1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetFrameLowering.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 #define DEBUG_TYPE "legalizer"
29 
30 using namespace llvm;
31 using namespace LegalizeActions;
32 
33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
34 ///
35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
36 /// with any leftover piece as type \p LeftoverTy
37 ///
38 /// Returns -1 in the first element of the pair if the breakdown is not
39 /// satisfiable.
40 static std::pair<int, int>
41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
42   assert(!LeftoverTy.isValid() && "this is an out argument");
43 
44   unsigned Size = OrigTy.getSizeInBits();
45   unsigned NarrowSize = NarrowTy.getSizeInBits();
46   unsigned NumParts = Size / NarrowSize;
47   unsigned LeftoverSize = Size - NumParts * NarrowSize;
48   assert(Size > NarrowSize);
49 
50   if (LeftoverSize == 0)
51     return {NumParts, 0};
52 
53   if (NarrowTy.isVector()) {
54     unsigned EltSize = OrigTy.getScalarSizeInBits();
55     if (LeftoverSize % EltSize != 0)
56       return {-1, -1};
57     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
58   } else {
59     LeftoverTy = LLT::scalar(LeftoverSize);
60   }
61 
62   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
63   return std::make_pair(NumParts, NumLeftover);
64 }
65 
66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
67 
68   if (!Ty.isScalar())
69     return nullptr;
70 
71   switch (Ty.getSizeInBits()) {
72   case 16:
73     return Type::getHalfTy(Ctx);
74   case 32:
75     return Type::getFloatTy(Ctx);
76   case 64:
77     return Type::getDoubleTy(Ctx);
78   case 128:
79     return Type::getFP128Ty(Ctx);
80   default:
81     return nullptr;
82   }
83 }
84 
85 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
86                                  GISelChangeObserver &Observer,
87                                  MachineIRBuilder &Builder)
88     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
89       LI(*MF.getSubtarget().getLegalizerInfo()) {
90   MIRBuilder.setChangeObserver(Observer);
91 }
92 
93 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
94                                  GISelChangeObserver &Observer,
95                                  MachineIRBuilder &B)
96     : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI) {
97   MIRBuilder.setChangeObserver(Observer);
98 }
99 LegalizerHelper::LegalizeResult
100 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
101   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
102 
103   MIRBuilder.setInstrAndDebugLoc(MI);
104 
105   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
106       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
107     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
108   auto Step = LI.getAction(MI, MRI);
109   switch (Step.Action) {
110   case Legal:
111     LLVM_DEBUG(dbgs() << ".. Already legal\n");
112     return AlreadyLegal;
113   case Libcall:
114     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
115     return libcall(MI);
116   case NarrowScalar:
117     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
118     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
119   case WidenScalar:
120     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
121     return widenScalar(MI, Step.TypeIdx, Step.NewType);
122   case Bitcast:
123     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
124     return bitcast(MI, Step.TypeIdx, Step.NewType);
125   case Lower:
126     LLVM_DEBUG(dbgs() << ".. Lower\n");
127     return lower(MI, Step.TypeIdx, Step.NewType);
128   case FewerElements:
129     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
130     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
131   case MoreElements:
132     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
133     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
134   case Custom:
135     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
136     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
137   default:
138     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
139     return UnableToLegalize;
140   }
141 }
142 
143 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
144                                    SmallVectorImpl<Register> &VRegs) {
145   for (int i = 0; i < NumParts; ++i)
146     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
147   MIRBuilder.buildUnmerge(VRegs, Reg);
148 }
149 
150 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
151                                    LLT MainTy, LLT &LeftoverTy,
152                                    SmallVectorImpl<Register> &VRegs,
153                                    SmallVectorImpl<Register> &LeftoverRegs) {
154   assert(!LeftoverTy.isValid() && "this is an out argument");
155 
156   unsigned RegSize = RegTy.getSizeInBits();
157   unsigned MainSize = MainTy.getSizeInBits();
158   unsigned NumParts = RegSize / MainSize;
159   unsigned LeftoverSize = RegSize - NumParts * MainSize;
160 
161   // Use an unmerge when possible.
162   if (LeftoverSize == 0) {
163     for (unsigned I = 0; I < NumParts; ++I)
164       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
165     MIRBuilder.buildUnmerge(VRegs, Reg);
166     return true;
167   }
168 
169   if (MainTy.isVector()) {
170     unsigned EltSize = MainTy.getScalarSizeInBits();
171     if (LeftoverSize % EltSize != 0)
172       return false;
173     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
174   } else {
175     LeftoverTy = LLT::scalar(LeftoverSize);
176   }
177 
178   // For irregular sizes, extract the individual parts.
179   for (unsigned I = 0; I != NumParts; ++I) {
180     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
181     VRegs.push_back(NewReg);
182     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
183   }
184 
185   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
186        Offset += LeftoverSize) {
187     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
188     LeftoverRegs.push_back(NewReg);
189     MIRBuilder.buildExtract(NewReg, Reg, Offset);
190   }
191 
192   return true;
193 }
194 
195 void LegalizerHelper::insertParts(Register DstReg,
196                                   LLT ResultTy, LLT PartTy,
197                                   ArrayRef<Register> PartRegs,
198                                   LLT LeftoverTy,
199                                   ArrayRef<Register> LeftoverRegs) {
200   if (!LeftoverTy.isValid()) {
201     assert(LeftoverRegs.empty());
202 
203     if (!ResultTy.isVector()) {
204       MIRBuilder.buildMerge(DstReg, PartRegs);
205       return;
206     }
207 
208     if (PartTy.isVector())
209       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
210     else
211       MIRBuilder.buildBuildVector(DstReg, PartRegs);
212     return;
213   }
214 
215   unsigned PartSize = PartTy.getSizeInBits();
216   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
217 
218   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
219   MIRBuilder.buildUndef(CurResultReg);
220 
221   unsigned Offset = 0;
222   for (Register PartReg : PartRegs) {
223     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
224     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
225     CurResultReg = NewResultReg;
226     Offset += PartSize;
227   }
228 
229   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
230     // Use the original output register for the final insert to avoid a copy.
231     Register NewResultReg = (I + 1 == E) ?
232       DstReg : MRI.createGenericVirtualRegister(ResultTy);
233 
234     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
235     CurResultReg = NewResultReg;
236     Offset += LeftoverPartSize;
237   }
238 }
239 
240 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs
241 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
242                               const MachineInstr &MI) {
243   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
244 
245   const int NumResults = MI.getNumOperands() - 1;
246   Regs.resize(NumResults);
247   for (int I = 0; I != NumResults; ++I)
248     Regs[I] = MI.getOperand(I).getReg();
249 }
250 
251 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
252                                     LLT NarrowTy, Register SrcReg) {
253   LLT SrcTy = MRI.getType(SrcReg);
254 
255   LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy));
256   if (SrcTy == GCDTy) {
257     // If the source already evenly divides the result type, we don't need to do
258     // anything.
259     Parts.push_back(SrcReg);
260   } else {
261     // Need to split into common type sized pieces.
262     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
263     getUnmergeResults(Parts, *Unmerge);
264   }
265 
266   return GCDTy;
267 }
268 
269 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
270                                          SmallVectorImpl<Register> &VRegs,
271                                          unsigned PadStrategy) {
272   LLT LCMTy = getLCMType(DstTy, NarrowTy);
273 
274   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
275   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
276   int NumOrigSrc = VRegs.size();
277 
278   Register PadReg;
279 
280   // Get a value we can use to pad the source value if the sources won't evenly
281   // cover the result type.
282   if (NumOrigSrc < NumParts * NumSubParts) {
283     if (PadStrategy == TargetOpcode::G_ZEXT)
284       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
285     else if (PadStrategy == TargetOpcode::G_ANYEXT)
286       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
287     else {
288       assert(PadStrategy == TargetOpcode::G_SEXT);
289 
290       // Shift the sign bit of the low register through the high register.
291       auto ShiftAmt =
292         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
293       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
294     }
295   }
296 
297   // Registers for the final merge to be produced.
298   SmallVector<Register, 4> Remerge(NumParts);
299 
300   // Registers needed for intermediate merges, which will be merged into a
301   // source for Remerge.
302   SmallVector<Register, 4> SubMerge(NumSubParts);
303 
304   // Once we've fully read off the end of the original source bits, we can reuse
305   // the same high bits for remaining padding elements.
306   Register AllPadReg;
307 
308   // Build merges to the LCM type to cover the original result type.
309   for (int I = 0; I != NumParts; ++I) {
310     bool AllMergePartsArePadding = true;
311 
312     // Build the requested merges to the requested type.
313     for (int J = 0; J != NumSubParts; ++J) {
314       int Idx = I * NumSubParts + J;
315       if (Idx >= NumOrigSrc) {
316         SubMerge[J] = PadReg;
317         continue;
318       }
319 
320       SubMerge[J] = VRegs[Idx];
321 
322       // There are meaningful bits here we can't reuse later.
323       AllMergePartsArePadding = false;
324     }
325 
326     // If we've filled up a complete piece with padding bits, we can directly
327     // emit the natural sized constant if applicable, rather than a merge of
328     // smaller constants.
329     if (AllMergePartsArePadding && !AllPadReg) {
330       if (PadStrategy == TargetOpcode::G_ANYEXT)
331         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
332       else if (PadStrategy == TargetOpcode::G_ZEXT)
333         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
334 
335       // If this is a sign extension, we can't materialize a trivial constant
336       // with the right type and have to produce a merge.
337     }
338 
339     if (AllPadReg) {
340       // Avoid creating additional instructions if we're just adding additional
341       // copies of padding bits.
342       Remerge[I] = AllPadReg;
343       continue;
344     }
345 
346     if (NumSubParts == 1)
347       Remerge[I] = SubMerge[0];
348     else
349       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
350 
351     // In the sign extend padding case, re-use the first all-signbit merge.
352     if (AllMergePartsArePadding && !AllPadReg)
353       AllPadReg = Remerge[I];
354   }
355 
356   VRegs = std::move(Remerge);
357   return LCMTy;
358 }
359 
360 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
361                                                ArrayRef<Register> RemergeRegs) {
362   LLT DstTy = MRI.getType(DstReg);
363 
364   // Create the merge to the widened source, and extract the relevant bits into
365   // the result.
366 
367   if (DstTy == LCMTy) {
368     MIRBuilder.buildMerge(DstReg, RemergeRegs);
369     return;
370   }
371 
372   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
373   if (DstTy.isScalar() && LCMTy.isScalar()) {
374     MIRBuilder.buildTrunc(DstReg, Remerge);
375     return;
376   }
377 
378   if (LCMTy.isVector()) {
379     MIRBuilder.buildExtract(DstReg, Remerge, 0);
380     return;
381   }
382 
383   llvm_unreachable("unhandled case");
384 }
385 
386 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
387 #define RTLIBCASE(LibcallPrefix)                                               \
388   do {                                                                         \
389     switch (Size) {                                                            \
390     case 32:                                                                   \
391       return RTLIB::LibcallPrefix##32;                                         \
392     case 64:                                                                   \
393       return RTLIB::LibcallPrefix##64;                                         \
394     case 128:                                                                  \
395       return RTLIB::LibcallPrefix##128;                                        \
396     default:                                                                   \
397       llvm_unreachable("unexpected size");                                     \
398     }                                                                          \
399   } while (0)
400 
401   assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
402 
403   switch (Opcode) {
404   case TargetOpcode::G_SDIV:
405     RTLIBCASE(SDIV_I);
406   case TargetOpcode::G_UDIV:
407     RTLIBCASE(UDIV_I);
408   case TargetOpcode::G_SREM:
409     RTLIBCASE(SREM_I);
410   case TargetOpcode::G_UREM:
411     RTLIBCASE(UREM_I);
412   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
413     RTLIBCASE(CTLZ_I);
414   case TargetOpcode::G_FADD:
415     RTLIBCASE(ADD_F);
416   case TargetOpcode::G_FSUB:
417     RTLIBCASE(SUB_F);
418   case TargetOpcode::G_FMUL:
419     RTLIBCASE(MUL_F);
420   case TargetOpcode::G_FDIV:
421     RTLIBCASE(DIV_F);
422   case TargetOpcode::G_FEXP:
423     RTLIBCASE(EXP_F);
424   case TargetOpcode::G_FEXP2:
425     RTLIBCASE(EXP2_F);
426   case TargetOpcode::G_FREM:
427     RTLIBCASE(REM_F);
428   case TargetOpcode::G_FPOW:
429     RTLIBCASE(POW_F);
430   case TargetOpcode::G_FMA:
431     RTLIBCASE(FMA_F);
432   case TargetOpcode::G_FSIN:
433     RTLIBCASE(SIN_F);
434   case TargetOpcode::G_FCOS:
435     RTLIBCASE(COS_F);
436   case TargetOpcode::G_FLOG10:
437     RTLIBCASE(LOG10_F);
438   case TargetOpcode::G_FLOG:
439     RTLIBCASE(LOG_F);
440   case TargetOpcode::G_FLOG2:
441     RTLIBCASE(LOG2_F);
442   case TargetOpcode::G_FCEIL:
443     RTLIBCASE(CEIL_F);
444   case TargetOpcode::G_FFLOOR:
445     RTLIBCASE(FLOOR_F);
446   case TargetOpcode::G_FMINNUM:
447     RTLIBCASE(FMIN_F);
448   case TargetOpcode::G_FMAXNUM:
449     RTLIBCASE(FMAX_F);
450   case TargetOpcode::G_FSQRT:
451     RTLIBCASE(SQRT_F);
452   case TargetOpcode::G_FRINT:
453     RTLIBCASE(RINT_F);
454   case TargetOpcode::G_FNEARBYINT:
455     RTLIBCASE(NEARBYINT_F);
456   }
457   llvm_unreachable("Unknown libcall function");
458 }
459 
460 /// True if an instruction is in tail position in its caller. Intended for
461 /// legalizing libcalls as tail calls when possible.
462 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
463                                     MachineInstr &MI) {
464   MachineBasicBlock &MBB = *MI.getParent();
465   const Function &F = MBB.getParent()->getFunction();
466 
467   // Conservatively require the attributes of the call to match those of
468   // the return. Ignore NoAlias and NonNull because they don't affect the
469   // call sequence.
470   AttributeList CallerAttrs = F.getAttributes();
471   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
472           .removeAttribute(Attribute::NoAlias)
473           .removeAttribute(Attribute::NonNull)
474           .hasAttributes())
475     return false;
476 
477   // It's not safe to eliminate the sign / zero extension of the return value.
478   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
479       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
480     return false;
481 
482   // Only tail call if the following instruction is a standard return.
483   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
484   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
485     return false;
486 
487   return true;
488 }
489 
490 LegalizerHelper::LegalizeResult
491 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
492                     const CallLowering::ArgInfo &Result,
493                     ArrayRef<CallLowering::ArgInfo> Args,
494                     const CallingConv::ID CC) {
495   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
496 
497   CallLowering::CallLoweringInfo Info;
498   Info.CallConv = CC;
499   Info.Callee = MachineOperand::CreateES(Name);
500   Info.OrigRet = Result;
501   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
502   if (!CLI.lowerCall(MIRBuilder, Info))
503     return LegalizerHelper::UnableToLegalize;
504 
505   return LegalizerHelper::Legalized;
506 }
507 
508 LegalizerHelper::LegalizeResult
509 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
510                     const CallLowering::ArgInfo &Result,
511                     ArrayRef<CallLowering::ArgInfo> Args) {
512   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
513   const char *Name = TLI.getLibcallName(Libcall);
514   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
515   return createLibcall(MIRBuilder, Name, Result, Args, CC);
516 }
517 
518 // Useful for libcalls where all operands have the same type.
519 static LegalizerHelper::LegalizeResult
520 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
521               Type *OpType) {
522   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
523 
524   SmallVector<CallLowering::ArgInfo, 3> Args;
525   for (unsigned i = 1; i < MI.getNumOperands(); i++)
526     Args.push_back({MI.getOperand(i).getReg(), OpType});
527   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
528                        Args);
529 }
530 
531 LegalizerHelper::LegalizeResult
532 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
533                        MachineInstr &MI) {
534   assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
535   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
536 
537   SmallVector<CallLowering::ArgInfo, 3> Args;
538   // Add all the args, except for the last which is an imm denoting 'tail'.
539   for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) {
540     Register Reg = MI.getOperand(i).getReg();
541 
542     // Need derive an IR type for call lowering.
543     LLT OpLLT = MRI.getType(Reg);
544     Type *OpTy = nullptr;
545     if (OpLLT.isPointer())
546       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
547     else
548       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
549     Args.push_back({Reg, OpTy});
550   }
551 
552   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
553   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
554   Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
555   RTLIB::Libcall RTLibcall;
556   switch (ID) {
557   case Intrinsic::memcpy:
558     RTLibcall = RTLIB::MEMCPY;
559     break;
560   case Intrinsic::memset:
561     RTLibcall = RTLIB::MEMSET;
562     break;
563   case Intrinsic::memmove:
564     RTLibcall = RTLIB::MEMMOVE;
565     break;
566   default:
567     return LegalizerHelper::UnableToLegalize;
568   }
569   const char *Name = TLI.getLibcallName(RTLibcall);
570 
571   MIRBuilder.setInstrAndDebugLoc(MI);
572 
573   CallLowering::CallLoweringInfo Info;
574   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
575   Info.Callee = MachineOperand::CreateES(Name);
576   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
577   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 &&
578                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
579 
580   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
581   if (!CLI.lowerCall(MIRBuilder, Info))
582     return LegalizerHelper::UnableToLegalize;
583 
584   if (Info.LoweredTailCall) {
585     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
586     // We must have a return following the call (or debug insts) to get past
587     // isLibCallInTailPosition.
588     do {
589       MachineInstr *Next = MI.getNextNode();
590       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
591              "Expected instr following MI to be return or debug inst?");
592       // We lowered a tail call, so the call is now the return from the block.
593       // Delete the old return.
594       Next->eraseFromParent();
595     } while (MI.getNextNode());
596   }
597 
598   return LegalizerHelper::Legalized;
599 }
600 
601 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
602                                        Type *FromType) {
603   auto ToMVT = MVT::getVT(ToType);
604   auto FromMVT = MVT::getVT(FromType);
605 
606   switch (Opcode) {
607   case TargetOpcode::G_FPEXT:
608     return RTLIB::getFPEXT(FromMVT, ToMVT);
609   case TargetOpcode::G_FPTRUNC:
610     return RTLIB::getFPROUND(FromMVT, ToMVT);
611   case TargetOpcode::G_FPTOSI:
612     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
613   case TargetOpcode::G_FPTOUI:
614     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
615   case TargetOpcode::G_SITOFP:
616     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
617   case TargetOpcode::G_UITOFP:
618     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
619   }
620   llvm_unreachable("Unsupported libcall function");
621 }
622 
623 static LegalizerHelper::LegalizeResult
624 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
625                   Type *FromType) {
626   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
627   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
628                        {{MI.getOperand(1).getReg(), FromType}});
629 }
630 
631 LegalizerHelper::LegalizeResult
632 LegalizerHelper::libcall(MachineInstr &MI) {
633   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
634   unsigned Size = LLTy.getSizeInBits();
635   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
636 
637   switch (MI.getOpcode()) {
638   default:
639     return UnableToLegalize;
640   case TargetOpcode::G_SDIV:
641   case TargetOpcode::G_UDIV:
642   case TargetOpcode::G_SREM:
643   case TargetOpcode::G_UREM:
644   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
645     Type *HLTy = IntegerType::get(Ctx, Size);
646     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
647     if (Status != Legalized)
648       return Status;
649     break;
650   }
651   case TargetOpcode::G_FADD:
652   case TargetOpcode::G_FSUB:
653   case TargetOpcode::G_FMUL:
654   case TargetOpcode::G_FDIV:
655   case TargetOpcode::G_FMA:
656   case TargetOpcode::G_FPOW:
657   case TargetOpcode::G_FREM:
658   case TargetOpcode::G_FCOS:
659   case TargetOpcode::G_FSIN:
660   case TargetOpcode::G_FLOG10:
661   case TargetOpcode::G_FLOG:
662   case TargetOpcode::G_FLOG2:
663   case TargetOpcode::G_FEXP:
664   case TargetOpcode::G_FEXP2:
665   case TargetOpcode::G_FCEIL:
666   case TargetOpcode::G_FFLOOR:
667   case TargetOpcode::G_FMINNUM:
668   case TargetOpcode::G_FMAXNUM:
669   case TargetOpcode::G_FSQRT:
670   case TargetOpcode::G_FRINT:
671   case TargetOpcode::G_FNEARBYINT: {
672     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
673     if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) {
674       LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n");
675       return UnableToLegalize;
676     }
677     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
678     if (Status != Legalized)
679       return Status;
680     break;
681   }
682   case TargetOpcode::G_FPEXT:
683   case TargetOpcode::G_FPTRUNC: {
684     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
685     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
686     if (!FromTy || !ToTy)
687       return UnableToLegalize;
688     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
689     if (Status != Legalized)
690       return Status;
691     break;
692   }
693   case TargetOpcode::G_FPTOSI:
694   case TargetOpcode::G_FPTOUI: {
695     // FIXME: Support other types
696     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
697     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
698     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
699       return UnableToLegalize;
700     LegalizeResult Status = conversionLibcall(
701         MI, MIRBuilder,
702         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
703         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
704     if (Status != Legalized)
705       return Status;
706     break;
707   }
708   case TargetOpcode::G_SITOFP:
709   case TargetOpcode::G_UITOFP: {
710     // FIXME: Support other types
711     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
712     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
713     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
714       return UnableToLegalize;
715     LegalizeResult Status = conversionLibcall(
716         MI, MIRBuilder,
717         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
718         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
719     if (Status != Legalized)
720       return Status;
721     break;
722   }
723   }
724 
725   MI.eraseFromParent();
726   return Legalized;
727 }
728 
729 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
730                                                               unsigned TypeIdx,
731                                                               LLT NarrowTy) {
732   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
733   uint64_t NarrowSize = NarrowTy.getSizeInBits();
734 
735   switch (MI.getOpcode()) {
736   default:
737     return UnableToLegalize;
738   case TargetOpcode::G_IMPLICIT_DEF: {
739     Register DstReg = MI.getOperand(0).getReg();
740     LLT DstTy = MRI.getType(DstReg);
741 
742     // If SizeOp0 is not an exact multiple of NarrowSize, emit
743     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
744     // FIXME: Although this would also be legal for the general case, it causes
745     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
746     //  combines not being hit). This seems to be a problem related to the
747     //  artifact combiner.
