1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
21 #include "llvm/CodeGen/GlobalISel/Utils.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/TargetFrameLowering.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetOpcodes.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/raw_ostream.h"
32 
33 #define DEBUG_TYPE "legalizer"
34 
35 using namespace llvm;
36 using namespace LegalizeActions;
37 using namespace MIPatternMatch;
38 
39 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
40 ///
41 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
42 /// with any leftover piece as type \p LeftoverTy
43 ///
44 /// Returns -1 in the first element of the pair if the breakdown is not
45 /// satisfiable.
46 static std::pair<int, int>
47 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
48   assert(!LeftoverTy.isValid() && "this is an out argument");
49 
50   unsigned Size = OrigTy.getSizeInBits();
51   unsigned NarrowSize = NarrowTy.getSizeInBits();
52   unsigned NumParts = Size / NarrowSize;
53   unsigned LeftoverSize = Size - NumParts * NarrowSize;
54   assert(Size > NarrowSize);
55 
56   if (LeftoverSize == 0)
57     return {NumParts, 0};
58 
59   if (NarrowTy.isVector()) {
60     unsigned EltSize = OrigTy.getScalarSizeInBits();
61     if (LeftoverSize % EltSize != 0)
62       return {-1, -1};
63     LeftoverTy = LLT::scalarOrVector(
64         ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
65   } else {
66     LeftoverTy = LLT::scalar(LeftoverSize);
67   }
68 
69   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
70   return std::make_pair(NumParts, NumLeftover);
71 }
72 
73 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
74 
75   if (!Ty.isScalar())
76     return nullptr;
77 
78   switch (Ty.getSizeInBits()) {
79   case 16:
80     return Type::getHalfTy(Ctx);
81   case 32:
82     return Type::getFloatTy(Ctx);
83   case 64:
84     return Type::getDoubleTy(Ctx);
85   case 80:
86     return Type::getX86_FP80Ty(Ctx);
87   case 128:
88     return Type::getFP128Ty(Ctx);
89   default:
90     return nullptr;
91   }
92 }
93 
94 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
95                                  GISelChangeObserver &Observer,
96                                  MachineIRBuilder &Builder)
97     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
98       LI(*MF.getSubtarget().getLegalizerInfo()),
99       TLI(*MF.getSubtarget().getTargetLowering()) { }
100 
101 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
102                                  GISelChangeObserver &Observer,
103                                  MachineIRBuilder &B)
104   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
105     TLI(*MF.getSubtarget().getTargetLowering()) { }
106 
107 LegalizerHelper::LegalizeResult
108 LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
109                                    LostDebugLocObserver &LocObserver) {
110   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
111 
112   MIRBuilder.setInstrAndDebugLoc(MI);
113 
114   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
115       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
116     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
117   auto Step = LI.getAction(MI, MRI);
118   switch (Step.Action) {
119   case Legal:
120     LLVM_DEBUG(dbgs() << ".. Already legal\n");
121     return AlreadyLegal;
122   case Libcall:
123     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
124     return libcall(MI, LocObserver);
125   case NarrowScalar:
126     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
127     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
128   case WidenScalar:
129     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
130     return widenScalar(MI, Step.TypeIdx, Step.NewType);
131   case Bitcast:
132     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
133     return bitcast(MI, Step.TypeIdx, Step.NewType);
134   case Lower:
135     LLVM_DEBUG(dbgs() << ".. Lower\n");
136     return lower(MI, Step.TypeIdx, Step.NewType);
137   case FewerElements:
138     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
139     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
140   case MoreElements:
141     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
142     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
143   case Custom:
144     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
145     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
146   default:
147     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
148     return UnableToLegalize;
149   }
150 }
151 
152 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
153                                    SmallVectorImpl<Register> &VRegs) {
154   for (int i = 0; i < NumParts; ++i)
155     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
156   MIRBuilder.buildUnmerge(VRegs, Reg);
157 }
158 
159 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
160                                    LLT MainTy, LLT &LeftoverTy,
161                                    SmallVectorImpl<Register> &VRegs,
162                                    SmallVectorImpl<Register> &LeftoverRegs) {
163   assert(!LeftoverTy.isValid() && "this is an out argument");
164 
165   unsigned RegSize = RegTy.getSizeInBits();
166   unsigned MainSize = MainTy.getSizeInBits();
167   unsigned NumParts = RegSize / MainSize;
168   unsigned LeftoverSize = RegSize - NumParts * MainSize;
169 
170   // Use an unmerge when possible.
171   if (LeftoverSize == 0) {
172     for (unsigned I = 0; I < NumParts; ++I)
173       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
174     MIRBuilder.buildUnmerge(VRegs, Reg);
175     return true;
176   }
177 
178   if (MainTy.isVector()) {
179     unsigned EltSize = MainTy.getScalarSizeInBits();
180     if (LeftoverSize % EltSize != 0)
181       return false;
182     LeftoverTy = LLT::scalarOrVector(
183         ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
184   } else {
185     LeftoverTy = LLT::scalar(LeftoverSize);
186   }
187 
188   // For irregular sizes, extract the individual parts.
189   for (unsigned I = 0; I != NumParts; ++I) {
190     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
191     VRegs.push_back(NewReg);
192     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
193   }
194 
195   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
196        Offset += LeftoverSize) {
197     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
198     LeftoverRegs.push_back(NewReg);
199     MIRBuilder.buildExtract(NewReg, Reg, Offset);
200   }
201 
202   return true;
203 }
204 
205 void LegalizerHelper::insertParts(Register DstReg,
206                                   LLT ResultTy, LLT PartTy,
207                                   ArrayRef<Register> PartRegs,
208                                   LLT LeftoverTy,
209                                   ArrayRef<Register> LeftoverRegs) {
210   if (!LeftoverTy.isValid()) {
211     assert(LeftoverRegs.empty());
212 
213     if (!ResultTy.isVector()) {
214       MIRBuilder.buildMerge(DstReg, PartRegs);
215       return;
216     }
217 
218     if (PartTy.isVector())
219       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
220     else
221       MIRBuilder.buildBuildVector(DstReg, PartRegs);
222     return;
223   }
224 
225   SmallVector<Register> GCDRegs;
226   LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy);
227   for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs))
228     extractGCDType(GCDRegs, GCDTy, PartReg);
229   LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs);
230   buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs);
231 }
232 
233 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
234 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
235                               const MachineInstr &MI) {
236   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
237 
238   const int StartIdx = Regs.size();
239   const int NumResults = MI.getNumOperands() - 1;
240   Regs.resize(Regs.size() + NumResults);
241   for (int I = 0; I != NumResults; ++I)
242     Regs[StartIdx + I] = MI.getOperand(I).getReg();
243 }
244 
245 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
246                                      LLT GCDTy, Register SrcReg) {
247   LLT SrcTy = MRI.getType(SrcReg);
248   if (SrcTy == GCDTy) {
249     // If the source already evenly divides the result type, we don't need to do
250     // anything.
251     Parts.push_back(SrcReg);
252   } else {
253     // Need to split into common type sized pieces.
254     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
255     getUnmergeResults(Parts, *Unmerge);
256   }
257 }
258 
259 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
260                                     LLT NarrowTy, Register SrcReg) {
261   LLT SrcTy = MRI.getType(SrcReg);
262   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
263   extractGCDType(Parts, GCDTy, SrcReg);
264   return GCDTy;
265 }
266 
267 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
268                                          SmallVectorImpl<Register> &VRegs,
269                                          unsigned PadStrategy) {
270   LLT LCMTy = getLCMType(DstTy, NarrowTy);
271 
272   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
273   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
274   int NumOrigSrc = VRegs.size();
275 
276   Register PadReg;
277 
278   // Get a value we can use to pad the source value if the sources won't evenly
279   // cover the result type.
280   if (NumOrigSrc < NumParts * NumSubParts) {
281     if (PadStrategy == TargetOpcode::G_ZEXT)
282       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
283     else if (PadStrategy == TargetOpcode::G_ANYEXT)
284       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
285     else {
286       assert(PadStrategy == TargetOpcode::G_SEXT);
287 
288       // Shift the sign bit of the low register through the high register.
289       auto ShiftAmt =
290         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
291       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
292     }
293   }
294 
295   // Registers for the final merge to be produced.
296   SmallVector<Register, 4> Remerge(NumParts);
297 
298   // Registers needed for intermediate merges, which will be merged into a
299   // source for Remerge.
300   SmallVector<Register, 4> SubMerge(NumSubParts);
301 
302   // Once we've fully read off the end of the original source bits, we can reuse
303   // the same high bits for remaining padding elements.
304   Register AllPadReg;
305 
306   // Build merges to the LCM type to cover the original result type.
307   for (int I = 0; I != NumParts; ++I) {
308     bool AllMergePartsArePadding = true;
309 
310     // Build the requested merges to the requested type.
311     for (int J = 0; J != NumSubParts; ++J) {
312       int Idx = I * NumSubParts + J;
313       if (Idx >= NumOrigSrc) {
314         SubMerge[J] = PadReg;
315         continue;
316       }
317 
318       SubMerge[J] = VRegs[Idx];
319 
320       // There are meaningful bits here we can't reuse later.
321       AllMergePartsArePadding = false;
322     }
323 
324     // If we've filled up a complete piece with padding bits, we can directly
325     // emit the natural sized constant if applicable, rather than a merge of
326     // smaller constants.
327     if (AllMergePartsArePadding && !AllPadReg) {
328       if (PadStrategy == TargetOpcode::G_ANYEXT)
329         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
330       else if (PadStrategy == TargetOpcode::G_ZEXT)
331         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
332 
333       // If this is a sign extension, we can't materialize a trivial constant
334       // with the right type and have to produce a merge.
335     }
336 
337     if (AllPadReg) {
338       // Avoid creating additional instructions if we're just adding additional
339       // copies of padding bits.
340       Remerge[I] = AllPadReg;
341       continue;
342     }
343 
344     if (NumSubParts == 1)
345       Remerge[I] = SubMerge[0];
346     else
347       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
348 
349     // In the sign extend padding case, re-use the first all-signbit merge.
350     if (AllMergePartsArePadding && !AllPadReg)
351       AllPadReg = Remerge[I];
352   }
353 
354   VRegs = std::move(Remerge);
355   return LCMTy;
356 }
357 
358 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
359                                                ArrayRef<Register> RemergeRegs) {
360   LLT DstTy = MRI.getType(DstReg);
361 
362   // Create the merge to the widened source, and extract the relevant bits into
363   // the result.
