1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 67 68 if (!Ty.isScalar()) 69 return nullptr; 70 71 switch (Ty.getSizeInBits()) { 72 case 16: 73 return Type::getHalfTy(Ctx); 74 case 32: 75 return Type::getFloatTy(Ctx); 76 case 64: 77 return Type::getDoubleTy(Ctx); 78 case 128: 79 return Type::getFP128Ty(Ctx); 80 default: 81 return nullptr; 82 } 83 } 84 85 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 86 GISelChangeObserver &Observer, 87 MachineIRBuilder &Builder) 88 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 89 LI(*MF.getSubtarget().getLegalizerInfo()) { 90 MIRBuilder.setChangeObserver(Observer); 91 } 92 93 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 94 GISelChangeObserver &Observer, 95 MachineIRBuilder &B) 96 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI) { 97 MIRBuilder.setChangeObserver(Observer); 98 } 99 LegalizerHelper::LegalizeResult 100 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 101 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 102 103 MIRBuilder.setInstrAndDebugLoc(MI); 104 105 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 106 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 107 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 108 auto Step = LI.getAction(MI, MRI); 109 switch (Step.Action) { 110 case Legal: 111 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 112 return AlreadyLegal; 113 case Libcall: 114 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 115 return libcall(MI); 116 case NarrowScalar: 117 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 118 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 119 case WidenScalar: 120 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 121 return widenScalar(MI, Step.TypeIdx, Step.NewType); 122 case Bitcast: 123 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 124 return bitcast(MI, Step.TypeIdx, Step.NewType); 125 case Lower: 126 LLVM_DEBUG(dbgs() << ".. Lower\n"); 127 return lower(MI, Step.TypeIdx, Step.NewType); 128 case FewerElements: 129 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 130 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 131 case MoreElements: 132 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 133 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 134 case Custom: 135 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 136 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 137 default: 138 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 139 return UnableToLegalize; 140 } 141 } 142 143 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 144 SmallVectorImpl<Register> &VRegs) { 145 for (int i = 0; i < NumParts; ++i) 146 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 147 MIRBuilder.buildUnmerge(VRegs, Reg); 148 } 149 150 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 151 LLT MainTy, LLT &LeftoverTy, 152 SmallVectorImpl<Register> &VRegs, 153 SmallVectorImpl<Register> &LeftoverRegs) { 154 assert(!LeftoverTy.isValid() && "this is an out argument"); 155 156 unsigned RegSize = RegTy.getSizeInBits(); 157 unsigned MainSize = MainTy.getSizeInBits(); 158 unsigned NumParts = RegSize / MainSize; 159 unsigned LeftoverSize = RegSize - NumParts * MainSize; 160 161 // Use an unmerge when possible. 162 if (LeftoverSize == 0) { 163 for (unsigned I = 0; I < NumParts; ++I) 164 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 165 MIRBuilder.buildUnmerge(VRegs, Reg); 166 return true; 167 } 168 169 if (MainTy.isVector()) { 170 unsigned EltSize = MainTy.getScalarSizeInBits(); 171 if (LeftoverSize % EltSize != 0) 172 return false; 173 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 174 } else { 175 LeftoverTy = LLT::scalar(LeftoverSize); 176 } 177 178 // For irregular sizes, extract the individual parts. 179 for (unsigned I = 0; I != NumParts; ++I) { 180 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 181 VRegs.push_back(NewReg); 182 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 183 } 184 185 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 186 Offset += LeftoverSize) { 187 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 188 LeftoverRegs.push_back(NewReg); 189 MIRBuilder.buildExtract(NewReg, Reg, Offset); 190 } 191 192 return true; 193 } 194 195 void LegalizerHelper::insertParts(Register DstReg, 196 LLT ResultTy, LLT PartTy, 197 ArrayRef<Register> PartRegs, 198 LLT LeftoverTy, 199 ArrayRef<Register> LeftoverRegs) { 200 if (!LeftoverTy.isValid()) { 201 assert(LeftoverRegs.empty()); 202 203 if (!ResultTy.isVector()) { 204 MIRBuilder.buildMerge(DstReg, PartRegs); 205 return; 206 } 207 208 if (PartTy.isVector()) 209 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 210 else 211 MIRBuilder.buildBuildVector(DstReg, PartRegs); 212 return; 213 } 214 215 unsigned PartSize = PartTy.getSizeInBits(); 216 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 217 218 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 219 MIRBuilder.buildUndef(CurResultReg); 220 221 unsigned Offset = 0; 222 for (Register PartReg : PartRegs) { 223 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 224 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 225 CurResultReg = NewResultReg; 226 Offset += PartSize; 227 } 228 229 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 230 // Use the original output register for the final insert to avoid a copy. 231 Register NewResultReg = (I + 1 == E) ? 232 DstReg : MRI.createGenericVirtualRegister(ResultTy); 233 234 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 235 CurResultReg = NewResultReg; 236 Offset += LeftoverPartSize; 237 } 238 } 239 240 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 241 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 242 const MachineInstr &MI) { 243 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 244 245 const int NumResults = MI.getNumOperands() - 1; 246 Regs.resize(NumResults); 247 for (int I = 0; I != NumResults; ++I) 248 Regs[I] = MI.getOperand(I).getReg(); 249 } 250 251 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 252 LLT NarrowTy, Register SrcReg) { 253 LLT SrcTy = MRI.getType(SrcReg); 254 255 LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy)); 256 if (SrcTy == GCDTy) { 257 // If the source already evenly divides the result type, we don't need to do 258 // anything. 259 Parts.push_back(SrcReg); 260 } else { 261 // Need to split into common type sized pieces. 262 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 263 getUnmergeResults(Parts, *Unmerge); 264 } 265 266 return GCDTy; 267 } 268 269 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 270 SmallVectorImpl<Register> &VRegs, 271 unsigned PadStrategy) { 272 LLT LCMTy = getLCMType(DstTy, NarrowTy); 273 274 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 275 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 276 int NumOrigSrc = VRegs.size(); 277 278 Register PadReg; 279 280 // Get a value we can use to pad the source value if the sources won't evenly 281 // cover the result type. 282 if (NumOrigSrc < NumParts * NumSubParts) { 283 if (PadStrategy == TargetOpcode::G_ZEXT) 284 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 285 else if (PadStrategy == TargetOpcode::G_ANYEXT) 286 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 287 else { 288 assert(PadStrategy == TargetOpcode::G_SEXT); 289 290 // Shift the sign bit of the low register through the high register. 291 auto ShiftAmt = 292 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 293 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 294 } 295 } 296 297 // Registers for the final merge to be produced. 298 SmallVector<Register, 4> Remerge(NumParts); 299 300 // Registers needed for intermediate merges, which will be merged into a 301 // source for Remerge. 302 SmallVector<Register, 4> SubMerge(NumSubParts); 303 304 // Once we've fully read off the end of the original source bits, we can reuse 305 // the same high bits for remaining padding elements. 306 Register AllPadReg; 307 308 // Build merges to the LCM type to cover the original result type. 309 for (int I = 0; I != NumParts; ++I) { 310 bool AllMergePartsArePadding = true; 311 312 // Build the requested merges to the requested type. 313 for (int J = 0; J != NumSubParts; ++J) { 314 int Idx = I * NumSubParts + J; 315 if (Idx >= NumOrigSrc) { 316 SubMerge[J] = PadReg; 317 continue; 318 } 319 320 SubMerge[J] = VRegs[Idx]; 321 322 // There are meaningful bits here we can't reuse later. 323 AllMergePartsArePadding = false; 324 } 325 326 // If we've filled up a complete piece with padding bits, we can directly 327 // emit the natural sized constant if applicable, rather than a merge of 328 // smaller constants. 329 if (AllMergePartsArePadding && !AllPadReg) { 330 if (PadStrategy == TargetOpcode::G_ANYEXT) 331 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 332 else if (PadStrategy == TargetOpcode::G_ZEXT) 333 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 334 335 // If this is a sign extension, we can't materialize a trivial constant 336 // with the right type and have to produce a merge. 337 } 338 339 if (AllPadReg) { 340 // Avoid creating additional instructions if we're just adding additional 341 // copies of padding bits. 342 Remerge[I] = AllPadReg; 343 continue; 344 } 345 346 if (NumSubParts == 1) 347 Remerge[I] = SubMerge[0]; 348 else 349 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 350 351 // In the sign extend padding case, re-use the first all-signbit merge. 352 if (AllMergePartsArePadding && !AllPadReg) 353 AllPadReg = Remerge[I]; 354 } 355 356 VRegs = std::move(Remerge); 357 return LCMTy; 358 } 359 360 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 361 ArrayRef<Register> RemergeRegs) { 362 LLT DstTy = MRI.getType(DstReg); 363 364 // Create the merge to the widened source, and extract the relevant bits into 365 // the result. 366 367 if (DstTy == LCMTy) { 368 MIRBuilder.buildMerge(DstReg, RemergeRegs); 369 return; 370 } 371 372 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 373 if (DstTy.isScalar() && LCMTy.isScalar()) { 374 MIRBuilder.buildTrunc(DstReg, Remerge); 375 return; 376 } 377 378 if (LCMTy.isVector()) { 379 MIRBuilder.buildExtract(DstReg, Remerge, 0); 380 return; 381 } 382 383 llvm_unreachable("unhandled case"); 384 } 385 386 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 387 #define RTLIBCASE(LibcallPrefix) \ 388 do { \ 389 switch (Size) { \ 390 case 32: \ 391 return RTLIB::LibcallPrefix##32; \ 392 case 64: \ 393 return RTLIB::LibcallPrefix##64; \ 394 case 128: \ 395 return RTLIB::LibcallPrefix##128; \ 396 default: \ 397 llvm_unreachable("unexpected size"); \ 398 } \ 399 } while (0) 400 401 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 402 403 switch (Opcode) { 404 case TargetOpcode::G_SDIV: 405 RTLIBCASE(SDIV_I); 406 case TargetOpcode::G_UDIV: 407 RTLIBCASE(UDIV_I); 408 case TargetOpcode::G_SREM: 409 RTLIBCASE(SREM_I); 410 case TargetOpcode::G_UREM: 411 RTLIBCASE(UREM_I); 412 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 413 RTLIBCASE(CTLZ_I); 414 case TargetOpcode::G_FADD: 415 RTLIBCASE(ADD_F); 416 case TargetOpcode::G_FSUB: 417 RTLIBCASE(SUB_F); 418 case TargetOpcode::G_FMUL: 419 RTLIBCASE(MUL_F); 420 case TargetOpcode::G_FDIV: 421 RTLIBCASE(DIV_F); 422 case TargetOpcode::G_FEXP: 423 RTLIBCASE(EXP_F); 424 case TargetOpcode::G_FEXP2: 425 RTLIBCASE(EXP2_F); 426 case TargetOpcode::G_FREM: 427 RTLIBCASE(REM_F); 428 case TargetOpcode::G_FPOW: 429 RTLIBCASE(POW_F); 430 case TargetOpcode::G_FMA: 431 RTLIBCASE(FMA_F); 432 case TargetOpcode::G_FSIN: 433 RTLIBCASE(SIN_F); 434 case TargetOpcode::G_FCOS: 435 RTLIBCASE(COS_F); 436 case TargetOpcode::G_FLOG10: 437 RTLIBCASE(LOG10_F); 438 case TargetOpcode::G_FLOG: 439 RTLIBCASE(LOG_F); 440 case TargetOpcode::G_FLOG2: 441 RTLIBCASE(LOG2_F); 442 case TargetOpcode::G_FCEIL: 443 RTLIBCASE(CEIL_F); 444 case TargetOpcode::G_FFLOOR: 445 RTLIBCASE(FLOOR_F); 446 case TargetOpcode::G_FMINNUM: 447 RTLIBCASE(FMIN_F); 448 case TargetOpcode::G_FMAXNUM: 449 RTLIBCASE(FMAX_F); 450 case TargetOpcode::G_FSQRT: 451 RTLIBCASE(SQRT_F); 452 case TargetOpcode::G_FRINT: 453 RTLIBCASE(RINT_F); 454 case TargetOpcode::G_FNEARBYINT: 455 RTLIBCASE(NEARBYINT_F); 456 } 457 llvm_unreachable("Unknown libcall function"); 458 } 459 460 /// True if an instruction is in tail position in its caller. Intended for 461 /// legalizing libcalls as tail calls when possible. 462 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 463 MachineInstr &MI) { 464 MachineBasicBlock &MBB = *MI.getParent(); 465 const Function &F = MBB.getParent()->getFunction(); 466 467 // Conservatively require the attributes of the call to match those of 468 // the return. Ignore NoAlias and NonNull because they don't affect the 469 // call sequence. 470 AttributeList CallerAttrs = F.getAttributes(); 471 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 472 .removeAttribute(Attribute::NoAlias) 473 .removeAttribute(Attribute::NonNull) 474 .hasAttributes()) 475 return false; 476 477 // It's not safe to eliminate the sign / zero extension of the return value. 478 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 479 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 480 return false; 481 482 // Only tail call if the following instruction is a standard return. 483 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 484 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 485 return false; 486 487 return true; 488 } 489 490 LegalizerHelper::LegalizeResult 491 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 492 const CallLowering::ArgInfo &Result, 493 ArrayRef<CallLowering::ArgInfo> Args, 494 const CallingConv::ID CC) { 495 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 496 497 CallLowering::CallLoweringInfo Info; 498 Info.CallConv = CC; 499 Info.Callee = MachineOperand::CreateES(Name); 500 Info.OrigRet = Result; 501 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 502 if (!CLI.lowerCall(MIRBuilder, Info)) 503 return LegalizerHelper::UnableToLegalize; 504 505 return LegalizerHelper::Legalized; 506 } 507 508 LegalizerHelper::LegalizeResult 509 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 510 const CallLowering::ArgInfo &Result, 511 ArrayRef<CallLowering::ArgInfo> Args) { 512 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 513 const char *Name = TLI.getLibcallName(Libcall); 514 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 515 return createLibcall(MIRBuilder, Name, Result, Args, CC); 516 } 517 518 // Useful for libcalls where all operands have the same type. 519 static LegalizerHelper::LegalizeResult 520 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 521 Type *OpType) { 522 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 523 524 SmallVector<CallLowering::ArgInfo, 3> Args; 525 for (unsigned i = 1; i < MI.getNumOperands(); i++) 526 Args.push_back({MI.getOperand(i).getReg(), OpType}); 527 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 528 Args); 529 } 530 531 LegalizerHelper::LegalizeResult 532 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 533 MachineInstr &MI) { 534 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 535 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 536 537 SmallVector<CallLowering::ArgInfo, 3> Args; 538 // Add all the args, except for the last which is an imm denoting 'tail'. 539 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 540 Register Reg = MI.getOperand(i).getReg(); 541 542 // Need derive an IR type for call lowering. 543 LLT OpLLT = MRI.getType(Reg); 544 Type *OpTy = nullptr; 545 if (OpLLT.isPointer()) 546 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 547 else 548 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 549 Args.push_back({Reg, OpTy}); 550 } 551 552 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 553 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 554 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 555 RTLIB::Libcall RTLibcall; 556 switch (ID) { 557 case Intrinsic::memcpy: 558 RTLibcall = RTLIB::MEMCPY; 559 break; 560 case Intrinsic::memset: 561 RTLibcall = RTLIB::MEMSET; 562 break; 563 case Intrinsic::memmove: 564 RTLibcall = RTLIB::MEMMOVE; 565 break; 566 default: 567 return LegalizerHelper::UnableToLegalize; 568 } 569 const char *Name = TLI.getLibcallName(RTLibcall); 570 571 MIRBuilder.setInstrAndDebugLoc(MI); 572 573 CallLowering::CallLoweringInfo Info; 574 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 575 Info.Callee = MachineOperand::CreateES(Name); 576 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 577 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 578 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 579 580 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 581 if (!CLI.lowerCall(MIRBuilder, Info)) 582 return LegalizerHelper::UnableToLegalize; 583 584 if (Info.LoweredTailCall) { 585 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 586 // We must have a return following the call (or debug insts) to get past 587 // isLibCallInTailPosition. 588 do { 589 MachineInstr *Next = MI.getNextNode(); 590 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 591 "Expected instr following MI to be return or debug inst?"); 592 // We lowered a tail call, so the call is now the return from the block. 593 // Delete the old return. 594 Next->eraseFromParent(); 595 } while (MI.getNextNode()); 596 } 597 598 return LegalizerHelper::Legalized; 599 } 600 601 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 602 Type *FromType) { 603 auto ToMVT = MVT::getVT(ToType); 604 auto FromMVT = MVT::getVT(FromType); 605 606 switch (Opcode) { 607 case TargetOpcode::G_FPEXT: 608 return RTLIB::getFPEXT(FromMVT, ToMVT); 609 case TargetOpcode::G_FPTRUNC: 610 return RTLIB::getFPROUND(FromMVT, ToMVT); 611 case TargetOpcode::G_FPTOSI: 612 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 613 case TargetOpcode::G_FPTOUI: 614 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 615 case TargetOpcode::G_SITOFP: 616 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 617 case TargetOpcode::G_UITOFP: 618 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 619 } 620 llvm_unreachable("Unsupported libcall function"); 621 } 622 623 static LegalizerHelper::LegalizeResult 624 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 625 Type *FromType) { 626 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 627 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 628 {{MI.getOperand(1).getReg(), FromType}}); 629 } 630 631 LegalizerHelper::LegalizeResult 632 LegalizerHelper::libcall(MachineInstr &MI) { 633 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 634 unsigned Size = LLTy.getSizeInBits(); 635 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 636 637 switch (MI.getOpcode()) { 638 default: 639 return UnableToLegalize; 640 case TargetOpcode::G_SDIV: 641 case TargetOpcode::G_UDIV: 642 case TargetOpcode::G_SREM: 643 case TargetOpcode::G_UREM: 644 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 645 Type *HLTy = IntegerType::get(Ctx, Size); 646 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 647 if (Status != Legalized) 648 return Status; 649 break; 650 } 651 case TargetOpcode::G_FADD: 652 case TargetOpcode::G_FSUB: 653 case TargetOpcode::G_FMUL: 654 case TargetOpcode::G_FDIV: 655 case TargetOpcode::G_FMA: 656 case TargetOpcode::G_FPOW: 657 case TargetOpcode::G_FREM: 658 case TargetOpcode::G_FCOS: 659 case TargetOpcode::G_FSIN: 660 case TargetOpcode::G_FLOG10: 661 case TargetOpcode::G_FLOG: 662 case TargetOpcode::G_FLOG2: 663 case TargetOpcode::G_FEXP: 664 case TargetOpcode::G_FEXP2: 665 case TargetOpcode::G_FCEIL: 666 case TargetOpcode::G_FFLOOR: 667 case TargetOpcode::G_FMINNUM: 668 case TargetOpcode::G_FMAXNUM: 669 case TargetOpcode::G_FSQRT: 670 case TargetOpcode::G_FRINT: 671 case TargetOpcode::G_FNEARBYINT: { 672 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 673 if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) { 674 LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n"); 675 return UnableToLegalize; 676 } 677 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 678 if (Status != Legalized) 679 return Status; 680 break; 681 } 682 case TargetOpcode::G_FPEXT: 683 case TargetOpcode::G_FPTRUNC: { 684 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 685 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 686 if (!FromTy || !ToTy) 687 return UnableToLegalize; 688 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 689 if (Status != Legalized) 690 return Status; 691 break; 692 } 693 case TargetOpcode::G_FPTOSI: 694 case TargetOpcode::G_FPTOUI: { 695 // FIXME: Support other types 696 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 697 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 698 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 699 return UnableToLegalize; 700 LegalizeResult Status = conversionLibcall( 701 MI, MIRBuilder, 702 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 703 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 704 if (Status != Legalized) 705 return Status; 706 break; 707 } 708 case TargetOpcode::G_SITOFP: 709 case TargetOpcode::G_UITOFP: { 710 // FIXME: Support other types 711 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 712 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 713 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 714 return UnableToLegalize; 715 LegalizeResult Status = conversionLibcall( 716 MI, MIRBuilder, 717 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 718 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 719 if (Status != Legalized) 720 return Status; 721 break; 722 } 723 } 724 725 MI.eraseFromParent(); 726 return Legalized; 727 } 728 729 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 730 unsigned TypeIdx, 731 LLT NarrowTy) { 732 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 733 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 734 735 switch (MI.getOpcode()) { 736 default: 737 return UnableToLegalize; 738 case TargetOpcode::G_IMPLICIT_DEF: { 739 Register DstReg = MI.getOperand(0).getReg(); 740 LLT DstTy = MRI.getType(DstReg); 741 742 // If SizeOp0 is not an exact multiple of NarrowSize, emit 743 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 744 // FIXME: Although this would also be legal for the general case, it causes 745 // a lot of regressions in the emitted code (superfluous COPYs, artifact 746 // combines not being hit). This seems to be a problem related to the 747 // artifact combiner. 