748     if (SizeOp0 % NarrowSize != 0) {
749       LLT ImplicitTy = NarrowTy;
750       if (DstTy.isVector())
751         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
752 
753       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
754       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
755 
756       MI.eraseFromParent();
757       return Legalized;
758     }
759 
760     int NumParts = SizeOp0 / NarrowSize;
761 
762     SmallVector<Register, 2> DstRegs;
763     for (int i = 0; i < NumParts; ++i)
764       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
765 
766     if (DstTy.isVector())
767       MIRBuilder.buildBuildVector(DstReg, DstRegs);
768     else
769       MIRBuilder.buildMerge(DstReg, DstRegs);
770     MI.eraseFromParent();
771     return Legalized;
772   }
773   case TargetOpcode::G_CONSTANT: {
774     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
775     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
776     unsigned TotalSize = Ty.getSizeInBits();
777     unsigned NarrowSize = NarrowTy.getSizeInBits();
778     int NumParts = TotalSize / NarrowSize;
779 
780     SmallVector<Register, 4> PartRegs;
781     for (int I = 0; I != NumParts; ++I) {
782       unsigned Offset = I * NarrowSize;
783       auto K = MIRBuilder.buildConstant(NarrowTy,
784                                         Val.lshr(Offset).trunc(NarrowSize));
785       PartRegs.push_back(K.getReg(0));
786     }
787 
788     LLT LeftoverTy;
789     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
790     SmallVector<Register, 1> LeftoverRegs;
791     if (LeftoverBits != 0) {
792       LeftoverTy = LLT::scalar(LeftoverBits);
793       auto K = MIRBuilder.buildConstant(
794         LeftoverTy,
795         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
796       LeftoverRegs.push_back(K.getReg(0));
797     }
798 
799     insertParts(MI.getOperand(0).getReg(),
800                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
801 
802     MI.eraseFromParent();
803     return Legalized;
804   }
805   case TargetOpcode::G_SEXT:
806   case TargetOpcode::G_ZEXT:
807   case TargetOpcode::G_ANYEXT:
808     return narrowScalarExt(MI, TypeIdx, NarrowTy);
809   case TargetOpcode::G_TRUNC: {
810     if (TypeIdx != 1)
811       return UnableToLegalize;
812 
813     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
814     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
815       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
816       return UnableToLegalize;
817     }
818 
819     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
820     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
821     MI.eraseFromParent();
822     return Legalized;
823   }
824 
825   case TargetOpcode::G_FREEZE:
826     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
827 
828   case TargetOpcode::G_ADD: {
829     // FIXME: add support for when SizeOp0 isn't an exact multiple of
830     // NarrowSize.
831     if (SizeOp0 % NarrowSize != 0)
832       return UnableToLegalize;
833     // Expand in terms of carry-setting/consuming G_ADDE instructions.
834     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
835 
836     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
837     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
838     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
839 
840     Register CarryIn;
841     for (int i = 0; i < NumParts; ++i) {
842       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
843       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
844 
845       if (i == 0)
846         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
847       else {
848         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
849                               Src2Regs[i], CarryIn);
850       }
851 
852       DstRegs.push_back(DstReg);
853       CarryIn = CarryOut;
854     }
855     Register DstReg = MI.getOperand(0).getReg();
856     if(MRI.getType(DstReg).isVector())
857       MIRBuilder.buildBuildVector(DstReg, DstRegs);
858     else
859       MIRBuilder.buildMerge(DstReg, DstRegs);
860     MI.eraseFromParent();
861     return Legalized;
862   }
863   case TargetOpcode::G_SUB: {
864     // FIXME: add support for when SizeOp0 isn't an exact multiple of
865     // NarrowSize.
866     if (SizeOp0 % NarrowSize != 0)
867       return UnableToLegalize;
868 
869     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
870 
871     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
872     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
873     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
874 
875     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
876     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
877     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
878                           {Src1Regs[0], Src2Regs[0]});
879     DstRegs.push_back(DstReg);
880     Register BorrowIn = BorrowOut;
881     for (int i = 1; i < NumParts; ++i) {
882       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
883       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
884 
885       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
886                             {Src1Regs[i], Src2Regs[i], BorrowIn});
887 
888       DstRegs.push_back(DstReg);
889       BorrowIn = BorrowOut;
890     }
891     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
892     MI.eraseFromParent();
893     return Legalized;
894   }
895   case TargetOpcode::G_MUL:
896   case TargetOpcode::G_UMULH:
897     return narrowScalarMul(MI, NarrowTy);
898   case TargetOpcode::G_EXTRACT:
899     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
900   case TargetOpcode::G_INSERT:
901     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
902   case TargetOpcode::G_LOAD: {
903     const auto &MMO = **MI.memoperands_begin();
904     Register DstReg = MI.getOperand(0).getReg();
905     LLT DstTy = MRI.getType(DstReg);
906     if (DstTy.isVector())
907       return UnableToLegalize;
908 
909     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
910       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
911       auto &MMO = **MI.memoperands_begin();
912       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
913       MIRBuilder.buildAnyExt(DstReg, TmpReg);
914       MI.eraseFromParent();
915       return Legalized;
916     }
917 
918     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
919   }
920   case TargetOpcode::G_ZEXTLOAD:
921   case TargetOpcode::G_SEXTLOAD: {
922     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
923     Register DstReg = MI.getOperand(0).getReg();
924     Register PtrReg = MI.getOperand(1).getReg();
925 
926     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
927     auto &MMO = **MI.memoperands_begin();
928     if (MMO.getSizeInBits() == NarrowSize) {
929       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
930     } else {
931       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
932     }
933 
934     if (ZExt)
935       MIRBuilder.buildZExt(DstReg, TmpReg);
936     else
937       MIRBuilder.buildSExt(DstReg, TmpReg);
938 
939     MI.eraseFromParent();
940     return Legalized;
941   }
942   case TargetOpcode::G_STORE: {
943     const auto &MMO = **MI.memoperands_begin();
944 
945     Register SrcReg = MI.getOperand(0).getReg();
946     LLT SrcTy = MRI.getType(SrcReg);
947     if (SrcTy.isVector())
948       return UnableToLegalize;
949 
950     int NumParts = SizeOp0 / NarrowSize;
951     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
952     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
953     if (SrcTy.isVector() && LeftoverBits != 0)
954       return UnableToLegalize;
955 
956     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
957       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
958       auto &MMO = **MI.memoperands_begin();
959       MIRBuilder.buildTrunc(TmpReg, SrcReg);
960       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
961       MI.eraseFromParent();
962       return Legalized;
963     }
964 
965     return reduceLoadStoreWidth(MI, 0, NarrowTy);
966   }
967   case TargetOpcode::G_SELECT:
968     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
969   case TargetOpcode::G_AND:
970   case TargetOpcode::G_OR:
971   case TargetOpcode::G_XOR: {
972     // Legalize bitwise operation:
973     // A = BinOp<Ty> B, C
974     // into:
975     // B1, ..., BN = G_UNMERGE_VALUES B
976     // C1, ..., CN = G_UNMERGE_VALUES C
977     // A1 = BinOp<Ty/N> B1, C2
978     // ...
979     // AN = BinOp<Ty/N> BN, CN
980     // A = G_MERGE_VALUES A1, ..., AN
981     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
982   }
983   case TargetOpcode::G_SHL:
984   case TargetOpcode::G_LSHR:
985   case TargetOpcode::G_ASHR:
986     return narrowScalarShift(MI, TypeIdx, NarrowTy);
987   case TargetOpcode::G_CTLZ:
988   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
989   case TargetOpcode::G_CTTZ:
990   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
991   case TargetOpcode::G_CTPOP:
992     if (TypeIdx == 1)
993       switch (MI.getOpcode()) {
994       case TargetOpcode::G_CTLZ:
995       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
996         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
997       case TargetOpcode::G_CTTZ:
998       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
999         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1000       case TargetOpcode::G_CTPOP:
1001         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1002       default:
1003         return UnableToLegalize;
1004       }
1005 
1006     Observer.changingInstr(MI);
1007     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1008     Observer.changedInstr(MI);
1009     return Legalized;
1010   case TargetOpcode::G_INTTOPTR:
1011     if (TypeIdx != 1)
1012       return UnableToLegalize;
1013 
1014     Observer.changingInstr(MI);
1015     narrowScalarSrc(MI, NarrowTy, 1);
1016     Observer.changedInstr(MI);
1017     return Legalized;
1018   case TargetOpcode::G_PTRTOINT:
1019     if (TypeIdx != 0)
1020       return UnableToLegalize;
1021 
1022     Observer.changingInstr(MI);
1023     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1024     Observer.changedInstr(MI);
1025     return Legalized;
1026   case TargetOpcode::G_PHI: {
1027     unsigned NumParts = SizeOp0 / NarrowSize;
1028     SmallVector<Register, 2> DstRegs(NumParts);
1029     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1030     Observer.changingInstr(MI);
1031     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1032       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1033       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1034       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1035                    SrcRegs[i / 2]);
1036     }
1037     MachineBasicBlock &MBB = *MI.getParent();
1038     MIRBuilder.setInsertPt(MBB, MI);
1039     for (unsigned i = 0; i < NumParts; ++i) {
1040       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1041       MachineInstrBuilder MIB =
1042           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1043       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1044         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1045     }
1046     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1047     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1048     Observer.changedInstr(MI);
1049     MI.eraseFromParent();
1050     return Legalized;
1051   }
1052   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1053   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1054     if (TypeIdx != 2)
1055       return UnableToLegalize;
1056 
1057     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1058     Observer.changingInstr(MI);
1059     narrowScalarSrc(MI, NarrowTy, OpIdx);
1060     Observer.changedInstr(MI);
1061     return Legalized;
1062   }
1063   case TargetOpcode::G_ICMP: {
1064     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1065     if (NarrowSize * 2 != SrcSize)
1066       return UnableToLegalize;
1067 
1068     Observer.changingInstr(MI);
1069     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1070     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1071     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1072 
1073     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1074     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1075     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1076 
1077     CmpInst::Predicate Pred =
1078         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1079     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1080 
1081     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1082       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1083       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1084       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1085       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1086       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1087     } else {
1088       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1089       MachineInstrBuilder CmpHEQ =
1090           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1091       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1092           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1093       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1094     }
1095     Observer.changedInstr(MI);
1096     MI.eraseFromParent();
1097     return Legalized;
1098   }
1099   case TargetOpcode::G_SEXT_INREG: {
1100     if (TypeIdx != 0)
1101       return UnableToLegalize;
1102 
1103     int64_t SizeInBits = MI.getOperand(2).getImm();
1104 
1105     // So long as the new type has more bits than the bits we're extending we
1106     // don't need to break it apart.
1107     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1108       Observer.changingInstr(MI);
1109       // We don't lose any non-extension bits by truncating the src and
1110       // sign-extending the dst.
1111       MachineOperand &MO1 = MI.getOperand(1);
1112       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1113       MO1.setReg(TruncMIB.getReg(0));
1114 
1115       MachineOperand &MO2 = MI.getOperand(0);
1116       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1117       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1118       MIRBuilder.buildSExt(MO2, DstExt);
1119       MO2.setReg(DstExt);
1120       Observer.changedInstr(MI);
1121       return Legalized;
1122     }
1123 
1124     // Break it apart. Components below the extension point are unmodified. The
1125     // component containing the extension point becomes a narrower SEXT_INREG.
1126     // Components above it are ashr'd from the component containing the
1127     // extension point.
1128     if (SizeOp0 % NarrowSize != 0)
1129       return UnableToLegalize;
1130     int NumParts = SizeOp0 / NarrowSize;
1131 
1132     // List the registers where the destination will be scattered.
1133     SmallVector<Register, 2> DstRegs;
1134     // List the registers where the source will be split.
1135     SmallVector<Register, 2> SrcRegs;
1136 
1137     // Create all the temporary registers.
1138     for (int i = 0; i < NumParts; ++i) {
1139       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1140 
1141       SrcRegs.push_back(SrcReg);
1142     }
1143 
1144     // Explode the big arguments into smaller chunks.
1145     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1146 
1147     Register AshrCstReg =
1148         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1149             .getReg(0);
1150     Register FullExtensionReg = 0;
1151     Register PartialExtensionReg = 0;
1152 
1153     // Do the operation on each small part.
1154     for (int i = 0; i < NumParts; ++i) {
1155       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1156         DstRegs.push_back(SrcRegs[i]);
1157       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1158         assert(PartialExtensionReg &&
1159                "Expected to visit partial extension before full");
1160         if (FullExtensionReg) {
1161           DstRegs.push_back(FullExtensionReg);
1162           continue;
1163         }
1164         DstRegs.push_back(
1165             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1166                 .getReg(0));
1167         FullExtensionReg = DstRegs.back();
1168       } else {
1169         DstRegs.push_back(
1170             MIRBuilder
1171                 .buildInstr(
1172                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1173                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1174                 .getReg(0));
1175         PartialExtensionReg = DstRegs.back();
1176       }
1177     }
1178 
1179     // Gather the destination registers into the final destination.
1180     Register DstReg = MI.getOperand(0).getReg();
1181     MIRBuilder.buildMerge(DstReg, DstRegs);
1182     MI.eraseFromParent();
1183     return Legalized;
1184   }
1185   case TargetOpcode::G_BSWAP:
1186   case TargetOpcode::G_BITREVERSE: {
1187     if (SizeOp0 % NarrowSize != 0)
1188       return UnableToLegalize;
1189 
1190     Observer.changingInstr(MI);
1191     SmallVector<Register, 2> SrcRegs, DstRegs;
1192     unsigned NumParts = SizeOp0 / NarrowSize;
1193     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1194 
1195     for (unsigned i = 0; i < NumParts; ++i) {
1196       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1197                                            {SrcRegs[NumParts - 1 - i]});
1198       DstRegs.push_back(DstPart.getReg(0));
1199     }
1200 
1201     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1202 
1203     Observer.changedInstr(MI);
1204     MI.eraseFromParent();
1205     return Legalized;
1206   }
1207   case TargetOpcode::G_PTRMASK: {
1208     if (TypeIdx != 1)
1209       return UnableToLegalize;
1210     Observer.changingInstr(MI);
1211     narrowScalarSrc(MI, NarrowTy, 2);
1212     Observer.changedInstr(MI);
1213     return Legalized;
1214   }
1215   case TargetOpcode::G_FPTOUI: {
1216     if (TypeIdx != 0)
1217       return UnableToLegalize;
1218     Observer.changingInstr(MI);
1219     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1220     Observer.changedInstr(MI);
1221     return Legalized;
1222   }
1223   case TargetOpcode::G_FPTOSI: {
1224     if (TypeIdx != 0)
1225       return UnableToLegalize;
1226     Observer.changingInstr(MI);
1227     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT);
1228     Observer.changedInstr(MI);
1229     return Legalized;
1230   }
1231   case TargetOpcode::G_FPEXT:
1232     if (TypeIdx != 0)
1233       return UnableToLegalize;
1234     Observer.changingInstr(MI);
1235     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1236     Observer.changedInstr(MI);
1237     return Legalized;
1238   }
1239 }
1240 
1241 Register LegalizerHelper::coerceToScalar(Register Val) {
1242   LLT Ty = MRI.getType(Val);
1243   if (Ty.isScalar())
1244     return Val;
1245 
1246   const DataLayout &DL = MIRBuilder.getDataLayout();
1247   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1248   if (Ty.isPointer()) {
1249     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1250       return Register();
1251     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1252   }
1253 
1254   Register NewVal = Val;
1255 
1256   assert(Ty.isVector());
1257   LLT EltTy = Ty.getElementType();
1258   if (EltTy.isPointer())
1259     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1260   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1261 }
1262 
1263 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1264                                      unsigned OpIdx, unsigned ExtOpcode) {
1265   MachineOperand &MO = MI.getOperand(OpIdx);
1266   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1267   MO.setReg(ExtB.getReg(0));
1268 }
1269 
1270 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1271                                       unsigned OpIdx) {
1272   MachineOperand &MO = MI.getOperand(OpIdx);
1273   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1274   MO.setReg(ExtB.getReg(0));
1275 }
1276 
1277 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1278                                      unsigned OpIdx, unsigned TruncOpcode) {
1279   MachineOperand &MO = MI.getOperand(OpIdx);
1280   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1281   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1282   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1283   MO.setReg(DstExt);
1284 }
1285 
1286 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1287                                       unsigned OpIdx, unsigned ExtOpcode) {
1288   MachineOperand &MO = MI.getOperand(OpIdx);
1289   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1290   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1291   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1292   MO.setReg(DstTrunc);
1293 }
1294 
1295 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1296                                             unsigned OpIdx) {
1297   MachineOperand &MO = MI.getOperand(OpIdx);
1298   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1299   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1300   MIRBuilder.buildExtract(MO, DstExt, 0);
1301   MO.setReg(DstExt);
1302 }
1303 
1304 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1305                                             unsigned OpIdx) {
1306   MachineOperand &MO = MI.getOperand(OpIdx);
1307 
1308   LLT OldTy = MRI.getType(MO.getReg());
1309   unsigned OldElts = OldTy.getNumElements();
1310   unsigned NewElts = MoreTy.getNumElements();
1311 
1312   unsigned NumParts = NewElts / OldElts;
1313 
1314   // Use concat_vectors if the result is a multiple of the number of elements.
1315   if (NumParts * OldElts == NewElts) {
1316     SmallVector<Register, 8> Parts;
1317     Parts.push_back(MO.getReg());
1318 
1319     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1320     for (unsigned I = 1; I != NumParts; ++I)
1321       Parts.push_back(ImpDef);
1322 
1323     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1324     MO.setReg(Concat.getReg(0));
1325     return;
1326   }
1327 
1328   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1329   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1330   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1331   MO.setReg(MoreReg);
1332 }
1333 
1334 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1335   MachineOperand &Op = MI.getOperand(OpIdx);
1336   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1337 }
1338 
1339 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1340   MachineOperand &MO = MI.getOperand(OpIdx);
1341   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1342   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1343   MIRBuilder.buildBitcast(MO, CastDst);
1344   MO.setReg(CastDst);
1345 }
1346 
1347 LegalizerHelper::LegalizeResult
1348 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1349                                         LLT WideTy) {
1350   if (TypeIdx != 1)
1351     return UnableToLegalize;
1352 
1353   Register DstReg = MI.getOperand(0).getReg();
1354   LLT DstTy = MRI.getType(DstReg);
1355   if (DstTy.isVector())
1356     return UnableToLegalize;
1357 
1358   Register Src1 = MI.getOperand(1).getReg();
1359   LLT SrcTy = MRI.getType(Src1);
1360   const int DstSize = DstTy.getSizeInBits();
1361   const int SrcSize = SrcTy.getSizeInBits();
1362   const int WideSize = WideTy.getSizeInBits();
1363   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1364 
1365   unsigned NumOps = MI.getNumOperands();
1366   unsigned NumSrc = MI.getNumOperands() - 1;
1367   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1368 
1369   if (WideSize >= DstSize) {
1370     // Directly pack the bits in the target type.
