1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
21 #include "llvm/CodeGen/GlobalISel/Utils.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/TargetFrameLowering.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetOpcodes.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/raw_ostream.h"
32 
33 #define DEBUG_TYPE "legalizer"
34 
35 using namespace llvm;
36 using namespace LegalizeActions;
37 using namespace MIPatternMatch;
38 
39 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
40 ///
41 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
42 /// with any leftover piece as type \p LeftoverTy
43 ///
44 /// Returns -1 in the first element of the pair if the breakdown is not
45 /// satisfiable.
46 static std::pair<int, int>
47 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
48   assert(!LeftoverTy.isValid() && "this is an out argument");
49 
50   unsigned Size = OrigTy.getSizeInBits();
51   unsigned NarrowSize = NarrowTy.getSizeInBits();
52   unsigned NumParts = Size / NarrowSize;
53   unsigned LeftoverSize = Size - NumParts * NarrowSize;
54   assert(Size > NarrowSize);
55 
56   if (LeftoverSize == 0)
57     return {NumParts, 0};
58 
59   if (NarrowTy.isVector()) {
60     unsigned EltSize = OrigTy.getScalarSizeInBits();
61     if (LeftoverSize % EltSize != 0)
62       return {-1, -1};
63     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
64   } else {
65     LeftoverTy = LLT::scalar(LeftoverSize);
66   }
67 
68   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
69   return std::make_pair(NumParts, NumLeftover);
70 }
71 
72 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
73 
74   if (!Ty.isScalar())
75     return nullptr;
76 
77   switch (Ty.getSizeInBits()) {
78   case 16:
79     return Type::getHalfTy(Ctx);
80   case 32:
81     return Type::getFloatTy(Ctx);
82   case 64:
83     return Type::getDoubleTy(Ctx);
84   case 80:
85     return Type::getX86_FP80Ty(Ctx);
86   case 128:
87     return Type::getFP128Ty(Ctx);
88   default:
89     return nullptr;
90   }
91 }
92 
93 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
94                                  GISelChangeObserver &Observer,
95                                  MachineIRBuilder &Builder)
96     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
97       LI(*MF.getSubtarget().getLegalizerInfo()),
98       TLI(*MF.getSubtarget().getTargetLowering()) { }
99 
100 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
101                                  GISelChangeObserver &Observer,
102                                  MachineIRBuilder &B)
103   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
104     TLI(*MF.getSubtarget().getTargetLowering()) { }
105 
106 LegalizerHelper::LegalizeResult
107 LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
108                                    LostDebugLocObserver &LocObserver) {
109   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
110 
111   MIRBuilder.setInstrAndDebugLoc(MI);
112 
113   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
114       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
115     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
116   auto Step = LI.getAction(MI, MRI);
117   switch (Step.Action) {
118   case Legal:
119     LLVM_DEBUG(dbgs() << ".. Already legal\n");
120     return AlreadyLegal;
121   case Libcall:
122     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
123     return libcall(MI, LocObserver);
124   case NarrowScalar:
125     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
126     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
127   case WidenScalar:
128     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
129     return widenScalar(MI, Step.TypeIdx, Step.NewType);
130   case Bitcast:
131     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
132     return bitcast(MI, Step.TypeIdx, Step.NewType);
133   case Lower:
134     LLVM_DEBUG(dbgs() << ".. Lower\n");
135     return lower(MI, Step.TypeIdx, Step.NewType);
136   case FewerElements:
137     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
138     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
139   case MoreElements:
140     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
141     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
142   case Custom:
143     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
144     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
145   default:
146     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
147     return UnableToLegalize;
148   }
149 }
150 
151 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
152                                    SmallVectorImpl<Register> &VRegs) {
153   for (int i = 0; i < NumParts; ++i)
154     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
155   MIRBuilder.buildUnmerge(VRegs, Reg);
156 }
157 
158 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
159                                    LLT MainTy, LLT &LeftoverTy,
160                                    SmallVectorImpl<Register> &VRegs,
161                                    SmallVectorImpl<Register> &LeftoverRegs) {
162   assert(!LeftoverTy.isValid() && "this is an out argument");
163 
164   unsigned RegSize = RegTy.getSizeInBits();
165   unsigned MainSize = MainTy.getSizeInBits();
166   unsigned NumParts = RegSize / MainSize;
167   unsigned LeftoverSize = RegSize - NumParts * MainSize;
168 
169   // Use an unmerge when possible.
170   if (LeftoverSize == 0) {
171     for (unsigned I = 0; I < NumParts; ++I)
172       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
173     MIRBuilder.buildUnmerge(VRegs, Reg);
174     return true;
175   }
176 
177   if (MainTy.isVector()) {
178     unsigned EltSize = MainTy.getScalarSizeInBits();
179     if (LeftoverSize % EltSize != 0)
180       return false;
181     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
182   } else {
183     LeftoverTy = LLT::scalar(LeftoverSize);
184   }
185 
186   // For irregular sizes, extract the individual parts.
187   for (unsigned I = 0; I != NumParts; ++I) {
188     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
189     VRegs.push_back(NewReg);
190     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
191   }
192 
193   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
194        Offset += LeftoverSize) {
195     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
196     LeftoverRegs.push_back(NewReg);
197     MIRBuilder.buildExtract(NewReg, Reg, Offset);
198   }
199 
200   return true;
201 }
202 
203 void LegalizerHelper::insertParts(Register DstReg,
204                                   LLT ResultTy, LLT PartTy,
205                                   ArrayRef<Register> PartRegs,
206                                   LLT LeftoverTy,
207                                   ArrayRef<Register> LeftoverRegs) {
208   if (!LeftoverTy.isValid()) {
209     assert(LeftoverRegs.empty());
210 
211     if (!ResultTy.isVector()) {
212       MIRBuilder.buildMerge(DstReg, PartRegs);
213       return;
214     }
215 
216     if (PartTy.isVector())
217       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
218     else
219       MIRBuilder.buildBuildVector(DstReg, PartRegs);
220     return;
221   }
222 
223   SmallVector<Register> GCDRegs;
224   LLT GCDTy;
225   for (Register PartReg : PartRegs)
226     GCDTy = extractGCDType(GCDRegs, ResultTy, LeftoverTy, PartReg);
227 
228   for (Register PartReg : LeftoverRegs)
229     extractGCDType(GCDRegs, ResultTy, LeftoverTy, PartReg);
230 
231   LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs);
232   buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs);
233 }
234 
235 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
236 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
237                               const MachineInstr &MI) {
238   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
239 
240   const int StartIdx = Regs.size();
241   const int NumResults = MI.getNumOperands() - 1;
242   Regs.resize(Regs.size() + NumResults);
243   for (int I = 0; I != NumResults; ++I)
244     Regs[StartIdx + I] = MI.getOperand(I).getReg();
245 }
246 
247 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
248                                      LLT GCDTy, Register SrcReg) {
249   LLT SrcTy = MRI.getType(SrcReg);
250   if (SrcTy == GCDTy) {
251     // If the source already evenly divides the result type, we don't need to do
252     // anything.
253     Parts.push_back(SrcReg);
254   } else {
255     // Need to split into common type sized pieces.
256     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
257     getUnmergeResults(Parts, *Unmerge);
258   }
259 }
260 
261 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
262                                     LLT NarrowTy, Register SrcReg) {
263   LLT SrcTy = MRI.getType(SrcReg);
264   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
265   extractGCDType(Parts, GCDTy, SrcReg);
266   return GCDTy;
267 }
268 
269 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
270                                          SmallVectorImpl<Register> &VRegs,
271                                          unsigned PadStrategy) {
272   LLT LCMTy = getLCMType(DstTy, NarrowTy);
273 
274   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
275   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
276   int NumOrigSrc = VRegs.size();
277 
278   Register PadReg;
279 
280   // Get a value we can use to pad the source value if the sources won't evenly
281   // cover the result type.
282   if (NumOrigSrc < NumParts * NumSubParts) {
283     if (PadStrategy == TargetOpcode::G_ZEXT)
284       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
285     else if (PadStrategy == TargetOpcode::G_ANYEXT)
286       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
287     else {
288       assert(PadStrategy == TargetOpcode::G_SEXT);
289 
290       // Shift the sign bit of the low register through the high register.
291       auto ShiftAmt =
292         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
293       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
294     }
295   }
296 
297   // Registers for the final merge to be produced.
298   SmallVector<Register, 4> Remerge(NumParts);
299 
300   // Registers needed for intermediate merges, which will be merged into a
301   // source for Remerge.
302   SmallVector<Register, 4> SubMerge(NumSubParts);
303 
304   // Once we've fully read off the end of the original source bits, we can reuse
305   // the same high bits for remaining padding elements.
306   Register AllPadReg;
307 
308   // Build merges to the LCM type to cover the original result type.
309   for (int I = 0; I != NumParts; ++I) {
310     bool AllMergePartsArePadding = true;
311 
312     // Build the requested merges to the requested type.
313     for (int J = 0; J != NumSubParts; ++J) {
314       int Idx = I * NumSubParts + J;
315       if (Idx >= NumOrigSrc) {
316         SubMerge[J] = PadReg;
317         continue;
318       }
319 
320       SubMerge[J] = VRegs[Idx];
321 
322       // There are meaningful bits here we can't reuse later.
323       AllMergePartsArePadding = false;
324     }
325 
326     // If we've filled up a complete piece with padding bits, we can directly
327     // emit the natural sized constant if applicable, rather than a merge of
328     // smaller constants.
329     if (AllMergePartsArePadding && !AllPadReg) {
330       if (PadStrategy == TargetOpcode::G_ANYEXT)
331         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
332       else if (PadStrategy == TargetOpcode::G_ZEXT)
333         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
334 
335       // If this is a sign extension, we can't materialize a trivial constant
336       // with the right type and have to produce a merge.
337     }
338 
339     if (AllPadReg) {
340       // Avoid creating additional instructions if we're just adding additional
341       // copies of padding bits.
342       Remerge[I] = AllPadReg;
343       continue;
344     }
345 
346     if (NumSubParts == 1)
347       Remerge[I] = SubMerge[0];
348     else
349       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
350 
351     // In the sign extend padding case, re-use the first all-signbit merge.
352     if (AllMergePartsArePadding && !AllPadReg)
353       AllPadReg = Remerge[I];
354   }
355 
356   VRegs = std::move(Remerge);
357   return LCMTy;
358 }
359 
360 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
361                                                ArrayRef<Register> RemergeRegs) {
362   LLT DstTy = MRI.getType(DstReg);
363 
364   // Create the merge to the widened source, and extract the relevant bits into
365   // the result.
366 
367   if (DstTy == LCMTy) {
368     MIRBuilder.buildMerge(DstReg, RemergeRegs);
369     return;
370   }
371 
372   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
373   if (DstTy.isScalar() && LCMTy.isScalar()) {
374     MIRBuilder.buildTrunc(DstReg, Remerge);
375     return;
376   }
377 
378   if (LCMTy.isVector()) {
379     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
380     SmallVector<Register, 8> UnmergeDefs(NumDefs);
381     UnmergeDefs[0] = DstReg;
382     for (unsigned I = 1; I != NumDefs; ++I)
383       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
384 
385     MIRBuilder.buildUnmerge(UnmergeDefs,
386                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
387     return;
388   }
389 
390   llvm_unreachable("unhandled case");
391 }
392 
393 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
394 #define RTLIBCASE_INT(LibcallPrefix)                                           \
395   do {                                                                         \
396     switch (Size) {                                                            \
397     case 32:                                                                   \
398       return RTLIB::LibcallPrefix##32;                                         \
399     case 64:                                                                   \
400       return RTLIB::LibcallPrefix##64;                                         \
401     case 128:                                                                  \
402       return RTLIB::LibcallPrefix##128;                                        \
403     default:                                                                   \
404       llvm_unreachable("unexpected size");                                     \
405     }                                                                          \
406   } while (0)
407 
408 #define RTLIBCASE(LibcallPrefix)                                               \
409   do {                                                                         \
410     switch (Size) {                                                            \
411     case 32:                                                                   \
412       return RTLIB::LibcallPrefix##32;                                         \
413     case 64:                                                                   \
414       return RTLIB::LibcallPrefix##64;                                         \
415     case 80:                                                                   \
416       return RTLIB::LibcallPrefix##80;                                         \
417     case 128:                                                                  \
418       return RTLIB::LibcallPrefix##128;                                        \
419     default:                                                                   \
420       llvm_unreachable("unexpected size");                                     \
421     }                                                                          \
422   } while (0)
423 
424   switch (Opcode) {
425   case TargetOpcode::G_SDIV:
426     RTLIBCASE_INT(SDIV_I);
427   case TargetOpcode::G_UDIV:
428     RTLIBCASE_INT(UDIV_I);
429   case TargetOpcode::G_SREM:
430     RTLIBCASE_INT(SREM_I);
431   case TargetOpcode::G_UREM:
432     RTLIBCASE_INT(UREM_I);
433   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
434     RTLIBCASE_INT(CTLZ_I);
435   case TargetOpcode::G_FADD:
436     RTLIBCASE(ADD_F);
437   case TargetOpcode::G_FSUB:
438     RTLIBCASE(SUB_F);
439   case TargetOpcode::G_FMUL:
440     RTLIBCASE(MUL_F);
441   case TargetOpcode::G_FDIV:
442     RTLIBCASE(DIV_F);
443   case TargetOpcode::G_FEXP:
444     RTLIBCASE(EXP_F);
445   case TargetOpcode::G_FEXP2:
446     RTLIBCASE(EXP2_F);
447   case TargetOpcode::G_FREM:
448     RTLIBCASE(REM_F);
449   case TargetOpcode::G_FPOW:
450     RTLIBCASE(POW_F);
451   case TargetOpcode::G_FMA:
452     RTLIBCASE(FMA_F);
453   case TargetOpcode::G_FSIN:
454     RTLIBCASE(SIN_F);
455   case TargetOpcode::G_FCOS:
456     RTLIBCASE(COS_F);
457   case TargetOpcode::G_FLOG10:
458     RTLIBCASE(LOG10_F);
459   case TargetOpcode::G_FLOG:
460     RTLIBCASE(LOG_F);
461   case TargetOpcode::G_FLOG2:
462     RTLIBCASE(LOG2_F);
463   case TargetOpcode::G_FCEIL:
464     RTLIBCASE(CEIL_F);
465   case TargetOpcode::G_FFLOOR:
466     RTLIBCASE(FLOOR_F);
467   case TargetOpcode::G_FMINNUM:
468     RTLIBCASE(FMIN_F);
469   case TargetOpcode::G_FMAXNUM:
470     RTLIBCASE(FMAX_F);
471   case TargetOpcode::G_FSQRT:
472     RTLIBCASE(SQRT_F);
473   case TargetOpcode::G_FRINT:
474     RTLIBCASE(RINT_F);
475   case TargetOpcode::G_FNEARBYINT:
476     RTLIBCASE(NEARBYINT_F);
477   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
478     RTLIBCASE(ROUNDEVEN_F);
479   }
480   llvm_unreachable("Unknown libcall function");
481 }
482 
483 /// True if an instruction is in tail position in its caller. Intended for
484 /// legalizing libcalls as tail calls when possible.
485 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
486                                     MachineInstr &MI) {
487   MachineBasicBlock &MBB = *MI.getParent();
488   const Function &F = MBB.getParent()->getFunction();
489 
490   // Conservatively require the attributes of the call to match those of
491   // the return. Ignore NoAlias and NonNull because they don't affect the
492   // call sequence.
493   AttributeList CallerAttrs = F.getAttributes();
494   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
495           .removeAttribute(Attribute::NoAlias)
496           .removeAttribute(Attribute::NonNull)
497           .hasAttributes())
498     return false;
499 
500   // It's not safe to eliminate the sign / zero extension of the return value.
501   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
502       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
503     return false;
504 
505   // Only tail call if the following instruction is a standard return.
506   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
507   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
508     return false;
509 
510   return true;
511 }
512 
513 LegalizerHelper::LegalizeResult
514 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
515                     const CallLowering::ArgInfo &Result,
516                     ArrayRef<CallLowering::ArgInfo> Args,
517                     const CallingConv::ID CC) {
518   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
519 
520   CallLowering::CallLoweringInfo Info;
521   Info.CallConv = CC;
522   Info.Callee = MachineOperand::CreateES(Name);
523   Info.OrigRet = Result;
524   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
525   if (!CLI.lowerCall(MIRBuilder, Info))
526     return LegalizerHelper::UnableToLegalize;
527 
528   return LegalizerHelper::Legalized;
529 }
530 
531 LegalizerHelper::LegalizeResult
532 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
533                     const CallLowering::ArgInfo &Result,
534                     ArrayRef<CallLowering::ArgInfo> Args) {
535   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
536   const char *Name = TLI.getLibcallName(Libcall);
537   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
538   return createLibcall(MIRBuilder, Name, Result, Args, CC);
539 }
540 
541 // Useful for libcalls where all operands have the same type.
542 static LegalizerHelper::LegalizeResult
543 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
544               Type *OpType) {
545   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
546 
547   SmallVector<CallLowering::ArgInfo, 3> Args;
548   for (unsigned i = 1; i < MI.getNumOperands(); i++)
549     Args.push_back({MI.getOperand(i).getReg(), OpType});
550   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
551                        Args);
552 }
553 
554 LegalizerHelper::LegalizeResult
555 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
556                        MachineInstr &MI, LostDebugLocObserver &LocObserver) {
557   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
558 
559   SmallVector<CallLowering::ArgInfo, 3> Args;
560   // Add all the args, except for the last which is an imm denoting 'tail'.
561   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
562     Register Reg = MI.getOperand(i).getReg();
563 
564     // Need derive an IR type for call lowering.
565     LLT OpLLT = MRI.getType(Reg);
566     Type *OpTy = nullptr;
567     if (OpLLT.isPointer())
568       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
569     else
570       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
571     Args.push_back({Reg, OpTy});
572   }
573 
574   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
575   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
576   RTLIB::Libcall RTLibcall;
577   unsigned Opc = MI.getOpcode();
578   switch (Opc) {
579   case TargetOpcode::G_BZERO:
580     RTLibcall = RTLIB::BZERO;
581     break;
582   case TargetOpcode::G_MEMCPY:
583     RTLibcall = RTLIB::MEMCPY;
584     break;
585   case TargetOpcode::G_MEMMOVE:
586     RTLibcall = RTLIB::MEMMOVE;
587     break;
588   case TargetOpcode::G_MEMSET:
589     RTLibcall = RTLIB::MEMSET;
590     break;
591   default:
592     return LegalizerHelper::UnableToLegalize;
593   }
594   const char *Name = TLI.getLibcallName(RTLibcall);
595 
596   // Unsupported libcall on the target.
597   if (!Name) {
598     LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
599                       << MIRBuilder.getTII().getName(Opc) << "\n");
600     return LegalizerHelper::UnableToLegalize;
601   }
602 
603   CallLowering::CallLoweringInfo Info;
604   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
605   Info.Callee = MachineOperand::CreateES(Name);
606   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
607   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
608                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
609 
610   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
611   if (!CLI.lowerCall(MIRBuilder, Info))
612     return LegalizerHelper::UnableToLegalize;
613 
614 
615   if (Info.LoweredTailCall) {
616     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
617 
618     // Check debug locations before removing the return.
619     LocObserver.checkpoint(true);
620 
621     // We must have a return following the call (or debug insts) to get past
622     // isLibCallInTailPosition.
623     do {
624       MachineInstr *Next = MI.getNextNode();
625       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
626              "Expected instr following MI to be return or debug inst?");
627       // We lowered a tail call, so the call is now the return from the block.
628       // Delete the old return.
629       Next->eraseFromParent();
630     } while (MI.getNextNode());
631 
632     // We expect to lose the debug location from the return.
633     LocObserver.checkpoint(false);
634   }
635 
636   return LegalizerHelper::Legalized;
637 }
638 
639 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
640                                        Type *FromType) {
641   auto ToMVT = MVT::getVT(ToType);
642   auto FromMVT = MVT::getVT(FromType);
643 
644   switch (Opcode) {
645   case TargetOpcode::G_FPEXT:
646     return RTLIB::getFPEXT(FromMVT, ToMVT);
647   case TargetOpcode::G_FPTRUNC:
648     return RTLIB::getFPROUND(FromMVT, ToMVT);
649   case TargetOpcode::G_FPTOSI:
650     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
651   case TargetOpcode::G_FPTOUI:
652     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
653   case TargetOpcode::G_SITOFP:
654     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
655   case TargetOpcode::G_UITOFP:
656     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
657   }
658   llvm_unreachable("Unsupported libcall function");
659 }
660 
661 static LegalizerHelper::LegalizeResult
662 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
663                   Type *FromType) {
664   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
665   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
666                        {{MI.getOperand(1).getReg(), FromType}});
667 }
668 
669 LegalizerHelper::LegalizeResult
670 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) {
671   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
672   unsigned Size = LLTy.getSizeInBits();
673   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
674 
675   switch (MI.getOpcode()) {
676   default:
677     return UnableToLegalize;
678   case TargetOpcode::G_SDIV:
679   case TargetOpcode::G_UDIV:
680   case TargetOpcode::G_SREM:
681   case TargetOpcode::G_UREM:
682   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
683     Type *HLTy = IntegerType::get(Ctx, Size);
684     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
685     if (Status != Legalized)
686       return Status;
687     break;
688   }
689   case TargetOpcode::G_FADD:
690   case TargetOpcode::G_FSUB:
691   case TargetOpcode::G_FMUL:
692   case TargetOpcode::G_FDIV:
693   case TargetOpcode::G_FMA:
694   case TargetOpcode::G_FPOW:
695   case TargetOpcode::G_FREM:
696   case TargetOpcode::G_FCOS:
697   case TargetOpcode::G_FSIN:
698   case TargetOpcode::G_FLOG10:
699   case TargetOpcode::G_FLOG:
700   case TargetOpcode::G_FLOG2:
701   case TargetOpcode::G_FEXP:
702   case TargetOpcode::G_FEXP2:
703   case TargetOpcode::G_FCEIL:
704   case TargetOpcode::G_FFLOOR:
705   case TargetOpcode::G_FMINNUM:
706   case TargetOpcode::G_FMAXNUM:
707   case TargetOpcode::G_FSQRT:
708   case TargetOpcode::G_FRINT:
709   case TargetOpcode::G_FNEARBYINT:
710   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
711     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
712     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
713       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
714       return UnableToLegalize;
715     }
716     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
717     if (Status != Legalized)
718       return Status;
719     break;
720   }
721   case TargetOpcode::G_FPEXT:
722   case TargetOpcode::G_FPTRUNC: {
723     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
724     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
725     if (!FromTy || !ToTy)
726       return UnableToLegalize;
727     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
728     if (Status != Legalized)
729       return Status;
730     break;
731   }
732   case TargetOpcode::G_FPTOSI:
733   case TargetOpcode::G_FPTOUI: {
734     // FIXME: Support other types
735     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
736     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
737     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
738       return UnableToLegalize;
739     LegalizeResult Status = conversionLibcall(
740         MI, MIRBuilder,
741         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
742         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
743     if (Status != Legalized)
744       return Status;
745     break;
746   }
747   case TargetOpcode::G_SITOFP:
748   case TargetOpcode::G_UITOFP: {
749     // FIXME: Support other types
750     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
751     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
752     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
753       return UnableToLegalize;
754     LegalizeResult Status = conversionLibcall(
755         MI, MIRBuilder,
756         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
757         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
758     if (Status != Legalized)
759       return Status;
760     break;
761   }
762   case TargetOpcode::G_BZERO:
763   case TargetOpcode::G_MEMCPY:
764   case TargetOpcode::G_MEMMOVE:
765   case TargetOpcode::G_MEMSET: {
766     LegalizeResult Result =
767         createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver);
768     if (Result != Legalized)
769       return Result;
770     MI.eraseFromParent();
771     return Result;
772   }
773   }
774 
775   MI.eraseFromParent();
776   return Legalized;
777 }
778 
779 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
780                                                               unsigned TypeIdx,
781                                                               LLT NarrowTy) {
782   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
783   uint64_t NarrowSize = NarrowTy.getSizeInBits();
784 
785   switch (MI.getOpcode()) {
786   default:
787     return UnableToLegalize;
788   case TargetOpcode::G_IMPLICIT_DEF: {
789     Register DstReg = MI.getOperand(0).getReg();
790     LLT DstTy = MRI.getType(DstReg);
791 
792     // If SizeOp0 is not an exact multiple of NarrowSize, emit
793     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
794     // FIXME: Although this would also be legal for the general case, it causes
795     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
796     //  combines not being hit). This seems to be a problem related to the
797     //  artifact combiner.
798     if (SizeOp0 % NarrowSize != 0) {
799       LLT ImplicitTy = NarrowTy;
800       if (DstTy.isVector())
801         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
802 
803       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
804       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
805 
806       MI.eraseFromParent();
807       return Legalized;
808     }
809 
810     int NumParts = SizeOp0 / NarrowSize;
811 
812     SmallVector<Register, 2> DstRegs;
813     for (int i = 0; i < NumParts; ++i)
814       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
815 
816     if (DstTy.isVector())
817       MIRBuilder.buildBuildVector(DstReg, DstRegs);
818     else
819       MIRBuilder.buildMerge(DstReg, DstRegs);
820     MI.eraseFromParent();
821     return Legalized;
822   }
823   case TargetOpcode::G_CONSTANT: {
824     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
825     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
826     unsigned TotalSize = Ty.getSizeInBits();
827     unsigned NarrowSize = NarrowTy.getSizeInBits();
828     int NumParts = TotalSize / NarrowSize;
829 
830     SmallVector<Register, 4> PartRegs;
831     for (int I = 0; I != NumParts; ++I) {
832       unsigned Offset = I * NarrowSize;
833       auto K = MIRBuilder.buildConstant(NarrowTy,
834                                         Val.lshr(Offset).trunc(NarrowSize));
835       PartRegs.push_back(K.getReg(0));
836     }
837 
838     LLT LeftoverTy;
839     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
840     SmallVector<Register, 1> LeftoverRegs;
841     if (LeftoverBits != 0) {
842       LeftoverTy = LLT::scalar(LeftoverBits);
843       auto K = MIRBuilder.buildConstant(
844         LeftoverTy,
845         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
846       LeftoverRegs.push_back(K.getReg(0));
847     }
848 
849     insertParts(MI.getOperand(0).getReg(),
850                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
851 
852     MI.eraseFromParent();
853     return Legalized;
854   }
855   case TargetOpcode::G_SEXT:
856   case TargetOpcode::G_ZEXT:
857   case TargetOpcode::G_ANYEXT:
858     return narrowScalarExt(MI, TypeIdx, NarrowTy);
859   case TargetOpcode::G_TRUNC: {
860     if (TypeIdx != 1)
861       return UnableToLegalize;
862 
863     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
864     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
865       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
866       return UnableToLegalize;
867     }
868 
869     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
870     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
871     MI.eraseFromParent();
872     return Legalized;
873   }
874 
875   case TargetOpcode::G_FREEZE:
876     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
877   case TargetOpcode::G_ADD:
878   case TargetOpcode::G_SUB:
879   case TargetOpcode::G_SADDO:
880   case TargetOpcode::G_SSUBO:
881   case TargetOpcode::G_SADDE:
882   case TargetOpcode::G_SSUBE:
883   case TargetOpcode::G_UADDO:
884   case TargetOpcode::G_USUBO:
885   case TargetOpcode::G_UADDE:
886   case TargetOpcode::G_USUBE:
887     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
888   case TargetOpcode::G_MUL:
889   case TargetOpcode::G_UMULH:
890     return narrowScalarMul(MI, NarrowTy);
891   case TargetOpcode::G_EXTRACT:
892     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
893   case TargetOpcode::G_INSERT:
894     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
895   case TargetOpcode::G_LOAD: {
896     auto &MMO = **MI.memoperands_begin();
897     Register DstReg = MI.getOperand(0).getReg();
898     LLT DstTy = MRI.getType(DstReg);
899     if (DstTy.isVector())
900       return UnableToLegalize;
901 
902     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
903       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
904       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
905       MIRBuilder.buildAnyExt(DstReg, TmpReg);
906       MI.eraseFromParent();
907       return Legalized;
908     }
909 
910     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
911   }
912   case TargetOpcode::G_ZEXTLOAD:
913   case TargetOpcode::G_SEXTLOAD: {
914     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
915     Register DstReg = MI.getOperand(0).getReg();
916     Register PtrReg = MI.getOperand(1).getReg();
917 
918     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
919     auto &MMO = **MI.memoperands_begin();
920     unsigned MemSize = MMO.getSizeInBits();
921 
922     if (MemSize == NarrowSize) {
923       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
924     } else if (MemSize < NarrowSize) {
925       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
926     } else if (MemSize > NarrowSize) {
927       // FIXME: Need to split the load.