364 
365   if (DstTy == LCMTy) {
366     MIRBuilder.buildMerge(DstReg, RemergeRegs);
367     return;
368   }
369 
370   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
371   if (DstTy.isScalar() && LCMTy.isScalar()) {
372     MIRBuilder.buildTrunc(DstReg, Remerge);
373     return;
374   }
375 
376   if (LCMTy.isVector()) {
377     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
378     SmallVector<Register, 8> UnmergeDefs(NumDefs);
379     UnmergeDefs[0] = DstReg;
380     for (unsigned I = 1; I != NumDefs; ++I)
381       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
382 
383     MIRBuilder.buildUnmerge(UnmergeDefs,
384                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
385     return;
386   }
387 
388   llvm_unreachable("unhandled case");
389 }
390 
391 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
392 #define RTLIBCASE_INT(LibcallPrefix)                                           \
393   do {                                                                         \
394     switch (Size) {                                                            \
395     case 32:                                                                   \
396       return RTLIB::LibcallPrefix##32;                                         \
397     case 64:                                                                   \
398       return RTLIB::LibcallPrefix##64;                                         \
399     case 128:                                                                  \
400       return RTLIB::LibcallPrefix##128;                                        \
401     default:                                                                   \
402       llvm_unreachable("unexpected size");                                     \
403     }                                                                          \
404   } while (0)
405 
406 #define RTLIBCASE(LibcallPrefix)                                               \
407   do {                                                                         \
408     switch (Size) {                                                            \
409     case 32:                                                                   \
410       return RTLIB::LibcallPrefix##32;                                         \
411     case 64:                                                                   \
412       return RTLIB::LibcallPrefix##64;                                         \
413     case 80:                                                                   \
414       return RTLIB::LibcallPrefix##80;                                         \
415     case 128:                                                                  \
416       return RTLIB::LibcallPrefix##128;                                        \
417     default:                                                                   \
418       llvm_unreachable("unexpected size");                                     \
419     }                                                                          \
420   } while (0)
421 
422   switch (Opcode) {
423   case TargetOpcode::G_SDIV:
424     RTLIBCASE_INT(SDIV_I);
425   case TargetOpcode::G_UDIV:
426     RTLIBCASE_INT(UDIV_I);
427   case TargetOpcode::G_SREM:
428     RTLIBCASE_INT(SREM_I);
429   case TargetOpcode::G_UREM:
430     RTLIBCASE_INT(UREM_I);
431   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
432     RTLIBCASE_INT(CTLZ_I);
433   case TargetOpcode::G_FADD:
434     RTLIBCASE(ADD_F);
435   case TargetOpcode::G_FSUB:
436     RTLIBCASE(SUB_F);
437   case TargetOpcode::G_FMUL:
438     RTLIBCASE(MUL_F);
439   case TargetOpcode::G_FDIV:
440     RTLIBCASE(DIV_F);
441   case TargetOpcode::G_FEXP:
442     RTLIBCASE(EXP_F);
443   case TargetOpcode::G_FEXP2:
444     RTLIBCASE(EXP2_F);
445   case TargetOpcode::G_FREM:
446     RTLIBCASE(REM_F);
447   case TargetOpcode::G_FPOW:
448     RTLIBCASE(POW_F);
449   case TargetOpcode::G_FMA:
450     RTLIBCASE(FMA_F);
451   case TargetOpcode::G_FSIN:
452     RTLIBCASE(SIN_F);
453   case TargetOpcode::G_FCOS:
454     RTLIBCASE(COS_F);
455   case TargetOpcode::G_FLOG10:
456     RTLIBCASE(LOG10_F);
457   case TargetOpcode::G_FLOG:
458     RTLIBCASE(LOG_F);
459   case TargetOpcode::G_FLOG2:
460     RTLIBCASE(LOG2_F);
461   case TargetOpcode::G_FCEIL:
462     RTLIBCASE(CEIL_F);
463   case TargetOpcode::G_FFLOOR:
464     RTLIBCASE(FLOOR_F);
465   case TargetOpcode::G_FMINNUM:
466     RTLIBCASE(FMIN_F);
467   case TargetOpcode::G_FMAXNUM:
468     RTLIBCASE(FMAX_F);
469   case TargetOpcode::G_FSQRT:
470     RTLIBCASE(SQRT_F);
471   case TargetOpcode::G_FRINT:
472     RTLIBCASE(RINT_F);
473   case TargetOpcode::G_FNEARBYINT:
474     RTLIBCASE(NEARBYINT_F);
475   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
476     RTLIBCASE(ROUNDEVEN_F);
477   }
478   llvm_unreachable("Unknown libcall function");
479 }
480 
481 /// True if an instruction is in tail position in its caller. Intended for
482 /// legalizing libcalls as tail calls when possible.
483 static bool isLibCallInTailPosition(MachineInstr &MI,
484                                     const TargetInstrInfo &TII,
485                                     MachineRegisterInfo &MRI) {
486   MachineBasicBlock &MBB = *MI.getParent();
487   const Function &F = MBB.getParent()->getFunction();
488 
489   // Conservatively require the attributes of the call to match those of
490   // the return. Ignore NoAlias and NonNull because they don't affect the
491   // call sequence.
492   AttributeList CallerAttrs = F.getAttributes();
493   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
494           .removeAttribute(Attribute::NoAlias)
495           .removeAttribute(Attribute::NonNull)
496           .hasAttributes())
497     return false;
498 
499   // It's not safe to eliminate the sign / zero extension of the return value.
500   if (CallerAttrs.hasRetAttr(Attribute::ZExt) ||
501       CallerAttrs.hasRetAttr(Attribute::SExt))
502     return false;
503 
504   // Only tail call if the following instruction is a standard return or if we
505   // have a `thisreturn` callee, and a sequence like:
506   //
507   //   G_MEMCPY %0, %1, %2
508   //   $x0 = COPY %0
509   //   RET_ReallyLR implicit $x0
510   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
511   if (Next != MBB.instr_end() && Next->isCopy()) {
512     switch (MI.getOpcode()) {
513     default:
514       llvm_unreachable("unsupported opcode");
515     case TargetOpcode::G_BZERO:
516       return false;
517     case TargetOpcode::G_MEMCPY:
518     case TargetOpcode::G_MEMMOVE:
519     case TargetOpcode::G_MEMSET:
520       break;
521     }
522 
523     Register VReg = MI.getOperand(0).getReg();
524     if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg())
525       return false;
526 
527     Register PReg = Next->getOperand(0).getReg();
528     if (!PReg.isPhysical())
529       return false;
530 
531     auto Ret = next_nodbg(Next, MBB.instr_end());
532     if (Ret == MBB.instr_end() || !Ret->isReturn())
533       return false;
534 
535     if (Ret->getNumImplicitOperands() != 1)
536       return false;
537 
538     if (PReg != Ret->getOperand(0).getReg())
539       return false;
540 
541     // Skip over the COPY that we just validated.
542     Next = Ret;
543   }
544 
545   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
546     return false;
547 
548   return true;
549 }
550 
551 LegalizerHelper::LegalizeResult
552 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
553                     const CallLowering::ArgInfo &Result,
554                     ArrayRef<CallLowering::ArgInfo> Args,
555                     const CallingConv::ID CC) {
556   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
557 
558   CallLowering::CallLoweringInfo Info;
559   Info.CallConv = CC;
560   Info.Callee = MachineOperand::CreateES(Name);
561   Info.OrigRet = Result;
562   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
563   if (!CLI.lowerCall(MIRBuilder, Info))
564     return LegalizerHelper::UnableToLegalize;
565 
566   return LegalizerHelper::Legalized;
567 }
568 
569 LegalizerHelper::LegalizeResult
570 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
571                     const CallLowering::ArgInfo &Result,
572                     ArrayRef<CallLowering::ArgInfo> Args) {
573   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
574   const char *Name = TLI.getLibcallName(Libcall);
575   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
576   return createLibcall(MIRBuilder, Name, Result, Args, CC);
577 }
578 
579 // Useful for libcalls where all operands have the same type.
580 static LegalizerHelper::LegalizeResult
581 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
582               Type *OpType) {
583   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
584 
585   // FIXME: What does the original arg index mean here?
586   SmallVector<CallLowering::ArgInfo, 3> Args;
587   for (unsigned i = 1; i < MI.getNumOperands(); i++)
588     Args.push_back({MI.getOperand(i).getReg(), OpType, 0});
589   return createLibcall(MIRBuilder, Libcall,
590                        {MI.getOperand(0).getReg(), OpType, 0}, Args);
591 }
592 
593 LegalizerHelper::LegalizeResult
594 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
595                        MachineInstr &MI, LostDebugLocObserver &LocObserver) {
596   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
597 
598   SmallVector<CallLowering::ArgInfo, 3> Args;
599   // Add all the args, except for the last which is an imm denoting 'tail'.
600   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
601     Register Reg = MI.getOperand(i).getReg();
602 
603     // Need derive an IR type for call lowering.
604     LLT OpLLT = MRI.getType(Reg);
605     Type *OpTy = nullptr;
606     if (OpLLT.isPointer())
607       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
608     else
609       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
610     Args.push_back({Reg, OpTy, 0});
611   }
612 
613   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
614   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
615   RTLIB::Libcall RTLibcall;
616   unsigned Opc = MI.getOpcode();
617   switch (Opc) {
618   case TargetOpcode::G_BZERO:
619     RTLibcall = RTLIB::BZERO;
620     break;
621   case TargetOpcode::G_MEMCPY:
622     RTLibcall = RTLIB::MEMCPY;
623     Args[0].Flags[0].setReturned();
624     break;
625   case TargetOpcode::G_MEMMOVE:
626     RTLibcall = RTLIB::MEMMOVE;
627     Args[0].Flags[0].setReturned();
628     break;
629   case TargetOpcode::G_MEMSET:
630     RTLibcall = RTLIB::MEMSET;
631     Args[0].Flags[0].setReturned();
632     break;
633   default:
634     llvm_unreachable("unsupported opcode");
635   }
636   const char *Name = TLI.getLibcallName(RTLibcall);
637 
638   // Unsupported libcall on the target.
639   if (!Name) {
640     LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
641                       << MIRBuilder.getTII().getName(Opc) << "\n");
642     return LegalizerHelper::UnableToLegalize;
643   }
644 
645   CallLowering::CallLoweringInfo Info;
646   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
647   Info.Callee = MachineOperand::CreateES(Name);
648   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0);
649   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
650                     isLibCallInTailPosition(MI, MIRBuilder.getTII(), MRI);
651 
652   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
653   if (!CLI.lowerCall(MIRBuilder, Info))
654     return LegalizerHelper::UnableToLegalize;
655 
656   if (Info.LoweredTailCall) {
657     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
658 
659     // Check debug locations before removing the return.
660     LocObserver.checkpoint(true);
661 
662     // We must have a return following the call (or debug insts) to get past
663     // isLibCallInTailPosition.
664     do {
665       MachineInstr *Next = MI.getNextNode();
666       assert(Next &&
667              (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) &&
668              "Expected instr following MI to be return or debug inst?");
669       // We lowered a tail call, so the call is now the return from the block.
670       // Delete the old return.
671       Next->eraseFromParent();
672     } while (MI.getNextNode());
673 
674     // We expect to lose the debug location from the return.
