1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetFrameLowering.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 #define DEBUG_TYPE "legalizer"
29 
30 using namespace llvm;
31 using namespace LegalizeActions;
32 
33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
34 ///
35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
36 /// with any leftover piece as type \p LeftoverTy
37 ///
38 /// Returns -1 in the first element of the pair if the breakdown is not
39 /// satisfiable.
40 static std::pair<int, int>
41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
42   assert(!LeftoverTy.isValid() && "this is an out argument");
43 
44   unsigned Size = OrigTy.getSizeInBits();
45   unsigned NarrowSize = NarrowTy.getSizeInBits();
46   unsigned NumParts = Size / NarrowSize;
47   unsigned LeftoverSize = Size - NumParts * NarrowSize;
48   assert(Size > NarrowSize);
49 
50   if (LeftoverSize == 0)
51     return {NumParts, 0};
52 
53   if (NarrowTy.isVector()) {
54     unsigned EltSize = OrigTy.getScalarSizeInBits();
55     if (LeftoverSize % EltSize != 0)
56       return {-1, -1};
57     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
58   } else {
59     LeftoverTy = LLT::scalar(LeftoverSize);
60   }
61 
62   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
63   return std::make_pair(NumParts, NumLeftover);
64 }
65 
66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
67 
68   if (!Ty.isScalar())
69     return nullptr;
70 
71   switch (Ty.getSizeInBits()) {
72   case 16:
73     return Type::getHalfTy(Ctx);
74   case 32:
75     return Type::getFloatTy(Ctx);
76   case 64:
77     return Type::getDoubleTy(Ctx);
78   case 128:
79     return Type::getFP128Ty(Ctx);
80   default:
81     return nullptr;
82   }
83 }
84 
85 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
86                                  GISelChangeObserver &Observer,
87                                  MachineIRBuilder &Builder)
88     : MIRBuilder(Builder), MRI(MF.getRegInfo()),
89       LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) {
90   MIRBuilder.setMF(MF);
91   MIRBuilder.setChangeObserver(Observer);
92 }
93 
94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
95                                  GISelChangeObserver &Observer,
96                                  MachineIRBuilder &B)
97     : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) {
98   MIRBuilder.setMF(MF);
99   MIRBuilder.setChangeObserver(Observer);
100 }
101 LegalizerHelper::LegalizeResult
102 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
103   LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs()));
104 
105   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
106       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
107     return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized
108                                                           : UnableToLegalize;
109   auto Step = LI.getAction(MI, MRI);
110   switch (Step.Action) {
111   case Legal:
112     LLVM_DEBUG(dbgs() << ".. Already legal\n");
113     return AlreadyLegal;
114   case Libcall:
115     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
116     return libcall(MI);
117   case NarrowScalar:
118     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
119     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
120   case WidenScalar:
121     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
122     return widenScalar(MI, Step.TypeIdx, Step.NewType);
123   case Bitcast:
124     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
125     return bitcast(MI, Step.TypeIdx, Step.NewType);
126   case Lower:
127     LLVM_DEBUG(dbgs() << ".. Lower\n");
128     return lower(MI, Step.TypeIdx, Step.NewType);
129   case FewerElements:
130     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
131     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
132   case MoreElements:
133     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
134     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
135   case Custom:
136     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
137     return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized
138                                                             : UnableToLegalize;
139   default:
140     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
141     return UnableToLegalize;
142   }
143 }
144 
145 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
146                                    SmallVectorImpl<Register> &VRegs) {
147   for (int i = 0; i < NumParts; ++i)
148     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
149   MIRBuilder.buildUnmerge(VRegs, Reg);
150 }
151 
152 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
153                                    LLT MainTy, LLT &LeftoverTy,
154                                    SmallVectorImpl<Register> &VRegs,
155                                    SmallVectorImpl<Register> &LeftoverRegs) {
156   assert(!LeftoverTy.isValid() && "this is an out argument");
157 
158   unsigned RegSize = RegTy.getSizeInBits();
159   unsigned MainSize = MainTy.getSizeInBits();
160   unsigned NumParts = RegSize / MainSize;
161   unsigned LeftoverSize = RegSize - NumParts * MainSize;
162 
163   // Use an unmerge when possible.
164   if (LeftoverSize == 0) {
165     for (unsigned I = 0; I < NumParts; ++I)
166       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
167     MIRBuilder.buildUnmerge(VRegs, Reg);
168     return true;
169   }
170 
171   if (MainTy.isVector()) {
172     unsigned EltSize = MainTy.getScalarSizeInBits();
173     if (LeftoverSize % EltSize != 0)
174       return false;
175     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
176   } else {
177     LeftoverTy = LLT::scalar(LeftoverSize);
178   }
179 
180   // For irregular sizes, extract the individual parts.
181   for (unsigned I = 0; I != NumParts; ++I) {
182     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
183     VRegs.push_back(NewReg);
184     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
185   }
186 
187   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
188        Offset += LeftoverSize) {
189     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
190     LeftoverRegs.push_back(NewReg);
191     MIRBuilder.buildExtract(NewReg, Reg, Offset);
192   }
193 
194   return true;
195 }
196 
197 void LegalizerHelper::insertParts(Register DstReg,
198                                   LLT ResultTy, LLT PartTy,
199                                   ArrayRef<Register> PartRegs,
200                                   LLT LeftoverTy,
201                                   ArrayRef<Register> LeftoverRegs) {
202   if (!LeftoverTy.isValid()) {
203     assert(LeftoverRegs.empty());
204 
205     if (!ResultTy.isVector()) {
206       MIRBuilder.buildMerge(DstReg, PartRegs);
207       return;
208     }
209 
210     if (PartTy.isVector())
211       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
212     else
213       MIRBuilder.buildBuildVector(DstReg, PartRegs);
214     return;
215   }
216 
217   unsigned PartSize = PartTy.getSizeInBits();
218   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
219 
220   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
221   MIRBuilder.buildUndef(CurResultReg);
222 
223   unsigned Offset = 0;
224   for (Register PartReg : PartRegs) {
225     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
226     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
227     CurResultReg = NewResultReg;
228     Offset += PartSize;
229   }
230 
231   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
232     // Use the original output register for the final insert to avoid a copy.
233     Register NewResultReg = (I + 1 == E) ?
234       DstReg : MRI.createGenericVirtualRegister(ResultTy);
235 
236     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
237     CurResultReg = NewResultReg;
238     Offset += LeftoverPartSize;
239   }
240 }
241 
242 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs
243 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
244                               const MachineInstr &MI) {
245   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
246 
247   const int NumResults = MI.getNumOperands() - 1;
248   Regs.resize(NumResults);
249   for (int I = 0; I != NumResults; ++I)
250     Regs[I] = MI.getOperand(I).getReg();
251 }
252 
253 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
254                                     LLT NarrowTy, Register SrcReg) {
255   LLT SrcTy = MRI.getType(SrcReg);
256 
257   LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy));
258   if (SrcTy == GCDTy) {
259     // If the source already evenly divides the result type, we don't need to do
260     // anything.
261     Parts.push_back(SrcReg);
262   } else {
263     // Need to split into common type sized pieces.
264     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
265     getUnmergeResults(Parts, *Unmerge);
266   }
267 
268   return GCDTy;
269 }
270 
271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
272                                          SmallVectorImpl<Register> &VRegs,
273                                          unsigned PadStrategy) {
274   LLT LCMTy = getLCMType(DstTy, NarrowTy);
275 
276   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
277   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
278   int NumOrigSrc = VRegs.size();
279 
280   Register PadReg;
281 
282   // Get a value we can use to pad the source value if the sources won't evenly
283   // cover the result type.
284   if (NumOrigSrc < NumParts * NumSubParts) {
285     if (PadStrategy == TargetOpcode::G_ZEXT)
286       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
287     else if (PadStrategy == TargetOpcode::G_ANYEXT)
288       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
289     else {
290       assert(PadStrategy == TargetOpcode::G_SEXT);
291 
292       // Shift the sign bit of the low register through the high register.
293       auto ShiftAmt =
294         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
295       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
296     }
297   }
298 
299   // Registers for the final merge to be produced.
300   SmallVector<Register, 4> Remerge(NumParts);
301 
302   // Registers needed for intermediate merges, which will be merged into a
303   // source for Remerge.
304   SmallVector<Register, 4> SubMerge(NumSubParts);
305 
306   // Once we've fully read off the end of the original source bits, we can reuse
307   // the same high bits for remaining padding elements.
308   Register AllPadReg;
309 
310   // Build merges to the LCM type to cover the original result type.
311   for (int I = 0; I != NumParts; ++I) {
312     bool AllMergePartsArePadding = true;
313 
314     // Build the requested merges to the requested type.
315     for (int J = 0; J != NumSubParts; ++J) {
316       int Idx = I * NumSubParts + J;
317       if (Idx >= NumOrigSrc) {
318         SubMerge[J] = PadReg;
319         continue;
320       }
321 
322       SubMerge[J] = VRegs[Idx];
323 
324       // There are meaningful bits here we can't reuse later.
325       AllMergePartsArePadding = false;
326     }
327 
328     // If we've filled up a complete piece with padding bits, we can directly
329     // emit the natural sized constant if applicable, rather than a merge of
330     // smaller constants.
331     if (AllMergePartsArePadding && !AllPadReg) {
332       if (PadStrategy == TargetOpcode::G_ANYEXT)
333         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
334       else if (PadStrategy == TargetOpcode::G_ZEXT)
335         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
336 
337       // If this is a sign extension, we can't materialize a trivial constant
338       // with the right type and have to produce a merge.
339     }
340 
341     if (AllPadReg) {
342       // Avoid creating additional instructions if we're just adding additional
343       // copies of padding bits.
344       Remerge[I] = AllPadReg;
345       continue;
346     }
347 
348     if (NumSubParts == 1)
349       Remerge[I] = SubMerge[0];
350     else
351       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
352 
353     // In the sign extend padding case, re-use the first all-signbit merge.
354     if (AllMergePartsArePadding && !AllPadReg)
355       AllPadReg = Remerge[I];
356   }
357 
358   VRegs = std::move(Remerge);
359   return LCMTy;
360 }
361 
362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
363                                                ArrayRef<Register> RemergeRegs) {
364   LLT DstTy = MRI.getType(DstReg);
365 
366   // Create the merge to the widened source, and extract the relevant bits into
367   // the result.
368 
369   if (DstTy == LCMTy) {
370     MIRBuilder.buildMerge(DstReg, RemergeRegs);
371     return;
372   }
373 
374   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
375   if (DstTy.isScalar() && LCMTy.isScalar()) {
376     MIRBuilder.buildTrunc(DstReg, Remerge);
377     return;
378   }
379 
380   if (LCMTy.isVector()) {
381     MIRBuilder.buildExtract(DstReg, Remerge, 0);
382     return;
383   }
384 
385   llvm_unreachable("unhandled case");
386 }
387 
388 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
389 #define RTLIBCASE(LibcallPrefix)                                               \
390   do {                                                                         \
391     switch (Size) {                                                            \
392     case 32:                                                                   \
393       return RTLIB::LibcallPrefix##32;                                         \
394     case 64:                                                                   \
395       return RTLIB::LibcallPrefix##64;                                         \
396     case 128:                                                                  \
397       return RTLIB::LibcallPrefix##128;                                        \
398     default:                                                                   \
399       llvm_unreachable("unexpected size");                                     \
400     }                                                                          \
401   } while (0)
402 
403   assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
404 
405   switch (Opcode) {
406   case TargetOpcode::G_SDIV:
407     RTLIBCASE(SDIV_I);
408   case TargetOpcode::G_UDIV:
409     RTLIBCASE(UDIV_I);
410   case TargetOpcode::G_SREM:
411     RTLIBCASE(SREM_I);
412   case TargetOpcode::G_UREM:
413     RTLIBCASE(UREM_I);
414   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
415     RTLIBCASE(CTLZ_I);
416   case TargetOpcode::G_FADD:
417     RTLIBCASE(ADD_F);
418   case TargetOpcode::G_FSUB:
419     RTLIBCASE(SUB_F);
420   case TargetOpcode::G_FMUL:
421     RTLIBCASE(MUL_F);
422   case TargetOpcode::G_FDIV:
423     RTLIBCASE(DIV_F);
424   case TargetOpcode::G_FEXP:
425     RTLIBCASE(EXP_F);
426   case TargetOpcode::G_FEXP2:
427     RTLIBCASE(EXP2_F);
428   case TargetOpcode::G_FREM:
429     RTLIBCASE(REM_F);
430   case TargetOpcode::G_FPOW:
431     RTLIBCASE(POW_F);
432   case TargetOpcode::G_FMA:
433     RTLIBCASE(FMA_F);
434   case TargetOpcode::G_FSIN:
435     RTLIBCASE(SIN_F);
436   case TargetOpcode::G_FCOS:
437     RTLIBCASE(COS_F);
438   case TargetOpcode::G_FLOG10:
439     RTLIBCASE(LOG10_F);
440   case TargetOpcode::G_FLOG:
441     RTLIBCASE(LOG_F);
442   case TargetOpcode::G_FLOG2:
443     RTLIBCASE(LOG2_F);
444   case TargetOpcode::G_FCEIL:
445     RTLIBCASE(CEIL_F);
446   case TargetOpcode::G_FFLOOR:
447     RTLIBCASE(FLOOR_F);
448   case TargetOpcode::G_FMINNUM:
449     RTLIBCASE(FMIN_F);
450   case TargetOpcode::G_FMAXNUM:
451     RTLIBCASE(FMAX_F);
452   case TargetOpcode::G_FSQRT:
453     RTLIBCASE(SQRT_F);
454   case TargetOpcode::G_FRINT:
455     RTLIBCASE(RINT_F);
456   case TargetOpcode::G_FNEARBYINT:
457     RTLIBCASE(NEARBYINT_F);
458   }
459   llvm_unreachable("Unknown libcall function");
460 }
461 
462 /// True if an instruction is in tail position in its caller. Intended for
463 /// legalizing libcalls as tail calls when possible.
464 static bool isLibCallInTailPosition(MachineInstr &MI) {
465   const Function &F = MI.getParent()->getParent()->getFunction();
466 
467   // Conservatively require the attributes of the call to match those of
468   // the return. Ignore NoAlias and NonNull because they don't affect the
469   // call sequence.
470   AttributeList CallerAttrs = F.getAttributes();
471   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
472           .removeAttribute(Attribute::NoAlias)
473           .removeAttribute(Attribute::NonNull)
474           .hasAttributes())
475     return false;
476 
477   // It's not safe to eliminate the sign / zero extension of the return value.
478   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
479       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
480     return false;
481 
482   // Only tail call if the following instruction is a standard return.
483   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
484   MachineInstr *Next = MI.getNextNode();
485   if (!Next || TII.isTailCall(*Next) || !Next->isReturn())
486     return false;
487 
488   return true;
489 }
490 
491 LegalizerHelper::LegalizeResult
492 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
493                     const CallLowering::ArgInfo &Result,
494                     ArrayRef<CallLowering::ArgInfo> Args) {
495   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
496   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
497   const char *Name = TLI.getLibcallName(Libcall);
498 
499   CallLowering::CallLoweringInfo Info;
500   Info.CallConv = TLI.getLibcallCallingConv(Libcall);
501   Info.Callee = MachineOperand::CreateES(Name);
502   Info.OrigRet = Result;
503   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
504   if (!CLI.lowerCall(MIRBuilder, Info))
505     return LegalizerHelper::UnableToLegalize;
506 
507   return LegalizerHelper::Legalized;
508 }
509 
510 // Useful for libcalls where all operands have the same type.
511 static LegalizerHelper::LegalizeResult
512 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
513               Type *OpType) {
514   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
515 
516   SmallVector<CallLowering::ArgInfo, 3> Args;
517   for (unsigned i = 1; i < MI.getNumOperands(); i++)
518     Args.push_back({MI.getOperand(i).getReg(), OpType});
519   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
520                        Args);
521 }
522 
523 LegalizerHelper::LegalizeResult
524 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
525                        MachineInstr &MI) {
526   assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
527   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
528 
529   SmallVector<CallLowering::ArgInfo, 3> Args;
530   // Add all the args, except for the last which is an imm denoting 'tail'.
531   for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) {
532     Register Reg = MI.getOperand(i).getReg();
533 
534     // Need derive an IR type for call lowering.
535     LLT OpLLT = MRI.getType(Reg);
536     Type *OpTy = nullptr;
537     if (OpLLT.isPointer())
538       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
539     else
540       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
541     Args.push_back({Reg, OpTy});
542   }
543 
544   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
545   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
546   Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
547   RTLIB::Libcall RTLibcall;
548   switch (ID) {
549   case Intrinsic::memcpy:
550     RTLibcall = RTLIB::MEMCPY;
551     break;
552   case Intrinsic::memset:
553     RTLibcall = RTLIB::MEMSET;
554     break;
555   case Intrinsic::memmove:
556     RTLibcall = RTLIB::MEMMOVE;
557     break;
558   default:
559     return LegalizerHelper::UnableToLegalize;
560   }
561   const char *Name = TLI.getLibcallName(RTLibcall);
562 
563   MIRBuilder.setInstr(MI);
564 
565   CallLowering::CallLoweringInfo Info;
566   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
567   Info.Callee = MachineOperand::CreateES(Name);
568   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
569   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 &&
570                     isLibCallInTailPosition(MI);
571 
572   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
573   if (!CLI.lowerCall(MIRBuilder, Info))
574     return LegalizerHelper::UnableToLegalize;
575 
576   if (Info.LoweredTailCall) {
577     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
578     // We must have a return following the call to get past
579     // isLibCallInTailPosition.
580     assert(MI.getNextNode() && MI.getNextNode()->isReturn() &&
581            "Expected instr following MI to be a return?");
582 
583     // We lowered a tail call, so the call is now the return from the block.
584     // Delete the old return.