1371     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1372 
1373     for (unsigned I = 2; I != NumOps; ++I) {
1374       const unsigned Offset = (I - 1) * PartSize;
1375 
1376       Register SrcReg = MI.getOperand(I).getReg();
1377       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1378 
1379       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1380 
1381       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1382         MRI.createGenericVirtualRegister(WideTy);
1383 
1384       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1385       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1386       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1387       ResultReg = NextResult;
1388     }
1389 
1390     if (WideSize > DstSize)
1391       MIRBuilder.buildTrunc(DstReg, ResultReg);
1392     else if (DstTy.isPointer())
1393       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1394 
1395     MI.eraseFromParent();
1396     return Legalized;
1397   }
1398 
1399   // Unmerge the original values to the GCD type, and recombine to the next
1400   // multiple greater than the original type.
1401   //
1402   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1403   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1404   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1405   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1406   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1407   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1408   // %12:_(s12) = G_MERGE_VALUES %10, %11
1409   //
1410   // Padding with undef if necessary:
1411   //
1412   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1413   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1414   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1415   // %7:_(s2) = G_IMPLICIT_DEF
1416   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1417   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1418   // %10:_(s12) = G_MERGE_VALUES %8, %9
1419 
1420   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1421   LLT GCDTy = LLT::scalar(GCD);
1422 
1423   SmallVector<Register, 8> Parts;
1424   SmallVector<Register, 8> NewMergeRegs;
1425   SmallVector<Register, 8> Unmerges;
1426   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1427 
1428   // Decompose the original operands if they don't evenly divide.
1429   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1430     Register SrcReg = MI.getOperand(I).getReg();
1431     if (GCD == SrcSize) {
1432       Unmerges.push_back(SrcReg);
1433     } else {
1434       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1435       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1436         Unmerges.push_back(Unmerge.getReg(J));
1437     }
1438   }
1439 
1440   // Pad with undef to the next size that is a multiple of the requested size.
1441   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1442     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1443     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1444       Unmerges.push_back(UndefReg);
1445   }
1446 
1447   const int PartsPerGCD = WideSize / GCD;
1448 
1449   // Build merges of each piece.
1450   ArrayRef<Register> Slicer(Unmerges);
1451   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1452     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1453     NewMergeRegs.push_back(Merge.getReg(0));
1454   }
1455 
1456   // A truncate may be necessary if the requested type doesn't evenly divide the
1457   // original result type.
1458   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1459     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1460   } else {
1461     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1462     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1463   }
1464 
1465   MI.eraseFromParent();
1466   return Legalized;
1467 }
1468 
1469 LegalizerHelper::LegalizeResult
1470 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1471                                           LLT WideTy) {
1472   if (TypeIdx != 0)
1473     return UnableToLegalize;
1474 
1475   int NumDst = MI.getNumOperands() - 1;
1476   Register SrcReg = MI.getOperand(NumDst).getReg();
1477   LLT SrcTy = MRI.getType(SrcReg);
1478   if (SrcTy.isVector())
1479     return UnableToLegalize;
1480 
1481   Register Dst0Reg = MI.getOperand(0).getReg();
1482   LLT DstTy = MRI.getType(Dst0Reg);
1483   if (!DstTy.isScalar())
1484     return UnableToLegalize;
1485 
1486   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1487     if (SrcTy.isPointer()) {
1488       const DataLayout &DL = MIRBuilder.getDataLayout();
1489       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1490         LLVM_DEBUG(
1491             dbgs() << "Not casting non-integral address space integer\n");
1492         return UnableToLegalize;
1493       }
1494 
1495       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1496       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1497     }
1498 
1499     // Widen SrcTy to WideTy. This does not affect the result, but since the
1500     // user requested this size, it is probably better handled than SrcTy and
1501     // should reduce the total number of legalization artifacts
1502     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1503       SrcTy = WideTy;
1504       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1505     }
1506 
1507     // Theres no unmerge type to target. Directly extract the bits from the
1508     // source type
1509     unsigned DstSize = DstTy.getSizeInBits();
1510 
1511     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1512     for (int I = 1; I != NumDst; ++I) {
1513       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1514       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1515       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1516     }
1517 
1518     MI.eraseFromParent();
1519     return Legalized;
1520   }
1521 
1522   // Extend the source to a wider type.
1523   LLT LCMTy = getLCMType(SrcTy, WideTy);
1524 
1525   Register WideSrc = SrcReg;
1526   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1527     // TODO: If this is an integral address space, cast to integer and anyext.
1528     if (SrcTy.isPointer()) {
1529       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1530       return UnableToLegalize;
1531     }
1532 
1533     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1534   }
1535 
1536   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1537 
1538   // Create a sequence of unmerges to the original results. since we may have
1539   // widened the source, we will need to pad the results with dead defs to cover
1540   // the source register.
1541   // e.g. widen s16 to s32:
1542   // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48)
1543   //
1544   // =>
1545   //  %4:_(s64) = G_ANYEXT %0:_(s48)
1546   //  %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge
1547   //  %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs
1548   //  %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def
1549 
1550   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1551   const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1552 
1553   for (int I = 0; I != NumUnmerge; ++I) {
1554     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1555 
1556     for (int J = 0; J != PartsPerUnmerge; ++J) {
1557       int Idx = I * PartsPerUnmerge + J;
1558       if (Idx < NumDst)
1559         MIB.addDef(MI.getOperand(Idx).getReg());
1560       else {
1561         // Create dead def for excess components.
1562         MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1563       }
1564     }
1565 
1566     MIB.addUse(Unmerge.getReg(I));
1567   }
1568 
1569   MI.eraseFromParent();
1570   return Legalized;
1571 }
1572 
1573 LegalizerHelper::LegalizeResult
1574 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1575                                     LLT WideTy) {
1576   Register DstReg = MI.getOperand(0).getReg();
1577   Register SrcReg = MI.getOperand(1).getReg();
1578   LLT SrcTy = MRI.getType(SrcReg);
1579 
1580   LLT DstTy = MRI.getType(DstReg);
1581   unsigned Offset = MI.getOperand(2).getImm();
1582 
1583   if (TypeIdx == 0) {
1584     if (SrcTy.isVector() || DstTy.isVector())
1585       return UnableToLegalize;
1586 
1587     SrcOp Src(SrcReg);
1588     if (SrcTy.isPointer()) {
1589       // Extracts from pointers can be handled only if they are really just
1590       // simple integers.
1591       const DataLayout &DL = MIRBuilder.getDataLayout();
1592       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1593         return UnableToLegalize;
1594 
1595       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1596       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1597       SrcTy = SrcAsIntTy;
1598     }
1599 
1600     if (DstTy.isPointer())
1601       return UnableToLegalize;
1602 
1603     if (Offset == 0) {
1604       // Avoid a shift in the degenerate case.
1605       MIRBuilder.buildTrunc(DstReg,
1606                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1607       MI.eraseFromParent();
1608       return Legalized;
1609     }
1610 
1611     // Do a shift in the source type.
1612     LLT ShiftTy = SrcTy;
1613     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1614       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1615       ShiftTy = WideTy;
1616     } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits())
1617       return UnableToLegalize;
1618 
1619     auto LShr = MIRBuilder.buildLShr(
1620       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1621     MIRBuilder.buildTrunc(DstReg, LShr);
1622     MI.eraseFromParent();
1623     return Legalized;
1624   }
1625 
1626   if (SrcTy.isScalar()) {
1627     Observer.changingInstr(MI);
1628     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1629     Observer.changedInstr(MI);
1630     return Legalized;
1631   }
1632 
1633   if (!SrcTy.isVector())
1634     return UnableToLegalize;
1635 
1636   if (DstTy != SrcTy.getElementType())
1637     return UnableToLegalize;
1638 
1639   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1640     return UnableToLegalize;
1641 
1642   Observer.changingInstr(MI);
1643   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1644 
1645   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1646                           Offset);
1647   widenScalarDst(MI, WideTy.getScalarType(), 0);
1648   Observer.changedInstr(MI);
1649   return Legalized;
1650 }
1651 
1652 LegalizerHelper::LegalizeResult
1653 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1654                                    LLT WideTy) {
1655   if (TypeIdx != 0 || WideTy.isVector())
1656     return UnableToLegalize;
1657   Observer.changingInstr(MI);
1658   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1659   widenScalarDst(MI, WideTy);
1660   Observer.changedInstr(MI);
1661   return Legalized;
1662 }
1663 
1664 LegalizerHelper::LegalizeResult
1665 LegalizerHelper::widenScalarAddSubSat(MachineInstr &MI, unsigned TypeIdx,
1666                                       LLT WideTy) {
1667   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1668                   MI.getOpcode() == TargetOpcode::G_SSUBSAT;
1669   // We can convert this to:
1670   //   1. Any extend iN to iM
1671   //   2. SHL by M-N
1672   //   3. [US][ADD|SUB]SAT
1673   //   4. L/ASHR by M-N
1674   //
1675   // It may be more efficient to lower this to a min and a max operation in
1676   // the higher precision arithmetic if the promoted operation isn't legal,
1677   // but this decision is up to the target's lowering request.
1678   Register DstReg = MI.getOperand(0).getReg();
1679 
1680   unsigned NewBits = WideTy.getScalarSizeInBits();
1681   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1682 
1683   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1684   auto RHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1685   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1686   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1687   auto ShiftR = MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1688 
1689   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1690                                         {ShiftL, ShiftR}, MI.getFlags());
1691 
1692   // Use a shift that will preserve the number of sign bits when the trunc is
1693   // folded away.
1694   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1695                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1696 
1697   MIRBuilder.buildTrunc(DstReg, Result);
1698   MI.eraseFromParent();
1699   return Legalized;
1700 }
1701 
1702 LegalizerHelper::LegalizeResult
1703 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1704   switch (MI.getOpcode()) {
1705   default:
1706     return UnableToLegalize;
1707   case TargetOpcode::G_EXTRACT:
1708     return widenScalarExtract(MI, TypeIdx, WideTy);
1709   case TargetOpcode::G_INSERT:
1710     return widenScalarInsert(MI, TypeIdx, WideTy);
1711   case TargetOpcode::G_MERGE_VALUES:
1712     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1713   case TargetOpcode::G_UNMERGE_VALUES:
1714     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1715   case TargetOpcode::G_UADDO:
1716   case TargetOpcode::G_USUBO: {
1717     if (TypeIdx == 1)
1718       return UnableToLegalize; // TODO
1719     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1720     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1721     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1722                           ? TargetOpcode::G_ADD
1723                           : TargetOpcode::G_SUB;
1724     // Do the arithmetic in the larger type.
1725     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1726     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1727     APInt Mask =
1728         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1729     auto AndOp = MIRBuilder.buildAnd(
1730         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1731     // There is no overflow if the AndOp is the same as NewOp.
1732     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1733     // Now trunc the NewOp to the original result.
1734     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1735     MI.eraseFromParent();
1736     return Legalized;
1737   }
1738   case TargetOpcode::G_SADDSAT:
1739   case TargetOpcode::G_SSUBSAT:
1740   case TargetOpcode::G_UADDSAT:
1741   case TargetOpcode::G_USUBSAT:
1742     return widenScalarAddSubSat(MI, TypeIdx, WideTy);
1743   case TargetOpcode::G_CTTZ:
1744   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1745   case TargetOpcode::G_CTLZ:
1746   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1747   case TargetOpcode::G_CTPOP: {
1748     if (TypeIdx == 0) {
1749       Observer.changingInstr(MI);
1750       widenScalarDst(MI, WideTy, 0);
1751       Observer.changedInstr(MI);
1752       return Legalized;
1753     }
1754 
1755     Register SrcReg = MI.getOperand(1).getReg();
1756 
1757     // First ZEXT the input.
1758     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1759     LLT CurTy = MRI.getType(SrcReg);
1760     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1761       // The count is the same in the larger type except if the original
1762       // value was zero.  This can be handled by setting the bit just off
1763       // the top of the original type.
1764       auto TopBit =
1765           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1766       MIBSrc = MIRBuilder.buildOr(
1767         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1768     }
1769 
1770     // Perform the operation at the larger size.
1771     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1772     // This is already the correct result for CTPOP and CTTZs
1773     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1774         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1775       // The correct result is NewOp - (Difference in widety and current ty).
1776       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1777       MIBNewOp = MIRBuilder.buildSub(
1778           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1779     }
1780 
1781     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1782     MI.eraseFromParent();
1783     return Legalized;
1784   }
1785   case TargetOpcode::G_BSWAP: {
1786     Observer.changingInstr(MI);
1787     Register DstReg = MI.getOperand(0).getReg();
1788 
1789     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1790     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1791     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1792     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1793 
1794     MI.getOperand(0).setReg(DstExt);
1795 
1796     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1797 
1798     LLT Ty = MRI.getType(DstReg);
1799     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1800     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1801     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1802 
1803     MIRBuilder.buildTrunc(DstReg, ShrReg);
1804     Observer.changedInstr(MI);
1805     return Legalized;
1806   }
1807   case TargetOpcode::G_BITREVERSE: {
1808     Observer.changingInstr(MI);
1809 
1810     Register DstReg = MI.getOperand(0).getReg();
1811     LLT Ty = MRI.getType(DstReg);
1812     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1813 
1814     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1815     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1816     MI.getOperand(0).setReg(DstExt);
1817     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1818 
1819     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1820     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1821     MIRBuilder.buildTrunc(DstReg, Shift);
1822     Observer.changedInstr(MI);
1823     return Legalized;
1824   }
1825   case TargetOpcode::G_FREEZE:
1826     Observer.changingInstr(MI);
1827     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1828     widenScalarDst(MI, WideTy);
1829     Observer.changedInstr(MI);
1830     return Legalized;
1831 
1832   case TargetOpcode::G_ADD:
1833   case TargetOpcode::G_AND:
1834   case TargetOpcode::G_MUL:
1835   case TargetOpcode::G_OR:
1836   case TargetOpcode::G_XOR:
1837   case TargetOpcode::G_SUB:
1838     // Perform operation at larger width (any extension is fines here, high bits
1839     // don't affect the result) and then truncate the result back to the
1840     // original type.
1841     Observer.changingInstr(MI);
1842     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1843     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1844     widenScalarDst(MI, WideTy);
1845     Observer.changedInstr(MI);
1846     return Legalized;
1847 
1848   case TargetOpcode::G_SHL:
1849     Observer.changingInstr(MI);
1850 
1851     if (TypeIdx == 0) {
1852       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1853       widenScalarDst(MI, WideTy);
1854     } else {
1855       assert(TypeIdx == 1);
1856       // The "number of bits to shift" operand must preserve its value as an
1857       // unsigned integer:
1858       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1859     }
1860 
1861     Observer.changedInstr(MI);
1862     return Legalized;
1863 
1864   case TargetOpcode::G_SDIV:
1865   case TargetOpcode::G_SREM:
1866   case TargetOpcode::G_SMIN:
1867   case TargetOpcode::G_SMAX:
1868     Observer.changingInstr(MI);
1869     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1870     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1871     widenScalarDst(MI, WideTy);
1872     Observer.changedInstr(MI);
1873     return Legalized;
1874 
1875   case TargetOpcode::G_ASHR:
1876   case TargetOpcode::G_LSHR:
1877     Observer.changingInstr(MI);
1878 
1879     if (TypeIdx == 0) {
1880       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1881         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1882 
1883       widenScalarSrc(MI, WideTy, 1, CvtOp);
1884       widenScalarDst(MI, WideTy);
1885     } else {
1886       assert(TypeIdx == 1);
1887       // The "number of bits to shift" operand must preserve its value as an
1888       // unsigned integer:
1889       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1890     }
1891 
1892     Observer.changedInstr(MI);
1893     return Legalized;
1894   case TargetOpcode::G_UDIV:
1895   case TargetOpcode::G_UREM:
1896   case TargetOpcode::G_UMIN:
1897   case TargetOpcode::G_UMAX:
1898     Observer.changingInstr(MI);
1899     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1900     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1901     widenScalarDst(MI, WideTy);
1902     Observer.changedInstr(MI);
1903     return Legalized;
1904 
1905   case TargetOpcode::G_SELECT:
1906     Observer.changingInstr(MI);
1907     if (TypeIdx == 0) {
1908       // Perform operation at larger width (any extension is fine here, high
1909       // bits don't affect the result) and then truncate the result back to the
1910       // original type.
1911       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1912       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1913       widenScalarDst(MI, WideTy);
1914     } else {
1915       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1916       // Explicit extension is required here since high bits affect the result.