675     LocObserver.checkpoint(false);
676   }
677 
678   return LegalizerHelper::Legalized;
679 }
680 
681 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
682                                        Type *FromType) {
683   auto ToMVT = MVT::getVT(ToType);
684   auto FromMVT = MVT::getVT(FromType);
685 
686   switch (Opcode) {
687   case TargetOpcode::G_FPEXT:
688     return RTLIB::getFPEXT(FromMVT, ToMVT);
689   case TargetOpcode::G_FPTRUNC:
690     return RTLIB::getFPROUND(FromMVT, ToMVT);
691   case TargetOpcode::G_FPTOSI:
692     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
693   case TargetOpcode::G_FPTOUI:
694     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
695   case TargetOpcode::G_SITOFP:
696     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
697   case TargetOpcode::G_UITOFP:
698     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
699   }
700   llvm_unreachable("Unsupported libcall function");
701 }
702 
703 static LegalizerHelper::LegalizeResult
704 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
705                   Type *FromType) {
706   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
707   return createLibcall(MIRBuilder, Libcall,
708                        {MI.getOperand(0).getReg(), ToType, 0},
709                        {{MI.getOperand(1).getReg(), FromType, 0}});
710 }
711 
712 LegalizerHelper::LegalizeResult
713 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) {
714   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
715   unsigned Size = LLTy.getSizeInBits();
716   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
717 
718   switch (MI.getOpcode()) {
719   default:
720     return UnableToLegalize;
721   case TargetOpcode::G_SDIV:
722   case TargetOpcode::G_UDIV:
723   case TargetOpcode::G_SREM:
724   case TargetOpcode::G_UREM:
725   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
726     Type *HLTy = IntegerType::get(Ctx, Size);
727     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
728     if (Status != Legalized)
729       return Status;
730     break;
731   }
732   case TargetOpcode::G_FADD:
733   case TargetOpcode::G_FSUB:
734   case TargetOpcode::G_FMUL:
735   case TargetOpcode::G_FDIV:
736   case TargetOpcode::G_FMA:
737   case TargetOpcode::G_FPOW:
738   case TargetOpcode::G_FREM:
739   case TargetOpcode::G_FCOS:
740   case TargetOpcode::G_FSIN:
741   case TargetOpcode::G_FLOG10:
742   case TargetOpcode::G_FLOG:
743   case TargetOpcode::G_FLOG2:
744   case TargetOpcode::G_FEXP:
745   case TargetOpcode::G_FEXP2:
746   case TargetOpcode::G_FCEIL:
747   case TargetOpcode::G_FFLOOR:
748   case TargetOpcode::G_FMINNUM:
749   case TargetOpcode::G_FMAXNUM:
750   case TargetOpcode::G_FSQRT:
751   case TargetOpcode::G_FRINT:
752   case TargetOpcode::G_FNEARBYINT:
753   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
754     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
755     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
756       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
757       return UnableToLegalize;
758     }
759     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
760     if (Status != Legalized)
761       return Status;
762     break;
763   }
764   case TargetOpcode::G_FPEXT:
765   case TargetOpcode::G_FPTRUNC: {
766     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
767     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
768     if (!FromTy || !ToTy)
769       return UnableToLegalize;
770     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
771     if (Status != Legalized)
772       return Status;
773     break;
774   }
775   case TargetOpcode::G_FPTOSI:
776   case TargetOpcode::G_FPTOUI: {
777     // FIXME: Support other types
778     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
779     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
780     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
781       return UnableToLegalize;
782     LegalizeResult Status = conversionLibcall(
783         MI, MIRBuilder,
784         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
785         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
786     if (Status != Legalized)
787       return Status;
788     break;
789   }
790   case TargetOpcode::G_SITOFP:
791   case TargetOpcode::G_UITOFP: {
792     // FIXME: Support other types
793     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
794     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
795     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
796       return UnableToLegalize;
797     LegalizeResult Status = conversionLibcall(
798         MI, MIRBuilder,
799         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
800         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
801     if (Status != Legalized)
802       return Status;
803     break;
804   }
805   case TargetOpcode::G_BZERO:
806   case TargetOpcode::G_MEMCPY:
807   case TargetOpcode::G_MEMMOVE:
808   case TargetOpcode::G_MEMSET: {
809     LegalizeResult Result =
810         createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver);
811     if (Result != Legalized)
812       return Result;
813     MI.eraseFromParent();
814     return Result;
815   }
816   }
817 
818   MI.eraseFromParent();
819   return Legalized;
820 }
821 
822 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
823                                                               unsigned TypeIdx,
824                                                               LLT NarrowTy) {
825   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
826   uint64_t NarrowSize = NarrowTy.getSizeInBits();
827 
828   switch (MI.getOpcode()) {
829   default:
830     return UnableToLegalize;
831   case TargetOpcode::G_IMPLICIT_DEF: {
832     Register DstReg = MI.getOperand(0).getReg();
833     LLT DstTy = MRI.getType(DstReg);
834 
835     // If SizeOp0 is not an exact multiple of NarrowSize, emit
836     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
837     // FIXME: Although this would also be legal for the general case, it causes
838     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
839     //  combines not being hit). This seems to be a problem related to the
840     //  artifact combiner.
841     if (SizeOp0 % NarrowSize != 0) {
842       LLT ImplicitTy = NarrowTy;
843       if (DstTy.isVector())
844         ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy);
845 
846       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
847       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
848 
849       MI.eraseFromParent();
850       return Legalized;
851     }
852 
853     int NumParts = SizeOp0 / NarrowSize;
854 
855     SmallVector<Register, 2> DstRegs;
856     for (int i = 0; i < NumParts; ++i)
857       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
858 
859     if (DstTy.isVector())
860       MIRBuilder.buildBuildVector(DstReg, DstRegs);
861     else
862       MIRBuilder.buildMerge(DstReg, DstRegs);
863     MI.eraseFromParent();
864     return Legalized;
865   }
866   case TargetOpcode::G_CONSTANT: {
867     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
868     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
869     unsigned TotalSize = Ty.getSizeInBits();
870     unsigned NarrowSize = NarrowTy.getSizeInBits();
871     int NumParts = TotalSize / NarrowSize;
872 
873     SmallVector<Register, 4> PartRegs;
874     for (int I = 0; I != NumParts; ++I) {
875       unsigned Offset = I * NarrowSize;
876       auto K = MIRBuilder.buildConstant(NarrowTy,
877                                         Val.lshr(Offset).trunc(NarrowSize));
878       PartRegs.push_back(K.getReg(0));
879     }
880 
881     LLT LeftoverTy;
882     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
883     SmallVector<Register, 1> LeftoverRegs;
884     if (LeftoverBits != 0) {
885       LeftoverTy = LLT::scalar(LeftoverBits);
886       auto K = MIRBuilder.buildConstant(
887         LeftoverTy,
888         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
889       LeftoverRegs.push_back(K.getReg(0));
890     }
891 
892     insertParts(MI.getOperand(0).getReg(),
893                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
894 
895     MI.eraseFromParent();
896     return Legalized;
897   }
898   case TargetOpcode::G_SEXT:
899   case TargetOpcode::G_ZEXT:
900   case TargetOpcode::G_ANYEXT:
901     return narrowScalarExt(MI, TypeIdx, NarrowTy);
902   case TargetOpcode::G_TRUNC: {
903     if (TypeIdx != 1)
904       return UnableToLegalize;
905 
906     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
907     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
908       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
909       return UnableToLegalize;
910     }
911 
912     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
913     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
914     MI.eraseFromParent();
915     return Legalized;
916   }
917 
918   case TargetOpcode::G_FREEZE:
919     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
920   case TargetOpcode::G_ADD:
921   case TargetOpcode::G_SUB:
922   case TargetOpcode::G_SADDO:
923   case TargetOpcode::G_SSUBO:
924   case TargetOpcode::G_SADDE:
925   case TargetOpcode::G_SSUBE:
926   case TargetOpcode::G_UADDO:
927   case TargetOpcode::G_USUBO:
928   case TargetOpcode::G_UADDE:
929   case TargetOpcode::G_USUBE:
930     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
931   case TargetOpcode::G_MUL:
932   case TargetOpcode::G_UMULH:
933     return narrowScalarMul(MI, NarrowTy);
934   case TargetOpcode::G_EXTRACT:
935     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
936   case TargetOpcode::G_INSERT:
937     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
938   case TargetOpcode::G_LOAD: {
939     auto &LoadMI = cast<GLoad>(MI);
940     Register DstReg = LoadMI.getDstReg();
941     LLT DstTy = MRI.getType(DstReg);
942     if (DstTy.isVector())
943       return UnableToLegalize;
944 
945     if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) {
946       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
947       MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO());
948       MIRBuilder.buildAnyExt(DstReg, TmpReg);
949       LoadMI.eraseFromParent();
950       return Legalized;
951     }
952 
953     return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy);
954   }
955   case TargetOpcode::G_ZEXTLOAD:
956   case TargetOpcode::G_SEXTLOAD: {
957     auto &LoadMI = cast<GExtLoad>(MI);
958     Register DstReg = LoadMI.getDstReg();
959     Register PtrReg = LoadMI.getPointerReg();
960 
961     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
962     auto &MMO = LoadMI.getMMO();
963     unsigned MemSize = MMO.getSizeInBits();
964 
965     if (MemSize == NarrowSize) {
966       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
967     } else if (MemSize < NarrowSize) {
968       MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO);
969     } else if (MemSize > NarrowSize) {
970       // FIXME: Need to split the load.
971       return UnableToLegalize;
972     }
973 
974     if (isa<GZExtLoad>(LoadMI))
975       MIRBuilder.buildZExt(DstReg, TmpReg);
976     else
977       MIRBuilder.buildSExt(DstReg, TmpReg);
978 
979     LoadMI.eraseFromParent();
980     return Legalized;
981   }
982   case TargetOpcode::G_STORE: {
983     auto &StoreMI = cast<GStore>(MI);
984 
985     Register SrcReg = StoreMI.getValueReg();
986     LLT SrcTy = MRI.getType(SrcReg);
987     if (SrcTy.isVector())
988       return UnableToLegalize;
989 
990     int NumParts = SizeOp0 / NarrowSize;
991     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
992     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
993     if (SrcTy.isVector() && LeftoverBits != 0)
994       return UnableToLegalize;
995 
996     if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) {
997       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
998       MIRBuilder.buildTrunc(TmpReg, SrcReg);
999       MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO());
1000       StoreMI.eraseFromParent();
1001       return Legalized;
1002     }
1003 
1004     return reduceLoadStoreWidth(StoreMI, 0, NarrowTy);
1005   }
1006   case TargetOpcode::G_SELECT:
1007     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
1008   case TargetOpcode::G_AND:
1009   case TargetOpcode::G_OR:
1010   case TargetOpcode::G_XOR: {
1011     // Legalize bitwise operation:
1012     // A = BinOp<Ty> B, C
1013     // into:
1014     // B1, ..., BN = G_UNMERGE_VALUES B
1015     // C1, ..., CN = G_UNMERGE_VALUES C
1016     // A1 = BinOp<Ty/N> B1, C2
1017     // ...