585     MI.getNextNode()->eraseFromParent();
586   }
587 
588   return LegalizerHelper::Legalized;
589 }
590 
591 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
592                                        Type *FromType) {
593   auto ToMVT = MVT::getVT(ToType);
594   auto FromMVT = MVT::getVT(FromType);
595 
596   switch (Opcode) {
597   case TargetOpcode::G_FPEXT:
598     return RTLIB::getFPEXT(FromMVT, ToMVT);
599   case TargetOpcode::G_FPTRUNC:
600     return RTLIB::getFPROUND(FromMVT, ToMVT);
601   case TargetOpcode::G_FPTOSI:
602     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
603   case TargetOpcode::G_FPTOUI:
604     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
605   case TargetOpcode::G_SITOFP:
606     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
607   case TargetOpcode::G_UITOFP:
608     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
609   }
610   llvm_unreachable("Unsupported libcall function");
611 }
612 
613 static LegalizerHelper::LegalizeResult
614 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
615                   Type *FromType) {
616   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
617   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
618                        {{MI.getOperand(1).getReg(), FromType}});
619 }
620 
621 LegalizerHelper::LegalizeResult
622 LegalizerHelper::libcall(MachineInstr &MI) {
623   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
624   unsigned Size = LLTy.getSizeInBits();
625   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
626 
627   MIRBuilder.setInstr(MI);
628 
629   switch (MI.getOpcode()) {
630   default:
631     return UnableToLegalize;
632   case TargetOpcode::G_SDIV:
633   case TargetOpcode::G_UDIV:
634   case TargetOpcode::G_SREM:
635   case TargetOpcode::G_UREM:
636   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
637     Type *HLTy = IntegerType::get(Ctx, Size);
638     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
639     if (Status != Legalized)
640       return Status;
641     break;
642   }
643   case TargetOpcode::G_FADD:
644   case TargetOpcode::G_FSUB:
645   case TargetOpcode::G_FMUL:
646   case TargetOpcode::G_FDIV:
647   case TargetOpcode::G_FMA:
648   case TargetOpcode::G_FPOW:
649   case TargetOpcode::G_FREM:
650   case TargetOpcode::G_FCOS:
651   case TargetOpcode::G_FSIN:
652   case TargetOpcode::G_FLOG10:
653   case TargetOpcode::G_FLOG:
654   case TargetOpcode::G_FLOG2:
655   case TargetOpcode::G_FEXP:
656   case TargetOpcode::G_FEXP2:
657   case TargetOpcode::G_FCEIL:
658   case TargetOpcode::G_FFLOOR:
659   case TargetOpcode::G_FMINNUM:
660   case TargetOpcode::G_FMAXNUM:
661   case TargetOpcode::G_FSQRT:
662   case TargetOpcode::G_FRINT:
663   case TargetOpcode::G_FNEARBYINT: {
664     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
665     if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) {
666       LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n");
667       return UnableToLegalize;
668     }
669     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
670     if (Status != Legalized)
671       return Status;
672     break;
673   }
674   case TargetOpcode::G_FPEXT:
675   case TargetOpcode::G_FPTRUNC: {
676     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
677     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
678     if (!FromTy || !ToTy)
679       return UnableToLegalize;
680     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
681     if (Status != Legalized)
682       return Status;
683     break;
684   }
685   case TargetOpcode::G_FPTOSI:
686   case TargetOpcode::G_FPTOUI: {
687     // FIXME: Support other types
688     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
689     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
690     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
691       return UnableToLegalize;
692     LegalizeResult Status = conversionLibcall(
693         MI, MIRBuilder,
694         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
695         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
696     if (Status != Legalized)
697       return Status;
698     break;
699   }
700   case TargetOpcode::G_SITOFP:
701   case TargetOpcode::G_UITOFP: {
702     // FIXME: Support other types
703     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
704     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
705     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
706       return UnableToLegalize;
707     LegalizeResult Status = conversionLibcall(
708         MI, MIRBuilder,
709         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
710         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
711     if (Status != Legalized)
712       return Status;
713     break;
714   }
715   }
716 
717   MI.eraseFromParent();
718   return Legalized;
719 }
720 
721 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
722                                                               unsigned TypeIdx,
723                                                               LLT NarrowTy) {
724   MIRBuilder.setInstr(MI);
725 
726   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
727   uint64_t NarrowSize = NarrowTy.getSizeInBits();
728 
729   switch (MI.getOpcode()) {
730   default:
731     return UnableToLegalize;
732   case TargetOpcode::G_IMPLICIT_DEF: {
733     // FIXME: add support for when SizeOp0 isn't an exact multiple of
734     // NarrowSize.
735     if (SizeOp0 % NarrowSize != 0)
736       return UnableToLegalize;
737     int NumParts = SizeOp0 / NarrowSize;
738 
739     SmallVector<Register, 2> DstRegs;
740     for (int i = 0; i < NumParts; ++i)
741       DstRegs.push_back(
742           MIRBuilder.buildUndef(NarrowTy).getReg(0));
743 
744     Register DstReg = MI.getOperand(0).getReg();
745     if(MRI.getType(DstReg).isVector())
746       MIRBuilder.buildBuildVector(DstReg, DstRegs);
747     else
748       MIRBuilder.buildMerge(DstReg, DstRegs);
749     MI.eraseFromParent();
750     return Legalized;
751   }
752   case TargetOpcode::G_CONSTANT: {
753     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
754     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
755     unsigned TotalSize = Ty.getSizeInBits();
756     unsigned NarrowSize = NarrowTy.getSizeInBits();
757     int NumParts = TotalSize / NarrowSize;
758 
759     SmallVector<Register, 4> PartRegs;
760     for (int I = 0; I != NumParts; ++I) {
761       unsigned Offset = I * NarrowSize;
762       auto K = MIRBuilder.buildConstant(NarrowTy,
763                                         Val.lshr(Offset).trunc(NarrowSize));
764       PartRegs.push_back(K.getReg(0));
765     }
766 
767     LLT LeftoverTy;
768     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
769     SmallVector<Register, 1> LeftoverRegs;
770     if (LeftoverBits != 0) {
771       LeftoverTy = LLT::scalar(LeftoverBits);
772       auto K = MIRBuilder.buildConstant(
773         LeftoverTy,
774         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
775       LeftoverRegs.push_back(K.getReg(0));
776     }
777 
778     insertParts(MI.getOperand(0).getReg(),
779                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
780 
781     MI.eraseFromParent();
782     return Legalized;
783   }
784   case TargetOpcode::G_SEXT:
785   case TargetOpcode::G_ZEXT:
786   case TargetOpcode::G_ANYEXT:
787     return narrowScalarExt(MI, TypeIdx, NarrowTy);
788   case TargetOpcode::G_TRUNC: {
789     if (TypeIdx != 1)
790       return UnableToLegalize;
791 
792     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
793     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
794       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
795       return UnableToLegalize;
796     }
797 
798     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
799     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
800     MI.eraseFromParent();
801     return Legalized;
802   }
803 
804   case TargetOpcode::G_ADD: {
805     // FIXME: add support for when SizeOp0 isn't an exact multiple of
806     // NarrowSize.
807     if (SizeOp0 % NarrowSize != 0)
808       return UnableToLegalize;
809     // Expand in terms of carry-setting/consuming G_ADDE instructions.
810     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
811 
812     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
813     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
814     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
815 
816     Register CarryIn;
817     for (int i = 0; i < NumParts; ++i) {
818       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
819       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
820 
821       if (i == 0)
822         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
823       else {
824         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
825                               Src2Regs[i], CarryIn);
826       }
827 
828       DstRegs.push_back(DstReg);
829       CarryIn = CarryOut;
830     }
831     Register DstReg = MI.getOperand(0).getReg();
832     if(MRI.getType(DstReg).isVector())
833       MIRBuilder.buildBuildVector(DstReg, DstRegs);
834     else
835       MIRBuilder.buildMerge(DstReg, DstRegs);
836     MI.eraseFromParent();
837     return Legalized;
838   }
839   case TargetOpcode::G_SUB: {
840     // FIXME: add support for when SizeOp0 isn't an exact multiple of
841     // NarrowSize.
842     if (SizeOp0 % NarrowSize != 0)
843       return UnableToLegalize;
844 
845     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
846 
847     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
848     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
849     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
850 
851     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
852     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
853     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
854                           {Src1Regs[0], Src2Regs[0]});
855     DstRegs.push_back(DstReg);
856     Register BorrowIn = BorrowOut;
857     for (int i = 1; i < NumParts; ++i) {
858       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
859       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
860 
861       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
862                             {Src1Regs[i], Src2Regs[i], BorrowIn});
863 
864       DstRegs.push_back(DstReg);
865       BorrowIn = BorrowOut;
866     }
867     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
868     MI.eraseFromParent();
869     return Legalized;
870   }
871   case TargetOpcode::G_MUL:
872   case TargetOpcode::G_UMULH:
873     return narrowScalarMul(MI, NarrowTy);
874   case TargetOpcode::G_EXTRACT:
875     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
876   case TargetOpcode::G_INSERT:
877     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
878   case TargetOpcode::G_LOAD: {
879     const auto &MMO = **MI.memoperands_begin();
880     Register DstReg = MI.getOperand(0).getReg();
881     LLT DstTy = MRI.getType(DstReg);
882     if (DstTy.isVector())
883       return UnableToLegalize;
884 
885     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
886       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
887       auto &MMO = **MI.memoperands_begin();
888       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
889       MIRBuilder.buildAnyExt(DstReg, TmpReg);
890       MI.eraseFromParent();
891       return Legalized;
892     }
893 
894     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
895   }
896   case TargetOpcode::G_ZEXTLOAD:
897   case TargetOpcode::G_SEXTLOAD: {
898     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
899     Register DstReg = MI.getOperand(0).getReg();
900     Register PtrReg = MI.getOperand(1).getReg();
901 
902     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
903     auto &MMO = **MI.memoperands_begin();
904     if (MMO.getSizeInBits() == NarrowSize) {
905       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
906     } else {
907       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
908     }
909 
910     if (ZExt)
911       MIRBuilder.buildZExt(DstReg, TmpReg);
912     else
913       MIRBuilder.buildSExt(DstReg, TmpReg);
914 
915     MI.eraseFromParent();
916     return Legalized;
917   }
918   case TargetOpcode::G_STORE: {
919     const auto &MMO = **MI.memoperands_begin();
920 
921     Register SrcReg = MI.getOperand(0).getReg();
922     LLT SrcTy = MRI.getType(SrcReg);
923     if (SrcTy.isVector())
924       return UnableToLegalize;
925 
926     int NumParts = SizeOp0 / NarrowSize;
927     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
928     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
929     if (SrcTy.isVector() && LeftoverBits != 0)
930       return UnableToLegalize;
931 
932     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
933       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
934       auto &MMO = **MI.memoperands_begin();
935       MIRBuilder.buildTrunc(TmpReg, SrcReg);
936       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
937       MI.eraseFromParent();
938       return Legalized;
939     }
940 
941     return reduceLoadStoreWidth(MI, 0, NarrowTy);
942   }
943   case TargetOpcode::G_SELECT:
944     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
945   case TargetOpcode::G_AND:
946   case TargetOpcode::G_OR:
947   case TargetOpcode::G_XOR: {
948     // Legalize bitwise operation:
949     // A = BinOp<Ty> B, C
950     // into:
951     // B1, ..., BN = G_UNMERGE_VALUES B
952     // C1, ..., CN = G_UNMERGE_VALUES C
953     // A1 = BinOp<Ty/N> B1, C2
954     // ...
955     // AN = BinOp<Ty/N> BN, CN
956     // A = G_MERGE_VALUES A1, ..., AN
957     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
958   }
959   case TargetOpcode::G_SHL:
960   case TargetOpcode::G_LSHR:
961   case TargetOpcode::G_ASHR:
962     return narrowScalarShift(MI, TypeIdx, NarrowTy);
963   case TargetOpcode::G_CTLZ:
964   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
965   case TargetOpcode::G_CTTZ:
966   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
967   case TargetOpcode::G_CTPOP:
968     if (TypeIdx == 1)
969       switch (MI.getOpcode()) {
970       case TargetOpcode::G_CTLZ:
971       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
972         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
973       case TargetOpcode::G_CTTZ:
974       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
975         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
976       case TargetOpcode::G_CTPOP:
977         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
978       default:
979         return UnableToLegalize;
980       }
981 
982     Observer.changingInstr(MI);
983     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
984     Observer.changedInstr(MI);
985     return Legalized;
986   case TargetOpcode::G_INTTOPTR:
987     if (TypeIdx != 1)
988       return UnableToLegalize;
989 
990     Observer.changingInstr(MI);
991     narrowScalarSrc(MI, NarrowTy, 1);
992     Observer.changedInstr(MI);
993     return Legalized;
994   case TargetOpcode::G_PTRTOINT:
995     if (TypeIdx != 0)
996       return UnableToLegalize;
997 
998     Observer.changingInstr(MI);
999     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1000     Observer.changedInstr(MI);
1001     return Legalized;
1002   case TargetOpcode::G_PHI: {
1003     unsigned NumParts = SizeOp0 / NarrowSize;
1004     SmallVector<Register, 2> DstRegs(NumParts);
1005     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1006     Observer.changingInstr(MI);
1007     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1008       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1009       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1010       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1011                    SrcRegs[i / 2]);
1012     }
1013     MachineBasicBlock &MBB = *MI.getParent();
1014     MIRBuilder.setInsertPt(MBB, MI);
1015     for (unsigned i = 0; i < NumParts; ++i) {
1016       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1017       MachineInstrBuilder MIB =
1018           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1019       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1020         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1021     }
1022     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1023     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1024     Observer.changedInstr(MI);
1025     MI.eraseFromParent();
1026     return Legalized;
1027   }
1028   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1029   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1030     if (TypeIdx != 2)
1031       return UnableToLegalize;
1032 
1033     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1034     Observer.changingInstr(MI);
1035     narrowScalarSrc(MI, NarrowTy, OpIdx);
1036     Observer.changedInstr(MI);
1037     return Legalized;
1038   }
1039   case TargetOpcode::G_ICMP: {
1040     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1041     if (NarrowSize * 2 != SrcSize)
1042       return UnableToLegalize;
1043 
1044     Observer.changingInstr(MI);
1045     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1046     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1047     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1048 
1049     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1050     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1051     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1052 
1053     CmpInst::Predicate Pred =
1054         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1055     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1056 
1057     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1058       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1059       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1060       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1061       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1062       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1063     } else {
1064       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1065       MachineInstrBuilder CmpHEQ =
1066           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1067       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1068           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1069       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1070     }
1071     Observer.changedInstr(MI);
1072     MI.eraseFromParent();
1073     return Legalized;
1074   }
1075   case TargetOpcode::G_SEXT_INREG: {
1076     if (TypeIdx != 0)
1077       return UnableToLegalize;
1078 
1079     int64_t SizeInBits = MI.getOperand(2).getImm();
1080 
1081     // So long as the new type has more bits than the bits we're extending we
1082     // don't need to break it apart.
1083     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1084       Observer.changingInstr(MI);
1085       // We don't lose any non-extension bits by truncating the src and
1086       // sign-extending the dst.
1087       MachineOperand &MO1 = MI.getOperand(1);
1088       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1089       MO1.setReg(TruncMIB.getReg(0));
1090 
1091       MachineOperand &MO2 = MI.getOperand(0);
1092       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1093       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1094       MIRBuilder.buildSExt(MO2, DstExt);
1095       MO2.setReg(DstExt);
1096       Observer.changedInstr(MI);
1097       return Legalized;
1098     }
1099 
1100     // Break it apart. Components below the extension point are unmodified. The
1101     // component containing the extension point becomes a narrower SEXT_INREG.
1102     // Components above it are ashr'd from the component containing the
1103     // extension point.
1104     if (SizeOp0 % NarrowSize != 0)
1105       return UnableToLegalize;
1106     int NumParts = SizeOp0 / NarrowSize;
1107 
1108     // List the registers where the destination will be scattered.
1109     SmallVector<Register, 2> DstRegs;
1110     // List the registers where the source will be split.
1111     SmallVector<Register, 2> SrcRegs;
1112 
1113     // Create all the temporary registers.
1114     for (int i = 0; i < NumParts; ++i) {
1115       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1116 
1117       SrcRegs.push_back(SrcReg);
1118     }
1119 
1120     // Explode the big arguments into smaller chunks.
1121     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1122 
1123     Register AshrCstReg =
1124         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1125             .getReg(0);
1126     Register FullExtensionReg = 0;
1127     Register PartialExtensionReg = 0;
1128 
1129     // Do the operation on each small part.
1130     for (int i = 0; i < NumParts; ++i) {
1131       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1132         DstRegs.push_back(SrcRegs[i]);
1133       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1134         assert(PartialExtensionReg &&
1135                "Expected to visit partial extension before full");
1136         if (FullExtensionReg) {
1137           DstRegs.push_back(FullExtensionReg);
1138           continue;
1139         }
1140         DstRegs.push_back(
1141             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1142                 .getReg(0));
1143         FullExtensionReg = DstRegs.back();
1144       } else {
1145         DstRegs.push_back(
1146             MIRBuilder
1147                 .buildInstr(
1148                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1149                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1150                 .getReg(0));
1151         PartialExtensionReg = DstRegs.back();
1152       }
1153     }
1154 
1155     // Gather the destination registers into the final destination.
1156     Register DstReg = MI.getOperand(0).getReg();
1157     MIRBuilder.buildMerge(DstReg, DstRegs);
1158     MI.eraseFromParent();
1159     return Legalized;
1160   }
1161   case TargetOpcode::G_BSWAP:
1162   case TargetOpcode::G_BITREVERSE: {
1163     if (SizeOp0 % NarrowSize != 0)
1164       return UnableToLegalize;
1165 
1166     Observer.changingInstr(MI);
1167     SmallVector<Register, 2> SrcRegs, DstRegs;
1168     unsigned NumParts = SizeOp0 / NarrowSize;
1169     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1170 
1171     for (unsigned i = 0; i < NumParts; ++i) {
1172       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1173                                            {SrcRegs[NumParts - 1 - i]});
1174       DstRegs.push_back(DstPart.getReg(0));
1175     }
1176 
1177     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1178 
1179     Observer.changedInstr(MI);
1180     MI.eraseFromParent();
1181     return Legalized;
1182   }
1183   }
1184 }
1185 
1186 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1187                                      unsigned OpIdx, unsigned ExtOpcode) {
1188   MachineOperand &MO = MI.getOperand(OpIdx);
1189   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1190   MO.setReg(ExtB.getReg(0));
1191 }
1192 
1193 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1194                                       unsigned OpIdx) {
1195   MachineOperand &MO = MI.getOperand(OpIdx);
1196   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1197   MO.setReg(ExtB.getReg(0));
1198 }
1199 
1200 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1201                                      unsigned OpIdx, unsigned TruncOpcode) {
1202   MachineOperand &MO = MI.getOperand(OpIdx);
1203   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1204   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1205   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1206   MO.setReg(DstExt);
1207 }
1208 
1209 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1210                                       unsigned OpIdx, unsigned ExtOpcode) {
1211   MachineOperand &MO = MI.getOperand(OpIdx);
1212   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1213   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1214   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1215   MO.setReg(DstTrunc);
1216 }
1217 
1218 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1219                                             unsigned OpIdx) {
1220   MachineOperand &MO = MI.getOperand(OpIdx);
1221   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1222   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1223   MIRBuilder.buildExtract(MO, DstExt, 0);
1224   MO.setReg(DstExt);
1225 }
1226 
1227 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1228                                             unsigned OpIdx) {
1229   MachineOperand &MO = MI.getOperand(OpIdx);
1230 
1231   LLT OldTy = MRI.getType(MO.getReg());
1232   unsigned OldElts = OldTy.getNumElements();
1233   unsigned NewElts = MoreTy.getNumElements();
1234 
1235   unsigned NumParts = NewElts / OldElts;
1236 
1237   // Use concat_vectors if the result is a multiple of the number of elements.
1238   if (NumParts * OldElts == NewElts) {
1239     SmallVector<Register, 8> Parts;
1240     Parts.push_back(MO.getReg());
1241 
1242     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1243     for (unsigned I = 1; I != NumParts; ++I)
1244       Parts.push_back(ImpDef);
1245 
1246     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1247     MO.setReg(Concat.getReg(0));
1248     return;
1249   }
1250 
1251   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1252   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1253   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1254   MO.setReg(MoreReg);
1255 }
1256 
1257 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1258   MachineOperand &Op = MI.getOperand(OpIdx);
1259   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1260 }
1261 
1262 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1263   MachineOperand &MO = MI.getOperand(OpIdx);
1264   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1265   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1266   MIRBuilder.buildBitcast(MO, CastDst);
1267   MO.setReg(CastDst);
1268 }
1269 
1270 LegalizerHelper::LegalizeResult
1271 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1272                                         LLT WideTy) {
1273   if (TypeIdx != 1)
1274     return UnableToLegalize;
1275 
1276   Register DstReg = MI.getOperand(0).getReg();
1277   LLT DstTy = MRI.getType(DstReg);
1278   if (DstTy.isVector())
1279     return UnableToLegalize;
1280 
1281   Register Src1 = MI.getOperand(1).getReg();
1282   LLT SrcTy = MRI.getType(Src1);
1283   const int DstSize = DstTy.getSizeInBits();
1284   const int SrcSize = SrcTy.getSizeInBits();
1285   const int WideSize = WideTy.getSizeInBits();
1286   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1287 
1288   unsigned NumOps = MI.getNumOperands();
1289   unsigned NumSrc = MI.getNumOperands() - 1;
1290   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1291 
1292   if (WideSize >= DstSize) {
1293     // Directly pack the bits in the target type.