1917       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1918     }
1919     Observer.changedInstr(MI);
1920     return Legalized;
1921 
1922   case TargetOpcode::G_FPTOSI:
1923   case TargetOpcode::G_FPTOUI:
1924     Observer.changingInstr(MI);
1925 
1926     if (TypeIdx == 0)
1927       widenScalarDst(MI, WideTy);
1928     else
1929       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
1930 
1931     Observer.changedInstr(MI);
1932     return Legalized;
1933   case TargetOpcode::G_SITOFP:
1934     Observer.changingInstr(MI);
1935 
1936     if (TypeIdx == 0)
1937       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1938     else
1939       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1940 
1941     Observer.changedInstr(MI);
1942     return Legalized;
1943   case TargetOpcode::G_UITOFP:
1944     Observer.changingInstr(MI);
1945 
1946     if (TypeIdx == 0)
1947       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1948     else
1949       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1950 
1951     Observer.changedInstr(MI);
1952     return Legalized;
1953   case TargetOpcode::G_LOAD:
1954   case TargetOpcode::G_SEXTLOAD:
1955   case TargetOpcode::G_ZEXTLOAD:
1956     Observer.changingInstr(MI);
1957     widenScalarDst(MI, WideTy);
1958     Observer.changedInstr(MI);
1959     return Legalized;
1960 
1961   case TargetOpcode::G_STORE: {
1962     if (TypeIdx != 0)
1963       return UnableToLegalize;
1964 
1965     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1966     if (!isPowerOf2_32(Ty.getSizeInBits()))
1967       return UnableToLegalize;
1968 
1969     Observer.changingInstr(MI);
1970 
1971     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
1972       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
1973     widenScalarSrc(MI, WideTy, 0, ExtType);
1974 
1975     Observer.changedInstr(MI);
1976     return Legalized;
1977   }
1978   case TargetOpcode::G_CONSTANT: {
1979     MachineOperand &SrcMO = MI.getOperand(1);
1980     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1981     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
1982         MRI.getType(MI.getOperand(0).getReg()));
1983     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
1984             ExtOpc == TargetOpcode::G_ANYEXT) &&
1985            "Illegal Extend");
1986     const APInt &SrcVal = SrcMO.getCImm()->getValue();
1987     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
1988                            ? SrcVal.sext(WideTy.getSizeInBits())
1989                            : SrcVal.zext(WideTy.getSizeInBits());
1990     Observer.changingInstr(MI);
1991     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
1992 
1993     widenScalarDst(MI, WideTy);
1994     Observer.changedInstr(MI);
1995     return Legalized;
1996   }
1997   case TargetOpcode::G_FCONSTANT: {
1998     MachineOperand &SrcMO = MI.getOperand(1);
1999     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2000     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2001     bool LosesInfo;
2002     switch (WideTy.getSizeInBits()) {
2003     case 32:
2004       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2005                   &LosesInfo);
2006       break;
2007     case 64:
2008       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2009                   &LosesInfo);
2010       break;
2011     default:
2012       return UnableToLegalize;
2013     }
2014 
2015     assert(!LosesInfo && "extend should always be lossless");
2016 
2017     Observer.changingInstr(MI);
2018     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2019 
2020     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2021     Observer.changedInstr(MI);
2022     return Legalized;
2023   }
2024   case TargetOpcode::G_IMPLICIT_DEF: {
2025     Observer.changingInstr(MI);
2026     widenScalarDst(MI, WideTy);
2027     Observer.changedInstr(MI);
2028     return Legalized;
2029   }
2030   case TargetOpcode::G_BRCOND:
2031     Observer.changingInstr(MI);
2032     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2033     Observer.changedInstr(MI);
2034     return Legalized;
2035 
2036   case TargetOpcode::G_FCMP:
2037     Observer.changingInstr(MI);
2038     if (TypeIdx == 0)
2039       widenScalarDst(MI, WideTy);
2040     else {
2041       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2042       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2043     }
2044     Observer.changedInstr(MI);
2045     return Legalized;
2046 
2047   case TargetOpcode::G_ICMP:
2048     Observer.changingInstr(MI);
2049     if (TypeIdx == 0)
2050       widenScalarDst(MI, WideTy);
2051     else {
2052       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2053                                MI.getOperand(1).getPredicate()))
2054                                ? TargetOpcode::G_SEXT
2055                                : TargetOpcode::G_ZEXT;
2056       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2057       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2058     }
2059     Observer.changedInstr(MI);
2060     return Legalized;
2061 
2062   case TargetOpcode::G_PTR_ADD:
2063     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2064     Observer.changingInstr(MI);
2065     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2066     Observer.changedInstr(MI);
2067     return Legalized;
2068 
2069   case TargetOpcode::G_PHI: {
2070     assert(TypeIdx == 0 && "Expecting only Idx 0");
2071 
2072     Observer.changingInstr(MI);
2073     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2074       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2075       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2076       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2077     }
2078 
2079     MachineBasicBlock &MBB = *MI.getParent();
2080     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2081     widenScalarDst(MI, WideTy);
2082     Observer.changedInstr(MI);
2083     return Legalized;
2084   }
2085   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2086     if (TypeIdx == 0) {
2087       Register VecReg = MI.getOperand(1).getReg();
2088       LLT VecTy = MRI.getType(VecReg);
2089       Observer.changingInstr(MI);
2090 
2091       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2092                                      WideTy.getSizeInBits()),
2093                      1, TargetOpcode::G_SEXT);
2094 
2095       widenScalarDst(MI, WideTy, 0);
2096       Observer.changedInstr(MI);
2097       return Legalized;
2098     }
2099 
2100     if (TypeIdx != 2)
2101       return UnableToLegalize;
2102     Observer.changingInstr(MI);
2103     // TODO: Probably should be zext
2104     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2105     Observer.changedInstr(MI);
2106     return Legalized;
2107   }
2108   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2109     if (TypeIdx == 1) {
2110       Observer.changingInstr(MI);
2111 
2112       Register VecReg = MI.getOperand(1).getReg();
2113       LLT VecTy = MRI.getType(VecReg);
2114       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2115 
2116       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2117       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2118       widenScalarDst(MI, WideVecTy, 0);
2119       Observer.changedInstr(MI);
2120       return Legalized;
2121     }
2122 
2123     if (TypeIdx == 2) {
2124       Observer.changingInstr(MI);
2125       // TODO: Probably should be zext
2126       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2127       Observer.changedInstr(MI);
2128       return Legalized;
2129     }
2130 
2131     return UnableToLegalize;
2132   }
2133   case TargetOpcode::G_FADD:
2134   case TargetOpcode::G_FMUL:
2135   case TargetOpcode::G_FSUB:
2136   case TargetOpcode::G_FMA:
2137   case TargetOpcode::G_FMAD:
2138   case TargetOpcode::G_FNEG:
2139   case TargetOpcode::G_FABS:
2140   case TargetOpcode::G_FCANONICALIZE:
2141   case TargetOpcode::G_FMINNUM:
2142   case TargetOpcode::G_FMAXNUM:
2143   case TargetOpcode::G_FMINNUM_IEEE:
2144   case TargetOpcode::G_FMAXNUM_IEEE:
2145   case TargetOpcode::G_FMINIMUM:
2146   case TargetOpcode::G_FMAXIMUM:
2147   case TargetOpcode::G_FDIV:
2148   case TargetOpcode::G_FREM:
2149   case TargetOpcode::G_FCEIL:
2150   case TargetOpcode::G_FFLOOR:
2151   case TargetOpcode::G_FCOS:
2152   case TargetOpcode::G_FSIN:
2153   case TargetOpcode::G_FLOG10:
2154   case TargetOpcode::G_FLOG:
2155   case TargetOpcode::G_FLOG2:
2156   case TargetOpcode::G_FRINT:
2157   case TargetOpcode::G_FNEARBYINT:
2158   case TargetOpcode::G_FSQRT:
2159   case TargetOpcode::G_FEXP:
2160   case TargetOpcode::G_FEXP2:
2161   case TargetOpcode::G_FPOW:
2162   case TargetOpcode::G_INTRINSIC_TRUNC:
2163   case TargetOpcode::G_INTRINSIC_ROUND:
2164     assert(TypeIdx == 0);
2165     Observer.changingInstr(MI);
2166 
2167     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2168       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2169 
2170     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2171     Observer.changedInstr(MI);
2172     return Legalized;
2173   case TargetOpcode::G_INTTOPTR:
2174     if (TypeIdx != 1)
2175       return UnableToLegalize;
2176 
2177     Observer.changingInstr(MI);
2178     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2179     Observer.changedInstr(MI);
2180     return Legalized;
2181   case TargetOpcode::G_PTRTOINT:
2182     if (TypeIdx != 0)
2183       return UnableToLegalize;
2184 
2185     Observer.changingInstr(MI);
2186     widenScalarDst(MI, WideTy, 0);
2187     Observer.changedInstr(MI);
2188     return Legalized;
2189   case TargetOpcode::G_BUILD_VECTOR: {
2190     Observer.changingInstr(MI);
2191 
2192     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2193     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2194       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2195 
2196     // Avoid changing the result vector type if the source element type was
2197     // requested.
2198     if (TypeIdx == 1) {
2199       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2200     } else {
2201       widenScalarDst(MI, WideTy, 0);
2202     }
2203 
2204     Observer.changedInstr(MI);
2205     return Legalized;
2206   }
2207   case TargetOpcode::G_SEXT_INREG:
2208     if (TypeIdx != 0)
2209       return UnableToLegalize;
2210 
2211     Observer.changingInstr(MI);
2212     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2213     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2214     Observer.changedInstr(MI);
2215     return Legalized;
2216   case TargetOpcode::G_PTRMASK: {
2217     if (TypeIdx != 1)
2218       return UnableToLegalize;
2219     Observer.changingInstr(MI);
2220     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2221     Observer.changedInstr(MI);
2222     return Legalized;
2223   }
2224   }
2225 }
2226 
2227 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2228                              MachineIRBuilder &B, Register Src, LLT Ty) {
2229   auto Unmerge = B.buildUnmerge(Ty, Src);
2230   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2231     Pieces.push_back(Unmerge.getReg(I));
2232 }
2233 
2234 LegalizerHelper::LegalizeResult
2235 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2236   Register Dst = MI.getOperand(0).getReg();
2237   Register Src = MI.getOperand(1).getReg();
2238   LLT DstTy = MRI.getType(Dst);
2239   LLT SrcTy = MRI.getType(Src);
2240 
2241   if (SrcTy.isVector()) {
2242     LLT SrcEltTy = SrcTy.getElementType();
2243     SmallVector<Register, 8> SrcRegs;
2244 
2245     if (DstTy.isVector()) {
2246       int NumDstElt = DstTy.getNumElements();
2247       int NumSrcElt = SrcTy.getNumElements();
2248 
2249       LLT DstEltTy = DstTy.getElementType();
2250       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2251       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2252 
2253       // If there's an element size mismatch, insert intermediate casts to match
2254       // the result element type.
2255       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2256         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2257         //
2258         // =>
2259         //
2260         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2261         // %3:_(<2 x s8>) = G_BITCAST %2
2262         // %4:_(<2 x s8>) = G_BITCAST %3
2263         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2264         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2265         SrcPartTy = SrcEltTy;
2266       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2267         //
2268         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2269         //
2270         // =>
2271         //
2272         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2273         // %3:_(s16) = G_BITCAST %2
2274         // %4:_(s16) = G_BITCAST %3
2275         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2276         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2277         DstCastTy = DstEltTy;
2278       }
2279 
2280       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2281       for (Register &SrcReg : SrcRegs)
2282         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2283     } else
2284       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2285 
2286     MIRBuilder.buildMerge(Dst, SrcRegs);
2287     MI.eraseFromParent();
2288     return Legalized;
2289   }
2290 
2291   if (DstTy.isVector()) {
2292     SmallVector<Register, 8> SrcRegs;
2293     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2294     MIRBuilder.buildMerge(Dst, SrcRegs);
2295     MI.eraseFromParent();
2296     return Legalized;
2297   }
2298 
2299   return UnableToLegalize;
2300 }
2301 
2302 LegalizerHelper::LegalizeResult
2303 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2304   switch (MI.getOpcode()) {
2305   case TargetOpcode::G_LOAD: {
2306     if (TypeIdx != 0)
2307       return UnableToLegalize;
2308 
2309     Observer.changingInstr(MI);
2310     bitcastDst(MI, CastTy, 0);
2311     Observer.changedInstr(MI);
2312     return Legalized;
2313   }
2314   case TargetOpcode::G_STORE: {
2315     if (TypeIdx != 0)
2316       return UnableToLegalize;
2317 
2318     Observer.changingInstr(MI);
2319     bitcastSrc(MI, CastTy, 0);
2320     Observer.changedInstr(MI);
2321     return Legalized;
2322   }
2323   case TargetOpcode::G_SELECT: {
2324     if (TypeIdx != 0)
2325       return UnableToLegalize;
2326 
2327     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2328       LLVM_DEBUG(
2329           dbgs() << "bitcast action not implemented for vector select\n");
2330       return UnableToLegalize;
2331     }
2332 
2333     Observer.changingInstr(MI);
2334     bitcastSrc(MI, CastTy, 2);
2335     bitcastSrc(MI, CastTy, 3);
2336     bitcastDst(MI, CastTy, 0);
2337     Observer.changedInstr(MI);
2338     return Legalized;
2339   }
2340   case TargetOpcode::G_AND:
2341   case TargetOpcode::G_OR:
2342   case TargetOpcode::G_XOR: {
2343     Observer.changingInstr(MI);
2344     bitcastSrc(MI, CastTy, 1);
2345     bitcastSrc(MI, CastTy, 2);
2346     bitcastDst(MI, CastTy, 0);
2347     Observer.changedInstr(MI);
2348     return Legalized;
2349   }
2350   default:
2351     return UnableToLegalize;
2352   }
2353 }
2354 
2355 LegalizerHelper::LegalizeResult
2356 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
2357   using namespace TargetOpcode;
2358 
2359   switch(MI.getOpcode()) {
2360   default:
2361     return UnableToLegalize;
2362   case TargetOpcode::G_BITCAST:
2363     return lowerBitcast(MI);
2364   case TargetOpcode::G_SREM:
2365   case TargetOpcode::G_UREM: {
2366     auto Quot =
2367         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2368                               {MI.getOperand(1), MI.getOperand(2)});
2369 
2370     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2371     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2372     MI.eraseFromParent();
2373     return Legalized;
2374   }
2375   case TargetOpcode::G_SADDO:
2376   case TargetOpcode::G_SSUBO:
2377     return lowerSADDO_SSUBO(MI);
2378   case TargetOpcode::G_SMULO:
2379   case TargetOpcode::G_UMULO: {
2380     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2381     // result.
2382     Register Res = MI.getOperand(0).getReg();
2383     Register Overflow = MI.getOperand(1).getReg();
2384     Register LHS = MI.getOperand(2).getReg();
2385     Register RHS = MI.getOperand(3).getReg();
2386 
2387     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2388                           ? TargetOpcode::G_SMULH
2389                           : TargetOpcode::G_UMULH;
2390 
2391     Observer.changingInstr(MI);
2392     const auto &TII = MIRBuilder.getTII();
2393     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2394     MI.RemoveOperand(1);
2395     Observer.changedInstr(MI);
2396 
2397     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2398 
2399     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2400     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2401 
2402     // For *signed* multiply, overflow is detected by checking:
2403     // (hi != (lo >> bitwidth-1))
2404     if (Opcode == TargetOpcode::G_SMULH) {
2405       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2406       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2407       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2408     } else {
2409       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2410     }
2411     return Legalized;
2412   }
2413   case TargetOpcode::G_FNEG: {
2414     // TODO: Handle vector types once we are able to
2415     // represent them.
2416     if (Ty.isVector())
2417       return UnableToLegalize;
2418     Register Res = MI.getOperand(0).getReg();
2419     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2420     Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty);
2421     if (!ZeroTy)
2422       return UnableToLegalize;
2423     ConstantFP &ZeroForNegation =
2424         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
2425     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
2426     Register SubByReg = MI.getOperand(1).getReg();
2427     Register ZeroReg = Zero.getReg(0);
2428     MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags());
2429     MI.eraseFromParent();
2430     return Legalized;
2431   }
2432   case TargetOpcode::G_FSUB: {
2433     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2434     // First, check if G_FNEG is marked as Lower. If so, we may
2435     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2436     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2437       return UnableToLegalize;
2438     Register Res = MI.getOperand(0).getReg();
2439     Register LHS = MI.getOperand(1).getReg();
2440     Register RHS = MI.getOperand(2).getReg();
2441     Register Neg = MRI.createGenericVirtualRegister(Ty);
2442     MIRBuilder.buildFNeg(Neg, RHS);
2443     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2444     MI.eraseFromParent();
2445     return Legalized;
2446   }
2447   case TargetOpcode::G_FMAD:
2448     return lowerFMad(MI);
2449   case TargetOpcode::G_FFLOOR:
2450     return lowerFFloor(MI);
2451   case TargetOpcode::G_INTRINSIC_ROUND:
2452     return lowerIntrinsicRound(MI);
2453   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2454     Register OldValRes = MI.getOperand(0).getReg();
2455     Register SuccessRes = MI.getOperand(1).getReg();
2456     Register Addr = MI.getOperand(2).getReg();
2457     Register CmpVal = MI.getOperand(3).getReg();
2458     Register NewVal = MI.getOperand(4).getReg();
2459     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2460                                   **MI.memoperands_begin());
2461     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2462     MI.eraseFromParent();
2463     return Legalized;
2464   }
2465   case TargetOpcode::G_LOAD:
2466   case TargetOpcode::G_SEXTLOAD:
2467   case TargetOpcode::G_ZEXTLOAD: {
2468     // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2469     Register DstReg = MI.getOperand(0).getReg();
2470     Register PtrReg = MI.getOperand(1).getReg();
2471     LLT DstTy = MRI.getType(DstReg);
2472     auto &MMO = **MI.memoperands_begin();
2473 
2474     if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2475       if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2476         // This load needs splitting into power of 2 sized loads.
2477         if (DstTy.isVector())
2478           return UnableToLegalize;
2479         if (isPowerOf2_32(DstTy.getSizeInBits()))
2480           return UnableToLegalize; // Don't know what we're being asked to do.
2481 
2482         // Our strategy here is to generate anyextending loads for the smaller
2483         // types up to next power-2 result type, and then combine the two larger
2484         // result values together, before truncating back down to the non-pow-2
2485         // type.
2486         // E.g. v1 = i24 load =>
2487         // v2 = i32 zextload (2 byte)
2488         // v3 = i32 load (1 byte)
2489         // v4 = i32 shl v3, 16
2490         // v5 = i32 or v4, v2
2491         // v1 = i24 trunc v5
2492         // By doing this we generate the correct truncate which should get
2493         // combined away as an artifact with a matching extend.
2494         uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2495         uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2496 
2497         MachineFunction &MF = MIRBuilder.getMF();
2498         MachineMemOperand *LargeMMO =
2499             MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2500         MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2501             &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2502 
2503         LLT PtrTy = MRI.getType(PtrReg);
2504         unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2505         LLT AnyExtTy = LLT::scalar(AnyExtSize);
2506         Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2507         Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2508         auto LargeLoad = MIRBuilder.buildLoadInstr(
2509             TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2510 
2511         auto OffsetCst = MIRBuilder.buildConstant(
2512             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2513         Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2514         auto SmallPtr =
2515             MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2516         auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2517                                               *SmallMMO);
2518 
2519         auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2520         auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2521         auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2522         MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2523         MI.eraseFromParent();
2524         return Legalized;
2525       }
2526       MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2527       MI.eraseFromParent();
2528       return Legalized;
2529     }
2530 
2531     if (DstTy.isScalar()) {
2532       Register TmpReg =
2533           MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2534       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2535       switch (MI.getOpcode()) {
2536       default:
2537         llvm_unreachable("Unexpected opcode");
2538       case TargetOpcode::G_LOAD:
2539         MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg);
2540         break;
2541       case TargetOpcode::G_SEXTLOAD:
2542         MIRBuilder.buildSExt(DstReg, TmpReg);
2543         break;
2544       case TargetOpcode::G_ZEXTLOAD:
2545         MIRBuilder.buildZExt(DstReg, TmpReg);
2546         break;
2547       }
2548       MI.eraseFromParent();
2549       return Legalized;
2550     }
2551 
2552     return UnableToLegalize;
2553   }
2554   case TargetOpcode::G_STORE: {
2555     // Lower a non-power of 2 store into multiple pow-2 stores.
2556     // E.g. split an i24 store into an i16 store + i8 store.
2557     // We do this by first extending the stored value to the next largest power
2558     // of 2 type, and then using truncating stores to store the components.
2559     // By doing this, likewise with G_LOAD, generate an extend that can be
2560     // artifact-combined away instead of leaving behind extracts.
2561     Register SrcReg = MI.getOperand(0).getReg();
2562     Register PtrReg = MI.getOperand(1).getReg();
2563     LLT SrcTy = MRI.getType(SrcReg);
2564     MachineMemOperand &MMO = **MI.memoperands_begin();
2565     if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2566       return UnableToLegalize;
2567     if (SrcTy.isVector())
2568       return UnableToLegalize;
2569     if (isPowerOf2_32(SrcTy.getSizeInBits()))
2570       return UnableToLegalize; // Don't know what we're being asked to do.
2571 
2572     // Extend to the next pow-2.
2573     const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2574     auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2575 
2576     // Obtain the smaller value by shifting away the larger value.
2577     uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2578     uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2579     auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2580     auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2581 
2582     // Generate the PtrAdd and truncating stores.
2583     LLT PtrTy = MRI.getType(PtrReg);
2584     auto OffsetCst = MIRBuilder.buildConstant(
2585             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2586     Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2587     auto SmallPtr =
2588         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2589 
2590     MachineFunction &MF = MIRBuilder.getMF();
2591     MachineMemOperand *LargeMMO =
2592         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2593     MachineMemOperand *SmallMMO =
2594         MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2595     MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2596     MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2597     MI.eraseFromParent();
2598     return Legalized;
2599   }
2600   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2601   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2602   case TargetOpcode::G_CTLZ:
2603   case TargetOpcode::G_CTTZ:
2604   case TargetOpcode::G_CTPOP:
2605     return lowerBitCount(MI, TypeIdx, Ty);
2606   case G_UADDO: {
2607     Register Res = MI.getOperand(0).getReg();
2608     Register CarryOut = MI.getOperand(1).getReg();
2609     Register LHS = MI.getOperand(2).getReg();
2610     Register RHS = MI.getOperand(3).getReg();
2611 
2612     MIRBuilder.buildAdd(Res, LHS, RHS);
2613     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2614 
2615     MI.eraseFromParent();
2616     return Legalized;
2617   }
2618   case G_UADDE: {
2619     Register Res = MI.getOperand(0).getReg();
2620     Register CarryOut = MI.getOperand(1).getReg();
2621     Register LHS = MI.getOperand(2).getReg();
2622     Register RHS = MI.getOperand(3).getReg();
2623     Register CarryIn = MI.getOperand(4).getReg();
2624     LLT Ty = MRI.getType(Res);
2625 
2626     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
2627     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
2628     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2629     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2630 
2631     MI.eraseFromParent();
2632     return Legalized;
2633   }
2634   case G_USUBO: {
2635     Register Res = MI.getOperand(0).getReg();
2636     Register BorrowOut = MI.getOperand(1).getReg();
2637     Register LHS = MI.getOperand(2).getReg();
2638     Register RHS = MI.getOperand(3).getReg();
2639 
2640     MIRBuilder.buildSub(Res, LHS, RHS);
2641     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2642 
2643     MI.eraseFromParent();
2644     return Legalized;
2645   }
2646   case G_USUBE: {
2647     Register Res = MI.getOperand(0).getReg();
2648     Register BorrowOut = MI.getOperand(1).getReg();
2649     Register LHS = MI.getOperand(2).getReg();
2650     Register RHS = MI.getOperand(3).getReg();
2651     Register BorrowIn = MI.getOperand(4).getReg();
2652     const LLT CondTy = MRI.getType(BorrowOut);
2653     const LLT Ty = MRI.getType(Res);
2654 
2655     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
2656     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
2657     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2658 
2659     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
2660     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
2661     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2662 
2663     MI.eraseFromParent();
2664     return Legalized;
2665   }
2666   case G_UITOFP:
2667     return lowerUITOFP(MI, TypeIdx, Ty);
2668   case G_SITOFP:
2669     return lowerSITOFP(MI, TypeIdx, Ty);
2670   case G_FPTOUI:
2671     return lowerFPTOUI(MI, TypeIdx, Ty);
2672   case G_FPTOSI:
2673     return lowerFPTOSI(MI);
2674   case G_FPTRUNC:
2675     return lowerFPTRUNC(MI, TypeIdx, Ty);
2676   case G_SMIN:
2677   case G_SMAX:
2678   case G_UMIN:
2679   case G_UMAX:
2680     return lowerMinMax(MI, TypeIdx, Ty);
2681   case G_FCOPYSIGN:
2682     return lowerFCopySign(MI, TypeIdx, Ty);
2683   case G_FMINNUM:
2684   case G_FMAXNUM:
2685     return lowerFMinNumMaxNum(MI);
2686   case G_MERGE_VALUES:
2687     return lowerMergeValues(MI);
2688   case G_UNMERGE_VALUES:
2689     return lowerUnmergeValues(MI);
2690   case TargetOpcode::G_SEXT_INREG: {
2691     assert(MI.getOperand(2).isImm() && "Expected immediate");
2692     int64_t SizeInBits = MI.getOperand(2).getImm();
2693 
2694     Register DstReg = MI.getOperand(0).getReg();
2695     Register SrcReg = MI.getOperand(1).getReg();
2696     LLT DstTy = MRI.getType(DstReg);
2697     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
2698 
2699     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
2700     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
2701     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
2702     MI.eraseFromParent();
2703     return Legalized;
2704   }
2705   case G_SHUFFLE_VECTOR:
2706     return lowerShuffleVector(MI);
2707   case G_DYN_STACKALLOC:
2708     return lowerDynStackAlloc(MI);
2709   case G_EXTRACT:
2710     return lowerExtract(MI);
2711   case G_INSERT:
2712     return lowerInsert(MI);
2713   case G_BSWAP:
2714     return lowerBswap(MI);
2715   case G_BITREVERSE:
2716     return lowerBitreverse(MI);
2717   case G_READ_REGISTER:
2718   case G_WRITE_REGISTER:
2719     return lowerReadWriteRegister(MI);
2720   }
2721 }
2722 
2723 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
2724     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
2725   SmallVector<Register, 2> DstRegs;
2726 
2727   unsigned NarrowSize = NarrowTy.getSizeInBits();
2728   Register DstReg = MI.getOperand(0).getReg();
2729   unsigned Size = MRI.getType(DstReg).getSizeInBits();
2730   int NumParts = Size / NarrowSize;
2731   // FIXME: Don't know how to handle the situation where the small vectors
2732   // aren't all the same size yet.
