475     }
3476   }
3477 
3478   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3479   if (CondTy.isVector())
3480     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3481 
3482   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3483   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3484 
3485   for (unsigned i = 0; i < NumParts; ++i) {
3486     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3487     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3488                            Src1Regs[i], Src2Regs[i]);
3489     DstRegs.push_back(DstReg);
3490   }
3491 
3492   if (NarrowTy0.isVector())
3493     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3494   else
3495     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3496 
3497   MI.eraseFromParent();
3498   return Legalized;
3499 }
3500 
3501 LegalizerHelper::LegalizeResult
3502 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3503                                         LLT NarrowTy) {
3504   const Register DstReg = MI.getOperand(0).getReg();
3505   LLT PhiTy = MRI.getType(DstReg);
3506   LLT LeftoverTy;
3507 
3508   // All of the operands need to have the same number of elements, so if we can
3509   // determine a type breakdown for the result type, we can for all of the
3510   // source types.
3511   int NumParts, NumLeftover;
3512   std::tie(NumParts, NumLeftover)
3513     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3514   if (NumParts < 0)
3515     return UnableToLegalize;
3516 
3517   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3518   SmallVector<MachineInstrBuilder, 4> NewInsts;
3519 
3520   const int TotalNumParts = NumParts + NumLeftover;
3521 
3522   // Insert the new phis in the result block first.
3523   for (int I = 0; I != TotalNumParts; ++I) {
3524     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3525     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3526     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3527                        .addDef(PartDstReg));
3528     if (I < NumParts)
3529       DstRegs.push_back(PartDstReg);
3530     else
3531       LeftoverDstRegs.push_back(PartDstReg);
3532   }
3533 
3534   MachineBasicBlock *MBB = MI.getParent();
3535   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3536   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3537 
3538   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3539 
3540   // Insert code to extract the incoming values in each predecessor block.
3541   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3542     PartRegs.clear();
3543     LeftoverRegs.clear();
3544 
3545     Register SrcReg = MI.getOperand(I).getReg();
3546     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3547     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3548 
3549     LLT Unused;
3550     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3551                       LeftoverRegs))
3552       return UnableToLegalize;
3553 
3554     // Add the newly created operand splits to the existing instructions. The
3555     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3556     // pieces.
3557     for (int J = 0; J != TotalNumParts; ++J) {
3558       MachineInstrBuilder MIB = NewInsts[J];
3559       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3560       MIB.addMBB(&OpMBB);
3561     }
3562   }
3563 
3564   MI.eraseFromParent();
3565   return Legalized;
3566 }
3567 
3568 LegalizerHelper::LegalizeResult
3569 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3570                                                   unsigned TypeIdx,
3571                                                   LLT NarrowTy) {
3572   if (TypeIdx != 1)
3573     return UnableToLegalize;
3574 
3575   const int NumDst = MI.getNumOperands() - 1;
3576   const Register SrcReg = MI.getOperand(NumDst).getReg();
3577   LLT SrcTy = MRI.getType(SrcReg);
3578 
3579   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3580 
3581   // TODO: Create sequence of extracts.
3582   if (DstTy == NarrowTy)
3583     return UnableToLegalize;
3584 
3585   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3586   if (DstTy == GCDTy) {
3587     // This would just be a copy of the same unmerge.
3588     // TODO: Create extracts, pad with undef and create intermediate merges.
3589     return UnableToLegalize;
3590   }
3591 
3592   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3593   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3594   const int PartsPerUnmerge = NumDst / NumUnmerge;
3595 
3596   for (int I = 0; I != NumUnmerge; ++I) {
3597     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3598 
3599     for (int J = 0; J != PartsPerUnmerge; ++J)
3600       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3601     MIB.addUse(Unmerge.getReg(I));
3602   }
3603 
3604   MI.eraseFromParent();
3605   return Legalized;
3606 }
3607 
3608 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3609 // a vector
3610 //
3611 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3612 // undef as necessary.
3613 //
3614 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3615 //   -> <2 x s16>
3616 //
3617 // %4:_(s16) = G_IMPLICIT_DEF
3618 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3619 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3620 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3621 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3622 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3623 LegalizerHelper::LegalizeResult
3624 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3625                                           LLT NarrowTy) {
3626   Register DstReg = MI.getOperand(0).getReg();
3627   LLT DstTy = MRI.getType(DstReg);
3628   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3629   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3630 
3631   // Break into a common type
3632   SmallVector<Register, 16> Parts;
3633   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3634     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3635 
3636   // Build the requested new merge, padding with undef.
3637   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3638                                   TargetOpcode::G_ANYEXT);
3639 
3640   // Pack into the original result register.
3641   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3642 
3643   MI.eraseFromParent();
3644   return Legalized;
3645 }
3646 
3647 LegalizerHelper::LegalizeResult
3648 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3649                                                            unsigned TypeIdx,
3650                                                            LLT NarrowVecTy) {
3651   Register DstReg = MI.getOperand(0).getReg();
3652   Register SrcVec = MI.getOperand(1).getReg();
3653   Register InsertVal;
3654   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3655 
3656   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3657   if (IsInsert)
3658     InsertVal = MI.getOperand(2).getReg();
3659 
3660   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3661 
3662   // TODO: Handle total scalarization case.
3663   if (!NarrowVecTy.isVector())
3664     return UnableToLegalize;
3665 
3666   LLT VecTy = MRI.getType(SrcVec);
3667 
3668   // If the index is a constant, we can really break this down as you would
3669   // expect, and index into the target size pieces.
3670   int64_t IdxVal;
3671   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
3672     // Avoid out of bounds indexing the pieces.
3673     if (IdxVal >= VecTy.getNumElements()) {
3674       MIRBuilder.buildUndef(DstReg);
3675       MI.eraseFromParent();
3676       return Legalized;
3677     }
3678 
3679     SmallVector<Register, 8> VecParts;
3680     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3681 
3682     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3683     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3684                                     TargetOpcode::G_ANYEXT);
3685 
3686     unsigned NewNumElts = NarrowVecTy.getNumElements();
3687 
3688     LLT IdxTy = MRI.getType(Idx);
3689     int64_t PartIdx = IdxVal / NewNumElts;
3690     auto NewIdx =
3691         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3692 
3693     if (IsInsert) {
3694       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3695 
3696       // Use the adjusted index to insert into one of the subvectors.
3697       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3698           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3699       VecParts[PartIdx] = InsertPart.getReg(0);
3700 
3701       // Recombine the inserted subvector with the others to reform the result
3702       // vector.
3703       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3704     } else {
3705       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3706     }
3707 
3708     MI.eraseFromParent();
3709     return Legalized;
3710   }
3711 
3712   // With a variable index, we can't perform the operation in a smaller type, so
3713   // we're forced to expand this.
3714   //
3715   // TODO: We could emit a chain of compare/select to figure out which piece to
3716   // index.
3717   return lowerExtractInsertVectorElt(MI);
3718 }
3719 
3720 LegalizerHelper::LegalizeResult
3721 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3722                                       LLT NarrowTy) {
3723   // FIXME: Don't know how to handle secondary types yet.
3724   if (TypeIdx != 0)
3725     return UnableToLegalize;
3726 
3727   MachineMemOperand *MMO = *MI.memoperands_begin();
3728 
3729   // This implementation doesn't work for atomics. Give up instead of doing
3730   // something invalid.
3731   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3732       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3733     return UnableToLegalize;
3734 
3735   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3736   Register ValReg = MI.getOperand(0).getReg();
3737   Register AddrReg = MI.getOperand(1).getReg();
3738   LLT ValTy = MRI.getType(ValReg);
3739 
3740   // FIXME: Do we need a distinct NarrowMemory legalize action?
3741   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3742     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3743     return UnableToLegalize;
3744   }
3745 
3746   int NumParts = -1;
3747   int NumLeftover = -1;
3748   LLT LeftoverTy;
3749   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3750   if (IsLoad) {
3751     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3752   } else {
3753     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3754                      NarrowLeftoverRegs)) {
3755       NumParts = NarrowRegs.size();
3756       NumLeftover = NarrowLeftoverRegs.size();
3757     }
3758   }
3759 
3760   if (NumParts == -1)
3761     return UnableToLegalize;
3762 
3763   LLT PtrTy = MRI.getType(AddrReg);
3764   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3765 
3766   unsigned TotalSize = ValTy.getSizeInBits();
3767 
3768   // Split the load/store into PartTy sized pieces starting at Offset. If this
3769   // is a load, return the new registers in ValRegs. For a store, each elements
3770   // of ValRegs should be PartTy. Returns the next offset that needs to be
3771   // handled.
3772   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3773                              unsigned Offset) -> unsigned {
3774     MachineFunction &MF = MIRBuilder.getMF();
3775     unsigned PartSize = PartTy.getSizeInBits();
3776     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3777          Offset += PartSize, ++Idx) {
3778       unsigned ByteSize = PartSize / 8;
3779       unsigned ByteOffset = Offset / 8;
3780       Register NewAddrReg;
3781 
3782       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3783 
3784       MachineMemOperand *NewMMO =
3785         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3786 
3787       if (IsLoad) {
3788         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3789         ValRegs.push_back(Dst);
3790         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3791       } else {
3792         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3793       }
3794     }
3795 
3796     return Offset;
3797   };
3798 
3799   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3800 
3801   // Handle the rest of the register if this isn't an even type breakdown.
3802   if (LeftoverTy.isValid())
3803     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3804 
3805   if (IsLoad) {
3806     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3807                 LeftoverTy, NarrowLeftoverRegs);
3808   }
3809 
3810   MI.eraseFromParent();
3811   return Legalized;
3812 }
3813 
3814 LegalizerHelper::LegalizeResult
3815 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3816                                       LLT NarrowTy) {
3817   assert(TypeIdx == 0 && "only one type index expected");
3818 
3819   const unsigned Opc = MI.getOpcode();
3820   const int NumOps = MI.getNumOperands() - 1;
3821   const Register DstReg = MI.getOperand(0).getReg();
3822   const unsigned Flags = MI.getFlags();
3823   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3824   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3825 
3826   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3827 
3828   // First of all check whether we are narrowing (changing the element type)
3829   // or reducing the vector elements
3830   const LLT DstTy = MRI.getType(DstReg);
3831   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3832 
3833   SmallVector<Register, 8> ExtractedRegs[3];
3834   SmallVector<Register, 8> Parts;
3835 
3836   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3837 
3838   // Break down all the sources into NarrowTy pieces we can operate on. This may
3839   // involve creating merges to a wider type, padded with undef.