1294     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1295 
1296     for (unsigned I = 2; I != NumOps; ++I) {
1297       const unsigned Offset = (I - 1) * PartSize;
1298 
1299       Register SrcReg = MI.getOperand(I).getReg();
1300       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1301 
1302       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1303 
1304       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1305         MRI.createGenericVirtualRegister(WideTy);
1306 
1307       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1308       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1309       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1310       ResultReg = NextResult;
1311     }
1312 
1313     if (WideSize > DstSize)
1314       MIRBuilder.buildTrunc(DstReg, ResultReg);
1315     else if (DstTy.isPointer())
1316       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1317 
1318     MI.eraseFromParent();
1319     return Legalized;
1320   }
1321 
1322   // Unmerge the original values to the GCD type, and recombine to the next
1323   // multiple greater than the original type.
1324   //
1325   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1326   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1327   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1328   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1329   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1330   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1331   // %12:_(s12) = G_MERGE_VALUES %10, %11
1332   //
1333   // Padding with undef if necessary:
1334   //
1335   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1336   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1337   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1338   // %7:_(s2) = G_IMPLICIT_DEF
1339   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1340   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1341   // %10:_(s12) = G_MERGE_VALUES %8, %9
1342 
1343   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1344   LLT GCDTy = LLT::scalar(GCD);
1345 
1346   SmallVector<Register, 8> Parts;
1347   SmallVector<Register, 8> NewMergeRegs;
1348   SmallVector<Register, 8> Unmerges;
1349   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1350 
1351   // Decompose the original operands if they don't evenly divide.
1352   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1353     Register SrcReg = MI.getOperand(I).getReg();
1354     if (GCD == SrcSize) {
1355       Unmerges.push_back(SrcReg);
1356     } else {
1357       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1358       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1359         Unmerges.push_back(Unmerge.getReg(J));
1360     }
1361   }
1362 
1363   // Pad with undef to the next size that is a multiple of the requested size.
1364   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1365     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1366     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1367       Unmerges.push_back(UndefReg);
1368   }
1369 
1370   const int PartsPerGCD = WideSize / GCD;
1371 
1372   // Build merges of each piece.
1373   ArrayRef<Register> Slicer(Unmerges);
1374   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1375     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1376     NewMergeRegs.push_back(Merge.getReg(0));
1377   }
1378 
1379   // A truncate may be necessary if the requested type doesn't evenly divide the
1380   // original result type.
1381   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1382     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1383   } else {
1384     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1385     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1386   }
1387 
1388   MI.eraseFromParent();
1389   return Legalized;
1390 }
1391 
1392 LegalizerHelper::LegalizeResult
1393 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1394                                           LLT WideTy) {
1395   if (TypeIdx != 0)
1396     return UnableToLegalize;
1397 
1398   int NumDst = MI.getNumOperands() - 1;
1399   Register SrcReg = MI.getOperand(NumDst).getReg();
1400   LLT SrcTy = MRI.getType(SrcReg);
1401   if (SrcTy.isVector())
1402     return UnableToLegalize;
1403 
1404   Register Dst0Reg = MI.getOperand(0).getReg();
1405   LLT DstTy = MRI.getType(Dst0Reg);
1406   if (!DstTy.isScalar())
1407     return UnableToLegalize;
1408 
1409   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1410     if (SrcTy.isPointer()) {
1411       const DataLayout &DL = MIRBuilder.getDataLayout();
1412       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1413         LLVM_DEBUG(
1414             dbgs() << "Not casting non-integral address space integer\n");
1415         return UnableToLegalize;
1416       }
1417 
1418       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1419       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1420     }
1421 
1422     // Widen SrcTy to WideTy. This does not affect the result, but since the
1423     // user requested this size, it is probably better handled than SrcTy and
1424     // should reduce the total number of legalization artifacts
1425     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1426       SrcTy = WideTy;
1427       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1428     }
1429 
1430     // Theres no unmerge type to target. Directly extract the bits from the
1431     // source type
1432     unsigned DstSize = DstTy.getSizeInBits();
1433 
1434     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1435     for (int I = 1; I != NumDst; ++I) {
1436       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1437       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1438       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1439     }
1440 
1441     MI.eraseFromParent();
1442     return Legalized;
1443   }
1444 
1445   // Extend the source to a wider type.
1446   LLT LCMTy = getLCMType(SrcTy, WideTy);
1447 
1448   Register WideSrc = SrcReg;
1449   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1450     // TODO: If this is an integral address space, cast to integer and anyext.
1451     if (SrcTy.isPointer()) {
1452       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1453       return UnableToLegalize;
1454     }
1455 
1456     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1457   }
1458 
1459   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1460 
1461   // Create a sequence of unmerges to the original results. since we may have
1462   // widened the source, we will need to pad the results with dead defs to cover
1463   // the source register.
1464   // e.g. widen s16 to s32:
1465   // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48)
1466   //
1467   // =>
1468   //  %4:_(s64) = G_ANYEXT %0:_(s48)
1469   //  %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge
1470   //  %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs
1471   //  %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def
1472 
1473   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1474   const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1475 
1476   for (int I = 0; I != NumUnmerge; ++I) {
1477     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1478 
1479     for (int J = 0; J != PartsPerUnmerge; ++J) {
1480       int Idx = I * PartsPerUnmerge + J;
1481       if (Idx < NumDst)
1482         MIB.addDef(MI.getOperand(Idx).getReg());
1483       else {
1484         // Create dead def for excess components.
1485         MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1486       }
1487     }
1488 
1489     MIB.addUse(Unmerge.getReg(I));
1490   }
1491 
1492   MI.eraseFromParent();
1493   return Legalized;
1494 }
1495 
1496 LegalizerHelper::LegalizeResult
1497 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1498                                     LLT WideTy) {
1499   Register DstReg = MI.getOperand(0).getReg();
1500   Register SrcReg = MI.getOperand(1).getReg();
1501   LLT SrcTy = MRI.getType(SrcReg);
1502 
1503   LLT DstTy = MRI.getType(DstReg);
1504   unsigned Offset = MI.getOperand(2).getImm();
1505 
1506   if (TypeIdx == 0) {
1507     if (SrcTy.isVector() || DstTy.isVector())
1508       return UnableToLegalize;
1509 
1510     SrcOp Src(SrcReg);
1511     if (SrcTy.isPointer()) {
1512       // Extracts from pointers can be handled only if they are really just
1513       // simple integers.
1514       const DataLayout &DL = MIRBuilder.getDataLayout();
1515       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1516         return UnableToLegalize;
1517 
1518       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1519       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1520       SrcTy = SrcAsIntTy;
1521     }
1522 
1523     if (DstTy.isPointer())
1524       return UnableToLegalize;
1525 
1526     if (Offset == 0) {
1527       // Avoid a shift in the degenerate case.
1528       MIRBuilder.buildTrunc(DstReg,
1529                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1530       MI.eraseFromParent();
1531       return Legalized;
1532     }
1533 
1534     // Do a shift in the source type.
1535     LLT ShiftTy = SrcTy;
1536     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1537       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1538       ShiftTy = WideTy;
1539     } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits())
1540       return UnableToLegalize;
1541 
1542     auto LShr = MIRBuilder.buildLShr(
1543       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1544     MIRBuilder.buildTrunc(DstReg, LShr);
1545     MI.eraseFromParent();
1546     return Legalized;
1547   }
1548 
1549   if (SrcTy.isScalar()) {
1550     Observer.changingInstr(MI);
1551     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1552     Observer.changedInstr(MI);
1553     return Legalized;
1554   }
1555 
1556   if (!SrcTy.isVector())
1557     return UnableToLegalize;
1558 
1559   if (DstTy != SrcTy.getElementType())
1560     return UnableToLegalize;
1561 
1562   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1563     return UnableToLegalize;
1564 
1565   Observer.changingInstr(MI);
1566   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1567 
1568   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1569                           Offset);
1570   widenScalarDst(MI, WideTy.getScalarType(), 0);
1571   Observer.changedInstr(MI);
1572   return Legalized;
1573 }
1574 
1575 LegalizerHelper::LegalizeResult
1576 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1577                                    LLT WideTy) {
1578   if (TypeIdx != 0)
1579     return UnableToLegalize;
1580   Observer.changingInstr(MI);
1581   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1582   widenScalarDst(MI, WideTy);
1583   Observer.changedInstr(MI);
1584   return Legalized;
1585 }
1586 
1587 LegalizerHelper::LegalizeResult
1588 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1589   MIRBuilder.setInstr(MI);
1590 
1591   switch (MI.getOpcode()) {
1592   default:
1593     return UnableToLegalize;
1594   case TargetOpcode::G_EXTRACT:
1595     return widenScalarExtract(MI, TypeIdx, WideTy);
1596   case TargetOpcode::G_INSERT:
1597     return widenScalarInsert(MI, TypeIdx, WideTy);
1598   case TargetOpcode::G_MERGE_VALUES:
1599     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1600   case TargetOpcode::G_UNMERGE_VALUES:
1601     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1602   case TargetOpcode::G_UADDO:
1603   case TargetOpcode::G_USUBO: {
1604     if (TypeIdx == 1)
1605       return UnableToLegalize; // TODO
1606     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1607     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1608     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1609                           ? TargetOpcode::G_ADD
1610                           : TargetOpcode::G_SUB;
1611     // Do the arithmetic in the larger type.
1612     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1613     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1614     APInt Mask =
1615         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1616     auto AndOp = MIRBuilder.buildAnd(
1617         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1618     // There is no overflow if the AndOp is the same as NewOp.
1619     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1620     // Now trunc the NewOp to the original result.
1621     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1622     MI.eraseFromParent();
1623     return Legalized;
1624   }
1625   case TargetOpcode::G_CTTZ:
1626   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1627   case TargetOpcode::G_CTLZ:
1628   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1629   case TargetOpcode::G_CTPOP: {
1630     if (TypeIdx == 0) {
1631       Observer.changingInstr(MI);
1632       widenScalarDst(MI, WideTy, 0);
1633       Observer.changedInstr(MI);
1634       return Legalized;
1635     }
1636 
1637     Register SrcReg = MI.getOperand(1).getReg();
1638 
1639     // First ZEXT the input.
1640     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1641     LLT CurTy = MRI.getType(SrcReg);
1642     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1643       // The count is the same in the larger type except if the original
1644       // value was zero.  This can be handled by setting the bit just off
1645       // the top of the original type.
1646       auto TopBit =
1647           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1648       MIBSrc = MIRBuilder.buildOr(
1649         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1650     }
1651 
1652     // Perform the operation at the larger size.
1653     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1654     // This is already the correct result for CTPOP and CTTZs
1655     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1656         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1657       // The correct result is NewOp - (Difference in widety and current ty).
1658       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1659       MIBNewOp = MIRBuilder.buildSub(
1660           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1661     }
1662 
1663     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1664     MI.eraseFromParent();
1665     return Legalized;
1666   }
1667   case TargetOpcode::G_BSWAP: {
1668     Observer.changingInstr(MI);
1669     Register DstReg = MI.getOperand(0).getReg();
1670 
1671     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1672     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1673     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1674     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1675 
1676     MI.getOperand(0).setReg(DstExt);
1677 
1678     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1679 
1680     LLT Ty = MRI.getType(DstReg);
1681     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1682     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1683     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1684 
1685     MIRBuilder.buildTrunc(DstReg, ShrReg);
1686     Observer.changedInstr(MI);
1687     return Legalized;
1688   }
1689   case TargetOpcode::G_BITREVERSE: {
1690     Observer.changingInstr(MI);
1691 
1692     Register DstReg = MI.getOperand(0).getReg();
1693     LLT Ty = MRI.getType(DstReg);
1694     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1695 
1696     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1697     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1698     MI.getOperand(0).setReg(DstExt);
1699     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1700 
1701     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1702     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1703     MIRBuilder.buildTrunc(DstReg, Shift);
1704     Observer.changedInstr(MI);
1705     return Legalized;
1706   }
1707   case TargetOpcode::G_ADD:
1708   case TargetOpcode::G_AND:
1709   case TargetOpcode::G_MUL:
1710   case TargetOpcode::G_OR:
1711   case TargetOpcode::G_XOR:
1712   case TargetOpcode::G_SUB:
1713     // Perform operation at larger width (any extension is fines here, high bits
1714     // don't affect the result) and then truncate the result back to the
1715     // original type.
1716     Observer.changingInstr(MI);
1717     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1718     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1719     widenScalarDst(MI, WideTy);
1720     Observer.changedInstr(MI);
1721     return Legalized;
1722 
1723   case TargetOpcode::G_SHL:
1724     Observer.changingInstr(MI);
1725 
1726     if (TypeIdx == 0) {
1727       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1728       widenScalarDst(MI, WideTy);
1729     } else {
1730       assert(TypeIdx == 1);
1731       // The "number of bits to shift" operand must preserve its value as an
1732       // unsigned integer:
1733       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1734     }
1735 
1736     Observer.changedInstr(MI);
1737     return Legalized;
1738 
1739   case TargetOpcode::G_SDIV:
1740   case TargetOpcode::G_SREM:
1741   case TargetOpcode::G_SMIN:
1742   case TargetOpcode::G_SMAX:
1743     Observer.changingInstr(MI);
1744     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1745     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1746     widenScalarDst(MI, WideTy);
1747     Observer.changedInstr(MI);
1748     return Legalized;
1749 
1750   case TargetOpcode::G_ASHR:
1751   case TargetOpcode::G_LSHR:
1752     Observer.changingInstr(MI);
1753 
1754     if (TypeIdx == 0) {
1755       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1756         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1757 
1758       widenScalarSrc(MI, WideTy, 1, CvtOp);
1759       widenScalarDst(MI, WideTy);
1760     } else {
1761       assert(TypeIdx == 1);
1762       // The "number of bits to shift" operand must preserve its value as an
1763       // unsigned integer:
1764       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1765     }
1766 
1767     Observer.changedInstr(MI);
1768     return Legalized;
1769   case TargetOpcode::G_UDIV:
1770   case TargetOpcode::G_UREM:
1771   case TargetOpcode::G_UMIN:
1772   case TargetOpcode::G_UMAX:
1773     Observer.changingInstr(MI);
1774     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1775     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1776     widenScalarDst(MI, WideTy);
1777     Observer.changedInstr(MI);
1778     return Legalized;
1779 
1780   case TargetOpcode::G_SELECT:
1781     Observer.changingInstr(MI);
1782     if (TypeIdx == 0) {
1783       // Perform operation at larger width (any extension is fine here, high
1784       // bits don't affect the result) and then truncate the result back to the
1785       // original type.
1786       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1787       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1788       widenScalarDst(MI, WideTy);
1789     } else {
1790       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1791       // Explicit extension is required here since high bits affect the result.
1792       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1793     }
1794     Observer.changedInstr(MI);
1795     return Legalized;
1796 
1797   case TargetOpcode::G_FPTOSI:
1798   case TargetOpcode::G_FPTOUI:
1799     Observer.changingInstr(MI);
1800 
1801     if (TypeIdx == 0)
1802       widenScalarDst(MI, WideTy);
1803     else
1804       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
1805 
1806     Observer.changedInstr(MI);
1807     return Legalized;
1808   case TargetOpcode::G_SITOFP:
1809     if (TypeIdx != 1)
1810       return UnableToLegalize;
1811     Observer.changingInstr(MI);
1812     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1813     Observer.changedInstr(MI);
1814     return Legalized;
1815 
1816   case TargetOpcode::G_UITOFP:
1817     if (TypeIdx != 1)
1818       return UnableToLegalize;
1819     Observer.changingInstr(MI);
1820     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1821     Observer.changedInstr(MI);
1822     return Legalized;
1823 
1824   case TargetOpcode::G_LOAD:
1825   case TargetOpcode::G_SEXTLOAD:
1826   case TargetOpcode::G_ZEXTLOAD:
1827     Observer.changingInstr(MI);
1828     widenScalarDst(MI, WideTy);
1829     Observer.changedInstr(MI);
1830     return Legalized;
1831 
1832   case TargetOpcode::G_STORE: {
1833     if (TypeIdx != 0)
1834       return UnableToLegalize;
1835 
1836     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1837     if (!isPowerOf2_32(Ty.getSizeInBits()))
1838       return UnableToLegalize;
1839 
1840     Observer.changingInstr(MI);
1841 
1842     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
1843       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
1844     widenScalarSrc(MI, WideTy, 0, ExtType);
1845 
1846     Observer.changedInstr(MI);
1847     return Legalized;
1848   }
1849   case TargetOpcode::G_CONSTANT: {
1850     MachineOperand &SrcMO = MI.getOperand(1);
1851     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1852     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
1853         MRI.getType(MI.getOperand(0).getReg()));
1854     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
1855             ExtOpc == TargetOpcode::G_ANYEXT) &&
1856            "Illegal Extend");
1857     const APInt &SrcVal = SrcMO.getCImm()->getValue();
1858     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
1859                            ? SrcVal.sext(WideTy.getSizeInBits())
1860                            : SrcVal.zext(WideTy.getSizeInBits());
1861     Observer.changingInstr(MI);
1862     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
1863 
1864     widenScalarDst(MI, WideTy);
1865     Observer.changedInstr(MI);
1866     return Legalized;
1867   }
1868   case TargetOpcode::G_FCONSTANT: {
1869     MachineOperand &SrcMO = MI.getOperand(1);
1870     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1871     APFloat Val = SrcMO.getFPImm()->getValueAPF();
1872     bool LosesInfo;
1873     switch (WideTy.getSizeInBits()) {
1874     case 32:
1875       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1876                   &LosesInfo);
1877       break;
1878     case 64:
1879       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1880                   &LosesInfo);
1881       break;
1882     default:
1883       return UnableToLegalize;
1884     }
1885 
1886     assert(!LosesInfo && "extend should always be lossless");
1887 
1888     Observer.changingInstr(MI);
1889     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
1890 
1891     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1892     Observer.changedInstr(MI);
1893     return Legalized;
1894   }
1895   case TargetOpcode::G_IMPLICIT_DEF: {
1896     Observer.changingInstr(MI);
1897     widenScalarDst(MI, WideTy);
1898     Observer.changedInstr(MI);
1899     return Legalized;
1900   }
1901   case TargetOpcode::G_BRCOND:
1902     Observer.changingInstr(MI);
1903     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
1904     Observer.changedInstr(MI);
1905     return Legalized;
1906 
1907   case TargetOpcode::G_FCMP:
1908     Observer.changingInstr(MI);
1909     if (TypeIdx == 0)
1910       widenScalarDst(MI, WideTy);
1911     else {
1912       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
1913       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
1914     }
1915     Observer.changedInstr(MI);
1916     return Legalized;
1917 
1918   case TargetOpcode::G_ICMP:
1919     Observer.changingInstr(MI);
1920     if (TypeIdx == 0)
1921       widenScalarDst(MI, WideTy);
1922     else {
1923       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
1924                                MI.getOperand(1).getPredicate()))
1925                                ? TargetOpcode::G_SEXT
1926                                : TargetOpcode::G_ZEXT;
1927       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
1928       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
1929     }
1930     Observer.changedInstr(MI);
1931     return Legalized;
1932 
1933   case TargetOpcode::G_PTR_ADD:
1934     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
1935     Observer.changingInstr(MI);
1936     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1937     Observer.changedInstr(MI);
1938     return Legalized;
1939 
1940   case TargetOpcode::G_PHI: {
1941     assert(TypeIdx == 0 && "Expecting only Idx 0");
1942 
1943     Observer.changingInstr(MI);
1944     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
1945       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
1946       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1947       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
1948     }
1949 
1950     MachineBasicBlock &MBB = *MI.getParent();
1951     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
1952     widenScalarDst(MI, WideTy);
1953     Observer.changedInstr(MI);
1954     return Legalized;
1955   }
1956   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
1957     if (TypeIdx == 0) {
1958       Register VecReg = MI.getOperand(1).getReg();
1959       LLT VecTy = MRI.getType(VecReg);
1960       Observer.changingInstr(MI);
1961 
1962       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
1963                                      WideTy.getSizeInBits()),
1964                      1, TargetOpcode::G_SEXT);
1965 
1966       widenScalarDst(MI, WideTy, 0);
1967       Observer.changedInstr(MI);
1968       return Legalized;
1969     }
1970 
1971     if (TypeIdx != 2)
1972       return UnableToLegalize;
1973     Observer.changingInstr(MI);
1974     // TODO: Probably should be zext
1975     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1976     Observer.changedInstr(MI);
1977     return Legalized;
1978   }
1979   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1980     if (TypeIdx == 1) {
1981       Observer.changingInstr(MI);
1982 
1983       Register VecReg = MI.getOperand(1).getReg();
1984       LLT VecTy = MRI.getType(VecReg);
1985       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
1986 
1987       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
1988       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1989       widenScalarDst(MI, WideVecTy, 0);
1990       Observer.changedInstr(MI);
1991       return Legalized;
1992     }
1993 
1994     if (TypeIdx == 2) {
1995       Observer.changingInstr(MI);
1996       // TODO: Probably should be zext
1997       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
1998       Observer.changedInstr(MI);
1999     }
2000 
2001     return Legalized;
2002   }
2003   case TargetOpcode::G_FADD:
2004   case TargetOpcode::G_FMUL:
2005   case TargetOpcode::G_FSUB:
2006   case TargetOpcode::G_FMA:
2007   case TargetOpcode::G_FMAD:
2008   case TargetOpcode::G_FNEG:
2009   case TargetOpcode::G_FABS:
2010   case TargetOpcode::G_FCANONICALIZE:
2011   case TargetOpcode::G_FMINNUM:
2012   case TargetOpcode::G_FMAXNUM:
2013   case TargetOpcode::G_FMINNUM_IEEE:
2014   case TargetOpcode::G_FMAXNUM_IEEE:
2015   case TargetOpcode::G_FMINIMUM:
2016   case TargetOpcode::G_FMAXIMUM:
2017   case TargetOpcode::G_FDIV:
2018   case TargetOpcode::G_FREM:
2019   case TargetOpcode::G_FCEIL:
2020   case TargetOpcode::G_FFLOOR:
2021   case TargetOpcode::G_FCOS:
2022   case TargetOpcode::G_FSIN:
2023   case TargetOpcode::G_FLOG10:
2024   case TargetOpcode::G_FLOG:
2025   case TargetOpcode::G_FLOG2:
2026   case TargetOpcode::G_FRINT:
2027   case TargetOpcode::G_FNEARBYINT:
2028   case TargetOpcode::G_FSQRT:
2029   case TargetOpcode::G_FEXP:
2030   case TargetOpcode::G_FEXP2:
2031   case TargetOpcode::G_FPOW:
2032   case TargetOpcode::G_INTRINSIC_TRUNC:
2033   case TargetOpcode::G_INTRINSIC_ROUND:
2034     assert(TypeIdx == 0);
2035     Observer.changingInstr(MI);
2036 
2037     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2038       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2039 
2040     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2041     Observer.changedInstr(MI);
2042     return Legalized;
2043   case TargetOpcode::G_INTTOPTR:
2044     if (TypeIdx != 1)
2045       return UnableToLegalize;
2046 
2047     Observer.changingInstr(MI);
2048     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2049     Observer.changedInstr(MI);
2050     return Legalized;
2051   case TargetOpcode::G_PTRTOINT:
2052     if (TypeIdx != 0)
2053       return UnableToLegalize;
2054 
2055     Observer.changingInstr(MI);
2056     widenScalarDst(MI, WideTy, 0);
2057     Observer.changedInstr(MI);
2058     return Legalized;
2059   case TargetOpcode::G_BUILD_VECTOR: {
2060     Observer.changingInstr(MI);
2061 
2062     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2063     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2064       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2065 
2066     // Avoid changing the result vector type if the source element type was
2067     // requested.