748 if (SizeOp0 % NarrowSize != 0) { 749 LLT ImplicitTy = NarrowTy; 750 if (DstTy.isVector()) 751 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 752 753 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 754 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 755 756 MI.eraseFromParent(); 757 return Legalized; 758 } 759 760 int NumParts = SizeOp0 / NarrowSize; 761 762 SmallVector<Register, 2> DstRegs; 763 for (int i = 0; i < NumParts; ++i) 764 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 765 766 if (DstTy.isVector()) 767 MIRBuilder.buildBuildVector(DstReg, DstRegs); 768 else 769 MIRBuilder.buildMerge(DstReg, DstRegs); 770 MI.eraseFromParent(); 771 return Legalized; 772 } 773 case TargetOpcode::G_CONSTANT: { 774 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 775 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 776 unsigned TotalSize = Ty.getSizeInBits(); 777 unsigned NarrowSize = NarrowTy.getSizeInBits(); 778 int NumParts = TotalSize / NarrowSize; 779 780 SmallVector<Register, 4> PartRegs; 781 for (int I = 0; I != NumParts; ++I) { 782 unsigned Offset = I * NarrowSize; 783 auto K = MIRBuilder.buildConstant(NarrowTy, 784 Val.lshr(Offset).trunc(NarrowSize)); 785 PartRegs.push_back(K.getReg(0)); 786 } 787 788 LLT LeftoverTy; 789 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 790 SmallVector<Register, 1> LeftoverRegs; 791 if (LeftoverBits != 0) { 792 LeftoverTy = LLT::scalar(LeftoverBits); 793 auto K = MIRBuilder.buildConstant( 794 LeftoverTy, 795 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 796 LeftoverRegs.push_back(K.getReg(0)); 797 } 798 799 insertParts(MI.getOperand(0).getReg(), 800 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 801 802 MI.eraseFromParent(); 803 return Legalized; 804 } 805 case TargetOpcode::G_SEXT: 806 case TargetOpcode::G_ZEXT: 807 case TargetOpcode::G_ANYEXT: 808 return narrowScalarExt(MI, TypeIdx, NarrowTy); 809 case TargetOpcode::G_TRUNC: { 810 if (TypeIdx != 1) 811 return UnableToLegalize; 812 813 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 814 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 815 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 816 return UnableToLegalize; 817 } 818 819 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 820 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 821 MI.eraseFromParent(); 822 return Legalized; 823 } 824 825 case TargetOpcode::G_FREEZE: 826 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 827 828 case TargetOpcode::G_ADD: { 829 // FIXME: add support for when SizeOp0 isn't an exact multiple of 830 // NarrowSize. 831 if (SizeOp0 % NarrowSize != 0) 832 return UnableToLegalize; 833 // Expand in terms of carry-setting/consuming G_ADDE instructions. 834 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 835 836 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 837 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 838 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 839 840 Register CarryIn; 841 for (int i = 0; i < NumParts; ++i) { 842 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 843 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 844 845 if (i == 0) 846 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 847 else { 848 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 849 Src2Regs[i], CarryIn); 850 } 851 852 DstRegs.push_back(DstReg); 853 CarryIn = CarryOut; 854 } 855 Register DstReg = MI.getOperand(0).getReg(); 856 if(MRI.getType(DstReg).isVector()) 857 MIRBuilder.buildBuildVector(DstReg, DstRegs); 858 else 859 MIRBuilder.buildMerge(DstReg, DstRegs); 860 MI.eraseFromParent(); 861 return Legalized; 862 } 863 case TargetOpcode::G_SUB: { 864 // FIXME: add support for when SizeOp0 isn't an exact multiple of 865 // NarrowSize. 866 if (SizeOp0 % NarrowSize != 0) 867 return UnableToLegalize; 868 869 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 870 871 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 872 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 873 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 874 875 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 876 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 877 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 878 {Src1Regs[0], Src2Regs[0]}); 879 DstRegs.push_back(DstReg); 880 Register BorrowIn = BorrowOut; 881 for (int i = 1; i < NumParts; ++i) { 882 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 883 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 884 885 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 886 {Src1Regs[i], Src2Regs[i], BorrowIn}); 887 888 DstRegs.push_back(DstReg); 889 BorrowIn = BorrowOut; 890 } 891 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 892 MI.eraseFromParent(); 893 return Legalized; 894 } 895 case TargetOpcode::G_MUL: 896 case TargetOpcode::G_UMULH: 897 return narrowScalarMul(MI, NarrowTy); 898 case TargetOpcode::G_EXTRACT: 899 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 900 case TargetOpcode::G_INSERT: 901 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 902 case TargetOpcode::G_LOAD: { 903 const auto &MMO = **MI.memoperands_begin(); 904 Register DstReg = MI.getOperand(0).getReg(); 905 LLT DstTy = MRI.getType(DstReg); 906 if (DstTy.isVector()) 907 return UnableToLegalize; 908 909 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 910 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 911 auto &MMO = **MI.memoperands_begin(); 912 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 913 MIRBuilder.buildAnyExt(DstReg, TmpReg); 914 MI.eraseFromParent(); 915 return Legalized; 916 } 917 918 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 919 } 920 case TargetOpcode::G_ZEXTLOAD: 921 case TargetOpcode::G_SEXTLOAD: { 922 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 923 Register DstReg = MI.getOperand(0).getReg(); 924 Register PtrReg = MI.getOperand(1).getReg(); 925 926 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 927 auto &MMO = **MI.memoperands_begin(); 928 if (MMO.getSizeInBits() == NarrowSize) { 929 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 930 } else { 931 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 932 } 933 934 if (ZExt) 935 MIRBuilder.buildZExt(DstReg, TmpReg); 936 else 937 MIRBuilder.buildSExt(DstReg, TmpReg); 938 939 MI.eraseFromParent(); 940 return Legalized; 941 } 942 case TargetOpcode::G_STORE: { 943 const auto &MMO = **MI.memoperands_begin(); 944 945 Register SrcReg = MI.getOperand(0).getReg(); 946 LLT SrcTy = MRI.getType(SrcReg); 947 if (SrcTy.isVector()) 948 return UnableToLegalize; 949 950 int NumParts = SizeOp0 / NarrowSize; 951 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 952 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 953 if (SrcTy.isVector() && LeftoverBits != 0) 954 return UnableToLegalize; 955 956 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 957 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 958 auto &MMO = **MI.memoperands_begin(); 959 MIRBuilder.buildTrunc(TmpReg, SrcReg); 960 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 961 MI.eraseFromParent(); 962 return Legalized; 963 } 964 965 return reduceLoadStoreWidth(MI, 0, NarrowTy); 966 } 967 case TargetOpcode::G_SELECT: 968 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 969 case TargetOpcode::G_AND: 970 case TargetOpcode::G_OR: 971 case TargetOpcode::G_XOR: { 972 // Legalize bitwise operation: 973 // A = BinOp<Ty> B, C 974 // into: 975 // B1, ..., BN = G_UNMERGE_VALUES B 976 // C1, ..., CN = G_UNMERGE_VALUES C 977 // A1 = BinOp<Ty/N> B1, C2 978 // ... 979 // AN = BinOp<Ty/N> BN, CN 980 // A = G_MERGE_VALUES A1, ..., AN 981 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 982 } 983 case TargetOpcode::G_SHL: 984 case TargetOpcode::G_LSHR: 985 case TargetOpcode::G_ASHR: 986 return narrowScalarShift(MI, TypeIdx, NarrowTy); 987 case TargetOpcode::G_CTLZ: 988 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 989 case TargetOpcode::G_CTTZ: 990 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 991 case TargetOpcode::G_CTPOP: 992 if (TypeIdx == 1) 993 switch (MI.getOpcode()) { 994 case TargetOpcode::G_CTLZ: 995 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 996 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 997 case TargetOpcode::G_CTTZ: 998 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 999 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1000 case TargetOpcode::G_CTPOP: 1001 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1002 default: 1003 return UnableToLegalize; 1004 } 1005 1006 Observer.changingInstr(MI); 1007 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1008 Observer.changedInstr(MI); 1009 return Legalized; 1010 case TargetOpcode::G_INTTOPTR: 1011 if (TypeIdx != 1) 1012 return UnableToLegalize; 1013 1014 Observer.changingInstr(MI); 1015 narrowScalarSrc(MI, NarrowTy, 1); 1016 Observer.changedInstr(MI); 1017 return Legalized; 1018 case TargetOpcode::G_PTRTOINT: 1019 if (TypeIdx != 0) 1020 return UnableToLegalize; 1021 1022 Observer.changingInstr(MI); 1023 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1024 Observer.changedInstr(MI); 1025 return Legalized; 1026 case TargetOpcode::G_PHI: { 1027 unsigned NumParts = SizeOp0 / NarrowSize; 1028 SmallVector<Register, 2> DstRegs(NumParts); 1029 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1030 Observer.changingInstr(MI); 1031 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1032 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1033 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1034 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1035 SrcRegs[i / 2]); 1036 } 1037 MachineBasicBlock &MBB = *MI.getParent(); 1038 MIRBuilder.setInsertPt(MBB, MI); 1039 for (unsigned i = 0; i < NumParts; ++i) { 1040 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1041 MachineInstrBuilder MIB = 1042 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1043 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1044 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1045 } 1046 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1047 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1048 Observer.changedInstr(MI); 1049 MI.eraseFromParent(); 1050 return Legalized; 1051 } 1052 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1053 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1054 if (TypeIdx != 2) 1055 return UnableToLegalize; 1056 1057 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1058 Observer.changingInstr(MI); 1059 narrowScalarSrc(MI, NarrowTy, OpIdx); 1060 Observer.changedInstr(MI); 1061 return Legalized; 1062 } 1063 case TargetOpcode::G_ICMP: { 1064 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1065 if (NarrowSize * 2 != SrcSize) 1066 return UnableToLegalize; 1067 1068 Observer.changingInstr(MI); 1069 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1070 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1071 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1072 1073 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1074 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1075 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1076 1077 CmpInst::Predicate Pred = 1078 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1079 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1080 1081 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1082 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1083 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1084 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1085 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1086 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1087 } else { 1088 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1089 MachineInstrBuilder CmpHEQ = 1090 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1091 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1092 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1093 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1094 } 1095 Observer.changedInstr(MI); 1096 MI.eraseFromParent(); 1097 return Legalized; 1098 } 1099 case TargetOpcode::G_SEXT_INREG: { 1100 if (TypeIdx != 0) 1101 return UnableToLegalize; 1102 1103 int64_t SizeInBits = MI.getOperand(2).getImm(); 1104 1105 // So long as the new type has more bits than the bits we're extending we 1106 // don't need to break it apart. 1107 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1108 Observer.changingInstr(MI); 1109 // We don't lose any non-extension bits by truncating the src and 1110 // sign-extending the dst. 1111 MachineOperand &MO1 = MI.getOperand(1); 1112 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1113 MO1.setReg(TruncMIB.getReg(0)); 1114 1115 MachineOperand &MO2 = MI.getOperand(0); 1116 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1117 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1118 MIRBuilder.buildSExt(MO2, DstExt); 1119 MO2.setReg(DstExt); 1120 Observer.changedInstr(MI); 1121 return Legalized; 1122 } 1123 1124 // Break it apart. Components below the extension point are unmodified. The 1125 // component containing the extension point becomes a narrower SEXT_INREG. 1126 // Components above it are ashr'd from the component containing the 1127 // extension point. 1128 if (SizeOp0 % NarrowSize != 0) 1129 return UnableToLegalize; 1130 int NumParts = SizeOp0 / NarrowSize; 1131 1132 // List the registers where the destination will be scattered. 1133 SmallVector<Register, 2> DstRegs; 1134 // List the registers where the source will be split. 1135 SmallVector<Register, 2> SrcRegs; 1136 1137 // Create all the temporary registers. 1138 for (int i = 0; i < NumParts; ++i) { 1139 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1140 1141 SrcRegs.push_back(SrcReg); 1142 } 1143 1144 // Explode the big arguments into smaller chunks. 1145 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1146 1147 Register AshrCstReg = 1148 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1149 .getReg(0); 1150 Register FullExtensionReg = 0; 1151 Register PartialExtensionReg = 0; 1152 1153 // Do the operation on each small part. 1154 for (int i = 0; i < NumParts; ++i) { 1155 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1156 DstRegs.push_back(SrcRegs[i]); 1157 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1158 assert(PartialExtensionReg && 1159 "Expected to visit partial extension before full"); 1160 if (FullExtensionReg) { 1161 DstRegs.push_back(FullExtensionReg); 1162 continue; 1163 } 1164 DstRegs.push_back( 1165 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1166 .getReg(0)); 1167 FullExtensionReg = DstRegs.back(); 1168 } else { 1169 DstRegs.push_back( 1170 MIRBuilder 1171 .buildInstr( 1172 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1173 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1174 .getReg(0)); 1175 PartialExtensionReg = DstRegs.back(); 1176 } 1177 } 1178 1179 // Gather the destination registers into the final destination. 1180 Register DstReg = MI.getOperand(0).getReg(); 1181 MIRBuilder.buildMerge(DstReg, DstRegs); 1182 MI.eraseFromParent(); 1183 return Legalized; 1184 } 1185 case TargetOpcode::G_BSWAP: 1186 case TargetOpcode::G_BITREVERSE: { 1187 if (SizeOp0 % NarrowSize != 0) 1188 return UnableToLegalize; 1189 1190 Observer.changingInstr(MI); 1191 SmallVector<Register, 2> SrcRegs, DstRegs; 1192 unsigned NumParts = SizeOp0 / NarrowSize; 1193 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1194 1195 for (unsigned i = 0; i < NumParts; ++i) { 1196 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1197 {SrcRegs[NumParts - 1 - i]}); 1198 DstRegs.push_back(DstPart.getReg(0)); 1199 } 1200 1201 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1202 1203 Observer.changedInstr(MI); 1204 MI.eraseFromParent(); 1205 return Legalized; 1206 } 1207 case TargetOpcode::G_PTRMASK: { 1208 if (TypeIdx != 1) 1209 return UnableToLegalize; 1210 Observer.changingInstr(MI); 1211 narrowScalarSrc(MI, NarrowTy, 2); 1212 Observer.changedInstr(MI); 1213 return Legalized; 1214 } 1215 case TargetOpcode::G_FPTOUI: { 1216 if (TypeIdx != 0) 1217 return UnableToLegalize; 1218 Observer.changingInstr(MI); 1219 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1220 Observer.changedInstr(MI); 1221 return Legalized; 1222 } 1223 case TargetOpcode::G_FPTOSI: { 1224 if (TypeIdx != 0) 1225 return UnableToLegalize; 1226 Observer.changingInstr(MI); 1227 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT); 1228 Observer.changedInstr(MI); 1229 return Legalized; 1230 } 1231 case TargetOpcode::G_FPEXT: 1232 if (TypeIdx != 0) 1233 return UnableToLegalize; 1234 Observer.changingInstr(MI); 1235 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1236 Observer.changedInstr(MI); 1237 return Legalized; 1238 } 1239 } 1240 1241 Register LegalizerHelper::coerceToScalar(Register Val) { 1242 LLT Ty = MRI.getType(Val); 1243 if (Ty.isScalar()) 1244 return Val; 1245 1246 const DataLayout &DL = MIRBuilder.getDataLayout(); 1247 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1248 if (Ty.isPointer()) { 1249 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1250 return Register(); 1251 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1252 } 1253 1254 Register NewVal = Val; 1255 1256 assert(Ty.isVector()); 1257 LLT EltTy = Ty.getElementType(); 1258 if (EltTy.isPointer()) 1259 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1260 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1261 } 1262 1263 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1264 unsigned OpIdx, unsigned ExtOpcode) { 1265 MachineOperand &MO = MI.getOperand(OpIdx); 1266 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1267 MO.setReg(ExtB.getReg(0)); 1268 } 1269 1270 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1271 unsigned OpIdx) { 1272 MachineOperand &MO = MI.getOperand(OpIdx); 1273 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1274 MO.setReg(ExtB.getReg(0)); 1275 } 1276 1277 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1278 unsigned OpIdx, unsigned TruncOpcode) { 1279 MachineOperand &MO = MI.getOperand(OpIdx); 1280 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1281 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1282 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1283 MO.setReg(DstExt); 1284 } 1285 1286 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1287 unsigned OpIdx, unsigned ExtOpcode) { 1288 MachineOperand &MO = MI.getOperand(OpIdx); 1289 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1290 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1291 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1292 MO.setReg(DstTrunc); 1293 } 1294 1295 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1296 unsigned OpIdx) { 1297 MachineOperand &MO = MI.getOperand(OpIdx); 1298 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1299 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1300 MIRBuilder.buildExtract(MO, DstExt, 0); 1301 MO.setReg(DstExt); 1302 } 1303 1304 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1305 unsigned OpIdx) { 1306 MachineOperand &MO = MI.getOperand(OpIdx); 1307 1308 LLT OldTy = MRI.getType(MO.getReg()); 1309 unsigned OldElts = OldTy.getNumElements(); 1310 unsigned NewElts = MoreTy.getNumElements(); 1311 1312 unsigned NumParts = NewElts / OldElts; 1313 1314 // Use concat_vectors if the result is a multiple of the number of elements. 1315 if (NumParts * OldElts == NewElts) { 1316 SmallVector<Register, 8> Parts; 1317 Parts.push_back(MO.getReg()); 1318 1319 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1320 for (unsigned I = 1; I != NumParts; ++I) 1321 Parts.push_back(ImpDef); 1322 1323 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1324 MO.setReg(Concat.getReg(0)); 1325 return; 1326 } 1327 1328 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1329 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1330 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1331 MO.setReg(MoreReg); 1332 } 1333 1334 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1335 MachineOperand &Op = MI.getOperand(OpIdx); 1336 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1337 } 1338 1339 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1340 MachineOperand &MO = MI.getOperand(OpIdx); 1341 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1342 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1343 MIRBuilder.buildBitcast(MO, CastDst); 1344 MO.setReg(CastDst); 1345 } 1346 1347 LegalizerHelper::LegalizeResult 1348 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1349 LLT WideTy) { 1350 if (TypeIdx != 1) 1351 return UnableToLegalize; 1352 1353 Register DstReg = MI.getOperand(0).getReg(); 1354 LLT DstTy = MRI.getType(DstReg); 1355 if (DstTy.isVector()) 1356 return UnableToLegalize; 1357 1358 Register Src1 = MI.getOperand(1).getReg(); 1359 LLT SrcTy = MRI.getType(Src1); 1360 const int DstSize = DstTy.getSizeInBits(); 1361 const int SrcSize = SrcTy.getSizeInBits(); 1362 const int WideSize = WideTy.getSizeInBits(); 1363 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1364 1365 unsigned NumOps = MI.getNumOperands(); 1366 unsigned NumSrc = MI.getNumOperands() - 1; 1367 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1368 1369 if (WideSize >= DstSize) { 1370 // Directly pack the bits in the target type. 1371 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1372 1373 for (unsigned I = 2; I != NumOps; ++I) { 1374 const unsigned Offset = (I - 1) * PartSize; 1375 1376 Register SrcReg = MI.getOperand(I).getReg(); 1377 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1378 1379 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1380 1381 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1382 MRI.createGenericVirtualRegister(WideTy); 1383 1384 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1385 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1386 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1387 ResultReg = NextResult; 1388 } 1389 1390 if (WideSize > DstSize) 1391 MIRBuilder.buildTrunc(DstReg, ResultReg); 1392 else if (DstTy.isPointer()) 1393 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1394 1395 MI.eraseFromParent(); 1396 return Legalized; 1397 } 1398 1399 // Unmerge the original values to the GCD type, and recombine to the next 1400 // multiple greater than the original type. 1401 // 1402 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1403 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1404 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1405 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1406 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1407 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1408 // %12:_(s12) = G_MERGE_VALUES %10, %11 1409 // 1410 // Padding with undef if necessary: 1411 // 1412 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1413 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1414 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1415 // %7:_(s2) = G_IMPLICIT_DEF 1416 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1417 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1418 // %10:_(s12) = G_MERGE_VALUES %8, %9 1419 1420 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1421 LLT GCDTy = LLT::scalar(GCD); 1422 1423 SmallVector<Register, 8> Parts; 1424 SmallVector<Register, 8> NewMergeRegs; 1425 SmallVector<Register, 8> Unmerges; 1426 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1427 1428 // Decompose the original operands if they don't evenly divide. 