1018     // AN = BinOp<Ty/N> BN, CN
1019     // A = G_MERGE_VALUES A1, ..., AN
1020     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1021   }
1022   case TargetOpcode::G_SHL:
1023   case TargetOpcode::G_LSHR:
1024   case TargetOpcode::G_ASHR:
1025     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1026   case TargetOpcode::G_CTLZ:
1027   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1028   case TargetOpcode::G_CTTZ:
1029   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1030   case TargetOpcode::G_CTPOP:
1031     if (TypeIdx == 1)
1032       switch (MI.getOpcode()) {
1033       case TargetOpcode::G_CTLZ:
1034       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1035         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1036       case TargetOpcode::G_CTTZ:
1037       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1038         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1039       case TargetOpcode::G_CTPOP:
1040         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1041       default:
1042         return UnableToLegalize;
1043       }
1044 
1045     Observer.changingInstr(MI);
1046     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1047     Observer.changedInstr(MI);
1048     return Legalized;
1049   case TargetOpcode::G_INTTOPTR:
1050     if (TypeIdx != 1)
1051       return UnableToLegalize;
1052 
1053     Observer.changingInstr(MI);
1054     narrowScalarSrc(MI, NarrowTy, 1);
1055     Observer.changedInstr(MI);
1056     return Legalized;
1057   case TargetOpcode::G_PTRTOINT:
1058     if (TypeIdx != 0)
1059       return UnableToLegalize;
1060 
1061     Observer.changingInstr(MI);
1062     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1063     Observer.changedInstr(MI);
1064     return Legalized;
1065   case TargetOpcode::G_PHI: {
1066     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1067     // NarrowSize.
1068     if (SizeOp0 % NarrowSize != 0)
1069       return UnableToLegalize;
1070 
1071     unsigned NumParts = SizeOp0 / NarrowSize;
1072     SmallVector<Register, 2> DstRegs(NumParts);
1073     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1074     Observer.changingInstr(MI);
1075     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1076       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1077       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1078       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1079                    SrcRegs[i / 2]);
1080     }
1081     MachineBasicBlock &MBB = *MI.getParent();
1082     MIRBuilder.setInsertPt(MBB, MI);
1083     for (unsigned i = 0; i < NumParts; ++i) {
1084       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1085       MachineInstrBuilder MIB =
1086           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1087       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1088         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1089     }
1090     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1091     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1092     Observer.changedInstr(MI);
1093     MI.eraseFromParent();
1094     return Legalized;
1095   }
1096   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1097   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1098     if (TypeIdx != 2)
1099       return UnableToLegalize;
1100 
1101     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1102     Observer.changingInstr(MI);
1103     narrowScalarSrc(MI, NarrowTy, OpIdx);
1104     Observer.changedInstr(MI);
1105     return Legalized;
1106   }
1107   case TargetOpcode::G_ICMP: {
1108     Register LHS = MI.getOperand(2).getReg();
1109     LLT SrcTy = MRI.getType(LHS);
1110     uint64_t SrcSize = SrcTy.getSizeInBits();
1111     CmpInst::Predicate Pred =
1112         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1113 
1114     // TODO: Handle the non-equality case for weird sizes.
1115     if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred))
1116       return UnableToLegalize;
1117 
1118     LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover)
1119     SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs;
1120     if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs,
1121                       LHSLeftoverRegs))
1122       return UnableToLegalize;
1123 
1124     LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type.
1125     SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs;
1126     if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused,
1127                       RHSPartRegs, RHSLeftoverRegs))
1128       return UnableToLegalize;
1129 
1130     // We now have the LHS and RHS of the compare split into narrow-type
1131     // registers, plus potentially some leftover type.
1132     Register Dst = MI.getOperand(0).getReg();
1133     LLT ResTy = MRI.getType(Dst);
1134     if (ICmpInst::isEquality(Pred)) {
1135       // For each part on the LHS and RHS, keep track of the result of XOR-ing
1136       // them together. For each equal part, the result should be all 0s. For
1137       // each non-equal part, we'll get at least one 1.
1138       auto Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1139       SmallVector<Register, 4> Xors;
1140       for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) {
1141         auto LHS = std::get<0>(LHSAndRHS);
1142         auto RHS = std::get<1>(LHSAndRHS);
1143         auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0);
1144         Xors.push_back(Xor);
1145       }
1146 
1147       // Build a G_XOR for each leftover register. Each G_XOR must be widened
1148       // to the desired narrow type so that we can OR them together later.
1149       SmallVector<Register, 4> WidenedXors;
1150       for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) {
1151         auto LHS = std::get<0>(LHSAndRHS);
1152         auto RHS = std::get<1>(LHSAndRHS);
1153         auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0);
1154         LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor);
1155         buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors,
1156                             /* PadStrategy = */ TargetOpcode::G_ZEXT);
1157         Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end());
1158       }
1159 
1160       // Now, for each part we broke up, we know if they are equal/not equal
1161       // based off the G_XOR. We can OR these all together and compare against
1162       // 0 to get the result.
1163       assert(Xors.size() >= 2 && "Should have gotten at least two Xors?");
1164       auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]);
1165       for (unsigned I = 2, E = Xors.size(); I < E; ++I)
1166         Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]);
1167       MIRBuilder.buildICmp(Pred, Dst, Or, Zero);
1168     } else {
1169       // TODO: Handle non-power-of-two types.
1170       assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?");
1171       assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?");
1172       Register LHSL = LHSPartRegs[0];
1173       Register LHSH = LHSPartRegs[1];
1174       Register RHSL = RHSPartRegs[0];
1175       Register RHSH = RHSPartRegs[1];
1176       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1177       MachineInstrBuilder CmpHEQ =
1178           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1179       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1180           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1181       MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH);
1182     }
1183     MI.eraseFromParent();
1184     return Legalized;
1185   }
1186   case TargetOpcode::G_SEXT_INREG: {
1187     if (TypeIdx != 0)
1188       return UnableToLegalize;
1189 
1190     int64_t SizeInBits = MI.getOperand(2).getImm();
1191 
1192     // So long as the new type has more bits than the bits we're extending we
1193     // don't need to break it apart.
1194     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1195       Observer.changingInstr(MI);
1196       // We don't lose any non-extension bits by truncating the src and
1197       // sign-extending the dst.
1198       MachineOperand &MO1 = MI.getOperand(1);
1199       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1200       MO1.setReg(TruncMIB.getReg(0));
1201 
1202       MachineOperand &MO2 = MI.getOperand(0);
1203       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1204       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1205       MIRBuilder.buildSExt(MO2, DstExt);
1206       MO2.setReg(DstExt);
1207       Observer.changedInstr(MI);
1208       return Legalized;
1209     }
1210 
1211     // Break it apart. Components below the extension point are unmodified. The
1212     // component containing the extension point becomes a narrower SEXT_INREG.
1213     // Components above it are ashr'd from the component containing the
1214     // extension point.
1215     if (SizeOp0 % NarrowSize != 0)
1216       return UnableToLegalize;
1217     int NumParts = SizeOp0 / NarrowSize;
1218 
1219     // List the registers where the destination will be scattered.
1220     SmallVector<Register, 2> DstRegs;
1221     // List the registers where the source will be split.
1222     SmallVector<Register, 2> SrcRegs;
1223 
1224     // Create all the temporary registers.
1225     for (int i = 0; i < NumParts; ++i) {
1226       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1227 
1228       SrcRegs.push_back(SrcReg);
1229     }
1230 
1231     // Explode the big arguments into smaller chunks.
1232     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1233 
1234     Register AshrCstReg =
1235         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1236             .getReg(0);
1237     Register FullExtensionReg = 0;
1238     Register PartialExtensionReg = 0;
1239 
1240     // Do the operation on each small part.
1241     for (int i = 0; i < NumParts; ++i) {
1242       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1243         DstRegs.push_back(SrcRegs[i]);
1244       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1245         assert(PartialExtensionReg &&
1246                "Expected to visit partial extension before full");
1247         if (FullExtensionReg) {
1248           DstRegs.push_back(FullExtensionReg);
1249           continue;
1250         }
1251         DstRegs.push_back(
1252             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1253                 .getReg(0));
1254         FullExtensionReg = DstRegs.back();
1255       } else {
1256         DstRegs.push_back(
1257             MIRBuilder
1258                 .buildInstr(
1259                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1260                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1261                 .getReg(0));
1262         PartialExtensionReg = DstRegs.back();
1263       }
1264     }
1265 
1266     // Gather the destination registers into the final destination.
1267     Register DstReg = MI.getOperand(0).getReg();
1268     MIRBuilder.buildMerge(DstReg, DstRegs);
1269     MI.eraseFromParent();
1270     return Legalized;
1271   }
1272   case TargetOpcode::G_BSWAP:
1273   case TargetOpcode::G_BITREVERSE: {
1274     if (SizeOp0 % NarrowSize != 0)
1275       return UnableToLegalize;
1276 
1277     Observer.changingInstr(MI);
1278     SmallVector<Register, 2> SrcRegs, DstRegs;
1279     unsigned NumParts = SizeOp0 / NarrowSize;
1280     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1281 
1282     for (unsigned i = 0; i < NumParts; ++i) {
1283       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1284                                            {SrcRegs[NumParts - 1 - i]});
1285       DstRegs.push_back(DstPart.getReg(0));
1286     }
1287 
1288     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1289 
1290     Observer.changedInstr(MI);
1291     MI.eraseFromParent();
1292     return Legalized;
1293   }
1294   case TargetOpcode::G_PTR_ADD:
1295   case TargetOpcode::G_PTRMASK: {
1296     if (TypeIdx != 1)
1297       return UnableToLegalize;
1298     Observer.changingInstr(MI);
1299     narrowScalarSrc(MI, NarrowTy, 2);
1300     Observer.changedInstr(MI);
1301     return Legalized;
1302   }
1303   case TargetOpcode::G_FPTOUI:
1304   case TargetOpcode::G_FPTOSI:
1305     return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1306   case TargetOpcode::G_FPEXT:
1307     if (TypeIdx != 0)
1308       return UnableToLegalize;
1309     Observer.changingInstr(MI);
1310     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1311     Observer.changedInstr(MI);
1312     return Legalized;
1313   }
1314 }
1315 
1316 Register LegalizerHelper::coerceToScalar(Register Val) {
1317   LLT Ty = MRI.getType(Val);
1318   if (Ty.isScalar())
1319     return Val;
1320 
1321   const DataLayout &DL = MIRBuilder.getDataLayout();
1322   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1323   if (Ty.isPointer()) {
1324     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1325       return Register();
1326     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1327   }
1328 
1329   Register NewVal = Val;
1330 
1331   assert(Ty.isVector());
1332   LLT EltTy = Ty.getElementType();
1333   if (EltTy.isPointer())
1334     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1335   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1336 }
1337 
1338 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1339                                      unsigned OpIdx, unsigned ExtOpcode) {
1340   MachineOperand &MO = MI.getOperand(OpIdx);
1341   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1342   MO.setReg(ExtB.getReg(0));
1343 }
1344 
1345 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1346                                       unsigned OpIdx) {
1347   MachineOperand &MO = MI.getOperand(OpIdx);
1348   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1349   MO.setReg(ExtB.getReg(0));
1350 }
1351 
1352 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1353                                      unsigned OpIdx, unsigned TruncOpcode) {
1354   MachineOperand &MO = MI.getOperand(OpIdx);
1355   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1356   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1357   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1358   MO.setReg(DstExt);
1359 }
1360 
1361 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1362                                       unsigned OpIdx, unsigned ExtOpcode) {
1363   MachineOperand &MO = MI.getOperand(OpIdx);
1364   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1365   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1366   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1367   MO.setReg(DstTrunc);
1368 }
1369 
1370 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1371                                             unsigned OpIdx) {
1372   MachineOperand &MO = MI.getOperand(OpIdx);
1373   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1374   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1375 }
1376 
1377 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1378                                             unsigned OpIdx) {
1379   MachineOperand &MO = MI.getOperand(OpIdx);
1380 
1381   LLT OldTy = MRI.getType(MO.getReg());
1382   unsigned OldElts = OldTy.getNumElements();
1383   unsigned NewElts = MoreTy.getNumElements();
1384 
1385   unsigned NumParts = NewElts / OldElts;
1386 
1387   // Use concat_vectors if the result is a multiple of the number of elements.