2068     if (TypeIdx == 1) {
2069       auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
2070       MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2071     } else {
2072       widenScalarDst(MI, WideTy, 0);
2073     }
2074 
2075     Observer.changedInstr(MI);
2076     return Legalized;
2077   }
2078   case TargetOpcode::G_SEXT_INREG:
2079     if (TypeIdx != 0)
2080       return UnableToLegalize;
2081 
2082     Observer.changingInstr(MI);
2083     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2084     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2085     Observer.changedInstr(MI);
2086     return Legalized;
2087   }
2088 }
2089 
2090 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2091                              MachineIRBuilder &B, Register Src, LLT Ty) {
2092   auto Unmerge = B.buildUnmerge(Ty, Src);
2093   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2094     Pieces.push_back(Unmerge.getReg(I));
2095 }
2096 
2097 LegalizerHelper::LegalizeResult
2098 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2099   Register Dst = MI.getOperand(0).getReg();
2100   Register Src = MI.getOperand(1).getReg();
2101   LLT DstTy = MRI.getType(Dst);
2102   LLT SrcTy = MRI.getType(Src);
2103 
2104   if (SrcTy.isVector() && !DstTy.isVector()) {
2105     SmallVector<Register, 8> SrcRegs;
2106     getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType());
2107     MIRBuilder.buildMerge(Dst, SrcRegs);
2108     MI.eraseFromParent();
2109     return Legalized;
2110   }
2111 
2112   if (DstTy.isVector() && !SrcTy.isVector()) {
2113     SmallVector<Register, 8> SrcRegs;
2114     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2115     MIRBuilder.buildMerge(Dst, SrcRegs);
2116     MI.eraseFromParent();
2117     return Legalized;
2118   }
2119 
2120   return UnableToLegalize;
2121 }
2122 
2123 LegalizerHelper::LegalizeResult
2124 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2125   MIRBuilder.setInstr(MI);
2126 
2127   switch (MI.getOpcode()) {
2128   case TargetOpcode::G_LOAD: {
2129     if (TypeIdx != 0)
2130       return UnableToLegalize;
2131 
2132     Observer.changingInstr(MI);
2133     bitcastDst(MI, CastTy, 0);
2134     Observer.changedInstr(MI);
2135     return Legalized;
2136   }
2137   case TargetOpcode::G_STORE: {
2138     if (TypeIdx != 0)
2139       return UnableToLegalize;
2140 
2141     Observer.changingInstr(MI);
2142     bitcastSrc(MI, CastTy, 0);
2143     Observer.changedInstr(MI);
2144     return Legalized;
2145   }
2146   case TargetOpcode::G_SELECT: {
2147     if (TypeIdx != 0)
2148       return UnableToLegalize;
2149 
2150     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2151       LLVM_DEBUG(
2152           dbgs() << "bitcast action not implemented for vector select\n");
2153       return UnableToLegalize;
2154     }
2155 
2156     Observer.changingInstr(MI);
2157     bitcastSrc(MI, CastTy, 2);
2158     bitcastSrc(MI, CastTy, 3);
2159     bitcastDst(MI, CastTy, 0);
2160     Observer.changedInstr(MI);
2161     return Legalized;
2162   }
2163   case TargetOpcode::G_AND:
2164   case TargetOpcode::G_OR:
2165   case TargetOpcode::G_XOR: {
2166     Observer.changingInstr(MI);
2167     bitcastSrc(MI, CastTy, 1);
2168     bitcastSrc(MI, CastTy, 2);
2169     bitcastDst(MI, CastTy, 0);
2170     Observer.changedInstr(MI);
2171     return Legalized;
2172   }
2173   default:
2174     return UnableToLegalize;
2175   }
2176 }
2177 
2178 LegalizerHelper::LegalizeResult
2179 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
2180   using namespace TargetOpcode;
2181   MIRBuilder.setInstr(MI);
2182 
2183   switch(MI.getOpcode()) {
2184   default:
2185     return UnableToLegalize;
2186   case TargetOpcode::G_BITCAST:
2187     return lowerBitcast(MI);
2188   case TargetOpcode::G_SREM:
2189   case TargetOpcode::G_UREM: {
2190     auto Quot =
2191         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2192                               {MI.getOperand(1), MI.getOperand(2)});
2193 
2194     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2195     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2196     MI.eraseFromParent();
2197     return Legalized;
2198   }
2199   case TargetOpcode::G_SADDO:
2200   case TargetOpcode::G_SSUBO:
2201     return lowerSADDO_SSUBO(MI);
2202   case TargetOpcode::G_SMULO:
2203   case TargetOpcode::G_UMULO: {
2204     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2205     // result.
2206     Register Res = MI.getOperand(0).getReg();
2207     Register Overflow = MI.getOperand(1).getReg();
2208     Register LHS = MI.getOperand(2).getReg();
2209     Register RHS = MI.getOperand(3).getReg();
2210 
2211     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2212                           ? TargetOpcode::G_SMULH
2213                           : TargetOpcode::G_UMULH;
2214 
2215     Observer.changingInstr(MI);
2216     const auto &TII = MIRBuilder.getTII();
2217     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2218     MI.RemoveOperand(1);
2219     Observer.changedInstr(MI);
2220 
2221     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2222 
2223     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2224     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2225 
2226     // For *signed* multiply, overflow is detected by checking:
2227     // (hi != (lo >> bitwidth-1))
2228     if (Opcode == TargetOpcode::G_SMULH) {
2229       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2230       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2231       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2232     } else {
2233       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2234     }
2235     return Legalized;
2236   }
2237   case TargetOpcode::G_FNEG: {
2238     // TODO: Handle vector types once we are able to
2239     // represent them.
2240     if (Ty.isVector())
2241       return UnableToLegalize;
2242     Register Res = MI.getOperand(0).getReg();
2243     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2244     Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty);
2245     if (!ZeroTy)
2246       return UnableToLegalize;
2247     ConstantFP &ZeroForNegation =
2248         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
2249     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
2250     Register SubByReg = MI.getOperand(1).getReg();
2251     Register ZeroReg = Zero.getReg(0);
2252     MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags());
2253     MI.eraseFromParent();
2254     return Legalized;
2255   }
2256   case TargetOpcode::G_FSUB: {
2257     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2258     // First, check if G_FNEG is marked as Lower. If so, we may
2259     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2260     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2261       return UnableToLegalize;
2262     Register Res = MI.getOperand(0).getReg();
2263     Register LHS = MI.getOperand(1).getReg();
2264     Register RHS = MI.getOperand(2).getReg();
2265     Register Neg = MRI.createGenericVirtualRegister(Ty);
2266     MIRBuilder.buildFNeg(Neg, RHS);
2267     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2268     MI.eraseFromParent();
2269     return Legalized;
2270   }
2271   case TargetOpcode::G_FMAD:
2272     return lowerFMad(MI);
2273   case TargetOpcode::G_FFLOOR:
2274     return lowerFFloor(MI);
2275   case TargetOpcode::G_INTRINSIC_ROUND:
2276     return lowerIntrinsicRound(MI);
2277   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2278     Register OldValRes = MI.getOperand(0).getReg();
2279     Register SuccessRes = MI.getOperand(1).getReg();
2280     Register Addr = MI.getOperand(2).getReg();
2281     Register CmpVal = MI.getOperand(3).getReg();
2282     Register NewVal = MI.getOperand(4).getReg();
2283     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2284                                   **MI.memoperands_begin());
2285     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2286     MI.eraseFromParent();
2287     return Legalized;
2288   }
2289   case TargetOpcode::G_LOAD:
2290   case TargetOpcode::G_SEXTLOAD:
2291   case TargetOpcode::G_ZEXTLOAD: {
2292     // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2293     Register DstReg = MI.getOperand(0).getReg();
2294     Register PtrReg = MI.getOperand(1).getReg();
2295     LLT DstTy = MRI.getType(DstReg);
2296     auto &MMO = **MI.memoperands_begin();
2297 
2298     if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2299       if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2300         // This load needs splitting into power of 2 sized loads.
2301         if (DstTy.isVector())
2302           return UnableToLegalize;
2303         if (isPowerOf2_32(DstTy.getSizeInBits()))
2304           return UnableToLegalize; // Don't know what we're being asked to do.
2305 
2306         // Our strategy here is to generate anyextending loads for the smaller
2307         // types up to next power-2 result type, and then combine the two larger
2308         // result values together, before truncating back down to the non-pow-2
2309         // type.
2310         // E.g. v1 = i24 load =>
2311         // v2 = i32 zextload (2 byte)
2312         // v3 = i32 load (1 byte)
2313         // v4 = i32 shl v3, 16
2314         // v5 = i32 or v4, v2
2315         // v1 = i24 trunc v5
2316         // By doing this we generate the correct truncate which should get
2317         // combined away as an artifact with a matching extend.
2318         uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2319         uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2320 
2321         MachineFunction &MF = MIRBuilder.getMF();
2322         MachineMemOperand *LargeMMO =
2323             MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2324         MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2325             &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2326 
2327         LLT PtrTy = MRI.getType(PtrReg);
2328         unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2329         LLT AnyExtTy = LLT::scalar(AnyExtSize);
2330         Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2331         Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2332         auto LargeLoad = MIRBuilder.buildLoadInstr(
2333             TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2334 
2335         auto OffsetCst = MIRBuilder.buildConstant(
2336             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2337         Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2338         auto SmallPtr =
2339             MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2340         auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2341                                               *SmallMMO);
2342 
2343         auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2344         auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2345         auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2346         MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2347         MI.eraseFromParent();
2348         return Legalized;
2349       }
2350       MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2351       MI.eraseFromParent();
2352       return Legalized;
2353     }
2354 
2355     if (DstTy.isScalar()) {
2356       Register TmpReg =
2357           MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2358       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2359       switch (MI.getOpcode()) {
2360       default:
2361         llvm_unreachable("Unexpected opcode");
2362       case TargetOpcode::G_LOAD:
2363         MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg);
2364         break;
2365       case TargetOpcode::G_SEXTLOAD:
2366         MIRBuilder.buildSExt(DstReg, TmpReg);
2367         break;
2368       case TargetOpcode::G_ZEXTLOAD:
2369         MIRBuilder.buildZExt(DstReg, TmpReg);
2370         break;
2371       }
2372       MI.eraseFromParent();
2373       return Legalized;
2374     }
2375 
2376     return UnableToLegalize;
2377   }
2378   case TargetOpcode::G_STORE: {
2379     // Lower a non-power of 2 store into multiple pow-2 stores.
2380     // E.g. split an i24 store into an i16 store + i8 store.
2381     // We do this by first extending the stored value to the next largest power
2382     // of 2 type, and then using truncating stores to store the components.
2383     // By doing this, likewise with G_LOAD, generate an extend that can be
2384     // artifact-combined away instead of leaving behind extracts.
2385     Register SrcReg = MI.getOperand(0).getReg();
2386     Register PtrReg = MI.getOperand(1).getReg();
2387     LLT SrcTy = MRI.getType(SrcReg);
2388     MachineMemOperand &MMO = **MI.memoperands_begin();
2389     if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2390       return UnableToLegalize;
2391     if (SrcTy.isVector())
2392       return UnableToLegalize;
2393     if (isPowerOf2_32(SrcTy.getSizeInBits()))
2394       return UnableToLegalize; // Don't know what we're being asked to do.
2395 
2396     // Extend to the next pow-2.
2397     const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2398     auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2399 
2400     // Obtain the smaller value by shifting away the larger value.
2401     uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2402     uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2403     auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2404     auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2405 
2406     // Generate the PtrAdd and truncating stores.
2407     LLT PtrTy = MRI.getType(PtrReg);
2408     auto OffsetCst = MIRBuilder.buildConstant(
2409             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2410     Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2411     auto SmallPtr =
2412         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2413 
2414     MachineFunction &MF = MIRBuilder.getMF();
2415     MachineMemOperand *LargeMMO =
2416         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2417     MachineMemOperand *SmallMMO =
2418         MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2419     MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2420     MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2421     MI.eraseFromParent();
2422     return Legalized;
2423   }
2424   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2425   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2426   case TargetOpcode::G_CTLZ:
2427   case TargetOpcode::G_CTTZ:
2428   case TargetOpcode::G_CTPOP:
2429     return lowerBitCount(MI, TypeIdx, Ty);
2430   case G_UADDO: {
2431     Register Res = MI.getOperand(0).getReg();
2432     Register CarryOut = MI.getOperand(1).getReg();
2433     Register LHS = MI.getOperand(2).getReg();
2434     Register RHS = MI.getOperand(3).getReg();
2435 
2436     MIRBuilder.buildAdd(Res, LHS, RHS);
2437     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2438 
2439     MI.eraseFromParent();
2440     return Legalized;
2441   }
2442   case G_UADDE: {
2443     Register Res = MI.getOperand(0).getReg();
2444     Register CarryOut = MI.getOperand(1).getReg();
2445     Register LHS = MI.getOperand(2).getReg();
2446     Register RHS = MI.getOperand(3).getReg();
2447     Register CarryIn = MI.getOperand(4).getReg();
2448     LLT Ty = MRI.getType(Res);
2449 
2450     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
2451     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
2452     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2453     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2454 
2455     MI.eraseFromParent();
2456     return Legalized;
2457   }
2458   case G_USUBO: {
2459     Register Res = MI.getOperand(0).getReg();
2460     Register BorrowOut = MI.getOperand(1).getReg();
2461     Register LHS = MI.getOperand(2).getReg();
2462     Register RHS = MI.getOperand(3).getReg();
2463 
2464     MIRBuilder.buildSub(Res, LHS, RHS);
2465     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2466 
2467     MI.eraseFromParent();
2468     return Legalized;
2469   }
2470   case G_USUBE: {
2471     Register Res = MI.getOperand(0).getReg();
2472     Register BorrowOut = MI.getOperand(1).getReg();
2473     Register LHS = MI.getOperand(2).getReg();
2474     Register RHS = MI.getOperand(3).getReg();
2475     Register BorrowIn = MI.getOperand(4).getReg();
2476     const LLT CondTy = MRI.getType(BorrowOut);
2477     const LLT Ty = MRI.getType(Res);
2478 
2479     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
2480     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
2481     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2482 
2483     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
2484     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
2485     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2486 
2487     MI.eraseFromParent();
2488     return Legalized;
2489   }
2490   case G_UITOFP:
2491     return lowerUITOFP(MI, TypeIdx, Ty);
2492   case G_SITOFP:
2493     return lowerSITOFP(MI, TypeIdx, Ty);
2494   case G_FPTOUI:
2495     return lowerFPTOUI(MI, TypeIdx, Ty);
2496   case G_FPTOSI:
2497     return lowerFPTOSI(MI);
2498   case G_FPTRUNC:
2499     return lowerFPTRUNC(MI, TypeIdx, Ty);
2500   case G_SMIN:
2501   case G_SMAX:
2502   case G_UMIN:
2503   case G_UMAX:
2504     return lowerMinMax(MI, TypeIdx, Ty);
2505   case G_FCOPYSIGN:
2506     return lowerFCopySign(MI, TypeIdx, Ty);
2507   case G_FMINNUM:
2508   case G_FMAXNUM:
2509     return lowerFMinNumMaxNum(MI);
2510   case G_UNMERGE_VALUES:
2511     return lowerUnmergeValues(MI);
2512   case TargetOpcode::G_SEXT_INREG: {
2513     assert(MI.getOperand(2).isImm() && "Expected immediate");
2514     int64_t SizeInBits = MI.getOperand(2).getImm();
2515 
2516     Register DstReg = MI.getOperand(0).getReg();
2517     Register SrcReg = MI.getOperand(1).getReg();
2518     LLT DstTy = MRI.getType(DstReg);
2519     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
2520 
2521     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
2522     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
2523     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
2524     MI.eraseFromParent();
2525     return Legalized;
2526   }
2527   case G_SHUFFLE_VECTOR:
2528     return lowerShuffleVector(MI);
2529   case G_DYN_STACKALLOC:
2530     return lowerDynStackAlloc(MI);
2531   case G_EXTRACT:
2532     return lowerExtract(MI);
2533   case G_INSERT:
2534     return lowerInsert(MI);
2535   case G_BSWAP:
2536     return lowerBswap(MI);
2537   case G_BITREVERSE:
2538     return lowerBitreverse(MI);
2539   case G_READ_REGISTER:
2540   case G_WRITE_REGISTER:
2541     return lowerReadWriteRegister(MI);
2542   }
2543 }
2544 
2545 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
2546     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
2547   SmallVector<Register, 2> DstRegs;
2548 
2549   unsigned NarrowSize = NarrowTy.getSizeInBits();
2550   Register DstReg = MI.getOperand(0).getReg();
2551   unsigned Size = MRI.getType(DstReg).getSizeInBits();
2552   int NumParts = Size / NarrowSize;
2553   // FIXME: Don't know how to handle the situation where the small vectors
2554   // aren't all the same size yet.