1429 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1430 Register SrcReg = MI.getOperand(I).getReg(); 1431 if (GCD == SrcSize) { 1432 Unmerges.push_back(SrcReg); 1433 } else { 1434 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1435 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1436 Unmerges.push_back(Unmerge.getReg(J)); 1437 } 1438 } 1439 1440 // Pad with undef to the next size that is a multiple of the requested size. 1441 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1442 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1443 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1444 Unmerges.push_back(UndefReg); 1445 } 1446 1447 const int PartsPerGCD = WideSize / GCD; 1448 1449 // Build merges of each piece. 1450 ArrayRef<Register> Slicer(Unmerges); 1451 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1452 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1453 NewMergeRegs.push_back(Merge.getReg(0)); 1454 } 1455 1456 // A truncate may be necessary if the requested type doesn't evenly divide the 1457 // original result type. 1458 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1459 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1460 } else { 1461 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1462 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1463 } 1464 1465 MI.eraseFromParent(); 1466 return Legalized; 1467 } 1468 1469 LegalizerHelper::LegalizeResult 1470 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1471 LLT WideTy) { 1472 if (TypeIdx != 0) 1473 return UnableToLegalize; 1474 1475 int NumDst = MI.getNumOperands() - 1; 1476 Register SrcReg = MI.getOperand(NumDst).getReg(); 1477 LLT SrcTy = MRI.getType(SrcReg); 1478 if (SrcTy.isVector()) 1479 return UnableToLegalize; 1480 1481 Register Dst0Reg = MI.getOperand(0).getReg(); 1482 LLT DstTy = MRI.getType(Dst0Reg); 1483 if (!DstTy.isScalar()) 1484 return UnableToLegalize; 1485 1486 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1487 if (SrcTy.isPointer()) { 1488 const DataLayout &DL = MIRBuilder.getDataLayout(); 1489 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1490 LLVM_DEBUG( 1491 dbgs() << "Not casting non-integral address space integer\n"); 1492 return UnableToLegalize; 1493 } 1494 1495 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1496 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1497 } 1498 1499 // Widen SrcTy to WideTy. This does not affect the result, but since the 1500 // user requested this size, it is probably better handled than SrcTy and 1501 // should reduce the total number of legalization artifacts 1502 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1503 SrcTy = WideTy; 1504 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1505 } 1506 1507 // Theres no unmerge type to target. Directly extract the bits from the 1508 // source type 1509 unsigned DstSize = DstTy.getSizeInBits(); 1510 1511 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1512 for (int I = 1; I != NumDst; ++I) { 1513 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1514 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1515 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1516 } 1517 1518 MI.eraseFromParent(); 1519 return Legalized; 1520 } 1521 1522 // Extend the source to a wider type. 1523 LLT LCMTy = getLCMType(SrcTy, WideTy); 1524 1525 Register WideSrc = SrcReg; 1526 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1527 // TODO: If this is an integral address space, cast to integer and anyext. 1528 if (SrcTy.isPointer()) { 1529 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1530 return UnableToLegalize; 1531 } 1532 1533 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1534 } 1535 1536 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1537 1538 // Create a sequence of unmerges to the original results. since we may have 1539 // widened the source, we will need to pad the results with dead defs to cover 1540 // the source register. 1541 // e.g. widen s16 to s32: 1542 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1543 // 1544 // => 1545 // %4:_(s64) = G_ANYEXT %0:_(s48) 1546 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1547 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1548 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1549 1550 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1551 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1552 1553 for (int I = 0; I != NumUnmerge; ++I) { 1554 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1555 1556 for (int J = 0; J != PartsPerUnmerge; ++J) { 1557 int Idx = I * PartsPerUnmerge + J; 1558 if (Idx < NumDst) 1559 MIB.addDef(MI.getOperand(Idx).getReg()); 1560 else { 1561 // Create dead def for excess components. 1562 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1563 } 1564 } 1565 1566 MIB.addUse(Unmerge.getReg(I)); 1567 } 1568 1569 MI.eraseFromParent(); 1570 return Legalized; 1571 } 1572 1573 LegalizerHelper::LegalizeResult 1574 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1575 LLT WideTy) { 1576 Register DstReg = MI.getOperand(0).getReg(); 1577 Register SrcReg = MI.getOperand(1).getReg(); 1578 LLT SrcTy = MRI.getType(SrcReg); 1579 1580 LLT DstTy = MRI.getType(DstReg); 1581 unsigned Offset = MI.getOperand(2).getImm(); 1582 1583 if (TypeIdx == 0) { 1584 if (SrcTy.isVector() || DstTy.isVector()) 1585 return UnableToLegalize; 1586 1587 SrcOp Src(SrcReg); 1588 if (SrcTy.isPointer()) { 1589 // Extracts from pointers can be handled only if they are really just 1590 // simple integers. 1591 const DataLayout &DL = MIRBuilder.getDataLayout(); 1592 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1593 return UnableToLegalize; 1594 1595 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1596 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1597 SrcTy = SrcAsIntTy; 1598 } 1599 1600 if (DstTy.isPointer()) 1601 return UnableToLegalize; 1602 1603 if (Offset == 0) { 1604 // Avoid a shift in the degenerate case. 1605 MIRBuilder.buildTrunc(DstReg, 1606 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1607 MI.eraseFromParent(); 1608 return Legalized; 1609 } 1610 1611 // Do a shift in the source type. 1612 LLT ShiftTy = SrcTy; 1613 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1614 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1615 ShiftTy = WideTy; 1616 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1617 return UnableToLegalize; 1618 1619 auto LShr = MIRBuilder.buildLShr( 1620 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1621 MIRBuilder.buildTrunc(DstReg, LShr); 1622 MI.eraseFromParent(); 1623 return Legalized; 1624 } 1625 1626 if (SrcTy.isScalar()) { 1627 Observer.changingInstr(MI); 1628 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1629 Observer.changedInstr(MI); 1630 return Legalized; 1631 } 1632 1633 if (!SrcTy.isVector()) 1634 return UnableToLegalize; 1635 1636 if (DstTy != SrcTy.getElementType()) 1637 return UnableToLegalize; 1638 1639 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1640 return UnableToLegalize; 1641 1642 Observer.changingInstr(MI); 1643 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1644 1645 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1646 Offset); 1647 widenScalarDst(MI, WideTy.getScalarType(), 0); 1648 Observer.changedInstr(MI); 1649 return Legalized; 1650 } 1651 1652 LegalizerHelper::LegalizeResult 1653 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1654 LLT WideTy) { 1655 if (TypeIdx != 0 || WideTy.isVector()) 1656 return UnableToLegalize; 1657 Observer.changingInstr(MI); 1658 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1659 widenScalarDst(MI, WideTy); 1660 Observer.changedInstr(MI); 1661 return Legalized; 1662 } 1663 1664 LegalizerHelper::LegalizeResult 1665 LegalizerHelper::widenScalarAddSubSat(MachineInstr &MI, unsigned TypeIdx, 1666 LLT WideTy) { 1667 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1668 MI.getOpcode() == TargetOpcode::G_SSUBSAT; 1669 // We can convert this to: 1670 // 1. Any extend iN to iM 1671 // 2. SHL by M-N 1672 // 3. [US][ADD|SUB]SAT 1673 // 4. L/ASHR by M-N 1674 // 1675 // It may be more efficient to lower this to a min and a max operation in 1676 // the higher precision arithmetic if the promoted operation isn't legal, 1677 // but this decision is up to the target's lowering request. 1678 Register DstReg = MI.getOperand(0).getReg(); 1679 1680 unsigned NewBits = WideTy.getScalarSizeInBits(); 1681 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1682 1683 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1684 auto RHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1685 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1686 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1687 auto ShiftR = MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1688 1689 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1690 {ShiftL, ShiftR}, MI.getFlags()); 1691 1692 // Use a shift that will preserve the number of sign bits when the trunc is 1693 // folded away. 1694 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1695 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1696 1697 MIRBuilder.buildTrunc(DstReg, Result); 1698 MI.eraseFromParent(); 1699 return Legalized; 1700 } 1701 1702 LegalizerHelper::LegalizeResult 1703 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1704 switch (MI.getOpcode()) { 1705 default: 1706 return UnableToLegalize; 1707 case TargetOpcode::G_EXTRACT: 1708 return widenScalarExtract(MI, TypeIdx, WideTy); 1709 case TargetOpcode::G_INSERT: 1710 return widenScalarInsert(MI, TypeIdx, WideTy); 1711 case TargetOpcode::G_MERGE_VALUES: 1712 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1713 case TargetOpcode::G_UNMERGE_VALUES: 1714 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1715 case TargetOpcode::G_UADDO: 1716 case TargetOpcode::G_USUBO: { 1717 if (TypeIdx == 1) 1718 return UnableToLegalize; // TODO 1719 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1720 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1721 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1722 ? TargetOpcode::G_ADD 1723 : TargetOpcode::G_SUB; 1724 // Do the arithmetic in the larger type. 1725 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1726 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1727 APInt Mask = 1728 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1729 auto AndOp = MIRBuilder.buildAnd( 1730 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1731 // There is no overflow if the AndOp is the same as NewOp. 1732 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1733 // Now trunc the NewOp to the original result. 1734 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1735 MI.eraseFromParent(); 1736 return Legalized; 1737 } 1738 case TargetOpcode::G_SADDSAT: 1739 case TargetOpcode::G_SSUBSAT: 1740 case TargetOpcode::G_UADDSAT: 1741 case TargetOpcode::G_USUBSAT: 1742 return widenScalarAddSubSat(MI, TypeIdx, WideTy); 1743 case TargetOpcode::G_CTTZ: 1744 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1745 case TargetOpcode::G_CTLZ: 1746 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1747 case TargetOpcode::G_CTPOP: { 1748 if (TypeIdx == 0) { 1749 Observer.changingInstr(MI); 1750 widenScalarDst(MI, WideTy, 0); 1751 Observer.changedInstr(MI); 1752 return Legalized; 1753 } 1754 1755 Register SrcReg = MI.getOperand(1).getReg(); 1756 1757 // First ZEXT the input. 1758 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1759 LLT CurTy = MRI.getType(SrcReg); 1760 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1761 // The count is the same in the larger type except if the original 1762 // value was zero. This can be handled by setting the bit just off 1763 // the top of the original type. 1764 auto TopBit = 1765 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1766 MIBSrc = MIRBuilder.buildOr( 1767 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1768 } 1769 1770 // Perform the operation at the larger size. 1771 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1772 // This is already the correct result for CTPOP and CTTZs 1773 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1774 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1775 // The correct result is NewOp - (Difference in widety and current ty). 1776 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1777 MIBNewOp = MIRBuilder.buildSub( 1778 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1779 } 1780 1781 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1782 MI.eraseFromParent(); 1783 return Legalized; 1784 } 1785 case TargetOpcode::G_BSWAP: { 1786 Observer.changingInstr(MI); 1787 Register DstReg = MI.getOperand(0).getReg(); 1788 1789 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1790 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1791 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1792 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1793 1794 MI.getOperand(0).setReg(DstExt); 1795 1796 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1797 1798 LLT Ty = MRI.getType(DstReg); 1799 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1800 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1801 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1802 1803 MIRBuilder.buildTrunc(DstReg, ShrReg); 1804 Observer.changedInstr(MI); 1805 return Legalized; 1806 } 1807 case TargetOpcode::G_BITREVERSE: { 1808 Observer.changingInstr(MI); 1809 1810 Register DstReg = MI.getOperand(0).getReg(); 1811 LLT Ty = MRI.getType(DstReg); 1812 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1813 1814 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1815 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1816 MI.getOperand(0).setReg(DstExt); 1817 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1818 1819 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1820 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1821 MIRBuilder.buildTrunc(DstReg, Shift); 1822 Observer.changedInstr(MI); 1823 return Legalized; 1824 } 1825 case TargetOpcode::G_FREEZE: 1826 Observer.changingInstr(MI); 1827 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1828 widenScalarDst(MI, WideTy); 1829 Observer.changedInstr(MI); 1830 return Legalized; 1831 1832 case TargetOpcode::G_ADD: 1833 case TargetOpcode::G_AND: 1834 case TargetOpcode::G_MUL: 1835 case TargetOpcode::G_OR: 1836 case TargetOpcode::G_XOR: 1837 case TargetOpcode::G_SUB: 1838 // Perform operation at larger width (any extension is fines here, high bits 1839 // don't affect the result) and then truncate the result back to the 1840 // original type. 1841 Observer.changingInstr(MI); 1842 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1843 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1844 widenScalarDst(MI, WideTy); 1845 Observer.changedInstr(MI); 1846 return Legalized; 1847 1848 case TargetOpcode::G_SHL: 1849 Observer.changingInstr(MI); 1850 1851 if (TypeIdx == 0) { 1852 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1853 widenScalarDst(MI, WideTy); 1854 } else { 1855 assert(TypeIdx == 1); 1856 // The "number of bits to shift" operand must preserve its value as an 1857 // unsigned integer: 1858 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1859 } 1860 1861 Observer.changedInstr(MI); 1862 return Legalized; 1863 1864 case TargetOpcode::G_SDIV: 1865 case TargetOpcode::G_SREM: 1866 case TargetOpcode::G_SMIN: 1867 case TargetOpcode::G_SMAX: 1868 Observer.changingInstr(MI); 1869 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1870 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1871 widenScalarDst(MI, WideTy); 1872 Observer.changedInstr(MI); 1873 return Legalized; 1874 1875 case TargetOpcode::G_ASHR: 1876 case TargetOpcode::G_LSHR: 1877 Observer.changingInstr(MI); 1878 1879 if (TypeIdx == 0) { 1880 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1881 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1882 1883 widenScalarSrc(MI, WideTy, 1, CvtOp); 1884 widenScalarDst(MI, WideTy); 1885 } else { 1886 assert(TypeIdx == 1); 1887 // The "number of bits to shift" operand must preserve its value as an 1888 // unsigned integer: 1889 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1890 } 1891 1892 Observer.changedInstr(MI); 1893 return Legalized; 1894 case TargetOpcode::G_UDIV: 1895 case TargetOpcode::G_UREM: 1896 case TargetOpcode::G_UMIN: 1897 case TargetOpcode::G_UMAX: 1898 Observer.changingInstr(MI); 1899 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1900 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1901 widenScalarDst(MI, WideTy); 1902 Observer.changedInstr(MI); 1903 return Legalized; 1904 1905 case TargetOpcode::G_SELECT: 1906 Observer.changingInstr(MI); 1907 if (TypeIdx == 0) { 1908 // Perform operation at larger width (any extension is fine here, high 1909 // bits don't affect the result) and then truncate the result back to the 1910 // original type. 1911 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1912 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1913 widenScalarDst(MI, WideTy); 1914 } else { 1915 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1916 // Explicit extension is required here since high bits affect the result. 1917 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1918 } 1919 Observer.changedInstr(MI); 1920 return Legalized; 1921 1922 case TargetOpcode::G_FPTOSI: 1923 case TargetOpcode::G_FPTOUI: 1924 Observer.changingInstr(MI); 1925 1926 if (TypeIdx == 0) 1927 widenScalarDst(MI, WideTy); 1928 else 1929 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1930 1931 Observer.changedInstr(MI); 1932 return Legalized; 1933 case TargetOpcode::G_SITOFP: 1934 Observer.changingInstr(MI); 1935 1936 if (TypeIdx == 0) 1937 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1938 else 1939 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1940 1941 Observer.changedInstr(MI); 1942 return Legalized; 1943 case TargetOpcode::G_UITOFP: 1944 Observer.changingInstr(MI); 1945 1946 if (TypeIdx == 0) 1947 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1948 else 1949 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1950 1951 Observer.changedInstr(MI); 1952 return Legalized; 1953 case TargetOpcode::G_LOAD: 1954 case TargetOpcode::G_SEXTLOAD: 1955 case TargetOpcode::G_ZEXTLOAD: 1956 Observer.changingInstr(MI); 1957 widenScalarDst(MI, WideTy); 1958 Observer.changedInstr(MI); 1959 return Legalized; 1960 1961 case TargetOpcode::G_STORE: { 1962 if (TypeIdx != 0) 1963 return UnableToLegalize; 1964 1965 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1966 if (!isPowerOf2_32(Ty.getSizeInBits())) 1967 return UnableToLegalize; 1968 1969 Observer.changingInstr(MI); 1970 1971 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1972 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1973 widenScalarSrc(MI, WideTy, 0, ExtType); 1974 1975 Observer.changedInstr(MI); 1976 return Legalized; 1977 } 1978 case TargetOpcode::G_CONSTANT: { 1979 MachineOperand &SrcMO = MI.getOperand(1); 1980 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1981 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1982 MRI.getType(MI.getOperand(0).getReg())); 1983 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1984 ExtOpc == TargetOpcode::G_ANYEXT) && 1985 "Illegal Extend"); 1986 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1987 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1988 ? SrcVal.sext(WideTy.getSizeInBits()) 1989 : SrcVal.zext(WideTy.getSizeInBits()); 1990 Observer.changingInstr(MI); 1991 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1992 1993 widenScalarDst(MI, WideTy); 1994 Observer.changedInstr(MI); 1995 return Legalized; 1996 } 1997 case TargetOpcode::G_FCONSTANT: { 1998 MachineOperand &SrcMO = MI.getOperand(1); 1999 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2000 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2001 bool LosesInfo; 2002 switch (WideTy.getSizeInBits()) { 2003 case 32: 2004 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2005 &LosesInfo); 2006 break; 2007 case 64: 2008 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2009 &LosesInfo); 2010 break; 2011 default: 2012 return UnableToLegalize; 2013 } 2014 2015 assert(!LosesInfo && "extend should always be lossless"); 2016 2017 Observer.changingInstr(MI); 2018 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2019 2020 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2021 Observer.changedInstr(MI); 2022 return Legalized; 2023 } 2024 case TargetOpcode::G_IMPLICIT_DEF: { 2025 Observer.changingInstr(MI); 2026 widenScalarDst(MI, WideTy); 2027 Observer.changedInstr(MI); 2028 return Legalized; 2029 } 2030 case TargetOpcode::G_BRCOND: 2031 Observer.changingInstr(MI); 2032 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2033 Observer.changedInstr(MI); 2034 return Legalized; 2035 2036 case TargetOpcode::G_FCMP: 2037 Observer.changingInstr(MI); 2038 if (TypeIdx == 0) 2039 widenScalarDst(MI, WideTy); 2040 else { 2041 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2042 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2043 } 2044 Observer.changedInstr(MI); 2045 return Legalized; 2046 2047 case TargetOpcode::G_ICMP: 2048 Observer.changingInstr(MI); 2049 if (TypeIdx == 0) 2050 widenScalarDst(MI, WideTy); 2051 else { 2052 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2053 MI.getOperand(1).getPredicate())) 2054 ? TargetOpcode::G_SEXT 2055 : TargetOpcode::G_ZEXT; 2056 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2057 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2058 } 2059 Observer.changedInstr(MI); 2060 return Legalized; 2061 2062 case TargetOpcode::G_PTR_ADD: 2063 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2064 Observer.changingInstr(MI); 2065 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2066 Observer.changedInstr(MI); 2067 return Legalized; 2068 2069 case TargetOpcode::G_PHI: { 2070 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2071 2072 Observer.changingInstr(MI); 2073 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2074 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2075 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2076 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2077 } 2078 2079 MachineBasicBlock &MBB = *MI.getParent(); 2080 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2081 widenScalarDst(MI, WideTy); 2082 Observer.changedInstr(MI); 2083 return Legalized; 2084 } 2085 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2086 if (TypeIdx == 0) { 2087 Register VecReg = MI.getOperand(1).getReg(); 2088 LLT VecTy = MRI.getType(VecReg); 2089 Observer.changingInstr(MI); 2090 2091 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2092 WideTy.getSizeInBits()), 2093 1, TargetOpcode::G_SEXT); 2094 2095 widenScalarDst(MI, WideTy, 0); 2096 Observer.changedInstr(MI); 2097 return Legalized; 2098 } 2099 2100 if (TypeIdx != 2) 2101 return UnableToLegalize; 2102 Observer.changingInstr(MI); 2103 // TODO: Probably should be zext 2104 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2105 Observer.changedInstr(MI); 2106 return Legalized; 2107 } 2108 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2109 if (TypeIdx == 1) { 2110 Observer.changingInstr(MI); 2111 2112 Register VecReg = MI.getOperand(1).getReg(); 2113 LLT VecTy = MRI.getType(VecReg); 2114 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2115 2116 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2117 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2118 widenScalarDst(MI, WideVecTy, 0); 2119 Observer.changedInstr(MI); 2120 return Legalized; 2121 } 2122 2123 if (TypeIdx == 2) { 2124 Observer.changingInstr(MI); 2125 // TODO: Probably should be zext 2126 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2127 Observer.changedInstr(MI); 2128 return Legalized; 2129 } 2130 2131 return UnableToLegalize; 2132 } 2133 case TargetOpcode::G_FADD: 2134 case TargetOpcode::G_FMUL: 2135 case TargetOpcode::G_FSUB: 2136 case TargetOpcode::G_FMA: 2137 case TargetOpcode::G_FMAD: 2138 case TargetOpcode::G_FNEG: 2139 case TargetOpcode::G_FABS: 2140 case TargetOpcode::G_FCANONICALIZE: 2141 case TargetOpcode::G_FMINNUM: 2142 case TargetOpcode::G_FMAXNUM: 2143 case TargetOpcode::G_FMINNUM_IEEE: 2144 case TargetOpcode::G_FMAXNUM_IEEE: 2145 case TargetOpcode::G_FMINIMUM: 2146 case TargetOpcode::G_FMAXIMUM: 2147 case TargetOpcode::G_FDIV: 2148 case TargetOpcode::G_FREM: 2149 case TargetOpcode::G_FCEIL: 2150 case TargetOpcode::G_FFLOOR: 2151 case TargetOpcode::G_FCOS: 2152 case TargetOpcode::G_FSIN: 2153 case TargetOpcode::G_FLOG10: 2154 case TargetOpcode::G_FLOG: 2155 case TargetOpcode::G_FLOG2: 2156 case TargetOpcode::G_FRINT: 2157 case TargetOpcode::G_FNEARBYINT: 2158 case TargetOpcode::G_FSQRT: 2159 case TargetOpcode::G_FEXP: 2160 case TargetOpcode::G_FEXP2: 2161 case TargetOpcode::G_FPOW: 2162 case TargetOpcode::G_INTRINSIC_TRUNC: 2163 case TargetOpcode::G_INTRINSIC_ROUND: 2164 assert(TypeIdx == 0); 2165 Observer.changingInstr(MI); 2166 2167 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2168 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2169 2170 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2171 Observer.changedInstr(MI); 2172 return Legalized; 2173 case TargetOpcode::G_INTTOPTR: 2174 if (TypeIdx != 1) 2175 return UnableToLegalize; 2176 2177 Observer.changingInstr(MI); 2178 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2179 Observer.changedInstr(MI); 2180 return Legalized; 2181 case TargetOpcode::G_PTRTOINT: 2182 if (TypeIdx != 0) 2183 return UnableToLegalize; 2184 2185 Observer.changingInstr(MI); 2186 widenScalarDst(MI, WideTy, 0); 2187 Observer.changedInstr(MI); 2188 return Legalized; 2189 case TargetOpcode::G_BUILD_VECTOR: { 2190 Observer.changingInstr(MI); 2191 2192 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2193 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2194 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2195 2196 // Avoid changing the result vector type if the source element type was 2197 // requested. 