928       return UnableToLegalize;
929     }
930 
931     if (ZExt)
932       MIRBuilder.buildZExt(DstReg, TmpReg);
933     else
934       MIRBuilder.buildSExt(DstReg, TmpReg);
935 
936     MI.eraseFromParent();
937     return Legalized;
938   }
939   case TargetOpcode::G_STORE: {
940     const auto &MMO = **MI.memoperands_begin();
941 
942     Register SrcReg = MI.getOperand(0).getReg();
943     LLT SrcTy = MRI.getType(SrcReg);
944     if (SrcTy.isVector())
945       return UnableToLegalize;
946 
947     int NumParts = SizeOp0 / NarrowSize;
948     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
949     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
950     if (SrcTy.isVector() && LeftoverBits != 0)
951       return UnableToLegalize;
952 
953     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
954       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
955       auto &MMO = **MI.memoperands_begin();
956       MIRBuilder.buildTrunc(TmpReg, SrcReg);
957       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
958       MI.eraseFromParent();
959       return Legalized;
960     }
961 
962     return reduceLoadStoreWidth(MI, 0, NarrowTy);
963   }
964   case TargetOpcode::G_SELECT:
965     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
966   case TargetOpcode::G_AND:
967   case TargetOpcode::G_OR:
968   case TargetOpcode::G_XOR: {
969     // Legalize bitwise operation:
970     // A = BinOp<Ty> B, C
971     // into:
972     // B1, ..., BN = G_UNMERGE_VALUES B
973     // C1, ..., CN = G_UNMERGE_VALUES C
974     // A1 = BinOp<Ty/N> B1, C2
975     // ...
976     // AN = BinOp<Ty/N> BN, CN
977     // A = G_MERGE_VALUES A1, ..., AN
978     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
979   }
980   case TargetOpcode::G_SHL:
981   case TargetOpcode::G_LSHR:
982   case TargetOpcode::G_ASHR:
983     return narrowScalarShift(MI, TypeIdx, NarrowTy);
984   case TargetOpcode::G_CTLZ:
985   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
986   case TargetOpcode::G_CTTZ:
987   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
988   case TargetOpcode::G_CTPOP:
989     if (TypeIdx == 1)
990       switch (MI.getOpcode()) {
991       case TargetOpcode::G_CTLZ:
992       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
993         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
994       case TargetOpcode::G_CTTZ:
995       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
996         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
997       case TargetOpcode::G_CTPOP:
998         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
999       default:
1000         return UnableToLegalize;
1001       }
1002 
1003     Observer.changingInstr(MI);
1004     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1005     Observer.changedInstr(MI);
1006     return Legalized;
1007   case TargetOpcode::G_INTTOPTR:
1008     if (TypeIdx != 1)
1009       return UnableToLegalize;
1010 
1011     Observer.changingInstr(MI);
1012     narrowScalarSrc(MI, NarrowTy, 1);
1013     Observer.changedInstr(MI);
1014     return Legalized;
1015   case TargetOpcode::G_PTRTOINT:
1016     if (TypeIdx != 0)
1017       return UnableToLegalize;
1018 
1019     Observer.changingInstr(MI);
1020     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1021     Observer.changedInstr(MI);
1022     return Legalized;
1023   case TargetOpcode::G_PHI: {
1024     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1025     // NarrowSize.
1026     if (SizeOp0 % NarrowSize != 0)
1027       return UnableToLegalize;
1028 
1029     unsigned NumParts = SizeOp0 / NarrowSize;
1030     SmallVector<Register, 2> DstRegs(NumParts);
1031     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1032     Observer.changingInstr(MI);
1033     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1034       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1035       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1036       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1037                    SrcRegs[i / 2]);
1038     }
1039     MachineBasicBlock &MBB = *MI.getParent();
1040     MIRBuilder.setInsertPt(MBB, MI);
1041     for (unsigned i = 0; i < NumParts; ++i) {
1042       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1043       MachineInstrBuilder MIB =
1044           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1045       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1046         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1047     }
1048     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1049     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1050     Observer.changedInstr(MI);
1051     MI.eraseFromParent();
1052     return Legalized;
1053   }
1054   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1055   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1056     if (TypeIdx != 2)
1057       return UnableToLegalize;
1058 
1059     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1060     Observer.changingInstr(MI);
1061     narrowScalarSrc(MI, NarrowTy, OpIdx);
1062     Observer.changedInstr(MI);
1063     return Legalized;
1064   }
1065   case TargetOpcode::G_ICMP: {
1066     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1067     if (NarrowSize * 2 != SrcSize)
1068       return UnableToLegalize;
1069 
1070     Observer.changingInstr(MI);
1071     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1072     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1073     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1074 
1075     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1076     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1077     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1078 
1079     CmpInst::Predicate Pred =
1080         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1081     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1082 
1083     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1084       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1085       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1086       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1087       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1088       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1089     } else {
1090       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1091       MachineInstrBuilder CmpHEQ =
1092           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1093       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1094           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1095       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1096     }
1097     Observer.changedInstr(MI);
1098     MI.eraseFromParent();
1099     return Legalized;
1100   }
1101   case TargetOpcode::G_SEXT_INREG: {
1102     if (TypeIdx != 0)
1103       return UnableToLegalize;
1104 
1105     int64_t SizeInBits = MI.getOperand(2).getImm();
1106 
1107     // So long as the new type has more bits than the bits we're extending we
1108     // don't need to break it apart.
1109     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1110       Observer.changingInstr(MI);
1111       // We don't lose any non-extension bits by truncating the src and
1112       // sign-extending the dst.
1113       MachineOperand &MO1 = MI.getOperand(1);
1114       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1115       MO1.setReg(TruncMIB.getReg(0));
1116 
1117       MachineOperand &MO2 = MI.getOperand(0);
1118       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1119       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1120       MIRBuilder.buildSExt(MO2, DstExt);
1121       MO2.setReg(DstExt);
1122       Observer.changedInstr(MI);
1123       return Legalized;
1124     }
1125 
1126     // Break it apart. Components below the extension point are unmodified. The
1127     // component containing the extension point becomes a narrower SEXT_INREG.
1128     // Components above it are ashr'd from the component containing the
1129     // extension point.
1130     if (SizeOp0 % NarrowSize != 0)
1131       return UnableToLegalize;
1132     int NumParts = SizeOp0 / NarrowSize;
1133 
1134     // List the registers where the destination will be scattered.
1135     SmallVector<Register, 2> DstRegs;
1136     // List the registers where the source will be split.
1137     SmallVector<Register, 2> SrcRegs;
1138 
1139     // Create all the temporary registers.
1140     for (int i = 0; i < NumParts; ++i) {
1141       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1142 
1143       SrcRegs.push_back(SrcReg);
1144     }
1145 
1146     // Explode the big arguments into smaller chunks.
1147     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1148 
1149     Register AshrCstReg =
1150         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1151             .getReg(0);
1152     Register FullExtensionReg = 0;
1153     Register PartialExtensionReg = 0;
1154 
1155     // Do the operation on each small part.
1156     for (int i = 0; i < NumParts; ++i) {
1157       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1158         DstRegs.push_back(SrcRegs[i]);
1159       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1160         assert(PartialExtensionReg &&
1161                "Expected to visit partial extension before full");
1162         if (FullExtensionReg) {
1163           DstRegs.push_back(FullExtensionReg);
1164           continue;
1165         }
1166         DstRegs.push_back(
1167             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1168                 .getReg(0));
1169         FullExtensionReg = DstRegs.back();
1170       } else {
1171         DstRegs.push_back(
1172             MIRBuilder
1173                 .buildInstr(
1174                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1175                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1176                 .getReg(0));
1177         PartialExtensionReg = DstRegs.back();
1178       }
1179     }
1180 
1181     // Gather the destination registers into the final destination.
1182     Register DstReg = MI.getOperand(0).getReg();
1183     MIRBuilder.buildMerge(DstReg, DstRegs);
1184     MI.eraseFromParent();
1185     return Legalized;
1186   }
1187   case TargetOpcode::G_BSWAP:
1188   case TargetOpcode::G_BITREVERSE: {
1189     if (SizeOp0 % NarrowSize != 0)
1190       return UnableToLegalize;
1191 
1192     Observer.changingInstr(MI);
1193     SmallVector<Register, 2> SrcRegs, DstRegs;
1194     unsigned NumParts = SizeOp0 / NarrowSize;
1195     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1196 
1197     for (unsigned i = 0; i < NumParts; ++i) {
1198       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1199                                            {SrcRegs[NumParts - 1 - i]});
1200       DstRegs.push_back(DstPart.getReg(0));
1201     }
1202 
1203     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1204 
1205     Observer.changedInstr(MI);
1206     MI.eraseFromParent();
1207     return Legalized;
1208   }
1209   case TargetOpcode::G_PTR_ADD:
1210   case TargetOpcode::G_PTRMASK: {
1211     if (TypeIdx != 1)
1212       return UnableToLegalize;
1213     Observer.changingInstr(MI);
1214     narrowScalarSrc(MI, NarrowTy, 2);
1215     Observer.changedInstr(MI);
1216     return Legalized;
1217   }
1218   case TargetOpcode::G_FPTOUI:
1219   case TargetOpcode::G_FPTOSI:
1220     return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1221   case TargetOpcode::G_FPEXT:
1222     if (TypeIdx != 0)
1223       return UnableToLegalize;
1224     Observer.changingInstr(MI);
1225     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1226     Observer.changedInstr(MI);
1227     return Legalized;
1228   }
1229 }
1230 
1231 Register LegalizerHelper::coerceToScalar(Register Val) {
1232   LLT Ty = MRI.getType(Val);
1233   if (Ty.isScalar())
1234     return Val;
1235 
1236   const DataLayout &DL = MIRBuilder.getDataLayout();
1237   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1238   if (Ty.isPointer()) {
1239     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1240       return Register();
1241     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1242   }
1243 
1244   Register NewVal = Val;
1245 
1246   assert(Ty.isVector());
1247   LLT EltTy = Ty.getElementType();
1248   if (EltTy.isPointer())
1249     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1250   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1251 }
1252 
1253 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1254                                      unsigned OpIdx, unsigned ExtOpcode) {
1255   MachineOperand &MO = MI.getOperand(OpIdx);
1256   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1257   MO.setReg(ExtB.getReg(0));
1258 }
1259 
1260 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1261                                       unsigned OpIdx) {
1262   MachineOperand &MO = MI.getOperand(OpIdx);
1263   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1264   MO.setReg(ExtB.getReg(0));
1265 }
1266 
1267 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1268                                      unsigned OpIdx, unsigned TruncOpcode) {
1269   MachineOperand &MO = MI.getOperand(OpIdx);
1270   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1271   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1272   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1273   MO.setReg(DstExt);
1274 }
1275 
1276 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1277                                       unsigned OpIdx, unsigned ExtOpcode) {
1278   MachineOperand &MO = MI.getOperand(OpIdx);
1279   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1280   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1281   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1282   MO.setReg(DstTrunc);
1283 }
1284 
1285 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1286                                             unsigned OpIdx) {
1287   MachineOperand &MO = MI.getOperand(OpIdx);
1288   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1289   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1290 }
1291 
1292 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1293                                             unsigned OpIdx) {
1294   MachineOperand &MO = MI.getOperand(OpIdx);
1295 
1296   LLT OldTy = MRI.getType(MO.getReg());
1297   unsigned OldElts = OldTy.getNumElements();
1298   unsigned NewElts = MoreTy.getNumElements();
1299 
1300   unsigned NumParts = NewElts / OldElts;
1301 
1302   // Use concat_vectors if the result is a multiple of the number of elements.
1303   if (NumParts * OldElts == NewElts) {
1304     SmallVector<Register, 8> Parts;
1305     Parts.push_back(MO.getReg());
1306 
1307     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1308     for (unsigned I = 1; I != NumParts; ++I)
1309       Parts.push_back(ImpDef);
1310 
1311     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1312     MO.setReg(Concat.getReg(0));
1313     return;
1314   }
1315 
1316   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1317   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1318   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1319   MO.setReg(MoreReg);
1320 }
1321 
1322 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1323   MachineOperand &Op = MI.getOperand(OpIdx);
1324   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1325 }
1326 
1327 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1328   MachineOperand &MO = MI.getOperand(OpIdx);
1329   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1330   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1331   MIRBuilder.buildBitcast(MO, CastDst);
1332   MO.setReg(CastDst);
1333 }
1334 
1335 LegalizerHelper::LegalizeResult
1336 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1337                                         LLT WideTy) {
1338   if (TypeIdx != 1)
1339     return UnableToLegalize;
1340 
1341   Register DstReg = MI.getOperand(0).getReg();
1342   LLT DstTy = MRI.getType(DstReg);
1343   if (DstTy.isVector())
1344     return UnableToLegalize;
1345 
1346   Register Src1 = MI.getOperand(1).getReg();
1347   LLT SrcTy = MRI.getType(Src1);
1348   const int DstSize = DstTy.getSizeInBits();
1349   const int SrcSize = SrcTy.getSizeInBits();
1350   const int WideSize = WideTy.getSizeInBits();
1351   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1352 
1353   unsigned NumOps = MI.getNumOperands();
1354   unsigned NumSrc = MI.getNumOperands() - 1;
1355   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1356 
1357   if (WideSize >= DstSize) {
1358     // Directly pack the bits in the target type.
1359     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1360 
1361     for (unsigned I = 2; I != NumOps; ++I) {
1362       const unsigned Offset = (I - 1) * PartSize;
1363 
1364       Register SrcReg = MI.getOperand(I).getReg();
1365       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1366 
1367       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1368 
1369       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1370         MRI.createGenericVirtualRegister(WideTy);
1371 
1372       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1373       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1374       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1375       ResultReg = NextResult;
1376     }
1377 
1378     if (WideSize > DstSize)
1379       MIRBuilder.buildTrunc(DstReg, ResultReg);
1380     else if (DstTy.isPointer())
1381       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1382 
1383     MI.eraseFromParent();
1384     return Legalized;
1385   }
1386 
1387   // Unmerge the original values to the GCD type, and recombine to the next
1388   // multiple greater than the original type.
1389   //
1390   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1391   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1392   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1393   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1394   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1395   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1396   // %12:_(s12) = G_MERGE_VALUES %10, %11
1397   //
1398   // Padding with undef if necessary:
1399   //
1400   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1401   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1402   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1403   // %7:_(s2) = G_IMPLICIT_DEF
1404   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1405   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1406   // %10:_(s12) = G_MERGE_VALUES %8, %9
1407 
1408   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1409   LLT GCDTy = LLT::scalar(GCD);
1410 
1411   SmallVector<Register, 8> Parts;
1412   SmallVector<Register, 8> NewMergeRegs;
1413   SmallVector<Register, 8> Unmerges;
1414   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1415 
1416   // Decompose the original operands if they don't evenly divide.
1417   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1418     Register SrcReg = MI.getOperand(I).getReg();
1419     if (GCD == SrcSize) {
1420       Unmerges.push_back(SrcReg);
1421     } else {
1422       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1423       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1424         Unmerges.push_back(Unmerge.getReg(J));
1425     }
1426   }
1427 
1428   // Pad with undef to the next size that is a multiple of the requested size.
1429   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1430     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1431     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1432       Unmerges.push_back(UndefReg);
1433   }
1434 
1435   const int PartsPerGCD = WideSize / GCD;
1436 
1437   // Build merges of each piece.
1438   ArrayRef<Register> Slicer(Unmerges);
1439   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1440     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1441     NewMergeRegs.push_back(Merge.getReg(0));
1442   }
1443 
1444   // A truncate may be necessary if the requested type doesn't evenly divide the
1445   // original result type.
1446   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1447     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1448   } else {
1449     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1450     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1451   }
1452 
1453   MI.eraseFromParent();
1454   return Legalized;
1455 }
1456 
1457 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1458   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1459   LLT OrigTy = MRI.getType(OrigReg);
1460   LLT LCMTy = getLCMType(WideTy, OrigTy);
1461 
1462   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1463   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1464 
1465   Register UnmergeSrc = WideReg;
1466 
1467   // Create a merge to the LCM type, padding with undef
1468   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1469   // =>
1470   // %1:_(<4 x s32>) = G_FOO
1471   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1472   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1473   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1474   if (NumMergeParts > 1) {
1475     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1476     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1477     MergeParts[0] = WideReg;
1478     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1479   }
1480 
1481   // Unmerge to the original register and pad with dead defs.
1482   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1483   UnmergeResults[0] = OrigReg;
1484   for (int I = 1; I != NumUnmergeParts; ++I)
1485     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1486 
1487   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1488   return WideReg;
1489 }
1490 
1491 LegalizerHelper::LegalizeResult
1492 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1493                                           LLT WideTy) {
1494   if (TypeIdx != 0)
1495     return UnableToLegalize;
1496 
1497   int NumDst = MI.getNumOperands() - 1;
1498   Register SrcReg = MI.getOperand(NumDst).getReg();
1499   LLT SrcTy = MRI.getType(SrcReg);
1500   if (SrcTy.isVector())
1501     return UnableToLegalize;
1502 
1503   Register Dst0Reg = MI.getOperand(0).getReg();
1504   LLT DstTy = MRI.getType(Dst0Reg);
1505   if (!DstTy.isScalar())
1506     return UnableToLegalize;
1507 
1508   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1509     if (SrcTy.isPointer()) {
1510       const DataLayout &DL = MIRBuilder.getDataLayout();
1511       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1512         LLVM_DEBUG(
1513             dbgs() << "Not casting non-integral address space integer\n");
1514         return UnableToLegalize;
1515       }
1516 
1517       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1518       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1519     }
1520 
1521     // Widen SrcTy to WideTy. This does not affect the result, but since the
1522     // user requested this size, it is probably better handled than SrcTy and
1523     // should reduce the total number of legalization artifacts
1524     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1525       SrcTy = WideTy;
1526       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1527     }
1528 
1529     // Theres no unmerge type to target. Directly extract the bits from the
1530     // source type
1531     unsigned DstSize = DstTy.getSizeInBits();
1532 
1533     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1534     for (int I = 1; I != NumDst; ++I) {
1535       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1536       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1537       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1538     }
1539 
1540     MI.eraseFromParent();
1541     return Legalized;
1542   }
1543 
1544   // Extend the source to a wider type.
1545   LLT LCMTy = getLCMType(SrcTy, WideTy);
1546 
1547   Register WideSrc = SrcReg;
1548   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1549     // TODO: If this is an integral address space, cast to integer and anyext.
1550     if (SrcTy.isPointer()) {
1551       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1552       return UnableToLegalize;
1553     }
1554 
1555     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1556   }
1557 
1558   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1559 
1560   // Create a sequence of unmerges and merges to the original results. Since we
1561   // may have widened the source, we will need to pad the results with dead defs
1562   // to cover the source register.
1563   // e.g. widen s48 to s64:
1564   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1565   //
1566   // =>
1567   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1568   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1569   //  ; unpack to GCD type, with extra dead defs
1570   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1571   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1572   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1573   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1574   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1575   const LLT GCDTy = getGCDType(WideTy, DstTy);
1576   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1577   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1578 
1579   // Directly unmerge to the destination without going through a GCD type
1580   // if possible
1581   if (PartsPerRemerge == 1) {
1582     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1583 
1584     for (int I = 0; I != NumUnmerge; ++I) {
1585       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1586 
1587       for (int J = 0; J != PartsPerUnmerge; ++J) {
1588         int Idx = I * PartsPerUnmerge + J;
1589         if (Idx < NumDst)
1590           MIB.addDef(MI.getOperand(Idx).getReg());
1591         else {
1592           // Create dead def for excess components.
1593           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1594         }
1595       }
1596 
1597       MIB.addUse(Unmerge.getReg(I));
1598     }
1599   } else {
1600     SmallVector<Register, 16> Parts;
1601     for (int J = 0; J != NumUnmerge; ++J)
1602       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1603 
1604     SmallVector<Register, 8> RemergeParts;
1605     for (int I = 0; I != NumDst; ++I) {
1606       for (int J = 0; J < PartsPerRemerge; ++J) {
1607         const int Idx = I * PartsPerRemerge + J;
1608         RemergeParts.emplace_back(Parts[Idx]);
1609       }
1610 
1611       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1612       RemergeParts.clear();
1613     }
1614   }
1615 
1616   MI.eraseFromParent();
1617   return Legalized;
1618 }
1619 
1620 LegalizerHelper::LegalizeResult
1621 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1622                                     LLT WideTy) {
1623   Register DstReg = MI.getOperand(0).getReg();
1624   Register SrcReg = MI.getOperand(1).getReg();
1625   LLT SrcTy = MRI.getType(SrcReg);
1626 
1627   LLT DstTy = MRI.getType(DstReg);
1628   unsigned Offset = MI.getOperand(2).getImm();
1629 
1630   if (TypeIdx == 0) {
1631     if (SrcTy.isVector() || DstTy.isVector())
1632       return UnableToLegalize;
1633 
1634     SrcOp Src(SrcReg);
1635     if (SrcTy.isPointer()) {
1636       // Extracts from pointers can be handled only if they are really just
1637       // simple integers.
1638       const DataLayout &DL = MIRBuilder.getDataLayout();
1639       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1640         return UnableToLegalize;
1641 
1642       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1643       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1644       SrcTy = SrcAsIntTy;
1645     }
1646 
1647     if (DstTy.isPointer())
1648       return UnableToLegalize;
1649 
1650     if (Offset == 0) {
1651       // Avoid a shift in the degenerate case.
1652       MIRBuilder.buildTrunc(DstReg,
1653                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1654       MI.eraseFromParent();
1655       return Legalized;
1656     }
1657 
1658     // Do a shift in the source type.
1659     LLT ShiftTy = SrcTy;
1660     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1661       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1662       ShiftTy = WideTy;
1663     }
1664 
1665     auto LShr = MIRBuilder.buildLShr(
1666       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1667     MIRBuilder.buildTrunc(DstReg, LShr);
1668     MI.eraseFromParent();
1669     return Legalized;
1670   }
1671 
1672   if (SrcTy.isScalar()) {
1673     Observer.changingInstr(MI);
1674     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1675     Observer.changedInstr(MI);
1676     return Legalized;
1677   }
1678 
1679   if (!SrcTy.isVector())
1680     return UnableToLegalize;
1681 
1682   if (DstTy != SrcTy.getElementType())
1683     return UnableToLegalize;
1684 
1685   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1686     return UnableToLegalize;
1687 
1688   Observer.changingInstr(MI);
1689   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1690 
1691   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1692                           Offset);
1693   widenScalarDst(MI, WideTy.getScalarType(), 0);
1694   Observer.changedInstr(MI);
1695   return Legalized;
1696 }
1697 
1698 LegalizerHelper::LegalizeResult
1699 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1700                                    LLT WideTy) {
1701   if (TypeIdx != 0 || WideTy.isVector())
1702     return UnableToLegalize;
1703   Observer.changingInstr(MI);
1704   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1705   widenScalarDst(MI, WideTy);
1706   Observer.changedInstr(MI);
1707   return Legalized;
1708 }
1709 
1710 LegalizerHelper::LegalizeResult
1711 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1712                                            LLT WideTy) {
1713   if (TypeIdx == 1)
1714     return UnableToLegalize; // TODO
1715 
1716   unsigned Opcode;
1717   unsigned ExtOpcode;
1718   Optional<Register> CarryIn = None;
1719   switch (MI.getOpcode()) {
1720   default:
1721     llvm_unreachable("Unexpected opcode!");
1722   case TargetOpcode::G_SADDO:
1723     Opcode = TargetOpcode::G_ADD;
1724     ExtOpcode = TargetOpcode::G_SEXT;
1725     break;
1726   case TargetOpcode::G_SSUBO:
1727     Opcode = TargetOpcode::G_SUB;
1728     ExtOpcode = TargetOpcode::G_SEXT;
1729     break;
1730   case TargetOpcode::G_UADDO:
1731     Opcode = TargetOpcode::G_ADD;
1732     ExtOpcode = TargetOpcode::G_ZEXT;
1733     break;
1734   case TargetOpcode::G_USUBO:
1735     Opcode = TargetOpcode::G_SUB;
1736     ExtOpcode = TargetOpcode::G_ZEXT;
1737     break;
1738   case TargetOpcode::G_SADDE:
1739     Opcode = TargetOpcode::G_UADDE;
1740     ExtOpcode = TargetOpcode::G_SEXT;
1741     CarryIn = MI.getOperand(4).getReg();
1742     break;
1743   case TargetOpcode::G_SSUBE:
1744     Opcode = TargetOpcode::G_USUBE;
1745     ExtOpcode = TargetOpcode::G_SEXT;
1746     CarryIn = MI.getOperand(4).getReg();
1747     break;
1748   case TargetOpcode::G_UADDE:
1749     Opcode = TargetOpcode::G_UADDE;
1750     ExtOpcode = TargetOpcode::G_ZEXT;
1751     CarryIn = MI.getOperand(4).getReg();
1752     break;
1753   case TargetOpcode::G_USUBE:
1754     Opcode = TargetOpcode::G_USUBE;
1755     ExtOpcode = TargetOpcode::G_ZEXT;
1756     CarryIn = MI.getOperand(4).getReg();
1757     break;
1758   }
1759 
1760   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1761   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1762   // Do the arithmetic in the larger type.