2555   if (Size % NarrowSize != 0)
2556     return UnableToLegalize;
2557 
2558   for (int i = 0; i < NumParts; ++i) {
2559     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
2560     MIRBuilder.buildUndef(TmpReg);
2561     DstRegs.push_back(TmpReg);
2562   }
2563 
2564   if (NarrowTy.isVector())
2565     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2566   else
2567     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2568 
2569   MI.eraseFromParent();
2570   return Legalized;
2571 }
2572 
2573 // Handles operands with different types, but all must have the same number of
2574 // elements. There will be multiple type indexes. NarrowTy is expected to have
2575 // the result element type.
2576 LegalizerHelper::LegalizeResult
2577 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx,
2578                                           LLT NarrowTy) {
2579   assert(TypeIdx == 0 && "only one type index expected");
2580 
2581   const unsigned Opc = MI.getOpcode();
2582   const int NumOps = MI.getNumOperands() - 1;
2583   const Register DstReg = MI.getOperand(0).getReg();
2584   const unsigned Flags = MI.getFlags();
2585 
2586   assert(NumOps <= 3 && "expected instrution with 1 result and 1-3 sources");
2587 
2588   SmallVector<Register, 8> ExtractedRegs[3];
2589   SmallVector<Register, 8> Parts;
2590 
2591   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2592 
2593   // Break down all the sources into NarrowTy pieces we can operate on. This may
2594   // involve creating merges to a wider type, padded with undef.
2595   for (int I = 0; I != NumOps; ++I) {
2596     Register SrcReg =  MI.getOperand(I + 1).getReg();
2597     LLT SrcTy = MRI.getType(SrcReg);
2598 
2599     // Each operand may have its own type, but only the number of elements
2600     // matters.
2601     LLT OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
2602     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
2603 
2604     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
2605     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy,
2606                         ExtractedRegs[I], TargetOpcode::G_ANYEXT);
2607   }
2608 
2609   SmallVector<Register, 8> ResultRegs;
2610 
2611   // Input operands for each sub-instruction.
2612   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
2613 
2614   int NumParts = ExtractedRegs[0].size();
2615   const LLT DstTy = MRI.getType(DstReg);
2616   const unsigned DstSize = DstTy.getSizeInBits();
2617   LLT DstLCMTy = getLCMType(DstTy, NarrowTy);
2618 
2619   const unsigned NarrowSize = NarrowTy.getSizeInBits();
2620 
2621   // We widened the source registers to satisfy merge/unmerge size
2622   // constraints. We'll have some extra fully undef parts.
2623   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
2624 
2625   for (int I = 0; I != NumRealParts; ++I) {
2626     // Emit this instruction on each of the split pieces.
2627     for (int J = 0; J != NumOps; ++J)
2628       InputRegs[J] = ExtractedRegs[J][I];
2629 
2630     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowTy}, InputRegs, Flags);
2631     ResultRegs.push_back(Inst.getReg(0));
2632   }
2633 
2634   // Fill out the widened result with undef instead of creating instructions
2635   // with undef inputs.
2636   int NumUndefParts = NumParts - NumRealParts;
2637   if (NumUndefParts != 0)
2638     ResultRegs.append(NumUndefParts, MIRBuilder.buildUndef(NarrowTy).getReg(0));
2639 
2640   // Extract the possibly padded result to the original result register.
2641   buildWidenedRemergeToDst(DstReg, DstLCMTy, ResultRegs);
2642 
2643   MI.eraseFromParent();
2644   return Legalized;
2645 }
2646 
2647 // Handle splitting vector operations which need to have the same number of
2648 // elements in each type index, but each type index may have a different element
2649 // type.
2650 //
2651 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
2652 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2653 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2654 //
2655 // Also handles some irregular breakdown cases, e.g.
2656 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
2657 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2658 //             s64 = G_SHL s64, s32
2659 LegalizerHelper::LegalizeResult
2660 LegalizerHelper::fewerElementsVectorMultiEltType(
2661   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
2662   if (TypeIdx != 0)
2663     return UnableToLegalize;
2664 
2665   const LLT NarrowTy0 = NarrowTyArg;
2666   const unsigned NewNumElts =
2667       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
2668 
2669   const Register DstReg = MI.getOperand(0).getReg();
2670   LLT DstTy = MRI.getType(DstReg);
2671   LLT LeftoverTy0;
2672 
2673   // All of the operands need to have the same number of elements, so if we can
2674   // determine a type breakdown for the result type, we can for all of the
2675   // source types.
2676   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
2677   if (NumParts < 0)
2678     return UnableToLegalize;
2679 
2680   SmallVector<MachineInstrBuilder, 4> NewInsts;
2681 
2682   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2683   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2684 
2685   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2686     LLT LeftoverTy;
2687     Register SrcReg = MI.getOperand(I).getReg();
2688     LLT SrcTyI = MRI.getType(SrcReg);
2689     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
2690     LLT LeftoverTyI;
2691 
2692     // Split this operand into the requested typed registers, and any leftover
2693     // required to reproduce the original type.
2694     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
2695                       LeftoverRegs))
2696       return UnableToLegalize;
2697 
2698     if (I == 1) {
2699       // For the first operand, create an instruction for each part and setup
2700       // the result.
2701       for (Register PartReg : PartRegs) {
2702         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2703         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2704                                .addDef(PartDstReg)
2705                                .addUse(PartReg));
2706         DstRegs.push_back(PartDstReg);
2707       }
2708 
2709       for (Register LeftoverReg : LeftoverRegs) {
2710         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
2711         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2712                                .addDef(PartDstReg)
2713                                .addUse(LeftoverReg));
2714         LeftoverDstRegs.push_back(PartDstReg);
2715       }
2716     } else {
2717       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
2718 
2719       // Add the newly created operand splits to the existing instructions. The
2720       // odd-sized pieces are ordered after the requested NarrowTyArg sized
2721       // pieces.
2722       unsigned InstCount = 0;
2723       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
2724         NewInsts[InstCount++].addUse(PartRegs[J]);
2725       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
2726         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
2727     }
2728 
2729     PartRegs.clear();
2730     LeftoverRegs.clear();
2731   }
2732 
2733   // Insert the newly built operations and rebuild the result register.
2734   for (auto &MIB : NewInsts)
2735     MIRBuilder.insertInstr(MIB);
2736 
2737   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
2738 
2739   MI.eraseFromParent();
2740   return Legalized;
2741 }
2742 
2743 LegalizerHelper::LegalizeResult
2744 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
2745                                           LLT NarrowTy) {
2746   if (TypeIdx != 0)
2747     return UnableToLegalize;
2748 
2749   Register DstReg = MI.getOperand(0).getReg();
2750   Register SrcReg = MI.getOperand(1).getReg();
2751   LLT DstTy = MRI.getType(DstReg);
2752   LLT SrcTy = MRI.getType(SrcReg);
2753 
2754   LLT NarrowTy0 = NarrowTy;
2755   LLT NarrowTy1;
2756   unsigned NumParts;
2757 
2758   if (NarrowTy.isVector()) {
2759     // Uneven breakdown not handled.
2760     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
2761     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
2762       return UnableToLegalize;
2763 
2764     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
2765   } else {
2766     NumParts = DstTy.getNumElements();
2767     NarrowTy1 = SrcTy.getElementType();
2768   }
2769 
2770   SmallVector<Register, 4> SrcRegs, DstRegs;
2771   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
2772 
2773   for (unsigned I = 0; I < NumParts; ++I) {
2774     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2775     MachineInstr *NewInst =
2776         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
2777 
2778     NewInst->setFlags(MI.getFlags());
2779     DstRegs.push_back(DstReg);
2780   }
2781 
2782   if (NarrowTy.isVector())
2783     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2784   else
2785     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2786 
2787   MI.eraseFromParent();
2788   return Legalized;
2789 }
2790 
2791 LegalizerHelper::LegalizeResult
2792 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
2793                                         LLT NarrowTy) {
2794   Register DstReg = MI.getOperand(0).getReg();
2795   Register Src0Reg = MI.getOperand(2).getReg();
2796   LLT DstTy = MRI.getType(DstReg);
2797   LLT SrcTy = MRI.getType(Src0Reg);
2798 
2799   unsigned NumParts;
2800   LLT NarrowTy0, NarrowTy1;
2801 
2802   if (TypeIdx == 0) {
2803     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2804     unsigned OldElts = DstTy.getNumElements();
2805 
2806     NarrowTy0 = NarrowTy;
2807     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
2808     NarrowTy1 = NarrowTy.isVector() ?
2809       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
2810       SrcTy.getElementType();
2811 
2812   } else {
2813     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2814     unsigned OldElts = SrcTy.getNumElements();
2815 
2816     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
2817       NarrowTy.getNumElements();
2818     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
2819                             DstTy.getScalarSizeInBits());
2820     NarrowTy1 = NarrowTy;
2821   }
2822 
2823   // FIXME: Don't know how to handle the situation where the small vectors
2824   // aren't all the same size yet.
2825   if (NarrowTy1.isVector() &&
2826       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
2827     return UnableToLegalize;
2828 
2829   CmpInst::Predicate Pred
2830     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
2831 
2832   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
2833   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
2834   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
2835 
2836   for (unsigned I = 0; I < NumParts; ++I) {
2837     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2838     DstRegs.push_back(DstReg);
2839 
2840     if (MI.getOpcode() == TargetOpcode::G_ICMP)
2841       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2842     else {
2843       MachineInstr *NewCmp
2844         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2845       NewCmp->setFlags(MI.getFlags());
2846     }
2847   }
2848 
2849   if (NarrowTy1.isVector())
2850     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2851   else
2852     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2853 
2854   MI.eraseFromParent();
2855   return Legalized;
2856 }
2857 
2858 LegalizerHelper::LegalizeResult
2859 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
2860                                            LLT NarrowTy) {
2861   Register DstReg = MI.getOperand(0).getReg();
2862   Register CondReg = MI.getOperand(1).getReg();
2863 
2864   unsigned NumParts = 0;
2865   LLT NarrowTy0, NarrowTy1;
2866 
2867   LLT DstTy = MRI.getType(DstReg);
2868   LLT CondTy = MRI.getType(CondReg);
2869   unsigned Size = DstTy.getSizeInBits();
2870 
2871   assert(TypeIdx == 0 || CondTy.isVector());
2872 
2873   if (TypeIdx == 0) {
2874     NarrowTy0 = NarrowTy;
2875     NarrowTy1 = CondTy;
2876 
2877     unsigned NarrowSize = NarrowTy0.getSizeInBits();
2878     // FIXME: Don't know how to handle the situation where the small vectors
2879     // aren't all the same size yet.
2880     if (Size % NarrowSize != 0)
2881       return UnableToLegalize;
2882 
2883     NumParts = Size / NarrowSize;
2884 
2885     // Need to break down the condition type
2886     if (CondTy.isVector()) {
2887       if (CondTy.getNumElements() == NumParts)
2888         NarrowTy1 = CondTy.getElementType();
2889       else
2890         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
2891                                 CondTy.getScalarSizeInBits());
2892     }
2893   } else {
2894     NumParts = CondTy.getNumElements();
2895     if (NarrowTy.isVector()) {
2896       // TODO: Handle uneven breakdown.
2897       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
2898         return UnableToLegalize;
2899 
2900       return UnableToLegalize;
2901     } else {
2902       NarrowTy0 = DstTy.getElementType();
2903       NarrowTy1 = NarrowTy;
2904     }
2905   }
2906 
2907   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2908   if (CondTy.isVector())
2909     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
2910 
2911   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
2912   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
2913 
2914   for (unsigned i = 0; i < NumParts; ++i) {
2915     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2916     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
2917                            Src1Regs[i], Src2Regs[i]);
2918     DstRegs.push_back(DstReg);
2919   }
2920 
2921   if (NarrowTy0.isVector())
2922     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2923   else
2924     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2925 
2926   MI.eraseFromParent();
2927   return Legalized;
2928 }
2929 
2930 LegalizerHelper::LegalizeResult
2931 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
2932                                         LLT NarrowTy) {
2933   const Register DstReg = MI.getOperand(0).getReg();
2934   LLT PhiTy = MRI.getType(DstReg);
2935   LLT LeftoverTy;
2936 
2937   // All of the operands need to have the same number of elements, so if we can
2938   // determine a type breakdown for the result type, we can for all of the
2939   // source types.
2940   int NumParts, NumLeftover;
2941   std::tie(NumParts, NumLeftover)
2942     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
2943   if (NumParts < 0)
2944     return UnableToLegalize;
2945 
2946   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2947   SmallVector<MachineInstrBuilder, 4> NewInsts;
2948 
2949   const int TotalNumParts = NumParts + NumLeftover;
2950 
2951   // Insert the new phis in the result block first.
2952   for (int I = 0; I != TotalNumParts; ++I) {
2953     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
2954     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
2955     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
2956                        .addDef(PartDstReg));
2957     if (I < NumParts)
2958       DstRegs.push_back(PartDstReg);
2959     else
2960       LeftoverDstRegs.push_back(PartDstReg);
2961   }
2962 
2963   MachineBasicBlock *MBB = MI.getParent();
2964   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
2965   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
2966 
2967   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2968 
2969   // Insert code to extract the incoming values in each predecessor block.
2970   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
2971     PartRegs.clear();
2972     LeftoverRegs.clear();
2973 
2974     Register SrcReg = MI.getOperand(I).getReg();
2975     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2976     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2977 
2978     LLT Unused;
2979     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
2980                       LeftoverRegs))
2981       return UnableToLegalize;
2982 
2983     // Add the newly created operand splits to the existing instructions. The
2984     // odd-sized pieces are ordered after the requested NarrowTyArg sized
2985     // pieces.
2986     for (int J = 0; J != TotalNumParts; ++J) {
2987       MachineInstrBuilder MIB = NewInsts[J];
2988       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
2989       MIB.addMBB(&OpMBB);
2990     }
2991   }
2992 
2993   MI.eraseFromParent();
2994   return Legalized;
2995 }
2996 
2997 LegalizerHelper::LegalizeResult
2998 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
2999                                                   unsigned TypeIdx,
3000                                                   LLT NarrowTy) {
3001   if (TypeIdx != 1)
3002     return UnableToLegalize;
3003 
3004   const int NumDst = MI.getNumOperands() - 1;
3005   const Register SrcReg = MI.getOperand(NumDst).getReg();
3006   LLT SrcTy = MRI.getType(SrcReg);
3007 
3008   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3009 
3010   // TODO: Create sequence of extracts.
3011   if (DstTy == NarrowTy)
3012     return UnableToLegalize;
3013 
3014   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3015   if (DstTy == GCDTy) {
3016     // This would just be a copy of the same unmerge.
3017     // TODO: Create extracts, pad with undef and create intermediate merges.
3018     return UnableToLegalize;
3019   }
3020 
3021   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3022   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3023   const int PartsPerUnmerge = NumDst / NumUnmerge;
3024 
3025   for (int I = 0; I != NumUnmerge; ++I) {
3026     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3027 
3028     for (int J = 0; J != PartsPerUnmerge; ++J)
3029       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3030     MIB.addUse(Unmerge.getReg(I));
3031   }
3032 
3033   MI.eraseFromParent();
3034   return Legalized;
3035 }
3036 
3037 LegalizerHelper::LegalizeResult
3038 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI,
3039                                                 unsigned TypeIdx,
3040                                                 LLT NarrowTy) {
3041   assert(TypeIdx == 0 && "not a vector type index");
3042   Register DstReg = MI.getOperand(0).getReg();
3043   LLT DstTy = MRI.getType(DstReg);
3044   LLT SrcTy = DstTy.getElementType();
3045 
3046   int DstNumElts = DstTy.getNumElements();
3047   int NarrowNumElts = NarrowTy.getNumElements();
3048   int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts;
3049   LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy);
3050 
3051   SmallVector<Register, 8> ConcatOps;
3052   SmallVector<Register, 8> SubBuildVector;
3053 
3054   Register UndefReg;
3055   if (WidenedDstTy != DstTy)
3056     UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0);
3057 
3058   // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as
3059   // necessary.
3060   //
3061   // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3062   //   -> <2 x s16>
3063   //
3064   // %4:_(s16) = G_IMPLICIT_DEF
3065   // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3066   // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3067   // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6
3068   // %3:_(<3 x s16>) = G_EXTRACT %7, 0
3069   for (int I = 0; I != NumConcat; ++I) {
3070     for (int J = 0; J != NarrowNumElts; ++J) {
3071       int SrcIdx = NarrowNumElts * I + J;
3072 
3073       if (SrcIdx < DstNumElts) {
3074         Register SrcReg = MI.getOperand(SrcIdx + 1).getReg();
3075         SubBuildVector.push_back(SrcReg);
3076       } else
3077         SubBuildVector.push_back(UndefReg);
3078     }
3079 
3080     auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector);
3081     ConcatOps.push_back(BuildVec.getReg(0));
3082     SubBuildVector.clear();
3083   }
3084 
3085   if (DstTy == WidenedDstTy)
3086     MIRBuilder.buildConcatVectors(DstReg, ConcatOps);
3087   else {
3088     auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps);
3089     MIRBuilder.buildExtract(DstReg, Concat, 0);
3090   }
3091 
3092   MI.eraseFromParent();
3093   return Legalized;
3094 }
3095 
3096 LegalizerHelper::LegalizeResult
3097 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3098                                       LLT NarrowTy) {
3099   // FIXME: Don't know how to handle secondary types yet.
3100   if (TypeIdx != 0)
3101     return UnableToLegalize;
3102 
3103   MachineMemOperand *MMO = *MI.memoperands_begin();
3104 
3105   // This implementation doesn't work for atomics. Give up instead of doing
3106   // something invalid.
3107   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3108       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3109     return UnableToLegalize;
3110 
3111   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3112   Register ValReg = MI.getOperand(0).getReg();
3113   Register AddrReg = MI.getOperand(1).getReg();
3114   LLT ValTy = MRI.getType(ValReg);
3115 
3116   // FIXME: Do we need a distinct NarrowMemory legalize action?
3117   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3118     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3119     return UnableToLegalize;
3120   }
3121 
3122   int NumParts = -1;
3123   int NumLeftover = -1;
3124   LLT LeftoverTy;
3125   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3126   if (IsLoad) {
3127     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3128   } else {
3129     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3130                      NarrowLeftoverRegs)) {
3131       NumParts = NarrowRegs.size();
3132       NumLeftover = NarrowLeftoverRegs.size();
3133     }
3134   }
3135 
3136   if (NumParts == -1)
3137     return UnableToLegalize;
3138 
3139   const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits());
3140 
3141   unsigned TotalSize = ValTy.getSizeInBits();
3142 
3143   // Split the load/store into PartTy sized pieces starting at Offset. If this
3144   // is a load, return the new registers in ValRegs. For a store, each elements
3145   // of ValRegs should be PartTy. Returns the next offset that needs to be
3146   // handled.