3840   for (int I = 0; I != NumOps; ++I) {
3841     Register SrcReg = MI.getOperand(I + 1).getReg();
3842     LLT SrcTy = MRI.getType(SrcReg);
3843 
3844     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3845     // For fewerElements, this is a smaller vector with the same element type.
3846     LLT OpNarrowTy;
3847     if (IsNarrow) {
3848       OpNarrowTy = NarrowScalarTy;
3849 
3850       // In case of narrowing, we need to cast vectors to scalars for this to
3851       // work properly
3852       // FIXME: Can we do without the bitcast here if we're narrowing?
3853       if (SrcTy.isVector()) {
3854         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3855         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3856       }
3857     } else {
3858       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3859     }
3860 
3861     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3862 
3863     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3864     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3865                         TargetOpcode::G_ANYEXT);
3866   }
3867 
3868   SmallVector<Register, 8> ResultRegs;
3869 
3870   // Input operands for each sub-instruction.
3871   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3872 
3873   int NumParts = ExtractedRegs[0].size();
3874   const unsigned DstSize = DstTy.getSizeInBits();
3875   const LLT DstScalarTy = LLT::scalar(DstSize);
3876 
3877   // Narrowing needs to use scalar types
3878   LLT DstLCMTy, NarrowDstTy;
3879   if (IsNarrow) {
3880     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3881     NarrowDstTy = NarrowScalarTy;
3882   } else {
3883     DstLCMTy = getLCMType(DstTy, NarrowTy);
3884     NarrowDstTy = NarrowTy;
3885   }
3886 
3887   // We widened the source registers to satisfy merge/unmerge size
3888   // constraints. We'll have some extra fully undef parts.
3889   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3890 
3891   for (int I = 0; I != NumRealParts; ++I) {
3892     // Emit this instruction on each of the split pieces.
3893     for (int J = 0; J != NumOps; ++J)
3894       InputRegs[J] = ExtractedRegs[J][I];
3895 
3896     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3897     ResultRegs.push_back(Inst.getReg(0));
3898   }
3899 
3900   // Fill out the widened result with undef instead of creating instructions
3901   // with undef inputs.
3902   int NumUndefParts = NumParts - NumRealParts;
3903   if (NumUndefParts != 0)
3904     ResultRegs.append(NumUndefParts,
3905                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3906 
3907   // Extract the possibly padded result. Use a scratch register if we need to do
3908   // a final bitcast, otherwise use the original result register.
3909   Register MergeDstReg;
3910   if (IsNarrow && DstTy.isVector())
3911     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3912   else
3913     MergeDstReg = DstReg;
3914 
3915   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3916 
3917   // Recast to vector if we narrowed a vector
3918   if (IsNarrow && DstTy.isVector())
3919     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3920 
3921   MI.eraseFromParent();
3922   return Legalized;
3923 }
3924 
3925 LegalizerHelper::LegalizeResult
3926 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3927                                               LLT NarrowTy) {
3928   Register DstReg = MI.getOperand(0).getReg();
3929   Register SrcReg = MI.getOperand(1).getReg();
3930   int64_t Imm = MI.getOperand(2).getImm();
3931 
3932   LLT DstTy = MRI.getType(DstReg);
3933 
3934   SmallVector<Register, 8> Parts;
3935   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3936   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3937 
3938   for (Register &R : Parts)
3939     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3940 
3941   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3942 
3943   MI.eraseFromParent();
3944   return Legalized;
3945 }
3946 
3947 LegalizerHelper::LegalizeResult
3948 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3949                                      LLT NarrowTy) {
3950   using namespace TargetOpcode;
3951 
3952   switch (MI.getOpcode()) {
3953   case G_IMPLICIT_DEF:
3954     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3955   case G_TRUNC:
3956   case G_AND:
3957   case G_OR:
3958   case G_XOR:
3959   case G_ADD:
3960   case G_SUB:
3961   case G_MUL:
3962   case G_PTR_ADD:
3963   case G_SMULH:
3964   case G_UMULH:
3965   case G_FADD:
3966   case G_FMUL:
3967   case G_FSUB:
3968   case G_FNEG:
3969   case G_FABS:
3970   case G_FCANONICALIZE:
3971   case G_FDIV:
3972   case G_FREM:
3973   case G_FMA:
3974   case G_FMAD:
3975   case G_FPOW:
3976   case G_FEXP:
3977   case G_FEXP2:
3978   case G_FLOG:
3979   case G_FLOG2:
3980   case G_FLOG10:
3981   case G_FNEARBYINT:
3982   case G_FCEIL:
3983   case G_FFLOOR:
3984   case G_FRINT:
3985   case G_INTRINSIC_ROUND:
3986   case G_INTRINSIC_ROUNDEVEN:
3987   case G_INTRINSIC_TRUNC:
3988   case G_FCOS:
3989   case G_FSIN:
3990   case G_FSQRT:
3991   case G_BSWAP:
3992   case G_BITREVERSE:
3993   case G_SDIV:
3994   case G_UDIV:
3995   case G_SREM:
3996   case G_UREM:
3997   case G_SMIN:
3998   case G_SMAX:
3999   case G_UMIN:
4000   case G_UMAX:
4001   case G_FMINNUM:
4002   case G_FMAXNUM:
4003   case G_FMINNUM_IEEE:
4004   case G_FMAXNUM_IEEE:
4005   case G_FMINIMUM:
4006   case G_FMAXIMUM:
4007   case G_FSHL:
4008   case G_FSHR:
4009   case G_FREEZE:
4010   case G_SADDSAT:
4011   case G_SSUBSAT:
4012   case G_UADDSAT:
4013   case G_USUBSAT:
4014     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4015   case G_SHL:
4016   case G_LSHR:
4017   case G_ASHR:
4018   case G_SSHLSAT:
4019   case G_USHLSAT:
4020   case G_CTLZ:
4021   case G_CTLZ_ZERO_UNDEF:
4022   case G_CTTZ:
4023   case G_CTTZ_ZERO_UNDEF:
4024   case G_CTPOP:
4025   case G_FCOPYSIGN:
4026     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4027   case G_ZEXT:
4028   case G_SEXT:
4029   case G_ANYEXT:
4030   case G_FPEXT:
4031   case G_FPTRUNC:
4032   case G_SITOFP:
4033   case G_UITOFP:
4034   case G_FPTOSI:
4035   case G_FPTOUI:
4036   case G_INTTOPTR:
4037   case G_PTRTOINT:
4038   case G_ADDRSPACE_CAST:
4039     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4040   case G_ICMP:
4041   case G_FCMP:
4042     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4043   case G_SELECT:
4044     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4045   case G_PHI:
4046     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4047   case G_UNMERGE_VALUES:
4048     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4049   case G_BUILD_VECTOR:
4050     assert(TypeIdx == 0 && "not a vector type index");
4051     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4052   case G_CONCAT_VECTORS:
4053     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4054       return UnableToLegalize;
4055     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4056   case G_EXTRACT_VECTOR_ELT:
4057   case G_INSERT_VECTOR_ELT:
4058     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4059   case G_LOAD:
4060   case G_STORE:
4061     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4062   case G_SEXT_INREG:
4063     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4064   default:
4065     return UnableToLegalize;
4066   }
4067 }
4068 
4069 LegalizerHelper::LegalizeResult
4070 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4071                                              const LLT HalfTy, const LLT AmtTy) {
4072 
4073   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4074   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4075   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4076 
4077   if (Amt.isNullValue()) {
4078     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4079     MI.eraseFromParent();
4080     return Legalized;
4081   }
4082 
4083   LLT NVT = HalfTy;
4084   unsigned NVTBits = HalfTy.getSizeInBits();
4085   unsigned VTBits = 2 * NVTBits;
4086 
4087   SrcOp Lo(Register(0)), Hi(Register(0));
4088   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4089     if (Amt.ugt(VTBits)) {
4090       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4091     } else if (Amt.ugt(NVTBits)) {
4092       Lo = MIRBuilder.buildConstant(NVT, 0);
4093       Hi = MIRBuilder.buildShl(NVT, InL,
4094                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4095     } else if (Amt == NVTBits) {
4096       Lo = MIRBuilder.buildConstant(NVT, 0);
4097       Hi = InL;
4098     } else {
4099       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4100       auto OrLHS =
4101           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4102       auto OrRHS = MIRBuilder.buildLShr(
4103           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4104       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4105     }
4106   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4107     if (Amt.ugt(VTBits)) {
4108       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4109     } else if (Amt.ugt(NVTBits)) {
4110       Lo = MIRBuilder.buildLShr(NVT, InH,
4111                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4112       Hi = MIRBuilder.buildConstant(NVT, 0);
4113     } else if (Amt == NVTBits) {
4114       Lo = InH;
4115       Hi = MIRBuilder.buildConstant(NVT, 0);
4116     } else {
4117       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4118 
4119       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4120       auto OrRHS = MIRBuilder.buildShl(
4121           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4122 
4123       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4124       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4125     }
4126   } else {
4127     if (Amt.ugt(VTBits)) {
4128       Hi = Lo = MIRBuilder.buildAShr(
4129           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4130     } else if (Amt.ugt(NVTBits)) {
4131       Lo = MIRBuilder.buildAShr(NVT, InH,
4132                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4133       Hi = MIRBuilder.buildAShr(NVT, InH,
4134                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4135     } else if (Amt == NVTBits) {
4136       Lo = InH;
4137       Hi = MIRBuilder.buildAShr(NVT, InH,
4138                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4139     } else {
4140       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4141 
4142       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4143       auto OrRHS = MIRBuilder.buildShl(
4144           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4145 
4146       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4147       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4148     }
4149   }
4150 
4151   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4152   MI.eraseFromParent();
4153 
4154   return Legalized;
4155 }
4156 
4157 // TODO: Optimize if constant shift amount.