1763   Register NewOp;
1764   if (CarryIn) {
1765     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1766     NewOp = MIRBuilder
1767                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1768                             {LHSExt, RHSExt, *CarryIn})
1769                 .getReg(0);
1770   } else {
1771     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1772   }
1773   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1774   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1775   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1776   // There is no overflow if the ExtOp is the same as NewOp.
1777   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1778   // Now trunc the NewOp to the original result.
1779   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1780   MI.eraseFromParent();
1781   return Legalized;
1782 }
1783 
1784 LegalizerHelper::LegalizeResult
1785 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1786                                          LLT WideTy) {
1787   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1788                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1789                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1790   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1791                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1792   // We can convert this to:
1793   //   1. Any extend iN to iM
1794   //   2. SHL by M-N
1795   //   3. [US][ADD|SUB|SHL]SAT
1796   //   4. L/ASHR by M-N
1797   //
1798   // It may be more efficient to lower this to a min and a max operation in
1799   // the higher precision arithmetic if the promoted operation isn't legal,
1800   // but this decision is up to the target's lowering request.
1801   Register DstReg = MI.getOperand(0).getReg();
1802 
1803   unsigned NewBits = WideTy.getScalarSizeInBits();
1804   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1805 
1806   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1807   // must not left shift the RHS to preserve the shift amount.
1808   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1809   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1810                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1811   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1812   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1813   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1814 
1815   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1816                                         {ShiftL, ShiftR}, MI.getFlags());
1817 
1818   // Use a shift that will preserve the number of sign bits when the trunc is
1819   // folded away.
1820   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1821                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1822 
1823   MIRBuilder.buildTrunc(DstReg, Result);
1824   MI.eraseFromParent();
1825   return Legalized;
1826 }
1827 
1828 LegalizerHelper::LegalizeResult
1829 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1830                                  LLT WideTy) {
1831   if (TypeIdx == 1)
1832     return UnableToLegalize;
1833 
1834   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
1835   Register Result = MI.getOperand(0).getReg();
1836   Register OriginalOverflow = MI.getOperand(1).getReg();
1837   Register LHS = MI.getOperand(2).getReg();
1838   Register RHS = MI.getOperand(3).getReg();
1839   LLT SrcTy = MRI.getType(LHS);
1840   LLT OverflowTy = MRI.getType(OriginalOverflow);
1841   unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
1842 
1843   // To determine if the result overflowed in the larger type, we extend the
1844   // input to the larger type, do the multiply (checking if it overflows),
1845   // then also check the high bits of the result to see if overflow happened
1846   // there.
1847   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1848   auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
1849   auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
1850 
1851   auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
1852                                     {LeftOperand, RightOperand});
1853   auto Mul = Mulo->getOperand(0);
1854   MIRBuilder.buildTrunc(Result, Mul);
1855 
1856   MachineInstrBuilder ExtResult;
1857   // Overflow occurred if it occurred in the larger type, or if the high part
1858   // of the result does not zero/sign-extend the low part.  Check this second
1859   // possibility first.
1860   if (IsSigned) {
1861     // For signed, overflow occurred when the high part does not sign-extend
1862     // the low part.
1863     ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
1864   } else {
1865     // Unsigned overflow occurred when the high part does not zero-extend the
1866     // low part.
1867     ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
1868   }
1869 
1870   // Multiplication cannot overflow if the WideTy is >= 2 * original width,
1871   // so we don't need to check the overflow result of larger type Mulo.
1872   if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
1873     auto Overflow =
1874         MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
1875     // Finally check if the multiplication in the larger type itself overflowed.
1876     MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
1877   } else {
1878     MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
1879   }
1880   MI.eraseFromParent();
1881   return Legalized;
1882 }
1883 
1884 LegalizerHelper::LegalizeResult
1885 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1886   switch (MI.getOpcode()) {
1887   default:
1888     return UnableToLegalize;
1889   case TargetOpcode::G_EXTRACT:
1890     return widenScalarExtract(MI, TypeIdx, WideTy);
1891   case TargetOpcode::G_INSERT:
1892     return widenScalarInsert(MI, TypeIdx, WideTy);
1893   case TargetOpcode::G_MERGE_VALUES:
1894     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1895   case TargetOpcode::G_UNMERGE_VALUES:
1896     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1897   case TargetOpcode::G_SADDO:
1898   case TargetOpcode::G_SSUBO:
1899   case TargetOpcode::G_UADDO:
1900   case TargetOpcode::G_USUBO:
1901   case TargetOpcode::G_SADDE:
1902   case TargetOpcode::G_SSUBE:
1903   case TargetOpcode::G_UADDE:
1904   case TargetOpcode::G_USUBE:
1905     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
1906   case TargetOpcode::G_UMULO:
1907   case TargetOpcode::G_SMULO:
1908     return widenScalarMulo(MI, TypeIdx, WideTy);
1909   case TargetOpcode::G_SADDSAT:
1910   case TargetOpcode::G_SSUBSAT:
1911   case TargetOpcode::G_SSHLSAT:
1912   case TargetOpcode::G_UADDSAT:
1913   case TargetOpcode::G_USUBSAT:
1914   case TargetOpcode::G_USHLSAT:
1915     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1916   case TargetOpcode::G_CTTZ:
1917   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1918   case TargetOpcode::G_CTLZ:
1919   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1920   case TargetOpcode::G_CTPOP: {
1921     if (TypeIdx == 0) {
1922       Observer.changingInstr(MI);
1923       widenScalarDst(MI, WideTy, 0);
1924       Observer.changedInstr(MI);
1925       return Legalized;
1926     }
1927 
1928     Register SrcReg = MI.getOperand(1).getReg();
1929 
1930     // First ZEXT the input.
1931     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1932     LLT CurTy = MRI.getType(SrcReg);
1933     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1934       // The count is the same in the larger type except if the original
1935       // value was zero.  This can be handled by setting the bit just off
1936       // the top of the original type.
1937       auto TopBit =
1938           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1939       MIBSrc = MIRBuilder.buildOr(
1940         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1941     }
1942 
1943     // Perform the operation at the larger size.
1944     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1945     // This is already the correct result for CTPOP and CTTZs
1946     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1947         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1948       // The correct result is NewOp - (Difference in widety and current ty).
1949       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1950       MIBNewOp = MIRBuilder.buildSub(
1951           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1952     }
1953 
1954     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1955     MI.eraseFromParent();
1956     return Legalized;
1957   }
1958   case TargetOpcode::G_BSWAP: {
1959     Observer.changingInstr(MI);
1960     Register DstReg = MI.getOperand(0).getReg();
1961 
1962     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1963     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1964     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1965     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1966 
1967     MI.getOperand(0).setReg(DstExt);
1968 
1969     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1970 
1971     LLT Ty = MRI.getType(DstReg);
1972     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1973     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1974     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1975 
1976     MIRBuilder.buildTrunc(DstReg, ShrReg);
1977     Observer.changedInstr(MI);
1978     return Legalized;
1979   }
1980   case TargetOpcode::G_BITREVERSE: {
1981     Observer.changingInstr(MI);
1982 
1983     Register DstReg = MI.getOperand(0).getReg();
1984     LLT Ty = MRI.getType(DstReg);
1985     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1986 
1987     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1988     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1989     MI.getOperand(0).setReg(DstExt);
1990     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1991 
1992     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1993     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1994     MIRBuilder.buildTrunc(DstReg, Shift);
1995     Observer.changedInstr(MI);
1996     return Legalized;
1997   }
1998   case TargetOpcode::G_FREEZE:
1999     Observer.changingInstr(MI);
2000     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2001     widenScalarDst(MI, WideTy);
2002     Observer.changedInstr(MI);
2003     return Legalized;
2004 
2005   case TargetOpcode::G_ABS:
2006     Observer.changingInstr(MI);
2007     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2008     widenScalarDst(MI, WideTy);
2009     Observer.changedInstr(MI);
2010     return Legalized;
2011 
2012   case TargetOpcode::G_ADD:
2013   case TargetOpcode::G_AND:
2014   case TargetOpcode::G_MUL:
2015   case TargetOpcode::G_OR:
2016   case TargetOpcode::G_XOR:
2017   case TargetOpcode::G_SUB:
2018     // Perform operation at larger width (any extension is fines here, high bits
2019     // don't affect the result) and then truncate the result back to the
2020     // original type.
2021     Observer.changingInstr(MI);
2022     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2023     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2024     widenScalarDst(MI, WideTy);
2025     Observer.changedInstr(MI);
2026     return Legalized;
2027 
2028   case TargetOpcode::G_SHL:
2029     Observer.changingInstr(MI);
2030 
2031     if (TypeIdx == 0) {
2032       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2033       widenScalarDst(MI, WideTy);
2034     } else {
2035       assert(TypeIdx == 1);
2036       // The "number of bits to shift" operand must preserve its value as an
2037       // unsigned integer:
2038       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2039     }
2040 
2041     Observer.changedInstr(MI);
2042     return Legalized;
2043 
2044   case TargetOpcode::G_SDIV:
2045   case TargetOpcode::G_SREM:
2046   case TargetOpcode::G_SMIN:
2047   case TargetOpcode::G_SMAX:
2048     Observer.changingInstr(MI);
2049     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2050     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2051     widenScalarDst(MI, WideTy);
2052     Observer.changedInstr(MI);
2053     return Legalized;
2054 
2055   case TargetOpcode::G_SDIVREM:
2056     Observer.changingInstr(MI);
2057     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2058     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2059     widenScalarDst(MI, WideTy);
2060     widenScalarDst(MI, WideTy, 1);
2061     Observer.changedInstr(MI);
2062     return Legalized;
2063 
2064   case TargetOpcode::G_ASHR:
2065   case TargetOpcode::G_LSHR:
2066     Observer.changingInstr(MI);
2067 
2068     if (TypeIdx == 0) {
2069       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2070         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2071 
2072       widenScalarSrc(MI, WideTy, 1, CvtOp);
2073       widenScalarDst(MI, WideTy);
2074     } else {
2075       assert(TypeIdx == 1);
2076       // The "number of bits to shift" operand must preserve its value as an
2077       // unsigned integer:
2078       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2079     }
2080 
2081     Observer.changedInstr(MI);
2082     return Legalized;
2083   case TargetOpcode::G_UDIV:
2084   case TargetOpcode::G_UREM:
2085   case TargetOpcode::G_UMIN:
2086   case TargetOpcode::G_UMAX:
2087     Observer.changingInstr(MI);
2088     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2089     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2090     widenScalarDst(MI, WideTy);
2091     Observer.changedInstr(MI);
2092     return Legalized;
2093 
2094   case TargetOpcode::G_UDIVREM:
2095     Observer.changingInstr(MI);
2096     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2097     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2098     widenScalarDst(MI, WideTy);
2099     widenScalarDst(MI, WideTy, 1);
2100     Observer.changedInstr(MI);
2101     return Legalized;
2102 
2103   case TargetOpcode::G_SELECT:
2104     Observer.changingInstr(MI);
2105     if (TypeIdx == 0) {
2106       // Perform operation at larger width (any extension is fine here, high
2107       // bits don't affect the result) and then truncate the result back to the
2108       // original type.
2109       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2110       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2111       widenScalarDst(MI, WideTy);
2112     } else {
2113       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2114       // Explicit extension is required here since high bits affect the result.
2115       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2116     }
2117     Observer.changedInstr(MI);
2118     return Legalized;
2119 
2120   case TargetOpcode::G_FPTOSI:
2121   case TargetOpcode::G_FPTOUI:
2122     Observer.changingInstr(MI);
2123 
2124     if (TypeIdx == 0)
2125       widenScalarDst(MI, WideTy);
2126     else
2127       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2128 
2129     Observer.changedInstr(MI);
2130     return Legalized;
2131   case TargetOpcode::G_SITOFP:
2132     Observer.changingInstr(MI);
2133 
2134     if (TypeIdx == 0)
2135       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2136     else
2137       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2138 
2139     Observer.changedInstr(MI);
2140     return Legalized;
2141   case TargetOpcode::G_UITOFP:
2142     Observer.changingInstr(MI);
2143 
2144     if (TypeIdx == 0)
2145       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2146     else
2147       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2148 
2149     Observer.changedInstr(MI);
2150     return Legalized;
2151   case TargetOpcode::G_LOAD:
2152   case TargetOpcode::G_SEXTLOAD:
2153   case TargetOpcode::G_ZEXTLOAD:
2154     Observer.changingInstr(MI);
2155     widenScalarDst(MI, WideTy);
2156     Observer.changedInstr(MI);
2157     return Legalized;
2158 
2159   case TargetOpcode::G_STORE: {
2160     if (TypeIdx != 0)
2161       return UnableToLegalize;
2162 
2163     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2164     if (!Ty.isScalar())
2165       return UnableToLegalize;
2166 
2167     Observer.changingInstr(MI);
2168 
2169     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2170       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2171     widenScalarSrc(MI, WideTy, 0, ExtType);
2172 
2173     Observer.changedInstr(MI);
2174     return Legalized;
2175   }
2176   case TargetOpcode::G_CONSTANT: {
2177     MachineOperand &SrcMO = MI.getOperand(1);
2178     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2179     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2180         MRI.getType(MI.getOperand(0).getReg()));
2181     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2182             ExtOpc == TargetOpcode::G_ANYEXT) &&
2183            "Illegal Extend");
2184     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2185     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2186                            ? SrcVal.sext(WideTy.getSizeInBits())
2187                            : SrcVal.zext(WideTy.getSizeInBits());
2188     Observer.changingInstr(MI);
2189     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2190 
2191     widenScalarDst(MI, WideTy);
2192     Observer.changedInstr(MI);
2193     return Legalized;
2194   }
2195   case TargetOpcode::G_FCONSTANT: {
2196     MachineOperand &SrcMO = MI.getOperand(1);
2197     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2198     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2199     bool LosesInfo;
2200     switch (WideTy.getSizeInBits()) {
2201     case 32:
2202       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2203                   &LosesInfo);
2204       break;
2205     case 64:
2206       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2207                   &LosesInfo);
2208       break;
2209     default:
2210       return UnableToLegalize;
2211     }
2212 
2213     assert(!LosesInfo && "extend should always be lossless");
2214 
2215     Observer.changingInstr(MI);
2216     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2217 
2218     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2219     Observer.changedInstr(MI);
2220     return Legalized;
2221   }
2222   case TargetOpcode::G_IMPLICIT_DEF: {
2223     Observer.changingInstr(MI);
2224     widenScalarDst(MI, WideTy);
2225     Observer.changedInstr(MI);
2226     return Legalized;
2227   }
2228   case TargetOpcode::G_BRCOND:
2229     Observer.changingInstr(MI);
2230     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2231     Observer.changedInstr(MI);
2232     return Legalized;
2233 
2234   case TargetOpcode::G_FCMP:
2235     Observer.changingInstr(MI);
2236     if (TypeIdx == 0)
2237       widenScalarDst(MI, WideTy);
2238     else {
2239       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2240       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2241     }
2242     Observer.changedInstr(MI);
2243     return Legalized;
2244 
2245   case TargetOpcode::G_ICMP:
2246     Observer.changingInstr(MI);
2247     if (TypeIdx == 0)
2248       widenScalarDst(MI, WideTy);
2249     else {
2250       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2251                                MI.getOperand(1).getPredicate()))
2252                                ? TargetOpcode::G_SEXT
2253                                : TargetOpcode::G_ZEXT;
2254       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2255       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2256     }
2257     Observer.changedInstr(MI);
2258     return Legalized;
2259 
2260   case TargetOpcode::G_PTR_ADD:
2261     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2262     Observer.changingInstr(MI);
2263     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2264     Observer.changedInstr(MI);
2265     return Legalized;
2266 
2267   case TargetOpcode::G_PHI: {
2268     assert(TypeIdx == 0 && "Expecting only Idx 0");
2269 
2270     Observer.changingInstr(MI);
2271     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2272       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2273       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2274       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2275     }
2276 
2277     MachineBasicBlock &MBB = *MI.getParent();
2278     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2279     widenScalarDst(MI, WideTy);
2280     Observer.changedInstr(MI);
2281     return Legalized;
2282   }
2283   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2284     if (TypeIdx == 0) {
2285       Register VecReg = MI.getOperand(1).getReg();
2286       LLT VecTy = MRI.getType(VecReg);
2287       Observer.changingInstr(MI);
2288 
2289       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2290                                      WideTy.getSizeInBits()),
2291                      1, TargetOpcode::G_SEXT);
2292 
2293       widenScalarDst(MI, WideTy, 0);
2294       Observer.changedInstr(MI);
2295       return Legalized;
2296     }
2297 
2298     if (TypeIdx != 2)
2299       return UnableToLegalize;
2300     Observer.changingInstr(MI);
2301     // TODO: Probably should be zext
2302     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2303     Observer.changedInstr(MI);
2304     return Legalized;
2305   }
2306   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2307     if (TypeIdx == 1) {
2308       Observer.changingInstr(MI);
2309 
2310       Register VecReg = MI.getOperand(1).getReg();
2311       LLT VecTy = MRI.getType(VecReg);
2312       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2313 
2314       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2315       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2316       widenScalarDst(MI, WideVecTy, 0);
2317       Observer.changedInstr(MI);
2318       return Legalized;
2319     }
2320 
2321     if (TypeIdx == 2) {
2322       Observer.changingInstr(MI);
2323       // TODO: Probably should be zext
2324       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2325       Observer.changedInstr(MI);
2326       return Legalized;
2327     }
2328 
2329     return UnableToLegalize;
2330   }
2331   case TargetOpcode::G_FADD:
2332   case TargetOpcode::G_FMUL:
2333   case TargetOpcode::G_FSUB:
2334   case TargetOpcode::G_FMA:
2335   case TargetOpcode::G_FMAD:
2336   case TargetOpcode::G_FNEG:
2337   case TargetOpcode::G_FABS:
2338   case TargetOpcode::G_FCANONICALIZE:
2339   case TargetOpcode::G_FMINNUM:
2340   case TargetOpcode::G_FMAXNUM:
2341   case TargetOpcode::G_FMINNUM_IEEE:
2342   case TargetOpcode::G_FMAXNUM_IEEE:
2343   case TargetOpcode::G_FMINIMUM:
2344   case TargetOpcode::G_FMAXIMUM:
2345   case TargetOpcode::G_FDIV:
2346   case TargetOpcode::G_FREM:
2347   case TargetOpcode::G_FCEIL:
2348   case TargetOpcode::G_FFLOOR:
2349   case TargetOpcode::G_FCOS:
2350   case TargetOpcode::G_FSIN:
2351   case TargetOpcode::G_FLOG10:
2352   case TargetOpcode::G_FLOG:
2353   case TargetOpcode::G_FLOG2:
2354   case TargetOpcode::G_FRINT:
2355   case TargetOpcode::G_FNEARBYINT:
2356   case TargetOpcode::G_FSQRT:
2357   case TargetOpcode::G_FEXP:
2358   case TargetOpcode::G_FEXP2:
2359   case TargetOpcode::G_FPOW:
2360   case TargetOpcode::G_INTRINSIC_TRUNC:
2361   case TargetOpcode::G_INTRINSIC_ROUND:
2362   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2363     assert(TypeIdx == 0);
2364     Observer.changingInstr(MI);
2365 
2366     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2367       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2368 
2369     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2370     Observer.changedInstr(MI);
2371     return Legalized;
2372   case TargetOpcode::G_FPOWI: {
2373     if (TypeIdx != 0)
2374       return UnableToLegalize;
2375     Observer.changingInstr(MI);
2376     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2377     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2378     Observer.changedInstr(MI);
2379     return Legalized;
2380   }
2381   case TargetOpcode::G_INTTOPTR:
2382     if (TypeIdx != 1)
2383       return UnableToLegalize;
2384 
2385     Observer.changingInstr(MI);
2386     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2387     Observer.changedInstr(MI);
2388     return Legalized;
2389   case TargetOpcode::G_PTRTOINT:
2390     if (TypeIdx != 0)
2391       return UnableToLegalize;
2392 
2393     Observer.changingInstr(MI);
2394     widenScalarDst(MI, WideTy, 0);
2395     Observer.changedInstr(MI);
2396     return Legalized;
2397   case TargetOpcode::G_BUILD_VECTOR: {
2398     Observer.changingInstr(MI);
2399 
2400     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2401     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2402       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2403 
2404     // Avoid changing the result vector type if the source element type was
2405     // requested.
2406     if (TypeIdx == 1) {
2407       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2408     } else {
2409       widenScalarDst(MI, WideTy, 0);
2410     }
2411 
2412     Observer.changedInstr(MI);
2413     return Legalized;
2414   }
2415   case TargetOpcode::G_SEXT_INREG:
2416     if (TypeIdx != 0)
2417       return UnableToLegalize;
2418 
2419     Observer.changingInstr(MI);
2420     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2421     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2422     Observer.changedInstr(MI);
2423     return Legalized;
2424   case TargetOpcode::G_PTRMASK: {
2425     if (TypeIdx != 1)
2426       return UnableToLegalize;
2427     Observer.changingInstr(MI);
2428     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2429     Observer.changedInstr(MI);
2430     return Legalized;
2431   }
2432   }
2433 }
2434 
2435 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2436                              MachineIRBuilder &B, Register Src, LLT Ty) {
2437   auto Unmerge = B.buildUnmerge(Ty, Src);
2438   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2439     Pieces.push_back(Unmerge.getReg(I));
2440 }
2441 
2442 LegalizerHelper::LegalizeResult
2443 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2444   Register Dst = MI.getOperand(0).getReg();
2445   Register Src = MI.getOperand(1).getReg();
2446   LLT DstTy = MRI.getType(Dst);
2447   LLT SrcTy = MRI.getType(Src);
2448 
2449   if (SrcTy.isVector()) {
2450     LLT SrcEltTy = SrcTy.getElementType();
2451     SmallVector<Register, 8> SrcRegs;
2452 
2453     if (DstTy.isVector()) {
2454       int NumDstElt = DstTy.getNumElements();
2455       int NumSrcElt = SrcTy.getNumElements();
2456 
2457       LLT DstEltTy = DstTy.getElementType();
2458       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2459       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2460 
2461       // If there's an element size mismatch, insert intermediate casts to match
2462       // the result element type.
2463       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2464         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2465         //
2466         // =>
2467         //
2468         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2469         // %3:_(<2 x s8>) = G_BITCAST %2
2470         // %4:_(<2 x s8>) = G_BITCAST %3
2471         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2472         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2473         SrcPartTy = SrcEltTy;
2474       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2475         //
2476         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2477         //
2478         // =>
2479         //
2480         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2481         // %3:_(s16) = G_BITCAST %2
2482         // %4:_(s16) = G_BITCAST %3
2483         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2484         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2485         DstCastTy = DstEltTy;
2486       }
2487 
2488       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2489       for (Register &SrcReg : SrcRegs)
2490         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2491     } else
2492       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2493 
2494     MIRBuilder.buildMerge(Dst, SrcRegs);
2495     MI.eraseFromParent();
2496     return Legalized;
2497   }
2498 
2499   if (DstTy.isVector()) {
2500     SmallVector<Register, 8> SrcRegs;
2501     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2502     MIRBuilder.buildMerge(Dst, SrcRegs);
2503     MI.eraseFromParent();
2504     return Legalized;
2505   }
2506 
2507   return UnableToLegalize;
2508 }
2509 
2510 /// Figure out the bit offset into a register when coercing a vector index for
2511 /// the wide element type. This is only for the case when promoting vector to
2512 /// one with larger elements.
2513 //
2514 ///
2515 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2516 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2517 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2518                                                    Register Idx,
2519                                                    unsigned NewEltSize,
2520                                                    unsigned OldEltSize) {
2521   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2522   LLT IdxTy = B.getMRI()->getType(Idx);
2523 
2524   // Now figure out the amount we need to shift to get the target bits.
2525   auto OffsetMask = B.buildConstant(
2526     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2527   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2528   return B.buildShl(IdxTy, OffsetIdx,
2529                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2530 }
2531 
2532 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2533 /// is casting to a vector with a smaller element size, perform multiple element
2534 /// extracts and merge the results. If this is coercing to a vector with larger
2535 /// elements, index the bitcasted vector and extract the target element with bit
2536 /// operations. This is intended to force the indexing in the native register
2537 /// size for architectures that can dynamically index the register file.
2538 LegalizerHelper::LegalizeResult
2539 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2540                                          LLT CastTy) {
2541   if (TypeIdx != 1)
2542     return UnableToLegalize;
2543 
2544   Register Dst = MI.getOperand(0).getReg();
2545   Register SrcVec = MI.getOperand(1).getReg();
2546   Register Idx = MI.getOperand(2).getReg();
2547   LLT SrcVecTy = MRI.getType(SrcVec);
2548   LLT IdxTy = MRI.getType(Idx);
2549 
2550   LLT SrcEltTy = SrcVecTy.getElementType();
2551   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2552   unsigned OldNumElts = SrcVecTy.getNumElements();
2553 
2554   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2555   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2556 
2557   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2558   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2559   if (NewNumElts > OldNumElts) {
2560     // Decreasing the vector element size
2561     //
2562     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2563     //  =>
2564     //  v4i32:castx = bitcast x:v2i64
2565     //
2566     // i64 = bitcast
2567     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2568     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2569     //
2570     if (NewNumElts % OldNumElts != 0)
2571       return UnableToLegalize;
2572 
2573     // Type of the intermediate result vector.
2574     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2575     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2576 
2577     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2578 
2579     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2580     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2581 
2582     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2583       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2584       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2585       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2586       NewOps[I] = Elt.getReg(0);
2587     }
2588 
2589     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2590     MIRBuilder.buildBitcast(Dst, NewVec);
2591     MI.eraseFromParent();
2592     return Legalized;
2593   }
2594 
2595   if (NewNumElts < OldNumElts) {
2596     if (NewEltSize % OldEltSize != 0)
2597       return UnableToLegalize;
2598 
2599     // This only depends on powers of 2 because we use bit tricks to figure out
2600     // the bit offset we need to shift to get the target element. A general
2601     // expansion could emit division/multiply.
2602     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2603       return UnableToLegalize;
2604 
2605     // Increasing the vector element size.
2606     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2607     //
2608     //   =>
2609     //
2610     // %cast = G_BITCAST %vec
2611     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2612     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2613     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2614     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2615     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2616     // %elt = G_TRUNC %elt_bits
2617 
2618     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2619     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2620 
2621     // Divide to get the index in the wider element type.
2622     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2623 
2624     Register WideElt = CastVec;
2625     if (CastTy.isVector()) {
2626       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2627                                                      ScaledIdx).getReg(0);
2628     }
2629 
2630     // Compute the bit offset into the register of the target element.
2631     Register OffsetBits = getBitcastWiderVectorElementOffset(
2632       MIRBuilder, Idx, NewEltSize, OldEltSize);
2633 
2634     // Shift the wide element to get the target element.
2635     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2636     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2637     MI.eraseFromParent();
2638     return Legalized;
2639   }
2640 
2641   return UnableToLegalize;
2642 }
2643 
2644 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2645 /// TargetReg, while preserving other bits in \p TargetReg.