1388   if (NumParts * OldElts == NewElts) {
1389     SmallVector<Register, 8> Parts;
1390     Parts.push_back(MO.getReg());
1391 
1392     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1393     for (unsigned I = 1; I != NumParts; ++I)
1394       Parts.push_back(ImpDef);
1395 
1396     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1397     MO.setReg(Concat.getReg(0));
1398     return;
1399   }
1400 
1401   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1402   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1403   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1404   MO.setReg(MoreReg);
1405 }
1406 
1407 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1408   MachineOperand &Op = MI.getOperand(OpIdx);
1409   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1410 }
1411 
1412 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1413   MachineOperand &MO = MI.getOperand(OpIdx);
1414   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1415   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1416   MIRBuilder.buildBitcast(MO, CastDst);
1417   MO.setReg(CastDst);
1418 }
1419 
1420 LegalizerHelper::LegalizeResult
1421 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1422                                         LLT WideTy) {
1423   if (TypeIdx != 1)
1424     return UnableToLegalize;
1425 
1426   Register DstReg = MI.getOperand(0).getReg();
1427   LLT DstTy = MRI.getType(DstReg);
1428   if (DstTy.isVector())
1429     return UnableToLegalize;
1430 
1431   Register Src1 = MI.getOperand(1).getReg();
1432   LLT SrcTy = MRI.getType(Src1);
1433   const int DstSize = DstTy.getSizeInBits();
1434   const int SrcSize = SrcTy.getSizeInBits();
1435   const int WideSize = WideTy.getSizeInBits();
1436   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1437 
1438   unsigned NumOps = MI.getNumOperands();
1439   unsigned NumSrc = MI.getNumOperands() - 1;
1440   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1441 
1442   if (WideSize >= DstSize) {
1443     // Directly pack the bits in the target type.
1444     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1445 
1446     for (unsigned I = 2; I != NumOps; ++I) {
1447       const unsigned Offset = (I - 1) * PartSize;
1448 
1449       Register SrcReg = MI.getOperand(I).getReg();
1450       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1451 
1452       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1453 
1454       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1455         MRI.createGenericVirtualRegister(WideTy);
1456 
1457       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1458       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1459       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1460       ResultReg = NextResult;
1461     }
1462 
1463     if (WideSize > DstSize)
1464       MIRBuilder.buildTrunc(DstReg, ResultReg);
1465     else if (DstTy.isPointer())
1466       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1467 
1468     MI.eraseFromParent();
1469     return Legalized;
1470   }
1471 
1472   // Unmerge the original values to the GCD type, and recombine to the next
1473   // multiple greater than the original type.
1474   //
1475   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1476   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1477   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1478   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1479   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1480   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1481   // %12:_(s12) = G_MERGE_VALUES %10, %11
1482   //
1483   // Padding with undef if necessary:
1484   //
1485   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1486   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1487   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1488   // %7:_(s2) = G_IMPLICIT_DEF
1489   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1490   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1491   // %10:_(s12) = G_MERGE_VALUES %8, %9
1492 
1493   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1494   LLT GCDTy = LLT::scalar(GCD);
1495 
1496   SmallVector<Register, 8> Parts;
1497   SmallVector<Register, 8> NewMergeRegs;
1498   SmallVector<Register, 8> Unmerges;
1499   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1500 
1501   // Decompose the original operands if they don't evenly divide.
1502   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1503     Register SrcReg = MI.getOperand(I).getReg();
1504     if (GCD == SrcSize) {
1505       Unmerges.push_back(SrcReg);
1506     } else {
1507       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1508       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1509         Unmerges.push_back(Unmerge.getReg(J));
1510     }
1511   }
1512 
1513   // Pad with undef to the next size that is a multiple of the requested size.
1514   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1515     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1516     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1517       Unmerges.push_back(UndefReg);
1518   }
1519 
1520   const int PartsPerGCD = WideSize / GCD;
1521 
1522   // Build merges of each piece.
1523   ArrayRef<Register> Slicer(Unmerges);
1524   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1525     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1526     NewMergeRegs.push_back(Merge.getReg(0));
1527   }
1528 
1529   // A truncate may be necessary if the requested type doesn't evenly divide the
1530   // original result type.
1531   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1532     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1533   } else {
1534     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1535     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1536   }
1537 
1538   MI.eraseFromParent();
1539   return Legalized;
1540 }
1541 
1542 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1543   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1544   LLT OrigTy = MRI.getType(OrigReg);
1545   LLT LCMTy = getLCMType(WideTy, OrigTy);
1546 
1547   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1548   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1549 
1550   Register UnmergeSrc = WideReg;
1551 
1552   // Create a merge to the LCM type, padding with undef
1553   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1554   // =>
1555   // %1:_(<4 x s32>) = G_FOO
1556   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1557   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1558   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1559   if (NumMergeParts > 1) {
1560     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1561     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1562     MergeParts[0] = WideReg;
1563     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1564   }
1565 
1566   // Unmerge to the original register and pad with dead defs.
1567   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1568   UnmergeResults[0] = OrigReg;
1569   for (int I = 1; I != NumUnmergeParts; ++I)
1570     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1571 
1572   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1573   return WideReg;
1574 }
1575 
1576 LegalizerHelper::LegalizeResult
1577 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1578                                           LLT WideTy) {
1579   if (TypeIdx != 0)
1580     return UnableToLegalize;
1581 
1582   int NumDst = MI.getNumOperands() - 1;
1583   Register SrcReg = MI.getOperand(NumDst).getReg();
1584   LLT SrcTy = MRI.getType(SrcReg);
1585   if (SrcTy.isVector())
1586     return UnableToLegalize;
1587 
1588   Register Dst0Reg = MI.getOperand(0).getReg();
1589   LLT DstTy = MRI.getType(Dst0Reg);
1590   if (!DstTy.isScalar())
1591     return UnableToLegalize;
1592 
1593   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1594     if (SrcTy.isPointer()) {
1595       const DataLayout &DL = MIRBuilder.getDataLayout();
1596       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1597         LLVM_DEBUG(
1598             dbgs() << "Not casting non-integral address space integer\n");
1599         return UnableToLegalize;
1600       }
1601 
1602       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1603       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1604     }
1605 
1606     // Widen SrcTy to WideTy. This does not affect the result, but since the
1607     // user requested this size, it is probably better handled than SrcTy and
1608     // should reduce the total number of legalization artifacts
1609     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1610       SrcTy = WideTy;
1611       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1612     }
1613 
1614     // Theres no unmerge type to target. Directly extract the bits from the
1615     // source type
1616     unsigned DstSize = DstTy.getSizeInBits();
1617 
1618     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1619     for (int I = 1; I != NumDst; ++I) {
1620       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1621       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1622       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1623     }
1624 
1625     MI.eraseFromParent();
1626     return Legalized;
1627   }
1628 
1629   // Extend the source to a wider type.
1630   LLT LCMTy = getLCMType(SrcTy, WideTy);
1631 
1632   Register WideSrc = SrcReg;
1633   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1634     // TODO: If this is an integral address space, cast to integer and anyext.
1635     if (SrcTy.isPointer()) {
1636       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1637       return UnableToLegalize;
1638     }
1639 
1640     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1641   }
1642 
1643   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1644 
1645   // Create a sequence of unmerges and merges to the original results. Since we
1646   // may have widened the source, we will need to pad the results with dead defs
1647   // to cover the source register.
1648   // e.g. widen s48 to s64:
1649   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1650   //
1651   // =>
1652   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1653   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1654   //  ; unpack to GCD type, with extra dead defs
1655   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1656   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1657   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1658   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1659   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1660   const LLT GCDTy = getGCDType(WideTy, DstTy);
1661   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1662   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1663 
1664   // Directly unmerge to the destination without going through a GCD type
1665   // if possible
1666   if (PartsPerRemerge == 1) {
1667     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1668 
1669     for (int I = 0; I != NumUnmerge; ++I) {
1670       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1671 
1672       for (int J = 0; J != PartsPerUnmerge; ++J) {
1673         int Idx = I * PartsPerUnmerge + J;
1674         if (Idx < NumDst)
1675           MIB.addDef(MI.getOperand(Idx).getReg());
1676         else {
1677           // Create dead def for excess components.
1678           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1679         }
1680       }
1681 
1682       MIB.addUse(Unmerge.getReg(I));
1683     }
1684   } else {
1685     SmallVector<Register, 16> Parts;
1686     for (int J = 0; J != NumUnmerge; ++J)
1687       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1688 
1689     SmallVector<Register, 8> RemergeParts;
1690     for (int I = 0; I != NumDst; ++I) {
1691       for (int J = 0; J < PartsPerRemerge; ++J) {
1692         const int Idx = I * PartsPerRemerge + J;
1693         RemergeParts.emplace_back(Parts[Idx]);
1694       }
1695 
1696       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1697       RemergeParts.clear();
1698     }
1699   }
1700 
1701   MI.eraseFromParent();
1702   return Legalized;
1703 }
1704 
1705 LegalizerHelper::LegalizeResult
1706 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1707                                     LLT WideTy) {
1708   Register DstReg = MI.getOperand(0).getReg();
1709   Register SrcReg = MI.getOperand(1).getReg();
1710   LLT SrcTy = MRI.getType(SrcReg);
1711 
1712   LLT DstTy = MRI.getType(DstReg);
1713   unsigned Offset = MI.getOperand(2).getImm();
1714 
1715   if (TypeIdx == 0) {
1716     if (SrcTy.isVector() || DstTy.isVector())
1717       return UnableToLegalize;
1718 
1719     SrcOp Src(SrcReg);
1720     if (SrcTy.isPointer()) {
1721       // Extracts from pointers can be handled only if they are really just
1722       // simple integers.