4158 LegalizerHelper::LegalizeResult
4159 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4160                                    LLT RequestedTy) {
4161   if (TypeIdx == 1) {
4162     Observer.changingInstr(MI);
4163     narrowScalarSrc(MI, RequestedTy, 2);
4164     Observer.changedInstr(MI);
4165     return Legalized;
4166   }
4167 
4168   Register DstReg = MI.getOperand(0).getReg();
4169   LLT DstTy = MRI.getType(DstReg);
4170   if (DstTy.isVector())
4171     return UnableToLegalize;
4172 
4173   Register Amt = MI.getOperand(2).getReg();
4174   LLT ShiftAmtTy = MRI.getType(Amt);
4175   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4176   if (DstEltSize % 2 != 0)
4177     return UnableToLegalize;
4178 
4179   // Ignore the input type. We can only go to exactly half the size of the
4180   // input. If that isn't small enough, the resulting pieces will be further
4181   // legalized.
4182   const unsigned NewBitSize = DstEltSize / 2;
4183   const LLT HalfTy = LLT::scalar(NewBitSize);
4184   const LLT CondTy = LLT::scalar(1);
4185 
4186   if (const MachineInstr *KShiftAmt =
4187           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4188     return narrowScalarShiftByConstant(
4189         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4190   }
4191 
4192   // TODO: Expand with known bits.
4193 
4194   // Handle the fully general expansion by an unknown amount.
4195   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4196 
4197   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4198   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4199   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4200 
4201   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4202   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4203 
4204   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4205   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4206   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4207 
4208   Register ResultRegs[2];
4209   switch (MI.getOpcode()) {
4210   case TargetOpcode::G_SHL: {
4211     // Short: ShAmt < NewBitSize
4212     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4213 
4214     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4215     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4216     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4217 
4218     // Long: ShAmt >= NewBitSize
4219     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4220     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4221 
4222     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4223     auto Hi = MIRBuilder.buildSelect(
4224         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4225 
4226     ResultRegs[0] = Lo.getReg(0);
4227     ResultRegs[1] = Hi.getReg(0);
4228     break;
4229   }
4230   case TargetOpcode::G_LSHR:
4231   case TargetOpcode::G_ASHR: {
4232     // Short: ShAmt < NewBitSize
4233     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4234 
4235     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4236     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4237     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4238 
4239     // Long: ShAmt >= NewBitSize
4240     MachineInstrBuilder HiL;
4241     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4242       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4243     } else {
4244       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4245       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4246     }
4247     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4248                                      {InH, AmtExcess});     // Lo from Hi part.
4249 
4250     auto Lo = MIRBuilder.buildSelect(
4251         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4252 
4253     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4254 
4255     ResultRegs[0] = Lo.getReg(0);
4256     ResultRegs[1] = Hi.getReg(0);
4257     break;
4258   }
4259   default:
4260     llvm_unreachable("not a shift");
4261   }
4262 
4263   MIRBuilder.buildMerge(DstReg, ResultRegs);
4264   MI.eraseFromParent();
4265   return Legalized;
4266 }
4267 
4268 LegalizerHelper::LegalizeResult
4269 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4270                                        LLT MoreTy) {
4271   assert(TypeIdx == 0 && "Expecting only Idx 0");
4272 
4273   Observer.changingInstr(MI);
4274   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4275     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4276     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4277     moreElementsVectorSrc(MI, MoreTy, I);
4278   }
4279 
4280   MachineBasicBlock &MBB = *MI.getParent();
4281   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4282   moreElementsVectorDst(MI, MoreTy, 0);
4283   Observer.changedInstr(MI);
4284   return Legalized;
4285 }
4286 
4287 LegalizerHelper::LegalizeResult
4288 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4289                                     LLT MoreTy) {
4290   unsigned Opc = MI.getOpcode();
4291   switch (Opc) {
4292   case TargetOpcode::G_IMPLICIT_DEF:
4293   case TargetOpcode::G_LOAD: {
4294     if (TypeIdx != 0)
4295       return UnableToLegalize;
4296     Observer.changingInstr(MI);
4297     moreElementsVectorDst(MI, MoreTy, 0);
4298     Observer.changedInstr(MI);
4299     return Legalized;
4300   }
4301   case TargetOpcode::G_STORE:
4302     if (TypeIdx != 0)
4303       return UnableToLegalize;
4304     Observer.changingInstr(MI);
4305     moreElementsVectorSrc(MI, MoreTy, 0);
4306     Observer.changedInstr(MI);
4307     return Legalized;
4308   case TargetOpcode::G_AND:
4309   case TargetOpcode::G_OR:
4310   case TargetOpcode::G_XOR:
4311   case TargetOpcode::G_SMIN:
4312   case TargetOpcode::G_SMAX:
4313   case TargetOpcode::G_UMIN:
4314   case TargetOpcode::G_UMAX:
4315   case TargetOpcode::G_FMINNUM:
4316   case TargetOpcode::G_FMAXNUM:
4317   case TargetOpcode::G_FMINNUM_IEEE:
4318   case TargetOpcode::G_FMAXNUM_IEEE:
4319   case TargetOpcode::G_FMINIMUM:
4320   case TargetOpcode::G_FMAXIMUM: {
4321     Observer.changingInstr(MI);
4322     moreElementsVectorSrc(MI, MoreTy, 1);
4323     moreElementsVectorSrc(MI, MoreTy, 2);
4324     moreElementsVectorDst(MI, MoreTy, 0);
4325     Observer.changedInstr(MI);
4326     return Legalized;
4327   }
4328   case TargetOpcode::G_EXTRACT:
4329     if (TypeIdx != 1)
4330       return UnableToLegalize;
4331     Observer.changingInstr(MI);
4332     moreElementsVectorSrc(MI, MoreTy, 1);
4333     Observer.changedInstr(MI);
4334     return Legalized;
4335   case TargetOpcode::G_INSERT:
4336   case TargetOpcode::G_FREEZE:
4337     if (TypeIdx != 0)
4338       return UnableToLegalize;
4339     Observer.changingInstr(MI);
4340     moreElementsVectorSrc(MI, MoreTy, 1);
4341     moreElementsVectorDst(MI, MoreTy, 0);
4342     Observer.changedInstr(MI);
4343     return Legalized;
4344   case TargetOpcode::G_SELECT:
4345     if (TypeIdx != 0)
4346       return UnableToLegalize;
4347     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4348       return UnableToLegalize;
4349 
4350     Observer.changingInstr(MI);
4351     moreElementsVectorSrc(MI, MoreTy, 2);
4352     moreElementsVectorSrc(MI, MoreTy, 3);
4353     moreElementsVectorDst(MI, MoreTy, 0);
4354     Observer.changedInstr(MI);
4355     return Legalized;
4356   case TargetOpcode::G_UNMERGE_VALUES: {
4357     if (TypeIdx != 1)
4358       return UnableToLegalize;
4359 
4360     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4361     int NumDst = MI.getNumOperands() - 1;
4362     moreElementsVectorSrc(MI, MoreTy, NumDst);
4363 
4364     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4365     for (int I = 0; I != NumDst; ++I)
4366       MIB.addDef(MI.getOperand(I).getReg());
4367 
4368     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4369     for (int I = NumDst; I != NewNumDst; ++I)
4370       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4371 
4372     MIB.addUse(MI.getOperand(NumDst).getReg());
4373     MI.eraseFromParent();
4374     return Legalized;
4375   }
4376   case TargetOpcode::G_PHI:
4377     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4378   default:
4379     return UnableToLegalize;
4380   }
4381 }
4382 
4383 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4384                                         ArrayRef<Register> Src1Regs,
4385                                         ArrayRef<Register> Src2Regs,
4386                                         LLT NarrowTy) {
4387   MachineIRBuilder &B = MIRBuilder;
4388   unsigned SrcParts = Src1Regs.size();
4389   unsigned DstParts = DstRegs.size();
4390 
4391   unsigned DstIdx = 0; // Low bits of the result.
4392   Register FactorSum =
4393       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4394   DstRegs[DstIdx] = FactorSum;
4395 
4396   unsigned CarrySumPrevDstIdx;
4397   SmallVector<Register, 4> Factors;
4398 
4399   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4400     // Collect low parts of muls for DstIdx.
4401     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4402          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4403       MachineInstrBuilder Mul =
4404           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4405       Factors.push_back(Mul.getReg(0));
4406     }
4407     // Collect high parts of muls from previous DstIdx.
4408     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4409          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4410       MachineInstrBuilder Umulh =
4411           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4412       Factors.push_back(Umulh.getReg(0));
4413     }
4414     // Add CarrySum from additions calculated for previous DstIdx.
4415     if (DstIdx != 1) {
4416       Factors.push_back(CarrySumPrevDstIdx);
4417     }
4418 
4419     Register CarrySum;
4420     // Add all factors and accumulate all carries into CarrySum.
4421     if (DstIdx != DstParts - 1) {
4422       MachineInstrBuilder Uaddo =
4423           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4424       FactorSum = Uaddo.getReg(0);
4425       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4426       for (unsigned i = 2; i < Factors.size(); ++i) {
4427         MachineInstrBuilder Uaddo =
4428             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4429         FactorSum = Uaddo.getReg(0);
4430         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4431         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4432       }
4433     } else {
4434       // Since value for the next index is not calculated, neither is CarrySum.
4435       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4436       for (unsigned i = 2; i < Factors.size(); ++i)
4437         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4438     }
4439 
4440     CarrySumPrevDstIdx = CarrySum;
4441     DstRegs[DstIdx] = FactorSum;
4442     Factors.clear();
4443   }
4444 }
4445 
4446 LegalizerHelper::LegalizeResult
4447 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4448   Register DstReg = MI.getOperand(0).getReg();
4449   Register Src1 = MI.getOperand(1).getReg();
4450   Register Src2 = MI.getOperand(2).getReg();
4451 
4452   LLT Ty = MRI.getType(DstReg);
4453   if (Ty.isVector())
4454     return UnableToLegalize;
4455 
4456   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4457   unsigned DstSize = Ty.getSizeInBits();
4458   unsigned NarrowSize = NarrowTy.getSizeInBits();
4459   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4460     return UnableToLegalize;
4461 
4462   unsigned NumDstParts = DstSize / NarrowSize;
4463   unsigned NumSrcParts = SrcSize / NarrowSize;
4464   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4465   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4466 
4467   SmallVector<Register, 2> Src1Parts, Src2Parts;
4468   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4469   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4470   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4471   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4472 
4473   // Take only high half of registers if this is high mul.