2198 if (TypeIdx == 1) { 2199 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2200 } else { 2201 widenScalarDst(MI, WideTy, 0); 2202 } 2203 2204 Observer.changedInstr(MI); 2205 return Legalized; 2206 } 2207 case TargetOpcode::G_SEXT_INREG: 2208 if (TypeIdx != 0) 2209 return UnableToLegalize; 2210 2211 Observer.changingInstr(MI); 2212 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2213 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2214 Observer.changedInstr(MI); 2215 return Legalized; 2216 case TargetOpcode::G_PTRMASK: { 2217 if (TypeIdx != 1) 2218 return UnableToLegalize; 2219 Observer.changingInstr(MI); 2220 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2221 Observer.changedInstr(MI); 2222 return Legalized; 2223 } 2224 } 2225 } 2226 2227 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2228 MachineIRBuilder &B, Register Src, LLT Ty) { 2229 auto Unmerge = B.buildUnmerge(Ty, Src); 2230 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2231 Pieces.push_back(Unmerge.getReg(I)); 2232 } 2233 2234 LegalizerHelper::LegalizeResult 2235 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2236 Register Dst = MI.getOperand(0).getReg(); 2237 Register Src = MI.getOperand(1).getReg(); 2238 LLT DstTy = MRI.getType(Dst); 2239 LLT SrcTy = MRI.getType(Src); 2240 2241 if (SrcTy.isVector()) { 2242 LLT SrcEltTy = SrcTy.getElementType(); 2243 SmallVector<Register, 8> SrcRegs; 2244 2245 if (DstTy.isVector()) { 2246 int NumDstElt = DstTy.getNumElements(); 2247 int NumSrcElt = SrcTy.getNumElements(); 2248 2249 LLT DstEltTy = DstTy.getElementType(); 2250 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2251 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2252 2253 // If there's an element size mismatch, insert intermediate casts to match 2254 // the result element type. 2255 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2256 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2257 // 2258 // => 2259 // 2260 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2261 // %3:_(<2 x s8>) = G_BITCAST %2 2262 // %4:_(<2 x s8>) = G_BITCAST %3 2263 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2264 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2265 SrcPartTy = SrcEltTy; 2266 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2267 // 2268 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2269 // 2270 // => 2271 // 2272 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2273 // %3:_(s16) = G_BITCAST %2 2274 // %4:_(s16) = G_BITCAST %3 2275 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2276 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2277 DstCastTy = DstEltTy; 2278 } 2279 2280 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2281 for (Register &SrcReg : SrcRegs) 2282 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2283 } else 2284 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2285 2286 MIRBuilder.buildMerge(Dst, SrcRegs); 2287 MI.eraseFromParent(); 2288 return Legalized; 2289 } 2290 2291 if (DstTy.isVector()) { 2292 SmallVector<Register, 8> SrcRegs; 2293 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2294 MIRBuilder.buildMerge(Dst, SrcRegs); 2295 MI.eraseFromParent(); 2296 return Legalized; 2297 } 2298 2299 return UnableToLegalize; 2300 } 2301 2302 LegalizerHelper::LegalizeResult 2303 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2304 switch (MI.getOpcode()) { 2305 case TargetOpcode::G_LOAD: { 2306 if (TypeIdx != 0) 2307 return UnableToLegalize; 2308 2309 Observer.changingInstr(MI); 2310 bitcastDst(MI, CastTy, 0); 2311 Observer.changedInstr(MI); 2312 return Legalized; 2313 } 2314 case TargetOpcode::G_STORE: { 2315 if (TypeIdx != 0) 2316 return UnableToLegalize; 2317 2318 Observer.changingInstr(MI); 2319 bitcastSrc(MI, CastTy, 0); 2320 Observer.changedInstr(MI); 2321 return Legalized; 2322 } 2323 case TargetOpcode::G_SELECT: { 2324 if (TypeIdx != 0) 2325 return UnableToLegalize; 2326 2327 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2328 LLVM_DEBUG( 2329 dbgs() << "bitcast action not implemented for vector select\n"); 2330 return UnableToLegalize; 2331 } 2332 2333 Observer.changingInstr(MI); 2334 bitcastSrc(MI, CastTy, 2); 2335 bitcastSrc(MI, CastTy, 3); 2336 bitcastDst(MI, CastTy, 0); 2337 Observer.changedInstr(MI); 2338 return Legalized; 2339 } 2340 case TargetOpcode::G_AND: 2341 case TargetOpcode::G_OR: 2342 case TargetOpcode::G_XOR: { 2343 Observer.changingInstr(MI); 2344 bitcastSrc(MI, CastTy, 1); 2345 bitcastSrc(MI, CastTy, 2); 2346 bitcastDst(MI, CastTy, 0); 2347 Observer.changedInstr(MI); 2348 return Legalized; 2349 } 2350 default: 2351 return UnableToLegalize; 2352 } 2353 } 2354 2355 LegalizerHelper::LegalizeResult 2356 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2357 using namespace TargetOpcode; 2358 2359 switch(MI.getOpcode()) { 2360 default: 2361 return UnableToLegalize; 2362 case TargetOpcode::G_BITCAST: 2363 return lowerBitcast(MI); 2364 case TargetOpcode::G_SREM: 2365 case TargetOpcode::G_UREM: { 2366 auto Quot = 2367 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2368 {MI.getOperand(1), MI.getOperand(2)}); 2369 2370 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2371 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2372 MI.eraseFromParent(); 2373 return Legalized; 2374 } 2375 case TargetOpcode::G_SADDO: 2376 case TargetOpcode::G_SSUBO: 2377 return lowerSADDO_SSUBO(MI); 2378 case TargetOpcode::G_SMULO: 2379 case TargetOpcode::G_UMULO: { 2380 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2381 // result. 2382 Register Res = MI.getOperand(0).getReg(); 2383 Register Overflow = MI.getOperand(1).getReg(); 2384 Register LHS = MI.getOperand(2).getReg(); 2385 Register RHS = MI.getOperand(3).getReg(); 2386 2387 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2388 ? TargetOpcode::G_SMULH 2389 : TargetOpcode::G_UMULH; 2390 2391 Observer.changingInstr(MI); 2392 const auto &TII = MIRBuilder.getTII(); 2393 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2394 MI.RemoveOperand(1); 2395 Observer.changedInstr(MI); 2396 2397 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2398 2399 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2400 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2401 2402 // For *signed* multiply, overflow is detected by checking: 2403 // (hi != (lo >> bitwidth-1)) 2404 if (Opcode == TargetOpcode::G_SMULH) { 2405 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2406 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2407 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2408 } else { 2409 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2410 } 2411 return Legalized; 2412 } 2413 case TargetOpcode::G_FNEG: { 2414 // TODO: Handle vector types once we are able to 2415 // represent them. 2416 if (Ty.isVector()) 2417 return UnableToLegalize; 2418 Register Res = MI.getOperand(0).getReg(); 2419 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2420 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2421 if (!ZeroTy) 2422 return UnableToLegalize; 2423 ConstantFP &ZeroForNegation = 2424 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2425 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2426 Register SubByReg = MI.getOperand(1).getReg(); 2427 Register ZeroReg = Zero.getReg(0); 2428 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2429 MI.eraseFromParent(); 2430 return Legalized; 2431 } 2432 case TargetOpcode::G_FSUB: { 2433 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2434 // First, check if G_FNEG is marked as Lower. If so, we may 2435 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2436 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2437 return UnableToLegalize; 2438 Register Res = MI.getOperand(0).getReg(); 2439 Register LHS = MI.getOperand(1).getReg(); 2440 Register RHS = MI.getOperand(2).getReg(); 2441 Register Neg = MRI.createGenericVirtualRegister(Ty); 2442 MIRBuilder.buildFNeg(Neg, RHS); 2443 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2444 MI.eraseFromParent(); 2445 return Legalized; 2446 } 2447 case TargetOpcode::G_FMAD: 2448 return lowerFMad(MI); 2449 case TargetOpcode::G_FFLOOR: 2450 return lowerFFloor(MI); 2451 case TargetOpcode::G_INTRINSIC_ROUND: 2452 return lowerIntrinsicRound(MI); 2453 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2454 Register OldValRes = MI.getOperand(0).getReg(); 2455 Register SuccessRes = MI.getOperand(1).getReg(); 2456 Register Addr = MI.getOperand(2).getReg(); 2457 Register CmpVal = MI.getOperand(3).getReg(); 2458 Register NewVal = MI.getOperand(4).getReg(); 2459 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2460 **MI.memoperands_begin()); 2461 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2462 MI.eraseFromParent(); 2463 return Legalized; 2464 } 2465 case TargetOpcode::G_LOAD: 2466 case TargetOpcode::G_SEXTLOAD: 2467 case TargetOpcode::G_ZEXTLOAD: { 2468 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2469 Register DstReg = MI.getOperand(0).getReg(); 2470 Register PtrReg = MI.getOperand(1).getReg(); 2471 LLT DstTy = MRI.getType(DstReg); 2472 auto &MMO = **MI.memoperands_begin(); 2473 2474 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2475 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2476 // This load needs splitting into power of 2 sized loads. 2477 if (DstTy.isVector()) 2478 return UnableToLegalize; 2479 if (isPowerOf2_32(DstTy.getSizeInBits())) 2480 return UnableToLegalize; // Don't know what we're being asked to do. 2481 2482 // Our strategy here is to generate anyextending loads for the smaller 2483 // types up to next power-2 result type, and then combine the two larger 2484 // result values together, before truncating back down to the non-pow-2 2485 // type. 2486 // E.g. v1 = i24 load => 2487 // v2 = i32 zextload (2 byte) 2488 // v3 = i32 load (1 byte) 2489 // v4 = i32 shl v3, 16 2490 // v5 = i32 or v4, v2 2491 // v1 = i24 trunc v5 2492 // By doing this we generate the correct truncate which should get 2493 // combined away as an artifact with a matching extend. 2494 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2495 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2496 2497 MachineFunction &MF = MIRBuilder.getMF(); 2498 MachineMemOperand *LargeMMO = 2499 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2500 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2501 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2502 2503 LLT PtrTy = MRI.getType(PtrReg); 2504 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2505 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2506 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2507 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2508 auto LargeLoad = MIRBuilder.buildLoadInstr( 2509 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2510 2511 auto OffsetCst = MIRBuilder.buildConstant( 2512 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2513 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2514 auto SmallPtr = 2515 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2516 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2517 *SmallMMO); 2518 2519 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2520 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2521 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2522 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2523 MI.eraseFromParent(); 2524 return Legalized; 2525 } 2526 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2527 MI.eraseFromParent(); 2528 return Legalized; 2529 } 2530 2531 if (DstTy.isScalar()) { 2532 Register TmpReg = 2533 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2534 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2535 switch (MI.getOpcode()) { 2536 default: 2537 llvm_unreachable("Unexpected opcode"); 2538 case TargetOpcode::G_LOAD: 2539 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2540 break; 2541 case TargetOpcode::G_SEXTLOAD: 2542 MIRBuilder.buildSExt(DstReg, TmpReg); 2543 break; 2544 case TargetOpcode::G_ZEXTLOAD: 2545 MIRBuilder.buildZExt(DstReg, TmpReg); 2546 break; 2547 } 2548 MI.eraseFromParent(); 2549 return Legalized; 2550 } 2551 2552 return UnableToLegalize; 2553 } 2554 case TargetOpcode::G_STORE: { 2555 // Lower a non-power of 2 store into multiple pow-2 stores. 2556 // E.g. split an i24 store into an i16 store + i8 store. 2557 // We do this by first extending the stored value to the next largest power 2558 // of 2 type, and then using truncating stores to store the components. 2559 // By doing this, likewise with G_LOAD, generate an extend that can be 2560 // artifact-combined away instead of leaving behind extracts. 2561 Register SrcReg = MI.getOperand(0).getReg(); 2562 Register PtrReg = MI.getOperand(1).getReg(); 2563 LLT SrcTy = MRI.getType(SrcReg); 2564 MachineMemOperand &MMO = **MI.memoperands_begin(); 2565 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2566 return UnableToLegalize; 2567 if (SrcTy.isVector()) 2568 return UnableToLegalize; 2569 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2570 return UnableToLegalize; // Don't know what we're being asked to do. 2571 2572 // Extend to the next pow-2. 2573 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2574 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2575 2576 // Obtain the smaller value by shifting away the larger value. 2577 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2578 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2579 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2580 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2581 2582 // Generate the PtrAdd and truncating stores. 2583 LLT PtrTy = MRI.getType(PtrReg); 2584 auto OffsetCst = MIRBuilder.buildConstant( 2585 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2586 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2587 auto SmallPtr = 2588 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2589 2590 MachineFunction &MF = MIRBuilder.getMF(); 2591 MachineMemOperand *LargeMMO = 2592 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2593 MachineMemOperand *SmallMMO = 2594 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2595 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2596 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2597 MI.eraseFromParent(); 2598 return Legalized; 2599 } 2600 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2601 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2602 case TargetOpcode::G_CTLZ: 2603 case TargetOpcode::G_CTTZ: 2604 case TargetOpcode::G_CTPOP: 2605 return lowerBitCount(MI, TypeIdx, Ty); 2606 case G_UADDO: { 2607 Register Res = MI.getOperand(0).getReg(); 2608 Register CarryOut = MI.getOperand(1).getReg(); 2609 Register LHS = MI.getOperand(2).getReg(); 2610 Register RHS = MI.getOperand(3).getReg(); 2611 2612 MIRBuilder.buildAdd(Res, LHS, RHS); 2613 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2614 2615 MI.eraseFromParent(); 2616 return Legalized; 2617 } 2618 case G_UADDE: { 2619 Register Res = MI.getOperand(0).getReg(); 2620 Register CarryOut = MI.getOperand(1).getReg(); 2621 Register LHS = MI.getOperand(2).getReg(); 2622 Register RHS = MI.getOperand(3).getReg(); 2623 Register CarryIn = MI.getOperand(4).getReg(); 2624 LLT Ty = MRI.getType(Res); 2625 2626 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2627 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2628 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2629 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2630 2631 MI.eraseFromParent(); 2632 return Legalized; 2633 } 2634 case G_USUBO: { 2635 Register Res = MI.getOperand(0).getReg(); 2636 Register BorrowOut = MI.getOperand(1).getReg(); 2637 Register LHS = MI.getOperand(2).getReg(); 2638 Register RHS = MI.getOperand(3).getReg(); 2639 2640 MIRBuilder.buildSub(Res, LHS, RHS); 2641 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2642 2643 MI.eraseFromParent(); 2644 return Legalized; 2645 } 2646 case G_USUBE: { 2647 Register Res = MI.getOperand(0).getReg(); 2648 Register BorrowOut = MI.getOperand(1).getReg(); 2649 Register LHS = MI.getOperand(2).getReg(); 2650 Register RHS = MI.getOperand(3).getReg(); 2651 Register BorrowIn = MI.getOperand(4).getReg(); 2652 const LLT CondTy = MRI.getType(BorrowOut); 2653 const LLT Ty = MRI.getType(Res); 2654 2655 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 2656 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 2657 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2658 2659 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 2660 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 2661 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2662 2663 MI.eraseFromParent(); 2664 return Legalized; 2665 } 2666 case G_UITOFP: 2667 return lowerUITOFP(MI, TypeIdx, Ty); 2668 case G_SITOFP: 2669 return lowerSITOFP(MI, TypeIdx, Ty); 2670 case G_FPTOUI: 2671 return lowerFPTOUI(MI, TypeIdx, Ty); 2672 case G_FPTOSI: 2673 return lowerFPTOSI(MI); 2674 case G_FPTRUNC: 2675 return lowerFPTRUNC(MI, TypeIdx, Ty); 2676 case G_SMIN: 2677 case G_SMAX: 2678 case G_UMIN: 2679 case G_UMAX: 2680 return lowerMinMax(MI, TypeIdx, Ty); 2681 case G_FCOPYSIGN: 2682 return lowerFCopySign(MI, TypeIdx, Ty); 2683 case G_FMINNUM: 2684 case G_FMAXNUM: 2685 return lowerFMinNumMaxNum(MI); 2686 case G_MERGE_VALUES: 2687 return lowerMergeValues(MI); 2688 case G_UNMERGE_VALUES: 2689 return lowerUnmergeValues(MI); 2690 case TargetOpcode::G_SEXT_INREG: { 2691 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2692 int64_t SizeInBits = MI.getOperand(2).getImm(); 2693 2694 Register DstReg = MI.getOperand(0).getReg(); 2695 Register SrcReg = MI.getOperand(1).getReg(); 2696 LLT DstTy = MRI.getType(DstReg); 2697 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2698 2699 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2700 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2701 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2702 MI.eraseFromParent(); 2703 return Legalized; 2704 } 2705 case G_SHUFFLE_VECTOR: 2706 return lowerShuffleVector(MI); 2707 case G_DYN_STACKALLOC: 2708 return lowerDynStackAlloc(MI); 2709 case G_EXTRACT: 2710 return lowerExtract(MI); 2711 case G_INSERT: 2712 return lowerInsert(MI); 2713 case G_BSWAP: 2714 return lowerBswap(MI); 2715 case G_BITREVERSE: 2716 return lowerBitreverse(MI); 2717 case G_READ_REGISTER: 2718 case G_WRITE_REGISTER: 2719 return lowerReadWriteRegister(MI); 2720 } 2721 } 2722 2723 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2724 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2725 SmallVector<Register, 2> DstRegs; 2726 2727 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2728 Register DstReg = MI.getOperand(0).getReg(); 2729 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2730 int NumParts = Size / NarrowSize; 2731 // FIXME: Don't know how to handle the situation where the small vectors 2732 // aren't all the same size yet. 2733 if (Size % NarrowSize != 0) 2734 return UnableToLegalize; 2735 2736 for (int i = 0; i < NumParts; ++i) { 2737 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2738 MIRBuilder.buildUndef(TmpReg); 2739 DstRegs.push_back(TmpReg); 2740 } 2741 2742 if (NarrowTy.isVector()) 2743 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2744 else 2745 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2746 2747 MI.eraseFromParent(); 2748 return Legalized; 2749 } 2750 2751 // Handle splitting vector operations which need to have the same number of 2752 // elements in each type index, but each type index may have a different element 2753 // type. 2754 // 2755 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2756 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2757 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2758 // 2759 // Also handles some irregular breakdown cases, e.g. 2760 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2761 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2762 // s64 = G_SHL s64, s32 2763 LegalizerHelper::LegalizeResult 2764 LegalizerHelper::fewerElementsVectorMultiEltType( 2765 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2766 if (TypeIdx != 0) 2767 return UnableToLegalize; 2768 2769 const LLT NarrowTy0 = NarrowTyArg; 2770 const unsigned NewNumElts = 2771 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2772 2773 const Register DstReg = MI.getOperand(0).getReg(); 2774 LLT DstTy = MRI.getType(DstReg); 2775 LLT LeftoverTy0; 2776 2777 // All of the operands need to have the same number of elements, so if we can 2778 // determine a type breakdown for the result type, we can for all of the 2779 // source types. 