1723       const DataLayout &DL = MIRBuilder.getDataLayout();
1724       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1725         return UnableToLegalize;
1726 
1727       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1728       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1729       SrcTy = SrcAsIntTy;
1730     }
1731 
1732     if (DstTy.isPointer())
1733       return UnableToLegalize;
1734 
1735     if (Offset == 0) {
1736       // Avoid a shift in the degenerate case.
1737       MIRBuilder.buildTrunc(DstReg,
1738                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1739       MI.eraseFromParent();
1740       return Legalized;
1741     }
1742 
1743     // Do a shift in the source type.
1744     LLT ShiftTy = SrcTy;
1745     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1746       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1747       ShiftTy = WideTy;
1748     }
1749 
1750     auto LShr = MIRBuilder.buildLShr(
1751       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1752     MIRBuilder.buildTrunc(DstReg, LShr);
1753     MI.eraseFromParent();
1754     return Legalized;
1755   }
1756 
1757   if (SrcTy.isScalar()) {
1758     Observer.changingInstr(MI);
1759     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1760     Observer.changedInstr(MI);
1761     return Legalized;
1762   }
1763 
1764   if (!SrcTy.isVector())
1765     return UnableToLegalize;
1766 
1767   if (DstTy != SrcTy.getElementType())
1768     return UnableToLegalize;
1769 
1770   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1771     return UnableToLegalize;
1772 
1773   Observer.changingInstr(MI);
1774   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1775 
1776   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1777                           Offset);
1778   widenScalarDst(MI, WideTy.getScalarType(), 0);
1779   Observer.changedInstr(MI);
1780   return Legalized;
1781 }
1782 
1783 LegalizerHelper::LegalizeResult
1784 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1785                                    LLT WideTy) {
1786   if (TypeIdx != 0 || WideTy.isVector())
1787     return UnableToLegalize;
1788   Observer.changingInstr(MI);
1789   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1790   widenScalarDst(MI, WideTy);
1791   Observer.changedInstr(MI);
1792   return Legalized;
1793 }
1794 
1795 LegalizerHelper::LegalizeResult
1796 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1797                                            LLT WideTy) {
1798   if (TypeIdx == 1)
1799     return UnableToLegalize; // TODO
1800 
1801   unsigned Opcode;
1802   unsigned ExtOpcode;
1803   Optional<Register> CarryIn = None;
1804   switch (MI.getOpcode()) {
1805   default:
1806     llvm_unreachable("Unexpected opcode!");
1807   case TargetOpcode::G_SADDO:
1808     Opcode = TargetOpcode::G_ADD;
1809     ExtOpcode = TargetOpcode::G_SEXT;
1810     break;
1811   case TargetOpcode::G_SSUBO:
1812     Opcode = TargetOpcode::G_SUB;
1813     ExtOpcode = TargetOpcode::G_SEXT;
1814     break;
1815   case TargetOpcode::G_UADDO:
1816     Opcode = TargetOpcode::G_ADD;
1817     ExtOpcode = TargetOpcode::G_ZEXT;
1818     break;
1819   case TargetOpcode::G_USUBO:
1820     Opcode = TargetOpcode::G_SUB;
1821     ExtOpcode = TargetOpcode::G_ZEXT;
1822     break;
1823   case TargetOpcode::G_SADDE:
1824     Opcode = TargetOpcode::G_UADDE;
1825     ExtOpcode = TargetOpcode::G_SEXT;
1826     CarryIn = MI.getOperand(4).getReg();
1827     break;
1828   case TargetOpcode::G_SSUBE:
1829     Opcode = TargetOpcode::G_USUBE;
1830     ExtOpcode = TargetOpcode::G_SEXT;
1831     CarryIn = MI.getOperand(4).getReg();
1832     break;
1833   case TargetOpcode::G_UADDE:
1834     Opcode = TargetOpcode::G_UADDE;
1835     ExtOpcode = TargetOpcode::G_ZEXT;
1836     CarryIn = MI.getOperand(4).getReg();
1837     break;
1838   case TargetOpcode::G_USUBE:
1839     Opcode = TargetOpcode::G_USUBE;
1840     ExtOpcode = TargetOpcode::G_ZEXT;
1841     CarryIn = MI.getOperand(4).getReg();
1842     break;
1843   }
1844 
1845   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1846   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1847   // Do the arithmetic in the larger type.
1848   Register NewOp;
1849   if (CarryIn) {
1850     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1851     NewOp = MIRBuilder
1852                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1853                             {LHSExt, RHSExt, *CarryIn})
1854                 .getReg(0);
1855   } else {
1856     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1857   }
1858   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1859   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1860   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1861   // There is no overflow if the ExtOp is the same as NewOp.
1862   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1863   // Now trunc the NewOp to the original result.
1864   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1865   MI.eraseFromParent();
1866   return Legalized;
1867 }
1868 
1869 LegalizerHelper::LegalizeResult
1870 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1871                                          LLT WideTy) {
1872   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1873                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1874                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1875   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1876                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1877   // We can convert this to:
1878   //   1. Any extend iN to iM
1879   //   2. SHL by M-N
1880   //   3. [US][ADD|SUB|SHL]SAT
1881   //   4. L/ASHR by M-N
1882   //
1883   // It may be more efficient to lower this to a min and a max operation in
1884   // the higher precision arithmetic if the promoted operation isn't legal,
1885   // but this decision is up to the target's lowering request.
1886   Register DstReg = MI.getOperand(0).getReg();
1887 
1888   unsigned NewBits = WideTy.getScalarSizeInBits();
1889   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1890 
1891   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1892   // must not left shift the RHS to preserve the shift amount.
1893   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1894   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1895                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1896   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1897   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1898   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1899 
1900   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1901                                         {ShiftL, ShiftR}, MI.getFlags());
1902 
1903   // Use a shift that will preserve the number of sign bits when the trunc is
1904   // folded away.
1905   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1906                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1907 
1908   MIRBuilder.buildTrunc(DstReg, Result);
1909   MI.eraseFromParent();
1910   return Legalized;
1911 }
1912 
1913 LegalizerHelper::LegalizeResult
1914 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1915                                  LLT WideTy) {
1916   if (TypeIdx == 1)
1917     return UnableToLegalize;
1918 
1919   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
1920   Register Result = MI.getOperand(0).getReg();
1921   Register OriginalOverflow = MI.getOperand(1).getReg();
1922   Register LHS = MI.getOperand(2).getReg();
1923   Register RHS = MI.getOperand(3).getReg();
1924   LLT SrcTy = MRI.getType(LHS);
1925   LLT OverflowTy = MRI.getType(OriginalOverflow);
1926   unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
1927 
1928   // To determine if the result overflowed in the larger type, we extend the
1929   // input to the larger type, do the multiply (checking if it overflows),
1930   // then also check the high bits of the result to see if overflow happened
1931   // there.
1932   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1933   auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
1934   auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
1935 
1936   auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
1937                                     {LeftOperand, RightOperand});
1938   auto Mul = Mulo->getOperand(0);
1939   MIRBuilder.buildTrunc(Result, Mul);
1940 
1941   MachineInstrBuilder ExtResult;
1942   // Overflow occurred if it occurred in the larger type, or if the high part
1943   // of the result does not zero/sign-extend the low part.  Check this second
1944   // possibility first.
1945   if (IsSigned) {
1946     // For signed, overflow occurred when the high part does not sign-extend
1947     // the low part.
1948     ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
1949   } else {
1950     // Unsigned overflow occurred when the high part does not zero-extend the
1951     // low part.
1952     ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
1953   }
1954 
1955   // Multiplication cannot overflow if the WideTy is >= 2 * original width,
1956   // so we don't need to check the overflow result of larger type Mulo.
1957   if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
1958     auto Overflow =
1959         MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
1960     // Finally check if the multiplication in the larger type itself overflowed.
1961     MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
1962   } else {
1963     MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
1964   }
1965   MI.eraseFromParent();
1966   return Legalized;
1967 }
1968 
1969 LegalizerHelper::LegalizeResult
1970 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1971   switch (MI.getOpcode()) {
1972   default:
1973     return UnableToLegalize;
1974   case TargetOpcode::G_ATOMICRMW_XCHG:
1975   case TargetOpcode::G_ATOMICRMW_ADD:
1976   case TargetOpcode::G_ATOMICRMW_SUB:
1977   case TargetOpcode::G_ATOMICRMW_AND:
1978   case TargetOpcode::G_ATOMICRMW_OR:
1979   case TargetOpcode::G_ATOMICRMW_XOR:
1980   case TargetOpcode::G_ATOMICRMW_MIN:
1981   case TargetOpcode::G_ATOMICRMW_MAX:
1982   case TargetOpcode::G_ATOMICRMW_UMIN:
1983   case TargetOpcode::G_ATOMICRMW_UMAX:
1984     assert(TypeIdx == 0 && "atomicrmw with second scalar type");
1985     Observer.changingInstr(MI);
1986     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1987     widenScalarDst(MI, WideTy, 0);
1988     Observer.changedInstr(MI);
1989     return Legalized;
1990   case TargetOpcode::G_ATOMIC_CMPXCHG:
1991     assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type");
1992     Observer.changingInstr(MI);
1993     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1994     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1995     widenScalarDst(MI, WideTy, 0);
1996     Observer.changedInstr(MI);
1997     return Legalized;
1998   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS:
1999     if (TypeIdx == 0) {
2000       Observer.changingInstr(MI);
2001       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2002       widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT);
2003       widenScalarDst(MI, WideTy, 0);
2004       Observer.changedInstr(MI);
2005       return Legalized;
2006     }
2007     assert(TypeIdx == 1 &&
2008            "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type");
2009     Observer.changingInstr(MI);
2010     widenScalarDst(MI, WideTy, 1);
2011     Observer.changedInstr(MI);
2012     return Legalized;
2013   case TargetOpcode::G_EXTRACT:
2014     return widenScalarExtract(MI, TypeIdx, WideTy);
2015   case TargetOpcode::G_INSERT:
2016     return widenScalarInsert(MI, TypeIdx, WideTy);
2017   case TargetOpcode::G_MERGE_VALUES:
2018     return widenScalarMergeValues(MI, TypeIdx, WideTy);
2019   case TargetOpcode::G_UNMERGE_VALUES:
2020     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
2021   case TargetOpcode::G_SADDO:
2022   case TargetOpcode::G_SSUBO:
2023   case TargetOpcode::G_UADDO:
2024   case TargetOpcode::G_USUBO:
2025   case TargetOpcode::G_SADDE:
2026   case TargetOpcode::G_SSUBE:
2027   case TargetOpcode::G_UADDE:
2028   case TargetOpcode::G_USUBE:
2029     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
2030   case TargetOpcode::G_UMULO:
2031   case TargetOpcode::G_SMULO:
2032     return widenScalarMulo(MI, TypeIdx, WideTy);
2033   case TargetOpcode::G_SADDSAT:
2034   case TargetOpcode::G_SSUBSAT:
2035   case TargetOpcode::G_SSHLSAT:
2036   case TargetOpcode::G_UADDSAT:
2037   case TargetOpcode::G_USUBSAT:
2038   case TargetOpcode::G_USHLSAT:
2039     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
2040   case TargetOpcode::G_CTTZ:
2041   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2042   case TargetOpcode::G_CTLZ:
2043   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2044   case TargetOpcode::G_CTPOP: {
2045     if (TypeIdx == 0) {
2046       Observer.changingInstr(MI);
2047       widenScalarDst(MI, WideTy, 0);
2048       Observer.changedInstr(MI);
2049       return Legalized;
2050     }
2051 
2052     Register SrcReg = MI.getOperand(1).getReg();
2053 
2054     // First extend the input.