2733   if (Size % NarrowSize != 0)
2734     return UnableToLegalize;
2735 
2736   for (int i = 0; i < NumParts; ++i) {
2737     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
2738     MIRBuilder.buildUndef(TmpReg);
2739     DstRegs.push_back(TmpReg);
2740   }
2741 
2742   if (NarrowTy.isVector())
2743     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2744   else
2745     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2746 
2747   MI.eraseFromParent();
2748   return Legalized;
2749 }
2750 
2751 // Handle splitting vector operations which need to have the same number of
2752 // elements in each type index, but each type index may have a different element
2753 // type.
2754 //
2755 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
2756 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2757 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2758 //
2759 // Also handles some irregular breakdown cases, e.g.
2760 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
2761 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2762 //             s64 = G_SHL s64, s32
2763 LegalizerHelper::LegalizeResult
2764 LegalizerHelper::fewerElementsVectorMultiEltType(
2765   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
2766   if (TypeIdx != 0)
2767     return UnableToLegalize;
2768 
2769   const LLT NarrowTy0 = NarrowTyArg;
2770   const unsigned NewNumElts =
2771       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
2772 
2773   const Register DstReg = MI.getOperand(0).getReg();
2774   LLT DstTy = MRI.getType(DstReg);
2775   LLT LeftoverTy0;
2776 
2777   // All of the operands need to have the same number of elements, so if we can
2778   // determine a type breakdown for the result type, we can for all of the
2779   // source types.
2780   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
2781   if (NumParts < 0)
2782     return UnableToLegalize;
2783 
2784   SmallVector<MachineInstrBuilder, 4> NewInsts;
2785 
2786   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2787   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2788 
2789   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2790     Register SrcReg = MI.getOperand(I).getReg();
2791     LLT SrcTyI = MRI.getType(SrcReg);
2792     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
2793     LLT LeftoverTyI;
2794 
2795     // Split this operand into the requested typed registers, and any leftover
2796     // required to reproduce the original type.
2797     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
2798                       LeftoverRegs))
2799       return UnableToLegalize;
2800 
2801     if (I == 1) {
2802       // For the first operand, create an instruction for each part and setup
2803       // the result.
2804       for (Register PartReg : PartRegs) {
2805         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2806         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2807                                .addDef(PartDstReg)
2808                                .addUse(PartReg));
2809         DstRegs.push_back(PartDstReg);
2810       }
2811 
2812       for (Register LeftoverReg : LeftoverRegs) {
2813         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
2814         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2815                                .addDef(PartDstReg)
2816                                .addUse(LeftoverReg));
2817         LeftoverDstRegs.push_back(PartDstReg);
2818       }
2819     } else {
2820       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
2821 
2822       // Add the newly created operand splits to the existing instructions. The
2823       // odd-sized pieces are ordered after the requested NarrowTyArg sized
2824       // pieces.
2825       unsigned InstCount = 0;
2826       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
2827         NewInsts[InstCount++].addUse(PartRegs[J]);
2828       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
2829         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
2830     }
2831 
2832     PartRegs.clear();
2833     LeftoverRegs.clear();
2834   }
2835 
2836   // Insert the newly built operations and rebuild the result register.
2837   for (auto &MIB : NewInsts)
2838     MIRBuilder.insertInstr(MIB);
2839 
2840   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
2841 
2842   MI.eraseFromParent();
2843   return Legalized;
2844 }
2845 
2846 LegalizerHelper::LegalizeResult
2847 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
2848                                           LLT NarrowTy) {
2849   if (TypeIdx != 0)
2850     return UnableToLegalize;
2851 
2852   Register DstReg = MI.getOperand(0).getReg();
2853   Register SrcReg = MI.getOperand(1).getReg();
2854   LLT DstTy = MRI.getType(DstReg);
2855   LLT SrcTy = MRI.getType(SrcReg);
2856 
2857   LLT NarrowTy0 = NarrowTy;
2858   LLT NarrowTy1;
2859   unsigned NumParts;
2860 
2861   if (NarrowTy.isVector()) {
2862     // Uneven breakdown not handled.
2863     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
2864     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
2865       return UnableToLegalize;
2866 
2867     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
2868   } else {
2869     NumParts = DstTy.getNumElements();
2870     NarrowTy1 = SrcTy.getElementType();
2871   }
2872 
2873   SmallVector<Register, 4> SrcRegs, DstRegs;
2874   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
2875 
2876   for (unsigned I = 0; I < NumParts; ++I) {
2877     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2878     MachineInstr *NewInst =
2879         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
2880 
2881     NewInst->setFlags(MI.getFlags());
2882     DstRegs.push_back(DstReg);
2883   }
2884 
2885   if (NarrowTy.isVector())
2886     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2887   else
2888     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2889 
2890   MI.eraseFromParent();
2891   return Legalized;
2892 }
2893 
2894 LegalizerHelper::LegalizeResult
2895 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
2896                                         LLT NarrowTy) {
2897   Register DstReg = MI.getOperand(0).getReg();
2898   Register Src0Reg = MI.getOperand(2).getReg();
2899   LLT DstTy = MRI.getType(DstReg);
2900   LLT SrcTy = MRI.getType(Src0Reg);
2901 
2902   unsigned NumParts;
2903   LLT NarrowTy0, NarrowTy1;
2904 
2905   if (TypeIdx == 0) {
2906     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2907     unsigned OldElts = DstTy.getNumElements();
2908 
2909     NarrowTy0 = NarrowTy;
2910     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
2911     NarrowTy1 = NarrowTy.isVector() ?
2912       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
2913       SrcTy.getElementType();
2914 
2915   } else {
2916     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2917     unsigned OldElts = SrcTy.getNumElements();
2918 
2919     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
2920       NarrowTy.getNumElements();
2921     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
2922                             DstTy.getScalarSizeInBits());
2923     NarrowTy1 = NarrowTy;
2924   }
2925 
2926   // FIXME: Don't know how to handle the situation where the small vectors
2927   // aren't all the same size yet.
2928   if (NarrowTy1.isVector() &&
2929       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
2930     return UnableToLegalize;
2931 
2932   CmpInst::Predicate Pred
2933     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
2934 
2935   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
2936   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
2937   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
2938 
2939   for (unsigned I = 0; I < NumParts; ++I) {
2940     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2941     DstRegs.push_back(DstReg);
2942 
2943     if (MI.getOpcode() == TargetOpcode::G_ICMP)
2944       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2945     else {
2946       MachineInstr *NewCmp
2947         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2948       NewCmp->setFlags(MI.getFlags());
2949     }
2950   }
2951 
2952   if (NarrowTy1.isVector())
2953     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2954   else
2955     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2956 
2957   MI.eraseFromParent();
2958   return Legalized;
2959 }
2960 
2961 LegalizerHelper::LegalizeResult
2962 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
2963                                            LLT NarrowTy) {
2964   Register DstReg = MI.getOperand(0).getReg();
2965   Register CondReg = MI.getOperand(1).getReg();
2966 
2967   unsigned NumParts = 0;
2968   LLT NarrowTy0, NarrowTy1;
2969 
2970   LLT DstTy = MRI.getType(DstReg);
2971   LLT CondTy = MRI.getType(CondReg);
2972   unsigned Size = DstTy.getSizeInBits();
2973 
2974   assert(TypeIdx == 0 || CondTy.isVector());
2975 
2976   if (TypeIdx == 0) {
2977     NarrowTy0 = NarrowTy;
2978     NarrowTy1 = CondTy;
2979 
2980     unsigned NarrowSize = NarrowTy0.getSizeInBits();
2981     // FIXME: Don't know how to handle the situation where the small vectors
2982     // aren't all the same size yet.
2983     if (Size % NarrowSize != 0)
2984       return UnableToLegalize;
2985 
2986     NumParts = Size / NarrowSize;
2987 
2988     // Need to break down the condition type
2989     if (CondTy.isVector()) {
2990       if (CondTy.getNumElements() == NumParts)
2991         NarrowTy1 = CondTy.getElementType();
2992       else
2993         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
2994                                 CondTy.getScalarSizeInBits());
2995     }
2996   } else {
2997     NumParts = CondTy.getNumElements();
2998     if (NarrowTy.isVector()) {
2999       // TODO: Handle uneven breakdown.
3000       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3001         return UnableToLegalize;
3002 
3003       return UnableToLegalize;
3004     } else {
3005       NarrowTy0 = DstTy.getElementType();
3006       NarrowTy1 = NarrowTy;
3007     }
3008   }
3009 
3010   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3011   if (CondTy.isVector())
3012     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3013 
3014   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3015   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3016 
3017   for (unsigned i = 0; i < NumParts; ++i) {
3018     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3019     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3020                            Src1Regs[i], Src2Regs[i]);
3021     DstRegs.push_back(DstReg);
3022   }
3023 
3024   if (NarrowTy0.isVector())
3025     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3026   else
3027     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3028 
3029   MI.eraseFromParent();
3030   return Legalized;
3031 }
3032 
3033 LegalizerHelper::LegalizeResult
3034 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3035                                         LLT NarrowTy) {
3036   const Register DstReg = MI.getOperand(0).getReg();
3037   LLT PhiTy = MRI.getType(DstReg);
3038   LLT LeftoverTy;
3039 
3040   // All of the operands need to have the same number of elements, so if we can
3041   // determine a type breakdown for the result type, we can for all of the
3042   // source types.
3043   int NumParts, NumLeftover;
3044   std::tie(NumParts, NumLeftover)
3045     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3046   if (NumParts < 0)
3047     return UnableToLegalize;
3048 
3049   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3050   SmallVector<MachineInstrBuilder, 4> NewInsts;
3051 
3052   const int TotalNumParts = NumParts + NumLeftover;
3053 
3054   // Insert the new phis in the result block first.
3055   for (int I = 0; I != TotalNumParts; ++I) {
3056     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3057     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3058     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3059                        .addDef(PartDstReg));
3060     if (I < NumParts)
3061       DstRegs.push_back(PartDstReg);
3062     else
3063       LeftoverDstRegs.push_back(PartDstReg);
3064   }
3065 
3066   MachineBasicBlock *MBB = MI.getParent();
3067   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3068   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3069 
3070   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3071 
3072   // Insert code to extract the incoming values in each predecessor block.
3073   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3074     PartRegs.clear();
3075     LeftoverRegs.clear();
3076 
3077     Register SrcReg = MI.getOperand(I).getReg();
3078     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3079     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3080 
3081     LLT Unused;
3082     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3083                       LeftoverRegs))
3084       return UnableToLegalize;
3085 
3086     // Add the newly created operand splits to the existing instructions. The
3087     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3088     // pieces.
3089     for (int J = 0; J != TotalNumParts; ++J) {
3090       MachineInstrBuilder MIB = NewInsts[J];
3091       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3092       MIB.addMBB(&OpMBB);
3093     }
3094   }
3095 
3096   MI.eraseFromParent();
3097   return Legalized;
3098 }
3099 
3100 LegalizerHelper::LegalizeResult
3101 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3102                                                   unsigned TypeIdx,
3103                                                   LLT NarrowTy) {
3104   if (TypeIdx != 1)
3105     return UnableToLegalize;
3106 
3107   const int NumDst = MI.getNumOperands() - 1;
3108   const Register SrcReg = MI.getOperand(NumDst).getReg();
3109   LLT SrcTy = MRI.getType(SrcReg);
3110 
3111   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3112 
3113   // TODO: Create sequence of extracts.
3114   if (DstTy == NarrowTy)
3115     return UnableToLegalize;
3116 
3117   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3118   if (DstTy == GCDTy) {
3119     // This would just be a copy of the same unmerge.
3120     // TODO: Create extracts, pad with undef and create intermediate merges.
3121     return UnableToLegalize;
3122   }
3123 
3124   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3125   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3126   const int PartsPerUnmerge = NumDst / NumUnmerge;
3127 
3128   for (int I = 0; I != NumUnmerge; ++I) {
3129     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3130 
3131     for (int J = 0; J != PartsPerUnmerge; ++J)
3132       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3133     MIB.addUse(Unmerge.getReg(I));
3134   }
3135 
3136   MI.eraseFromParent();
3137   return Legalized;
3138 }
3139 
3140 LegalizerHelper::LegalizeResult
3141 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI,
3142                                                 unsigned TypeIdx,
3143                                                 LLT NarrowTy) {
3144   assert(TypeIdx == 0 && "not a vector type index");
3145   Register DstReg = MI.getOperand(0).getReg();
3146   LLT DstTy = MRI.getType(DstReg);
3147   LLT SrcTy = DstTy.getElementType();
3148 
3149   int DstNumElts = DstTy.getNumElements();
3150   int NarrowNumElts = NarrowTy.getNumElements();
3151   int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts;
3152   LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy);
3153 
3154   SmallVector<Register, 8> ConcatOps;
3155   SmallVector<Register, 8> SubBuildVector;
3156 
3157   Register UndefReg;
3158   if (WidenedDstTy != DstTy)
3159     UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0);
3160 
3161   // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as
3162   // necessary.
3163   //
3164   // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3165   //   -> <2 x s16>
3166   //
3167   // %4:_(s16) = G_IMPLICIT_DEF
3168   // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3169   // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3170   // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6
3171   // %3:_(<3 x s16>) = G_EXTRACT %7, 0
3172   for (int I = 0; I != NumConcat; ++I) {
3173     for (int J = 0; J != NarrowNumElts; ++J) {
3174       int SrcIdx = NarrowNumElts * I + J;
3175 
3176       if (SrcIdx < DstNumElts) {
3177         Register SrcReg = MI.getOperand(SrcIdx + 1).getReg();
3178         SubBuildVector.push_back(SrcReg);
3179       } else
3180         SubBuildVector.push_back(UndefReg);
3181     }
3182 
3183     auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector);
3184     ConcatOps.push_back(BuildVec.getReg(0));
3185     SubBuildVector.clear();
3186   }
3187 
3188   if (DstTy == WidenedDstTy)
3189     MIRBuilder.buildConcatVectors(DstReg, ConcatOps);
3190   else {
3191     auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps);
3192     MIRBuilder.buildExtract(DstReg, Concat, 0);
3193   }
3194 
3195   MI.eraseFromParent();
3196   return Legalized;
3197 }
3198 
3199 LegalizerHelper::LegalizeResult
3200 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3201                                       LLT NarrowTy) {
3202   // FIXME: Don't know how to handle secondary types yet.
3203   if (TypeIdx != 0)
3204     return UnableToLegalize;
3205 
3206   MachineMemOperand *MMO = *MI.memoperands_begin();
3207 
3208   // This implementation doesn't work for atomics. Give up instead of doing
3209   // something invalid.
3210   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3211       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3212     return UnableToLegalize;
3213 
3214   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3215   Register ValReg = MI.getOperand(0).getReg();
3216   Register AddrReg = MI.getOperand(1).getReg();
3217   LLT ValTy = MRI.getType(ValReg);
3218 
3219   // FIXME: Do we need a distinct NarrowMemory legalize action?
3220   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3221     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3222     return UnableToLegalize;
3223   }
3224 
3225   int NumParts = -1;
3226   int NumLeftover = -1;
3227   LLT LeftoverTy;
3228   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3229   if (IsLoad) {
3230     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3231   } else {
3232     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3233                      NarrowLeftoverRegs)) {
3234       NumParts = NarrowRegs.size();
3235       NumLeftover = NarrowLeftoverRegs.size();
3236     }
3237   }
3238 
3239   if (NumParts == -1)
3240     return UnableToLegalize;
3241 
3242   const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits());
3243 
3244   unsigned TotalSize = ValTy.getSizeInBits();
3245 
3246   // Split the load/store into PartTy sized pieces starting at Offset. If this
3247   // is a load, return the new registers in ValRegs. For a store, each elements
3248   // of ValRegs should be PartTy. Returns the next offset that needs to be
3249   // handled.
3250   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3251                              unsigned Offset) -> unsigned {
3252     MachineFunction &MF = MIRBuilder.getMF();
3253     unsigned PartSize = PartTy.getSizeInBits();
3254     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3255          Offset += PartSize, ++Idx) {
3256       unsigned ByteSize = PartSize / 8;
3257       unsigned ByteOffset = Offset / 8;
3258       Register NewAddrReg;
3259 
3260       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3261 
3262       MachineMemOperand *NewMMO =
3263         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3264 
3265       if (IsLoad) {
3266         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3267         ValRegs.push_back(Dst);
3268         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3269       } else {
3270         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3271       }
3272     }
3273 
3274     return Offset;
3275   };
3276 
3277   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3278 
3279   // Handle the rest of the register if this isn't an even type breakdown.
3280   if (LeftoverTy.isValid())
3281     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3282 
3283   if (IsLoad) {
3284     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3285                 LeftoverTy, NarrowLeftoverRegs);
3286   }
3287 
3288   MI.eraseFromParent();
3289   return Legalized;
3290 }
3291 
3292 LegalizerHelper::LegalizeResult
3293 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3294                                       LLT NarrowTy) {
3295   assert(TypeIdx == 0 && "only one type index expected");
3296 
3297   const unsigned Opc = MI.getOpcode();
3298   const int NumOps = MI.getNumOperands() - 1;
3299   const Register DstReg = MI.getOperand(0).getReg();
3300   const unsigned Flags = MI.getFlags();
3301   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3302   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3303 
3304   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3305 
3306   // First of all check whether we are narrowing (changing the element type)
3307   // or reducing the vector elements
3308   const LLT DstTy = MRI.getType(DstReg);
3309   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3310 
3311   SmallVector<Register, 8> ExtractedRegs[3];
3312   SmallVector<Register, 8> Parts;
3313 
3314   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3315 
3316   // Break down all the sources into NarrowTy pieces we can operate on. This may
3317   // involve creating merges to a wider type, padded with undef.
3318   for (int I = 0; I != NumOps; ++I) {
3319     Register SrcReg = MI.getOperand(I + 1).getReg();
3320     LLT SrcTy = MRI.getType(SrcReg);
3321 
3322     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3323     // For fewerElements, this is a smaller vector with the same element type.