2780 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2781 if (NumParts < 0) 2782 return UnableToLegalize; 2783 2784 SmallVector<MachineInstrBuilder, 4> NewInsts; 2785 2786 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2787 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2788 2789 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2790 Register SrcReg = MI.getOperand(I).getReg(); 2791 LLT SrcTyI = MRI.getType(SrcReg); 2792 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2793 LLT LeftoverTyI; 2794 2795 // Split this operand into the requested typed registers, and any leftover 2796 // required to reproduce the original type. 2797 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2798 LeftoverRegs)) 2799 return UnableToLegalize; 2800 2801 if (I == 1) { 2802 // For the first operand, create an instruction for each part and setup 2803 // the result. 2804 for (Register PartReg : PartRegs) { 2805 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2806 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2807 .addDef(PartDstReg) 2808 .addUse(PartReg)); 2809 DstRegs.push_back(PartDstReg); 2810 } 2811 2812 for (Register LeftoverReg : LeftoverRegs) { 2813 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2814 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2815 .addDef(PartDstReg) 2816 .addUse(LeftoverReg)); 2817 LeftoverDstRegs.push_back(PartDstReg); 2818 } 2819 } else { 2820 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2821 2822 // Add the newly created operand splits to the existing instructions. The 2823 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2824 // pieces. 2825 unsigned InstCount = 0; 2826 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2827 NewInsts[InstCount++].addUse(PartRegs[J]); 2828 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2829 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2830 } 2831 2832 PartRegs.clear(); 2833 LeftoverRegs.clear(); 2834 } 2835 2836 // Insert the newly built operations and rebuild the result register. 2837 for (auto &MIB : NewInsts) 2838 MIRBuilder.insertInstr(MIB); 2839 2840 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2841 2842 MI.eraseFromParent(); 2843 return Legalized; 2844 } 2845 2846 LegalizerHelper::LegalizeResult 2847 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2848 LLT NarrowTy) { 2849 if (TypeIdx != 0) 2850 return UnableToLegalize; 2851 2852 Register DstReg = MI.getOperand(0).getReg(); 2853 Register SrcReg = MI.getOperand(1).getReg(); 2854 LLT DstTy = MRI.getType(DstReg); 2855 LLT SrcTy = MRI.getType(SrcReg); 2856 2857 LLT NarrowTy0 = NarrowTy; 2858 LLT NarrowTy1; 2859 unsigned NumParts; 2860 2861 if (NarrowTy.isVector()) { 2862 // Uneven breakdown not handled. 2863 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2864 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2865 return UnableToLegalize; 2866 2867 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2868 } else { 2869 NumParts = DstTy.getNumElements(); 2870 NarrowTy1 = SrcTy.getElementType(); 2871 } 2872 2873 SmallVector<Register, 4> SrcRegs, DstRegs; 2874 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2875 2876 for (unsigned I = 0; I < NumParts; ++I) { 2877 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2878 MachineInstr *NewInst = 2879 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2880 2881 NewInst->setFlags(MI.getFlags()); 2882 DstRegs.push_back(DstReg); 2883 } 2884 2885 if (NarrowTy.isVector()) 2886 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2887 else 2888 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2889 2890 MI.eraseFromParent(); 2891 return Legalized; 2892 } 2893 2894 LegalizerHelper::LegalizeResult 2895 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2896 LLT NarrowTy) { 2897 Register DstReg = MI.getOperand(0).getReg(); 2898 Register Src0Reg = MI.getOperand(2).getReg(); 2899 LLT DstTy = MRI.getType(DstReg); 2900 LLT SrcTy = MRI.getType(Src0Reg); 2901 2902 unsigned NumParts; 2903 LLT NarrowTy0, NarrowTy1; 2904 2905 if (TypeIdx == 0) { 2906 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2907 unsigned OldElts = DstTy.getNumElements(); 2908 2909 NarrowTy0 = NarrowTy; 2910 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2911 NarrowTy1 = NarrowTy.isVector() ? 2912 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2913 SrcTy.getElementType(); 2914 2915 } else { 2916 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2917 unsigned OldElts = SrcTy.getNumElements(); 2918 2919 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2920 NarrowTy.getNumElements(); 2921 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2922 DstTy.getScalarSizeInBits()); 2923 NarrowTy1 = NarrowTy; 2924 } 2925 2926 // FIXME: Don't know how to handle the situation where the small vectors 2927 // aren't all the same size yet. 2928 if (NarrowTy1.isVector() && 2929 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2930 return UnableToLegalize; 2931 2932 CmpInst::Predicate Pred 2933 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2934 2935 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2936 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2937 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2938 2939 for (unsigned I = 0; I < NumParts; ++I) { 2940 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2941 DstRegs.push_back(DstReg); 2942 2943 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2944 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2945 else { 2946 MachineInstr *NewCmp 2947 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2948 NewCmp->setFlags(MI.getFlags()); 2949 } 2950 } 2951 2952 if (NarrowTy1.isVector()) 2953 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2954 else 2955 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2956 2957 MI.eraseFromParent(); 2958 return Legalized; 2959 } 2960 2961 LegalizerHelper::LegalizeResult 2962 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2963 LLT NarrowTy) { 2964 Register DstReg = MI.getOperand(0).getReg(); 2965 Register CondReg = MI.getOperand(1).getReg(); 2966 2967 unsigned NumParts = 0; 2968 LLT NarrowTy0, NarrowTy1; 2969 2970 LLT DstTy = MRI.getType(DstReg); 2971 LLT CondTy = MRI.getType(CondReg); 2972 unsigned Size = DstTy.getSizeInBits(); 2973 2974 assert(TypeIdx == 0 || CondTy.isVector()); 2975 2976 if (TypeIdx == 0) { 2977 NarrowTy0 = NarrowTy; 2978 NarrowTy1 = CondTy; 2979 2980 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2981 // FIXME: Don't know how to handle the situation where the small vectors 2982 // aren't all the same size yet. 2983 if (Size % NarrowSize != 0) 2984 return UnableToLegalize; 2985 2986 NumParts = Size / NarrowSize; 2987 2988 // Need to break down the condition type 2989 if (CondTy.isVector()) { 2990 if (CondTy.getNumElements() == NumParts) 2991 NarrowTy1 = CondTy.getElementType(); 2992 else 2993 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2994 CondTy.getScalarSizeInBits()); 2995 } 2996 } else { 2997 NumParts = CondTy.getNumElements(); 2998 if (NarrowTy.isVector()) { 2999 // TODO: Handle uneven breakdown. 3000 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3001 return UnableToLegalize; 3002 3003 return UnableToLegalize; 3004 } else { 3005 NarrowTy0 = DstTy.getElementType(); 3006 NarrowTy1 = NarrowTy; 3007 } 3008 } 3009 3010 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3011 if (CondTy.isVector()) 3012 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3013 3014 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3015 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3016 3017 for (unsigned i = 0; i < NumParts; ++i) { 3018 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3019 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3020 Src1Regs[i], Src2Regs[i]); 3021 DstRegs.push_back(DstReg); 3022 } 3023 3024 if (NarrowTy0.isVector()) 3025 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3026 else 3027 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3028 3029 MI.eraseFromParent(); 3030 return Legalized; 3031 } 3032 3033 LegalizerHelper::LegalizeResult 3034 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3035 LLT NarrowTy) { 3036 const Register DstReg = MI.getOperand(0).getReg(); 3037 LLT PhiTy = MRI.getType(DstReg); 3038 LLT LeftoverTy; 3039 3040 // All of the operands need to have the same number of elements, so if we can 3041 // determine a type breakdown for the result type, we can for all of the 3042 // source types. 3043 int NumParts, NumLeftover; 3044 std::tie(NumParts, NumLeftover) 3045 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3046 if (NumParts < 0) 3047 return UnableToLegalize; 3048 3049 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3050 SmallVector<MachineInstrBuilder, 4> NewInsts; 3051 3052 const int TotalNumParts = NumParts + NumLeftover; 3053 3054 // Insert the new phis in the result block first. 3055 for (int I = 0; I != TotalNumParts; ++I) { 3056 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3057 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3058 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3059 .addDef(PartDstReg)); 3060 if (I < NumParts) 3061 DstRegs.push_back(PartDstReg); 3062 else 3063 LeftoverDstRegs.push_back(PartDstReg); 3064 } 3065 3066 MachineBasicBlock *MBB = MI.getParent(); 3067 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3068 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3069 3070 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3071 3072 // Insert code to extract the incoming values in each predecessor block. 3073 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3074 PartRegs.clear(); 3075 LeftoverRegs.clear(); 3076 3077 Register SrcReg = MI.getOperand(I).getReg(); 3078 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3079 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3080 3081 LLT Unused; 3082 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3083 LeftoverRegs)) 3084 return UnableToLegalize; 3085 3086 // Add the newly created operand splits to the existing instructions. The 3087 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3088 // pieces. 3089 for (int J = 0; J != TotalNumParts; ++J) { 3090 MachineInstrBuilder MIB = NewInsts[J]; 3091 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3092 MIB.addMBB(&OpMBB); 3093 } 3094 } 3095 3096 MI.eraseFromParent(); 3097 return Legalized; 3098 } 3099 3100 LegalizerHelper::LegalizeResult 3101 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3102 unsigned TypeIdx, 3103 LLT NarrowTy) { 3104 if (TypeIdx != 1) 3105 return UnableToLegalize; 3106 3107 const int NumDst = MI.getNumOperands() - 1; 3108 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3109 LLT SrcTy = MRI.getType(SrcReg); 3110 3111 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3112 3113 // TODO: Create sequence of extracts. 3114 if (DstTy == NarrowTy) 3115 return UnableToLegalize; 3116 3117 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3118 if (DstTy == GCDTy) { 3119 // This would just be a copy of the same unmerge. 3120 // TODO: Create extracts, pad with undef and create intermediate merges. 3121 return UnableToLegalize; 3122 } 3123 3124 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3125 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3126 const int PartsPerUnmerge = NumDst / NumUnmerge; 3127 3128 for (int I = 0; I != NumUnmerge; ++I) { 3129 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3130 3131 for (int J = 0; J != PartsPerUnmerge; ++J) 3132 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3133 MIB.addUse(Unmerge.getReg(I)); 3134 } 3135 3136 MI.eraseFromParent(); 3137 return Legalized; 3138 } 3139 3140 LegalizerHelper::LegalizeResult 3141 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 3142 unsigned TypeIdx, 3143 LLT NarrowTy) { 3144 assert(TypeIdx == 0 && "not a vector type index"); 3145 Register DstReg = MI.getOperand(0).getReg(); 3146 LLT DstTy = MRI.getType(DstReg); 3147 LLT SrcTy = DstTy.getElementType(); 3148 3149 int DstNumElts = DstTy.getNumElements(); 3150 int NarrowNumElts = NarrowTy.getNumElements(); 3151 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3152 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3153 3154 SmallVector<Register, 8> ConcatOps; 3155 SmallVector<Register, 8> SubBuildVector; 3156 3157 Register UndefReg; 3158 if (WidenedDstTy != DstTy) 3159 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3160 3161 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3162 // necessary. 3163 // 3164 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3165 // -> <2 x s16> 3166 // 3167 // %4:_(s16) = G_IMPLICIT_DEF 3168 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3169 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3170 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3171 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3172 for (int I = 0; I != NumConcat; ++I) { 3173 for (int J = 0; J != NarrowNumElts; ++J) { 3174 int SrcIdx = NarrowNumElts * I + J; 3175 3176 if (SrcIdx < DstNumElts) { 3177 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3178 SubBuildVector.push_back(SrcReg); 3179 } else 3180 SubBuildVector.push_back(UndefReg); 3181 } 3182 3183 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3184 ConcatOps.push_back(BuildVec.getReg(0)); 3185 SubBuildVector.clear(); 3186 } 3187 3188 if (DstTy == WidenedDstTy) 3189 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3190 else { 3191 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3192 MIRBuilder.buildExtract(DstReg, Concat, 0); 3193 } 3194 3195 MI.eraseFromParent(); 3196 return Legalized; 3197 } 3198 3199 LegalizerHelper::LegalizeResult 3200 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3201 LLT NarrowTy) { 3202 // FIXME: Don't know how to handle secondary types yet. 3203 if (TypeIdx != 0) 3204 return UnableToLegalize; 3205 3206 MachineMemOperand *MMO = *MI.memoperands_begin(); 3207 3208 // This implementation doesn't work for atomics. Give up instead of doing 3209 // something invalid. 3210 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3211 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3212 return UnableToLegalize; 3213 3214 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3215 Register ValReg = MI.getOperand(0).getReg(); 3216 Register AddrReg = MI.getOperand(1).getReg(); 3217 LLT ValTy = MRI.getType(ValReg); 3218 3219 // FIXME: Do we need a distinct NarrowMemory legalize action? 3220 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3221 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3222 return UnableToLegalize; 3223 } 3224 3225 int NumParts = -1; 3226 int NumLeftover = -1; 3227 LLT LeftoverTy; 3228 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3229 if (IsLoad) { 3230 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3231 } else { 3232 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3233 NarrowLeftoverRegs)) { 3234 NumParts = NarrowRegs.size(); 3235 NumLeftover = NarrowLeftoverRegs.size(); 3236 } 3237 } 3238 3239 if (NumParts == -1) 3240 return UnableToLegalize; 3241 3242 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3243 3244 unsigned TotalSize = ValTy.getSizeInBits(); 3245 3246 // Split the load/store into PartTy sized pieces starting at Offset. If this 3247 // is a load, return the new registers in ValRegs. For a store, each elements 3248 // of ValRegs should be PartTy. Returns the next offset that needs to be 3249 // handled. 3250 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3251 unsigned Offset) -> unsigned { 3252 MachineFunction &MF = MIRBuilder.getMF(); 3253 unsigned PartSize = PartTy.getSizeInBits(); 3254 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3255 Offset += PartSize, ++Idx) { 3256 unsigned ByteSize = PartSize / 8; 3257 unsigned ByteOffset = Offset / 8; 3258 Register NewAddrReg; 3259 3260 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3261 3262 MachineMemOperand *NewMMO = 3263 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3264 3265 if (IsLoad) { 3266 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3267 ValRegs.push_back(Dst); 3268 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3269 } else { 3270 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3271 } 3272 } 3273 3274 return Offset; 3275 }; 3276 3277 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3278 3279 // Handle the rest of the register if this isn't an even type breakdown. 3280 if (LeftoverTy.isValid()) 3281 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3282 3283 if (IsLoad) { 3284 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3285 LeftoverTy, NarrowLeftoverRegs); 3286 } 3287 3288 MI.eraseFromParent(); 3289 return Legalized; 3290 } 3291 3292 LegalizerHelper::LegalizeResult 3293 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3294 LLT NarrowTy) { 3295 assert(TypeIdx == 0 && "only one type index expected"); 3296 3297 const unsigned Opc = MI.getOpcode(); 3298 const int NumOps = MI.getNumOperands() - 1; 3299 const Register DstReg = MI.getOperand(0).getReg(); 3300 const unsigned Flags = MI.getFlags(); 3301 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3302 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3303 3304 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3305 3306 // First of all check whether we are narrowing (changing the element type) 3307 // or reducing the vector elements 3308 const LLT DstTy = MRI.getType(DstReg); 3309 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3310 3311 SmallVector<Register, 8> ExtractedRegs[3]; 3312 SmallVector<Register, 8> Parts; 3313 3314 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3315 3316 // Break down all the sources into NarrowTy pieces we can operate on. This may 3317 // involve creating merges to a wider type, padded with undef. 3318 for (int I = 0; I != NumOps; ++I) { 3319 Register SrcReg = MI.getOperand(I + 1).getReg(); 3320 LLT SrcTy = MRI.getType(SrcReg); 3321 3322 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3323 // For fewerElements, this is a smaller vector with the same element type. 3324 LLT OpNarrowTy; 3325 if (IsNarrow) { 3326 OpNarrowTy = NarrowScalarTy; 3327 3328 // In case of narrowing, we need to cast vectors to scalars for this to 3329 // work properly 3330 // FIXME: Can we do without the bitcast here if we're narrowing? 3331 if (SrcTy.isVector()) { 3332 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3333 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3334 } 3335 } else { 3336 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3337 } 3338 3339 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3340 3341 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3342 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3343 TargetOpcode::G_ANYEXT); 3344 } 3345 3346 SmallVector<Register, 8> ResultRegs; 3347 3348 // Input operands for each sub-instruction. 3349 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3350 3351 int NumParts = ExtractedRegs[0].size(); 3352 const unsigned DstSize = DstTy.getSizeInBits(); 3353 const LLT DstScalarTy = LLT::scalar(DstSize); 3354 3355 // Narrowing needs to use scalar types 3356 LLT DstLCMTy, NarrowDstTy; 3357 if (IsNarrow) { 3358 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3359 NarrowDstTy = NarrowScalarTy; 3360 } else { 3361 DstLCMTy = getLCMType(DstTy, NarrowTy); 3362 NarrowDstTy = NarrowTy; 3363 } 3364 3365 // We widened the source registers to satisfy merge/unmerge size 3366 // constraints. We'll have some extra fully undef parts. 3367 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3368 3369 for (int I = 0; I != NumRealParts; ++I) { 3370 // Emit this instruction on each of the split pieces. 3371 for (int J = 0; J != NumOps; ++J) 3372 InputRegs[J] = ExtractedRegs[J][I]; 3373 3374 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3375 ResultRegs.push_back(Inst.getReg(0)); 3376 } 3377 3378 // Fill out the widened result with undef instead of creating instructions 3379 // with undef inputs. 3380 int NumUndefParts = NumParts - NumRealParts; 3381 if (NumUndefParts != 0) 3382 ResultRegs.append(NumUndefParts, 3383 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3384 3385 // Extract the possibly padded result. Use a scratch register if we need to do 3386 // a final bitcast, otherwise use the original result register. 