2646 ///
2647 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2648 static Register buildBitFieldInsert(MachineIRBuilder &B,
2649                                     Register TargetReg, Register InsertReg,
2650                                     Register OffsetBits) {
2651   LLT TargetTy = B.getMRI()->getType(TargetReg);
2652   LLT InsertTy = B.getMRI()->getType(InsertReg);
2653   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2654   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2655 
2656   // Produce a bitmask of the value to insert
2657   auto EltMask = B.buildConstant(
2658     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2659                                    InsertTy.getSizeInBits()));
2660   // Shift it into position
2661   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2662   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2663 
2664   // Clear out the bits in the wide element
2665   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2666 
2667   // The value to insert has all zeros already, so stick it into the masked
2668   // wide element.
2669   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2670 }
2671 
2672 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2673 /// is increasing the element size, perform the indexing in the target element
2674 /// type, and use bit operations to insert at the element position. This is
2675 /// intended for architectures that can dynamically index the register file and
2676 /// want to force indexing in the native register size.
2677 LegalizerHelper::LegalizeResult
2678 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2679                                         LLT CastTy) {
2680   if (TypeIdx != 0)
2681     return UnableToLegalize;
2682 
2683   Register Dst = MI.getOperand(0).getReg();
2684   Register SrcVec = MI.getOperand(1).getReg();
2685   Register Val = MI.getOperand(2).getReg();
2686   Register Idx = MI.getOperand(3).getReg();
2687 
2688   LLT VecTy = MRI.getType(Dst);
2689   LLT IdxTy = MRI.getType(Idx);
2690 
2691   LLT VecEltTy = VecTy.getElementType();
2692   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2693   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2694   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2695 
2696   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2697   unsigned OldNumElts = VecTy.getNumElements();
2698 
2699   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2700   if (NewNumElts < OldNumElts) {
2701     if (NewEltSize % OldEltSize != 0)
2702       return UnableToLegalize;
2703 
2704     // This only depends on powers of 2 because we use bit tricks to figure out
2705     // the bit offset we need to shift to get the target element. A general
2706     // expansion could emit division/multiply.
2707     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2708       return UnableToLegalize;
2709 
2710     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2711     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2712 
2713     // Divide to get the index in the wider element type.
2714     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2715 
2716     Register ExtractedElt = CastVec;
2717     if (CastTy.isVector()) {
2718       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2719                                                           ScaledIdx).getReg(0);
2720     }
2721 
2722     // Compute the bit offset into the register of the target element.
2723     Register OffsetBits = getBitcastWiderVectorElementOffset(
2724       MIRBuilder, Idx, NewEltSize, OldEltSize);
2725 
2726     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2727                                                Val, OffsetBits);
2728     if (CastTy.isVector()) {
2729       InsertedElt = MIRBuilder.buildInsertVectorElement(
2730         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2731     }
2732 
2733     MIRBuilder.buildBitcast(Dst, InsertedElt);
2734     MI.eraseFromParent();
2735     return Legalized;
2736   }
2737 
2738   return UnableToLegalize;
2739 }
2740 
2741 LegalizerHelper::LegalizeResult
2742 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2743   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2744   Register DstReg = MI.getOperand(0).getReg();
2745   Register PtrReg = MI.getOperand(1).getReg();
2746   LLT DstTy = MRI.getType(DstReg);
2747   auto &MMO = **MI.memoperands_begin();
2748 
2749   if (DstTy.getSizeInBits() != MMO.getSizeInBits())
2750     return UnableToLegalize;
2751 
2752   if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2753     // This load needs splitting into power of 2 sized loads.
2754     if (DstTy.isVector())
2755       return UnableToLegalize;
2756     if (isPowerOf2_32(DstTy.getSizeInBits()))
2757       return UnableToLegalize; // Don't know what we're being asked to do.
2758 
2759     // Our strategy here is to generate anyextending loads for the smaller
2760     // types up to next power-2 result type, and then combine the two larger
2761     // result values together, before truncating back down to the non-pow-2
2762     // type.
2763     // E.g. v1 = i24 load =>
2764     // v2 = i32 zextload (2 byte)
2765     // v3 = i32 load (1 byte)
2766     // v4 = i32 shl v3, 16
2767     // v5 = i32 or v4, v2
2768     // v1 = i24 trunc v5
2769     // By doing this we generate the correct truncate which should get
2770     // combined away as an artifact with a matching extend.
2771     uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2772     uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2773 
2774     MachineFunction &MF = MIRBuilder.getMF();
2775     MachineMemOperand *LargeMMO =
2776       MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2777     MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2778       &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2779 
2780     LLT PtrTy = MRI.getType(PtrReg);
2781     unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2782     LLT AnyExtTy = LLT::scalar(AnyExtSize);
2783     auto LargeLoad = MIRBuilder.buildLoadInstr(
2784       TargetOpcode::G_ZEXTLOAD, AnyExtTy, PtrReg, *LargeMMO);
2785 
2786     auto OffsetCst = MIRBuilder.buildConstant(
2787       LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2788     Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2789     auto SmallPtr =
2790       MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
2791     auto SmallLoad = MIRBuilder.buildLoad(AnyExtTy, SmallPtr,
2792                                           *SmallMMO);
2793 
2794     auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2795     auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2796     auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2797     MIRBuilder.buildTrunc(DstReg, {Or});
2798     MI.eraseFromParent();
2799     return Legalized;
2800   }
2801 
2802   return UnableToLegalize;
2803 }
2804 
2805 LegalizerHelper::LegalizeResult
2806 LegalizerHelper::lowerStore(MachineInstr &MI) {
2807   // Lower a non-power of 2 store into multiple pow-2 stores.
2808   // E.g. split an i24 store into an i16 store + i8 store.
2809   // We do this by first extending the stored value to the next largest power
2810   // of 2 type, and then using truncating stores to store the components.
2811   // By doing this, likewise with G_LOAD, generate an extend that can be
2812   // artifact-combined away instead of leaving behind extracts.
2813   Register SrcReg = MI.getOperand(0).getReg();
2814   Register PtrReg = MI.getOperand(1).getReg();
2815   LLT SrcTy = MRI.getType(SrcReg);
2816   MachineMemOperand &MMO = **MI.memoperands_begin();
2817   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2818     return UnableToLegalize;
2819   if (SrcTy.isVector())
2820     return UnableToLegalize;
2821   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2822     return UnableToLegalize; // Don't know what we're being asked to do.
2823 
2824   // Extend to the next pow-2.
2825   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2826   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2827 
2828   // Obtain the smaller value by shifting away the larger value.
2829   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2830   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2831   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2832   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2833 
2834   // Generate the PtrAdd and truncating stores.
2835   LLT PtrTy = MRI.getType(PtrReg);
2836   auto OffsetCst = MIRBuilder.buildConstant(
2837     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2838   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2839   auto SmallPtr =
2840     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
2841 
2842   MachineFunction &MF = MIRBuilder.getMF();
2843   MachineMemOperand *LargeMMO =
2844     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2845   MachineMemOperand *SmallMMO =
2846     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2847   MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO);
2848   MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO);
2849   MI.eraseFromParent();
2850   return Legalized;
2851 }
2852 
2853 LegalizerHelper::LegalizeResult
2854 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2855   switch (MI.getOpcode()) {
2856   case TargetOpcode::G_LOAD: {
2857     if (TypeIdx != 0)
2858       return UnableToLegalize;
2859 
2860     Observer.changingInstr(MI);
2861     bitcastDst(MI, CastTy, 0);
2862     Observer.changedInstr(MI);
2863     return Legalized;
2864   }
2865   case TargetOpcode::G_STORE: {
2866     if (TypeIdx != 0)
2867       return UnableToLegalize;
2868 
2869     Observer.changingInstr(MI);
2870     bitcastSrc(MI, CastTy, 0);
2871     Observer.changedInstr(MI);
2872     return Legalized;
2873   }
2874   case TargetOpcode::G_SELECT: {
2875     if (TypeIdx != 0)
2876       return UnableToLegalize;
2877 
2878     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2879       LLVM_DEBUG(
2880           dbgs() << "bitcast action not implemented for vector select\n");
2881       return UnableToLegalize;
2882     }
2883 
2884     Observer.changingInstr(MI);
2885     bitcastSrc(MI, CastTy, 2);
2886     bitcastSrc(MI, CastTy, 3);
2887     bitcastDst(MI, CastTy, 0);
2888     Observer.changedInstr(MI);
2889     return Legalized;
2890   }
2891   case TargetOpcode::G_AND:
2892   case TargetOpcode::G_OR:
2893   case TargetOpcode::G_XOR: {
2894     Observer.changingInstr(MI);
2895     bitcastSrc(MI, CastTy, 1);
2896     bitcastSrc(MI, CastTy, 2);
2897     bitcastDst(MI, CastTy, 0);
2898     Observer.changedInstr(MI);
2899     return Legalized;
2900   }
2901   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2902     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2903   case TargetOpcode::G_INSERT_VECTOR_ELT:
2904     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2905   default:
2906     return UnableToLegalize;
2907   }
2908 }
2909 
2910 // Legalize an instruction by changing the opcode in place.
2911 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2912     Observer.changingInstr(MI);
2913     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2914     Observer.changedInstr(MI);
2915 }
2916 
2917 LegalizerHelper::LegalizeResult
2918 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2919   using namespace TargetOpcode;
2920 
2921   switch(MI.getOpcode()) {
2922   default:
2923     return UnableToLegalize;
2924   case TargetOpcode::G_BITCAST:
2925     return lowerBitcast(MI);
2926   case TargetOpcode::G_SREM:
2927   case TargetOpcode::G_UREM: {
2928     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2929     auto Quot =
2930         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2931                               {MI.getOperand(1), MI.getOperand(2)});
2932 
2933     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2934     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2935     MI.eraseFromParent();
2936     return Legalized;
2937   }
2938   case TargetOpcode::G_SADDO:
2939   case TargetOpcode::G_SSUBO:
2940     return lowerSADDO_SSUBO(MI);
2941   case TargetOpcode::G_UMULH:
2942   case TargetOpcode::G_SMULH:
2943     return lowerSMULH_UMULH(MI);
2944   case TargetOpcode::G_SMULO:
2945   case TargetOpcode::G_UMULO: {
2946     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2947     // result.
2948     Register Res = MI.getOperand(0).getReg();
2949     Register Overflow = MI.getOperand(1).getReg();
2950     Register LHS = MI.getOperand(2).getReg();
2951     Register RHS = MI.getOperand(3).getReg();
2952     LLT Ty = MRI.getType(Res);
2953 
2954     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2955                           ? TargetOpcode::G_SMULH
2956                           : TargetOpcode::G_UMULH;
2957 
2958     Observer.changingInstr(MI);
2959     const auto &TII = MIRBuilder.getTII();
2960     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2961     MI.RemoveOperand(1);
2962     Observer.changedInstr(MI);
2963 
2964     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2965     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2966 
2967     // Move insert point forward so we can use the Res register if needed.
2968     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2969 
2970     // For *signed* multiply, overflow is detected by checking:
2971     // (hi != (lo >> bitwidth-1))
2972     if (Opcode == TargetOpcode::G_SMULH) {
2973       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2974       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2975       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2976     } else {
2977       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2978     }
2979     return Legalized;
2980   }
2981   case TargetOpcode::G_FNEG: {
2982     Register Res = MI.getOperand(0).getReg();
2983     LLT Ty = MRI.getType(Res);
2984 
2985     // TODO: Handle vector types once we are able to
2986     // represent them.
2987     if (Ty.isVector())
2988       return UnableToLegalize;
2989     auto SignMask =
2990         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
2991     Register SubByReg = MI.getOperand(1).getReg();
2992     MIRBuilder.buildXor(Res, SubByReg, SignMask);
2993     MI.eraseFromParent();
2994     return Legalized;
2995   }
2996   case TargetOpcode::G_FSUB: {
2997     Register Res = MI.getOperand(0).getReg();
2998     LLT Ty = MRI.getType(Res);
2999 
3000     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3001     // First, check if G_FNEG is marked as Lower. If so, we may
3002     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3003     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3004       return UnableToLegalize;
3005     Register LHS = MI.getOperand(1).getReg();
3006     Register RHS = MI.getOperand(2).getReg();
3007     Register Neg = MRI.createGenericVirtualRegister(Ty);
3008     MIRBuilder.buildFNeg(Neg, RHS);
3009     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3010     MI.eraseFromParent();
3011     return Legalized;
3012   }
3013   case TargetOpcode::G_FMAD:
3014     return lowerFMad(MI);
3015   case TargetOpcode::G_FFLOOR:
3016     return lowerFFloor(MI);
3017   case TargetOpcode::G_INTRINSIC_ROUND:
3018     return lowerIntrinsicRound(MI);
3019   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3020     // Since round even is the assumed rounding mode for unconstrained FP
3021     // operations, rint and roundeven are the same operation.
3022     changeOpcode(MI, TargetOpcode::G_FRINT);
3023     return Legalized;
3024   }
3025   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3026     Register OldValRes = MI.getOperand(0).getReg();
3027     Register SuccessRes = MI.getOperand(1).getReg();
3028     Register Addr = MI.getOperand(2).getReg();
3029     Register CmpVal = MI.getOperand(3).getReg();
3030     Register NewVal = MI.getOperand(4).getReg();
3031     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3032                                   **MI.memoperands_begin());
3033     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3034     MI.eraseFromParent();
3035     return Legalized;
3036   }
3037   case TargetOpcode::G_LOAD:
3038   case TargetOpcode::G_SEXTLOAD:
3039   case TargetOpcode::G_ZEXTLOAD:
3040     return lowerLoad(MI);
3041   case TargetOpcode::G_STORE:
3042     return lowerStore(MI);
3043   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3044   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3045   case TargetOpcode::G_CTLZ:
3046   case TargetOpcode::G_CTTZ:
3047   case TargetOpcode::G_CTPOP:
3048     return lowerBitCount(MI);
3049   case G_UADDO: {
3050     Register Res = MI.getOperand(0).getReg();
3051     Register CarryOut = MI.getOperand(1).getReg();
3052     Register LHS = MI.getOperand(2).getReg();
3053     Register RHS = MI.getOperand(3).getReg();
3054 
3055     MIRBuilder.buildAdd(Res, LHS, RHS);
3056     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3057 
3058     MI.eraseFromParent();
3059     return Legalized;
3060   }
3061   case G_UADDE: {
3062     Register Res = MI.getOperand(0).getReg();
3063     Register CarryOut = MI.getOperand(1).getReg();
3064     Register LHS = MI.getOperand(2).getReg();
3065     Register RHS = MI.getOperand(3).getReg();
3066     Register CarryIn = MI.getOperand(4).getReg();
3067     LLT Ty = MRI.getType(Res);
3068 
3069     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3070     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3071     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3072     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3073 
3074     MI.eraseFromParent();
3075     return Legalized;
3076   }
3077   case G_USUBO: {
3078     Register Res = MI.getOperand(0).getReg();
3079     Register BorrowOut = MI.getOperand(1).getReg();
3080     Register LHS = MI.getOperand(2).getReg();
3081     Register RHS = MI.getOperand(3).getReg();
3082 
3083     MIRBuilder.buildSub(Res, LHS, RHS);
3084     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3085 
3086     MI.eraseFromParent();
3087     return Legalized;
3088   }
3089   case G_USUBE: {
3090     Register Res = MI.getOperand(0).getReg();
3091     Register BorrowOut = MI.getOperand(1).getReg();
3092     Register LHS = MI.getOperand(2).getReg();
3093     Register RHS = MI.getOperand(3).getReg();
3094     Register BorrowIn = MI.getOperand(4).getReg();
3095     const LLT CondTy = MRI.getType(BorrowOut);
3096     const LLT Ty = MRI.getType(Res);
3097 
3098     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3099     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3100     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3101 
3102     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3103     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3104     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3105 
3106     MI.eraseFromParent();
3107     return Legalized;
3108   }
3109   case G_UITOFP:
3110     return lowerUITOFP(MI);
3111   case G_SITOFP:
3112     return lowerSITOFP(MI);
3113   case G_FPTOUI:
3114     return lowerFPTOUI(MI);
3115   case G_FPTOSI:
3116     return lowerFPTOSI(MI);
3117   case G_FPTRUNC:
3118     return lowerFPTRUNC(MI);
3119   case G_FPOWI:
3120     return lowerFPOWI(MI);
3121   case G_SMIN:
3122   case G_SMAX:
3123   case G_UMIN:
3124   case G_UMAX:
3125     return lowerMinMax(MI);
3126   case G_FCOPYSIGN:
3127     return lowerFCopySign(MI);
3128   case G_FMINNUM:
3129   case G_FMAXNUM:
3130     return lowerFMinNumMaxNum(MI);
3131   case G_MERGE_VALUES:
3132     return lowerMergeValues(MI);
3133   case G_UNMERGE_VALUES:
3134     return lowerUnmergeValues(MI);
3135   case TargetOpcode::G_SEXT_INREG: {
3136     assert(MI.getOperand(2).isImm() && "Expected immediate");
3137     int64_t SizeInBits = MI.getOperand(2).getImm();
3138 
3139     Register DstReg = MI.getOperand(0).getReg();
3140     Register SrcReg = MI.getOperand(1).getReg();
3141     LLT DstTy = MRI.getType(DstReg);
3142     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3143 
3144     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3145     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3146     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3147     MI.eraseFromParent();
3148     return Legalized;
3149   }
3150   case G_EXTRACT_VECTOR_ELT:
3151   case G_INSERT_VECTOR_ELT:
3152     return lowerExtractInsertVectorElt(MI);
3153   case G_SHUFFLE_VECTOR:
3154     return lowerShuffleVector(MI);
3155   case G_DYN_STACKALLOC:
3156     return lowerDynStackAlloc(MI);
3157   case G_EXTRACT:
3158     return lowerExtract(MI);
3159   case G_INSERT:
3160     return lowerInsert(MI);
3161   case G_BSWAP:
3162     return lowerBswap(MI);
3163   case G_BITREVERSE:
3164     return lowerBitreverse(MI);
3165   case G_READ_REGISTER:
3166   case G_WRITE_REGISTER:
3167     return lowerReadWriteRegister(MI);
3168   case G_UADDSAT:
3169   case G_USUBSAT: {
3170     // Try to make a reasonable guess about which lowering strategy to use. The
3171     // target can override this with custom lowering and calling the
3172     // implementation functions.
3173     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3174     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3175       return lowerAddSubSatToMinMax(MI);
3176     return lowerAddSubSatToAddoSubo(MI);
3177   }
3178   case G_SADDSAT:
3179   case G_SSUBSAT: {
3180     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3181 
3182     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3183     // since it's a shorter expansion. However, we would need to figure out the
3184     // preferred boolean type for the carry out for the query.
3185     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3186       return lowerAddSubSatToMinMax(MI);
3187     return lowerAddSubSatToAddoSubo(MI);
3188   }
3189   case G_SSHLSAT:
3190   case G_USHLSAT:
3191     return lowerShlSat(MI);
3192   case G_ABS:
3193     return lowerAbsToAddXor(MI);
3194   case G_SELECT:
3195     return lowerSelect(MI);
3196   case G_SDIVREM:
3197   case G_UDIVREM:
3198     return lowerDIVREM(MI);
3199   case G_FSHL:
3200   case G_FSHR:
3201     return lowerFunnelShift(MI);
3202   case G_ROTL:
3203   case G_ROTR:
3204     return lowerRotate(MI);
3205   }
3206 }
3207 
3208 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3209                                                   Align MinAlign) const {
3210   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3211   // datalayout for the preferred alignment. Also there should be a target hook
3212   // for this to allow targets to reduce the alignment and ignore the
3213   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3214   // the type.
3215   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3216 }
3217 
3218 MachineInstrBuilder
3219 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3220                                       MachinePointerInfo &PtrInfo) {
3221   MachineFunction &MF = MIRBuilder.getMF();
3222   const DataLayout &DL = MIRBuilder.getDataLayout();
3223   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3224 
3225   unsigned AddrSpace = DL.getAllocaAddrSpace();
3226   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3227 
3228   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3229   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3230 }
3231 
3232 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3233                                         LLT VecTy) {
3234   int64_t IdxVal;
3235   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3236     return IdxReg;
3237 
3238   LLT IdxTy = B.getMRI()->getType(IdxReg);
3239   unsigned NElts = VecTy.getNumElements();
3240   if (isPowerOf2_32(NElts)) {
3241     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3242     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3243   }
3244 
3245   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3246       .getReg(0);
3247 }
3248 
3249 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3250                                                   Register Index) {
3251   LLT EltTy = VecTy.getElementType();
3252 
3253   // Calculate the element offset and add it to the pointer.
3254   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3255   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3256          "Converting bits to bytes lost precision");
3257 
3258   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3259 
3260   LLT IdxTy = MRI.getType(Index);
3261   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3262                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3263 
3264   LLT PtrTy = MRI.getType(VecPtr);
3265   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3266 }
3267 
3268 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3269     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3270   Register DstReg = MI.getOperand(0).getReg();
3271   LLT DstTy = MRI.getType(DstReg);
3272   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3273 
3274   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3275 
3276   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3277   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3278 
3279   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3280   MI.eraseFromParent();
3281   return Legalized;
3282 }
3283 
3284 // Handle splitting vector operations which need to have the same number of
3285 // elements in each type index, but each type index may have a different element
3286 // type.
3287 //
3288 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3289 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3290 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3291 //
3292 // Also handles some irregular breakdown cases, e.g.
3293 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3294 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3295 //             s64 = G_SHL s64, s32
3296 LegalizerHelper::LegalizeResult
3297 LegalizerHelper::fewerElementsVectorMultiEltType(
3298   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3299   if (TypeIdx != 0)
3300     return UnableToLegalize;
3301 
3302   const LLT NarrowTy0 = NarrowTyArg;
3303   const unsigned NewNumElts =
3304       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3305 
3306   const Register DstReg = MI.getOperand(0).getReg();
3307   LLT DstTy = MRI.getType(DstReg);
3308   LLT LeftoverTy0;
3309 
3310   // All of the operands need to have the same number of elements, so if we can
3311   // determine a type breakdown for the result type, we can for all of the
3312   // source types.
3313   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3314   if (NumParts < 0)
3315     return UnableToLegalize;
3316 
3317   SmallVector<MachineInstrBuilder, 4> NewInsts;
3318 
3319   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3320   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3321 
3322   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3323     Register SrcReg = MI.getOperand(I).getReg();
3324     LLT SrcTyI = MRI.getType(SrcReg);
3325     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3326     LLT LeftoverTyI;
3327 
3328     // Split this operand into the requested typed registers, and any leftover
3329     // required to reproduce the original type.
3330     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3331                       LeftoverRegs))
3332       return UnableToLegalize;
3333 
3334     if (I == 1) {
3335       // For the first operand, create an instruction for each part and setup
3336       // the result.
3337       for (Register PartReg : PartRegs) {
3338         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3339         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3340                                .addDef(PartDstReg)
3341                                .addUse(PartReg));
3342         DstRegs.push_back(PartDstReg);
3343       }
3344 
3345       for (Register LeftoverReg : LeftoverRegs) {
3346         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3347         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3348                                .addDef(PartDstReg)
3349                                .addUse(LeftoverReg));
3350         LeftoverDstRegs.push_back(PartDstReg);
3351       }
3352     } else {
3353       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3354 
3355       // Add the newly created operand splits to the existing instructions. The
3356       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3357       // pieces.
3358       unsigned InstCount = 0;
3359       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3360         NewInsts[InstCount++].addUse(PartRegs[J]);
3361       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3362         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3363     }
3364 
3365     PartRegs.clear();
3366     LeftoverRegs.clear();
3367   }
3368 
3369   // Insert the newly built operations and rebuild the result register.
3370   for (auto &MIB : NewInsts)
3371     MIRBuilder.insertInstr(MIB);
3372 
3373   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3374 
3375   MI.eraseFromParent();
3376   return Legalized;
3377 }
3378 
3379 LegalizerHelper::LegalizeResult
3380 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3381                                           LLT NarrowTy) {
3382   if (TypeIdx != 0)
3383     return UnableToLegalize;
3384 
3385   Register DstReg = MI.getOperand(0).getReg();
3386   Register SrcReg = MI.getOperand(1).getReg();
3387   LLT DstTy = MRI.getType(DstReg);
3388   LLT SrcTy = MRI.getType(SrcReg);
3389 
3390   LLT NarrowTy0 = NarrowTy;
3391   LLT NarrowTy1;
3392   unsigned NumParts;
3393 
3394   if (NarrowTy.isVector()) {
3395     // Uneven breakdown not handled.
3396     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3397     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3398       return UnableToLegalize;
3399 
3400     NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType());
3401   } else {
3402     NumParts = DstTy.getNumElements();
3403     NarrowTy1 = SrcTy.getElementType();
3404   }
3405 
3406   SmallVector<Register, 4> SrcRegs, DstRegs;
3407   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3408 
3409   for (unsigned I = 0; I < NumParts; ++I) {
3410     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3411     MachineInstr *NewInst =
3412         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3413 
3414     NewInst->setFlags(MI.getFlags());
3415     DstRegs.push_back(DstReg);
3416   }
3417 
3418   if (NarrowTy.isVector())
3419     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3420   else
3421     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3422 
3423   MI.eraseFromParent();
3424   return Legalized;
3425 }
3426 
3427 LegalizerHelper::LegalizeResult
3428 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3429                                         LLT NarrowTy) {
3430   Register DstReg = MI.getOperand(0).getReg();
3431   Register Src0Reg = MI.getOperand(2).getReg();
3432   LLT DstTy = MRI.getType(DstReg);
3433   LLT SrcTy = MRI.getType(Src0Reg);
3434 
3435   unsigned NumParts;
3436   LLT NarrowTy0, NarrowTy1;
3437 
3438   if (TypeIdx == 0) {
3439     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3440     unsigned OldElts = DstTy.getNumElements();
3441 
3442     NarrowTy0 = NarrowTy;
3443     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3444     NarrowTy1 = NarrowTy.isVector() ?
3445       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3446       SrcTy.getElementType();
3447 
3448   } else {
3449     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3450     unsigned OldElts = SrcTy.getNumElements();
3451 
3452     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3453       NarrowTy.getNumElements();
3454     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3455                             DstTy.getScalarSizeInBits());
3456     NarrowTy1 = NarrowTy;
3457   }
3458 
3459   // FIXME: Don't know how to handle the situation where the small vectors
3460   // aren't all the same size yet.