2055     unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ ||
2056                               MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF
2057                           ? TargetOpcode::G_ANYEXT
2058                           : TargetOpcode::G_ZEXT;
2059     auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg});
2060     LLT CurTy = MRI.getType(SrcReg);
2061     unsigned NewOpc = MI.getOpcode();
2062     if (NewOpc == TargetOpcode::G_CTTZ) {
2063       // The count is the same in the larger type except if the original
2064       // value was zero.  This can be handled by setting the bit just off
2065       // the top of the original type.
2066       auto TopBit =
2067           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
2068       MIBSrc = MIRBuilder.buildOr(
2069         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
2070       // Now we know the operand is non-zero, use the more relaxed opcode.
2071       NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF;
2072     }
2073 
2074     // Perform the operation at the larger size.
2075     auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc});
2076     // This is already the correct result for CTPOP and CTTZs
2077     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
2078         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
2079       // The correct result is NewOp - (Difference in widety and current ty).
2080       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
2081       MIBNewOp = MIRBuilder.buildSub(
2082           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
2083     }
2084 
2085     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
2086     MI.eraseFromParent();
2087     return Legalized;
2088   }
2089   case TargetOpcode::G_BSWAP: {
2090     Observer.changingInstr(MI);
2091     Register DstReg = MI.getOperand(0).getReg();
2092 
2093     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
2094     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2095     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
2096     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2097 
2098     MI.getOperand(0).setReg(DstExt);
2099 
2100     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2101 
2102     LLT Ty = MRI.getType(DstReg);
2103     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2104     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
2105     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
2106 
2107     MIRBuilder.buildTrunc(DstReg, ShrReg);
2108     Observer.changedInstr(MI);
2109     return Legalized;
2110   }
2111   case TargetOpcode::G_BITREVERSE: {
2112     Observer.changingInstr(MI);
2113 
2114     Register DstReg = MI.getOperand(0).getReg();
2115     LLT Ty = MRI.getType(DstReg);
2116     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2117 
2118     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2119     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2120     MI.getOperand(0).setReg(DstExt);
2121     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2122 
2123     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
2124     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
2125     MIRBuilder.buildTrunc(DstReg, Shift);
2126     Observer.changedInstr(MI);
2127     return Legalized;
2128   }
2129   case TargetOpcode::G_FREEZE:
2130     Observer.changingInstr(MI);
2131     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2132     widenScalarDst(MI, WideTy);
2133     Observer.changedInstr(MI);
2134     return Legalized;
2135 
2136   case TargetOpcode::G_ABS:
2137     Observer.changingInstr(MI);
2138     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2139     widenScalarDst(MI, WideTy);
2140     Observer.changedInstr(MI);
2141     return Legalized;
2142 
2143   case TargetOpcode::G_ADD:
2144   case TargetOpcode::G_AND:
2145   case TargetOpcode::G_MUL:
2146   case TargetOpcode::G_OR:
2147   case TargetOpcode::G_XOR:
2148   case TargetOpcode::G_SUB:
2149     // Perform operation at larger width (any extension is fines here, high bits
2150     // don't affect the result) and then truncate the result back to the
2151     // original type.
2152     Observer.changingInstr(MI);
2153     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2154     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2155     widenScalarDst(MI, WideTy);
2156     Observer.changedInstr(MI);
2157     return Legalized;
2158 
2159   case TargetOpcode::G_SBFX:
2160   case TargetOpcode::G_UBFX:
2161     Observer.changingInstr(MI);
2162 
2163     if (TypeIdx == 0) {
2164       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2165       widenScalarDst(MI, WideTy);
2166     } else {
2167       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2168       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2169     }
2170 
2171     Observer.changedInstr(MI);
2172     return Legalized;
2173 
2174   case TargetOpcode::G_SHL:
2175     Observer.changingInstr(MI);
2176 
2177     if (TypeIdx == 0) {
2178       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2179       widenScalarDst(MI, WideTy);
2180     } else {
2181       assert(TypeIdx == 1);
2182       // The "number of bits to shift" operand must preserve its value as an
2183       // unsigned integer:
2184       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2185     }
2186 
2187     Observer.changedInstr(MI);
2188     return Legalized;
2189 
2190   case TargetOpcode::G_SDIV:
2191   case TargetOpcode::G_SREM:
2192   case TargetOpcode::G_SMIN:
2193   case TargetOpcode::G_SMAX:
2194     Observer.changingInstr(MI);
2195     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2196     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2197     widenScalarDst(MI, WideTy);
2198     Observer.changedInstr(MI);
2199     return Legalized;
2200 
2201   case TargetOpcode::G_SDIVREM:
2202     Observer.changingInstr(MI);
2203     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2204     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2205     widenScalarDst(MI, WideTy);
2206     widenScalarDst(MI, WideTy, 1);
2207     Observer.changedInstr(MI);
2208     return Legalized;
2209 
2210   case TargetOpcode::G_ASHR:
2211   case TargetOpcode::G_LSHR:
2212     Observer.changingInstr(MI);
2213 
2214     if (TypeIdx == 0) {
2215       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2216         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2217 
2218       widenScalarSrc(MI, WideTy, 1, CvtOp);
2219       widenScalarDst(MI, WideTy);
2220     } else {
2221       assert(TypeIdx == 1);
2222       // The "number of bits to shift" operand must preserve its value as an
2223       // unsigned integer:
2224       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2225     }
2226 
2227     Observer.changedInstr(MI);
2228     return Legalized;
2229   case TargetOpcode::G_UDIV:
2230   case TargetOpcode::G_UREM:
2231   case TargetOpcode::G_UMIN:
2232   case TargetOpcode::G_UMAX:
2233     Observer.changingInstr(MI);
2234     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2235     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2236     widenScalarDst(MI, WideTy);
2237     Observer.changedInstr(MI);
2238     return Legalized;
2239 
2240   case TargetOpcode::G_UDIVREM:
2241     Observer.changingInstr(MI);
2242     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2243     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2244     widenScalarDst(MI, WideTy);
2245     widenScalarDst(MI, WideTy, 1);
2246     Observer.changedInstr(MI);
2247     return Legalized;
2248 
2249   case TargetOpcode::G_SELECT:
2250     Observer.changingInstr(MI);
2251     if (TypeIdx == 0) {
2252       // Perform operation at larger width (any extension is fine here, high
2253       // bits don't affect the result) and then truncate the result back to the
2254       // original type.
2255       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2256       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2257       widenScalarDst(MI, WideTy);
2258     } else {
2259       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2260       // Explicit extension is required here since high bits affect the result.
2261       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2262     }
2263     Observer.changedInstr(MI);
2264     return Legalized;
2265 
2266   case TargetOpcode::G_FPTOSI:
2267   case TargetOpcode::G_FPTOUI:
2268     Observer.changingInstr(MI);
2269 
2270     if (TypeIdx == 0)
2271       widenScalarDst(MI, WideTy);
2272     else
2273       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2274 
2275     Observer.changedInstr(MI);
2276     return Legalized;
2277   case TargetOpcode::G_SITOFP:
2278     Observer.changingInstr(MI);
2279 
2280     if (TypeIdx == 0)
2281       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2282     else
2283       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2284 
2285     Observer.changedInstr(MI);
2286     return Legalized;
2287   case TargetOpcode::G_UITOFP:
2288     Observer.changingInstr(MI);
2289 
2290     if (TypeIdx == 0)
2291       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2292     else
2293       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2294 
2295     Observer.changedInstr(MI);
2296     return Legalized;
2297   case TargetOpcode::G_LOAD:
2298   case TargetOpcode::G_SEXTLOAD:
2299   case TargetOpcode::G_ZEXTLOAD:
2300     Observer.changingInstr(MI);
2301     widenScalarDst(MI, WideTy);
2302     Observer.changedInstr(MI);
2303     return Legalized;
2304 
2305   case TargetOpcode::G_STORE: {
2306     if (TypeIdx != 0)
2307       return UnableToLegalize;
2308 
2309     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2310     if (!Ty.isScalar())
2311       return UnableToLegalize;
2312 
2313     Observer.changingInstr(MI);
2314 
2315     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2316       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2317     widenScalarSrc(MI, WideTy, 0, ExtType);
2318 
2319     Observer.changedInstr(MI);
2320     return Legalized;
2321   }
2322   case TargetOpcode::G_CONSTANT: {
2323     MachineOperand &SrcMO = MI.getOperand(1);
2324     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2325     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2326         MRI.getType(MI.getOperand(0).getReg()));
2327     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2328             ExtOpc == TargetOpcode::G_ANYEXT) &&
2329            "Illegal Extend");
2330     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2331     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2332                            ? SrcVal.sext(WideTy.getSizeInBits())
2333                            : SrcVal.zext(WideTy.getSizeInBits());
2334     Observer.changingInstr(MI);
2335     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2336 
2337     widenScalarDst(MI, WideTy);
2338     Observer.changedInstr(MI);
2339     return Legalized;
2340   }
2341   case TargetOpcode::G_FCONSTANT: {
2342     MachineOperand &SrcMO = MI.getOperand(1);
2343     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2344     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2345     bool LosesInfo;
2346     switch (WideTy.getSizeInBits()) {
2347     case 32:
2348       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2349                   &LosesInfo);
2350       break;
2351     case 64:
2352       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2353                   &LosesInfo);
2354       break;
2355     default:
2356       return UnableToLegalize;
2357     }
2358 
2359     assert(!LosesInfo && "extend should always be lossless");
2360 
2361     Observer.changingInstr(MI);
2362     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2363 
2364     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2365     Observer.changedInstr(MI);
2366     return Legalized;
2367   }
2368   case TargetOpcode::G_IMPLICIT_DEF: {
2369     Observer.changingInstr(MI);
2370     widenScalarDst(MI, WideTy);
2371     Observer.changedInstr(MI);
2372     return Legalized;
2373   }
2374   case TargetOpcode::G_BRCOND:
2375     Observer.changingInstr(MI);
2376     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2377     Observer.changedInstr(MI);
2378     return Legalized;
2379 
2380   case TargetOpcode::G_FCMP:
2381     Observer.changingInstr(MI);
2382     if (TypeIdx == 0)
2383       widenScalarDst(MI, WideTy);
2384     else {
2385       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2386       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2387     }
2388     Observer.changedInstr(MI);
2389     return Legalized;
2390 
2391   case TargetOpcode::G_ICMP:
2392     Observer.changingInstr(MI);
2393     if (TypeIdx == 0)
2394       widenScalarDst(MI, WideTy);
2395     else {
2396       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2397                                MI.getOperand(1).getPredicate()))