4474   ArrayRef<Register> DstRegs(
4475       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4476   MIRBuilder.buildMerge(DstReg, DstRegs);
4477   MI.eraseFromParent();
4478   return Legalized;
4479 }
4480 
4481 LegalizerHelper::LegalizeResult
4482 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
4483                                      LLT NarrowTy) {
4484   if (TypeIdx != 1)
4485     return UnableToLegalize;
4486 
4487   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4488 
4489   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4490   // FIXME: add support for when SizeOp1 isn't an exact multiple of
4491   // NarrowSize.
4492   if (SizeOp1 % NarrowSize != 0)
4493     return UnableToLegalize;
4494   int NumParts = SizeOp1 / NarrowSize;
4495 
4496   SmallVector<Register, 2> SrcRegs, DstRegs;
4497   SmallVector<uint64_t, 2> Indexes;
4498   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4499 
4500   Register OpReg = MI.getOperand(0).getReg();
4501   uint64_t OpStart = MI.getOperand(2).getImm();
4502   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4503   for (int i = 0; i < NumParts; ++i) {
4504     unsigned SrcStart = i * NarrowSize;
4505 
4506     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
4507       // No part of the extract uses this subregister, ignore it.
4508       continue;
4509     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4510       // The entire subregister is extracted, forward the value.
4511       DstRegs.push_back(SrcRegs[i]);
4512       continue;
4513     }
4514 
4515     // OpSegStart is where this destination segment would start in OpReg if it
4516     // extended infinitely in both directions.
4517     int64_t ExtractOffset;
4518     uint64_t SegSize;
4519     if (OpStart < SrcStart) {
4520       ExtractOffset = 0;
4521       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
4522     } else {
4523       ExtractOffset = OpStart - SrcStart;
4524       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
4525     }
4526 
4527     Register SegReg = SrcRegs[i];
4528     if (ExtractOffset != 0 || SegSize != NarrowSize) {
4529       // A genuine extract is needed.
4530       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4531       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
4532     }
4533 
4534     DstRegs.push_back(SegReg);
4535   }
4536 
4537   Register DstReg = MI.getOperand(0).getReg();
4538   if (MRI.getType(DstReg).isVector())
4539     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4540   else if (DstRegs.size() > 1)
4541     MIRBuilder.buildMerge(DstReg, DstRegs);
4542   else
4543     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4544   MI.eraseFromParent();
4545   return Legalized;
4546 }
4547 
4548 LegalizerHelper::LegalizeResult
4549 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4550                                     LLT NarrowTy) {
4551   // FIXME: Don't know how to handle secondary types yet.
4552   if (TypeIdx != 0)
4553     return UnableToLegalize;
4554 
4555   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4556   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4557 
4558   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4559   // NarrowSize.
4560   if (SizeOp0 % NarrowSize != 0)
4561     return UnableToLegalize;
4562 
4563   int NumParts = SizeOp0 / NarrowSize;
4564 
4565   SmallVector<Register, 2> SrcRegs, DstRegs;
4566   SmallVector<uint64_t, 2> Indexes;
4567   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4568 
4569   Register OpReg = MI.getOperand(2).getReg();
4570   uint64_t OpStart = MI.getOperand(3).getImm();
4571   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4572   for (int i = 0; i < NumParts; ++i) {
4573     unsigned DstStart = i * NarrowSize;
4574 
4575     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4576       // No part of the insert affects this subregister, forward the original.
4577       DstRegs.push_back(SrcRegs[i]);
4578       continue;
4579     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4580       // The entire subregister is defined by this insert, forward the new
4581       // value.
4582       DstRegs.push_back(OpReg);
4583       continue;
4584     }
4585 
4586     // OpSegStart is where this destination segment would start in OpReg if it
4587     // extended infinitely in both directions.
4588     int64_t ExtractOffset, InsertOffset;
4589     uint64_t SegSize;
4590     if (OpStart < DstStart) {
4591       InsertOffset = 0;
4592       ExtractOffset = DstStart - OpStart;
4593       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4594     } else {
4595       InsertOffset = OpStart - DstStart;
4596       ExtractOffset = 0;
4597       SegSize =
4598         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4599     }
4600 
4601     Register SegReg = OpReg;
4602     if (ExtractOffset != 0 || SegSize != OpSize) {
4603       // A genuine extract is needed.
4604       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4605       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4606     }
4607 
4608     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4609     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4610     DstRegs.push_back(DstReg);
4611   }
4612 
4613   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4614   Register DstReg = MI.getOperand(0).getReg();
4615   if(MRI.getType(DstReg).isVector())
4616     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4617   else
4618     MIRBuilder.buildMerge(DstReg, DstRegs);
4619   MI.eraseFromParent();
4620   return Legalized;
4621 }
4622 
4623 LegalizerHelper::LegalizeResult
4624 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4625                                    LLT NarrowTy) {
4626   Register DstReg = MI.getOperand(0).getReg();
4627   LLT DstTy = MRI.getType(DstReg);
4628 
4629   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4630 
4631   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4632   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4633   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4634   LLT LeftoverTy;
4635   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4636                     Src0Regs, Src0LeftoverRegs))
4637     return UnableToLegalize;
4638 
4639   LLT Unused;
4640   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4641                     Src1Regs, Src1LeftoverRegs))
4642     llvm_unreachable("inconsistent extractParts result");
4643 
4644   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4645     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4646                                         {Src0Regs[I], Src1Regs[I]});
4647     DstRegs.push_back(Inst.getReg(0));
4648   }
4649 
4650   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4651     auto Inst = MIRBuilder.buildInstr(
4652       MI.getOpcode(),
4653       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4654     DstLeftoverRegs.push_back(Inst.getReg(0));
4655   }
4656 
4657   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4658               LeftoverTy, DstLeftoverRegs);
4659 
4660   MI.eraseFromParent();
4661   return Legalized;
4662 }
4663 
4664 LegalizerHelper::LegalizeResult
4665 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4666                                  LLT NarrowTy) {
4667   if (TypeIdx != 0)
4668     return UnableToLegalize;
4669 
4670   Register DstReg = MI.getOperand(0).getReg();
4671   Register SrcReg = MI.getOperand(1).getReg();
4672 
4673   LLT DstTy = MRI.getType(DstReg);
4674   if (DstTy.isVector())
4675     return UnableToLegalize;
4676 
4677   SmallVector<Register, 8> Parts;
4678   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4679   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4680   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4681 
4682   MI.eraseFromParent();
4683   return Legalized;
4684 }
4685 
4686 LegalizerHelper::LegalizeResult
4687 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4688                                     LLT NarrowTy) {
4689   if (TypeIdx != 0)
4690     return UnableToLegalize;
4691 
4692   Register CondReg = MI.getOperand(1).getReg();
4693   LLT CondTy = MRI.getType(CondReg);
4694   if (CondTy.isVector()) // TODO: Handle vselect
4695     return UnableToLegalize;
4696 
4697   Register DstReg = MI.getOperand(0).getReg();
4698   LLT DstTy = MRI.getType(DstReg);
4699 
4700   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4701   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4702   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4703   LLT LeftoverTy;
4704   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4705                     Src1Regs, Src1LeftoverRegs))
4706     return UnableToLegalize;
4707 
4708   LLT Unused;
4709   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4710                     Src2Regs, Src2LeftoverRegs))
4711     llvm_unreachable("inconsistent extractParts result");
4712 
4713   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4714     auto Select = MIRBuilder.buildSelect(NarrowTy,
4715                                          CondReg, Src1Regs[I], Src2Regs[I]);
4716     DstRegs.push_back(Select.getReg(0));
4717   }
4718 
4719   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4720     auto Select = MIRBuilder.buildSelect(
4721       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4722     DstLeftoverRegs.push_back(Select.getReg(0));
4723   }
4724 
4725   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4726               LeftoverTy, DstLeftoverRegs);
4727 
4728   MI.eraseFromParent();
4729   return Legalized;
4730 }
4731 
4732 LegalizerHelper::LegalizeResult
4733 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4734                                   LLT NarrowTy) {
4735   if (TypeIdx != 1)
4736     return UnableToLegalize;
4737 
4738   Register DstReg = MI.getOperand(0).getReg();
4739   Register SrcReg = MI.getOperand(1).getReg();
4740   LLT DstTy = MRI.getType(DstReg);
4741   LLT SrcTy = MRI.getType(SrcReg);
4742   unsigned NarrowSize = NarrowTy.getSizeInBits();
4743 
4744   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4745     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4746 
4747     MachineIRBuilder &B = MIRBuilder;
4748     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4749     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4750     auto C_0 = B.buildConstant(NarrowTy, 0);
4751     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4752                                 UnmergeSrc.getReg(1), C_0);
4753     auto LoCTLZ = IsUndef ?
4754       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4755       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4756     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4757     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4758     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4759     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4760 
4761     MI.eraseFromParent();
4762     return Legalized;
4763   }
4764 
4765   return UnableToLegalize;
4766 }
4767 
4768 LegalizerHelper::LegalizeResult
4769 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4770                                   LLT NarrowTy) {
4771   if (TypeIdx != 1)
4772     return UnableToLegalize;
4773 
4774   Register DstReg = MI.getOperand(0).getReg();
4775   Register SrcReg = MI.getOperand(1).getReg();
4776   LLT DstTy = MRI.getType(DstReg);
4777   LLT SrcTy = MRI.getType(SrcReg);
4778   unsigned NarrowSize = NarrowTy.getSizeInBits();
4779 
4780   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4781     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4782 
4783     MachineIRBuilder &B = MIRBuilder;
4784     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4785     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4786     auto C_0 = B.buildConstant(NarrowTy, 0);
4787     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4788                                 UnmergeSrc.getReg(0), C_0);
4789     auto HiCTTZ = IsUndef ?