3461   if (NarrowTy1.isVector() &&
3462       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3463     return UnableToLegalize;
3464 
3465   CmpInst::Predicate Pred
3466     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3467 
3468   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3469   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3470   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3471 
3472   for (unsigned I = 0; I < NumParts; ++I) {
3473     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3474     DstRegs.push_back(DstReg);
3475 
3476     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3477       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3478     else {
3479       MachineInstr *NewCmp
3480         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3481       NewCmp->setFlags(MI.getFlags());
3482     }
3483   }
3484 
3485   if (NarrowTy1.isVector())
3486     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3487   else
3488     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3489 
3490   MI.eraseFromParent();
3491   return Legalized;
3492 }
3493 
3494 LegalizerHelper::LegalizeResult
3495 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3496                                            LLT NarrowTy) {
3497   Register DstReg = MI.getOperand(0).getReg();
3498   Register CondReg = MI.getOperand(1).getReg();
3499 
3500   unsigned NumParts = 0;
3501   LLT NarrowTy0, NarrowTy1;
3502 
3503   LLT DstTy = MRI.getType(DstReg);
3504   LLT CondTy = MRI.getType(CondReg);
3505   unsigned Size = DstTy.getSizeInBits();
3506 
3507   assert(TypeIdx == 0 || CondTy.isVector());
3508 
3509   if (TypeIdx == 0) {
3510     NarrowTy0 = NarrowTy;
3511     NarrowTy1 = CondTy;
3512 
3513     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3514     // FIXME: Don't know how to handle the situation where the small vectors
3515     // aren't all the same size yet.
3516     if (Size % NarrowSize != 0)
3517       return UnableToLegalize;
3518 
3519     NumParts = Size / NarrowSize;
3520 
3521     // Need to break down the condition type
3522     if (CondTy.isVector()) {
3523       if (CondTy.getNumElements() == NumParts)
3524         NarrowTy1 = CondTy.getElementType();
3525       else
3526         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3527                                 CondTy.getScalarSizeInBits());
3528     }
3529   } else {
3530     NumParts = CondTy.getNumElements();
3531     if (NarrowTy.isVector()) {
3532       // TODO: Handle uneven breakdown.
3533       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3534         return UnableToLegalize;
3535 
3536       return UnableToLegalize;
3537     } else {
3538       NarrowTy0 = DstTy.getElementType();
3539       NarrowTy1 = NarrowTy;
3540     }
3541   }
3542 
3543   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3544   if (CondTy.isVector())
3545     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3546 
3547   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3548   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3549 
3550   for (unsigned i = 0; i < NumParts; ++i) {
3551     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3552     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3553                            Src1Regs[i], Src2Regs[i]);
3554     DstRegs.push_back(DstReg);
3555   }
3556 
3557   if (NarrowTy0.isVector())
3558     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3559   else
3560     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3561 
3562   MI.eraseFromParent();
3563   return Legalized;
3564 }
3565 
3566 LegalizerHelper::LegalizeResult
3567 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3568                                         LLT NarrowTy) {
3569   const Register DstReg = MI.getOperand(0).getReg();
3570   LLT PhiTy = MRI.getType(DstReg);
3571   LLT LeftoverTy;
3572 
3573   // All of the operands need to have the same number of elements, so if we can
3574   // determine a type breakdown for the result type, we can for all of the
3575   // source types.
3576   int NumParts, NumLeftover;
3577   std::tie(NumParts, NumLeftover)
3578     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3579   if (NumParts < 0)
3580     return UnableToLegalize;
3581 
3582   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3583   SmallVector<MachineInstrBuilder, 4> NewInsts;
3584 
3585   const int TotalNumParts = NumParts + NumLeftover;
3586 
3587   // Insert the new phis in the result block first.
3588   for (int I = 0; I != TotalNumParts; ++I) {
3589     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3590     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3591     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3592                        .addDef(PartDstReg));
3593     if (I < NumParts)
3594       DstRegs.push_back(PartDstReg);
3595     else
3596       LeftoverDstRegs.push_back(PartDstReg);
3597   }
3598 
3599   MachineBasicBlock *MBB = MI.getParent();
3600   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3601   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3602 
3603   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3604 
3605   // Insert code to extract the incoming values in each predecessor block.
3606   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3607     PartRegs.clear();
3608     LeftoverRegs.clear();
3609 
3610     Register SrcReg = MI.getOperand(I).getReg();
3611     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3612     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3613 
3614     LLT Unused;
3615     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3616                       LeftoverRegs))
3617       return UnableToLegalize;
3618 
3619     // Add the newly created operand splits to the existing instructions. The
3620     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3621     // pieces.
3622     for (int J = 0; J != TotalNumParts; ++J) {
3623       MachineInstrBuilder MIB = NewInsts[J];
3624       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3625       MIB.addMBB(&OpMBB);
3626     }
3627   }
3628 
3629   MI.eraseFromParent();
3630   return Legalized;
3631 }
3632 
3633 LegalizerHelper::LegalizeResult
3634 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3635                                                   unsigned TypeIdx,
3636                                                   LLT NarrowTy) {
3637   if (TypeIdx != 1)
3638     return UnableToLegalize;
3639 
3640   const int NumDst = MI.getNumOperands() - 1;
3641   const Register SrcReg = MI.getOperand(NumDst).getReg();
3642   LLT SrcTy = MRI.getType(SrcReg);
3643 
3644   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3645 
3646   // TODO: Create sequence of extracts.
3647   if (DstTy == NarrowTy)
3648     return UnableToLegalize;
3649 
3650   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3651   if (DstTy == GCDTy) {
3652     // This would just be a copy of the same unmerge.
3653     // TODO: Create extracts, pad with undef and create intermediate merges.
3654     return UnableToLegalize;
3655   }
3656 
3657   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3658   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3659   const int PartsPerUnmerge = NumDst / NumUnmerge;
3660 
3661   for (int I = 0; I != NumUnmerge; ++I) {
3662     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3663 
3664     for (int J = 0; J != PartsPerUnmerge; ++J)
3665       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3666     MIB.addUse(Unmerge.getReg(I));
3667   }
3668 
3669   MI.eraseFromParent();
3670   return Legalized;
3671 }
3672 
3673 LegalizerHelper::LegalizeResult
3674 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx,
3675                                          LLT NarrowTy) {
3676   Register Result = MI.getOperand(0).getReg();
3677   Register Overflow = MI.getOperand(1).getReg();
3678   Register LHS = MI.getOperand(2).getReg();
3679   Register RHS = MI.getOperand(3).getReg();
3680 
3681   LLT SrcTy = MRI.getType(LHS);
3682   if (!SrcTy.isVector())
3683     return UnableToLegalize;
3684 
3685   LLT ElementType = SrcTy.getElementType();
3686   LLT OverflowElementTy = MRI.getType(Overflow).getElementType();
3687   const int NumResult = SrcTy.getNumElements();
3688   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3689 
3690   // Unmerge the operands to smaller parts of GCD type.
3691   auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS);
3692   auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS);
3693 
3694   const int NumOps = UnmergeLHS->getNumOperands() - 1;
3695   const int PartsPerUnmerge = NumResult / NumOps;
3696   LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy);
3697   LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType);
3698 
3699   // Perform the operation over unmerged parts.
3700   SmallVector<Register, 8> ResultParts;
3701   SmallVector<Register, 8> OverflowParts;
3702   for (int I = 0; I != NumOps; ++I) {
3703     Register Operand1 = UnmergeLHS->getOperand(I).getReg();
3704     Register Operand2 = UnmergeRHS->getOperand(I).getReg();
3705     auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy},
3706                                          {Operand1, Operand2});
3707     ResultParts.push_back(PartMul->getOperand(0).getReg());
3708     OverflowParts.push_back(PartMul->getOperand(1).getReg());
3709   }
3710 
3711   LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts);
3712   LLT OverflowLCMTy =
3713       LLT::scalarOrVector(ResultLCMTy.getNumElements(), OverflowElementTy);
3714 
3715   // Recombine the pieces to the original result and overflow registers.
3716   buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts);
3717   buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts);
3718   MI.eraseFromParent();
3719   return Legalized;
3720 }
3721 
3722 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3723 // a vector
3724 //
3725 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3726 // undef as necessary.
3727 //
3728 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3729 //   -> <2 x s16>
3730 //
3731 // %4:_(s16) = G_IMPLICIT_DEF
3732 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3733 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3734 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3735 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3736 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3737 LegalizerHelper::LegalizeResult
3738 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3739                                           LLT NarrowTy) {
3740   Register DstReg = MI.getOperand(0).getReg();
3741   LLT DstTy = MRI.getType(DstReg);
3742   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3743   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3744 
3745   // Break into a common type
3746   SmallVector<Register, 16> Parts;
3747   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3748     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3749 
3750   // Build the requested new merge, padding with undef.
3751   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3752                                   TargetOpcode::G_ANYEXT);
3753 
3754   // Pack into the original result register.
3755   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3756 
3757   MI.eraseFromParent();
3758   return Legalized;
3759 }
3760 
3761 LegalizerHelper::LegalizeResult
3762 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3763                                                            unsigned TypeIdx,
3764                                                            LLT NarrowVecTy) {
3765   Register DstReg = MI.getOperand(0).getReg();
3766   Register SrcVec = MI.getOperand(1).getReg();
3767   Register InsertVal;
3768   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3769 
3770   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3771   if (IsInsert)
3772     InsertVal = MI.getOperand(2).getReg();
3773 
3774   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3775 
3776   // TODO: Handle total scalarization case.
3777   if (!NarrowVecTy.isVector())
3778     return UnableToLegalize;
3779 
3780   LLT VecTy = MRI.getType(SrcVec);
3781 
3782   // If the index is a constant, we can really break this down as you would
3783   // expect, and index into the target size pieces.
3784   int64_t IdxVal;
3785   auto MaybeCst =
3786       getConstantVRegValWithLookThrough(Idx, MRI, /*LookThroughInstrs*/ true,
3787                                         /*HandleFConstants*/ false);
3788   if (MaybeCst) {
3789     IdxVal = MaybeCst->Value.getSExtValue();
3790     // Avoid out of bounds indexing the pieces.
3791     if (IdxVal >= VecTy.getNumElements()) {
3792       MIRBuilder.buildUndef(DstReg);
3793       MI.eraseFromParent();
3794       return Legalized;
3795     }
3796 
3797     SmallVector<Register, 8> VecParts;
3798     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3799 
3800     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3801     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3802                                     TargetOpcode::G_ANYEXT);
3803 
3804     unsigned NewNumElts = NarrowVecTy.getNumElements();
3805 
3806     LLT IdxTy = MRI.getType(Idx);
3807     int64_t PartIdx = IdxVal / NewNumElts;
3808     auto NewIdx =
3809         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3810 
3811     if (IsInsert) {
3812       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3813 
3814       // Use the adjusted index to insert into one of the subvectors.
3815       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3816           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3817       VecParts[PartIdx] = InsertPart.getReg(0);
3818 
3819       // Recombine the inserted subvector with the others to reform the result
3820       // vector.
3821       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3822     } else {
3823       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3824     }
3825 
3826     MI.eraseFromParent();
3827     return Legalized;
3828   }
3829 
3830   // With a variable index, we can't perform the operation in a smaller type, so
3831   // we're forced to expand this.
3832   //
3833   // TODO: We could emit a chain of compare/select to figure out which piece to
3834   // index.
3835   return lowerExtractInsertVectorElt(MI);
3836 }
3837 
3838 LegalizerHelper::LegalizeResult
3839 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3840                                       LLT NarrowTy) {
3841   // FIXME: Don't know how to handle secondary types yet.
3842   if (TypeIdx != 0)
3843     return UnableToLegalize;
3844 
3845   MachineMemOperand *MMO = *MI.memoperands_begin();
3846 
3847   // This implementation doesn't work for atomics. Give up instead of doing
3848   // something invalid.
3849   if (MMO->isAtomic())
3850     return UnableToLegalize;
3851 
3852   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3853   Register ValReg = MI.getOperand(0).getReg();
3854   Register AddrReg = MI.getOperand(1).getReg();
3855   LLT ValTy = MRI.getType(ValReg);
3856 
3857   // FIXME: Do we need a distinct NarrowMemory legalize action?
3858   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3859     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3860     return UnableToLegalize;
3861   }
3862 
3863   int NumParts = -1;
3864   int NumLeftover = -1;
3865   LLT LeftoverTy;
3866   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3867   if (IsLoad) {
3868     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3869   } else {
3870     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3871                      NarrowLeftoverRegs)) {
3872       NumParts = NarrowRegs.size();
3873       NumLeftover = NarrowLeftoverRegs.size();
3874     }
3875   }
3876 
3877   if (NumParts == -1)
3878     return UnableToLegalize;
3879 
3880   LLT PtrTy = MRI.getType(AddrReg);
3881   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3882 
3883   unsigned TotalSize = ValTy.getSizeInBits();
3884 
3885   // Split the load/store into PartTy sized pieces starting at Offset. If this
3886   // is a load, return the new registers in ValRegs. For a store, each elements
3887   // of ValRegs should be PartTy. Returns the next offset that needs to be
3888   // handled.
3889   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3890                              unsigned Offset) -> unsigned {
3891     MachineFunction &MF = MIRBuilder.getMF();
3892     unsigned PartSize = PartTy.getSizeInBits();
3893     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3894          Offset += PartSize, ++Idx) {
3895       unsigned ByteSize = PartSize / 8;
3896       unsigned ByteOffset = Offset / 8;
3897       Register NewAddrReg;
3898 
3899       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3900 
3901       MachineMemOperand *NewMMO =
3902         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3903 
3904       if (IsLoad) {
3905         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3906         ValRegs.push_back(Dst);
3907         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3908       } else {
3909         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3910       }
3911     }
3912 
3913     return Offset;
3914   };
3915 
3916   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3917 
3918   // Handle the rest of the register if this isn't an even type breakdown.
3919   if (LeftoverTy.isValid())
3920     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3921 
3922   if (IsLoad) {
3923     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3924                 LeftoverTy, NarrowLeftoverRegs);
3925   }
3926 
3927   MI.eraseFromParent();
3928   return Legalized;
3929 }
3930 
3931 LegalizerHelper::LegalizeResult
3932 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3933                                       LLT NarrowTy) {
3934   assert(TypeIdx == 0 && "only one type index expected");
3935 
3936   const unsigned Opc = MI.getOpcode();
3937   const int NumDefOps = MI.getNumExplicitDefs();
3938   const int NumSrcOps = MI.getNumOperands() - NumDefOps;
3939   const unsigned Flags = MI.getFlags();
3940   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3941   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3942 
3943   assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 "
3944                                      "result and 1-3 sources or 2 results and "
3945                                      "1-2 sources");
3946 
3947   SmallVector<Register, 2> DstRegs;
3948   for (int I = 0; I < NumDefOps; ++I)
3949     DstRegs.push_back(MI.getOperand(I).getReg());
3950 
3951   // First of all check whether we are narrowing (changing the element type)
3952   // or reducing the vector elements
3953   const LLT DstTy = MRI.getType(DstRegs[0]);
3954   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3955 
3956   SmallVector<Register, 8> ExtractedRegs[3];
3957   SmallVector<Register, 8> Parts;
3958 
3959   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3960 
3961   // Break down all the sources into NarrowTy pieces we can operate on. This may
3962   // involve creating merges to a wider type, padded with undef.
3963   for (int I = 0; I != NumSrcOps; ++I) {
3964     Register SrcReg = MI.getOperand(I + NumDefOps).getReg();
3965     LLT SrcTy = MRI.getType(SrcReg);
3966 
3967     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3968     // For fewerElements, this is a smaller vector with the same element type.
3969     LLT OpNarrowTy;
3970     if (IsNarrow) {
3971       OpNarrowTy = NarrowScalarTy;
3972 
3973       // In case of narrowing, we need to cast vectors to scalars for this to
3974       // work properly
3975       // FIXME: Can we do without the bitcast here if we're narrowing?
3976       if (SrcTy.isVector()) {
3977         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3978         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3979       }
3980     } else {
3981       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3982     }
3983 
3984     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3985 
3986     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3987     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3988                         TargetOpcode::G_ANYEXT);
3989   }
3990 
3991   SmallVector<Register, 8> ResultRegs[2];
3992 
3993   // Input operands for each sub-instruction.
3994   SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register());
3995 
3996   int NumParts = ExtractedRegs[0].size();
3997   const unsigned DstSize = DstTy.getSizeInBits();
3998   const LLT DstScalarTy = LLT::scalar(DstSize);
3999 
4000   // Narrowing needs to use scalar types
4001   LLT DstLCMTy, NarrowDstTy;
4002   if (IsNarrow) {
4003     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
4004     NarrowDstTy = NarrowScalarTy;
4005   } else {
4006     DstLCMTy = getLCMType(DstTy, NarrowTy);
4007     NarrowDstTy = NarrowTy;
4008   }
4009 
4010   // We widened the source registers to satisfy merge/unmerge size
4011   // constraints. We'll have some extra fully undef parts.
4012   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
4013 
4014   for (int I = 0; I != NumRealParts; ++I) {
4015     // Emit this instruction on each of the split pieces.
4016     for (int J = 0; J != NumSrcOps; ++J)
4017       InputRegs[J] = ExtractedRegs[J][I];
4018 
4019     MachineInstrBuilder Inst;
4020     if (NumDefOps == 1)
4021       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
4022     else
4023       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs,
4024                                    Flags);
4025 
4026     for (int J = 0; J != NumDefOps; ++J)
4027       ResultRegs[J].push_back(Inst.getReg(J));
4028   }
4029 
4030   // Fill out the widened result with undef instead of creating instructions
4031   // with undef inputs.
4032   int NumUndefParts = NumParts - NumRealParts;
4033   if (NumUndefParts != 0) {
4034     Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0);
4035     for (int I = 0; I != NumDefOps; ++I)
4036       ResultRegs[I].append(NumUndefParts, Undef);
4037   }
4038 
4039   // Extract the possibly padded result. Use a scratch register if we need to do
4040   // a final bitcast, otherwise use the original result register.
4041   Register MergeDstReg;
4042   for (int I = 0; I != NumDefOps; ++I) {
4043     if (IsNarrow && DstTy.isVector())
4044       MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
4045     else
4046       MergeDstReg = DstRegs[I];
4047 
4048     buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]);
4049 
4050     // Recast to vector if we narrowed a vector
4051     if (IsNarrow && DstTy.isVector())
4052       MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg);
4053   }
4054 
4055   MI.eraseFromParent();
4056   return Legalized;
4057 }
4058 
4059 LegalizerHelper::LegalizeResult
4060 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
4061                                               LLT NarrowTy) {
4062   Register DstReg = MI.getOperand(0).getReg();
4063   Register SrcReg = MI.getOperand(1).getReg();
4064   int64_t Imm = MI.getOperand(2).getImm();
4065 
4066   LLT DstTy = MRI.getType(DstReg);
4067 
4068   SmallVector<Register, 8> Parts;
4069   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4070   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
4071 
4072   for (Register &R : Parts)
4073     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
4074 
4075   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4076 
4077   MI.eraseFromParent();
4078   return Legalized;
4079 }
4080 
4081 LegalizerHelper::LegalizeResult
4082 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4083                                      LLT NarrowTy) {
4084   using namespace TargetOpcode;
4085 
4086   switch (MI.getOpcode()) {
4087   case G_IMPLICIT_DEF:
4088     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
4089   case G_TRUNC:
4090   case G_AND:
4091   case G_OR:
4092   case G_XOR:
4093   case G_ADD:
4094   case G_SUB:
4095   case G_MUL:
4096   case G_PTR_ADD:
4097   case G_SMULH:
4098   case G_UMULH:
4099   case G_FADD:
4100   case G_FMUL:
4101   case G_FSUB:
4102   case G_FNEG:
4103   case G_FABS:
4104   case G_FCANONICALIZE:
4105   case G_FDIV:
4106   case G_FREM:
4107   case G_FMA:
4108   case G_FMAD:
4109   case G_FPOW:
4110   case G_FEXP:
4111   case G_FEXP2:
4112   case G_FLOG:
4113   case G_FLOG2:
4114   case G_FLOG10:
4115   case G_FNEARBYINT:
4116   case G_FCEIL:
4117   case G_FFLOOR:
4118   case G_FRINT:
4119   case G_INTRINSIC_ROUND:
4120   case G_INTRINSIC_ROUNDEVEN:
4121   case G_INTRINSIC_TRUNC:
4122   case G_FCOS:
4123   case G_FSIN:
4124   case G_FSQRT:
4125   case G_BSWAP:
4126   case G_BITREVERSE:
4127   case G_SDIV:
4128   case G_UDIV:
4129   case G_SREM:
4130   case G_UREM:
4131   case G_SDIVREM:
4132   case G_UDIVREM:
4133   case G_SMIN:
4134   case G_SMAX:
4135   case G_UMIN:
4136   case G_UMAX:
4137   case G_ABS:
4138   case G_FMINNUM:
4139   case G_FMAXNUM:
4140   case G_FMINNUM_IEEE:
4141   case G_FMAXNUM_IEEE:
4142   case G_FMINIMUM:
4143   case G_FMAXIMUM:
4144   case G_FSHL:
4145   case G_FSHR:
4146   case G_FREEZE:
4147   case G_SADDSAT:
4148   case G_SSUBSAT:
4149   case G_UADDSAT:
4150   case G_USUBSAT:
4151     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4152   case G_UMULO:
4153   case G_SMULO:
4154     return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy);
4155   case G_SHL:
4156   case G_LSHR:
4157   case G_ASHR:
4158   case G_SSHLSAT:
4159   case G_USHLSAT:
4160   case G_CTLZ:
4161   case G_CTLZ_ZERO_UNDEF:
4162   case G_CTTZ:
4163   case G_CTTZ_ZERO_UNDEF:
4164   case G_CTPOP:
4165   case G_FCOPYSIGN:
4166     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4167   case G_ZEXT:
4168   case G_SEXT:
4169   case G_ANYEXT:
4170   case G_FPEXT:
4171   case G_FPTRUNC:
4172   case G_SITOFP:
4173   case G_UITOFP:
4174   case G_FPTOSI:
4175   case G_FPTOUI:
4176   case G_INTTOPTR:
4177   case G_PTRTOINT:
4178   case G_ADDRSPACE_CAST:
4179     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4180   case G_ICMP:
4181   case G_FCMP:
4182     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4183   case G_SELECT:
4184     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4185   case G_PHI:
4186     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4187   case G_UNMERGE_VALUES:
4188     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4189   case G_BUILD_VECTOR:
4190     assert(TypeIdx == 0 && "not a vector type index");
4191     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4192   case G_CONCAT_VECTORS:
4193     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4194       return UnableToLegalize;
4195     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4196   case G_EXTRACT_VECTOR_ELT:
4197   case G_INSERT_VECTOR_ELT:
4198     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4199   case G_LOAD:
4200   case G_STORE:
4201     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4202   case G_SEXT_INREG:
4203     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4204   GISEL_VECREDUCE_CASES_NONSEQ
4205     return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4206   case G_SHUFFLE_VECTOR:
4207     return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy);
4208   default:
4209     return UnableToLegalize;
4210   }
4211 }
4212 
4213 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle(
4214     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4215   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
4216   if (TypeIdx != 0)
4217     return UnableToLegalize;
4218 
4219   Register DstReg = MI.getOperand(0).getReg();
4220   Register Src1Reg = MI.getOperand(1).getReg();
4221   Register Src2Reg = MI.getOperand(2).getReg();
4222   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4223   LLT DstTy = MRI.getType(DstReg);
4224   LLT Src1Ty = MRI.getType(Src1Reg);
4225   LLT Src2Ty = MRI.getType(Src2Reg);
4226   // The shuffle should be canonicalized by now.
4227   if (DstTy != Src1Ty)
4228     return UnableToLegalize;
4229   if (DstTy != Src2Ty)
4230     return UnableToLegalize;
4231 
4232   if (!isPowerOf2_32(DstTy.getNumElements()))
4233     return UnableToLegalize;
4234 
4235   // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly.
4236   // Further legalization attempts will be needed to do split further.
4237   NarrowTy = DstTy.changeNumElements(DstTy.getNumElements() / 2);
4238   unsigned NewElts = NarrowTy.getNumElements();
4239 
4240   SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs;
4241   extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs);
4242   extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs);
4243   Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0],
4244                         SplitSrc2Regs[1]};
4245 
4246   Register Hi, Lo;
4247 
4248   // If Lo or Hi uses elements from at most two of the four input vectors, then
4249   // express it as a vector shuffle of those two inputs.  Otherwise extract the
4250   // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
4251   SmallVector<int, 16> Ops;
4252   for (unsigned High = 0; High < 2; ++High) {
4253     Register &Output = High ? Hi : Lo;
4254 
4255     // Build a shuffle mask for the output, discovering on the fly which
4256     // input vectors to use as shuffle operands (recorded in InputUsed).
4257     // If building a suitable shuffle vector proves too hard, then bail
4258     // out with useBuildVector set.
4259     unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered.
4260     unsigned FirstMaskIdx = High * NewElts;
4261     bool UseBuildVector = false;
4262     for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4263       // The mask element.  This indexes into the input.
4264       int Idx = Mask[FirstMaskIdx + MaskOffset];
4265 
4266       // The input vector this mask element indexes into.
4267       unsigned Input = (unsigned)Idx / NewElts;
4268 
4269       if (Input >= array_lengthof(Inputs)) {
4270         // The mask element does not index into any input vector.
4271         Ops.push_back(-1);
4272         continue;
4273       }
4274 
4275       // Turn the index into an offset from the start of the input vector.
4276       Idx -= Input * NewElts;
4277 
4278       // Find or create a shuffle vector operand to hold this input.
4279       unsigned OpNo;
4280       for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
4281         if (InputUsed[OpNo] == Input) {
4282           // This input vector is already an operand.
4283           break;
4284         } else if (InputUsed[OpNo] == -1U) {
4285           // Create a new operand for this input vector.
4286           InputUsed[OpNo] = Input;
4287           break;
4288         }
4289       }
4290 
4291       if (OpNo >= array_lengthof(InputUsed)) {
4292         // More than two input vectors used!  Give up on trying to create a
4293         // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
4294         UseBuildVector = true;
4295         break;
4296       }
4297 
4298       // Add the mask index for the new shuffle vector.
4299       Ops.push_back(Idx + OpNo * NewElts);
4300     }
4301 
4302     if (UseBuildVector) {
4303       LLT EltTy = NarrowTy.getElementType();
4304       SmallVector<Register, 16> SVOps;
4305 
4306       // Extract the input elements by hand.
4307       for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4308         // The mask element.  This indexes into the input.
4309         int Idx = Mask[FirstMaskIdx + MaskOffset];
4310 
4311         // The input vector this mask element indexes into.
4312         unsigned Input = (unsigned)Idx / NewElts;
4313 
4314         if (Input >= array_lengthof(Inputs)) {
4315           // The mask element is "undef" or indexes off the end of the input.
4316           SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0));
4317           continue;
4318         }
4319 
4320         // Turn the index into an offset from the start of the input vector.
4321         Idx -= Input * NewElts;
4322 
4323         // Extract the vector element by hand.
4324         SVOps.push_back(MIRBuilder
4325                             .buildExtractVectorElement(
4326                                 EltTy, Inputs[Input],
4327                                 MIRBuilder.buildConstant(LLT::scalar(32), Idx))
4328                             .getReg(0));
4329       }
4330 
4331       // Construct the Lo/Hi output using a G_BUILD_VECTOR.
4332       Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0);
4333     } else if (InputUsed[0] == -1U) {
4334       // No input vectors were used! The result is undefined.
4335       Output = MIRBuilder.buildUndef(NarrowTy).getReg(0);
4336     } else {
4337       Register Op0 = Inputs[InputUsed[0]];
4338       // If only one input was used, use an undefined vector for the other.