3147   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3148                              unsigned Offset) -> unsigned {
3149     MachineFunction &MF = MIRBuilder.getMF();
3150     unsigned PartSize = PartTy.getSizeInBits();
3151     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3152          Offset += PartSize, ++Idx) {
3153       unsigned ByteSize = PartSize / 8;
3154       unsigned ByteOffset = Offset / 8;
3155       Register NewAddrReg;
3156 
3157       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3158 
3159       MachineMemOperand *NewMMO =
3160         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3161 
3162       if (IsLoad) {
3163         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3164         ValRegs.push_back(Dst);
3165         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3166       } else {
3167         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3168       }
3169     }
3170 
3171     return Offset;
3172   };
3173 
3174   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3175 
3176   // Handle the rest of the register if this isn't an even type breakdown.
3177   if (LeftoverTy.isValid())
3178     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3179 
3180   if (IsLoad) {
3181     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3182                 LeftoverTy, NarrowLeftoverRegs);
3183   }
3184 
3185   MI.eraseFromParent();
3186   return Legalized;
3187 }
3188 
3189 LegalizerHelper::LegalizeResult
3190 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3191                                               LLT NarrowTy) {
3192   Register DstReg = MI.getOperand(0).getReg();
3193   Register SrcReg = MI.getOperand(1).getReg();
3194   int64_t Imm = MI.getOperand(2).getImm();
3195 
3196   LLT DstTy = MRI.getType(DstReg);
3197 
3198   SmallVector<Register, 8> Parts;
3199   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3200   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3201 
3202   for (Register &R : Parts)
3203     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3204 
3205   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3206 
3207   MI.eraseFromParent();
3208   return Legalized;
3209 }
3210 
3211 LegalizerHelper::LegalizeResult
3212 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3213                                      LLT NarrowTy) {
3214   using namespace TargetOpcode;
3215 
3216   MIRBuilder.setInstr(MI);
3217   switch (MI.getOpcode()) {
3218   case G_IMPLICIT_DEF:
3219     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3220   case G_TRUNC:
3221   case G_AND:
3222   case G_OR:
3223   case G_XOR:
3224   case G_ADD:
3225   case G_SUB:
3226   case G_MUL:
3227   case G_SMULH:
3228   case G_UMULH:
3229   case G_FADD:
3230   case G_FMUL:
3231   case G_FSUB:
3232   case G_FNEG:
3233   case G_FABS:
3234   case G_FCANONICALIZE:
3235   case G_FDIV:
3236   case G_FREM:
3237   case G_FMA:
3238   case G_FMAD:
3239   case G_FPOW:
3240   case G_FEXP:
3241   case G_FEXP2:
3242   case G_FLOG:
3243   case G_FLOG2:
3244   case G_FLOG10:
3245   case G_FNEARBYINT:
3246   case G_FCEIL:
3247   case G_FFLOOR:
3248   case G_FRINT:
3249   case G_INTRINSIC_ROUND:
3250   case G_INTRINSIC_TRUNC:
3251   case G_FCOS:
3252   case G_FSIN:
3253   case G_FSQRT:
3254   case G_BSWAP:
3255   case G_BITREVERSE:
3256   case G_SDIV:
3257   case G_UDIV:
3258   case G_SREM:
3259   case G_UREM:
3260   case G_SMIN:
3261   case G_SMAX:
3262   case G_UMIN:
3263   case G_UMAX:
3264   case G_FMINNUM:
3265   case G_FMAXNUM:
3266   case G_FMINNUM_IEEE:
3267   case G_FMAXNUM_IEEE:
3268   case G_FMINIMUM:
3269   case G_FMAXIMUM:
3270     return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy);
3271   case G_SHL:
3272   case G_LSHR:
3273   case G_ASHR:
3274   case G_CTLZ:
3275   case G_CTLZ_ZERO_UNDEF:
3276   case G_CTTZ:
3277   case G_CTTZ_ZERO_UNDEF:
3278   case G_CTPOP:
3279   case G_FCOPYSIGN:
3280     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
3281   case G_ZEXT:
3282   case G_SEXT:
3283   case G_ANYEXT:
3284   case G_FPEXT:
3285   case G_FPTRUNC:
3286   case G_SITOFP:
3287   case G_UITOFP:
3288   case G_FPTOSI:
3289   case G_FPTOUI:
3290   case G_INTTOPTR:
3291   case G_PTRTOINT:
3292   case G_ADDRSPACE_CAST:
3293     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
3294   case G_ICMP:
3295   case G_FCMP:
3296     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
3297   case G_SELECT:
3298     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
3299   case G_PHI:
3300     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
3301   case G_UNMERGE_VALUES:
3302     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
3303   case G_BUILD_VECTOR:
3304     return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy);
3305   case G_LOAD:
3306   case G_STORE:
3307     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
3308   case G_SEXT_INREG:
3309     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
3310   default:
3311     return UnableToLegalize;
3312   }
3313 }
3314 
3315 LegalizerHelper::LegalizeResult
3316 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
3317                                              const LLT HalfTy, const LLT AmtTy) {
3318 
3319   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3320   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3321   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3322 
3323   if (Amt.isNullValue()) {
3324     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
3325     MI.eraseFromParent();
3326     return Legalized;
3327   }
3328 
3329   LLT NVT = HalfTy;
3330   unsigned NVTBits = HalfTy.getSizeInBits();
3331   unsigned VTBits = 2 * NVTBits;
3332 
3333   SrcOp Lo(Register(0)), Hi(Register(0));
3334   if (MI.getOpcode() == TargetOpcode::G_SHL) {
3335     if (Amt.ugt(VTBits)) {
3336       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3337     } else if (Amt.ugt(NVTBits)) {
3338       Lo = MIRBuilder.buildConstant(NVT, 0);
3339       Hi = MIRBuilder.buildShl(NVT, InL,
3340                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3341     } else if (Amt == NVTBits) {
3342       Lo = MIRBuilder.buildConstant(NVT, 0);
3343       Hi = InL;
3344     } else {
3345       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
3346       auto OrLHS =
3347           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
3348       auto OrRHS = MIRBuilder.buildLShr(
3349           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3350       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3351     }
3352   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3353     if (Amt.ugt(VTBits)) {
3354       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3355     } else if (Amt.ugt(NVTBits)) {
3356       Lo = MIRBuilder.buildLShr(NVT, InH,
3357                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3358       Hi = MIRBuilder.buildConstant(NVT, 0);
3359     } else if (Amt == NVTBits) {
3360       Lo = InH;
3361       Hi = MIRBuilder.buildConstant(NVT, 0);
3362     } else {
3363       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3364 
3365       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3366       auto OrRHS = MIRBuilder.buildShl(
3367           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3368 
3369       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3370       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
3371     }
3372   } else {
3373     if (Amt.ugt(VTBits)) {
3374       Hi = Lo = MIRBuilder.buildAShr(
3375           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3376     } else if (Amt.ugt(NVTBits)) {
3377       Lo = MIRBuilder.buildAShr(NVT, InH,
3378                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3379       Hi = MIRBuilder.buildAShr(NVT, InH,
3380                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3381     } else if (Amt == NVTBits) {
3382       Lo = InH;
3383       Hi = MIRBuilder.buildAShr(NVT, InH,
3384                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3385     } else {
3386       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3387 
3388       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3389       auto OrRHS = MIRBuilder.buildShl(
3390           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3391 
3392       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3393       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
3394     }
3395   }
3396 
3397   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
3398   MI.eraseFromParent();
3399 
3400   return Legalized;
3401 }
3402 
3403 // TODO: Optimize if constant shift amount.
3404 LegalizerHelper::LegalizeResult
3405 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
3406                                    LLT RequestedTy) {
3407   if (TypeIdx == 1) {
3408     Observer.changingInstr(MI);
3409     narrowScalarSrc(MI, RequestedTy, 2);
3410     Observer.changedInstr(MI);
3411     return Legalized;
3412   }
3413 
3414   Register DstReg = MI.getOperand(0).getReg();
3415   LLT DstTy = MRI.getType(DstReg);
3416   if (DstTy.isVector())
3417     return UnableToLegalize;
3418 
3419   Register Amt = MI.getOperand(2).getReg();
3420   LLT ShiftAmtTy = MRI.getType(Amt);
3421   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
3422   if (DstEltSize % 2 != 0)
3423     return UnableToLegalize;
3424 
3425   // Ignore the input type. We can only go to exactly half the size of the
3426   // input. If that isn't small enough, the resulting pieces will be further
3427   // legalized.
3428   const unsigned NewBitSize = DstEltSize / 2;
3429   const LLT HalfTy = LLT::scalar(NewBitSize);
3430   const LLT CondTy = LLT::scalar(1);
3431 
3432   if (const MachineInstr *KShiftAmt =
3433           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
3434     return narrowScalarShiftByConstant(
3435         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
3436   }
3437 
3438   // TODO: Expand with known bits.
3439 
3440   // Handle the fully general expansion by an unknown amount.
3441   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
3442 
3443   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3444   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3445   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3446 
3447   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
3448   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
3449 
3450   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
3451   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
3452   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
3453 
3454   Register ResultRegs[2];
3455   switch (MI.getOpcode()) {
3456   case TargetOpcode::G_SHL: {
3457     // Short: ShAmt < NewBitSize
3458     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
3459 
3460     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
3461     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
3462     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3463 
3464     // Long: ShAmt >= NewBitSize
3465     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
3466     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
3467 
3468     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
3469     auto Hi = MIRBuilder.buildSelect(
3470         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
3471 
3472     ResultRegs[0] = Lo.getReg(0);
3473     ResultRegs[1] = Hi.getReg(0);
3474     break;
3475   }
3476   case TargetOpcode::G_LSHR:
3477   case TargetOpcode::G_ASHR: {
3478     // Short: ShAmt < NewBitSize
3479     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
3480 
3481     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
3482     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
3483     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3484 
3485     // Long: ShAmt >= NewBitSize
3486     MachineInstrBuilder HiL;
3487     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3488       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
3489     } else {
3490       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
3491       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
3492     }
3493     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
3494                                      {InH, AmtExcess});     // Lo from Hi part.
3495 
3496     auto Lo = MIRBuilder.buildSelect(
3497         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
3498 
3499     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
3500 
3501     ResultRegs[0] = Lo.getReg(0);
3502     ResultRegs[1] = Hi.getReg(0);
3503     break;
3504   }
3505   default:
3506     llvm_unreachable("not a shift");
3507   }
3508 
3509   MIRBuilder.buildMerge(DstReg, ResultRegs);
3510   MI.eraseFromParent();
3511   return Legalized;
3512 }
3513 
3514 LegalizerHelper::LegalizeResult
3515 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3516                                        LLT MoreTy) {
3517   assert(TypeIdx == 0 && "Expecting only Idx 0");
3518 
3519   Observer.changingInstr(MI);
3520   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3521     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3522     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3523     moreElementsVectorSrc(MI, MoreTy, I);
3524   }
3525 
3526   MachineBasicBlock &MBB = *MI.getParent();
3527   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
3528   moreElementsVectorDst(MI, MoreTy, 0);
3529   Observer.changedInstr(MI);
3530   return Legalized;
3531 }
3532 
3533 LegalizerHelper::LegalizeResult
3534 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
3535                                     LLT MoreTy) {
3536   MIRBuilder.setInstr(MI);
3537   unsigned Opc = MI.getOpcode();
3538   switch (Opc) {
3539   case TargetOpcode::G_IMPLICIT_DEF:
3540   case TargetOpcode::G_LOAD: {
3541     if (TypeIdx != 0)
3542       return UnableToLegalize;
3543     Observer.changingInstr(MI);
3544     moreElementsVectorDst(MI, MoreTy, 0);
3545     Observer.changedInstr(MI);
3546     return Legalized;
3547   }
3548   case TargetOpcode::G_STORE:
3549     if (TypeIdx != 0)
3550       return UnableToLegalize;
3551     Observer.changingInstr(MI);
3552     moreElementsVectorSrc(MI, MoreTy, 0);
3553     Observer.changedInstr(MI);
3554     return Legalized;
3555   case TargetOpcode::G_AND:
3556   case TargetOpcode::G_OR:
3557   case TargetOpcode::G_XOR:
3558   case TargetOpcode::G_SMIN:
3559   case TargetOpcode::G_SMAX:
3560   case TargetOpcode::G_UMIN:
3561   case TargetOpcode::G_UMAX:
3562   case TargetOpcode::G_FMINNUM:
3563   case TargetOpcode::G_FMAXNUM:
3564   case TargetOpcode::G_FMINNUM_IEEE:
3565   case TargetOpcode::G_FMAXNUM_IEEE:
3566   case TargetOpcode::G_FMINIMUM:
3567   case TargetOpcode::G_FMAXIMUM: {
3568     Observer.changingInstr(MI);
3569     moreElementsVectorSrc(MI, MoreTy, 1);
3570     moreElementsVectorSrc(MI, MoreTy, 2);
3571     moreElementsVectorDst(MI, MoreTy, 0);
3572     Observer.changedInstr(MI);
3573     return Legalized;
3574   }
3575   case TargetOpcode::G_EXTRACT:
3576     if (TypeIdx != 1)
3577       return UnableToLegalize;
3578     Observer.changingInstr(MI);
3579     moreElementsVectorSrc(MI, MoreTy, 1);
3580     Observer.changedInstr(MI);
3581     return Legalized;
3582   case TargetOpcode::G_INSERT:
3583     if (TypeIdx != 0)
3584       return UnableToLegalize;
3585     Observer.changingInstr(MI);
3586     moreElementsVectorSrc(MI, MoreTy, 1);
3587     moreElementsVectorDst(MI, MoreTy, 0);
3588     Observer.changedInstr(MI);
3589     return Legalized;
3590   case TargetOpcode::G_SELECT:
3591     if (TypeIdx != 0)
3592       return UnableToLegalize;
3593     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
3594       return UnableToLegalize;
3595 
3596     Observer.changingInstr(MI);
3597     moreElementsVectorSrc(MI, MoreTy, 2);
3598     moreElementsVectorSrc(MI, MoreTy, 3);
3599     moreElementsVectorDst(MI, MoreTy, 0);
3600     Observer.changedInstr(MI);
3601     return Legalized;
3602   case TargetOpcode::G_UNMERGE_VALUES: {
3603     if (TypeIdx != 1)
3604       return UnableToLegalize;
3605 
3606     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3607     int NumDst = MI.getNumOperands() - 1;
3608     moreElementsVectorSrc(MI, MoreTy, NumDst);
3609 
3610     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3611     for (int I = 0; I != NumDst; ++I)
3612       MIB.addDef(MI.getOperand(I).getReg());
3613 
3614     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
3615     for (int I = NumDst; I != NewNumDst; ++I)
3616       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
3617 
3618     MIB.addUse(MI.getOperand(NumDst).getReg());
3619     MI.eraseFromParent();
3620     return Legalized;
3621   }
3622   case TargetOpcode::G_PHI:
3623     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
3624   default:
3625     return UnableToLegalize;
3626   }
3627 }
3628 
3629 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
3630                                         ArrayRef<Register> Src1Regs,
3631                                         ArrayRef<Register> Src2Regs,
3632                                         LLT NarrowTy) {
3633   MachineIRBuilder &B = MIRBuilder;
3634   unsigned SrcParts = Src1Regs.size();
3635   unsigned DstParts = DstRegs.size();
3636 
3637   unsigned DstIdx = 0; // Low bits of the result.
3638   Register FactorSum =
3639       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
3640   DstRegs[DstIdx] = FactorSum;
3641 
3642   unsigned CarrySumPrevDstIdx;
3643   SmallVector<Register, 4> Factors;
3644 
3645   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
3646     // Collect low parts of muls for DstIdx.
3647     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
3648          i <= std::min(DstIdx, SrcParts - 1); ++i) {
3649       MachineInstrBuilder Mul =
3650           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
3651       Factors.push_back(Mul.getReg(0));
3652     }
3653     // Collect high parts of muls from previous DstIdx.
3654     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
3655          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
3656       MachineInstrBuilder Umulh =
3657           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
3658       Factors.push_back(Umulh.getReg(0));
3659     }
3660     // Add CarrySum from additions calculated for previous DstIdx.
3661     if (DstIdx != 1) {
3662       Factors.push_back(CarrySumPrevDstIdx);
3663     }
3664 
3665     Register CarrySum;
3666     // Add all factors and accumulate all carries into CarrySum.
3667     if (DstIdx != DstParts - 1) {
3668       MachineInstrBuilder Uaddo =
3669           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
3670       FactorSum = Uaddo.getReg(0);
3671       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
3672       for (unsigned i = 2; i < Factors.size(); ++i) {
3673         MachineInstrBuilder Uaddo =
3674             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
3675         FactorSum = Uaddo.getReg(0);
3676         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
3677         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
3678       }
3679     } else {
3680       // Since value for the next index is not calculated, neither is CarrySum.
3681       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
3682       for (unsigned i = 2; i < Factors.size(); ++i)
3683         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
3684     }
3685 
3686     CarrySumPrevDstIdx = CarrySum;
3687     DstRegs[DstIdx] = FactorSum;
3688     Factors.clear();
3689   }
3690 }
3691 
3692 LegalizerHelper::LegalizeResult
3693 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
3694   Register DstReg = MI.getOperand(0).getReg();
3695   Register Src1 = MI.getOperand(1).getReg();
3696   Register Src2 = MI.getOperand(2).getReg();
3697 
3698   LLT Ty = MRI.getType(DstReg);
3699   if (Ty.isVector())
3700     return UnableToLegalize;
3701 
3702   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
3703   unsigned DstSize = Ty.getSizeInBits();
3704   unsigned NarrowSize = NarrowTy.getSizeInBits();
3705   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
3706     return UnableToLegalize;
3707 
3708   unsigned NumDstParts = DstSize / NarrowSize;
3709   unsigned NumSrcParts = SrcSize / NarrowSize;
3710   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
3711   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
3712 
3713   SmallVector<Register, 2> Src1Parts, Src2Parts;
3714   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
3715   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
3716   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
3717   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
3718 
3719   // Take only high half of registers if this is high mul.
3720   ArrayRef<Register> DstRegs(
3721       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
3722   MIRBuilder.buildMerge(DstReg, DstRegs);
3723   MI.eraseFromParent();
3724   return Legalized;
3725 }
3726 
3727 LegalizerHelper::LegalizeResult
3728 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
3729                                      LLT NarrowTy) {
3730   if (TypeIdx != 1)
3731     return UnableToLegalize;
3732 
3733   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3734 
3735   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
3736   // FIXME: add support for when SizeOp1 isn't an exact multiple of
3737   // NarrowSize.
3738   if (SizeOp1 % NarrowSize != 0)
3739     return UnableToLegalize;
3740   int NumParts = SizeOp1 / NarrowSize;
3741 
3742   SmallVector<Register, 2> SrcRegs, DstRegs;
3743   SmallVector<uint64_t, 2> Indexes;
3744   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3745 
3746   Register OpReg = MI.getOperand(0).getReg();
3747   uint64_t OpStart = MI.getOperand(2).getImm();
3748   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3749   for (int i = 0; i < NumParts; ++i) {
3750     unsigned SrcStart = i * NarrowSize;
3751 
3752     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
3753       // No part of the extract uses this subregister, ignore it.
3754       continue;
3755     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3756       // The entire subregister is extracted, forward the value.
3757       DstRegs.push_back(SrcRegs[i]);
3758       continue;
3759     }
3760 
3761     // OpSegStart is where this destination segment would start in OpReg if it
3762     // extended infinitely in both directions.
3763     int64_t ExtractOffset;
3764     uint64_t SegSize;
3765     if (OpStart < SrcStart) {
3766       ExtractOffset = 0;
3767       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
3768     } else {
3769       ExtractOffset = OpStart - SrcStart;
3770       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
3771     }
3772 
3773     Register SegReg = SrcRegs[i];
3774     if (ExtractOffset != 0 || SegSize != NarrowSize) {
3775       // A genuine extract is needed.