4790       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4791       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4792     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4793     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4794     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4795     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4796 
4797     MI.eraseFromParent();
4798     return Legalized;
4799   }
4800 
4801   return UnableToLegalize;
4802 }
4803 
4804 LegalizerHelper::LegalizeResult
4805 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4806                                    LLT NarrowTy) {
4807   if (TypeIdx != 1)
4808     return UnableToLegalize;
4809 
4810   Register DstReg = MI.getOperand(0).getReg();
4811   LLT DstTy = MRI.getType(DstReg);
4812   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4813   unsigned NarrowSize = NarrowTy.getSizeInBits();
4814 
4815   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4816     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4817 
4818     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4819     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4820     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4821 
4822     MI.eraseFromParent();
4823     return Legalized;
4824   }
4825 
4826   return UnableToLegalize;
4827 }
4828 
4829 LegalizerHelper::LegalizeResult
4830 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
4831   unsigned Opc = MI.getOpcode();
4832   const auto &TII = MIRBuilder.getTII();
4833   auto isSupported = [this](const LegalityQuery &Q) {
4834     auto QAction = LI.getAction(Q).Action;
4835     return QAction == Legal || QAction == Libcall || QAction == Custom;
4836   };
4837   switch (Opc) {
4838   default:
4839     return UnableToLegalize;
4840   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4841     // This trivially expands to CTLZ.
4842     Observer.changingInstr(MI);
4843     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4844     Observer.changedInstr(MI);
4845     return Legalized;
4846   }
4847   case TargetOpcode::G_CTLZ: {
4848     Register DstReg = MI.getOperand(0).getReg();
4849     Register SrcReg = MI.getOperand(1).getReg();
4850     LLT DstTy = MRI.getType(DstReg);
4851     LLT SrcTy = MRI.getType(SrcReg);
4852     unsigned Len = SrcTy.getSizeInBits();
4853 
4854     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4855       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4856       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4857       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4858       auto ICmp = MIRBuilder.buildICmp(
4859           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4860       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4861       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4862       MI.eraseFromParent();
4863       return Legalized;
4864     }
4865     // for now, we do this:
4866     // NewLen = NextPowerOf2(Len);
4867     // x = x | (x >> 1);
4868     // x = x | (x >> 2);
4869     // ...
4870     // x = x | (x >>16);
4871     // x = x | (x >>32); // for 64-bit input
4872     // Upto NewLen/2
4873     // return Len - popcount(x);
4874     //
4875     // Ref: "Hacker's Delight" by Henry Warren
4876     Register Op = SrcReg;
4877     unsigned NewLen = PowerOf2Ceil(Len);
4878     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4879       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4880       auto MIBOp = MIRBuilder.buildOr(
4881           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4882       Op = MIBOp.getReg(0);
4883     }
4884     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4885     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4886                         MIBPop);
4887     MI.eraseFromParent();
4888     return Legalized;
4889   }
4890   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4891     // This trivially expands to CTTZ.
4892     Observer.changingInstr(MI);
4893     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4894     Observer.changedInstr(MI);
4895     return Legalized;
4896   }
4897   case TargetOpcode::G_CTTZ: {
4898     Register DstReg = MI.getOperand(0).getReg();
4899     Register SrcReg = MI.getOperand(1).getReg();
4900     LLT DstTy = MRI.getType(DstReg);
4901     LLT SrcTy = MRI.getType(SrcReg);
4902 
4903     unsigned Len = SrcTy.getSizeInBits();
4904     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4905       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4906       // zero.
4907       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4908       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4909       auto ICmp = MIRBuilder.buildICmp(
4910           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4911       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4912       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4913       MI.eraseFromParent();
4914       return Legalized;
4915     }
4916     // for now, we use: { return popcount(~x & (x - 1)); }
4917     // unless the target has ctlz but not ctpop, in which case we use:
4918     // { return 32 - nlz(~x & (x-1)); }
4919     // Ref: "Hacker's Delight" by Henry Warren
4920     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
4921     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
4922     auto MIBTmp = MIRBuilder.buildAnd(
4923         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
4924     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
4925         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
4926       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
4927       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4928                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
4929       MI.eraseFromParent();
4930       return Legalized;
4931     }
4932     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4933     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4934     return Legalized;
4935   }
4936   case TargetOpcode::G_CTPOP: {
4937     Register SrcReg = MI.getOperand(1).getReg();
4938     LLT Ty = MRI.getType(SrcReg);
4939     unsigned Size = Ty.getSizeInBits();
4940     MachineIRBuilder &B = MIRBuilder;
4941 
4942     // Count set bits in blocks of 2 bits. Default approach would be
4943     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4944     // We use following formula instead:
4945     // B2Count = val - { (val >> 1) & 0x55555555 }
4946     // since it gives same result in blocks of 2 with one instruction less.
4947     auto C_1 = B.buildConstant(Ty, 1);
4948     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
4949     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4950     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4951     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4952     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
4953 
4954     // In order to get count in blocks of 4 add values from adjacent block of 2.
4955     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4956     auto C_2 = B.buildConstant(Ty, 2);
4957     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4958     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4959     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4960     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4961     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4962     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4963 
4964     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4965     // addition since count value sits in range {0,...,8} and 4 bits are enough
4966     // to hold such binary values. After addition high 4 bits still hold count
4967     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4968     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4969     auto C_4 = B.buildConstant(Ty, 4);
4970     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4971     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4972     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4973     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4974     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4975 
4976     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4977     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4978     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4979     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4980     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4981 
4982     // Shift count result from 8 high bits to low bits.
4983     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4984     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4985 
4986     MI.eraseFromParent();
4987     return Legalized;
4988   }
4989   }
4990 }
4991 
4992 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4993 // representation.
4994 LegalizerHelper::LegalizeResult
4995 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4996   Register Dst = MI.getOperand(0).getReg();
4997   Register Src = MI.getOperand(1).getReg();
4998   const LLT S64 = LLT::scalar(64);
4999   const LLT S32 = LLT::scalar(32);
5000   const LLT S1 = LLT::scalar(1);
5001 
5002   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5003 
5004   // unsigned cul2f(ulong u) {
5005   //   uint lz = clz(u);
5006   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5007   //   u = (u << lz) & 0x7fffffffffffffffUL;
5008   //   ulong t = u & 0xffffffffffUL;
5009   //   uint v = (e << 23) | (uint)(u >> 40);
5010   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5011   //   return as_float(v + r);
5012   // }
5013 
5014   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5015   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5016 
5017   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5018 
5019   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5020   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5021 
5022   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5023   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5024 
5025   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5026   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5027 
5028   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5029 
5030   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5031   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5032 
5033   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5034   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5035   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5036 
5037   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5038   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5039   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5040   auto One = MIRBuilder.buildConstant(S32, 1);
5041 
5042   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5043   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5044   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5045   MIRBuilder.buildAdd(Dst, V, R);
5046 
5047   MI.eraseFromParent();
5048   return Legalized;
5049 }
5050 
5051 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5052   Register Dst = MI.getOperand(0).getReg();
5053   Register Src = MI.getOperand(1).getReg();
5054   LLT DstTy = MRI.getType(Dst);
5055   LLT SrcTy = MRI.getType(Src);
5056 
5057   if (SrcTy == LLT::scalar(1)) {
5058     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5059     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5060     MIRBuilder.buildSelect(Dst, Src, True, False);
5061     MI.eraseFromParent();
5062     return Legalized;
5063   }
5064 
5065   if (SrcTy != LLT::scalar(64))
5066     return UnableToLegalize;
5067 
5068   if (DstTy == LLT::scalar(32)) {
5069     // TODO: SelectionDAG has several alternative expansions to port which may
5070     // be more reasonble depending on the available instructions. If a target
5071     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5072     // intermediate type, this is probably worse.
5073     return lowerU64ToF32BitOps(MI);
5074   }
5075 
5076   return UnableToLegalize;
5077 }
5078 
5079 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5080   Register Dst = MI.getOperand(0).getReg();
5081   Register Src = MI.getOperand(1).getReg();
5082   LLT DstTy = MRI.getType(Dst);
5083   LLT SrcTy = MRI.getType(Src);
5084 
5085   const LLT S64 = LLT::scalar(64);
5086   const LLT S32 = LLT::scalar(32);
5087   const LLT S1 = LLT::scalar(1);
5088 
5089   if (SrcTy == S1) {
5090     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5091     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5092     MIRBuilder.buildSelect(Dst, Src, True, False);
5093     MI.eraseFromParent();
5094     return Legalized;
5095   }
5096 
5097   if (SrcTy != S64)
5098     return UnableToLegalize;
5099 
5100   if (DstTy == S32) {
5101     // signed cl2f(long l) {
5102     //   long s = l >> 63;
5103     //   float r = cul2f((l + s) ^ s);
5104     //   return s ? -r : r;
5105     // }
5106     Register L = Src;
5107     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5108     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5109 
5110     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5111     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5112     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5113 
5114     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5115     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5116                                             MIRBuilder.buildConstant(S64, 0));
5117     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5118     MI.eraseFromParent();
5119     return Legalized;
5120   }
5121 
5122   return UnableToLegalize;
5123 }
5124 
5125 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5126   Register Dst = MI.getOperand(0).getReg();
5127   Register Src = MI.getOperand(1).getReg();
5128   LLT DstTy = MRI.getType(Dst);
5129   LLT SrcTy = MRI.getType(Src);
5130   const LLT S64 = LLT::scalar(64);
5131   const LLT S32 = LLT::scalar(32);
5132 
5133   if (SrcTy != S64 && SrcTy != S32)
5134     return UnableToLegalize;
5135   if (DstTy != S32 && DstTy != S64)
5136     return UnableToLegalize;
5137 
5138   // FPTOSI gives same result as FPTOUI for positive signed integers.
5139   // FPTOUI needs to deal with fp values that convert to unsigned integers
5140   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5141 
5142   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5143   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5144                                                 : APFloat::IEEEdouble(),
5145                     APInt::getNullValue(SrcTy.getSizeInBits()));
5146   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5147 
5148   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5149 
5150   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5151   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5152   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5153   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5154   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5155   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5156   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5157 
5158   const LLT S1 = LLT::scalar(1);
5159 
5160   MachineInstrBuilder FCMP =
5161       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5162   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5163 
5164   MI.eraseFromParent();
5165   return Legalized;
5166 }
5167 
5168 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5169   Register Dst = MI.getOperand(0).getReg();
5170   Register Src = MI.getOperand(1).getReg();
5171   LLT DstTy = MRI.getType(Dst);
5172   LLT SrcTy = MRI.getType(Src);
5173   const LLT S64 = LLT::scalar(64);
5174   const LLT S32 = LLT::scalar(32);
5175 
5176   // FIXME: Only f32 to i64 conversions are supported.