3324     LLT OpNarrowTy;
3325     if (IsNarrow) {
3326       OpNarrowTy = NarrowScalarTy;
3327 
3328       // In case of narrowing, we need to cast vectors to scalars for this to
3329       // work properly
3330       // FIXME: Can we do without the bitcast here if we're narrowing?
3331       if (SrcTy.isVector()) {
3332         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3333         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3334       }
3335     } else {
3336       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3337     }
3338 
3339     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3340 
3341     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3342     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3343                         TargetOpcode::G_ANYEXT);
3344   }
3345 
3346   SmallVector<Register, 8> ResultRegs;
3347 
3348   // Input operands for each sub-instruction.
3349   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3350 
3351   int NumParts = ExtractedRegs[0].size();
3352   const unsigned DstSize = DstTy.getSizeInBits();
3353   const LLT DstScalarTy = LLT::scalar(DstSize);
3354 
3355   // Narrowing needs to use scalar types
3356   LLT DstLCMTy, NarrowDstTy;
3357   if (IsNarrow) {
3358     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3359     NarrowDstTy = NarrowScalarTy;
3360   } else {
3361     DstLCMTy = getLCMType(DstTy, NarrowTy);
3362     NarrowDstTy = NarrowTy;
3363   }
3364 
3365   // We widened the source registers to satisfy merge/unmerge size
3366   // constraints. We'll have some extra fully undef parts.
3367   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3368 
3369   for (int I = 0; I != NumRealParts; ++I) {
3370     // Emit this instruction on each of the split pieces.
3371     for (int J = 0; J != NumOps; ++J)
3372       InputRegs[J] = ExtractedRegs[J][I];
3373 
3374     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3375     ResultRegs.push_back(Inst.getReg(0));
3376   }
3377 
3378   // Fill out the widened result with undef instead of creating instructions
3379   // with undef inputs.
3380   int NumUndefParts = NumParts - NumRealParts;
3381   if (NumUndefParts != 0)
3382     ResultRegs.append(NumUndefParts,
3383                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3384 
3385   // Extract the possibly padded result. Use a scratch register if we need to do
3386   // a final bitcast, otherwise use the original result register.
3387   Register MergeDstReg;
3388   if (IsNarrow && DstTy.isVector())
3389     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3390   else
3391     MergeDstReg = DstReg;
3392 
3393   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3394 
3395   // Recast to vector if we narrowed a vector
3396   if (IsNarrow && DstTy.isVector())
3397     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3398 
3399   MI.eraseFromParent();
3400   return Legalized;
3401 }
3402 
3403 LegalizerHelper::LegalizeResult
3404 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3405                                               LLT NarrowTy) {
3406   Register DstReg = MI.getOperand(0).getReg();
3407   Register SrcReg = MI.getOperand(1).getReg();
3408   int64_t Imm = MI.getOperand(2).getImm();
3409 
3410   LLT DstTy = MRI.getType(DstReg);
3411 
3412   SmallVector<Register, 8> Parts;
3413   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3414   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3415 
3416   for (Register &R : Parts)
3417     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3418 
3419   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3420 
3421   MI.eraseFromParent();
3422   return Legalized;
3423 }
3424 
3425 LegalizerHelper::LegalizeResult
3426 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3427                                      LLT NarrowTy) {
3428   using namespace TargetOpcode;
3429 
3430   switch (MI.getOpcode()) {
3431   case G_IMPLICIT_DEF:
3432     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3433   case G_TRUNC:
3434   case G_AND:
3435   case G_OR:
3436   case G_XOR:
3437   case G_ADD:
3438   case G_SUB:
3439   case G_MUL:
3440   case G_SMULH:
3441   case G_UMULH:
3442   case G_FADD:
3443   case G_FMUL:
3444   case G_FSUB:
3445   case G_FNEG:
3446   case G_FABS:
3447   case G_FCANONICALIZE:
3448   case G_FDIV:
3449   case G_FREM:
3450   case G_FMA:
3451   case G_FMAD:
3452   case G_FPOW:
3453   case G_FEXP:
3454   case G_FEXP2:
3455   case G_FLOG:
3456   case G_FLOG2:
3457   case G_FLOG10:
3458   case G_FNEARBYINT:
3459   case G_FCEIL:
3460   case G_FFLOOR:
3461   case G_FRINT:
3462   case G_INTRINSIC_ROUND:
3463   case G_INTRINSIC_TRUNC:
3464   case G_FCOS:
3465   case G_FSIN:
3466   case G_FSQRT:
3467   case G_BSWAP:
3468   case G_BITREVERSE:
3469   case G_SDIV:
3470   case G_UDIV:
3471   case G_SREM:
3472   case G_UREM:
3473   case G_SMIN:
3474   case G_SMAX:
3475   case G_UMIN:
3476   case G_UMAX:
3477   case G_FMINNUM:
3478   case G_FMAXNUM:
3479   case G_FMINNUM_IEEE:
3480   case G_FMAXNUM_IEEE:
3481   case G_FMINIMUM:
3482   case G_FMAXIMUM:
3483   case G_FSHL:
3484   case G_FSHR:
3485   case G_FREEZE:
3486   case G_SADDSAT:
3487   case G_SSUBSAT:
3488   case G_UADDSAT:
3489   case G_USUBSAT:
3490     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
3491   case G_SHL:
3492   case G_LSHR:
3493   case G_ASHR:
3494   case G_CTLZ:
3495   case G_CTLZ_ZERO_UNDEF:
3496   case G_CTTZ:
3497   case G_CTTZ_ZERO_UNDEF:
3498   case G_CTPOP:
3499   case G_FCOPYSIGN:
3500     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
3501   case G_ZEXT:
3502   case G_SEXT:
3503   case G_ANYEXT:
3504   case G_FPEXT:
3505   case G_FPTRUNC:
3506   case G_SITOFP:
3507   case G_UITOFP:
3508   case G_FPTOSI:
3509   case G_FPTOUI:
3510   case G_INTTOPTR:
3511   case G_PTRTOINT:
3512   case G_ADDRSPACE_CAST:
3513     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
3514   case G_ICMP:
3515   case G_FCMP:
3516     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
3517   case G_SELECT:
3518     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
3519   case G_PHI:
3520     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
3521   case G_UNMERGE_VALUES:
3522     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
3523   case G_BUILD_VECTOR:
3524     return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy);
3525   case G_LOAD:
3526   case G_STORE:
3527     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
3528   case G_SEXT_INREG:
3529     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
3530   default:
3531     return UnableToLegalize;
3532   }
3533 }
3534 
3535 LegalizerHelper::LegalizeResult
3536 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
3537                                              const LLT HalfTy, const LLT AmtTy) {
3538 
3539   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3540   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3541   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3542 
3543   if (Amt.isNullValue()) {
3544     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
3545     MI.eraseFromParent();
3546     return Legalized;
3547   }
3548 
3549   LLT NVT = HalfTy;
3550   unsigned NVTBits = HalfTy.getSizeInBits();
3551   unsigned VTBits = 2 * NVTBits;
3552 
3553   SrcOp Lo(Register(0)), Hi(Register(0));
3554   if (MI.getOpcode() == TargetOpcode::G_SHL) {
3555     if (Amt.ugt(VTBits)) {
3556       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3557     } else if (Amt.ugt(NVTBits)) {
3558       Lo = MIRBuilder.buildConstant(NVT, 0);
3559       Hi = MIRBuilder.buildShl(NVT, InL,
3560                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3561     } else if (Amt == NVTBits) {
3562       Lo = MIRBuilder.buildConstant(NVT, 0);
3563       Hi = InL;
3564     } else {
3565       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
3566       auto OrLHS =
3567           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
3568       auto OrRHS = MIRBuilder.buildLShr(
3569           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3570       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3571     }
3572   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3573     if (Amt.ugt(VTBits)) {
3574       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3575     } else if (Amt.ugt(NVTBits)) {
3576       Lo = MIRBuilder.buildLShr(NVT, InH,
3577                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3578       Hi = MIRBuilder.buildConstant(NVT, 0);
3579     } else if (Amt == NVTBits) {
3580       Lo = InH;
3581       Hi = MIRBuilder.buildConstant(NVT, 0);
3582     } else {
3583       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3584 
3585       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3586       auto OrRHS = MIRBuilder.buildShl(
3587           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3588 
3589       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3590       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
3591     }
3592   } else {
3593     if (Amt.ugt(VTBits)) {
3594       Hi = Lo = MIRBuilder.buildAShr(
3595           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3596     } else if (Amt.ugt(NVTBits)) {
3597       Lo = MIRBuilder.buildAShr(NVT, InH,
3598                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3599       Hi = MIRBuilder.buildAShr(NVT, InH,
3600                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3601     } else if (Amt == NVTBits) {
3602       Lo = InH;
3603       Hi = MIRBuilder.buildAShr(NVT, InH,
3604                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3605     } else {
3606       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3607 
3608       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3609       auto OrRHS = MIRBuilder.buildShl(
3610           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3611 
3612       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3613       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
3614     }
3615   }
3616 
3617   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
3618   MI.eraseFromParent();
3619 
3620   return Legalized;
3621 }
3622 
3623 // TODO: Optimize if constant shift amount.
3624 LegalizerHelper::LegalizeResult
3625 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
3626                                    LLT RequestedTy) {
3627   if (TypeIdx == 1) {
3628     Observer.changingInstr(MI);
3629     narrowScalarSrc(MI, RequestedTy, 2);
3630     Observer.changedInstr(MI);
3631     return Legalized;
3632   }
3633 
3634   Register DstReg = MI.getOperand(0).getReg();
3635   LLT DstTy = MRI.getType(DstReg);
3636   if (DstTy.isVector())
3637     return UnableToLegalize;
3638 
3639   Register Amt = MI.getOperand(2).getReg();
3640   LLT ShiftAmtTy = MRI.getType(Amt);
3641   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
3642   if (DstEltSize % 2 != 0)
3643     return UnableToLegalize;
3644 
3645   // Ignore the input type. We can only go to exactly half the size of the
3646   // input. If that isn't small enough, the resulting pieces will be further
3647   // legalized.
3648   const unsigned NewBitSize = DstEltSize / 2;
3649   const LLT HalfTy = LLT::scalar(NewBitSize);
3650   const LLT CondTy = LLT::scalar(1);
3651 
3652   if (const MachineInstr *KShiftAmt =
3653           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
3654     return narrowScalarShiftByConstant(
3655         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
3656   }
3657 
3658   // TODO: Expand with known bits.
3659 
3660   // Handle the fully general expansion by an unknown amount.
3661   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
3662 
3663   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3664   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3665   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3666 
3667   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
3668   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
3669 
3670   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
3671   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
3672   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
3673 
3674   Register ResultRegs[2];
3675   switch (MI.getOpcode()) {
3676   case TargetOpcode::G_SHL: {
3677     // Short: ShAmt < NewBitSize
3678     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
3679 
3680     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
3681     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
3682     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3683 
3684     // Long: ShAmt >= NewBitSize
3685     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
3686     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
3687 
3688     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
3689     auto Hi = MIRBuilder.buildSelect(
3690         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
3691 
3692     ResultRegs[0] = Lo.getReg(0);
3693     ResultRegs[1] = Hi.getReg(0);
3694     break;
3695   }
3696   case TargetOpcode::G_LSHR:
3697   case TargetOpcode::G_ASHR: {
3698     // Short: ShAmt < NewBitSize
3699     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
3700 
3701     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
3702     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
3703     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3704 
3705     // Long: ShAmt >= NewBitSize
3706     MachineInstrBuilder HiL;
3707     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3708       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
3709     } else {
3710       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
3711       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
3712     }
3713     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
3714                                      {InH, AmtExcess});     // Lo from Hi part.
3715 
3716     auto Lo = MIRBuilder.buildSelect(
3717         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
3718 
3719     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
3720 
3721     ResultRegs[0] = Lo.getReg(0);
3722     ResultRegs[1] = Hi.getReg(0);
3723     break;
3724   }
3725   default:
3726     llvm_unreachable("not a shift");
3727   }
3728 
3729   MIRBuilder.buildMerge(DstReg, ResultRegs);
3730   MI.eraseFromParent();
3731   return Legalized;
3732 }
3733 
3734 LegalizerHelper::LegalizeResult
3735 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3736                                        LLT MoreTy) {
3737   assert(TypeIdx == 0 && "Expecting only Idx 0");
3738 
3739   Observer.changingInstr(MI);
3740   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3741     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3742     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3743     moreElementsVectorSrc(MI, MoreTy, I);
3744   }
3745 
3746   MachineBasicBlock &MBB = *MI.getParent();
3747   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
3748   moreElementsVectorDst(MI, MoreTy, 0);
3749   Observer.changedInstr(MI);
3750   return Legalized;
3751 }
3752 
3753 LegalizerHelper::LegalizeResult
3754 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
3755                                     LLT MoreTy) {
3756   unsigned Opc = MI.getOpcode();
3757   switch (Opc) {
3758   case TargetOpcode::G_IMPLICIT_DEF:
3759   case TargetOpcode::G_LOAD: {
3760     if (TypeIdx != 0)
3761       return UnableToLegalize;
3762     Observer.changingInstr(MI);
3763     moreElementsVectorDst(MI, MoreTy, 0);
3764     Observer.changedInstr(MI);
3765     return Legalized;
3766   }
3767   case TargetOpcode::G_STORE:
3768     if (TypeIdx != 0)
3769       return UnableToLegalize;
3770     Observer.changingInstr(MI);
3771     moreElementsVectorSrc(MI, MoreTy, 0);
3772     Observer.changedInstr(MI);
3773     return Legalized;
3774   case TargetOpcode::G_AND:
3775   case TargetOpcode::G_OR:
3776   case TargetOpcode::G_XOR:
3777   case TargetOpcode::G_SMIN:
3778   case TargetOpcode::G_SMAX:
3779   case TargetOpcode::G_UMIN:
3780   case TargetOpcode::G_UMAX:
3781   case TargetOpcode::G_FMINNUM:
3782   case TargetOpcode::G_FMAXNUM:
3783   case TargetOpcode::G_FMINNUM_IEEE:
3784   case TargetOpcode::G_FMAXNUM_IEEE:
3785   case TargetOpcode::G_FMINIMUM:
3786   case TargetOpcode::G_FMAXIMUM: {
3787     Observer.changingInstr(MI);
3788     moreElementsVectorSrc(MI, MoreTy, 1);
3789     moreElementsVectorSrc(MI, MoreTy, 2);
3790     moreElementsVectorDst(MI, MoreTy, 0);
3791     Observer.changedInstr(MI);
3792     return Legalized;
3793   }
3794   case TargetOpcode::G_EXTRACT:
3795     if (TypeIdx != 1)
3796       return UnableToLegalize;
3797     Observer.changingInstr(MI);
3798     moreElementsVectorSrc(MI, MoreTy, 1);
3799     Observer.changedInstr(MI);
3800     return Legalized;
3801   case TargetOpcode::G_INSERT:
3802   case TargetOpcode::G_FREEZE:
3803     if (TypeIdx != 0)
3804       return UnableToLegalize;
3805     Observer.changingInstr(MI);
3806     moreElementsVectorSrc(MI, MoreTy, 1);
3807     moreElementsVectorDst(MI, MoreTy, 0);
3808     Observer.changedInstr(MI);
3809     return Legalized;
3810   case TargetOpcode::G_SELECT:
3811     if (TypeIdx != 0)
3812       return UnableToLegalize;
3813     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
3814       return UnableToLegalize;
3815 
3816     Observer.changingInstr(MI);
3817     moreElementsVectorSrc(MI, MoreTy, 2);
3818     moreElementsVectorSrc(MI, MoreTy, 3);
3819     moreElementsVectorDst(MI, MoreTy, 0);
3820     Observer.changedInstr(MI);
3821     return Legalized;
3822   case TargetOpcode::G_UNMERGE_VALUES: {
3823     if (TypeIdx != 1)
3824       return UnableToLegalize;
3825 
3826     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3827     int NumDst = MI.getNumOperands() - 1;
3828     moreElementsVectorSrc(MI, MoreTy, NumDst);
3829 
3830     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3831     for (int I = 0; I != NumDst; ++I)
3832       MIB.addDef(MI.getOperand(I).getReg());
3833 
3834     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
3835     for (int I = NumDst; I != NewNumDst; ++I)
3836       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
3837 
3838     MIB.addUse(MI.getOperand(NumDst).getReg());
3839     MI.eraseFromParent();
3840     return Legalized;
3841   }
3842   case TargetOpcode::G_PHI:
3843     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
3844   default:
3845     return UnableToLegalize;
3846   }
3847 }
3848 
3849 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
3850                                         ArrayRef<Register> Src1Regs,
3851                                         ArrayRef<Register> Src2Regs,
3852                                         LLT NarrowTy) {
3853   MachineIRBuilder &B = MIRBuilder;
3854   unsigned SrcParts = Src1Regs.size();
3855   unsigned DstParts = DstRegs.size();
3856 
3857   unsigned DstIdx = 0; // Low bits of the result.
3858   Register FactorSum =
3859       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
3860   DstRegs[DstIdx] = FactorSum;
3861 
3862   unsigned CarrySumPrevDstIdx;
3863   SmallVector<Register, 4> Factors;
3864 
3865   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
3866     // Collect low parts of muls for DstIdx.
3867     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
3868          i <= std::min(DstIdx, SrcParts - 1); ++i) {
3869       MachineInstrBuilder Mul =
3870           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
3871       Factors.push_back(Mul.getReg(0));
3872     }
3873     // Collect high parts of muls from previous DstIdx.
3874     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
3875          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
3876       MachineInstrBuilder Umulh =
3877           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
3878       Factors.push_back(Umulh.getReg(0));
3879     }
3880     // Add CarrySum from additions calculated for previous DstIdx.
3881     if (DstIdx != 1) {
3882       Factors.push_back(CarrySumPrevDstIdx);
3883     }
3884 
3885     Register CarrySum;
3886     // Add all factors and accumulate all carries into CarrySum.
3887     if (DstIdx != DstParts - 1) {
3888       MachineInstrBuilder Uaddo =
3889           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
3890       FactorSum = Uaddo.getReg(0);
3891       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
3892       for (unsigned i = 2; i < Factors.size(); ++i) {
3893         MachineInstrBuilder Uaddo =
3894             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
3895         FactorSum = Uaddo.getReg(0);
3896         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
3897         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
3898       }
3899     } else {
3900       // Since value for the next index is not calculated, neither is CarrySum.
3901       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
3902       for (unsigned i = 2; i < Factors.size(); ++i)
3903         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
3904     }
3905 
3906     CarrySumPrevDstIdx = CarrySum;
3907     DstRegs[DstIdx] = FactorSum;
3908     Factors.clear();
3909   }
3910 }
3911 
3912 LegalizerHelper::LegalizeResult
3913 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
3914   Register DstReg = MI.getOperand(0).getReg();
3915   Register Src1 = MI.getOperand(1).getReg();
3916   Register Src2 = MI.getOperand(2).getReg();
3917 
3918   LLT Ty = MRI.getType(DstReg);
3919   if (Ty.isVector())
3920     return UnableToLegalize;
3921 
3922   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
3923   unsigned DstSize = Ty.getSizeInBits();
3924   unsigned NarrowSize = NarrowTy.getSizeInBits();
3925   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
3926     return UnableToLegalize;
3927 
3928   unsigned NumDstParts = DstSize / NarrowSize;
3929   unsigned NumSrcParts = SrcSize / NarrowSize;
3930   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
3931   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
3932 
3933   SmallVector<Register, 2> Src1Parts, Src2Parts;
3934   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
3935   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
3936   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
3937   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
3938 
3939   // Take only high half of registers if this is high mul.
3940   ArrayRef<Register> DstRegs(
3941       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
3942   MIRBuilder.buildMerge(DstReg, DstRegs);
3943   MI.eraseFromParent();
3944   return Legalized;
3945 }
3946 
3947 LegalizerHelper::LegalizeResult
3948 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
3949                                      LLT NarrowTy) {
3950   if (TypeIdx != 1)
3951     return UnableToLegalize;
3952 
3953   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3954 
3955   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
3956   // FIXME: add support for when SizeOp1 isn't an exact multiple of
3957   // NarrowSize.
3958   if (SizeOp1 % NarrowSize != 0)
3959     return UnableToLegalize;
3960   int NumParts = SizeOp1 / NarrowSize;
3961 
3962   SmallVector<Register, 2> SrcRegs, DstRegs;
3963   SmallVector<uint64_t, 2> Indexes;
3964   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3965 
3966   Register OpReg = MI.getOperand(0).getReg();
3967   uint64_t OpStart = MI.getOperand(2).getImm();
3968   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3969   for (int i = 0; i < NumParts; ++i) {
3970     unsigned SrcStart = i * NarrowSize;
3971 
3972     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
3973       // No part of the extract uses this subregister, ignore it.