3387 Register MergeDstReg; 3388 if (IsNarrow && DstTy.isVector()) 3389 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3390 else 3391 MergeDstReg = DstReg; 3392 3393 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3394 3395 // Recast to vector if we narrowed a vector 3396 if (IsNarrow && DstTy.isVector()) 3397 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3398 3399 MI.eraseFromParent(); 3400 return Legalized; 3401 } 3402 3403 LegalizerHelper::LegalizeResult 3404 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3405 LLT NarrowTy) { 3406 Register DstReg = MI.getOperand(0).getReg(); 3407 Register SrcReg = MI.getOperand(1).getReg(); 3408 int64_t Imm = MI.getOperand(2).getImm(); 3409 3410 LLT DstTy = MRI.getType(DstReg); 3411 3412 SmallVector<Register, 8> Parts; 3413 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3414 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3415 3416 for (Register &R : Parts) 3417 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3418 3419 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3420 3421 MI.eraseFromParent(); 3422 return Legalized; 3423 } 3424 3425 LegalizerHelper::LegalizeResult 3426 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3427 LLT NarrowTy) { 3428 using namespace TargetOpcode; 3429 3430 switch (MI.getOpcode()) { 3431 case G_IMPLICIT_DEF: 3432 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3433 case G_TRUNC: 3434 case G_AND: 3435 case G_OR: 3436 case G_XOR: 3437 case G_ADD: 3438 case G_SUB: 3439 case G_MUL: 3440 case G_SMULH: 3441 case G_UMULH: 3442 case G_FADD: 3443 case G_FMUL: 3444 case G_FSUB: 3445 case G_FNEG: 3446 case G_FABS: 3447 case G_FCANONICALIZE: 3448 case G_FDIV: 3449 case G_FREM: 3450 case G_FMA: 3451 case G_FMAD: 3452 case G_FPOW: 3453 case G_FEXP: 3454 case G_FEXP2: 3455 case G_FLOG: 3456 case G_FLOG2: 3457 case G_FLOG10: 3458 case G_FNEARBYINT: 3459 case G_FCEIL: 3460 case G_FFLOOR: 3461 case G_FRINT: 3462 case G_INTRINSIC_ROUND: 3463 case G_INTRINSIC_TRUNC: 3464 case G_FCOS: 3465 case G_FSIN: 3466 case G_FSQRT: 3467 case G_BSWAP: 3468 case G_BITREVERSE: 3469 case G_SDIV: 3470 case G_UDIV: 3471 case G_SREM: 3472 case G_UREM: 3473 case G_SMIN: 3474 case G_SMAX: 3475 case G_UMIN: 3476 case G_UMAX: 3477 case G_FMINNUM: 3478 case G_FMAXNUM: 3479 case G_FMINNUM_IEEE: 3480 case G_FMAXNUM_IEEE: 3481 case G_FMINIMUM: 3482 case G_FMAXIMUM: 3483 case G_FSHL: 3484 case G_FSHR: 3485 case G_FREEZE: 3486 case G_SADDSAT: 3487 case G_SSUBSAT: 3488 case G_UADDSAT: 3489 case G_USUBSAT: 3490 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 3491 case G_SHL: 3492 case G_LSHR: 3493 case G_ASHR: 3494 case G_CTLZ: 3495 case G_CTLZ_ZERO_UNDEF: 3496 case G_CTTZ: 3497 case G_CTTZ_ZERO_UNDEF: 3498 case G_CTPOP: 3499 case G_FCOPYSIGN: 3500 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3501 case G_ZEXT: 3502 case G_SEXT: 3503 case G_ANYEXT: 3504 case G_FPEXT: 3505 case G_FPTRUNC: 3506 case G_SITOFP: 3507 case G_UITOFP: 3508 case G_FPTOSI: 3509 case G_FPTOUI: 3510 case G_INTTOPTR: 3511 case G_PTRTOINT: 3512 case G_ADDRSPACE_CAST: 3513 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3514 case G_ICMP: 3515 case G_FCMP: 3516 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3517 case G_SELECT: 3518 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3519 case G_PHI: 3520 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3521 case G_UNMERGE_VALUES: 3522 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3523 case G_BUILD_VECTOR: 3524 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3525 case G_LOAD: 3526 case G_STORE: 3527 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3528 case G_SEXT_INREG: 3529 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3530 default: 3531 return UnableToLegalize; 3532 } 3533 } 3534 3535 LegalizerHelper::LegalizeResult 3536 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3537 const LLT HalfTy, const LLT AmtTy) { 3538 3539 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3540 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3541 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3542 3543 if (Amt.isNullValue()) { 3544 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3545 MI.eraseFromParent(); 3546 return Legalized; 3547 } 3548 3549 LLT NVT = HalfTy; 3550 unsigned NVTBits = HalfTy.getSizeInBits(); 3551 unsigned VTBits = 2 * NVTBits; 3552 3553 SrcOp Lo(Register(0)), Hi(Register(0)); 3554 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3555 if (Amt.ugt(VTBits)) { 3556 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3557 } else if (Amt.ugt(NVTBits)) { 3558 Lo = MIRBuilder.buildConstant(NVT, 0); 3559 Hi = MIRBuilder.buildShl(NVT, InL, 3560 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3561 } else if (Amt == NVTBits) { 3562 Lo = MIRBuilder.buildConstant(NVT, 0); 3563 Hi = InL; 3564 } else { 3565 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3566 auto OrLHS = 3567 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3568 auto OrRHS = MIRBuilder.buildLShr( 3569 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3570 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3571 } 3572 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3573 if (Amt.ugt(VTBits)) { 3574 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3575 } else if (Amt.ugt(NVTBits)) { 3576 Lo = MIRBuilder.buildLShr(NVT, InH, 3577 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3578 Hi = MIRBuilder.buildConstant(NVT, 0); 3579 } else if (Amt == NVTBits) { 3580 Lo = InH; 3581 Hi = MIRBuilder.buildConstant(NVT, 0); 3582 } else { 3583 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3584 3585 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3586 auto OrRHS = MIRBuilder.buildShl( 3587 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3588 3589 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3590 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3591 } 3592 } else { 3593 if (Amt.ugt(VTBits)) { 3594 Hi = Lo = MIRBuilder.buildAShr( 3595 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3596 } else if (Amt.ugt(NVTBits)) { 3597 Lo = MIRBuilder.buildAShr(NVT, InH, 3598 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3599 Hi = MIRBuilder.buildAShr(NVT, InH, 3600 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3601 } else if (Amt == NVTBits) { 3602 Lo = InH; 3603 Hi = MIRBuilder.buildAShr(NVT, InH, 3604 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3605 } else { 3606 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3607 3608 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3609 auto OrRHS = MIRBuilder.buildShl( 3610 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3611 3612 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3613 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3614 } 3615 } 3616 3617 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 3618 MI.eraseFromParent(); 3619 3620 return Legalized; 3621 } 3622 3623 // TODO: Optimize if constant shift amount. 3624 LegalizerHelper::LegalizeResult 3625 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3626 LLT RequestedTy) { 3627 if (TypeIdx == 1) { 3628 Observer.changingInstr(MI); 3629 narrowScalarSrc(MI, RequestedTy, 2); 3630 Observer.changedInstr(MI); 3631 return Legalized; 3632 } 3633 3634 Register DstReg = MI.getOperand(0).getReg(); 3635 LLT DstTy = MRI.getType(DstReg); 3636 if (DstTy.isVector()) 3637 return UnableToLegalize; 3638 3639 Register Amt = MI.getOperand(2).getReg(); 3640 LLT ShiftAmtTy = MRI.getType(Amt); 3641 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3642 if (DstEltSize % 2 != 0) 3643 return UnableToLegalize; 3644 3645 // Ignore the input type. We can only go to exactly half the size of the 3646 // input. If that isn't small enough, the resulting pieces will be further 3647 // legalized. 3648 const unsigned NewBitSize = DstEltSize / 2; 3649 const LLT HalfTy = LLT::scalar(NewBitSize); 3650 const LLT CondTy = LLT::scalar(1); 3651 3652 if (const MachineInstr *KShiftAmt = 3653 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3654 return narrowScalarShiftByConstant( 3655 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3656 } 3657 3658 // TODO: Expand with known bits. 3659 3660 // Handle the fully general expansion by an unknown amount. 3661 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3662 3663 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3664 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3665 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3666 3667 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3668 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3669 3670 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3671 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3672 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3673 3674 Register ResultRegs[2]; 3675 switch (MI.getOpcode()) { 3676 case TargetOpcode::G_SHL: { 3677 // Short: ShAmt < NewBitSize 3678 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3679 3680 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3681 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3682 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3683 3684 // Long: ShAmt >= NewBitSize 3685 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3686 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3687 3688 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3689 auto Hi = MIRBuilder.buildSelect( 3690 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3691 3692 ResultRegs[0] = Lo.getReg(0); 3693 ResultRegs[1] = Hi.getReg(0); 3694 break; 3695 } 3696 case TargetOpcode::G_LSHR: 3697 case TargetOpcode::G_ASHR: { 3698 // Short: ShAmt < NewBitSize 3699 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3700 3701 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3702 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3703 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3704 3705 // Long: ShAmt >= NewBitSize 3706 MachineInstrBuilder HiL; 3707 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3708 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3709 } else { 3710 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3711 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3712 } 3713 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3714 {InH, AmtExcess}); // Lo from Hi part. 3715 3716 auto Lo = MIRBuilder.buildSelect( 3717 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3718 3719 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3720 3721 ResultRegs[0] = Lo.getReg(0); 3722 ResultRegs[1] = Hi.getReg(0); 3723 break; 3724 } 3725 default: 3726 llvm_unreachable("not a shift"); 3727 } 3728 3729 MIRBuilder.buildMerge(DstReg, ResultRegs); 3730 MI.eraseFromParent(); 3731 return Legalized; 3732 } 3733 3734 LegalizerHelper::LegalizeResult 3735 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3736 LLT MoreTy) { 3737 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3738 3739 Observer.changingInstr(MI); 3740 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3741 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3742 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3743 moreElementsVectorSrc(MI, MoreTy, I); 3744 } 3745 3746 MachineBasicBlock &MBB = *MI.getParent(); 3747 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3748 moreElementsVectorDst(MI, MoreTy, 0); 3749 Observer.changedInstr(MI); 3750 return Legalized; 3751 } 3752 3753 LegalizerHelper::LegalizeResult 3754 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3755 LLT MoreTy) { 3756 unsigned Opc = MI.getOpcode(); 3757 switch (Opc) { 3758 case TargetOpcode::G_IMPLICIT_DEF: 3759 case TargetOpcode::G_LOAD: { 3760 if (TypeIdx != 0) 3761 return UnableToLegalize; 3762 Observer.changingInstr(MI); 3763 moreElementsVectorDst(MI, MoreTy, 0); 3764 Observer.changedInstr(MI); 3765 return Legalized; 3766 } 3767 case TargetOpcode::G_STORE: 3768 if (TypeIdx != 0) 3769 return UnableToLegalize; 3770 Observer.changingInstr(MI); 3771 moreElementsVectorSrc(MI, MoreTy, 0); 3772 Observer.changedInstr(MI); 3773 return Legalized; 3774 case TargetOpcode::G_AND: 3775 case TargetOpcode::G_OR: 3776 case TargetOpcode::G_XOR: 3777 case TargetOpcode::G_SMIN: 3778 case TargetOpcode::G_SMAX: 3779 case TargetOpcode::G_UMIN: 3780 case TargetOpcode::G_UMAX: 3781 case TargetOpcode::G_FMINNUM: 3782 case TargetOpcode::G_FMAXNUM: 3783 case TargetOpcode::G_FMINNUM_IEEE: 3784 case TargetOpcode::G_FMAXNUM_IEEE: 3785 case TargetOpcode::G_FMINIMUM: 3786 case TargetOpcode::G_FMAXIMUM: { 3787 Observer.changingInstr(MI); 3788 moreElementsVectorSrc(MI, MoreTy, 1); 3789 moreElementsVectorSrc(MI, MoreTy, 2); 3790 moreElementsVectorDst(MI, MoreTy, 0); 3791 Observer.changedInstr(MI); 3792 return Legalized; 3793 } 3794 case TargetOpcode::G_EXTRACT: 3795 if (TypeIdx != 1) 3796 return UnableToLegalize; 3797 Observer.changingInstr(MI); 3798 moreElementsVectorSrc(MI, MoreTy, 1); 3799 Observer.changedInstr(MI); 3800 return Legalized; 3801 case TargetOpcode::G_INSERT: 3802 case TargetOpcode::G_FREEZE: 3803 if (TypeIdx != 0) 3804 return UnableToLegalize; 3805 Observer.changingInstr(MI); 3806 moreElementsVectorSrc(MI, MoreTy, 1); 3807 moreElementsVectorDst(MI, MoreTy, 0); 3808 Observer.changedInstr(MI); 3809 return Legalized; 3810 case TargetOpcode::G_SELECT: 3811 if (TypeIdx != 0) 3812 return UnableToLegalize; 3813 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3814 return UnableToLegalize; 3815 3816 Observer.changingInstr(MI); 3817 moreElementsVectorSrc(MI, MoreTy, 2); 3818 moreElementsVectorSrc(MI, MoreTy, 3); 3819 moreElementsVectorDst(MI, MoreTy, 0); 3820 Observer.changedInstr(MI); 3821 return Legalized; 3822 case TargetOpcode::G_UNMERGE_VALUES: { 3823 if (TypeIdx != 1) 3824 return UnableToLegalize; 3825 3826 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3827 int NumDst = MI.getNumOperands() - 1; 3828 moreElementsVectorSrc(MI, MoreTy, NumDst); 3829 3830 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3831 for (int I = 0; I != NumDst; ++I) 3832 MIB.addDef(MI.getOperand(I).getReg()); 3833 3834 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3835 for (int I = NumDst; I != NewNumDst; ++I) 3836 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3837 3838 MIB.addUse(MI.getOperand(NumDst).getReg()); 3839 MI.eraseFromParent(); 3840 return Legalized; 3841 } 3842 case TargetOpcode::G_PHI: 3843 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3844 default: 3845 return UnableToLegalize; 3846 } 3847 } 3848 3849 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3850 ArrayRef<Register> Src1Regs, 3851 ArrayRef<Register> Src2Regs, 3852 LLT NarrowTy) { 3853 MachineIRBuilder &B = MIRBuilder; 3854 unsigned SrcParts = Src1Regs.size(); 3855 unsigned DstParts = DstRegs.size(); 3856 3857 unsigned DstIdx = 0; // Low bits of the result. 3858 Register FactorSum = 3859 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3860 DstRegs[DstIdx] = FactorSum; 3861 3862 unsigned CarrySumPrevDstIdx; 3863 SmallVector<Register, 4> Factors; 3864 3865 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3866 // Collect low parts of muls for DstIdx. 3867 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3868 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3869 MachineInstrBuilder Mul = 3870 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3871 Factors.push_back(Mul.getReg(0)); 3872 } 3873 // Collect high parts of muls from previous DstIdx. 3874 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3875 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3876 MachineInstrBuilder Umulh = 3877 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3878 Factors.push_back(Umulh.getReg(0)); 3879 } 3880 // Add CarrySum from additions calculated for previous DstIdx. 3881 if (DstIdx != 1) { 3882 Factors.push_back(CarrySumPrevDstIdx); 3883 } 3884 3885 Register CarrySum; 3886 // Add all factors and accumulate all carries into CarrySum. 3887 if (DstIdx != DstParts - 1) { 3888 MachineInstrBuilder Uaddo = 3889 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3890 FactorSum = Uaddo.getReg(0); 3891 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3892 for (unsigned i = 2; i < Factors.size(); ++i) { 3893 MachineInstrBuilder Uaddo = 3894 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3895 FactorSum = Uaddo.getReg(0); 3896 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3897 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3898 } 3899 } else { 3900 // Since value for the next index is not calculated, neither is CarrySum. 3901 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3902 for (unsigned i = 2; i < Factors.size(); ++i) 3903 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3904 } 3905 3906 CarrySumPrevDstIdx = CarrySum; 3907 DstRegs[DstIdx] = FactorSum; 3908 Factors.clear(); 3909 } 3910 } 3911 3912 LegalizerHelper::LegalizeResult 3913 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3914 Register DstReg = MI.getOperand(0).getReg(); 3915 Register Src1 = MI.getOperand(1).getReg(); 3916 Register Src2 = MI.getOperand(2).getReg(); 3917 3918 LLT Ty = MRI.getType(DstReg); 3919 if (Ty.isVector()) 3920 return UnableToLegalize; 3921 3922 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3923 unsigned DstSize = Ty.getSizeInBits(); 3924 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3925 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3926 return UnableToLegalize; 3927 3928 unsigned NumDstParts = DstSize / NarrowSize; 3929 unsigned NumSrcParts = SrcSize / NarrowSize; 3930 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3931 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3932 3933 SmallVector<Register, 2> Src1Parts, Src2Parts; 3934 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 3935 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3936 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3937 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3938 3939 // Take only high half of registers if this is high mul. 3940 ArrayRef<Register> DstRegs( 3941 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3942 MIRBuilder.buildMerge(DstReg, DstRegs); 3943 MI.eraseFromParent(); 3944 return Legalized; 3945 } 3946 3947 LegalizerHelper::LegalizeResult 3948 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3949 LLT NarrowTy) { 3950 if (TypeIdx != 1) 3951 return UnableToLegalize; 3952 3953 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3954 3955 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3956 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3957 // NarrowSize. 3958 if (SizeOp1 % NarrowSize != 0) 3959 return UnableToLegalize; 3960 int NumParts = SizeOp1 / NarrowSize; 3961 3962 SmallVector<Register, 2> SrcRegs, DstRegs; 3963 SmallVector<uint64_t, 2> Indexes; 3964 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3965 3966 Register OpReg = MI.getOperand(0).getReg(); 3967 uint64_t OpStart = MI.getOperand(2).getImm(); 3968 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3969 for (int i = 0; i < NumParts; ++i) { 3970 unsigned SrcStart = i * NarrowSize; 3971 3972 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3973 // No part of the extract uses this subregister, ignore it. 3974 continue; 3975 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3976 // The entire subregister is extracted, forward the value. 3977 DstRegs.push_back(SrcRegs[i]); 3978 continue; 3979 } 3980 3981 // OpSegStart is where this destination segment would start in OpReg if it 3982 // extended infinitely in both directions. 3983 int64_t ExtractOffset; 3984 uint64_t SegSize; 3985 if (OpStart < SrcStart) { 3986 ExtractOffset = 0; 3987 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3988 } else { 3989 ExtractOffset = OpStart - SrcStart; 3990 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3991 } 3992 3993 Register SegReg = SrcRegs[i]; 3994 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3995 // A genuine extract is needed. 3996 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3997 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3998 } 3999 4000 DstRegs.push_back(SegReg); 4001 } 4002 4003 Register DstReg = MI.getOperand(0).getReg(); 4004 if (MRI.getType(DstReg).isVector()) 4005 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4006 else if (DstRegs.size() > 1) 4007 MIRBuilder.buildMerge(DstReg, DstRegs); 4008 else 4009 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 4010 MI.eraseFromParent(); 4011 return Legalized; 4012 } 4013 4014 LegalizerHelper::LegalizeResult 4015 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 4016 LLT NarrowTy) { 4017 // FIXME: Don't know how to handle secondary types yet. 4018 if (TypeIdx != 0) 4019 return UnableToLegalize; 4020 4021 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 4022 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4023 4024 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4025 // NarrowSize. 4026 if (SizeOp0 % NarrowSize != 0) 4027 return UnableToLegalize; 4028 4029 int NumParts = SizeOp0 / NarrowSize; 4030 4031 SmallVector<Register, 2> SrcRegs, DstRegs; 4032 SmallVector<uint64_t, 2> Indexes; 4033 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4034 4035 Register OpReg = MI.getOperand(2).getReg(); 4036 uint64_t OpStart = MI.getOperand(3).getImm(); 4037 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4038 for (int i = 0; i < NumParts; ++i) { 4039 unsigned DstStart = i * NarrowSize; 4040 4041 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 4042 // No part of the insert affects this subregister, forward the original. 4043 DstRegs.push_back(SrcRegs[i]); 4044 continue; 4045 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4046 // The entire subregister is defined by this insert, forward the new 4047 // value. 4048 DstRegs.push_back(OpReg); 4049 continue; 4050 } 4051 4052 // OpSegStart is where this destination segment would start in OpReg if it 4053 // extended infinitely in both directions. 4054 int64_t ExtractOffset, InsertOffset; 4055 uint64_t SegSize; 4056 if (OpStart < DstStart) { 4057 InsertOffset = 0; 4058 ExtractOffset = DstStart - OpStart; 4059 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 4060 } else { 4061 InsertOffset = OpStart - DstStart; 4062 ExtractOffset = 0; 4063 SegSize = 4064 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 4065 } 4066 4067 Register SegReg = OpReg; 4068 if (ExtractOffset != 0 || SegSize != OpSize) { 4069 // A genuine extract is needed. 