5177   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5178     return UnableToLegalize;
5179 
5180   // Expand f32 -> i64 conversion
5181   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5182   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5183 
5184   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5185 
5186   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5187   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5188 
5189   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5190   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5191 
5192   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5193                                            APInt::getSignMask(SrcEltBits));
5194   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5195   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5196   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5197   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5198 
5199   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5200   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5201   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5202 
5203   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5204   R = MIRBuilder.buildZExt(DstTy, R);
5205 
5206   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5207   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5208   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5209   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5210 
5211   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5212   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5213 
5214   const LLT S1 = LLT::scalar(1);
5215   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5216                                     S1, Exponent, ExponentLoBit);
5217 
5218   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5219 
5220   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5221   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5222 
5223   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5224 
5225   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5226                                           S1, Exponent, ZeroSrcTy);
5227 
5228   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5229   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5230 
5231   MI.eraseFromParent();
5232   return Legalized;
5233 }
5234 
5235 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5236 LegalizerHelper::LegalizeResult
5237 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5238   Register Dst = MI.getOperand(0).getReg();
5239   Register Src = MI.getOperand(1).getReg();
5240 
5241   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5242     return UnableToLegalize;
5243 
5244   const unsigned ExpMask = 0x7ff;
5245   const unsigned ExpBiasf64 = 1023;
5246   const unsigned ExpBiasf16 = 15;
5247   const LLT S32 = LLT::scalar(32);
5248   const LLT S1 = LLT::scalar(1);
5249 
5250   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5251   Register U = Unmerge.getReg(0);
5252   Register UH = Unmerge.getReg(1);
5253 
5254   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
5255   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
5256 
5257   // Subtract the fp64 exponent bias (1023) to get the real exponent and
5258   // add the f16 bias (15) to get the biased exponent for the f16 format.
5259   E = MIRBuilder.buildAdd(
5260     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
5261 
5262   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
5263   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
5264 
5265   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
5266                                        MIRBuilder.buildConstant(S32, 0x1ff));
5267   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
5268 
5269   auto Zero = MIRBuilder.buildConstant(S32, 0);
5270   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
5271   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
5272   M = MIRBuilder.buildOr(S32, M, Lo40Set);
5273 
5274   // (M != 0 ? 0x0200 : 0) | 0x7c00;
5275   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
5276   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
5277   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
5278 
5279   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
5280   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
5281 
5282   // N = M | (E << 12);
5283   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
5284   auto N = MIRBuilder.buildOr(S32, M, EShl12);
5285 
5286   // B = clamp(1-E, 0, 13);
5287   auto One = MIRBuilder.buildConstant(S32, 1);
5288   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
5289   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
5290   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
5291 
5292   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
5293                                        MIRBuilder.buildConstant(S32, 0x1000));
5294 
5295   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
5296   auto D0 = MIRBuilder.buildShl(S32, D, B);
5297 
5298   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
5299                                              D0, SigSetHigh);
5300   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
5301   D = MIRBuilder.buildOr(S32, D, D1);
5302 
5303   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
5304   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
5305 
5306   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
5307   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
5308 
5309   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
5310                                        MIRBuilder.buildConstant(S32, 3));
5311   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
5312 
5313   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
5314                                        MIRBuilder.buildConstant(S32, 5));
5315   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
5316 
5317   V1 = MIRBuilder.buildOr(S32, V0, V1);
5318   V = MIRBuilder.buildAdd(S32, V, V1);
5319 
5320   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
5321                                        E, MIRBuilder.buildConstant(S32, 30));
5322   V = MIRBuilder.buildSelect(S32, CmpEGt30,
5323                              MIRBuilder.buildConstant(S32, 0x7c00), V);
5324 
5325   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
5326                                          E, MIRBuilder.buildConstant(S32, 1039));
5327   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
5328 
5329   // Extract the sign bit.
5330   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
5331   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
5332 
5333   // Insert the sign bit
5334   V = MIRBuilder.buildOr(S32, Sign, V);
5335 
5336   MIRBuilder.buildTrunc(Dst, V);
5337   MI.eraseFromParent();
5338   return Legalized;
5339 }
5340 
5341 LegalizerHelper::LegalizeResult
5342 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
5343   Register Dst = MI.getOperand(0).getReg();
5344   Register Src = MI.getOperand(1).getReg();
5345 
5346   LLT DstTy = MRI.getType(Dst);
5347   LLT SrcTy = MRI.getType(Src);
5348   const LLT S64 = LLT::scalar(64);
5349   const LLT S16 = LLT::scalar(16);
5350 
5351   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
5352     return lowerFPTRUNC_F64_TO_F16(MI);
5353 
5354   return UnableToLegalize;
5355 }
5356 
5357 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
5358 // multiplication tree.
5359 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
5360   Register Dst = MI.getOperand(0).getReg();
5361   Register Src0 = MI.getOperand(1).getReg();
5362   Register Src1 = MI.getOperand(2).getReg();
5363   LLT Ty = MRI.getType(Dst);
5364 
5365   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
5366   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
5367   MI.eraseFromParent();
5368   return Legalized;
5369 }
5370 
5371 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
5372   switch (Opc) {
5373   case TargetOpcode::G_SMIN:
5374     return CmpInst::ICMP_SLT;
5375   case TargetOpcode::G_SMAX:
5376     return CmpInst::ICMP_SGT;
5377   case TargetOpcode::G_UMIN:
5378     return CmpInst::ICMP_ULT;
5379   case TargetOpcode::G_UMAX:
5380     return CmpInst::ICMP_UGT;
5381   default:
5382     llvm_unreachable("not in integer min/max");
5383   }
5384 }
5385 
5386 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
5387   Register Dst = MI.getOperand(0).getReg();
5388   Register Src0 = MI.getOperand(1).getReg();
5389   Register Src1 = MI.getOperand(2).getReg();
5390 
5391   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
5392   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
5393 
5394   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
5395   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
5396 
5397   MI.eraseFromParent();
5398   return Legalized;
5399 }
5400 
5401 LegalizerHelper::LegalizeResult
5402 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
5403   Register Dst = MI.getOperand(0).getReg();
5404   Register Src0 = MI.getOperand(1).getReg();
5405   Register Src1 = MI.getOperand(2).getReg();
5406 
5407   const LLT Src0Ty = MRI.getType(Src0);
5408   const LLT Src1Ty = MRI.getType(Src1);
5409 
5410   const int Src0Size = Src0Ty.getScalarSizeInBits();
5411   const int Src1Size = Src1Ty.getScalarSizeInBits();
5412 
5413   auto SignBitMask = MIRBuilder.buildConstant(
5414     Src0Ty, APInt::getSignMask(Src0Size));
5415 
5416   auto NotSignBitMask = MIRBuilder.buildConstant(
5417     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
5418 
5419   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
5420   MachineInstr *Or;
5421 
5422   if (Src0Ty == Src1Ty) {
5423     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
5424     Or = MIRBuilder.buildOr(Dst, And0, And1);
5425   } else if (Src0Size > Src1Size) {
5426     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
5427     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
5428     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
5429     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
5430     Or = MIRBuilder.buildOr(Dst, And0, And1);
5431   } else {
5432     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
5433     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
5434     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
5435     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
5436     Or = MIRBuilder.buildOr(Dst, And0, And1);
5437   }
5438 
5439   // Be careful about setting nsz/nnan/ninf on every instruction, since the
5440   // constants are a nan and -0.0, but the final result should preserve
5441   // everything.
5442   if (unsigned Flags = MI.getFlags())
5443     Or->setFlags(Flags);
5444 
5445   MI.eraseFromParent();
5446   return Legalized;
5447 }
5448 
5449 LegalizerHelper::LegalizeResult
5450 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
5451   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
5452     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
5453 
5454   Register Dst = MI.getOperand(0).getReg();
5455   Register Src0 = MI.getOperand(1).getReg();
5456   Register Src1 = MI.getOperand(2).getReg();
5457   LLT Ty = MRI.getType(Dst);
5458 
5459   if (!MI.getFlag(MachineInstr::FmNoNans)) {
5460     // Insert canonicalizes if it's possible we need to quiet to get correct
5461     // sNaN behavior.
5462 
5463     // Note this must be done here, and not as an optimization combine in the
5464     // absence of a dedicate quiet-snan instruction as we're using an
5465     // omni-purpose G_FCANONICALIZE.
5466     if (!isKnownNeverSNaN(Src0, MRI))
5467       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
5468 
5469     if (!isKnownNeverSNaN(Src1, MRI))
5470       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
5471   }
5472 
5473   // If there are no nans, it's safe to simply replace this with the non-IEEE
5474   // version.
5475   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
5476   MI.eraseFromParent();
5477   return Legalized;
5478 }
5479 
5480 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
5481   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
5482   Register DstReg = MI.getOperand(0).getReg();
5483   LLT Ty = MRI.getType(DstReg);
5484   unsigned Flags = MI.getFlags();
5485 
5486   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
5487                                   Flags);
5488   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
5489   MI.eraseFromParent();
5490   return Legalized;
5491 }
5492 
5493 LegalizerHelper::LegalizeResult
5494 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
5495   Register DstReg = MI.getOperand(0).getReg();
5496   Register X = MI.getOperand(1).getReg();
5497   const unsigned Flags = MI.getFlags();
5498   const LLT Ty = MRI.getType(DstReg);
5499   const LLT CondTy = Ty.changeElementSize(1);
5500 
5501   // round(x) =>
5502   //  t = trunc(x);
5503   //  d = fabs(x - t);
5504   //  o = copysign(1.0f, x);
5505   //  return t + (d >= 0.5 ? o : 0.0);
5506 
5507   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
5508 
5509   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
5510   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
5511   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5512   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
5513   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
5514   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
5515 
5516   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
5517                                   Flags);
5518   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
5519 
5520   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
5521 
5522   MI.eraseFromParent();
5523   return Legalized;
5524 }
5525 
5526 LegalizerHelper::LegalizeResult
5527 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
5528   Register DstReg = MI.getOperand(0).getReg();
5529   Register SrcReg = MI.getOperand(1).getReg();
5530   unsigned Flags = MI.getFlags();
5531   LLT Ty = MRI.getType(DstReg);
5532   const LLT CondTy = Ty.changeElementSize(1);
5533 
5534   // result = trunc(src);
5535   // if (src < 0.0 && src != result)
5536   //   result += -1.0.