3974       continue;
3975     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3976       // The entire subregister is extracted, forward the value.
3977       DstRegs.push_back(SrcRegs[i]);
3978       continue;
3979     }
3980 
3981     // OpSegStart is where this destination segment would start in OpReg if it
3982     // extended infinitely in both directions.
3983     int64_t ExtractOffset;
3984     uint64_t SegSize;
3985     if (OpStart < SrcStart) {
3986       ExtractOffset = 0;
3987       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
3988     } else {
3989       ExtractOffset = OpStart - SrcStart;
3990       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
3991     }
3992 
3993     Register SegReg = SrcRegs[i];
3994     if (ExtractOffset != 0 || SegSize != NarrowSize) {
3995       // A genuine extract is needed.
3996       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3997       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
3998     }
3999 
4000     DstRegs.push_back(SegReg);
4001   }
4002 
4003   Register DstReg = MI.getOperand(0).getReg();
4004   if (MRI.getType(DstReg).isVector())
4005     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4006   else if (DstRegs.size() > 1)
4007     MIRBuilder.buildMerge(DstReg, DstRegs);
4008   else
4009     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4010   MI.eraseFromParent();
4011   return Legalized;
4012 }
4013 
4014 LegalizerHelper::LegalizeResult
4015 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4016                                     LLT NarrowTy) {
4017   // FIXME: Don't know how to handle secondary types yet.
4018   if (TypeIdx != 0)
4019     return UnableToLegalize;
4020 
4021   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4022   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4023 
4024   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4025   // NarrowSize.
4026   if (SizeOp0 % NarrowSize != 0)
4027     return UnableToLegalize;
4028 
4029   int NumParts = SizeOp0 / NarrowSize;
4030 
4031   SmallVector<Register, 2> SrcRegs, DstRegs;
4032   SmallVector<uint64_t, 2> Indexes;
4033   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4034 
4035   Register OpReg = MI.getOperand(2).getReg();
4036   uint64_t OpStart = MI.getOperand(3).getImm();
4037   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4038   for (int i = 0; i < NumParts; ++i) {
4039     unsigned DstStart = i * NarrowSize;
4040 
4041     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4042       // No part of the insert affects this subregister, forward the original.
4043       DstRegs.push_back(SrcRegs[i]);
4044       continue;
4045     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4046       // The entire subregister is defined by this insert, forward the new
4047       // value.
4048       DstRegs.push_back(OpReg);
4049       continue;
4050     }
4051 
4052     // OpSegStart is where this destination segment would start in OpReg if it
4053     // extended infinitely in both directions.
4054     int64_t ExtractOffset, InsertOffset;
4055     uint64_t SegSize;
4056     if (OpStart < DstStart) {
4057       InsertOffset = 0;
4058       ExtractOffset = DstStart - OpStart;
4059       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4060     } else {
4061       InsertOffset = OpStart - DstStart;
4062       ExtractOffset = 0;
4063       SegSize =
4064         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4065     }
4066 
4067     Register SegReg = OpReg;
4068     if (ExtractOffset != 0 || SegSize != OpSize) {
4069       // A genuine extract is needed.
4070       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4071       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4072     }
4073 
4074     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4075     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4076     DstRegs.push_back(DstReg);
4077   }
4078 
4079   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4080   Register DstReg = MI.getOperand(0).getReg();
4081   if(MRI.getType(DstReg).isVector())
4082     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4083   else
4084     MIRBuilder.buildMerge(DstReg, DstRegs);
4085   MI.eraseFromParent();
4086   return Legalized;
4087 }
4088 
4089 LegalizerHelper::LegalizeResult
4090 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4091                                    LLT NarrowTy) {
4092   Register DstReg = MI.getOperand(0).getReg();
4093   LLT DstTy = MRI.getType(DstReg);
4094 
4095   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4096 
4097   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4098   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4099   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4100   LLT LeftoverTy;
4101   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4102                     Src0Regs, Src0LeftoverRegs))
4103     return UnableToLegalize;
4104 
4105   LLT Unused;
4106   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4107                     Src1Regs, Src1LeftoverRegs))
4108     llvm_unreachable("inconsistent extractParts result");
4109 
4110   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4111     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4112                                         {Src0Regs[I], Src1Regs[I]});
4113     DstRegs.push_back(Inst.getReg(0));
4114   }
4115 
4116   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4117     auto Inst = MIRBuilder.buildInstr(
4118       MI.getOpcode(),
4119       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4120     DstLeftoverRegs.push_back(Inst.getReg(0));
4121   }
4122 
4123   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4124               LeftoverTy, DstLeftoverRegs);
4125 
4126   MI.eraseFromParent();
4127   return Legalized;
4128 }
4129 
4130 LegalizerHelper::LegalizeResult
4131 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4132                                  LLT NarrowTy) {
4133   if (TypeIdx != 0)
4134     return UnableToLegalize;
4135 
4136   Register DstReg = MI.getOperand(0).getReg();
4137   Register SrcReg = MI.getOperand(1).getReg();
4138 
4139   LLT DstTy = MRI.getType(DstReg);
4140   if (DstTy.isVector())
4141     return UnableToLegalize;
4142 
4143   SmallVector<Register, 8> Parts;
4144   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4145   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4146   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4147 
4148   MI.eraseFromParent();
4149   return Legalized;
4150 }
4151 
4152 LegalizerHelper::LegalizeResult
4153 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4154                                     LLT NarrowTy) {
4155   if (TypeIdx != 0)
4156     return UnableToLegalize;
4157 
4158   Register CondReg = MI.getOperand(1).getReg();
4159   LLT CondTy = MRI.getType(CondReg);
4160   if (CondTy.isVector()) // TODO: Handle vselect
4161     return UnableToLegalize;
4162 
4163   Register DstReg = MI.getOperand(0).getReg();
4164   LLT DstTy = MRI.getType(DstReg);
4165 
4166   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4167   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4168   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4169   LLT LeftoverTy;
4170   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4171                     Src1Regs, Src1LeftoverRegs))
4172     return UnableToLegalize;
4173 
4174   LLT Unused;
4175   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4176                     Src2Regs, Src2LeftoverRegs))
4177     llvm_unreachable("inconsistent extractParts result");
4178 
4179   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4180     auto Select = MIRBuilder.buildSelect(NarrowTy,
4181                                          CondReg, Src1Regs[I], Src2Regs[I]);
4182     DstRegs.push_back(Select.getReg(0));
4183   }
4184 
4185   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4186     auto Select = MIRBuilder.buildSelect(
4187       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4188     DstLeftoverRegs.push_back(Select.getReg(0));
4189   }
4190 
4191   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4192               LeftoverTy, DstLeftoverRegs);
4193 
4194   MI.eraseFromParent();
4195   return Legalized;
4196 }
4197 
4198 LegalizerHelper::LegalizeResult
4199 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4200                                   LLT NarrowTy) {
4201   if (TypeIdx != 1)
4202     return UnableToLegalize;
4203 
4204   Register DstReg = MI.getOperand(0).getReg();
4205   Register SrcReg = MI.getOperand(1).getReg();
4206   LLT DstTy = MRI.getType(DstReg);
4207   LLT SrcTy = MRI.getType(SrcReg);
4208   unsigned NarrowSize = NarrowTy.getSizeInBits();
4209 
4210   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4211     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4212 
4213     MachineIRBuilder &B = MIRBuilder;
4214     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4215     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4216     auto C_0 = B.buildConstant(NarrowTy, 0);
4217     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4218                                 UnmergeSrc.getReg(1), C_0);
4219     auto LoCTLZ = IsUndef ?
4220       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4221       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4222     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4223     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4224     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4225     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4226 
4227     MI.eraseFromParent();
4228     return Legalized;
4229   }
4230 
4231   return UnableToLegalize;
4232 }
4233 
4234 LegalizerHelper::LegalizeResult
4235 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4236                                   LLT NarrowTy) {
4237   if (TypeIdx != 1)
4238     return UnableToLegalize;
4239 
4240   Register DstReg = MI.getOperand(0).getReg();
4241   Register SrcReg = MI.getOperand(1).getReg();
4242   LLT DstTy = MRI.getType(DstReg);
4243   LLT SrcTy = MRI.getType(SrcReg);
4244   unsigned NarrowSize = NarrowTy.getSizeInBits();
4245 
4246   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4247     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4248 
4249     MachineIRBuilder &B = MIRBuilder;
4250     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4251     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4252     auto C_0 = B.buildConstant(NarrowTy, 0);
4253     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4254                                 UnmergeSrc.getReg(0), C_0);
4255     auto HiCTTZ = IsUndef ?
4256       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4257       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4258     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4259     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4260     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4261     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4262 
4263     MI.eraseFromParent();
4264     return Legalized;
4265   }
4266 
4267   return UnableToLegalize;
4268 }
4269 
4270 LegalizerHelper::LegalizeResult
4271 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4272                                    LLT NarrowTy) {
4273   if (TypeIdx != 1)
4274     return UnableToLegalize;
4275 
4276   Register DstReg = MI.getOperand(0).getReg();
4277   LLT DstTy = MRI.getType(DstReg);
4278   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4279   unsigned NarrowSize = NarrowTy.getSizeInBits();
4280 
4281   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4282     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4283 
4284     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4285     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4286     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4287 
4288     MI.eraseFromParent();
4289     return Legalized;
4290   }
4291 
4292   return UnableToLegalize;
4293 }
4294 
4295 LegalizerHelper::LegalizeResult
4296 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4297   unsigned Opc = MI.getOpcode();
4298   const auto &TII = MIRBuilder.getTII();
4299   auto isSupported = [this](const LegalityQuery &Q) {
4300     auto QAction = LI.getAction(Q).Action;
4301     return QAction == Legal || QAction == Libcall || QAction == Custom;
4302   };
4303   switch (Opc) {
4304   default:
4305     return UnableToLegalize;
4306   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4307     // This trivially expands to CTLZ.
4308     Observer.changingInstr(MI);
4309     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4310     Observer.changedInstr(MI);
4311     return Legalized;
4312   }
4313   case TargetOpcode::G_CTLZ: {
4314     Register DstReg = MI.getOperand(0).getReg();
4315     Register SrcReg = MI.getOperand(1).getReg();
4316     LLT DstTy = MRI.getType(DstReg);
4317     LLT SrcTy = MRI.getType(SrcReg);
4318     unsigned Len = SrcTy.getSizeInBits();
4319 
4320     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4321       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4322       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4323       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4324       auto ICmp = MIRBuilder.buildICmp(
4325           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4326       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4327       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4328       MI.eraseFromParent();
4329       return Legalized;
4330     }
4331     // for now, we do this:
4332     // NewLen = NextPowerOf2(Len);
4333     // x = x | (x >> 1);
4334     // x = x | (x >> 2);
4335     // ...
4336     // x = x | (x >>16);
4337     // x = x | (x >>32); // for 64-bit input
4338     // Upto NewLen/2
4339     // return Len - popcount(x);
4340     //
4341     // Ref: "Hacker's Delight" by Henry Warren
4342     Register Op = SrcReg;
4343     unsigned NewLen = PowerOf2Ceil(Len);
4344     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4345       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4346       auto MIBOp = MIRBuilder.buildOr(
4347           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4348       Op = MIBOp.getReg(0);
4349     }
4350     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4351     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4352                         MIBPop);
4353     MI.eraseFromParent();
4354     return Legalized;
4355   }
4356   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4357     // This trivially expands to CTTZ.
4358     Observer.changingInstr(MI);
4359     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4360     Observer.changedInstr(MI);
4361     return Legalized;
4362   }
4363   case TargetOpcode::G_CTTZ: {
4364     Register DstReg = MI.getOperand(0).getReg();
4365     Register SrcReg = MI.getOperand(1).getReg();
4366     LLT DstTy = MRI.getType(DstReg);
4367     LLT SrcTy = MRI.getType(SrcReg);
4368 
4369     unsigned Len = SrcTy.getSizeInBits();
4370     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4371       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4372       // zero.
4373       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4374       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4375       auto ICmp = MIRBuilder.buildICmp(
4376           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4377       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4378       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4379       MI.eraseFromParent();
4380       return Legalized;
4381     }
4382     // for now, we use: { return popcount(~x & (x - 1)); }
4383     // unless the target has ctlz but not ctpop, in which case we use:
4384     // { return 32 - nlz(~x & (x-1)); }
4385     // Ref: "Hacker's Delight" by Henry Warren
4386     auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
4387     auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1);
4388     auto MIBTmp = MIRBuilder.buildAnd(
4389         Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1));
4390     if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
4391         isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
4392       auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
4393       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4394                           MIRBuilder.buildCTLZ(Ty, MIBTmp));
4395       MI.eraseFromParent();
4396       return Legalized;
4397     }
4398     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4399     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4400     return Legalized;
4401   }
4402   case TargetOpcode::G_CTPOP: {
4403     unsigned Size = Ty.getSizeInBits();
4404     MachineIRBuilder &B = MIRBuilder;
4405 
4406     // Count set bits in blocks of 2 bits. Default approach would be
4407     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4408     // We use following formula instead:
4409     // B2Count = val - { (val >> 1) & 0x55555555 }
4410     // since it gives same result in blocks of 2 with one instruction less.
4411     auto C_1 = B.buildConstant(Ty, 1);
4412     auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1);
4413     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4414     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4415     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4416     auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi);
4417 
4418     // In order to get count in blocks of 4 add values from adjacent block of 2.
4419     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4420     auto C_2 = B.buildConstant(Ty, 2);
4421     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4422     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4423     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4424     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4425     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4426     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4427 
4428     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4429     // addition since count value sits in range {0,...,8} and 4 bits are enough
4430     // to hold such binary values. After addition high 4 bits still hold count
4431     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4432     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4433     auto C_4 = B.buildConstant(Ty, 4);
4434     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4435     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4436     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4437     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4438     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4439 
4440     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4441     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4442     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4443     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4444     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4445 
4446     // Shift count result from 8 high bits to low bits.
4447     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4448     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4449 
4450     MI.eraseFromParent();
4451     return Legalized;
4452   }
4453   }
4454 }
4455 
4456 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4457 // representation.
4458 LegalizerHelper::LegalizeResult
4459 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4460   Register Dst = MI.getOperand(0).getReg();
4461   Register Src = MI.getOperand(1).getReg();
4462   const LLT S64 = LLT::scalar(64);
4463   const LLT S32 = LLT::scalar(32);
4464   const LLT S1 = LLT::scalar(1);
4465 
4466   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
4467 
4468   // unsigned cul2f(ulong u) {
4469   //   uint lz = clz(u);
4470   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
4471   //   u = (u << lz) & 0x7fffffffffffffffUL;
4472   //   ulong t = u & 0xffffffffffUL;
4473   //   uint v = (e << 23) | (uint)(u >> 40);
4474   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
4475   //   return as_float(v + r);
4476   // }
4477 
4478   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
4479   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
4480 
4481   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
4482 
4483   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
4484   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
4485 
4486   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
4487   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
4488 
4489   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
4490   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
4491 
4492   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
4493 
4494   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
4495   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
4496 
4497   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
4498   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
4499   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
4500 
4501   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
4502   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
4503   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
4504   auto One = MIRBuilder.buildConstant(S32, 1);
4505 
4506   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
4507   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
4508   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
4509   MIRBuilder.buildAdd(Dst, V, R);
4510 
4511   MI.eraseFromParent();
4512   return Legalized;
4513 }
4514 
4515 LegalizerHelper::LegalizeResult
4516 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4517   Register Dst = MI.getOperand(0).getReg();
4518   Register Src = MI.getOperand(1).getReg();
4519   LLT DstTy = MRI.getType(Dst);
4520   LLT SrcTy = MRI.getType(Src);
4521 
4522   if (SrcTy == LLT::scalar(1)) {
4523     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
4524     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4525     MIRBuilder.buildSelect(Dst, Src, True, False);
4526     MI.eraseFromParent();
4527     return Legalized;
4528   }
4529 
4530   if (SrcTy != LLT::scalar(64))
4531     return UnableToLegalize;
4532 
4533   if (DstTy == LLT::scalar(32)) {
4534     // TODO: SelectionDAG has several alternative expansions to port which may
4535     // be more reasonble depending on the available instructions. If a target
4536     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
4537     // intermediate type, this is probably worse.
4538     return lowerU64ToF32BitOps(MI);
4539   }
4540 
4541   return UnableToLegalize;
4542 }
4543 
4544 LegalizerHelper::LegalizeResult
4545 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4546   Register Dst = MI.getOperand(0).getReg();
4547   Register Src = MI.getOperand(1).getReg();
4548   LLT DstTy = MRI.getType(Dst);
4549   LLT SrcTy = MRI.getType(Src);
4550 
4551   const LLT S64 = LLT::scalar(64);
4552   const LLT S32 = LLT::scalar(32);
4553   const LLT S1 = LLT::scalar(1);
4554 
4555   if (SrcTy == S1) {
4556     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
4557     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4558     MIRBuilder.buildSelect(Dst, Src, True, False);
4559     MI.eraseFromParent();
4560     return Legalized;
4561   }
4562 
4563   if (SrcTy != S64)
4564     return UnableToLegalize;
4565 
4566   if (DstTy == S32) {
4567     // signed cl2f(long l) {
4568     //   long s = l >> 63;
4569     //   float r = cul2f((l + s) ^ s);
4570     //   return s ? -r : r;
4571     // }
4572     Register L = Src;
4573     auto SignBit = MIRBuilder.buildConstant(S64, 63);
4574     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
4575 
4576     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
4577     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
4578     auto R = MIRBuilder.buildUITOFP(S32, Xor);
4579 
4580     auto RNeg = MIRBuilder.buildFNeg(S32, R);
4581     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
4582                                             MIRBuilder.buildConstant(S64, 0));
4583     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
4584     MI.eraseFromParent();
4585     return Legalized;
4586   }
4587 
4588   return UnableToLegalize;
4589 }
4590 
4591 LegalizerHelper::LegalizeResult
4592 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4593   Register Dst = MI.getOperand(0).getReg();
4594   Register Src = MI.getOperand(1).getReg();
4595   LLT DstTy = MRI.getType(Dst);
4596   LLT SrcTy = MRI.getType(Src);
4597   const LLT S64 = LLT::scalar(64);
4598   const LLT S32 = LLT::scalar(32);
4599 
4600   if (SrcTy != S64 && SrcTy != S32)
4601     return UnableToLegalize;
4602   if (DstTy != S32 && DstTy != S64)
4603     return UnableToLegalize;
4604 
4605   // FPTOSI gives same result as FPTOUI for positive signed integers.
4606   // FPTOUI needs to deal with fp values that convert to unsigned integers
4607   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
4608 
4609   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
4610   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
4611                                                 : APFloat::IEEEdouble(),
4612                     APInt::getNullValue(SrcTy.getSizeInBits()));
4613   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
4614 
4615   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
4616 
4617   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
4618   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
4619   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
4620   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
4621   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
4622   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
4623   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
4624 
4625   const LLT S1 = LLT::scalar(1);
4626 
4627   MachineInstrBuilder FCMP =
4628       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
4629   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
4630 
4631   MI.eraseFromParent();
4632   return Legalized;
4633 }
4634 
4635 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
4636   Register Dst = MI.getOperand(0).getReg();
4637   Register Src = MI.getOperand(1).getReg();
4638   LLT DstTy = MRI.getType(Dst);
4639   LLT SrcTy = MRI.getType(Src);
4640   const LLT S64 = LLT::scalar(64);
4641   const LLT S32 = LLT::scalar(32);
4642 
4643   // FIXME: Only f32 to i64 conversions are supported.