3776       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3777       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
3778     }
3779 
3780     DstRegs.push_back(SegReg);
3781   }
3782 
3783   Register DstReg = MI.getOperand(0).getReg();
3784   if (MRI.getType(DstReg).isVector())
3785     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3786   else if (DstRegs.size() > 1)
3787     MIRBuilder.buildMerge(DstReg, DstRegs);
3788   else
3789     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
3790   MI.eraseFromParent();
3791   return Legalized;
3792 }
3793 
3794 LegalizerHelper::LegalizeResult
3795 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
3796                                     LLT NarrowTy) {
3797   // FIXME: Don't know how to handle secondary types yet.
3798   if (TypeIdx != 0)
3799     return UnableToLegalize;
3800 
3801   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
3802   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3803 
3804   // FIXME: add support for when SizeOp0 isn't an exact multiple of
3805   // NarrowSize.
3806   if (SizeOp0 % NarrowSize != 0)
3807     return UnableToLegalize;
3808 
3809   int NumParts = SizeOp0 / NarrowSize;
3810 
3811   SmallVector<Register, 2> SrcRegs, DstRegs;
3812   SmallVector<uint64_t, 2> Indexes;
3813   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3814 
3815   Register OpReg = MI.getOperand(2).getReg();
3816   uint64_t OpStart = MI.getOperand(3).getImm();
3817   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3818   for (int i = 0; i < NumParts; ++i) {
3819     unsigned DstStart = i * NarrowSize;
3820 
3821     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
3822       // No part of the insert affects this subregister, forward the original.
3823       DstRegs.push_back(SrcRegs[i]);
3824       continue;
3825     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3826       // The entire subregister is defined by this insert, forward the new
3827       // value.
3828       DstRegs.push_back(OpReg);
3829       continue;
3830     }
3831 
3832     // OpSegStart is where this destination segment would start in OpReg if it
3833     // extended infinitely in both directions.
3834     int64_t ExtractOffset, InsertOffset;
3835     uint64_t SegSize;
3836     if (OpStart < DstStart) {
3837       InsertOffset = 0;
3838       ExtractOffset = DstStart - OpStart;
3839       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
3840     } else {
3841       InsertOffset = OpStart - DstStart;
3842       ExtractOffset = 0;
3843       SegSize =
3844         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
3845     }
3846 
3847     Register SegReg = OpReg;
3848     if (ExtractOffset != 0 || SegSize != OpSize) {
3849       // A genuine extract is needed.
3850       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3851       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
3852     }
3853 
3854     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
3855     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
3856     DstRegs.push_back(DstReg);
3857   }
3858 
3859   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
3860   Register DstReg = MI.getOperand(0).getReg();
3861   if(MRI.getType(DstReg).isVector())
3862     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3863   else
3864     MIRBuilder.buildMerge(DstReg, DstRegs);
3865   MI.eraseFromParent();
3866   return Legalized;
3867 }
3868 
3869 LegalizerHelper::LegalizeResult
3870 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
3871                                    LLT NarrowTy) {
3872   Register DstReg = MI.getOperand(0).getReg();
3873   LLT DstTy = MRI.getType(DstReg);
3874 
3875   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
3876 
3877   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3878   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
3879   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3880   LLT LeftoverTy;
3881   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
3882                     Src0Regs, Src0LeftoverRegs))
3883     return UnableToLegalize;
3884 
3885   LLT Unused;
3886   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
3887                     Src1Regs, Src1LeftoverRegs))
3888     llvm_unreachable("inconsistent extractParts result");
3889 
3890   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3891     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
3892                                         {Src0Regs[I], Src1Regs[I]});
3893     DstRegs.push_back(Inst.getReg(0));
3894   }
3895 
3896   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3897     auto Inst = MIRBuilder.buildInstr(
3898       MI.getOpcode(),
3899       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
3900     DstLeftoverRegs.push_back(Inst.getReg(0));
3901   }
3902 
3903   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3904               LeftoverTy, DstLeftoverRegs);
3905 
3906   MI.eraseFromParent();
3907   return Legalized;
3908 }
3909 
3910 LegalizerHelper::LegalizeResult
3911 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
3912                                  LLT NarrowTy) {
3913   if (TypeIdx != 0)
3914     return UnableToLegalize;
3915 
3916   Register DstReg = MI.getOperand(0).getReg();
3917   Register SrcReg = MI.getOperand(1).getReg();
3918 
3919   LLT DstTy = MRI.getType(DstReg);
3920   if (DstTy.isVector())
3921     return UnableToLegalize;
3922 
3923   SmallVector<Register, 8> Parts;
3924   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3925   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
3926   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3927 
3928   MI.eraseFromParent();
3929   return Legalized;
3930 }
3931 
3932 LegalizerHelper::LegalizeResult
3933 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
3934                                     LLT NarrowTy) {
3935   if (TypeIdx != 0)
3936     return UnableToLegalize;
3937 
3938   Register CondReg = MI.getOperand(1).getReg();
3939   LLT CondTy = MRI.getType(CondReg);
3940   if (CondTy.isVector()) // TODO: Handle vselect
3941     return UnableToLegalize;
3942 
3943   Register DstReg = MI.getOperand(0).getReg();
3944   LLT DstTy = MRI.getType(DstReg);
3945 
3946   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3947   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3948   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
3949   LLT LeftoverTy;
3950   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
3951                     Src1Regs, Src1LeftoverRegs))
3952     return UnableToLegalize;
3953 
3954   LLT Unused;
3955   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
3956                     Src2Regs, Src2LeftoverRegs))
3957     llvm_unreachable("inconsistent extractParts result");
3958 
3959   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3960     auto Select = MIRBuilder.buildSelect(NarrowTy,
3961                                          CondReg, Src1Regs[I], Src2Regs[I]);
3962     DstRegs.push_back(Select.getReg(0));
3963   }
3964 
3965   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3966     auto Select = MIRBuilder.buildSelect(
3967       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
3968     DstLeftoverRegs.push_back(Select.getReg(0));
3969   }
3970 
3971   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3972               LeftoverTy, DstLeftoverRegs);
3973 
3974   MI.eraseFromParent();
3975   return Legalized;
3976 }
3977 
3978 LegalizerHelper::LegalizeResult
3979 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
3980                                   LLT NarrowTy) {
3981   if (TypeIdx != 1)
3982     return UnableToLegalize;
3983 
3984   Register DstReg = MI.getOperand(0).getReg();
3985   Register SrcReg = MI.getOperand(1).getReg();
3986   LLT DstTy = MRI.getType(DstReg);
3987   LLT SrcTy = MRI.getType(SrcReg);
3988   unsigned NarrowSize = NarrowTy.getSizeInBits();
3989 
3990   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
3991     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
3992 
3993     MachineIRBuilder &B = MIRBuilder;
3994     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
3995     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
3996     auto C_0 = B.buildConstant(NarrowTy, 0);
3997     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
3998                                 UnmergeSrc.getReg(1), C_0);
3999     auto LoCTLZ = IsUndef ?
4000       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4001       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4002     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4003     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4004     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4005     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4006 
4007     MI.eraseFromParent();
4008     return Legalized;
4009   }
4010 
4011   return UnableToLegalize;
4012 }
4013 
4014 LegalizerHelper::LegalizeResult
4015 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4016                                   LLT NarrowTy) {
4017   if (TypeIdx != 1)
4018     return UnableToLegalize;
4019 
4020   Register DstReg = MI.getOperand(0).getReg();
4021   Register SrcReg = MI.getOperand(1).getReg();
4022   LLT DstTy = MRI.getType(DstReg);
4023   LLT SrcTy = MRI.getType(SrcReg);
4024   unsigned NarrowSize = NarrowTy.getSizeInBits();
4025 
4026   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4027     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4028 
4029     MachineIRBuilder &B = MIRBuilder;
4030     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4031     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4032     auto C_0 = B.buildConstant(NarrowTy, 0);
4033     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4034                                 UnmergeSrc.getReg(0), C_0);
4035     auto HiCTTZ = IsUndef ?
4036       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4037       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4038     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4039     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4040     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4041     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4042 
4043     MI.eraseFromParent();
4044     return Legalized;
4045   }
4046 
4047   return UnableToLegalize;
4048 }
4049 
4050 LegalizerHelper::LegalizeResult
4051 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4052                                    LLT NarrowTy) {
4053   if (TypeIdx != 1)
4054     return UnableToLegalize;
4055 
4056   Register DstReg = MI.getOperand(0).getReg();
4057   LLT DstTy = MRI.getType(DstReg);
4058   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4059   unsigned NarrowSize = NarrowTy.getSizeInBits();
4060 
4061   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4062     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4063 
4064     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4065     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4066     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4067 
4068     MI.eraseFromParent();
4069     return Legalized;
4070   }
4071 
4072   return UnableToLegalize;
4073 }
4074 
4075 LegalizerHelper::LegalizeResult
4076 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4077   unsigned Opc = MI.getOpcode();
4078   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
4079   auto isSupported = [this](const LegalityQuery &Q) {
4080     auto QAction = LI.getAction(Q).Action;
4081     return QAction == Legal || QAction == Libcall || QAction == Custom;
4082   };
4083   switch (Opc) {
4084   default:
4085     return UnableToLegalize;
4086   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4087     // This trivially expands to CTLZ.
4088     Observer.changingInstr(MI);
4089     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4090     Observer.changedInstr(MI);
4091     return Legalized;
4092   }
4093   case TargetOpcode::G_CTLZ: {
4094     Register DstReg = MI.getOperand(0).getReg();
4095     Register SrcReg = MI.getOperand(1).getReg();
4096     LLT DstTy = MRI.getType(DstReg);
4097     LLT SrcTy = MRI.getType(SrcReg);
4098     unsigned Len = SrcTy.getSizeInBits();
4099 
4100     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4101       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4102       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4103       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4104       auto ICmp = MIRBuilder.buildICmp(
4105           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4106       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4107       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4108       MI.eraseFromParent();
4109       return Legalized;
4110     }
4111     // for now, we do this:
4112     // NewLen = NextPowerOf2(Len);
4113     // x = x | (x >> 1);
4114     // x = x | (x >> 2);
4115     // ...
4116     // x = x | (x >>16);
4117     // x = x | (x >>32); // for 64-bit input
4118     // Upto NewLen/2
4119     // return Len - popcount(x);
4120     //
4121     // Ref: "Hacker's Delight" by Henry Warren
4122     Register Op = SrcReg;
4123     unsigned NewLen = PowerOf2Ceil(Len);
4124     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4125       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4126       auto MIBOp = MIRBuilder.buildOr(
4127           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4128       Op = MIBOp.getReg(0);
4129     }
4130     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4131     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4132                         MIBPop);
4133     MI.eraseFromParent();
4134     return Legalized;
4135   }
4136   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4137     // This trivially expands to CTTZ.
4138     Observer.changingInstr(MI);
4139     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4140     Observer.changedInstr(MI);
4141     return Legalized;
4142   }
4143   case TargetOpcode::G_CTTZ: {
4144     Register DstReg = MI.getOperand(0).getReg();
4145     Register SrcReg = MI.getOperand(1).getReg();
4146     LLT DstTy = MRI.getType(DstReg);
4147     LLT SrcTy = MRI.getType(SrcReg);
4148 
4149     unsigned Len = SrcTy.getSizeInBits();
4150     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4151       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4152       // zero.
4153       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4154       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4155       auto ICmp = MIRBuilder.buildICmp(
4156           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4157       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4158       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4159       MI.eraseFromParent();
4160       return Legalized;
4161     }
4162     // for now, we use: { return popcount(~x & (x - 1)); }
4163     // unless the target has ctlz but not ctpop, in which case we use:
4164     // { return 32 - nlz(~x & (x-1)); }
4165     // Ref: "Hacker's Delight" by Henry Warren
4166     auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
4167     auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1);
4168     auto MIBTmp = MIRBuilder.buildAnd(
4169         Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1));
4170     if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
4171         isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
4172       auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
4173       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4174                           MIRBuilder.buildCTLZ(Ty, MIBTmp));
4175       MI.eraseFromParent();
4176       return Legalized;
4177     }
4178     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4179     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4180     return Legalized;
4181   }
4182   case TargetOpcode::G_CTPOP: {
4183     unsigned Size = Ty.getSizeInBits();
4184     MachineIRBuilder &B = MIRBuilder;
4185 
4186     // Count set bits in blocks of 2 bits. Default approach would be
4187     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4188     // We use following formula instead:
4189     // B2Count = val - { (val >> 1) & 0x55555555 }
4190     // since it gives same result in blocks of 2 with one instruction less.
4191     auto C_1 = B.buildConstant(Ty, 1);
4192     auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1);
4193     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4194     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4195     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4196     auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi);
4197 
4198     // In order to get count in blocks of 4 add values from adjacent block of 2.
4199     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4200     auto C_2 = B.buildConstant(Ty, 2);
4201     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4202     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4203     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4204     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4205     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4206     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4207 
4208     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4209     // addition since count value sits in range {0,...,8} and 4 bits are enough
4210     // to hold such binary values. After addition high 4 bits still hold count
4211     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4212     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4213     auto C_4 = B.buildConstant(Ty, 4);
4214     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4215     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4216     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4217     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4218     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4219 
4220     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4221     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4222     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4223     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4224     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4225 
4226     // Shift count result from 8 high bits to low bits.
4227     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4228     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4229 
4230     MI.eraseFromParent();
4231     return Legalized;
4232   }
4233   }
4234 }
4235 
4236 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4237 // representation.
4238 LegalizerHelper::LegalizeResult
4239 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4240   Register Dst = MI.getOperand(0).getReg();
4241   Register Src = MI.getOperand(1).getReg();
4242   const LLT S64 = LLT::scalar(64);
4243   const LLT S32 = LLT::scalar(32);
4244   const LLT S1 = LLT::scalar(1);
4245 
4246   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
4247 
4248   // unsigned cul2f(ulong u) {
4249   //   uint lz = clz(u);
4250   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
4251   //   u = (u << lz) & 0x7fffffffffffffffUL;
4252   //   ulong t = u & 0xffffffffffUL;
4253   //   uint v = (e << 23) | (uint)(u >> 40);
4254   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
4255   //   return as_float(v + r);
4256   // }
4257 
4258   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
4259   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
4260 
4261   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
4262 
4263   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
4264   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
4265 
4266   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
4267   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
4268 
4269   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
4270   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
4271 
4272   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
4273 
4274   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
4275   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
4276 
4277   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
4278   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
4279   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
4280 
4281   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
4282   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
4283   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
4284   auto One = MIRBuilder.buildConstant(S32, 1);
4285 
4286   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
4287   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
4288   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
4289   MIRBuilder.buildAdd(Dst, V, R);
4290 
4291   return Legalized;
4292 }
4293 
4294 LegalizerHelper::LegalizeResult
4295 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4296   Register Dst = MI.getOperand(0).getReg();
4297   Register Src = MI.getOperand(1).getReg();
4298   LLT DstTy = MRI.getType(Dst);
4299   LLT SrcTy = MRI.getType(Src);
4300 
4301   if (SrcTy == LLT::scalar(1)) {
4302     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
4303     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4304     MIRBuilder.buildSelect(Dst, Src, True, False);
4305     MI.eraseFromParent();
4306     return Legalized;
4307   }
4308 
4309   if (SrcTy != LLT::scalar(64))
4310     return UnableToLegalize;
4311 
4312   if (DstTy == LLT::scalar(32)) {
4313     // TODO: SelectionDAG has several alternative expansions to port which may
4314     // be more reasonble depending on the available instructions. If a target
4315     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
4316     // intermediate type, this is probably worse.
4317     return lowerU64ToF32BitOps(MI);
4318   }
4319 
4320   return UnableToLegalize;
4321 }
4322 
4323 LegalizerHelper::LegalizeResult
4324 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4325   Register Dst = MI.getOperand(0).getReg();
4326   Register Src = MI.getOperand(1).getReg();
4327   LLT DstTy = MRI.getType(Dst);
4328   LLT SrcTy = MRI.getType(Src);
4329 
4330   const LLT S64 = LLT::scalar(64);
4331   const LLT S32 = LLT::scalar(32);
4332   const LLT S1 = LLT::scalar(1);
4333 
4334   if (SrcTy == S1) {
4335     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
4336     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4337     MIRBuilder.buildSelect(Dst, Src, True, False);
4338     MI.eraseFromParent();
4339     return Legalized;
4340   }
4341 
4342   if (SrcTy != S64)
4343     return UnableToLegalize;
4344 
4345   if (DstTy == S32) {
4346     // signed cl2f(long l) {
4347     //   long s = l >> 63;
4348     //   float r = cul2f((l + s) ^ s);
4349     //   return s ? -r : r;
4350     // }
4351     Register L = Src;
4352     auto SignBit = MIRBuilder.buildConstant(S64, 63);
4353     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
4354 
4355     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
4356     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
4357     auto R = MIRBuilder.buildUITOFP(S32, Xor);
4358 
4359     auto RNeg = MIRBuilder.buildFNeg(S32, R);
4360     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
4361                                             MIRBuilder.buildConstant(S64, 0));
4362     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
4363     return Legalized;
4364   }
4365 
4366   return UnableToLegalize;
4367 }
4368 
4369 LegalizerHelper::LegalizeResult
4370 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4371   Register Dst = MI.getOperand(0).getReg();
4372   Register Src = MI.getOperand(1).getReg();
4373   LLT DstTy = MRI.getType(Dst);
4374   LLT SrcTy = MRI.getType(Src);
4375   const LLT S64 = LLT::scalar(64);
4376   const LLT S32 = LLT::scalar(32);
4377 
4378   if (SrcTy != S64 && SrcTy != S32)
4379     return UnableToLegalize;
4380   if (DstTy != S32 && DstTy != S64)
4381     return UnableToLegalize;
4382 
4383   // FPTOSI gives same result as FPTOUI for positive signed integers.
4384   // FPTOUI needs to deal with fp values that convert to unsigned integers
4385   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
4386 
4387   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
4388   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
4389                                                 : APFloat::IEEEdouble(),
4390                     APInt::getNullValue(SrcTy.getSizeInBits()));
4391   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
4392 
4393   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
4394 
4395   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
4396   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
4397   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
4398   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
4399   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
4400   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
4401   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
4402 
4403   const LLT S1 = LLT::scalar(1);
4404 
4405   MachineInstrBuilder FCMP =
4406       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
4407   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
4408 
4409   MI.eraseFromParent();
4410   return Legalized;
4411 }
4412 
4413 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
4414   Register Dst = MI.getOperand(0).getReg();
4415   Register Src = MI.getOperand(1).getReg();
4416   LLT DstTy = MRI.getType(Dst);
4417   LLT SrcTy = MRI.getType(Src);
4418   const LLT S64 = LLT::scalar(64);
4419   const LLT S32 = LLT::scalar(32);
4420 
4421   // FIXME: Only f32 to i64 conversions are supported.