4339       Register Op1 = InputUsed[1] == -1U
4340                          ? MIRBuilder.buildUndef(NarrowTy).getReg(0)
4341                          : Inputs[InputUsed[1]];
4342       // At least one input vector was used. Create a new shuffle vector.
4343       Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0);
4344     }
4345 
4346     Ops.clear();
4347   }
4348 
4349   MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi});
4350   MI.eraseFromParent();
4351   return Legalized;
4352 }
4353 
4354 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4355     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4356   unsigned Opc = MI.getOpcode();
4357   assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&
4358          Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
4359          "Sequential reductions not expected");
4360 
4361   if (TypeIdx != 1)
4362     return UnableToLegalize;
4363 
4364   // The semantics of the normal non-sequential reductions allow us to freely
4365   // re-associate the operation.
4366   Register SrcReg = MI.getOperand(1).getReg();
4367   LLT SrcTy = MRI.getType(SrcReg);
4368   Register DstReg = MI.getOperand(0).getReg();
4369   LLT DstTy = MRI.getType(DstReg);
4370 
4371   if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)
4372     return UnableToLegalize;
4373 
4374   SmallVector<Register> SplitSrcs;
4375   const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements();
4376   extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
4377   SmallVector<Register> PartialReductions;
4378   for (unsigned Part = 0; Part < NumParts; ++Part) {
4379     PartialReductions.push_back(
4380         MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
4381   }
4382 
4383   unsigned ScalarOpc;
4384   switch (Opc) {
4385   case TargetOpcode::G_VECREDUCE_FADD:
4386     ScalarOpc = TargetOpcode::G_FADD;
4387     break;
4388   case TargetOpcode::G_VECREDUCE_FMUL:
4389     ScalarOpc = TargetOpcode::G_FMUL;
4390     break;
4391   case TargetOpcode::G_VECREDUCE_FMAX:
4392     ScalarOpc = TargetOpcode::G_FMAXNUM;
4393     break;
4394   case TargetOpcode::G_VECREDUCE_FMIN:
4395     ScalarOpc = TargetOpcode::G_FMINNUM;
4396     break;
4397   case TargetOpcode::G_VECREDUCE_ADD:
4398     ScalarOpc = TargetOpcode::G_ADD;
4399     break;
4400   case TargetOpcode::G_VECREDUCE_MUL:
4401     ScalarOpc = TargetOpcode::G_MUL;
4402     break;
4403   case TargetOpcode::G_VECREDUCE_AND:
4404     ScalarOpc = TargetOpcode::G_AND;
4405     break;
4406   case TargetOpcode::G_VECREDUCE_OR:
4407     ScalarOpc = TargetOpcode::G_OR;
4408     break;
4409   case TargetOpcode::G_VECREDUCE_XOR:
4410     ScalarOpc = TargetOpcode::G_XOR;
4411     break;
4412   case TargetOpcode::G_VECREDUCE_SMAX:
4413     ScalarOpc = TargetOpcode::G_SMAX;
4414     break;
4415   case TargetOpcode::G_VECREDUCE_SMIN:
4416     ScalarOpc = TargetOpcode::G_SMIN;
4417     break;
4418   case TargetOpcode::G_VECREDUCE_UMAX:
4419     ScalarOpc = TargetOpcode::G_UMAX;
4420     break;
4421   case TargetOpcode::G_VECREDUCE_UMIN:
4422     ScalarOpc = TargetOpcode::G_UMIN;
4423     break;
4424   default:
4425     LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n");
4426     return UnableToLegalize;
4427   }
4428 
4429   // If the types involved are powers of 2, we can generate intermediate vector
4430   // ops, before generating a final reduction operation.
4431   if (isPowerOf2_32(SrcTy.getNumElements()) &&
4432       isPowerOf2_32(NarrowTy.getNumElements())) {
4433     return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4434   }
4435 
4436   Register Acc = PartialReductions[0];
4437   for (unsigned Part = 1; Part < NumParts; ++Part) {
4438     if (Part == NumParts - 1) {
4439       MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4440                             {Acc, PartialReductions[Part]});
4441     } else {
4442       Acc = MIRBuilder
4443                 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4444                 .getReg(0);
4445     }
4446   }
4447   MI.eraseFromParent();
4448   return Legalized;
4449 }
4450 
4451 LegalizerHelper::LegalizeResult
4452 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4453                                         LLT SrcTy, LLT NarrowTy,
4454                                         unsigned ScalarOpc) {
4455   SmallVector<Register> SplitSrcs;
4456   // Split the sources into NarrowTy size pieces.
4457   extractParts(SrcReg, NarrowTy,
4458                SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
4459   // We're going to do a tree reduction using vector operations until we have
4460   // one NarrowTy size value left.
4461   while (SplitSrcs.size() > 1) {
4462     SmallVector<Register> PartialRdxs;
4463     for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4464       Register LHS = SplitSrcs[Idx];
4465       Register RHS = SplitSrcs[Idx + 1];
4466       // Create the intermediate vector op.
4467       Register Res =
4468           MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4469       PartialRdxs.push_back(Res);
4470     }
4471     SplitSrcs = std::move(PartialRdxs);
4472   }
4473   // Finally generate the requested NarrowTy based reduction.
4474   Observer.changingInstr(MI);
4475   MI.getOperand(1).setReg(SplitSrcs[0]);
4476   Observer.changedInstr(MI);
4477   return Legalized;
4478 }
4479 
4480 LegalizerHelper::LegalizeResult
4481 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4482                                              const LLT HalfTy, const LLT AmtTy) {
4483 
4484   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4485   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4486   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4487 
4488   if (Amt.isNullValue()) {
4489     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4490     MI.eraseFromParent();
4491     return Legalized;
4492   }
4493 
4494   LLT NVT = HalfTy;
4495   unsigned NVTBits = HalfTy.getSizeInBits();
4496   unsigned VTBits = 2 * NVTBits;
4497 
4498   SrcOp Lo(Register(0)), Hi(Register(0));
4499   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4500     if (Amt.ugt(VTBits)) {
4501       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4502     } else if (Amt.ugt(NVTBits)) {
4503       Lo = MIRBuilder.buildConstant(NVT, 0);
4504       Hi = MIRBuilder.buildShl(NVT, InL,
4505                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4506     } else if (Amt == NVTBits) {
4507       Lo = MIRBuilder.buildConstant(NVT, 0);
4508       Hi = InL;
4509     } else {
4510       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4511       auto OrLHS =
4512           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4513       auto OrRHS = MIRBuilder.buildLShr(
4514           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4515       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4516     }
4517   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4518     if (Amt.ugt(VTBits)) {
4519       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4520     } else if (Amt.ugt(NVTBits)) {
4521       Lo = MIRBuilder.buildLShr(NVT, InH,
4522                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4523       Hi = MIRBuilder.buildConstant(NVT, 0);
4524     } else if (Amt == NVTBits) {
4525       Lo = InH;
4526       Hi = MIRBuilder.buildConstant(NVT, 0);
4527     } else {
4528       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4529 
4530       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4531       auto OrRHS = MIRBuilder.buildShl(
4532           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4533 
4534       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4535       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4536     }
4537   } else {
4538     if (Amt.ugt(VTBits)) {
4539       Hi = Lo = MIRBuilder.buildAShr(
4540           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4541     } else if (Amt.ugt(NVTBits)) {
4542       Lo = MIRBuilder.buildAShr(NVT, InH,
4543                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4544       Hi = MIRBuilder.buildAShr(NVT, InH,
4545                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4546     } else if (Amt == NVTBits) {
4547       Lo = InH;
4548       Hi = MIRBuilder.buildAShr(NVT, InH,
4549                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4550     } else {
4551       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4552 
4553       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4554       auto OrRHS = MIRBuilder.buildShl(
4555           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4556 
4557       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4558       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4559     }
4560   }
4561 
4562   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4563   MI.eraseFromParent();
4564 
4565   return Legalized;
4566 }
4567 
4568 // TODO: Optimize if constant shift amount.
4569 LegalizerHelper::LegalizeResult
4570 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4571                                    LLT RequestedTy) {
4572   if (TypeIdx == 1) {
4573     Observer.changingInstr(MI);
4574     narrowScalarSrc(MI, RequestedTy, 2);
4575     Observer.changedInstr(MI);
4576     return Legalized;
4577   }
4578 
4579   Register DstReg = MI.getOperand(0).getReg();
4580   LLT DstTy = MRI.getType(DstReg);
4581   if (DstTy.isVector())
4582     return UnableToLegalize;
4583 
4584   Register Amt = MI.getOperand(2).getReg();
4585   LLT ShiftAmtTy = MRI.getType(Amt);
4586   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4587   if (DstEltSize % 2 != 0)
4588     return UnableToLegalize;
4589 
4590   // Ignore the input type. We can only go to exactly half the size of the
4591   // input. If that isn't small enough, the resulting pieces will be further
4592   // legalized.
4593   const unsigned NewBitSize = DstEltSize / 2;
4594   const LLT HalfTy = LLT::scalar(NewBitSize);
4595   const LLT CondTy = LLT::scalar(1);
4596 
4597   if (const MachineInstr *KShiftAmt =
4598           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4599     return narrowScalarShiftByConstant(
4600         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4601   }
4602 
4603   // TODO: Expand with known bits.
4604 
4605   // Handle the fully general expansion by an unknown amount.
4606   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4607 
4608   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4609   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4610   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4611 
4612   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4613   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4614 
4615   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4616   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4617   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4618 
4619   Register ResultRegs[2];
4620   switch (MI.getOpcode()) {
4621   case TargetOpcode::G_SHL: {
4622     // Short: ShAmt < NewBitSize
4623     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4624 
4625     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4626     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4627     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4628 
4629     // Long: ShAmt >= NewBitSize
4630     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4631     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4632 
4633     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4634     auto Hi = MIRBuilder.buildSelect(
4635         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4636 
4637     ResultRegs[0] = Lo.getReg(0);
4638     ResultRegs[1] = Hi.getReg(0);
4639     break;
4640   }
4641   case TargetOpcode::G_LSHR:
4642   case TargetOpcode::G_ASHR: {
4643     // Short: ShAmt < NewBitSize
4644     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4645 
4646     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4647     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4648     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4649 
4650     // Long: ShAmt >= NewBitSize
4651     MachineInstrBuilder HiL;
4652     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4653       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4654     } else {
4655       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4656       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4657     }
4658     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4659                                      {InH, AmtExcess});     // Lo from Hi part.
4660 
4661     auto Lo = MIRBuilder.buildSelect(
4662         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4663 
4664     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4665 
4666     ResultRegs[0] = Lo.getReg(0);
4667     ResultRegs[1] = Hi.getReg(0);
4668     break;
4669   }
4670   default:
4671     llvm_unreachable("not a shift");
4672   }
4673 
4674   MIRBuilder.buildMerge(DstReg, ResultRegs);
4675   MI.eraseFromParent();
4676   return Legalized;
4677 }
4678 
4679 LegalizerHelper::LegalizeResult
4680 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4681                                        LLT MoreTy) {
4682   assert(TypeIdx == 0 && "Expecting only Idx 0");
4683 
4684   Observer.changingInstr(MI);
4685   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4686     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4687     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4688     moreElementsVectorSrc(MI, MoreTy, I);
4689   }
4690 
4691   MachineBasicBlock &MBB = *MI.getParent();
4692   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4693   moreElementsVectorDst(MI, MoreTy, 0);
4694   Observer.changedInstr(MI);
4695   return Legalized;
4696 }
4697 
4698 LegalizerHelper::LegalizeResult
4699 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4700                                     LLT MoreTy) {
4701   unsigned Opc = MI.getOpcode();
4702   switch (Opc) {
4703   case TargetOpcode::G_IMPLICIT_DEF:
4704   case TargetOpcode::G_LOAD: {
4705     if (TypeIdx != 0)
4706       return UnableToLegalize;
4707     Observer.changingInstr(MI);
4708     moreElementsVectorDst(MI, MoreTy, 0);
4709     Observer.changedInstr(MI);
4710     return Legalized;
4711   }
4712   case TargetOpcode::G_STORE:
4713     if (TypeIdx != 0)
4714       return UnableToLegalize;
4715     Observer.changingInstr(MI);
4716     moreElementsVectorSrc(MI, MoreTy, 0);
4717     Observer.changedInstr(MI);
4718     return Legalized;
4719   case TargetOpcode::G_AND:
4720   case TargetOpcode::G_OR:
4721   case TargetOpcode::G_XOR:
4722   case TargetOpcode::G_SMIN:
4723   case TargetOpcode::G_SMAX:
4724   case TargetOpcode::G_UMIN:
4725   case TargetOpcode::G_UMAX:
4726   case TargetOpcode::G_FMINNUM:
4727   case TargetOpcode::G_FMAXNUM:
4728   case TargetOpcode::G_FMINNUM_IEEE:
4729   case TargetOpcode::G_FMAXNUM_IEEE:
4730   case TargetOpcode::G_FMINIMUM:
4731   case TargetOpcode::G_FMAXIMUM: {
4732     Observer.changingInstr(MI);
4733     moreElementsVectorSrc(MI, MoreTy, 1);
4734     moreElementsVectorSrc(MI, MoreTy, 2);
4735     moreElementsVectorDst(MI, MoreTy, 0);
4736     Observer.changedInstr(MI);
4737     return Legalized;
4738   }
4739   case TargetOpcode::G_EXTRACT:
4740     if (TypeIdx != 1)
4741       return UnableToLegalize;
4742     Observer.changingInstr(MI);
4743     moreElementsVectorSrc(MI, MoreTy, 1);
4744     Observer.changedInstr(MI);
4745     return Legalized;
4746   case TargetOpcode::G_INSERT:
4747   case TargetOpcode::G_FREEZE:
4748     if (TypeIdx != 0)
4749       return UnableToLegalize;
4750     Observer.changingInstr(MI);
4751     moreElementsVectorSrc(MI, MoreTy, 1);
4752     moreElementsVectorDst(MI, MoreTy, 0);
4753     Observer.changedInstr(MI);
4754     return Legalized;
4755   case TargetOpcode::G_SELECT:
4756     if (TypeIdx != 0)
4757       return UnableToLegalize;
4758     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4759       return UnableToLegalize;
4760 
4761     Observer.changingInstr(MI);
4762     moreElementsVectorSrc(MI, MoreTy, 2);
4763     moreElementsVectorSrc(MI, MoreTy, 3);
4764     moreElementsVectorDst(MI, MoreTy, 0);
4765     Observer.changedInstr(MI);
4766     return Legalized;
4767   case TargetOpcode::G_UNMERGE_VALUES: {
4768     if (TypeIdx != 1)
4769       return UnableToLegalize;
4770 
4771     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4772     int NumDst = MI.getNumOperands() - 1;
4773     moreElementsVectorSrc(MI, MoreTy, NumDst);
4774 
4775     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4776     for (int I = 0; I != NumDst; ++I)
4777       MIB.addDef(MI.getOperand(I).getReg());
4778 
4779     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4780     for (int I = NumDst; I != NewNumDst; ++I)
4781       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4782 
4783     MIB.addUse(MI.getOperand(NumDst).getReg());
4784     MI.eraseFromParent();
4785     return Legalized;
4786   }
4787   case TargetOpcode::G_PHI:
4788     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4789   default:
4790     return UnableToLegalize;
4791   }
4792 }
4793 
4794 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4795                                         ArrayRef<Register> Src1Regs,
4796                                         ArrayRef<Register> Src2Regs,
4797                                         LLT NarrowTy) {
4798   MachineIRBuilder &B = MIRBuilder;
4799   unsigned SrcParts = Src1Regs.size();
4800   unsigned DstParts = DstRegs.size();
4801 
4802   unsigned DstIdx = 0; // Low bits of the result.
4803   Register FactorSum =
4804       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4805   DstRegs[DstIdx] = FactorSum;
4806 
4807   unsigned CarrySumPrevDstIdx;
4808   SmallVector<Register, 4> Factors;
4809 
4810   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4811     // Collect low parts of muls for DstIdx.
4812     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4813          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4814       MachineInstrBuilder Mul =
4815           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4816       Factors.push_back(Mul.getReg(0));
4817     }
4818     // Collect high parts of muls from previous DstIdx.
4819     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4820          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4821       MachineInstrBuilder Umulh =
4822           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4823       Factors.push_back(Umulh.getReg(0));
4824     }
4825     // Add CarrySum from additions calculated for previous DstIdx.
4826     if (DstIdx != 1) {
4827       Factors.push_back(CarrySumPrevDstIdx);
4828     }
4829 
4830     Register CarrySum;
4831     // Add all factors and accumulate all carries into CarrySum.
4832     if (DstIdx != DstParts - 1) {
4833       MachineInstrBuilder Uaddo =
4834           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4835       FactorSum = Uaddo.getReg(0);
4836       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4837       for (unsigned i = 2; i < Factors.size(); ++i) {
4838         MachineInstrBuilder Uaddo =
4839             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4840         FactorSum = Uaddo.getReg(0);
4841         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4842         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4843       }
4844     } else {
4845       // Since value for the next index is not calculated, neither is CarrySum.
4846       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4847       for (unsigned i = 2; i < Factors.size(); ++i)
4848         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4849     }
4850 
4851     CarrySumPrevDstIdx = CarrySum;
4852     DstRegs[DstIdx] = FactorSum;
4853     Factors.clear();
4854   }
4855 }
4856 
4857 LegalizerHelper::LegalizeResult
4858 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
4859                                     LLT NarrowTy) {
4860   if (TypeIdx != 0)
4861     return UnableToLegalize;
4862 
4863   Register DstReg = MI.getOperand(0).getReg();
4864   LLT DstType = MRI.getType(DstReg);
4865   // FIXME: add support for vector types
4866   if (DstType.isVector())
4867     return UnableToLegalize;
4868 
4869   unsigned Opcode = MI.getOpcode();
4870   unsigned OpO, OpE, OpF;
4871   switch (Opcode) {
4872   case TargetOpcode::G_SADDO:
4873   case TargetOpcode::G_SADDE:
4874   case TargetOpcode::G_UADDO:
4875   case TargetOpcode::G_UADDE:
4876   case TargetOpcode::G_ADD:
4877     OpO = TargetOpcode::G_UADDO;
4878     OpE = TargetOpcode::G_UADDE;
4879     OpF = TargetOpcode::G_UADDE;
4880     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
4881       OpF = TargetOpcode::G_SADDE;
4882     break;
4883   case TargetOpcode::G_SSUBO:
4884   case TargetOpcode::G_SSUBE:
4885   case TargetOpcode::G_USUBO:
4886   case TargetOpcode::G_USUBE:
4887   case TargetOpcode::G_SUB:
4888     OpO = TargetOpcode::G_USUBO;
4889     OpE = TargetOpcode::G_USUBE;
4890     OpF = TargetOpcode::G_USUBE;
4891     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
4892       OpF = TargetOpcode::G_SSUBE;
4893     break;
4894   default:
4895     llvm_unreachable("Unexpected add/sub opcode!");
4896   }
4897 
4898   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
4899   unsigned NumDefs = MI.getNumExplicitDefs();
4900   Register Src1 = MI.getOperand(NumDefs).getReg();
4901   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
4902   Register CarryDst, CarryIn;
4903   if (NumDefs == 2)
4904     CarryDst = MI.getOperand(1).getReg();
4905   if (MI.getNumOperands() == NumDefs + 3)
4906     CarryIn = MI.getOperand(NumDefs + 2).getReg();
4907 
4908   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
4909   LLT LeftoverTy, DummyTy;
4910   SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs;
4911   extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left);
4912   extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left);
4913 
4914   int NarrowParts = Src1Regs.size();
4915   for (int I = 0, E = Src1Left.size(); I != E; ++I) {
4916     Src1Regs.push_back(Src1Left[I]);
4917     Src2Regs.push_back(Src2Left[I]);
4918   }
4919   DstRegs.reserve(Src1Regs.size());
4920 
4921   for (int i = 0, e = Src1Regs.size(); i != e; ++i) {
4922     Register DstReg =
4923         MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i]));
4924     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
4925     // Forward the final carry-out to the destination register
4926     if (i == e - 1 && CarryDst)
4927       CarryOut = CarryDst;
4928 
4929     if (!CarryIn) {
4930       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
4931                             {Src1Regs[i], Src2Regs[i]});
4932     } else if (i == e - 1) {
4933       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
4934                             {Src1Regs[i], Src2Regs[i], CarryIn});
4935     } else {
4936       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
4937                             {Src1Regs[i], Src2Regs[i], CarryIn});
4938     }
4939 
4940     DstRegs.push_back(DstReg);
4941     CarryIn = CarryOut;
4942   }
4943   insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy,
4944               makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy,
4945               makeArrayRef(DstRegs).drop_front(NarrowParts));
4946 
4947   MI.eraseFromParent();
4948   return Legalized;
4949 }
4950 
4951 LegalizerHelper::LegalizeResult
4952 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4953   Register DstReg = MI.getOperand(0).getReg();
4954   Register Src1 = MI.getOperand(1).getReg();
4955   Register Src2 = MI.getOperand(2).getReg();
4956 
4957   LLT Ty = MRI.getType(DstReg);
4958   if (Ty.isVector())
4959     return UnableToLegalize;
4960 
4961   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4962   unsigned DstSize = Ty.getSizeInBits();
4963   unsigned NarrowSize = NarrowTy.getSizeInBits();
4964   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4965     return UnableToLegalize;
4966 
4967   unsigned NumDstParts = DstSize / NarrowSize;
4968   unsigned NumSrcParts = SrcSize / NarrowSize;
4969   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4970   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4971 
4972   SmallVector<Register, 2> Src1Parts, Src2Parts;
4973   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4974   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4975   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4976   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4977 
4978   // Take only high half of registers if this is high mul.
4979   ArrayRef<Register> DstRegs(
4980       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4981   MIRBuilder.buildMerge(DstReg, DstRegs);
4982   MI.eraseFromParent();
4983   return Legalized;
4984 }
4985 
4986 LegalizerHelper::LegalizeResult
4987 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
4988                                    LLT NarrowTy) {
4989   if (TypeIdx != 0)
4990     return UnableToLegalize;
4991 
4992   bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
4993 
4994   Register Src = MI.getOperand(1).getReg();
4995   LLT SrcTy = MRI.getType(Src);
4996 
4997   // If all finite floats fit into the narrowed integer type, we can just swap
4998   // out the result type. This is practically only useful for conversions from
4999   // half to at least 16-bits, so just handle the one case.
5000   if (SrcTy.getScalarType() != LLT::scalar(16) ||
5001       NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
5002     return UnableToLegalize;
5003 
5004   Observer.changingInstr(MI);
5005   narrowScalarDst(MI, NarrowTy, 0,
5006                   IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
5007   Observer.changedInstr(MI);
5008   return Legalized;
5009 }
5010 
5011 LegalizerHelper::LegalizeResult
5012 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
5013                                      LLT NarrowTy) {
5014   if (TypeIdx != 1)
5015     return UnableToLegalize;
5016 
5017   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5018 
5019   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5020   // FIXME: add support for when SizeOp1 isn't an exact multiple of
5021   // NarrowSize.
5022   if (SizeOp1 % NarrowSize != 0)
5023     return UnableToLegalize;
5024   int NumParts = SizeOp1 / NarrowSize;
5025 
5026   SmallVector<Register, 2> SrcRegs, DstRegs;
5027   SmallVector<uint64_t, 2> Indexes;
5028   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
5029 
5030   Register OpReg = MI.getOperand(0).getReg();
5031   uint64_t OpStart = MI.getOperand(2).getImm();
5032   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5033   for (int i = 0; i < NumParts; ++i) {
5034     unsigned SrcStart = i * NarrowSize;
5035 
5036     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
5037       // No part of the extract uses this subregister, ignore it.
5038       continue;
5039     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5040       // The entire subregister is extracted, forward the value.
5041       DstRegs.push_back(SrcRegs[i]);
5042       continue;
5043     }
5044 
5045     // OpSegStart is where this destination segment would start in OpReg if it
5046     // extended infinitely in both directions.
5047     int64_t ExtractOffset;
5048     uint64_t SegSize;
5049     if (OpStart < SrcStart) {
5050       ExtractOffset = 0;
5051       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
5052     } else {
5053       ExtractOffset = OpStart - SrcStart;
5054       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
5055     }
5056 
5057     Register SegReg = SrcRegs[i];
5058     if (ExtractOffset != 0 || SegSize != NarrowSize) {
5059       // A genuine extract is needed.
5060       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5061       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
5062     }
5063 
5064     DstRegs.push_back(SegReg);
5065   }
5066 
5067   Register DstReg = MI.getOperand(0).getReg();
5068   if (MRI.getType(DstReg).isVector())
5069     MIRBuilder.buildBuildVector(DstReg, DstRegs);
5070   else if (DstRegs.size() > 1)
5071     MIRBuilder.buildMerge(DstReg, DstRegs);
5072   else
5073     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
5074   MI.eraseFromParent();
5075   return Legalized;
5076 }
5077 
5078 LegalizerHelper::LegalizeResult
5079 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
5080                                     LLT NarrowTy) {
5081   // FIXME: Don't know how to handle secondary types yet.
5082   if (TypeIdx != 0)
5083     return UnableToLegalize;
5084 
5085   SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs;
5086   SmallVector<uint64_t, 2> Indexes;
5087   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5088   LLT LeftoverTy;
5089   extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs,
5090                LeftoverRegs);
5091 
5092   for (Register Reg : LeftoverRegs)
5093     SrcRegs.push_back(Reg);
5094 
5095   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5096   Register OpReg = MI.getOperand(2).getReg();
5097   uint64_t OpStart = MI.getOperand(3).getImm();
5098   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5099   for (int I = 0, E = SrcRegs.size(); I != E; ++I) {
5100     unsigned DstStart = I * NarrowSize;
5101 
5102     if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5103       // The entire subregister is defined by this insert, forward the new
5104       // value.
5105       DstRegs.push_back(OpReg);
5106       continue;
5107     }
5108 
5109     Register SrcReg = SrcRegs[I];
5110     if (MRI.getType(SrcRegs[I]) == LeftoverTy) {
5111       // The leftover reg is smaller than NarrowTy, so we need to extend it.
5112       SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
5113       MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]);
5114     }
5115 
5116     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
5117       // No part of the insert affects this subregister, forward the original.
5118       DstRegs.push_back(SrcReg);
5119       continue;
5120     }
5121 
5122     // OpSegStart is where this destination segment would start in OpReg if it
5123     // extended infinitely in both directions.
5124     int64_t ExtractOffset, InsertOffset;
5125     uint64_t SegSize;
5126     if (OpStart < DstStart) {
5127       InsertOffset = 0;
5128       ExtractOffset = DstStart - OpStart;
5129       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
5130     } else {
5131       InsertOffset = OpStart - DstStart;
5132       ExtractOffset = 0;
5133       SegSize =
5134         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
5135     }
5136 
5137     Register SegReg = OpReg;
5138     if (ExtractOffset != 0 || SegSize != OpSize) {
5139       // A genuine extract is needed.