4644   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
4645     return UnableToLegalize;
4646 
4647   // Expand f32 -> i64 conversion
4648   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4649   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4650 
4651   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
4652 
4653   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
4654   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
4655 
4656   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
4657   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
4658 
4659   auto SignMask = MIRBuilder.buildConstant(SrcTy,
4660                                            APInt::getSignMask(SrcEltBits));
4661   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
4662   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
4663   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
4664   Sign = MIRBuilder.buildSExt(DstTy, Sign);
4665 
4666   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
4667   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
4668   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
4669 
4670   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
4671   R = MIRBuilder.buildZExt(DstTy, R);
4672 
4673   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
4674   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
4675   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
4676   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
4677 
4678   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
4679   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
4680 
4681   const LLT S1 = LLT::scalar(1);
4682   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
4683                                     S1, Exponent, ExponentLoBit);
4684 
4685   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
4686 
4687   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
4688   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
4689 
4690   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
4691 
4692   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
4693                                           S1, Exponent, ZeroSrcTy);
4694 
4695   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
4696   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
4697 
4698   MI.eraseFromParent();
4699   return Legalized;
4700 }
4701 
4702 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
4703 LegalizerHelper::LegalizeResult
4704 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
4705   Register Dst = MI.getOperand(0).getReg();
4706   Register Src = MI.getOperand(1).getReg();
4707 
4708   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
4709     return UnableToLegalize;
4710 
4711   const unsigned ExpMask = 0x7ff;
4712   const unsigned ExpBiasf64 = 1023;
4713   const unsigned ExpBiasf16 = 15;
4714   const LLT S32 = LLT::scalar(32);
4715   const LLT S1 = LLT::scalar(1);
4716 
4717   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
4718   Register U = Unmerge.getReg(0);
4719   Register UH = Unmerge.getReg(1);
4720 
4721   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
4722   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
4723 
4724   // Subtract the fp64 exponent bias (1023) to get the real exponent and
4725   // add the f16 bias (15) to get the biased exponent for the f16 format.
4726   E = MIRBuilder.buildAdd(
4727     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
4728 
4729   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
4730   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
4731 
4732   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
4733                                        MIRBuilder.buildConstant(S32, 0x1ff));
4734   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
4735 
4736   auto Zero = MIRBuilder.buildConstant(S32, 0);
4737   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
4738   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
4739   M = MIRBuilder.buildOr(S32, M, Lo40Set);
4740 
4741   // (M != 0 ? 0x0200 : 0) | 0x7c00;
4742   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
4743   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
4744   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
4745 
4746   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
4747   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
4748 
4749   // N = M | (E << 12);
4750   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
4751   auto N = MIRBuilder.buildOr(S32, M, EShl12);
4752 
4753   // B = clamp(1-E, 0, 13);
4754   auto One = MIRBuilder.buildConstant(S32, 1);
4755   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
4756   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
4757   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
4758 
4759   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
4760                                        MIRBuilder.buildConstant(S32, 0x1000));
4761 
4762   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
4763   auto D0 = MIRBuilder.buildShl(S32, D, B);
4764 
4765   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
4766                                              D0, SigSetHigh);
4767   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
4768   D = MIRBuilder.buildOr(S32, D, D1);
4769 
4770   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
4771   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
4772 
4773   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
4774   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
4775 
4776   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
4777                                        MIRBuilder.buildConstant(S32, 3));
4778   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
4779 
4780   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
4781                                        MIRBuilder.buildConstant(S32, 5));
4782   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
4783 
4784   V1 = MIRBuilder.buildOr(S32, V0, V1);
4785   V = MIRBuilder.buildAdd(S32, V, V1);
4786 
4787   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
4788                                        E, MIRBuilder.buildConstant(S32, 30));
4789   V = MIRBuilder.buildSelect(S32, CmpEGt30,
4790                              MIRBuilder.buildConstant(S32, 0x7c00), V);
4791 
4792   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
4793                                          E, MIRBuilder.buildConstant(S32, 1039));
4794   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
4795 
4796   // Extract the sign bit.
4797   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
4798   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
4799 
4800   // Insert the sign bit
4801   V = MIRBuilder.buildOr(S32, Sign, V);
4802 
4803   MIRBuilder.buildTrunc(Dst, V);
4804   MI.eraseFromParent();
4805   return Legalized;
4806 }
4807 
4808 LegalizerHelper::LegalizeResult
4809 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4810   Register Dst = MI.getOperand(0).getReg();
4811   Register Src = MI.getOperand(1).getReg();
4812 
4813   LLT DstTy = MRI.getType(Dst);
4814   LLT SrcTy = MRI.getType(Src);
4815   const LLT S64 = LLT::scalar(64);
4816   const LLT S16 = LLT::scalar(16);
4817 
4818   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
4819     return lowerFPTRUNC_F64_TO_F16(MI);
4820 
4821   return UnableToLegalize;
4822 }
4823 
4824 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
4825   switch (Opc) {
4826   case TargetOpcode::G_SMIN:
4827     return CmpInst::ICMP_SLT;
4828   case TargetOpcode::G_SMAX:
4829     return CmpInst::ICMP_SGT;
4830   case TargetOpcode::G_UMIN:
4831     return CmpInst::ICMP_ULT;
4832   case TargetOpcode::G_UMAX:
4833     return CmpInst::ICMP_UGT;
4834   default:
4835     llvm_unreachable("not in integer min/max");
4836   }
4837 }
4838 
4839 LegalizerHelper::LegalizeResult
4840 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4841   Register Dst = MI.getOperand(0).getReg();
4842   Register Src0 = MI.getOperand(1).getReg();
4843   Register Src1 = MI.getOperand(2).getReg();
4844 
4845   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
4846   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
4847 
4848   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
4849   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
4850 
4851   MI.eraseFromParent();
4852   return Legalized;
4853 }
4854 
4855 LegalizerHelper::LegalizeResult
4856 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4857   Register Dst = MI.getOperand(0).getReg();
4858   Register Src0 = MI.getOperand(1).getReg();
4859   Register Src1 = MI.getOperand(2).getReg();
4860 
4861   const LLT Src0Ty = MRI.getType(Src0);
4862   const LLT Src1Ty = MRI.getType(Src1);
4863 
4864   const int Src0Size = Src0Ty.getScalarSizeInBits();
4865   const int Src1Size = Src1Ty.getScalarSizeInBits();
4866 
4867   auto SignBitMask = MIRBuilder.buildConstant(
4868     Src0Ty, APInt::getSignMask(Src0Size));
4869 
4870   auto NotSignBitMask = MIRBuilder.buildConstant(
4871     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
4872 
4873   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
4874   MachineInstr *Or;
4875 
4876   if (Src0Ty == Src1Ty) {
4877     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
4878     Or = MIRBuilder.buildOr(Dst, And0, And1);
4879   } else if (Src0Size > Src1Size) {
4880     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
4881     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
4882     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
4883     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
4884     Or = MIRBuilder.buildOr(Dst, And0, And1);
4885   } else {
4886     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
4887     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
4888     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
4889     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
4890     Or = MIRBuilder.buildOr(Dst, And0, And1);
4891   }
4892 
4893   // Be careful about setting nsz/nnan/ninf on every instruction, since the
4894   // constants are a nan and -0.0, but the final result should preserve
4895   // everything.
4896   if (unsigned Flags = MI.getFlags())
4897     Or->setFlags(Flags);
4898 
4899   MI.eraseFromParent();
4900   return Legalized;
4901 }
4902 
4903 LegalizerHelper::LegalizeResult
4904 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
4905   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
4906     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
4907 
4908   Register Dst = MI.getOperand(0).getReg();
4909   Register Src0 = MI.getOperand(1).getReg();
4910   Register Src1 = MI.getOperand(2).getReg();
4911   LLT Ty = MRI.getType(Dst);
4912 
4913   if (!MI.getFlag(MachineInstr::FmNoNans)) {
4914     // Insert canonicalizes if it's possible we need to quiet to get correct
4915     // sNaN behavior.
4916 
4917     // Note this must be done here, and not as an optimization combine in the
4918     // absence of a dedicate quiet-snan instruction as we're using an
4919     // omni-purpose G_FCANONICALIZE.
4920     if (!isKnownNeverSNaN(Src0, MRI))
4921       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
4922 
4923     if (!isKnownNeverSNaN(Src1, MRI))
4924       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
4925   }
4926 
4927   // If there are no nans, it's safe to simply replace this with the non-IEEE
4928   // version.
4929   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
4930   MI.eraseFromParent();
4931   return Legalized;
4932 }
4933 
4934 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
4935   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
4936   Register DstReg = MI.getOperand(0).getReg();
4937   LLT Ty = MRI.getType(DstReg);
4938   unsigned Flags = MI.getFlags();
4939 
4940   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
4941                                   Flags);
4942   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
4943   MI.eraseFromParent();
4944   return Legalized;
4945 }
4946 
4947 LegalizerHelper::LegalizeResult
4948 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
4949   Register DstReg = MI.getOperand(0).getReg();
4950   Register X = MI.getOperand(1).getReg();
4951   const unsigned Flags = MI.getFlags();
4952   const LLT Ty = MRI.getType(DstReg);
4953   const LLT CondTy = Ty.changeElementSize(1);
4954 
4955   // round(x) =>
4956   //  t = trunc(x);
4957   //  d = fabs(x - t);
4958   //  o = copysign(1.0f, x);
4959   //  return t + (d >= 0.5 ? o : 0.0);
4960 
4961   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
4962 
4963   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
4964   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
4965   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4966   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
4967   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
4968   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
4969 
4970   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
4971                                   Flags);
4972   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
4973 
4974   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
4975 
4976   MI.eraseFromParent();
4977   return Legalized;
4978 }
4979 
4980 LegalizerHelper::LegalizeResult
4981 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
4982   Register DstReg = MI.getOperand(0).getReg();
4983   Register SrcReg = MI.getOperand(1).getReg();
4984   unsigned Flags = MI.getFlags();
4985   LLT Ty = MRI.getType(DstReg);
4986   const LLT CondTy = Ty.changeElementSize(1);
4987 
4988   // result = trunc(src);
4989   // if (src < 0.0 && src != result)
4990   //   result += -1.0.
4991 
4992   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
4993   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4994 
4995   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
4996                                   SrcReg, Zero, Flags);
4997   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
4998                                       SrcReg, Trunc, Flags);
4999   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
5000   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
5001 
5002   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
5003   MI.eraseFromParent();
5004   return Legalized;
5005 }
5006 
5007 LegalizerHelper::LegalizeResult
5008 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
5009   const unsigned NumOps = MI.getNumOperands();
5010   Register DstReg = MI.getOperand(0).getReg();
5011   Register Src0Reg = MI.getOperand(1).getReg();
5012   LLT DstTy = MRI.getType(DstReg);
5013   LLT SrcTy = MRI.getType(Src0Reg);
5014   unsigned PartSize = SrcTy.getSizeInBits();
5015 
5016   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
5017   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
5018 
5019   for (unsigned I = 2; I != NumOps; ++I) {
5020     const unsigned Offset = (I - 1) * PartSize;
5021 
5022     Register SrcReg = MI.getOperand(I).getReg();
5023     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
5024 
5025     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
5026       MRI.createGenericVirtualRegister(WideTy);
5027 
5028     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
5029     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
5030     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
5031     ResultReg = NextResult;
5032   }
5033 
5034   if (DstTy.isPointer()) {
5035     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
5036           DstTy.getAddressSpace())) {
5037       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
5038       return UnableToLegalize;
5039     }
5040 
5041     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
5042   }
5043 
5044   MI.eraseFromParent();
5045   return Legalized;
5046 }
5047 
5048 LegalizerHelper::LegalizeResult
5049 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
5050   const unsigned NumDst = MI.getNumOperands() - 1;
5051   Register SrcReg = MI.getOperand(NumDst).getReg();
5052   Register Dst0Reg = MI.getOperand(0).getReg();
5053   LLT DstTy = MRI.getType(Dst0Reg);
5054   if (DstTy.isPointer())
5055     return UnableToLegalize; // TODO
5056 
5057   SrcReg = coerceToScalar(SrcReg);
5058   if (!SrcReg)
5059     return UnableToLegalize;
5060 
5061   // Expand scalarizing unmerge as bitcast to integer and shift.
5062   LLT IntTy = MRI.getType(SrcReg);
5063 
5064   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
5065 
5066   const unsigned DstSize = DstTy.getSizeInBits();
5067   unsigned Offset = DstSize;
5068   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
5069     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
5070     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
5071     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
5072   }
5073 
5074   MI.eraseFromParent();
5075   return Legalized;
5076 }
5077 
5078 LegalizerHelper::LegalizeResult
5079 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
5080   Register DstReg = MI.getOperand(0).getReg();
5081   Register Src0Reg = MI.getOperand(1).getReg();
5082   Register Src1Reg = MI.getOperand(2).getReg();
5083   LLT Src0Ty = MRI.getType(Src0Reg);
5084   LLT DstTy = MRI.getType(DstReg);
5085   LLT IdxTy = LLT::scalar(32);
5086 
5087   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5088 
5089   if (DstTy.isScalar()) {
5090     if (Src0Ty.isVector())
5091       return UnableToLegalize;
5092 
5093     // This is just a SELECT.
5094     assert(Mask.size() == 1 && "Expected a single mask element");
5095     Register Val;
5096     if (Mask[0] < 0 || Mask[0] > 1)
5097       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
5098     else
5099       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
5100     MIRBuilder.buildCopy(DstReg, Val);
5101     MI.eraseFromParent();
5102     return Legalized;
5103   }
5104 
5105   Register Undef;
5106   SmallVector<Register, 32> BuildVec;
5107   LLT EltTy = DstTy.getElementType();
5108 
5109   for (int Idx : Mask) {
5110     if (Idx < 0) {
5111       if (!Undef.isValid())
5112         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5113       BuildVec.push_back(Undef);
5114       continue;
5115     }
5116 
5117     if (Src0Ty.isScalar()) {
5118       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5119     } else {
5120       int NumElts = Src0Ty.getNumElements();
5121       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5122       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5123       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5124       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5125       BuildVec.push_back(Extract.getReg(0));
5126     }
5127   }
5128 
5129   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5130   MI.eraseFromParent();
5131   return Legalized;
5132 }
5133 
5134 LegalizerHelper::LegalizeResult
5135 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5136   const auto &MF = *MI.getMF();
5137   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5138   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5139     return UnableToLegalize;
5140 
5141   Register Dst = MI.getOperand(0).getReg();
5142   Register AllocSize = MI.getOperand(1).getReg();
5143   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5144 
5145   LLT PtrTy = MRI.getType(Dst);
5146   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5147 
5148   const auto &TLI = *MF.getSubtarget().getTargetLowering();
5149   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5150   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5151   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5152 
5153   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5154   // have to generate an extra instruction to negate the alloc and then use
5155   // G_PTR_ADD to add the negative offset.
5156   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5157   if (Alignment > Align(1)) {
5158     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5159     AlignMask.negate();
5160     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5161     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5162   }
5163 
5164   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5165   MIRBuilder.buildCopy(SPReg, SPTmp);
5166   MIRBuilder.buildCopy(Dst, SPTmp);
5167 
5168   MI.eraseFromParent();
5169   return Legalized;
5170 }
5171 
5172 LegalizerHelper::LegalizeResult
5173 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5174   Register Dst = MI.getOperand(0).getReg();
5175   Register Src = MI.getOperand(1).getReg();
5176   unsigned Offset = MI.getOperand(2).getImm();
5177 
5178   LLT DstTy = MRI.getType(Dst);
5179   LLT SrcTy = MRI.getType(Src);
5180 
5181   if (DstTy.isScalar() &&
5182       (SrcTy.isScalar() ||
5183        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5184     LLT SrcIntTy = SrcTy;
5185     if (!SrcTy.isScalar()) {
5186       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5187       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5188     }
5189 
5190     if (Offset == 0)
5191       MIRBuilder.buildTrunc(Dst, Src);
5192     else {
5193       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5194       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5195       MIRBuilder.buildTrunc(Dst, Shr);
5196     }
5197 
5198     MI.eraseFromParent();
5199     return Legalized;
5200   }
5201 
5202   return UnableToLegalize;
5203 }
5204 
5205 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5206   Register Dst = MI.getOperand(0).getReg();
5207   Register Src = MI.getOperand(1).getReg();
5208   Register InsertSrc = MI.getOperand(2).getReg();
5209   uint64_t Offset = MI.getOperand(3).getImm();
5210 
5211   LLT DstTy = MRI.getType(Src);
5212   LLT InsertTy = MRI.getType(InsertSrc);
5213 
5214   if (InsertTy.isVector() ||
5215       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5216     return UnableToLegalize;
5217 
5218   const DataLayout &DL = MIRBuilder.getDataLayout();
5219   if ((DstTy.isPointer() &&
5220        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5221       (InsertTy.isPointer() &&
5222        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5223     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5224     return UnableToLegalize;
5225   }
5226 
5227   LLT IntDstTy = DstTy;
5228 
5229   if (!DstTy.isScalar()) {
5230     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5231     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5232   }
5233 
5234   if (!InsertTy.isScalar()) {
5235     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5236     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5237   }
5238 
5239   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5240   if (Offset != 0) {
5241     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5242     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5243   }
5244 
5245   APInt MaskVal = APInt::getBitsSetWithWrap(
5246       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5247 
5248   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5249   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5250   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5251 
5252   MIRBuilder.buildCast(Dst, Or);
5253   MI.eraseFromParent();
5254   return Legalized;
5255 }
5256 
5257 LegalizerHelper::LegalizeResult
5258 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5259   Register Dst0 = MI.getOperand(0).getReg();
5260   Register Dst1 = MI.getOperand(1).getReg();
5261   Register LHS = MI.getOperand(2).getReg();
5262   Register RHS = MI.getOperand(3).getReg();
5263   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5264 
5265   LLT Ty = MRI.getType(Dst0);
5266   LLT BoolTy = MRI.getType(Dst1);
5267 
5268   if (IsAdd)
5269     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5270   else
5271     MIRBuilder.buildSub(Dst0, LHS, RHS);
5272 
5273   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5274 
5275   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5276 
5277   // For an addition, the result should be less than one of the operands (LHS)
5278   // if and only if the other operand (RHS) is negative, otherwise there will
5279   // be overflow.
5280   // For a subtraction, the result should be less than one of the operands
5281   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5282   // otherwise there will be overflow.
5283   auto ResultLowerThanLHS =
5284       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5285   auto ConditionRHS = MIRBuilder.buildICmp(
5286       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5287 
5288   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5289   MI.eraseFromParent();
5290   return Legalized;
5291 }
5292 
5293 LegalizerHelper::LegalizeResult
5294 LegalizerHelper::lowerBswap(MachineInstr &MI) {
5295   Register Dst = MI.getOperand(0).getReg();
5296   Register Src = MI.getOperand(1).getReg();
5297   const LLT Ty = MRI.getType(Src);
5298   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
5299   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
5300 
5301   // Swap most and least significant byte, set remaining bytes in Res to zero.
5302   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
5303   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
5304   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5305   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
5306 
5307   // Set i-th high/low byte in Res to i-th low/high byte from Src.
5308   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
5309     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
5310     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
5311     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
5312     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
5313     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
5314     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
5315     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
5316     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
5317     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
5318     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5319     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
5320     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
5321   }
5322   Res.getInstr()->getOperand(0).setReg(Dst);
5323 
5324   MI.eraseFromParent();
5325   return Legalized;
5326 }
5327 
5328 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
5329 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
5330                                  MachineInstrBuilder Src, APInt Mask) {
5331   const LLT Ty = Dst.getLLTTy(*B.getMRI());
5332   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
5333   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
5334   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
5335   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
5336   return B.buildOr(Dst, LHS, RHS);
5337 }
5338 
5339 LegalizerHelper::LegalizeResult
5340 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
5341   Register Dst = MI.getOperand(0).getReg();
5342   Register Src = MI.getOperand(1).getReg();
5343   const LLT Ty = MRI.getType(Src);
5344   unsigned Size = Ty.getSizeInBits();
5345 
5346   MachineInstrBuilder BSWAP =
5347       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
5348 
5349   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
5350   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
5351   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
5352   MachineInstrBuilder Swap4 =
5353       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
5354 
5355   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
5356   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
5357   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
5358   MachineInstrBuilder Swap2 =
5359       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
5360 
5361   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
5362   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
5363   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
5364   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
5365 
5366   MI.eraseFromParent();
5367   return Legalized;
5368 }
5369 
5370 LegalizerHelper::LegalizeResult
5371 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
5372   MachineFunction &MF = MIRBuilder.getMF();
5373   const TargetSubtargetInfo &STI = MF.getSubtarget();
5374   const TargetLowering *TLI = STI.getTargetLowering();
5375 
5376   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
5377   int NameOpIdx = IsRead ? 1 : 0;
5378   int ValRegIndex = IsRead ? 0 : 1;
5379 
5380   Register ValReg = MI.getOperand(ValRegIndex).getReg();
5381   const LLT Ty = MRI.getType(ValReg);
5382   const MDString *RegStr = cast<MDString>(
5383     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
5384 
5385   Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF);
5386   if (!PhysReg.isValid())
5387     return UnableToLegalize;
5388 
5389   if (IsRead)
5390     MIRBuilder.buildCopy(ValReg, PhysReg);
5391   else
5392     MIRBuilder.buildCopy(PhysReg, ValReg);
5393 
5394   MI.eraseFromParent();
5395   return Legalized;
5396 }
5397