4070 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4071 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 4072 } 4073 4074 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4075 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 4076 DstRegs.push_back(DstReg); 4077 } 4078 4079 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 4080 Register DstReg = MI.getOperand(0).getReg(); 4081 if(MRI.getType(DstReg).isVector()) 4082 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4083 else 4084 MIRBuilder.buildMerge(DstReg, DstRegs); 4085 MI.eraseFromParent(); 4086 return Legalized; 4087 } 4088 4089 LegalizerHelper::LegalizeResult 4090 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 4091 LLT NarrowTy) { 4092 Register DstReg = MI.getOperand(0).getReg(); 4093 LLT DstTy = MRI.getType(DstReg); 4094 4095 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 4096 4097 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4098 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 4099 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4100 LLT LeftoverTy; 4101 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 4102 Src0Regs, Src0LeftoverRegs)) 4103 return UnableToLegalize; 4104 4105 LLT Unused; 4106 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 4107 Src1Regs, Src1LeftoverRegs)) 4108 llvm_unreachable("inconsistent extractParts result"); 4109 4110 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4111 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 4112 {Src0Regs[I], Src1Regs[I]}); 4113 DstRegs.push_back(Inst.getReg(0)); 4114 } 4115 4116 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4117 auto Inst = MIRBuilder.buildInstr( 4118 MI.getOpcode(), 4119 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4120 DstLeftoverRegs.push_back(Inst.getReg(0)); 4121 } 4122 4123 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4124 LeftoverTy, DstLeftoverRegs); 4125 4126 MI.eraseFromParent(); 4127 return Legalized; 4128 } 4129 4130 LegalizerHelper::LegalizeResult 4131 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4132 LLT NarrowTy) { 4133 if (TypeIdx != 0) 4134 return UnableToLegalize; 4135 4136 Register DstReg = MI.getOperand(0).getReg(); 4137 Register SrcReg = MI.getOperand(1).getReg(); 4138 4139 LLT DstTy = MRI.getType(DstReg); 4140 if (DstTy.isVector()) 4141 return UnableToLegalize; 4142 4143 SmallVector<Register, 8> Parts; 4144 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4145 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4146 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4147 4148 MI.eraseFromParent(); 4149 return Legalized; 4150 } 4151 4152 LegalizerHelper::LegalizeResult 4153 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4154 LLT NarrowTy) { 4155 if (TypeIdx != 0) 4156 return UnableToLegalize; 4157 4158 Register CondReg = MI.getOperand(1).getReg(); 4159 LLT CondTy = MRI.getType(CondReg); 4160 if (CondTy.isVector()) // TODO: Handle vselect 4161 return UnableToLegalize; 4162 4163 Register DstReg = MI.getOperand(0).getReg(); 4164 LLT DstTy = MRI.getType(DstReg); 4165 4166 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4167 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4168 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4169 LLT LeftoverTy; 4170 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4171 Src1Regs, Src1LeftoverRegs)) 4172 return UnableToLegalize; 4173 4174 LLT Unused; 4175 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4176 Src2Regs, Src2LeftoverRegs)) 4177 llvm_unreachable("inconsistent extractParts result"); 4178 4179 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4180 auto Select = MIRBuilder.buildSelect(NarrowTy, 4181 CondReg, Src1Regs[I], Src2Regs[I]); 4182 DstRegs.push_back(Select.getReg(0)); 4183 } 4184 4185 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4186 auto Select = MIRBuilder.buildSelect( 4187 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4188 DstLeftoverRegs.push_back(Select.getReg(0)); 4189 } 4190 4191 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4192 LeftoverTy, DstLeftoverRegs); 4193 4194 MI.eraseFromParent(); 4195 return Legalized; 4196 } 4197 4198 LegalizerHelper::LegalizeResult 4199 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4200 LLT NarrowTy) { 4201 if (TypeIdx != 1) 4202 return UnableToLegalize; 4203 4204 Register DstReg = MI.getOperand(0).getReg(); 4205 Register SrcReg = MI.getOperand(1).getReg(); 4206 LLT DstTy = MRI.getType(DstReg); 4207 LLT SrcTy = MRI.getType(SrcReg); 4208 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4209 4210 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4211 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4212 4213 MachineIRBuilder &B = MIRBuilder; 4214 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4215 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4216 auto C_0 = B.buildConstant(NarrowTy, 0); 4217 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4218 UnmergeSrc.getReg(1), C_0); 4219 auto LoCTLZ = IsUndef ? 4220 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4221 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4222 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4223 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4224 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4225 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4226 4227 MI.eraseFromParent(); 4228 return Legalized; 4229 } 4230 4231 return UnableToLegalize; 4232 } 4233 4234 LegalizerHelper::LegalizeResult 4235 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4236 LLT NarrowTy) { 4237 if (TypeIdx != 1) 4238 return UnableToLegalize; 4239 4240 Register DstReg = MI.getOperand(0).getReg(); 4241 Register SrcReg = MI.getOperand(1).getReg(); 4242 LLT DstTy = MRI.getType(DstReg); 4243 LLT SrcTy = MRI.getType(SrcReg); 4244 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4245 4246 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4247 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4248 4249 MachineIRBuilder &B = MIRBuilder; 4250 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4251 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4252 auto C_0 = B.buildConstant(NarrowTy, 0); 4253 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4254 UnmergeSrc.getReg(0), C_0); 4255 auto HiCTTZ = IsUndef ? 4256 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4257 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4258 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4259 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4260 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4261 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4262 4263 MI.eraseFromParent(); 4264 return Legalized; 4265 } 4266 4267 return UnableToLegalize; 4268 } 4269 4270 LegalizerHelper::LegalizeResult 4271 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4272 LLT NarrowTy) { 4273 if (TypeIdx != 1) 4274 return UnableToLegalize; 4275 4276 Register DstReg = MI.getOperand(0).getReg(); 4277 LLT DstTy = MRI.getType(DstReg); 4278 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4279 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4280 4281 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4282 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4283 4284 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4285 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4286 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4287 4288 MI.eraseFromParent(); 4289 return Legalized; 4290 } 4291 4292 return UnableToLegalize; 4293 } 4294 4295 LegalizerHelper::LegalizeResult 4296 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4297 unsigned Opc = MI.getOpcode(); 4298 const auto &TII = MIRBuilder.getTII(); 4299 auto isSupported = [this](const LegalityQuery &Q) { 4300 auto QAction = LI.getAction(Q).Action; 4301 return QAction == Legal || QAction == Libcall || QAction == Custom; 4302 }; 4303 switch (Opc) { 4304 default: 4305 return UnableToLegalize; 4306 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4307 // This trivially expands to CTLZ. 4308 Observer.changingInstr(MI); 4309 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4310 Observer.changedInstr(MI); 4311 return Legalized; 4312 } 4313 case TargetOpcode::G_CTLZ: { 4314 Register DstReg = MI.getOperand(0).getReg(); 4315 Register SrcReg = MI.getOperand(1).getReg(); 4316 LLT DstTy = MRI.getType(DstReg); 4317 LLT SrcTy = MRI.getType(SrcReg); 4318 unsigned Len = SrcTy.getSizeInBits(); 4319 4320 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4321 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4322 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4323 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4324 auto ICmp = MIRBuilder.buildICmp( 4325 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4326 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4327 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4328 MI.eraseFromParent(); 4329 return Legalized; 4330 } 4331 // for now, we do this: 4332 // NewLen = NextPowerOf2(Len); 4333 // x = x | (x >> 1); 4334 // x = x | (x >> 2); 4335 // ... 4336 // x = x | (x >>16); 4337 // x = x | (x >>32); // for 64-bit input 4338 // Upto NewLen/2 4339 // return Len - popcount(x); 4340 // 4341 // Ref: "Hacker's Delight" by Henry Warren 4342 Register Op = SrcReg; 4343 unsigned NewLen = PowerOf2Ceil(Len); 4344 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4345 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4346 auto MIBOp = MIRBuilder.buildOr( 4347 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4348 Op = MIBOp.getReg(0); 4349 } 4350 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4351 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4352 MIBPop); 4353 MI.eraseFromParent(); 4354 return Legalized; 4355 } 4356 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4357 // This trivially expands to CTTZ. 4358 Observer.changingInstr(MI); 4359 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4360 Observer.changedInstr(MI); 4361 return Legalized; 4362 } 4363 case TargetOpcode::G_CTTZ: { 4364 Register DstReg = MI.getOperand(0).getReg(); 4365 Register SrcReg = MI.getOperand(1).getReg(); 4366 LLT DstTy = MRI.getType(DstReg); 4367 LLT SrcTy = MRI.getType(SrcReg); 4368 4369 unsigned Len = SrcTy.getSizeInBits(); 4370 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4371 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4372 // zero. 4373 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4374 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4375 auto ICmp = MIRBuilder.buildICmp( 4376 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4377 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4378 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4379 MI.eraseFromParent(); 4380 return Legalized; 4381 } 4382 // for now, we use: { return popcount(~x & (x - 1)); } 4383 // unless the target has ctlz but not ctpop, in which case we use: 4384 // { return 32 - nlz(~x & (x-1)); } 4385 // Ref: "Hacker's Delight" by Henry Warren 4386 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4387 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4388 auto MIBTmp = MIRBuilder.buildAnd( 4389 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4390 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4391 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4392 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4393 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4394 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4395 MI.eraseFromParent(); 4396 return Legalized; 4397 } 4398 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4399 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4400 return Legalized; 4401 } 4402 case TargetOpcode::G_CTPOP: { 4403 unsigned Size = Ty.getSizeInBits(); 4404 MachineIRBuilder &B = MIRBuilder; 4405 4406 // Count set bits in blocks of 2 bits. Default approach would be 4407 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4408 // We use following formula instead: 4409 // B2Count = val - { (val >> 1) & 0x55555555 } 4410 // since it gives same result in blocks of 2 with one instruction less. 4411 auto C_1 = B.buildConstant(Ty, 1); 4412 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4413 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4414 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4415 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4416 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4417 4418 // In order to get count in blocks of 4 add values from adjacent block of 2. 4419 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4420 auto C_2 = B.buildConstant(Ty, 2); 4421 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4422 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4423 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4424 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4425 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4426 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4427 4428 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4429 // addition since count value sits in range {0,...,8} and 4 bits are enough 4430 // to hold such binary values. After addition high 4 bits still hold count 4431 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4432 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4433 auto C_4 = B.buildConstant(Ty, 4); 4434 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4435 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4436 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4437 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4438 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4439 4440 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4441 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4442 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4443 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4444 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4445 4446 // Shift count result from 8 high bits to low bits. 4447 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4448 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4449 4450 MI.eraseFromParent(); 4451 return Legalized; 4452 } 4453 } 4454 } 4455 4456 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4457 // representation. 4458 LegalizerHelper::LegalizeResult 4459 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4460 Register Dst = MI.getOperand(0).getReg(); 4461 Register Src = MI.getOperand(1).getReg(); 4462 const LLT S64 = LLT::scalar(64); 4463 const LLT S32 = LLT::scalar(32); 4464 const LLT S1 = LLT::scalar(1); 4465 4466 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4467 4468 // unsigned cul2f(ulong u) { 4469 // uint lz = clz(u); 4470 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4471 // u = (u << lz) & 0x7fffffffffffffffUL; 4472 // ulong t = u & 0xffffffffffUL; 4473 // uint v = (e << 23) | (uint)(u >> 40); 4474 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4475 // return as_float(v + r); 4476 // } 4477 4478 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4479 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4480 4481 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4482 4483 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4484 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4485 4486 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4487 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4488 4489 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4490 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4491 4492 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4493 4494 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4495 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4496 4497 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4498 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4499 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4500 4501 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4502 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4503 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4504 auto One = MIRBuilder.buildConstant(S32, 1); 4505 4506 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4507 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4508 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4509 MIRBuilder.buildAdd(Dst, V, R); 4510 4511 MI.eraseFromParent(); 4512 return Legalized; 4513 } 4514 4515 LegalizerHelper::LegalizeResult 4516 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4517 Register Dst = MI.getOperand(0).getReg(); 4518 Register Src = MI.getOperand(1).getReg(); 4519 LLT DstTy = MRI.getType(Dst); 4520 LLT SrcTy = MRI.getType(Src); 4521 4522 if (SrcTy == LLT::scalar(1)) { 4523 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4524 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4525 MIRBuilder.buildSelect(Dst, Src, True, False); 4526 MI.eraseFromParent(); 4527 return Legalized; 4528 } 4529 4530 if (SrcTy != LLT::scalar(64)) 4531 return UnableToLegalize; 4532 4533 if (DstTy == LLT::scalar(32)) { 4534 // TODO: SelectionDAG has several alternative expansions to port which may 4535 // be more reasonble depending on the available instructions. If a target 4536 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4537 // intermediate type, this is probably worse. 4538 return lowerU64ToF32BitOps(MI); 4539 } 4540 4541 return UnableToLegalize; 4542 } 4543 4544 LegalizerHelper::LegalizeResult 4545 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4546 Register Dst = MI.getOperand(0).getReg(); 4547 Register Src = MI.getOperand(1).getReg(); 4548 LLT DstTy = MRI.getType(Dst); 4549 LLT SrcTy = MRI.getType(Src); 4550 4551 const LLT S64 = LLT::scalar(64); 4552 const LLT S32 = LLT::scalar(32); 4553 const LLT S1 = LLT::scalar(1); 4554 4555 if (SrcTy == S1) { 4556 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4557 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4558 MIRBuilder.buildSelect(Dst, Src, True, False); 4559 MI.eraseFromParent(); 4560 return Legalized; 4561 } 4562 4563 if (SrcTy != S64) 4564 return UnableToLegalize; 4565 4566 if (DstTy == S32) { 4567 // signed cl2f(long l) { 4568 // long s = l >> 63; 4569 // float r = cul2f((l + s) ^ s); 4570 // return s ? -r : r; 4571 // } 4572 Register L = Src; 4573 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4574 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4575 4576 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4577 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4578 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4579 4580 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4581 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4582 MIRBuilder.buildConstant(S64, 0)); 4583 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4584 MI.eraseFromParent(); 4585 return Legalized; 4586 } 4587 4588 return UnableToLegalize; 4589 } 4590 4591 LegalizerHelper::LegalizeResult 4592 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4593 Register Dst = MI.getOperand(0).getReg(); 4594 Register Src = MI.getOperand(1).getReg(); 4595 LLT DstTy = MRI.getType(Dst); 4596 LLT SrcTy = MRI.getType(Src); 4597 const LLT S64 = LLT::scalar(64); 4598 const LLT S32 = LLT::scalar(32); 4599 4600 if (SrcTy != S64 && SrcTy != S32) 4601 return UnableToLegalize; 4602 if (DstTy != S32 && DstTy != S64) 4603 return UnableToLegalize; 4604 4605 // FPTOSI gives same result as FPTOUI for positive signed integers. 4606 // FPTOUI needs to deal with fp values that convert to unsigned integers 4607 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4608 4609 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4610 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4611 : APFloat::IEEEdouble(), 4612 APInt::getNullValue(SrcTy.getSizeInBits())); 4613 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4614 4615 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4616 4617 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4618 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4619 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4620 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4621 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4622 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4623 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4624 4625 const LLT S1 = LLT::scalar(1); 4626 4627 MachineInstrBuilder FCMP = 4628 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4629 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4630 4631 MI.eraseFromParent(); 4632 return Legalized; 4633 } 4634 4635 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4636 Register Dst = MI.getOperand(0).getReg(); 4637 Register Src = MI.getOperand(1).getReg(); 4638 LLT DstTy = MRI.getType(Dst); 4639 LLT SrcTy = MRI.getType(Src); 4640 const LLT S64 = LLT::scalar(64); 4641 const LLT S32 = LLT::scalar(32); 4642 4643 // FIXME: Only f32 to i64 conversions are supported. 4644 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4645 return UnableToLegalize; 4646 4647 // Expand f32 -> i64 conversion 4648 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4649 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4650 4651 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 4652 4653 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 4654 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 4655 4656 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 4657 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 4658 4659 auto SignMask = MIRBuilder.buildConstant(SrcTy, 4660 APInt::getSignMask(SrcEltBits)); 4661 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 4662 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 4663 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 4664 Sign = MIRBuilder.buildSExt(DstTy, Sign); 4665 4666 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 4667 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 4668 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 4669 4670 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 4671 R = MIRBuilder.buildZExt(DstTy, R); 4672 4673 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 4674 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 4675 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 4676 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 4677 4678 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 4679 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 4680 4681 const LLT S1 = LLT::scalar(1); 4682 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 4683 S1, Exponent, ExponentLoBit); 4684 4685 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 4686 4687 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 4688 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 4689 4690 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 4691 4692 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 4693 S1, Exponent, ZeroSrcTy); 4694 4695 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 4696 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 4697 4698 MI.eraseFromParent(); 4699 return Legalized; 4700 } 4701 4702 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 4703 LegalizerHelper::LegalizeResult 4704 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 4705 Register Dst = MI.getOperand(0).getReg(); 4706 Register Src = MI.getOperand(1).getReg(); 4707 4708 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 4709 return UnableToLegalize; 4710 4711 const unsigned ExpMask = 0x7ff; 4712 const unsigned ExpBiasf64 = 1023; 4713 const unsigned ExpBiasf16 = 15; 4714 const LLT S32 = LLT::scalar(32); 4715 const LLT S1 = LLT::scalar(1); 4716 4717 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 4718 Register U = Unmerge.getReg(0); 4719 Register UH = Unmerge.getReg(1); 4720 4721 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 4722 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 4723 4724 // Subtract the fp64 exponent bias (1023) to get the real exponent and 4725 // add the f16 bias (15) to get the biased exponent for the f16 format. 4726 E = MIRBuilder.buildAdd( 4727 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 4728 4729 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 4730 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 4731 4732 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 4733 MIRBuilder.buildConstant(S32, 0x1ff)); 4734 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 4735 4736 auto Zero = MIRBuilder.buildConstant(S32, 0); 4737 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 4738 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 4739 M = MIRBuilder.buildOr(S32, M, Lo40Set); 4740 4741 // (M != 0 ? 