5537 
5538   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
5539   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5540 
5541   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
5542                                   SrcReg, Zero, Flags);
5543   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
5544                                       SrcReg, Trunc, Flags);
5545   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
5546   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
5547 
5548   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
5549   MI.eraseFromParent();
5550   return Legalized;
5551 }
5552 
5553 LegalizerHelper::LegalizeResult
5554 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
5555   const unsigned NumOps = MI.getNumOperands();
5556   Register DstReg = MI.getOperand(0).getReg();
5557   Register Src0Reg = MI.getOperand(1).getReg();
5558   LLT DstTy = MRI.getType(DstReg);
5559   LLT SrcTy = MRI.getType(Src0Reg);
5560   unsigned PartSize = SrcTy.getSizeInBits();
5561 
5562   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
5563   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
5564 
5565   for (unsigned I = 2; I != NumOps; ++I) {
5566     const unsigned Offset = (I - 1) * PartSize;
5567 
5568     Register SrcReg = MI.getOperand(I).getReg();
5569     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
5570 
5571     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
5572       MRI.createGenericVirtualRegister(WideTy);
5573 
5574     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
5575     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
5576     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
5577     ResultReg = NextResult;
5578   }
5579 
5580   if (DstTy.isPointer()) {
5581     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
5582           DstTy.getAddressSpace())) {
5583       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
5584       return UnableToLegalize;
5585     }
5586 
5587     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
5588   }
5589 
5590   MI.eraseFromParent();
5591   return Legalized;
5592 }
5593 
5594 LegalizerHelper::LegalizeResult
5595 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
5596   const unsigned NumDst = MI.getNumOperands() - 1;
5597   Register SrcReg = MI.getOperand(NumDst).getReg();
5598   Register Dst0Reg = MI.getOperand(0).getReg();
5599   LLT DstTy = MRI.getType(Dst0Reg);
5600   if (DstTy.isPointer())
5601     return UnableToLegalize; // TODO
5602 
5603   SrcReg = coerceToScalar(SrcReg);
5604   if (!SrcReg)
5605     return UnableToLegalize;
5606 
5607   // Expand scalarizing unmerge as bitcast to integer and shift.
5608   LLT IntTy = MRI.getType(SrcReg);
5609 
5610   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
5611 
5612   const unsigned DstSize = DstTy.getSizeInBits();
5613   unsigned Offset = DstSize;
5614   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
5615     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
5616     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
5617     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
5618   }
5619 
5620   MI.eraseFromParent();
5621   return Legalized;
5622 }
5623 
5624 /// Lower a vector extract or insert by writing the vector to a stack temporary
5625 /// and reloading the element or vector.
5626 ///
5627 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
5628 ///  =>
5629 ///  %stack_temp = G_FRAME_INDEX
5630 ///  G_STORE %vec, %stack_temp
5631 ///  %idx = clamp(%idx, %vec.getNumElements())
5632 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
5633 ///  %dst = G_LOAD %element_ptr
5634 LegalizerHelper::LegalizeResult
5635 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
5636   Register DstReg = MI.getOperand(0).getReg();
5637   Register SrcVec = MI.getOperand(1).getReg();
5638   Register InsertVal;
5639   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
5640     InsertVal = MI.getOperand(2).getReg();
5641 
5642   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
5643 
5644   LLT VecTy = MRI.getType(SrcVec);
5645   LLT EltTy = VecTy.getElementType();
5646   if (!EltTy.isByteSized()) { // Not implemented.
5647     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
5648     return UnableToLegalize;
5649   }
5650 
5651   unsigned EltBytes = EltTy.getSizeInBytes();
5652   Align VecAlign = getStackTemporaryAlignment(VecTy);
5653   Align EltAlign;
5654 
5655   MachinePointerInfo PtrInfo;
5656   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
5657                                         VecAlign, PtrInfo);
5658   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
5659 
5660   // Get the pointer to the element, and be sure not to hit undefined behavior
5661   // if the index is out of bounds.
5662   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
5663 
5664   int64_t IdxVal;
5665   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
5666     int64_t Offset = IdxVal * EltBytes;
5667     PtrInfo = PtrInfo.getWithOffset(Offset);
5668     EltAlign = commonAlignment(VecAlign, Offset);
5669   } else {
5670     // We lose information with a variable offset.
5671     EltAlign = getStackTemporaryAlignment(EltTy);
5672     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
5673   }
5674 
5675   if (InsertVal) {
5676     // Write the inserted element
5677     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
5678 
5679     // Reload the whole vector.
5680     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
5681   } else {
5682     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
5683   }
5684 
5685   MI.eraseFromParent();
5686   return Legalized;
5687 }
5688 
5689 LegalizerHelper::LegalizeResult
5690 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
5691   Register DstReg = MI.getOperand(0).getReg();
5692   Register Src0Reg = MI.getOperand(1).getReg();
5693   Register Src1Reg = MI.getOperand(2).getReg();
5694   LLT Src0Ty = MRI.getType(Src0Reg);
5695   LLT DstTy = MRI.getType(DstReg);
5696   LLT IdxTy = LLT::scalar(32);
5697 
5698   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5699 
5700   if (DstTy.isScalar()) {
5701     if (Src0Ty.isVector())
5702       return UnableToLegalize;
5703 
5704     // This is just a SELECT.
5705     assert(Mask.size() == 1 && "Expected a single mask element");
5706     Register Val;
5707     if (Mask[0] < 0 || Mask[0] > 1)
5708       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
5709     else
5710       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
5711     MIRBuilder.buildCopy(DstReg, Val);
5712     MI.eraseFromParent();
5713     return Legalized;
5714   }
5715 
5716   Register Undef;
5717   SmallVector<Register, 32> BuildVec;
5718   LLT EltTy = DstTy.getElementType();
5719 
5720   for (int Idx : Mask) {
5721     if (Idx < 0) {
5722       if (!Undef.isValid())
5723         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5724       BuildVec.push_back(Undef);
5725       continue;
5726     }
5727 
5728     if (Src0Ty.isScalar()) {
5729       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5730     } else {
5731       int NumElts = Src0Ty.getNumElements();
5732       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5733       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5734       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5735       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5736       BuildVec.push_back(Extract.getReg(0));
5737     }
5738   }
5739 
5740   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5741   MI.eraseFromParent();
5742   return Legalized;
5743 }
5744 
5745 LegalizerHelper::LegalizeResult
5746 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5747   const auto &MF = *MI.getMF();
5748   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5749   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5750     return UnableToLegalize;
5751 
5752   Register Dst = MI.getOperand(0).getReg();
5753   Register AllocSize = MI.getOperand(1).getReg();
5754   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5755 
5756   LLT PtrTy = MRI.getType(Dst);
5757   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5758 
5759   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5760   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5761   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5762 
5763   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5764   // have to generate an extra instruction to negate the alloc and then use
5765   // G_PTR_ADD to add the negative offset.
5766   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5767   if (Alignment > Align(1)) {
5768     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5769     AlignMask.negate();
5770     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5771     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5772   }
5773 
5774   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5775   MIRBuilder.buildCopy(SPReg, SPTmp);
5776   MIRBuilder.buildCopy(Dst, SPTmp);
5777 
5778   MI.eraseFromParent();
5779   return Legalized;
5780 }
5781 
5782 LegalizerHelper::LegalizeResult
5783 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5784   Register Dst = MI.getOperand(0).getReg();
5785   Register Src = MI.getOperand(1).getReg();
5786   unsigned Offset = MI.getOperand(2).getImm();
5787 
5788   LLT DstTy = MRI.getType(Dst);
5789   LLT SrcTy = MRI.getType(Src);
5790 
5791   if (DstTy.isScalar() &&
5792       (SrcTy.isScalar() ||
5793        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5794     LLT SrcIntTy = SrcTy;
5795     if (!SrcTy.isScalar()) {
5796       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5797       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5798     }
5799 
5800     if (Offset == 0)
5801       MIRBuilder.buildTrunc(Dst, Src);
5802     else {
5803       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5804       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5805       MIRBuilder.buildTrunc(Dst, Shr);
5806     }
5807 
5808     MI.eraseFromParent();
5809     return Legalized;
5810   }
5811 
5812   return UnableToLegalize;
5813 }
5814 
5815 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5816   Register Dst = MI.getOperand(0).getReg();
5817   Register Src = MI.getOperand(1).getReg();
5818   Register InsertSrc = MI.getOperand(2).getReg();
5819   uint64_t Offset = MI.getOperand(3).getImm();
5820 
5821   LLT DstTy = MRI.getType(Src);
5822   LLT InsertTy = MRI.getType(InsertSrc);
5823 
5824   if (InsertTy.isVector() ||
5825       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5826     return UnableToLegalize;
5827 
5828   const DataLayout &DL = MIRBuilder.getDataLayout();
5829   if ((DstTy.isPointer() &&
5830        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5831       (InsertTy.isPointer() &&
5832        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5833     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5834     return UnableToLegalize;
5835   }
5836 
5837   LLT IntDstTy = DstTy;
5838 
5839   if (!DstTy.isScalar()) {
5840     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5841     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5842   }
5843 
5844   if (!InsertTy.isScalar()) {
5845     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5846     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5847   }
5848 
5849   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5850   if (Offset != 0) {
5851     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5852     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5853   }
5854 
5855   APInt MaskVal = APInt::getBitsSetWithWrap(
5856       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5857 
5858   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5859   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5860   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5861 
5862   MIRBuilder.buildCast(Dst, Or);
5863   MI.eraseFromParent();
5864   return Legalized;
5865 }
5866 
5867 LegalizerHelper::LegalizeResult
5868 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5869   Register Dst0 = MI.getOperand(0).getReg();
5870   Register Dst1 = MI.getOperand(1).getReg();
5871   Register LHS = MI.getOperand(2).getReg();
5872   Register RHS = MI.getOperand(3).getReg();
5873   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5874 
5875   LLT Ty = MRI.getType(Dst0);
5876   LLT BoolTy = MRI.getType(Dst1);
5877 
5878   if (IsAdd)
5879     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5880   else
5881     MIRBuilder.buildSub(Dst0, LHS, RHS);
5882 
5883   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5884 
5885   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5886 
5887   // For an addition, the result should be less than one of the operands (LHS)
5888   // if and only if the other operand (RHS) is negative, otherwise there will
5889   // be overflow.