5140       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5141       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
5142     }
5143 
5144     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
5145     MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset);
5146     DstRegs.push_back(DstReg);
5147   }
5148 
5149   uint64_t WideSize = DstRegs.size() * NarrowSize;
5150   Register DstReg = MI.getOperand(0).getReg();
5151   if (WideSize > RegTy.getSizeInBits()) {
5152     Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize));
5153     MIRBuilder.buildMerge(MergeReg, DstRegs);
5154     MIRBuilder.buildTrunc(DstReg, MergeReg);
5155   } else
5156     MIRBuilder.buildMerge(DstReg, DstRegs);
5157 
5158   MI.eraseFromParent();
5159   return Legalized;
5160 }
5161 
5162 LegalizerHelper::LegalizeResult
5163 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5164                                    LLT NarrowTy) {
5165   Register DstReg = MI.getOperand(0).getReg();
5166   LLT DstTy = MRI.getType(DstReg);
5167 
5168   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
5169 
5170   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5171   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5172   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5173   LLT LeftoverTy;
5174   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5175                     Src0Regs, Src0LeftoverRegs))
5176     return UnableToLegalize;
5177 
5178   LLT Unused;
5179   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5180                     Src1Regs, Src1LeftoverRegs))
5181     llvm_unreachable("inconsistent extractParts result");
5182 
5183   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5184     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5185                                         {Src0Regs[I], Src1Regs[I]});
5186     DstRegs.push_back(Inst.getReg(0));
5187   }
5188 
5189   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5190     auto Inst = MIRBuilder.buildInstr(
5191       MI.getOpcode(),
5192       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5193     DstLeftoverRegs.push_back(Inst.getReg(0));
5194   }
5195 
5196   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5197               LeftoverTy, DstLeftoverRegs);
5198 
5199   MI.eraseFromParent();
5200   return Legalized;
5201 }
5202 
5203 LegalizerHelper::LegalizeResult
5204 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5205                                  LLT NarrowTy) {
5206   if (TypeIdx != 0)
5207     return UnableToLegalize;
5208 
5209   Register DstReg = MI.getOperand(0).getReg();
5210   Register SrcReg = MI.getOperand(1).getReg();
5211 
5212   LLT DstTy = MRI.getType(DstReg);
5213   if (DstTy.isVector())
5214     return UnableToLegalize;
5215 
5216   SmallVector<Register, 8> Parts;
5217   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5218   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5219   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5220 
5221   MI.eraseFromParent();
5222   return Legalized;
5223 }
5224 
5225 LegalizerHelper::LegalizeResult
5226 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5227                                     LLT NarrowTy) {
5228   if (TypeIdx != 0)
5229     return UnableToLegalize;
5230 
5231   Register CondReg = MI.getOperand(1).getReg();
5232   LLT CondTy = MRI.getType(CondReg);
5233   if (CondTy.isVector()) // TODO: Handle vselect
5234     return UnableToLegalize;
5235 
5236   Register DstReg = MI.getOperand(0).getReg();
5237   LLT DstTy = MRI.getType(DstReg);
5238 
5239   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5240   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5241   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5242   LLT LeftoverTy;
5243   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5244                     Src1Regs, Src1LeftoverRegs))
5245     return UnableToLegalize;
5246 
5247   LLT Unused;
5248   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5249                     Src2Regs, Src2LeftoverRegs))
5250     llvm_unreachable("inconsistent extractParts result");
5251 
5252   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5253     auto Select = MIRBuilder.buildSelect(NarrowTy,
5254                                          CondReg, Src1Regs[I], Src2Regs[I]);
5255     DstRegs.push_back(Select.getReg(0));
5256   }
5257 
5258   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5259     auto Select = MIRBuilder.buildSelect(
5260       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5261     DstLeftoverRegs.push_back(Select.getReg(0));
5262   }
5263 
5264   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5265               LeftoverTy, DstLeftoverRegs);
5266 
5267   MI.eraseFromParent();
5268   return Legalized;
5269 }
5270 
5271 LegalizerHelper::LegalizeResult
5272 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5273                                   LLT NarrowTy) {
5274   if (TypeIdx != 1)
5275     return UnableToLegalize;
5276 
5277   Register DstReg = MI.getOperand(0).getReg();
5278   Register SrcReg = MI.getOperand(1).getReg();
5279   LLT DstTy = MRI.getType(DstReg);
5280   LLT SrcTy = MRI.getType(SrcReg);
5281   unsigned NarrowSize = NarrowTy.getSizeInBits();
5282 
5283   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5284     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5285 
5286     MachineIRBuilder &B = MIRBuilder;
5287     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5288     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5289     auto C_0 = B.buildConstant(NarrowTy, 0);
5290     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5291                                 UnmergeSrc.getReg(1), C_0);
5292     auto LoCTLZ = IsUndef ?
5293       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5294       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5295     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5296     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5297     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5298     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5299 
5300     MI.eraseFromParent();
5301     return Legalized;
5302   }
5303 
5304   return UnableToLegalize;
5305 }
5306 
5307 LegalizerHelper::LegalizeResult
5308 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5309                                   LLT NarrowTy) {
5310   if (TypeIdx != 1)
5311     return UnableToLegalize;
5312 
5313   Register DstReg = MI.getOperand(0).getReg();
5314   Register SrcReg = MI.getOperand(1).getReg();
5315   LLT DstTy = MRI.getType(DstReg);
5316   LLT SrcTy = MRI.getType(SrcReg);
5317   unsigned NarrowSize = NarrowTy.getSizeInBits();
5318 
5319   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5320     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5321 
5322     MachineIRBuilder &B = MIRBuilder;
5323     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5324     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5325     auto C_0 = B.buildConstant(NarrowTy, 0);
5326     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5327                                 UnmergeSrc.getReg(0), C_0);
5328     auto HiCTTZ = IsUndef ?
5329       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5330       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5331     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5332     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5333     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5334     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5335 
5336     MI.eraseFromParent();
5337     return Legalized;
5338   }
5339 
5340   return UnableToLegalize;
5341 }
5342 
5343 LegalizerHelper::LegalizeResult
5344 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5345                                    LLT NarrowTy) {
5346   if (TypeIdx != 1)
5347     return UnableToLegalize;
5348 
5349   Register DstReg = MI.getOperand(0).getReg();
5350   LLT DstTy = MRI.getType(DstReg);
5351   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5352   unsigned NarrowSize = NarrowTy.getSizeInBits();
5353 
5354   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5355     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5356 
5357     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5358     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5359     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5360 
5361     MI.eraseFromParent();
5362     return Legalized;
5363   }
5364 
5365   return UnableToLegalize;
5366 }
5367 
5368 LegalizerHelper::LegalizeResult
5369 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5370   unsigned Opc = MI.getOpcode();
5371   const auto &TII = MIRBuilder.getTII();
5372   auto isSupported = [this](const LegalityQuery &Q) {
5373     auto QAction = LI.getAction(Q).Action;
5374     return QAction == Legal || QAction == Libcall || QAction == Custom;
5375   };
5376   switch (Opc) {
5377   default:
5378     return UnableToLegalize;
5379   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5380     // This trivially expands to CTLZ.
5381     Observer.changingInstr(MI);
5382     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5383     Observer.changedInstr(MI);
5384     return Legalized;
5385   }
5386   case TargetOpcode::G_CTLZ: {
5387     Register DstReg = MI.getOperand(0).getReg();
5388     Register SrcReg = MI.getOperand(1).getReg();
5389     LLT DstTy = MRI.getType(DstReg);
5390     LLT SrcTy = MRI.getType(SrcReg);
5391     unsigned Len = SrcTy.getSizeInBits();
5392 
5393     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5394       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5395       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5396       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5397       auto ICmp = MIRBuilder.buildICmp(
5398           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5399       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5400       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5401       MI.eraseFromParent();
5402       return Legalized;
5403     }
5404     // for now, we do this:
5405     // NewLen = NextPowerOf2(Len);
5406     // x = x | (x >> 1);
5407     // x = x | (x >> 2);
5408     // ...
5409     // x = x | (x >>16);
5410     // x = x | (x >>32); // for 64-bit input
5411     // Upto NewLen/2
5412     // return Len - popcount(x);
5413     //
5414     // Ref: "Hacker's Delight" by Henry Warren
5415     Register Op = SrcReg;
5416     unsigned NewLen = PowerOf2Ceil(Len);
5417     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5418       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5419       auto MIBOp = MIRBuilder.buildOr(
5420           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5421       Op = MIBOp.getReg(0);
5422     }
5423     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5424     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5425                         MIBPop);
5426     MI.eraseFromParent();
5427     return Legalized;
5428   }
5429   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5430     // This trivially expands to CTTZ.
5431     Observer.changingInstr(MI);
5432     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5433     Observer.changedInstr(MI);
5434     return Legalized;
5435   }
5436   case TargetOpcode::G_CTTZ: {
5437     Register DstReg = MI.getOperand(0).getReg();
5438     Register SrcReg = MI.getOperand(1).getReg();
5439     LLT DstTy = MRI.getType(DstReg);
5440     LLT SrcTy = MRI.getType(SrcReg);
5441 
5442     unsigned Len = SrcTy.getSizeInBits();
5443     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5444       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5445       // zero.
5446       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5447       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5448       auto ICmp = MIRBuilder.buildICmp(
5449           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5450       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5451       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5452       MI.eraseFromParent();
5453       return Legalized;
5454     }
5455     // for now, we use: { return popcount(~x & (x - 1)); }
5456     // unless the target has ctlz but not ctpop, in which case we use:
5457     // { return 32 - nlz(~x & (x-1)); }
5458     // Ref: "Hacker's Delight" by Henry Warren
5459     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5460     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5461     auto MIBTmp = MIRBuilder.buildAnd(
5462         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5463     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5464         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5465       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5466       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5467                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5468       MI.eraseFromParent();
5469       return Legalized;
5470     }
5471     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5472     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5473     return Legalized;
5474   }
5475   case TargetOpcode::G_CTPOP: {
5476     Register SrcReg = MI.getOperand(1).getReg();
5477     LLT Ty = MRI.getType(SrcReg);
5478     unsigned Size = Ty.getSizeInBits();
5479     MachineIRBuilder &B = MIRBuilder;
5480 
5481     // Count set bits in blocks of 2 bits. Default approach would be
5482     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5483     // We use following formula instead:
5484     // B2Count = val - { (val >> 1) & 0x55555555 }
5485     // since it gives same result in blocks of 2 with one instruction less.
5486     auto C_1 = B.buildConstant(Ty, 1);
5487     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5488     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5489     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5490     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5491     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5492 
5493     // In order to get count in blocks of 4 add values from adjacent block of 2.
5494     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5495     auto C_2 = B.buildConstant(Ty, 2);
5496     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5497     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5498     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5499     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5500     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5501     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5502 
5503     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5504     // addition since count value sits in range {0,...,8} and 4 bits are enough
5505     // to hold such binary values. After addition high 4 bits still hold count
5506     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5507     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5508     auto C_4 = B.buildConstant(Ty, 4);
5509     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5510     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5511     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5512     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5513     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5514 
5515     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5516     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5517     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5518     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5519     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5520 
5521     // Shift count result from 8 high bits to low bits.
5522     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5523     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5524 
5525     MI.eraseFromParent();
5526     return Legalized;
5527   }
5528   }
5529 }
5530 
5531 // Check that (every element of) Reg is undef or not an exact multiple of BW.
5532 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5533                                         Register Reg, unsigned BW) {
5534   return matchUnaryPredicate(
5535       MRI, Reg,
5536       [=](const Constant *C) {
5537         // Null constant here means an undef.
5538         const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5539         return !CI || CI->getValue().urem(BW) != 0;
5540       },
5541       /*AllowUndefs*/ true);
5542 }
5543 
5544 LegalizerHelper::LegalizeResult
5545 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5546   Register Dst = MI.getOperand(0).getReg();
5547   Register X = MI.getOperand(1).getReg();
5548   Register Y = MI.getOperand(2).getReg();
5549   Register Z = MI.getOperand(3).getReg();
5550   LLT Ty = MRI.getType(Dst);
5551   LLT ShTy = MRI.getType(Z);
5552 
5553   unsigned BW = Ty.getScalarSizeInBits();
5554 
5555   if (!isPowerOf2_32(BW))
5556     return UnableToLegalize;
5557 
5558   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5559   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5560 
5561   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5562     // fshl X, Y, Z -> fshr X, Y, -Z
5563     // fshr X, Y, Z -> fshl X, Y, -Z
5564     auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5565     Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5566   } else {
5567     // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5568     // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5569     auto One = MIRBuilder.buildConstant(ShTy, 1);
5570     if (IsFSHL) {
5571       Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5572       X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5573     } else {
5574       X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5575       Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5576     }
5577 
5578     Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5579   }
5580 
5581   MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5582   MI.eraseFromParent();
5583   return Legalized;
5584 }
5585 
5586 LegalizerHelper::LegalizeResult
5587 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5588   Register Dst = MI.getOperand(0).getReg();
5589   Register X = MI.getOperand(1).getReg();
5590   Register Y = MI.getOperand(2).getReg();
5591   Register Z = MI.getOperand(3).getReg();
5592   LLT Ty = MRI.getType(Dst);
5593   LLT ShTy = MRI.getType(Z);
5594 
5595   const unsigned BW = Ty.getScalarSizeInBits();
5596   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5597 
5598   Register ShX, ShY;
5599   Register ShAmt, InvShAmt;
5600 
5601   // FIXME: Emit optimized urem by constant instead of letting it expand later.
5602   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5603     // fshl: X << C | Y >> (BW - C)
5604     // fshr: X << (BW - C) | Y >> C
5605     // where C = Z % BW is not zero
5606     auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5607     ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5608     InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5609     ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5610     ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5611   } else {
5612     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5613     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5614     auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5615     if (isPowerOf2_32(BW)) {
5616       // Z % BW -> Z & (BW - 1)
5617       ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5618       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5619       auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5620       InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5621     } else {
5622       auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5623       ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5624       InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5625     }
5626 
5627     auto One = MIRBuilder.buildConstant(ShTy, 1);
5628     if (IsFSHL) {
5629       ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5630       auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5631       ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5632     } else {
5633       auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5634       ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5635       ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5636     }
5637   }
5638 
5639   MIRBuilder.buildOr(Dst, ShX, ShY);
5640   MI.eraseFromParent();
5641   return Legalized;
5642 }
5643 
5644 LegalizerHelper::LegalizeResult
5645 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5646   // These operations approximately do the following (while avoiding undefined
5647   // shifts by BW):
5648   // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5649   // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5650   Register Dst = MI.getOperand(0).getReg();
5651   LLT Ty = MRI.getType(Dst);
5652   LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5653 
5654   bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5655   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5656 
5657   // TODO: Use smarter heuristic that accounts for vector legalization.
5658   if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5659     return lowerFunnelShiftAsShifts(MI);
5660 
5661   // This only works for powers of 2, fallback to shifts if it fails.
5662   LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
5663   if (Result == UnableToLegalize)
5664     return lowerFunnelShiftAsShifts(MI);
5665   return Result;
5666 }
5667 
5668 LegalizerHelper::LegalizeResult
5669 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
5670   Register Dst = MI.getOperand(0).getReg();
5671   Register Src = MI.getOperand(1).getReg();
5672   Register Amt = MI.getOperand(2).getReg();
5673   LLT AmtTy = MRI.getType(Amt);
5674   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5675   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5676   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5677   auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5678   MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
5679   MI.eraseFromParent();
5680   return Legalized;
5681 }
5682 
5683 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
5684   Register Dst = MI.getOperand(0).getReg();
5685   Register Src = MI.getOperand(1).getReg();
5686   Register Amt = MI.getOperand(2).getReg();
5687   LLT DstTy = MRI.getType(Dst);
5688   LLT SrcTy = MRI.getType(Dst);
5689   LLT AmtTy = MRI.getType(Amt);
5690 
5691   unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
5692   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5693 
5694   MIRBuilder.setInstrAndDebugLoc(MI);
5695 
5696   // If a rotate in the other direction is supported, use it.
5697   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5698   if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
5699       isPowerOf2_32(EltSizeInBits))
5700     return lowerRotateWithReverseRotate(MI);
5701 
5702   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5703   unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
5704   unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
5705   auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
5706   Register ShVal;
5707   Register RevShiftVal;
5708   if (isPowerOf2_32(EltSizeInBits)) {
5709     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
5710     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
5711     auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5712     auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
5713     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5714     auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
5715     RevShiftVal =
5716         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
5717   } else {
5718     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
5719     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
5720     auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
5721     auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
5722     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5723     auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
5724     auto One = MIRBuilder.buildConstant(AmtTy, 1);
5725     auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
5726     RevShiftVal =
5727         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
5728   }
5729   MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
5730   MI.eraseFromParent();
5731   return Legalized;
5732 }
5733 
5734 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5735 // representation.
5736 LegalizerHelper::LegalizeResult
5737 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5738   Register Dst = MI.getOperand(0).getReg();
5739   Register Src = MI.getOperand(1).getReg();
5740   const LLT S64 = LLT::scalar(64);
5741   const LLT S32 = LLT::scalar(32);
5742   const LLT S1 = LLT::scalar(1);
5743 
5744   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5745 
5746   // unsigned cul2f(ulong u) {
5747   //   uint lz = clz(u);
5748   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5749   //   u = (u << lz) & 0x7fffffffffffffffUL;
5750   //   ulong t = u & 0xffffffffffUL;
5751   //   uint v = (e << 23) | (uint)(u >> 40);
5752   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5753   //   return as_float(v + r);
5754   // }
5755 
5756   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5757   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5758 
5759   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5760 
5761   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5762   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5763 
5764   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5765   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5766 
5767   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5768   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5769 
5770   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5771 
5772   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5773   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5774 
5775   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5776   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5777   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5778 
5779   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5780   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5781   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5782   auto One = MIRBuilder.buildConstant(S32, 1);
5783 
5784   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5785   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5786   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5787   MIRBuilder.buildAdd(Dst, V, R);
5788 
5789   MI.eraseFromParent();
5790   return Legalized;
5791 }
5792 
5793 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5794   Register Dst = MI.getOperand(0).getReg();
5795   Register Src = MI.getOperand(1).getReg();
5796   LLT DstTy = MRI.getType(Dst);
5797   LLT SrcTy = MRI.getType(Src);
5798 
5799   if (SrcTy == LLT::scalar(1)) {
5800     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5801     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5802     MIRBuilder.buildSelect(Dst, Src, True, False);
5803     MI.eraseFromParent();
5804     return Legalized;
5805   }
5806 
5807   if (SrcTy != LLT::scalar(64))
5808     return UnableToLegalize;
5809 
5810   if (DstTy == LLT::scalar(32)) {
5811     // TODO: SelectionDAG has several alternative expansions to port which may
5812     // be more reasonble depending on the available instructions. If a target
5813     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5814     // intermediate type, this is probably worse.
5815     return lowerU64ToF32BitOps(MI);
5816   }
5817 
5818   return UnableToLegalize;
5819 }
5820 
5821 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5822   Register Dst = MI.getOperand(0).getReg();
5823   Register Src = MI.getOperand(1).getReg();
5824   LLT DstTy = MRI.getType(Dst);
5825   LLT SrcTy = MRI.getType(Src);
5826 
5827   const LLT S64 = LLT::scalar(64);
5828   const LLT S32 = LLT::scalar(32);
5829   const LLT S1 = LLT::scalar(1);
5830 
5831   if (SrcTy == S1) {
5832     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5833     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5834     MIRBuilder.buildSelect(Dst, Src, True, False);
5835     MI.eraseFromParent();
5836     return Legalized;
5837   }
5838 
5839   if (SrcTy != S64)
5840     return UnableToLegalize;
5841 
5842   if (DstTy == S32) {
5843     // signed cl2f(long l) {
5844     //   long s = l >> 63;
5845     //   float r = cul2f((l + s) ^ s);
5846     //   return s ? -r : r;
5847     // }
5848     Register L = Src;
5849     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5850     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5851 
5852     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5853     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5854     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5855 
5856     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5857     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5858                                             MIRBuilder.buildConstant(S64, 0));
5859     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5860     MI.eraseFromParent();
5861     return Legalized;
5862   }
5863 
5864   return UnableToLegalize;
5865 }
5866 
5867 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5868   Register Dst = MI.getOperand(0).getReg();
5869   Register Src = MI.getOperand(1).getReg();
5870   LLT DstTy = MRI.getType(Dst);
5871   LLT SrcTy = MRI.getType(Src);
5872   const LLT S64 = LLT::scalar(64);
5873   const LLT S32 = LLT::scalar(32);
5874 
5875   if (SrcTy != S64 && SrcTy != S32)
5876     return UnableToLegalize;
5877   if (DstTy != S32 && DstTy != S64)
5878     return UnableToLegalize;
5879 
5880   // FPTOSI gives same result as FPTOUI for positive signed integers.
5881   // FPTOUI needs to deal with fp values that convert to unsigned integers
5882   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5883 
5884   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5885   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5886                                                 : APFloat::IEEEdouble(),
5887                     APInt::getNullValue(SrcTy.getSizeInBits()));
5888   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5889 
5890   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5891 
5892   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5893   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5894   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5895   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5896   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5897   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5898   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5899 
5900   const LLT S1 = LLT::scalar(1);
5901 
5902   MachineInstrBuilder FCMP =
5903       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5904   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5905 
5906   MI.eraseFromParent();
5907   return Legalized;
5908 }
5909 
5910 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5911   Register Dst = MI.getOperand(0).getReg();
5912   Register Src = MI.getOperand(1).getReg();
5913   LLT DstTy = MRI.getType(Dst);
5914   LLT SrcTy = MRI.getType(Src);
5915   const LLT S64 = LLT::scalar(64);
5916   const LLT S32 = LLT::scalar(32);
5917 
5918   // FIXME: Only f32 to i64 conversions are supported.
5919   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5920     return UnableToLegalize;
5921 
5922   // Expand f32 -> i64 conversion
5923   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5924   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
5925 
5926   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5927 
5928   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5929   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5930 
5931   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5932   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5933 
5934   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5935                                            APInt::getSignMask(SrcEltBits));
5936   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5937   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5938   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5939   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5940 
5941   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5942   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5943   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5944 
5945   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5946   R = MIRBuilder.buildZExt(DstTy, R);
5947 
5948   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5949   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5950   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5951   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5952 
5953   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5954   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5955 
5956   const LLT S1 = LLT::scalar(1);
5957   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5958                                     S1, Exponent, ExponentLoBit);
5959 
5960   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5961 
5962   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5963   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5964 
5965   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5966 
5967   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5968                                           S1, Exponent, ZeroSrcTy);
5969 
5970   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5971   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5972 
5973   MI.eraseFromParent();
5974   return Legalized;
5975 }
5976 
5977 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5978 LegalizerHelper::LegalizeResult
5979 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5980   Register Dst = MI.getOperand(0).getReg();
5981   Register Src = MI.getOperand(1).getReg();
5982 
5983   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5984     return UnableToLegalize;
5985 
5986   const unsigned ExpMask = 0x7ff;
5987   const unsigned ExpBiasf64 = 1023;
5988   const unsigned ExpBiasf16 = 15;
5989   const LLT S32 = LLT::scalar(32);
5990   const LLT S1 = LLT::scalar(1);
5991 
5992   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5993   Register U = Unmerge.getReg(0);
5994   Register UH = Unmerge.getReg(1);
5995 
5996   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
5997   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
5998 
5999   // Subtract the fp64 exponent bias (1023) to get the real exponent and
6000   // add the f16 bias (15) to get the biased exponent for the f16 format.
6001   E = MIRBuilder.buildAdd(
6002     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
6003 
6004   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
6005   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
6006 
6007   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
6008                                        MIRBuilder.buildConstant(S32, 0x1ff));
6009   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
6010 
6011   auto Zero = MIRBuilder.buildConstant(S32, 0);
6012   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
6013   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
6014   M = MIRBuilder.buildOr(S32, M, Lo40Set);
6015 
6016   // (M != 0 ? 0x0200 : 0) | 0x7c00;
6017   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
6018   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
6019   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
6020 
6021   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
6022   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
6023 
6024   // N = M | (E << 12);
6025   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
6026   auto N = MIRBuilder.buildOr(S32, M, EShl12);
6027 
6028   // B = clamp(1-E, 0, 13);
6029   auto One = MIRBuilder.buildConstant(S32, 1);
6030   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
6031   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
6032   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
6033 
6034   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
6035                                        MIRBuilder.buildConstant(S32, 0x1000));
6036 
6037   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
6038   auto D0 = MIRBuilder.buildShl(S32, D, B);
6039 
6040   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
6041                                              D0, SigSetHigh);
6042   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
6043   D = MIRBuilder.buildOr(S32, D, D1);
6044 
6045   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
6046   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
6047 
6048   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
6049   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
6050 
6051   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
6052                                        MIRBuilder.buildConstant(S32, 3));
6053   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
6054 
6055   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
6056                                        MIRBuilder.buildConstant(S32, 5));
6057   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
6058 
6059   V1 = MIRBuilder.buildOr(S32, V0, V1);
6060   V = MIRBuilder.buildAdd(S32, V, V1);
6061 
6062   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
6063                                        E, MIRBuilder.buildConstant(S32, 30));
6064   V = MIRBuilder.buildSelect(S32, CmpEGt30,
6065                              MIRBuilder.buildConstant(S32, 0x7c00), V);
6066 
6067   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
6068                                          E, MIRBuilder.buildConstant(S32, 1039));
6069   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
6070 
6071   // Extract the sign bit.
6072   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
6073   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
6074 
6075   // Insert the sign bit
6076   V = MIRBuilder.buildOr(S32, Sign, V);
6077 
6078   MIRBuilder.buildTrunc(Dst, V);
6079   MI.eraseFromParent();
6080   return Legalized;
6081 }
6082 
6083 LegalizerHelper::LegalizeResult
6084 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
6085   Register Dst = MI.getOperand(0).getReg();
6086   Register Src = MI.getOperand(1).getReg();
6087 
6088   LLT DstTy = MRI.getType(Dst);
6089   LLT SrcTy = MRI.getType(Src);
6090   const LLT S64 = LLT::scalar(64);
6091   const LLT S16 = LLT::scalar(16);
6092 
6093   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
6094     return lowerFPTRUNC_F64_TO_F16(MI);
6095 
6096   return UnableToLegalize;
6097 }
6098 
6099 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
6100 // multiplication tree.