4422   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
4423     return UnableToLegalize;
4424 
4425   // Expand f32 -> i64 conversion
4426   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4427   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4428 
4429   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
4430 
4431   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
4432   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
4433 
4434   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
4435   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
4436 
4437   auto SignMask = MIRBuilder.buildConstant(SrcTy,
4438                                            APInt::getSignMask(SrcEltBits));
4439   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
4440   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
4441   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
4442   Sign = MIRBuilder.buildSExt(DstTy, Sign);
4443 
4444   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
4445   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
4446   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
4447 
4448   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
4449   R = MIRBuilder.buildZExt(DstTy, R);
4450 
4451   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
4452   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
4453   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
4454   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
4455 
4456   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
4457   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
4458 
4459   const LLT S1 = LLT::scalar(1);
4460   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
4461                                     S1, Exponent, ExponentLoBit);
4462 
4463   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
4464 
4465   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
4466   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
4467 
4468   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
4469 
4470   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
4471                                           S1, Exponent, ZeroSrcTy);
4472 
4473   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
4474   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
4475 
4476   MI.eraseFromParent();
4477   return Legalized;
4478 }
4479 
4480 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
4481 LegalizerHelper::LegalizeResult
4482 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
4483   Register Dst = MI.getOperand(0).getReg();
4484   Register Src = MI.getOperand(1).getReg();
4485 
4486   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
4487     return UnableToLegalize;
4488 
4489   const unsigned ExpMask = 0x7ff;
4490   const unsigned ExpBiasf64 = 1023;
4491   const unsigned ExpBiasf16 = 15;
4492   const LLT S32 = LLT::scalar(32);
4493   const LLT S1 = LLT::scalar(1);
4494 
4495   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
4496   Register U = Unmerge.getReg(0);
4497   Register UH = Unmerge.getReg(1);
4498 
4499   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
4500 
4501   // Subtract the fp64 exponent bias (1023) to get the real exponent and
4502   // add the f16 bias (15) to get the biased exponent for the f16 format.
4503   E = MIRBuilder.buildAdd(
4504     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
4505   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
4506 
4507   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
4508   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
4509 
4510   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
4511                                        MIRBuilder.buildConstant(S32, 0x1ff));
4512   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
4513 
4514   auto Zero = MIRBuilder.buildConstant(S32, 0);
4515   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
4516   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
4517   M = MIRBuilder.buildOr(S32, M, Lo40Set);
4518 
4519   // (M != 0 ? 0x0200 : 0) | 0x7c00;
4520   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
4521   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
4522   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
4523 
4524   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
4525   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
4526 
4527   // N = M | (E << 12);
4528   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
4529   auto N = MIRBuilder.buildOr(S32, M, EShl12);
4530 
4531   // B = clamp(1-E, 0, 13);
4532   auto One = MIRBuilder.buildConstant(S32, 1);
4533   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
4534   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
4535   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
4536 
4537   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
4538                                        MIRBuilder.buildConstant(S32, 0x1000));
4539 
4540   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
4541   auto D0 = MIRBuilder.buildShl(S32, D, B);
4542 
4543   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
4544                                              D0, SigSetHigh);
4545   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
4546   D = MIRBuilder.buildOr(S32, D, D1);
4547 
4548   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
4549   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
4550 
4551   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
4552   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
4553 
4554   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
4555                                        MIRBuilder.buildConstant(S32, 3));
4556   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
4557 
4558   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
4559                                        MIRBuilder.buildConstant(S32, 5));
4560   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
4561 
4562   V1 = MIRBuilder.buildOr(S32, V0, V1);
4563   V = MIRBuilder.buildAdd(S32, V, V1);
4564 
4565   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
4566                                        E, MIRBuilder.buildConstant(S32, 30));
4567   V = MIRBuilder.buildSelect(S32, CmpEGt30,
4568                              MIRBuilder.buildConstant(S32, 0x7c00), V);
4569 
4570   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
4571                                          E, MIRBuilder.buildConstant(S32, 1039));
4572   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
4573 
4574   // Extract the sign bit.
4575   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
4576   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
4577 
4578   // Insert the sign bit
4579   V = MIRBuilder.buildOr(S32, Sign, V);
4580 
4581   MIRBuilder.buildTrunc(Dst, V);
4582   MI.eraseFromParent();
4583   return Legalized;
4584 }
4585 
4586 LegalizerHelper::LegalizeResult
4587 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4588   Register Dst = MI.getOperand(0).getReg();
4589   Register Src = MI.getOperand(1).getReg();
4590 
4591   LLT DstTy = MRI.getType(Dst);
4592   LLT SrcTy = MRI.getType(Src);
4593   const LLT S64 = LLT::scalar(64);
4594   const LLT S16 = LLT::scalar(16);
4595 
4596   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
4597     return lowerFPTRUNC_F64_TO_F16(MI);
4598 
4599   return UnableToLegalize;
4600 }
4601 
4602 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
4603   switch (Opc) {
4604   case TargetOpcode::G_SMIN:
4605     return CmpInst::ICMP_SLT;
4606   case TargetOpcode::G_SMAX:
4607     return CmpInst::ICMP_SGT;
4608   case TargetOpcode::G_UMIN:
4609     return CmpInst::ICMP_ULT;
4610   case TargetOpcode::G_UMAX:
4611     return CmpInst::ICMP_UGT;
4612   default:
4613     llvm_unreachable("not in integer min/max");
4614   }
4615 }
4616 
4617 LegalizerHelper::LegalizeResult
4618 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4619   Register Dst = MI.getOperand(0).getReg();
4620   Register Src0 = MI.getOperand(1).getReg();
4621   Register Src1 = MI.getOperand(2).getReg();
4622 
4623   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
4624   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
4625 
4626   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
4627   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
4628 
4629   MI.eraseFromParent();
4630   return Legalized;
4631 }
4632 
4633 LegalizerHelper::LegalizeResult
4634 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4635   Register Dst = MI.getOperand(0).getReg();
4636   Register Src0 = MI.getOperand(1).getReg();
4637   Register Src1 = MI.getOperand(2).getReg();
4638 
4639   const LLT Src0Ty = MRI.getType(Src0);
4640   const LLT Src1Ty = MRI.getType(Src1);
4641 
4642   const int Src0Size = Src0Ty.getScalarSizeInBits();
4643   const int Src1Size = Src1Ty.getScalarSizeInBits();
4644 
4645   auto SignBitMask = MIRBuilder.buildConstant(
4646     Src0Ty, APInt::getSignMask(Src0Size));
4647 
4648   auto NotSignBitMask = MIRBuilder.buildConstant(
4649     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
4650 
4651   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
4652   MachineInstr *Or;
4653 
4654   if (Src0Ty == Src1Ty) {
4655     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask);
4656     Or = MIRBuilder.buildOr(Dst, And0, And1);
4657   } else if (Src0Size > Src1Size) {
4658     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
4659     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
4660     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
4661     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
4662     Or = MIRBuilder.buildOr(Dst, And0, And1);
4663   } else {
4664     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
4665     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
4666     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
4667     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
4668     Or = MIRBuilder.buildOr(Dst, And0, And1);
4669   }
4670 
4671   // Be careful about setting nsz/nnan/ninf on every instruction, since the
4672   // constants are a nan and -0.0, but the final result should preserve
4673   // everything.
4674   if (unsigned Flags = MI.getFlags())
4675     Or->setFlags(Flags);
4676 
4677   MI.eraseFromParent();
4678   return Legalized;
4679 }
4680 
4681 LegalizerHelper::LegalizeResult
4682 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
4683   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
4684     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
4685 
4686   Register Dst = MI.getOperand(0).getReg();
4687   Register Src0 = MI.getOperand(1).getReg();
4688   Register Src1 = MI.getOperand(2).getReg();
4689   LLT Ty = MRI.getType(Dst);
4690 
4691   if (!MI.getFlag(MachineInstr::FmNoNans)) {
4692     // Insert canonicalizes if it's possible we need to quiet to get correct
4693     // sNaN behavior.
4694 
4695     // Note this must be done here, and not as an optimization combine in the
4696     // absence of a dedicate quiet-snan instruction as we're using an
4697     // omni-purpose G_FCANONICALIZE.
4698     if (!isKnownNeverSNaN(Src0, MRI))
4699       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
4700 
4701     if (!isKnownNeverSNaN(Src1, MRI))
4702       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
4703   }
4704 
4705   // If there are no nans, it's safe to simply replace this with the non-IEEE
4706   // version.
4707   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
4708   MI.eraseFromParent();
4709   return Legalized;
4710 }
4711 
4712 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
4713   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
4714   Register DstReg = MI.getOperand(0).getReg();
4715   LLT Ty = MRI.getType(DstReg);
4716   unsigned Flags = MI.getFlags();
4717 
4718   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
4719                                   Flags);
4720   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
4721   MI.eraseFromParent();
4722   return Legalized;
4723 }
4724 
4725 LegalizerHelper::LegalizeResult
4726 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
4727   Register DstReg = MI.getOperand(0).getReg();
4728   Register X = MI.getOperand(1).getReg();
4729   const unsigned Flags = MI.getFlags();
4730   const LLT Ty = MRI.getType(DstReg);
4731   const LLT CondTy = Ty.changeElementSize(1);
4732 
4733   // round(x) =>
4734   //  t = trunc(x);
4735   //  d = fabs(x - t);
4736   //  o = copysign(1.0f, x);
4737   //  return t + (d >= 0.5 ? o : 0.0);
4738 
4739   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
4740 
4741   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
4742   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
4743   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4744   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
4745   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
4746   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
4747 
4748   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
4749                                   Flags);
4750   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
4751 
4752   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
4753 
4754   MI.eraseFromParent();
4755   return Legalized;
4756 }
4757 
4758 LegalizerHelper::LegalizeResult
4759 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
4760   Register DstReg = MI.getOperand(0).getReg();
4761   Register SrcReg = MI.getOperand(1).getReg();
4762   unsigned Flags = MI.getFlags();
4763   LLT Ty = MRI.getType(DstReg);
4764   const LLT CondTy = Ty.changeElementSize(1);
4765 
4766   // result = trunc(src);
4767   // if (src < 0.0 && src != result)
4768   //   result += -1.0.
4769 
4770   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
4771   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4772 
4773   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
4774                                   SrcReg, Zero, Flags);
4775   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
4776                                       SrcReg, Trunc, Flags);
4777   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
4778   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
4779 
4780   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
4781   MI.eraseFromParent();
4782   return Legalized;
4783 }
4784 
4785 LegalizerHelper::LegalizeResult
4786 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
4787   const unsigned NumDst = MI.getNumOperands() - 1;
4788   const Register SrcReg = MI.getOperand(NumDst).getReg();
4789   LLT SrcTy = MRI.getType(SrcReg);
4790 
4791   Register Dst0Reg = MI.getOperand(0).getReg();
4792   LLT DstTy = MRI.getType(Dst0Reg);
4793 
4794 
4795   // Expand scalarizing unmerge as bitcast to integer and shift.
4796   if (!DstTy.isVector() && SrcTy.isVector() &&
4797       SrcTy.getElementType() == DstTy) {
4798     LLT IntTy = LLT::scalar(SrcTy.getSizeInBits());
4799     Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0);
4800 
4801     MIRBuilder.buildTrunc(Dst0Reg, Cast);
4802 
4803     const unsigned DstSize = DstTy.getSizeInBits();
4804     unsigned Offset = DstSize;
4805     for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
4806       auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
4807       auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt);
4808       MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
4809     }
4810 
4811     MI.eraseFromParent();
4812     return Legalized;
4813   }
4814 
4815   return UnableToLegalize;
4816 }
4817 
4818 LegalizerHelper::LegalizeResult
4819 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
4820   Register DstReg = MI.getOperand(0).getReg();
4821   Register Src0Reg = MI.getOperand(1).getReg();
4822   Register Src1Reg = MI.getOperand(2).getReg();
4823   LLT Src0Ty = MRI.getType(Src0Reg);
4824   LLT DstTy = MRI.getType(DstReg);
4825   LLT IdxTy = LLT::scalar(32);
4826 
4827   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4828 
4829   if (DstTy.isScalar()) {
4830     if (Src0Ty.isVector())
4831       return UnableToLegalize;
4832 
4833     // This is just a SELECT.
4834     assert(Mask.size() == 1 && "Expected a single mask element");
4835     Register Val;
4836     if (Mask[0] < 0 || Mask[0] > 1)
4837       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
4838     else
4839       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
4840     MIRBuilder.buildCopy(DstReg, Val);
4841     MI.eraseFromParent();
4842     return Legalized;
4843   }
4844 
4845   Register Undef;
4846   SmallVector<Register, 32> BuildVec;
4847   LLT EltTy = DstTy.getElementType();
4848 
4849   for (int Idx : Mask) {
4850     if (Idx < 0) {
4851       if (!Undef.isValid())
4852         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
4853       BuildVec.push_back(Undef);
4854       continue;
4855     }
4856 
4857     if (Src0Ty.isScalar()) {
4858       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
4859     } else {
4860       int NumElts = Src0Ty.getNumElements();
4861       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
4862       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
4863       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
4864       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
4865       BuildVec.push_back(Extract.getReg(0));
4866     }
4867   }
4868 
4869   MIRBuilder.buildBuildVector(DstReg, BuildVec);
4870   MI.eraseFromParent();
4871   return Legalized;
4872 }
4873 
4874 LegalizerHelper::LegalizeResult
4875 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
4876   Register Dst = MI.getOperand(0).getReg();
4877   Register AllocSize = MI.getOperand(1).getReg();
4878   unsigned Align = MI.getOperand(2).getImm();
4879 
4880   const auto &MF = *MI.getMF();
4881   const auto &TLI = *MF.getSubtarget().getTargetLowering();
4882 
4883   LLT PtrTy = MRI.getType(Dst);
4884   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
4885 
4886   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
4887   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
4888   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
4889 
4890   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
4891   // have to generate an extra instruction to negate the alloc and then use
4892   // G_PTR_ADD to add the negative offset.
4893   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
4894   if (Align) {
4895     APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true);
4896     AlignMask.negate();
4897     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
4898     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
4899   }
4900 
4901   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
4902   MIRBuilder.buildCopy(SPReg, SPTmp);
4903   MIRBuilder.buildCopy(Dst, SPTmp);
4904 
4905   MI.eraseFromParent();
4906   return Legalized;
4907 }
4908 
4909 LegalizerHelper::LegalizeResult
4910 LegalizerHelper::lowerExtract(MachineInstr &MI) {
4911   Register Dst = MI.getOperand(0).getReg();
4912   Register Src = MI.getOperand(1).getReg();
4913   unsigned Offset = MI.getOperand(2).getImm();
4914 
4915   LLT DstTy = MRI.getType(Dst);
4916   LLT SrcTy = MRI.getType(Src);
4917 
4918   if (DstTy.isScalar() &&
4919       (SrcTy.isScalar() ||
4920        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
4921     LLT SrcIntTy = SrcTy;
4922     if (!SrcTy.isScalar()) {
4923       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
4924       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
4925     }
4926 
4927     if (Offset == 0)
4928       MIRBuilder.buildTrunc(Dst, Src);
4929     else {
4930       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
4931       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
4932       MIRBuilder.buildTrunc(Dst, Shr);
4933     }
4934 
4935     MI.eraseFromParent();
4936     return Legalized;
4937   }
4938 
4939   return UnableToLegalize;
4940 }
4941 
4942 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
4943   Register Dst = MI.getOperand(0).getReg();
4944   Register Src = MI.getOperand(1).getReg();
4945   Register InsertSrc = MI.getOperand(2).getReg();
4946   uint64_t Offset = MI.getOperand(3).getImm();
4947 
4948   LLT DstTy = MRI.getType(Src);
4949   LLT InsertTy = MRI.getType(InsertSrc);
4950 
4951   if (InsertTy.isVector() ||
4952       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
4953     return UnableToLegalize;
4954 
4955   const DataLayout &DL = MIRBuilder.getDataLayout();
4956   if ((DstTy.isPointer() &&
4957        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
4958       (InsertTy.isPointer() &&
4959        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
4960     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
4961     return UnableToLegalize;
4962   }
4963 
4964   LLT IntDstTy = DstTy;
4965 
4966   if (!DstTy.isScalar()) {
4967     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
4968     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
4969   }
4970 
4971   if (!InsertTy.isScalar()) {
4972     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
4973     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
4974   }
4975 
4976   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
4977   if (Offset != 0) {
4978     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
4979     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
4980   }
4981 
4982   APInt MaskVal = APInt::getBitsSetWithWrap(
4983       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
4984 
4985   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
4986   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
4987   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
4988 
4989   MIRBuilder.buildCast(Dst, Or);
4990   MI.eraseFromParent();
4991   return Legalized;
4992 }
4993 
4994 LegalizerHelper::LegalizeResult
4995 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
4996   Register Dst0 = MI.getOperand(0).getReg();
4997   Register Dst1 = MI.getOperand(1).getReg();
4998   Register LHS = MI.getOperand(2).getReg();
4999   Register RHS = MI.getOperand(3).getReg();
5000   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5001 
5002   LLT Ty = MRI.getType(Dst0);
5003   LLT BoolTy = MRI.getType(Dst1);
5004 
5005   if (IsAdd)
5006     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5007   else
5008     MIRBuilder.buildSub(Dst0, LHS, RHS);
5009 
5010   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5011 
5012   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5013 
5014   // For an addition, the result should be less than one of the operands (LHS)
5015   // if and only if the other operand (RHS) is negative, otherwise there will
5016   // be overflow.
5017   // For a subtraction, the result should be less than one of the operands
5018   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5019   // otherwise there will be overflow.
5020   auto ResultLowerThanLHS =
5021       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5022   auto ConditionRHS = MIRBuilder.buildICmp(
5023       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5024 
5025   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5026   MI.eraseFromParent();
5027   return Legalized;
5028 }
5029 
5030 LegalizerHelper::LegalizeResult
5031 LegalizerHelper::lowerBswap(MachineInstr &MI) {
5032   Register Dst = MI.getOperand(0).getReg();
5033   Register Src = MI.getOperand(1).getReg();
5034   const LLT Ty = MRI.getType(Src);
5035   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
5036   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
5037 
5038   // Swap most and least significant byte, set remaining bytes in Res to zero.
5039   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
5040   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
5041   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5042   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
5043 
5044   // Set i-th high/low byte in Res to i-th low/high byte from Src.
5045   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
5046     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
5047     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
5048     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
5049     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
5050     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
5051     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
5052     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
5053     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
5054     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
5055     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5056     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
5057     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
5058   }
5059   Res.getInstr()->getOperand(0).setReg(Dst);
5060 
5061   MI.eraseFromParent();
5062   return Legalized;
5063 }
5064 
5065 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
5066 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
5067                                  MachineInstrBuilder Src, APInt Mask) {
5068   const LLT Ty = Dst.getLLTTy(*B.getMRI());
5069   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
5070   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
5071   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
5072   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
5073   return B.buildOr(Dst, LHS, RHS);
5074 }
5075 
5076 LegalizerHelper::LegalizeResult
5077 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
5078   Register Dst = MI.getOperand(0).getReg();
5079   Register Src = MI.getOperand(1).getReg();
5080   const LLT Ty = MRI.getType(Src);
5081   unsigned Size = Ty.getSizeInBits();
5082 
5083   MachineInstrBuilder BSWAP =
5084       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
5085 
5086   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
5087   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
5088   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
5089   MachineInstrBuilder Swap4 =
5090       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
5091 
5092   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
5093   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
5094   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
5095   MachineInstrBuilder Swap2 =
5096       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
5097 
5098   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
5099   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
5100   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
5101   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
5102 
5103   MI.eraseFromParent();
5104   return Legalized;
5105 }
5106 
5107 LegalizerHelper::LegalizeResult
5108 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
5109   MachineFunction &MF = MIRBuilder.getMF();
5110   const TargetSubtargetInfo &STI = MF.getSubtarget();
5111   const TargetLowering *TLI = STI.getTargetLowering();
5112 
5113   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
5114   int NameOpIdx = IsRead ? 1 : 0;
5115   int ValRegIndex = IsRead ? 0 : 1;
5116 
5117   Register ValReg = MI.getOperand(ValRegIndex).getReg();
5118   const LLT Ty = MRI.getType(ValReg);
5119   const MDString *RegStr = cast<MDString>(
5120     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
5121 
5122   Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF);
5123   if (!PhysReg.isValid())
5124     return UnableToLegalize;
5125 
5126   if (IsRead)
5127     MIRBuilder.buildCopy(ValReg, PhysReg);
5128   else
5129     MIRBuilder.buildCopy(PhysReg, ValReg);
5130 
5131   MI.eraseFromParent();
5132   return Legalized;
5133 }
5134