5890   // For a subtraction, the result should be less than one of the operands
5891   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5892   // otherwise there will be overflow.
5893   auto ResultLowerThanLHS =
5894       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5895   auto ConditionRHS = MIRBuilder.buildICmp(
5896       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5897 
5898   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5899   MI.eraseFromParent();
5900   return Legalized;
5901 }
5902 
5903 LegalizerHelper::LegalizeResult
5904 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
5905   Register Res = MI.getOperand(0).getReg();
5906   Register LHS = MI.getOperand(1).getReg();
5907   Register RHS = MI.getOperand(2).getReg();
5908   LLT Ty = MRI.getType(Res);
5909   bool IsSigned;
5910   bool IsAdd;
5911   unsigned BaseOp;
5912   switch (MI.getOpcode()) {
5913   default:
5914     llvm_unreachable("unexpected addsat/subsat opcode");
5915   case TargetOpcode::G_UADDSAT:
5916     IsSigned = false;
5917     IsAdd = true;
5918     BaseOp = TargetOpcode::G_ADD;
5919     break;
5920   case TargetOpcode::G_SADDSAT:
5921     IsSigned = true;
5922     IsAdd = true;
5923     BaseOp = TargetOpcode::G_ADD;
5924     break;
5925   case TargetOpcode::G_USUBSAT:
5926     IsSigned = false;
5927     IsAdd = false;
5928     BaseOp = TargetOpcode::G_SUB;
5929     break;
5930   case TargetOpcode::G_SSUBSAT:
5931     IsSigned = true;
5932     IsAdd = false;
5933     BaseOp = TargetOpcode::G_SUB;
5934     break;
5935   }
5936 
5937   if (IsSigned) {
5938     // sadd.sat(a, b) ->
5939     //   hi = 0x7fffffff - smax(a, 0)
5940     //   lo = 0x80000000 - smin(a, 0)
5941     //   a + smin(smax(lo, b), hi)
5942     // ssub.sat(a, b) ->
5943     //   lo = smax(a, -1) - 0x7fffffff
5944     //   hi = smin(a, -1) - 0x80000000
5945     //   a - smin(smax(lo, b), hi)
5946     // TODO: AMDGPU can use a "median of 3" instruction here:
5947     //   a +/- med3(lo, b, hi)
5948     uint64_t NumBits = Ty.getScalarSizeInBits();
5949     auto MaxVal =
5950         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
5951     auto MinVal =
5952         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
5953     MachineInstrBuilder Hi, Lo;
5954     if (IsAdd) {
5955       auto Zero = MIRBuilder.buildConstant(Ty, 0);
5956       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
5957       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
5958     } else {
5959       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
5960       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
5961                                MaxVal);
5962       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
5963                                MinVal);
5964     }
5965     auto RHSClamped =
5966         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
5967     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
5968   } else {
5969     // uadd.sat(a, b) -> a + umin(~a, b)
5970     // usub.sat(a, b) -> a - umin(a, b)
5971     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
5972     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
5973     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
5974   }
5975 
5976   MI.eraseFromParent();
5977   return Legalized;
5978 }
5979 
5980 LegalizerHelper::LegalizeResult
5981 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
5982   Register Res = MI.getOperand(0).getReg();
5983   Register LHS = MI.getOperand(1).getReg();
5984   Register RHS = MI.getOperand(2).getReg();
5985   LLT Ty = MRI.getType(Res);
5986   LLT BoolTy = Ty.changeElementSize(1);
5987   bool IsSigned;
5988   bool IsAdd;
5989   unsigned OverflowOp;
5990   switch (MI.getOpcode()) {
5991   default:
5992     llvm_unreachable("unexpected addsat/subsat opcode");
5993   case TargetOpcode::G_UADDSAT:
5994     IsSigned = false;
5995     IsAdd = true;
5996     OverflowOp = TargetOpcode::G_UADDO;
5997     break;
5998   case TargetOpcode::G_SADDSAT:
5999     IsSigned = true;
6000     IsAdd = true;
6001     OverflowOp = TargetOpcode::G_SADDO;
6002     break;
6003   case TargetOpcode::G_USUBSAT:
6004     IsSigned = false;
6005     IsAdd = false;
6006     OverflowOp = TargetOpcode::G_USUBO;
6007     break;
6008   case TargetOpcode::G_SSUBSAT:
6009     IsSigned = true;
6010     IsAdd = false;
6011     OverflowOp = TargetOpcode::G_SSUBO;
6012     break;
6013   }
6014 
6015   auto OverflowRes =
6016       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6017   Register Tmp = OverflowRes.getReg(0);
6018   Register Ov = OverflowRes.getReg(1);
6019   MachineInstrBuilder Clamp;
6020   if (IsSigned) {
6021     // sadd.sat(a, b) ->
6022     //   {tmp, ov} = saddo(a, b)
6023     //   ov ? (tmp >>s 31) + 0x80000000 : r
6024     // ssub.sat(a, b) ->
6025     //   {tmp, ov} = ssubo(a, b)
6026     //   ov ? (tmp >>s 31) + 0x80000000 : r
6027     uint64_t NumBits = Ty.getScalarSizeInBits();
6028     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6029     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6030     auto MinVal =
6031         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6032     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6033   } else {
6034     // uadd.sat(a, b) ->
6035     //   {tmp, ov} = uaddo(a, b)
6036     //   ov ? 0xffffffff : tmp
6037     // usub.sat(a, b) ->
6038     //   {tmp, ov} = usubo(a, b)
6039     //   ov ? 0 : tmp
6040     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6041   }
6042   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6043 
6044   MI.eraseFromParent();
6045   return Legalized;
6046 }
6047 
6048 LegalizerHelper::LegalizeResult
6049 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6050   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6051           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6052          "Expected shlsat opcode!");
6053   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6054   Register Res = MI.getOperand(0).getReg();
6055   Register LHS = MI.getOperand(1).getReg();
6056   Register RHS = MI.getOperand(2).getReg();
6057   LLT Ty = MRI.getType(Res);
6058   LLT BoolTy = Ty.changeElementSize(1);
6059 
6060   unsigned BW = Ty.getScalarSizeInBits();
6061   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6062   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6063                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6064 
6065   MachineInstrBuilder SatVal;
6066   if (IsSigned) {
6067     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6068     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6069     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6070                                     MIRBuilder.buildConstant(Ty, 0));
6071     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6072   } else {
6073     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6074   }
6075   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, Ty, LHS, Orig);
6076   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6077 
6078   MI.eraseFromParent();
6079   return Legalized;
6080 }
6081 
6082 LegalizerHelper::LegalizeResult
6083 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6084   Register Dst = MI.getOperand(0).getReg();
6085   Register Src = MI.getOperand(1).getReg();
6086   const LLT Ty = MRI.getType(Src);
6087   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6088   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6089 
6090   // Swap most and least significant byte, set remaining bytes in Res to zero.
6091   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6092   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6093   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6094   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6095 
6096   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6097   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6098     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6099     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6100     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6101     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6102     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6103     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6104     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6105     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6106     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6107     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6108     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6109     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6110   }
6111   Res.getInstr()->getOperand(0).setReg(Dst);
6112 
6113   MI.eraseFromParent();
6114   return Legalized;
6115 }
6116 
6117 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6118 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6119                                  MachineInstrBuilder Src, APInt Mask) {
6120   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6121   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6122   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6123   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6124   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6125   return B.buildOr(Dst, LHS, RHS);
6126 }
6127 
6128 LegalizerHelper::LegalizeResult
6129 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6130   Register Dst = MI.getOperand(0).getReg();
6131   Register Src = MI.getOperand(1).getReg();
6132   const LLT Ty = MRI.getType(Src);
6133   unsigned Size = Ty.getSizeInBits();
6134 
6135   MachineInstrBuilder BSWAP =
6136       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6137 
6138   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6139   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6140   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6141   MachineInstrBuilder Swap4 =
6142       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6143 
6144   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6145   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6146   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6147   MachineInstrBuilder Swap2 =
6148       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6149 
6150   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6151   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6152   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6153   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6154 
6155   MI.eraseFromParent();
6156   return Legalized;
6157 }
6158 
6159 LegalizerHelper::LegalizeResult
6160 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6161   MachineFunction &MF = MIRBuilder.getMF();
6162 
6163   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6164   int NameOpIdx = IsRead ? 1 : 0;
6165   int ValRegIndex = IsRead ? 0 : 1;
6166 
6167   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6168   const LLT Ty = MRI.getType(ValReg);
6169   const MDString *RegStr = cast<MDString>(
6170     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6171 
6172   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6173   if (!PhysReg.isValid())
6174     return UnableToLegalize;
6175 
6176   if (IsRead)
6177     MIRBuilder.buildCopy(ValReg, PhysReg);
6178   else
6179     MIRBuilder.buildCopy(PhysReg, ValReg);
6180 
6181   MI.eraseFromParent();
6182   return Legalized;
6183 }
6184 
6185 LegalizerHelper::LegalizeResult
6186 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
6187   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
6188   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
6189   Register Result = MI.getOperand(0).getReg();
6190   LLT OrigTy = MRI.getType(Result);
6191   auto SizeInBits = OrigTy.getScalarSizeInBits();
6192   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
6193 
6194   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
6195   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
6196   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
6197   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
6198 
6199   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
6200   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
6201   MIRBuilder.buildTrunc(Result, Shifted);
6202 
6203   MI.eraseFromParent();
6204   return Legalized;
6205 }
6206 
6207 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
6208   // Implement vector G_SELECT in terms of XOR, AND, OR.
6209   Register DstReg = MI.getOperand(0).getReg();
6210   Register MaskReg = MI.getOperand(1).getReg();
6211   Register Op1Reg = MI.getOperand(2).getReg();
6212   Register Op2Reg = MI.getOperand(3).getReg();
6213   LLT DstTy = MRI.getType(DstReg);
6214   LLT MaskTy = MRI.getType(MaskReg);
6215   LLT Op1Ty = MRI.getType(Op1Reg);
6216   if (!DstTy.isVector())
6217     return UnableToLegalize;
6218 
6219   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits())
6220     return UnableToLegalize;
6221 
6222   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
6223   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
6224   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
6225   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
6226   MI.eraseFromParent();
6227   return Legalized;
6228 }