0x0200 : 0) | 0x7c00; 4742 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 4743 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 4744 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 4745 4746 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 4747 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 4748 4749 // N = M | (E << 12); 4750 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 4751 auto N = MIRBuilder.buildOr(S32, M, EShl12); 4752 4753 // B = clamp(1-E, 0, 13); 4754 auto One = MIRBuilder.buildConstant(S32, 1); 4755 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 4756 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 4757 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 4758 4759 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 4760 MIRBuilder.buildConstant(S32, 0x1000)); 4761 4762 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 4763 auto D0 = MIRBuilder.buildShl(S32, D, B); 4764 4765 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 4766 D0, SigSetHigh); 4767 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 4768 D = MIRBuilder.buildOr(S32, D, D1); 4769 4770 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 4771 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 4772 4773 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 4774 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 4775 4776 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 4777 MIRBuilder.buildConstant(S32, 3)); 4778 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 4779 4780 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 4781 MIRBuilder.buildConstant(S32, 5)); 4782 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 4783 4784 V1 = MIRBuilder.buildOr(S32, V0, V1); 4785 V = MIRBuilder.buildAdd(S32, V, V1); 4786 4787 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 4788 E, MIRBuilder.buildConstant(S32, 30)); 4789 V = MIRBuilder.buildSelect(S32, CmpEGt30, 4790 MIRBuilder.buildConstant(S32, 0x7c00), V); 4791 4792 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 4793 E, MIRBuilder.buildConstant(S32, 1039)); 4794 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 4795 4796 // Extract the sign bit. 4797 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 4798 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 4799 4800 // Insert the sign bit 4801 V = MIRBuilder.buildOr(S32, Sign, V); 4802 4803 MIRBuilder.buildTrunc(Dst, V); 4804 MI.eraseFromParent(); 4805 return Legalized; 4806 } 4807 4808 LegalizerHelper::LegalizeResult 4809 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4810 Register Dst = MI.getOperand(0).getReg(); 4811 Register Src = MI.getOperand(1).getReg(); 4812 4813 LLT DstTy = MRI.getType(Dst); 4814 LLT SrcTy = MRI.getType(Src); 4815 const LLT S64 = LLT::scalar(64); 4816 const LLT S16 = LLT::scalar(16); 4817 4818 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 4819 return lowerFPTRUNC_F64_TO_F16(MI); 4820 4821 return UnableToLegalize; 4822 } 4823 4824 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4825 switch (Opc) { 4826 case TargetOpcode::G_SMIN: 4827 return CmpInst::ICMP_SLT; 4828 case TargetOpcode::G_SMAX: 4829 return CmpInst::ICMP_SGT; 4830 case TargetOpcode::G_UMIN: 4831 return CmpInst::ICMP_ULT; 4832 case TargetOpcode::G_UMAX: 4833 return CmpInst::ICMP_UGT; 4834 default: 4835 llvm_unreachable("not in integer min/max"); 4836 } 4837 } 4838 4839 LegalizerHelper::LegalizeResult 4840 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4841 Register Dst = MI.getOperand(0).getReg(); 4842 Register Src0 = MI.getOperand(1).getReg(); 4843 Register Src1 = MI.getOperand(2).getReg(); 4844 4845 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4846 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4847 4848 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4849 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4850 4851 MI.eraseFromParent(); 4852 return Legalized; 4853 } 4854 4855 LegalizerHelper::LegalizeResult 4856 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4857 Register Dst = MI.getOperand(0).getReg(); 4858 Register Src0 = MI.getOperand(1).getReg(); 4859 Register Src1 = MI.getOperand(2).getReg(); 4860 4861 const LLT Src0Ty = MRI.getType(Src0); 4862 const LLT Src1Ty = MRI.getType(Src1); 4863 4864 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4865 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4866 4867 auto SignBitMask = MIRBuilder.buildConstant( 4868 Src0Ty, APInt::getSignMask(Src0Size)); 4869 4870 auto NotSignBitMask = MIRBuilder.buildConstant( 4871 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4872 4873 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4874 MachineInstr *Or; 4875 4876 if (Src0Ty == Src1Ty) { 4877 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); 4878 Or = MIRBuilder.buildOr(Dst, And0, And1); 4879 } else if (Src0Size > Src1Size) { 4880 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4881 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4882 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4883 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4884 Or = MIRBuilder.buildOr(Dst, And0, And1); 4885 } else { 4886 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4887 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4888 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4889 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4890 Or = MIRBuilder.buildOr(Dst, And0, And1); 4891 } 4892 4893 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4894 // constants are a nan and -0.0, but the final result should preserve 4895 // everything. 4896 if (unsigned Flags = MI.getFlags()) 4897 Or->setFlags(Flags); 4898 4899 MI.eraseFromParent(); 4900 return Legalized; 4901 } 4902 4903 LegalizerHelper::LegalizeResult 4904 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4905 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4906 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4907 4908 Register Dst = MI.getOperand(0).getReg(); 4909 Register Src0 = MI.getOperand(1).getReg(); 4910 Register Src1 = MI.getOperand(2).getReg(); 4911 LLT Ty = MRI.getType(Dst); 4912 4913 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4914 // Insert canonicalizes if it's possible we need to quiet to get correct 4915 // sNaN behavior. 4916 4917 // Note this must be done here, and not as an optimization combine in the 4918 // absence of a dedicate quiet-snan instruction as we're using an 4919 // omni-purpose G_FCANONICALIZE. 4920 if (!isKnownNeverSNaN(Src0, MRI)) 4921 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4922 4923 if (!isKnownNeverSNaN(Src1, MRI)) 4924 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4925 } 4926 4927 // If there are no nans, it's safe to simply replace this with the non-IEEE 4928 // version. 4929 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4930 MI.eraseFromParent(); 4931 return Legalized; 4932 } 4933 4934 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4935 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4936 Register DstReg = MI.getOperand(0).getReg(); 4937 LLT Ty = MRI.getType(DstReg); 4938 unsigned Flags = MI.getFlags(); 4939 4940 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4941 Flags); 4942 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4943 MI.eraseFromParent(); 4944 return Legalized; 4945 } 4946 4947 LegalizerHelper::LegalizeResult 4948 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4949 Register DstReg = MI.getOperand(0).getReg(); 4950 Register X = MI.getOperand(1).getReg(); 4951 const unsigned Flags = MI.getFlags(); 4952 const LLT Ty = MRI.getType(DstReg); 4953 const LLT CondTy = Ty.changeElementSize(1); 4954 4955 // round(x) => 4956 // t = trunc(x); 4957 // d = fabs(x - t); 4958 // o = copysign(1.0f, x); 4959 // return t + (d >= 0.5 ? o : 0.0); 4960 4961 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 4962 4963 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 4964 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 4965 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4966 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 4967 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 4968 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 4969 4970 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 4971 Flags); 4972 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 4973 4974 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 4975 4976 MI.eraseFromParent(); 4977 return Legalized; 4978 } 4979 4980 LegalizerHelper::LegalizeResult 4981 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 4982 Register DstReg = MI.getOperand(0).getReg(); 4983 Register SrcReg = MI.getOperand(1).getReg(); 4984 unsigned Flags = MI.getFlags(); 4985 LLT Ty = MRI.getType(DstReg); 4986 const LLT CondTy = Ty.changeElementSize(1); 4987 4988 // result = trunc(src); 4989 // if (src < 0.0 && src != result) 4990 // result += -1.0. 4991 4992 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 4993 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4994 4995 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 4996 SrcReg, Zero, Flags); 4997 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 4998 SrcReg, Trunc, Flags); 4999 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 5000 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 5001 5002 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 5003 MI.eraseFromParent(); 5004 return Legalized; 5005 } 5006 5007 LegalizerHelper::LegalizeResult 5008 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 5009 const unsigned NumOps = MI.getNumOperands(); 5010 Register DstReg = MI.getOperand(0).getReg(); 5011 Register Src0Reg = MI.getOperand(1).getReg(); 5012 LLT DstTy = MRI.getType(DstReg); 5013 LLT SrcTy = MRI.getType(Src0Reg); 5014 unsigned PartSize = SrcTy.getSizeInBits(); 5015 5016 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 5017 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 5018 5019 for (unsigned I = 2; I != NumOps; ++I) { 5020 const unsigned Offset = (I - 1) * PartSize; 5021 5022 Register SrcReg = MI.getOperand(I).getReg(); 5023 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 5024 5025 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 5026 MRI.createGenericVirtualRegister(WideTy); 5027 5028 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 5029 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 5030 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 5031 ResultReg = NextResult; 5032 } 5033 5034 if (DstTy.isPointer()) { 5035 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 5036 DstTy.getAddressSpace())) { 5037 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 5038 return UnableToLegalize; 5039 } 5040 5041 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 5042 } 5043 5044 MI.eraseFromParent(); 5045 return Legalized; 5046 } 5047 5048 LegalizerHelper::LegalizeResult 5049 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 5050 const unsigned NumDst = MI.getNumOperands() - 1; 5051 Register SrcReg = MI.getOperand(NumDst).getReg(); 5052 Register Dst0Reg = MI.getOperand(0).getReg(); 5053 LLT DstTy = MRI.getType(Dst0Reg); 5054 if (DstTy.isPointer()) 5055 return UnableToLegalize; // TODO 5056 5057 SrcReg = coerceToScalar(SrcReg); 5058 if (!SrcReg) 5059 return UnableToLegalize; 5060 5061 // Expand scalarizing unmerge as bitcast to integer and shift. 5062 LLT IntTy = MRI.getType(SrcReg); 5063 5064 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 5065 5066 const unsigned DstSize = DstTy.getSizeInBits(); 5067 unsigned Offset = DstSize; 5068 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 5069 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 5070 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 5071 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 5072 } 5073 5074 MI.eraseFromParent(); 5075 return Legalized; 5076 } 5077 5078 LegalizerHelper::LegalizeResult 5079 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 5080 Register DstReg = MI.getOperand(0).getReg(); 5081 Register Src0Reg = MI.getOperand(1).getReg(); 5082 Register Src1Reg = MI.getOperand(2).getReg(); 5083 LLT Src0Ty = MRI.getType(Src0Reg); 5084 LLT DstTy = MRI.getType(DstReg); 5085 LLT IdxTy = LLT::scalar(32); 5086 5087 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5088 5089 if (DstTy.isScalar()) { 5090 if (Src0Ty.isVector()) 5091 return UnableToLegalize; 5092 5093 // This is just a SELECT. 5094 assert(Mask.size() == 1 && "Expected a single mask element"); 5095 Register Val; 5096 if (Mask[0] < 0 || Mask[0] > 1) 5097 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 5098 else 5099 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 5100 MIRBuilder.buildCopy(DstReg, Val); 5101 MI.eraseFromParent(); 5102 return Legalized; 5103 } 5104 5105 Register Undef; 5106 SmallVector<Register, 32> BuildVec; 5107 LLT EltTy = DstTy.getElementType(); 5108 5109 for (int Idx : Mask) { 5110 if (Idx < 0) { 5111 if (!Undef.isValid()) 5112 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 5113 BuildVec.push_back(Undef); 5114 continue; 5115 } 5116 5117 if (Src0Ty.isScalar()) { 5118 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 5119 } else { 5120 int NumElts = Src0Ty.getNumElements(); 5121 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5122 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5123 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5124 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5125 BuildVec.push_back(Extract.getReg(0)); 5126 } 5127 } 5128 5129 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5130 MI.eraseFromParent(); 5131 return Legalized; 5132 } 5133 5134 LegalizerHelper::LegalizeResult 5135 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5136 const auto &MF = *MI.getMF(); 5137 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 5138 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 5139 return UnableToLegalize; 5140 5141 Register Dst = MI.getOperand(0).getReg(); 5142 Register AllocSize = MI.getOperand(1).getReg(); 5143 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5144 5145 LLT PtrTy = MRI.getType(Dst); 5146 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5147 5148 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 5149 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5150 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5151 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5152 5153 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5154 // have to generate an extra instruction to negate the alloc and then use 5155 // G_PTR_ADD to add the negative offset. 5156 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5157 if (Alignment > Align(1)) { 5158 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5159 AlignMask.negate(); 5160 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5161 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5162 } 5163 5164 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5165 MIRBuilder.buildCopy(SPReg, SPTmp); 5166 MIRBuilder.buildCopy(Dst, SPTmp); 5167 5168 MI.eraseFromParent(); 5169 return Legalized; 5170 } 5171 5172 LegalizerHelper::LegalizeResult 5173 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5174 Register Dst = MI.getOperand(0).getReg(); 5175 Register Src = MI.getOperand(1).getReg(); 5176 unsigned Offset = MI.getOperand(2).getImm(); 5177 5178 LLT DstTy = MRI.getType(Dst); 5179 LLT SrcTy = MRI.getType(Src); 5180 5181 if (DstTy.isScalar() && 5182 (SrcTy.isScalar() || 5183 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5184 LLT SrcIntTy = SrcTy; 5185 if (!SrcTy.isScalar()) { 5186 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5187 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5188 } 5189 5190 if (Offset == 0) 5191 MIRBuilder.buildTrunc(Dst, Src); 5192 else { 5193 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5194 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5195 MIRBuilder.buildTrunc(Dst, Shr); 5196 } 5197 5198 MI.eraseFromParent(); 5199 return Legalized; 5200 } 5201 5202 return UnableToLegalize; 5203 } 5204 5205 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5206 Register Dst = MI.getOperand(0).getReg(); 5207 Register Src = MI.getOperand(1).getReg(); 5208 Register InsertSrc = MI.getOperand(2).getReg(); 5209 uint64_t Offset = MI.getOperand(3).getImm(); 5210 5211 LLT DstTy = MRI.getType(Src); 5212 LLT InsertTy = MRI.getType(InsertSrc); 5213 5214 if (InsertTy.isVector() || 5215 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5216 return UnableToLegalize; 5217 5218 const DataLayout &DL = MIRBuilder.getDataLayout(); 5219 if ((DstTy.isPointer() && 5220 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5221 (InsertTy.isPointer() && 5222 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5223 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5224 return UnableToLegalize; 5225 } 5226 5227 LLT IntDstTy = DstTy; 5228 5229 if (!DstTy.isScalar()) { 5230 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5231 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5232 } 5233 5234 if (!InsertTy.isScalar()) { 5235 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5236 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5237 } 5238 5239 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5240 if (Offset != 0) { 5241 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5242 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5243 } 5244 5245 APInt MaskVal = APInt::getBitsSetWithWrap( 5246 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5247 5248 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5249 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5250 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5251 5252 MIRBuilder.buildCast(Dst, Or); 5253 MI.eraseFromParent(); 5254 return Legalized; 5255 } 5256 5257 LegalizerHelper::LegalizeResult 5258 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5259 Register Dst0 = MI.getOperand(0).getReg(); 5260 Register Dst1 = MI.getOperand(1).getReg(); 5261 Register LHS = MI.getOperand(2).getReg(); 5262 Register RHS = MI.getOperand(3).getReg(); 5263 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5264 5265 LLT Ty = MRI.getType(Dst0); 5266 LLT BoolTy = MRI.getType(Dst1); 5267 5268 if (IsAdd) 5269 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5270 else 5271 MIRBuilder.buildSub(Dst0, LHS, RHS); 5272 5273 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5274 5275 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5276 5277 // For an addition, the result should be less than one of the operands (LHS) 5278 // if and only if the other operand (RHS) is negative, otherwise there will 5279 // be overflow. 5280 // For a subtraction, the result should be less than one of the operands 5281 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5282 // otherwise there will be overflow. 5283 auto ResultLowerThanLHS = 5284 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5285 auto ConditionRHS = MIRBuilder.buildICmp( 5286 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5287 5288 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5289 MI.eraseFromParent(); 5290 return Legalized; 5291 } 5292 5293 LegalizerHelper::LegalizeResult 5294 LegalizerHelper::lowerBswap(MachineInstr &MI) { 5295 Register Dst = MI.getOperand(0).getReg(); 5296 Register Src = MI.getOperand(1).getReg(); 5297 const LLT Ty = MRI.getType(Src); 5298 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 5299 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 5300 5301 // Swap most and least significant byte, set remaining bytes in Res to zero. 5302 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 5303 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 5304 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5305 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 5306 5307 // Set i-th high/low byte in Res to i-th low/high byte from Src. 5308 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 5309 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 5310 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 5311 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 5312 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 5313 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 5314 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 5315 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 5316 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 5317 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 5318 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5319 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 5320 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 5321 } 5322 Res.getInstr()->getOperand(0).setReg(Dst); 5323 5324 MI.eraseFromParent(); 5325 return Legalized; 5326 } 5327 5328 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 5329 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 5330 MachineInstrBuilder Src, APInt Mask) { 5331 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 5332 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 5333 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 5334 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 5335 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 5336 return B.buildOr(Dst, LHS, RHS); 5337 } 5338 5339 LegalizerHelper::LegalizeResult 5340 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 5341 Register Dst = MI.getOperand(0).getReg(); 5342 Register Src = MI.getOperand(1).getReg(); 5343 const LLT Ty = MRI.getType(Src); 5344 unsigned Size = Ty.getSizeInBits(); 5345 5346 MachineInstrBuilder BSWAP = 5347 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 5348 5349 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 5350 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 5351 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 5352 MachineInstrBuilder Swap4 = 5353 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 5354 5355 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 5356 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 5357 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 5358 MachineInstrBuilder Swap2 = 5359 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 5360 5361 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 5362 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 5363 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 5364 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 5365 5366 MI.eraseFromParent(); 5367 return Legalized; 5368 } 5369 5370 LegalizerHelper::LegalizeResult 5371 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 5372 MachineFunction &MF = MIRBuilder.getMF(); 5373 const TargetSubtargetInfo &STI = MF.getSubtarget(); 5374 const TargetLowering *TLI = STI.getTargetLowering(); 5375 5376 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 5377 int NameOpIdx = IsRead ? 1 : 0; 5378 int ValRegIndex = IsRead ? 0 : 1; 5379 5380 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 5381 const LLT Ty = MRI.getType(ValReg); 5382 const MDString *RegStr = cast<MDString>( 5383 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 5384 5385 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 5386 if (!PhysReg.isValid()) 5387 return UnableToLegalize; 5388 5389 if (IsRead) 5390 MIRBuilder.buildCopy(ValReg, PhysReg); 5391 else 5392 MIRBuilder.buildCopy(PhysReg, ValReg); 5393 5394 MI.eraseFromParent(); 5395 return Legalized; 5396 } 5397