6101 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
6102   Register Dst = MI.getOperand(0).getReg();
6103   Register Src0 = MI.getOperand(1).getReg();
6104   Register Src1 = MI.getOperand(2).getReg();
6105   LLT Ty = MRI.getType(Dst);
6106 
6107   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
6108   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
6109   MI.eraseFromParent();
6110   return Legalized;
6111 }
6112 
6113 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
6114   switch (Opc) {
6115   case TargetOpcode::G_SMIN:
6116     return CmpInst::ICMP_SLT;
6117   case TargetOpcode::G_SMAX:
6118     return CmpInst::ICMP_SGT;
6119   case TargetOpcode::G_UMIN:
6120     return CmpInst::ICMP_ULT;
6121   case TargetOpcode::G_UMAX:
6122     return CmpInst::ICMP_UGT;
6123   default:
6124     llvm_unreachable("not in integer min/max");
6125   }
6126 }
6127 
6128 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
6129   Register Dst = MI.getOperand(0).getReg();
6130   Register Src0 = MI.getOperand(1).getReg();
6131   Register Src1 = MI.getOperand(2).getReg();
6132 
6133   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
6134   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
6135 
6136   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
6137   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
6138 
6139   MI.eraseFromParent();
6140   return Legalized;
6141 }
6142 
6143 LegalizerHelper::LegalizeResult
6144 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
6145   Register Dst = MI.getOperand(0).getReg();
6146   Register Src0 = MI.getOperand(1).getReg();
6147   Register Src1 = MI.getOperand(2).getReg();
6148 
6149   const LLT Src0Ty = MRI.getType(Src0);
6150   const LLT Src1Ty = MRI.getType(Src1);
6151 
6152   const int Src0Size = Src0Ty.getScalarSizeInBits();
6153   const int Src1Size = Src1Ty.getScalarSizeInBits();
6154 
6155   auto SignBitMask = MIRBuilder.buildConstant(
6156     Src0Ty, APInt::getSignMask(Src0Size));
6157 
6158   auto NotSignBitMask = MIRBuilder.buildConstant(
6159     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6160 
6161   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6162   Register And1;
6163   if (Src0Ty == Src1Ty) {
6164     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6165   } else if (Src0Size > Src1Size) {
6166     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6167     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6168     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6169     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6170   } else {
6171     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6172     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6173     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6174     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6175   }
6176 
6177   // Be careful about setting nsz/nnan/ninf on every instruction, since the
6178   // constants are a nan and -0.0, but the final result should preserve
6179   // everything.
6180   unsigned Flags = MI.getFlags();
6181   MIRBuilder.buildOr(Dst, And0, And1, Flags);
6182 
6183   MI.eraseFromParent();
6184   return Legalized;
6185 }
6186 
6187 LegalizerHelper::LegalizeResult
6188 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6189   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6190     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6191 
6192   Register Dst = MI.getOperand(0).getReg();
6193   Register Src0 = MI.getOperand(1).getReg();
6194   Register Src1 = MI.getOperand(2).getReg();
6195   LLT Ty = MRI.getType(Dst);
6196 
6197   if (!MI.getFlag(MachineInstr::FmNoNans)) {
6198     // Insert canonicalizes if it's possible we need to quiet to get correct
6199     // sNaN behavior.
6200 
6201     // Note this must be done here, and not as an optimization combine in the
6202     // absence of a dedicate quiet-snan instruction as we're using an
6203     // omni-purpose G_FCANONICALIZE.
6204     if (!isKnownNeverSNaN(Src0, MRI))
6205       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6206 
6207     if (!isKnownNeverSNaN(Src1, MRI))
6208       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6209   }
6210 
6211   // If there are no nans, it's safe to simply replace this with the non-IEEE
6212   // version.
6213   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6214   MI.eraseFromParent();
6215   return Legalized;
6216 }
6217 
6218 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6219   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6220   Register DstReg = MI.getOperand(0).getReg();
6221   LLT Ty = MRI.getType(DstReg);
6222   unsigned Flags = MI.getFlags();
6223 
6224   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6225                                   Flags);
6226   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6227   MI.eraseFromParent();
6228   return Legalized;
6229 }
6230 
6231 LegalizerHelper::LegalizeResult
6232 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6233   Register DstReg = MI.getOperand(0).getReg();
6234   Register X = MI.getOperand(1).getReg();
6235   const unsigned Flags = MI.getFlags();
6236   const LLT Ty = MRI.getType(DstReg);
6237   const LLT CondTy = Ty.changeElementSize(1);
6238 
6239   // round(x) =>
6240   //  t = trunc(x);
6241   //  d = fabs(x - t);
6242   //  o = copysign(1.0f, x);
6243   //  return t + (d >= 0.5 ? o : 0.0);
6244 
6245   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
6246 
6247   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
6248   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
6249   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6250   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
6251   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
6252   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
6253 
6254   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
6255                                   Flags);
6256   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
6257 
6258   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
6259 
6260   MI.eraseFromParent();
6261   return Legalized;
6262 }
6263 
6264 LegalizerHelper::LegalizeResult
6265 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
6266   Register DstReg = MI.getOperand(0).getReg();
6267   Register SrcReg = MI.getOperand(1).getReg();
6268   unsigned Flags = MI.getFlags();
6269   LLT Ty = MRI.getType(DstReg);
6270   const LLT CondTy = Ty.changeElementSize(1);
6271 
6272   // result = trunc(src);
6273   // if (src < 0.0 && src != result)
6274   //   result += -1.0.
6275 
6276   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
6277   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6278 
6279   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
6280                                   SrcReg, Zero, Flags);
6281   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
6282                                       SrcReg, Trunc, Flags);
6283   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
6284   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
6285 
6286   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
6287   MI.eraseFromParent();
6288   return Legalized;
6289 }
6290 
6291 LegalizerHelper::LegalizeResult
6292 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
6293   const unsigned NumOps = MI.getNumOperands();
6294   Register DstReg = MI.getOperand(0).getReg();
6295   Register Src0Reg = MI.getOperand(1).getReg();
6296   LLT DstTy = MRI.getType(DstReg);
6297   LLT SrcTy = MRI.getType(Src0Reg);
6298   unsigned PartSize = SrcTy.getSizeInBits();
6299 
6300   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
6301   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
6302 
6303   for (unsigned I = 2; I != NumOps; ++I) {
6304     const unsigned Offset = (I - 1) * PartSize;
6305 
6306     Register SrcReg = MI.getOperand(I).getReg();
6307     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
6308 
6309     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
6310       MRI.createGenericVirtualRegister(WideTy);
6311 
6312     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
6313     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
6314     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
6315     ResultReg = NextResult;
6316   }
6317 
6318   if (DstTy.isPointer()) {
6319     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
6320           DstTy.getAddressSpace())) {
6321       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
6322       return UnableToLegalize;
6323     }
6324 
6325     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
6326   }
6327 
6328   MI.eraseFromParent();
6329   return Legalized;
6330 }
6331 
6332 LegalizerHelper::LegalizeResult
6333 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
6334   const unsigned NumDst = MI.getNumOperands() - 1;
6335   Register SrcReg = MI.getOperand(NumDst).getReg();
6336   Register Dst0Reg = MI.getOperand(0).getReg();
6337   LLT DstTy = MRI.getType(Dst0Reg);
6338   if (DstTy.isPointer())
6339     return UnableToLegalize; // TODO
6340 
6341   SrcReg = coerceToScalar(SrcReg);
6342   if (!SrcReg)
6343     return UnableToLegalize;
6344 
6345   // Expand scalarizing unmerge as bitcast to integer and shift.
6346   LLT IntTy = MRI.getType(SrcReg);
6347 
6348   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
6349 
6350   const unsigned DstSize = DstTy.getSizeInBits();
6351   unsigned Offset = DstSize;
6352   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
6353     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
6354     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
6355     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
6356   }
6357 
6358   MI.eraseFromParent();
6359   return Legalized;
6360 }
6361 
6362 /// Lower a vector extract or insert by writing the vector to a stack temporary
6363 /// and reloading the element or vector.
6364 ///
6365 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
6366 ///  =>
6367 ///  %stack_temp = G_FRAME_INDEX
6368 ///  G_STORE %vec, %stack_temp
6369 ///  %idx = clamp(%idx, %vec.getNumElements())
6370 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
6371 ///  %dst = G_LOAD %element_ptr
6372 LegalizerHelper::LegalizeResult
6373 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
6374   Register DstReg = MI.getOperand(0).getReg();
6375   Register SrcVec = MI.getOperand(1).getReg();
6376   Register InsertVal;
6377   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
6378     InsertVal = MI.getOperand(2).getReg();
6379 
6380   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6381 
6382   LLT VecTy = MRI.getType(SrcVec);
6383   LLT EltTy = VecTy.getElementType();
6384   if (!EltTy.isByteSized()) { // Not implemented.
6385     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
6386     return UnableToLegalize;
6387   }
6388 
6389   unsigned EltBytes = EltTy.getSizeInBytes();
6390   Align VecAlign = getStackTemporaryAlignment(VecTy);
6391   Align EltAlign;
6392 
6393   MachinePointerInfo PtrInfo;
6394   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6395                                         VecAlign, PtrInfo);
6396   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6397 
6398   // Get the pointer to the element, and be sure not to hit undefined behavior
6399   // if the index is out of bounds.
6400   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6401 
6402   int64_t IdxVal;
6403   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6404     int64_t Offset = IdxVal * EltBytes;
6405     PtrInfo = PtrInfo.getWithOffset(Offset);
6406     EltAlign = commonAlignment(VecAlign, Offset);
6407   } else {
6408     // We lose information with a variable offset.
6409     EltAlign = getStackTemporaryAlignment(EltTy);
6410     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6411   }
6412 
6413   if (InsertVal) {
6414     // Write the inserted element
6415     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6416 
6417     // Reload the whole vector.
6418     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6419   } else {
6420     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6421   }
6422 
6423   MI.eraseFromParent();
6424   return Legalized;
6425 }
6426 
6427 LegalizerHelper::LegalizeResult
6428 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6429   Register DstReg = MI.getOperand(0).getReg();
6430   Register Src0Reg = MI.getOperand(1).getReg();
6431   Register Src1Reg = MI.getOperand(2).getReg();
6432   LLT Src0Ty = MRI.getType(Src0Reg);
6433   LLT DstTy = MRI.getType(DstReg);
6434   LLT IdxTy = LLT::scalar(32);
6435 
6436   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6437 
6438   if (DstTy.isScalar()) {
6439     if (Src0Ty.isVector())
6440       return UnableToLegalize;
6441 
6442     // This is just a SELECT.
6443     assert(Mask.size() == 1 && "Expected a single mask element");
6444     Register Val;
6445     if (Mask[0] < 0 || Mask[0] > 1)
6446       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6447     else
6448       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6449     MIRBuilder.buildCopy(DstReg, Val);
6450     MI.eraseFromParent();
6451     return Legalized;
6452   }
6453 
6454   Register Undef;
6455   SmallVector<Register, 32> BuildVec;
6456   LLT EltTy = DstTy.getElementType();
6457 
6458   for (int Idx : Mask) {
6459     if (Idx < 0) {
6460       if (!Undef.isValid())
6461         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6462       BuildVec.push_back(Undef);
6463       continue;
6464     }
6465 
6466     if (Src0Ty.isScalar()) {
6467       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6468     } else {
6469       int NumElts = Src0Ty.getNumElements();
6470       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6471       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6472       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6473       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6474       BuildVec.push_back(Extract.getReg(0));
6475     }
6476   }
6477 
6478   MIRBuilder.buildBuildVector(DstReg, BuildVec);
6479   MI.eraseFromParent();
6480   return Legalized;
6481 }
6482 
6483 LegalizerHelper::LegalizeResult
6484 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6485   const auto &MF = *MI.getMF();
6486   const auto &TFI = *MF.getSubtarget().getFrameLowering();
6487   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6488     return UnableToLegalize;
6489 
6490   Register Dst = MI.getOperand(0).getReg();
6491   Register AllocSize = MI.getOperand(1).getReg();
6492   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6493 
6494   LLT PtrTy = MRI.getType(Dst);
6495   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6496 
6497   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6498   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6499   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6500 
6501   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6502   // have to generate an extra instruction to negate the alloc and then use
6503   // G_PTR_ADD to add the negative offset.
6504   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6505   if (Alignment > Align(1)) {
6506     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6507     AlignMask.negate();
6508     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6509     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6510   }
6511 
6512   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6513   MIRBuilder.buildCopy(SPReg, SPTmp);
6514   MIRBuilder.buildCopy(Dst, SPTmp);
6515 
6516   MI.eraseFromParent();
6517   return Legalized;
6518 }
6519 
6520 LegalizerHelper::LegalizeResult
6521 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6522   Register Dst = MI.getOperand(0).getReg();
6523   Register Src = MI.getOperand(1).getReg();
6524   unsigned Offset = MI.getOperand(2).getImm();
6525 
6526   LLT DstTy = MRI.getType(Dst);
6527   LLT SrcTy = MRI.getType(Src);
6528 
6529   if (DstTy.isScalar() &&
6530       (SrcTy.isScalar() ||
6531        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6532     LLT SrcIntTy = SrcTy;
6533     if (!SrcTy.isScalar()) {
6534       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6535       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6536     }
6537 
6538     if (Offset == 0)
6539       MIRBuilder.buildTrunc(Dst, Src);
6540     else {
6541       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6542       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6543       MIRBuilder.buildTrunc(Dst, Shr);
6544     }
6545 
6546     MI.eraseFromParent();
6547     return Legalized;
6548   }
6549 
6550   return UnableToLegalize;
6551 }
6552 
6553 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6554   Register Dst = MI.getOperand(0).getReg();
6555   Register Src = MI.getOperand(1).getReg();
6556   Register InsertSrc = MI.getOperand(2).getReg();
6557   uint64_t Offset = MI.getOperand(3).getImm();
6558 
6559   LLT DstTy = MRI.getType(Src);
6560   LLT InsertTy = MRI.getType(InsertSrc);
6561 
6562   if (InsertTy.isVector() ||
6563       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6564     return UnableToLegalize;
6565 
6566   const DataLayout &DL = MIRBuilder.getDataLayout();
6567   if ((DstTy.isPointer() &&
6568        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6569       (InsertTy.isPointer() &&
6570        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6571     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6572     return UnableToLegalize;
6573   }
6574 
6575   LLT IntDstTy = DstTy;
6576 
6577   if (!DstTy.isScalar()) {
6578     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6579     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6580   }
6581 
6582   if (!InsertTy.isScalar()) {
6583     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6584     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6585   }
6586 
6587   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6588   if (Offset != 0) {
6589     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6590     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6591   }
6592 
6593   APInt MaskVal = APInt::getBitsSetWithWrap(
6594       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6595 
6596   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6597   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6598   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6599 
6600   MIRBuilder.buildCast(Dst, Or);
6601   MI.eraseFromParent();
6602   return Legalized;
6603 }
6604 
6605 LegalizerHelper::LegalizeResult
6606 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6607   Register Dst0 = MI.getOperand(0).getReg();
6608   Register Dst1 = MI.getOperand(1).getReg();
6609   Register LHS = MI.getOperand(2).getReg();
6610   Register RHS = MI.getOperand(3).getReg();
6611   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6612 
6613   LLT Ty = MRI.getType(Dst0);
6614   LLT BoolTy = MRI.getType(Dst1);
6615 
6616   if (IsAdd)
6617     MIRBuilder.buildAdd(Dst0, LHS, RHS);
6618   else
6619     MIRBuilder.buildSub(Dst0, LHS, RHS);
6620 
6621   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6622 
6623   auto Zero = MIRBuilder.buildConstant(Ty, 0);
6624 
6625   // For an addition, the result should be less than one of the operands (LHS)
6626   // if and only if the other operand (RHS) is negative, otherwise there will
6627   // be overflow.
6628   // For a subtraction, the result should be less than one of the operands
6629   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6630   // otherwise there will be overflow.
6631   auto ResultLowerThanLHS =
6632       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
6633   auto ConditionRHS = MIRBuilder.buildICmp(
6634       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6635 
6636   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6637   MI.eraseFromParent();
6638   return Legalized;
6639 }
6640 
6641 LegalizerHelper::LegalizeResult
6642 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6643   Register Res = MI.getOperand(0).getReg();
6644   Register LHS = MI.getOperand(1).getReg();
6645   Register RHS = MI.getOperand(2).getReg();
6646   LLT Ty = MRI.getType(Res);
6647   bool IsSigned;
6648   bool IsAdd;
6649   unsigned BaseOp;
6650   switch (MI.getOpcode()) {
6651   default:
6652     llvm_unreachable("unexpected addsat/subsat opcode");
6653   case TargetOpcode::G_UADDSAT:
6654     IsSigned = false;
6655     IsAdd = true;
6656     BaseOp = TargetOpcode::G_ADD;
6657     break;
6658   case TargetOpcode::G_SADDSAT:
6659     IsSigned = true;
6660     IsAdd = true;
6661     BaseOp = TargetOpcode::G_ADD;
6662     break;
6663   case TargetOpcode::G_USUBSAT:
6664     IsSigned = false;
6665     IsAdd = false;
6666     BaseOp = TargetOpcode::G_SUB;
6667     break;
6668   case TargetOpcode::G_SSUBSAT:
6669     IsSigned = true;
6670     IsAdd = false;
6671     BaseOp = TargetOpcode::G_SUB;
6672     break;
6673   }
6674 
6675   if (IsSigned) {
6676     // sadd.sat(a, b) ->
6677     //   hi = 0x7fffffff - smax(a, 0)
6678     //   lo = 0x80000000 - smin(a, 0)
6679     //   a + smin(smax(lo, b), hi)
6680     // ssub.sat(a, b) ->
6681     //   lo = smax(a, -1) - 0x7fffffff
6682     //   hi = smin(a, -1) - 0x80000000
6683     //   a - smin(smax(lo, b), hi)
6684     // TODO: AMDGPU can use a "median of 3" instruction here:
6685     //   a +/- med3(lo, b, hi)
6686     uint64_t NumBits = Ty.getScalarSizeInBits();
6687     auto MaxVal =
6688         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
6689     auto MinVal =
6690         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6691     MachineInstrBuilder Hi, Lo;
6692     if (IsAdd) {
6693       auto Zero = MIRBuilder.buildConstant(Ty, 0);
6694       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
6695       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
6696     } else {
6697       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
6698       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
6699                                MaxVal);
6700       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
6701                                MinVal);
6702     }
6703     auto RHSClamped =
6704         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
6705     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
6706   } else {
6707     // uadd.sat(a, b) -> a + umin(~a, b)
6708     // usub.sat(a, b) -> a - umin(a, b)
6709     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
6710     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
6711     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
6712   }
6713 
6714   MI.eraseFromParent();
6715   return Legalized;
6716 }
6717 
6718 LegalizerHelper::LegalizeResult
6719 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
6720   Register Res = MI.getOperand(0).getReg();
6721   Register LHS = MI.getOperand(1).getReg();
6722   Register RHS = MI.getOperand(2).getReg();
6723   LLT Ty = MRI.getType(Res);
6724   LLT BoolTy = Ty.changeElementSize(1);
6725   bool IsSigned;
6726   bool IsAdd;
6727   unsigned OverflowOp;
6728   switch (MI.getOpcode()) {
6729   default:
6730     llvm_unreachable("unexpected addsat/subsat opcode");
6731   case TargetOpcode::G_UADDSAT:
6732     IsSigned = false;
6733     IsAdd = true;
6734     OverflowOp = TargetOpcode::G_UADDO;
6735     break;
6736   case TargetOpcode::G_SADDSAT:
6737     IsSigned = true;
6738     IsAdd = true;
6739     OverflowOp = TargetOpcode::G_SADDO;
6740     break;
6741   case TargetOpcode::G_USUBSAT:
6742     IsSigned = false;
6743     IsAdd = false;
6744     OverflowOp = TargetOpcode::G_USUBO;
6745     break;
6746   case TargetOpcode::G_SSUBSAT:
6747     IsSigned = true;
6748     IsAdd = false;
6749     OverflowOp = TargetOpcode::G_SSUBO;
6750     break;
6751   }
6752 
6753   auto OverflowRes =
6754       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6755   Register Tmp = OverflowRes.getReg(0);
6756   Register Ov = OverflowRes.getReg(1);
6757   MachineInstrBuilder Clamp;
6758   if (IsSigned) {
6759     // sadd.sat(a, b) ->
6760     //   {tmp, ov} = saddo(a, b)
6761     //   ov ? (tmp >>s 31) + 0x80000000 : r
6762     // ssub.sat(a, b) ->
6763     //   {tmp, ov} = ssubo(a, b)
6764     //   ov ? (tmp >>s 31) + 0x80000000 : r
6765     uint64_t NumBits = Ty.getScalarSizeInBits();
6766     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6767     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6768     auto MinVal =
6769         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6770     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6771   } else {
6772     // uadd.sat(a, b) ->
6773     //   {tmp, ov} = uaddo(a, b)
6774     //   ov ? 0xffffffff : tmp
6775     // usub.sat(a, b) ->
6776     //   {tmp, ov} = usubo(a, b)
6777     //   ov ? 0 : tmp
6778     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6779   }
6780   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6781 
6782   MI.eraseFromParent();
6783   return Legalized;
6784 }
6785 
6786 LegalizerHelper::LegalizeResult
6787 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6788   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6789           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6790          "Expected shlsat opcode!");
6791   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6792   Register Res = MI.getOperand(0).getReg();
6793   Register LHS = MI.getOperand(1).getReg();
6794   Register RHS = MI.getOperand(2).getReg();
6795   LLT Ty = MRI.getType(Res);
6796   LLT BoolTy = Ty.changeElementSize(1);
6797 
6798   unsigned BW = Ty.getScalarSizeInBits();
6799   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6800   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6801                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6802 
6803   MachineInstrBuilder SatVal;
6804   if (IsSigned) {
6805     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6806     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6807     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6808                                     MIRBuilder.buildConstant(Ty, 0));
6809     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6810   } else {
6811     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6812   }
6813   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6814   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6815 
6816   MI.eraseFromParent();
6817   return Legalized;
6818 }
6819 
6820 LegalizerHelper::LegalizeResult
6821 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6822   Register Dst = MI.getOperand(0).getReg();
6823   Register Src = MI.getOperand(1).getReg();
6824   const LLT Ty = MRI.getType(Src);
6825   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6826   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6827 
6828   // Swap most and least significant byte, set remaining bytes in Res to zero.
6829   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6830   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6831   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6832   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6833 
6834   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6835   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6836     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6837     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6838     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6839     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6840     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6841     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6842     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6843     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6844     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6845     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6846     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6847     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6848   }
6849   Res.getInstr()->getOperand(0).setReg(Dst);
6850 
6851   MI.eraseFromParent();
6852   return Legalized;
6853 }
6854 
6855 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6856 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6857                                  MachineInstrBuilder Src, APInt Mask) {
6858   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6859   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6860   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6861   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6862   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6863   return B.buildOr(Dst, LHS, RHS);
6864 }
6865 
6866 LegalizerHelper::LegalizeResult
6867 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6868   Register Dst = MI.getOperand(0).getReg();
6869   Register Src = MI.getOperand(1).getReg();
6870   const LLT Ty = MRI.getType(Src);
6871   unsigned Size = Ty.getSizeInBits();
6872 
6873   MachineInstrBuilder BSWAP =
6874       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6875 
6876   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6877   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6878   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6879   MachineInstrBuilder Swap4 =
6880       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6881 
6882   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6883   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6884   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6885   MachineInstrBuilder Swap2 =
6886       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6887 
6888   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6889   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6890   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6891   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6892 
6893   MI.eraseFromParent();
6894   return Legalized;
6895 }
6896 
6897 LegalizerHelper::LegalizeResult
6898 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6899   MachineFunction &MF = MIRBuilder.getMF();
6900 
6901   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6902   int NameOpIdx = IsRead ? 1 : 0;
6903   int ValRegIndex = IsRead ? 0 : 1;
6904 
6905   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6906   const LLT Ty = MRI.getType(ValReg);
6907   const MDString *RegStr = cast<MDString>(
6908     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6909 
6910   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6911   if (!PhysReg.isValid())
6912     return UnableToLegalize;
6913 
6914   if (IsRead)
6915     MIRBuilder.buildCopy(ValReg, PhysReg);
6916   else
6917     MIRBuilder.buildCopy(PhysReg, ValReg);
6918 
6919   MI.eraseFromParent();
6920   return Legalized;
6921 }
6922 
6923 LegalizerHelper::LegalizeResult
6924 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
6925   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
6926   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
6927   Register Result = MI.getOperand(0).getReg();
6928   LLT OrigTy = MRI.getType(Result);
6929   auto SizeInBits = OrigTy.getScalarSizeInBits();
6930   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
6931 
6932   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
6933   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
6934   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
6935   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
6936 
6937   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
6938   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
6939   MIRBuilder.buildTrunc(Result, Shifted);
6940 
6941   MI.eraseFromParent();
6942   return Legalized;
6943 }
6944 
6945 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
6946   // Implement vector G_SELECT in terms of XOR, AND, OR.
6947   Register DstReg = MI.getOperand(0).getReg();
6948   Register MaskReg = MI.getOperand(1).getReg();
6949   Register Op1Reg = MI.getOperand(2).getReg();
6950   Register Op2Reg = MI.getOperand(3).getReg();
6951   LLT DstTy = MRI.getType(DstReg);
6952   LLT MaskTy = MRI.getType(MaskReg);
6953   LLT Op1Ty = MRI.getType(Op1Reg);
6954   if (!DstTy.isVector())
6955     return UnableToLegalize;
6956 
6957   // Vector selects can have a scalar predicate. If so, splat into a vector and
6958   // finish for later legalization attempts to try again.
6959   if (MaskTy.isScalar()) {
6960     Register MaskElt = MaskReg;
6961     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
6962       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
6963     // Generate a vector splat idiom to be pattern matched later.
6964     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
6965     Observer.changingInstr(MI);
6966     MI.getOperand(1).setReg(ShufSplat.getReg(0));
6967     Observer.changedInstr(MI);
6968     return Legalized;
6969   }
6970 
6971   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
6972     return UnableToLegalize;
6973   }
6974 
6975   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
6976   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
6977   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
6978   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
6979   MI.eraseFromParent();
6980   return Legalized;
6981 }
6982 
6983 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
6984   // Split DIVREM into individual instructions.
6985   unsigned Opcode = MI.getOpcode();
6986 
6987   MIRBuilder.buildInstr(
6988       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
6989                                         : TargetOpcode::G_UDIV,
6990       {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
6991   MIRBuilder.buildInstr(
6992       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
6993                                         : TargetOpcode::G_UREM,
6994       {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
6995   MI.eraseFromParent();
6996   return Legalized;
6997 }
6998 
6999 LegalizerHelper::LegalizeResult
7000 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) {
7001   // Expand %res = G_ABS %a into:
7002   // %v1 = G_ASHR %a, scalar_size-1
7003   // %v2 = G_ADD %a, %v1
7004   // %res = G_XOR %v2, %v1
7005   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
7006   Register OpReg = MI.getOperand(1).getReg();
7007   auto ShiftAmt =
7008       MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
7009   auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
7010   auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
7011   MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
7012   MI.eraseFromParent();
7013   return Legalized;
7014 }
7015 
7016 LegalizerHelper::LegalizeResult
7017 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) {
7018   // Expand %res = G_ABS %a into:
7019   // %v1 = G_CONSTANT 0
7020   // %v2 = G_SUB %v1, %a
7021   // %res = G_SMAX %a, %v2
7022   Register SrcReg = MI.getOperand(1).getReg();
7023   LLT Ty = MRI.getType(SrcReg);
7024   auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0);
7025   auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0);
7026   MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub);
7027   MI.eraseFromParent();
7028   return Legalized;
7029 }
7030