2398                                ? TargetOpcode::G_SEXT
2399                                : TargetOpcode::G_ZEXT;
2400       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2401       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2402     }
2403     Observer.changedInstr(MI);
2404     return Legalized;
2405 
2406   case TargetOpcode::G_PTR_ADD:
2407     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2408     Observer.changingInstr(MI);
2409     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2410     Observer.changedInstr(MI);
2411     return Legalized;
2412 
2413   case TargetOpcode::G_PHI: {
2414     assert(TypeIdx == 0 && "Expecting only Idx 0");
2415 
2416     Observer.changingInstr(MI);
2417     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2418       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2419       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2420       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2421     }
2422 
2423     MachineBasicBlock &MBB = *MI.getParent();
2424     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2425     widenScalarDst(MI, WideTy);
2426     Observer.changedInstr(MI);
2427     return Legalized;
2428   }
2429   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2430     if (TypeIdx == 0) {
2431       Register VecReg = MI.getOperand(1).getReg();
2432       LLT VecTy = MRI.getType(VecReg);
2433       Observer.changingInstr(MI);
2434 
2435       widenScalarSrc(
2436           MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1,
2437           TargetOpcode::G_SEXT);
2438 
2439       widenScalarDst(MI, WideTy, 0);
2440       Observer.changedInstr(MI);
2441       return Legalized;
2442     }
2443 
2444     if (TypeIdx != 2)
2445       return UnableToLegalize;
2446     Observer.changingInstr(MI);
2447     // TODO: Probably should be zext
2448     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2449     Observer.changedInstr(MI);
2450     return Legalized;
2451   }
2452   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2453     if (TypeIdx == 1) {
2454       Observer.changingInstr(MI);
2455 
2456       Register VecReg = MI.getOperand(1).getReg();
2457       LLT VecTy = MRI.getType(VecReg);
2458       LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy);
2459 
2460       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2461       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2462       widenScalarDst(MI, WideVecTy, 0);
2463       Observer.changedInstr(MI);
2464       return Legalized;
2465     }
2466 
2467     if (TypeIdx == 2) {
2468       Observer.changingInstr(MI);
2469       // TODO: Probably should be zext
2470       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2471       Observer.changedInstr(MI);
2472       return Legalized;
2473     }
2474 
2475     return UnableToLegalize;
2476   }
2477   case TargetOpcode::G_FADD:
2478   case TargetOpcode::G_FMUL:
2479   case TargetOpcode::G_FSUB:
2480   case TargetOpcode::G_FMA:
2481   case TargetOpcode::G_FMAD:
2482   case TargetOpcode::G_FNEG:
2483   case TargetOpcode::G_FABS:
2484   case TargetOpcode::G_FCANONICALIZE:
2485   case TargetOpcode::G_FMINNUM:
2486   case TargetOpcode::G_FMAXNUM:
2487   case TargetOpcode::G_FMINNUM_IEEE:
2488   case TargetOpcode::G_FMAXNUM_IEEE:
2489   case TargetOpcode::G_FMINIMUM:
2490   case TargetOpcode::G_FMAXIMUM:
2491   case TargetOpcode::G_FDIV:
2492   case TargetOpcode::G_FREM:
2493   case TargetOpcode::G_FCEIL:
2494   case TargetOpcode::G_FFLOOR:
2495   case TargetOpcode::G_FCOS:
2496   case TargetOpcode::G_FSIN:
2497   case TargetOpcode::G_FLOG10:
2498   case TargetOpcode::G_FLOG:
2499   case TargetOpcode::G_FLOG2:
2500   case TargetOpcode::G_FRINT:
2501   case TargetOpcode::G_FNEARBYINT:
2502   case TargetOpcode::G_FSQRT:
2503   case TargetOpcode::G_FEXP:
2504   case TargetOpcode::G_FEXP2:
2505   case TargetOpcode::G_FPOW:
2506   case TargetOpcode::G_INTRINSIC_TRUNC:
2507   case TargetOpcode::G_INTRINSIC_ROUND:
2508   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2509     assert(TypeIdx == 0);
2510     Observer.changingInstr(MI);
2511 
2512     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2513       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2514 
2515     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2516     Observer.changedInstr(MI);
2517     return Legalized;
2518   case TargetOpcode::G_FPOWI: {
2519     if (TypeIdx != 0)
2520       return UnableToLegalize;
2521     Observer.changingInstr(MI);
2522     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2523     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2524     Observer.changedInstr(MI);
2525     return Legalized;
2526   }
2527   case TargetOpcode::G_INTTOPTR:
2528     if (TypeIdx != 1)
2529       return UnableToLegalize;
2530 
2531     Observer.changingInstr(MI);
2532     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2533     Observer.changedInstr(MI);
2534     return Legalized;
2535   case TargetOpcode::G_PTRTOINT:
2536     if (TypeIdx != 0)
2537       return UnableToLegalize;
2538 
2539     Observer.changingInstr(MI);
2540     widenScalarDst(MI, WideTy, 0);
2541     Observer.changedInstr(MI);
2542     return Legalized;
2543   case TargetOpcode::G_BUILD_VECTOR: {
2544     Observer.changingInstr(MI);
2545 
2546     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2547     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2548       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2549 
2550     // Avoid changing the result vector type if the source element type was
2551     // requested.
2552     if (TypeIdx == 1) {
2553       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2554     } else {
2555       widenScalarDst(MI, WideTy, 0);
2556     }
2557 
2558     Observer.changedInstr(MI);
2559     return Legalized;
2560   }
2561   case TargetOpcode::G_SEXT_INREG:
2562     if (TypeIdx != 0)
2563       return UnableToLegalize;
2564 
2565     Observer.changingInstr(MI);
2566     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2567     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2568     Observer.changedInstr(MI);
2569     return Legalized;
2570   case TargetOpcode::G_PTRMASK: {
2571     if (TypeIdx != 1)
2572       return UnableToLegalize;
2573     Observer.changingInstr(MI);
2574     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2575     Observer.changedInstr(MI);
2576     return Legalized;
2577   }
2578   }
2579 }
2580 
2581 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2582                              MachineIRBuilder &B, Register Src, LLT Ty) {
2583   auto Unmerge = B.buildUnmerge(Ty, Src);
2584   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2585     Pieces.push_back(Unmerge.getReg(I));
2586 }
2587 
2588 LegalizerHelper::LegalizeResult
2589 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2590   Register Dst = MI.getOperand(0).getReg();
2591   Register Src = MI.getOperand(1).getReg();
2592   LLT DstTy = MRI.getType(Dst);
2593   LLT SrcTy = MRI.getType(Src);
2594 
2595   if (SrcTy.isVector()) {
2596     LLT SrcEltTy = SrcTy.getElementType();
2597     SmallVector<Register, 8> SrcRegs;
2598 
2599     if (DstTy.isVector()) {
2600       int NumDstElt = DstTy.getNumElements();
2601       int NumSrcElt = SrcTy.getNumElements();
2602 
2603       LLT DstEltTy = DstTy.getElementType();
2604       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2605       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2606 
2607       // If there's an element size mismatch, insert intermediate casts to match
2608       // the result element type.
2609       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2610         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2611         //
2612         // =>
2613         //
2614         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2615         // %3:_(<2 x s8>) = G_BITCAST %2
2616         // %4:_(<2 x s8>) = G_BITCAST %3
2617         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2618         DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy);
2619         SrcPartTy = SrcEltTy;
2620       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2621         //
2622         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2623         //
2624         // =>
2625         //
2626         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2627         // %3:_(s16) = G_BITCAST %2
2628         // %4:_(s16) = G_BITCAST %3
2629         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2630         SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy);
2631         DstCastTy = DstEltTy;
2632       }
2633 
2634       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2635       for (Register &SrcReg : SrcRegs)
2636         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2637     } else
2638       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2639 
2640     MIRBuilder.buildMerge(Dst, SrcRegs);
2641     MI.eraseFromParent();
2642     return Legalized;
2643   }
2644 
2645   if (DstTy.isVector()) {
2646     SmallVector<Register, 8> SrcRegs;
2647     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2648     MIRBuilder.buildMerge(Dst, SrcRegs);
2649     MI.eraseFromParent();
2650     return Legalized;
2651   }
2652 
2653   return UnableToLegalize;
2654 }
2655 
2656 /// Figure out the bit offset into a register when coercing a vector index for
2657 /// the wide element type. This is only for the case when promoting vector to
2658 /// one with larger elements.
2659 //
2660 ///
2661 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2662 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2663 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2664                                                    Register Idx,
2665                                                    unsigned NewEltSize,
2666                                                    unsigned OldEltSize) {
2667   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2668   LLT IdxTy = B.getMRI()->getType(Idx);
2669 
2670   // Now figure out the amount we need to shift to get the target bits.
2671   auto OffsetMask = B.buildConstant(
2672     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2673   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2674   return B.buildShl(IdxTy, OffsetIdx,
2675                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2676 }
2677 
2678 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2679 /// is casting to a vector with a smaller element size, perform multiple element
2680 /// extracts and merge the results. If this is coercing to a vector with larger
2681 /// elements, index the bitcasted vector and extract the target element with bit
2682 /// operations. This is intended to force the indexing in the native register
2683 /// size for architectures that can dynamically index the register file.
2684 LegalizerHelper::LegalizeResult
2685 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2686                                          LLT CastTy) {
2687   if (TypeIdx != 1)
2688     return UnableToLegalize;
2689 
2690   Register Dst = MI.getOperand(0).getReg();
2691   Register SrcVec = MI.getOperand(1).getReg();
2692   Register Idx = MI.getOperand(2).getReg();
2693   LLT SrcVecTy = MRI.getType(SrcVec);
2694   LLT IdxTy = MRI.getType(Idx);
2695 
2696   LLT SrcEltTy = SrcVecTy.getElementType();
2697   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2698   unsigned OldNumElts = SrcVecTy.getNumElements();
2699 
2700   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2701   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2702 
2703   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2704   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2705   if (NewNumElts > OldNumElts) {
2706     // Decreasing the vector element size
2707     //
2708     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2709     //  =>
2710     //  v4i32:castx = bitcast x:v2i64
2711     //
2712     // i64 = bitcast
2713     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2714     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2715     //
2716     if (NewNumElts % OldNumElts != 0)
2717       return UnableToLegalize;
2718 
2719     // Type of the intermediate result vector.
2720     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2721     LLT MidTy =
2722         LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy);
2723 
2724     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2725 
2726     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2727     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2728 
2729     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2730       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2731       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2732       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2733       NewOps[I] = Elt.getReg(0);
2734     }
2735 
2736     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2737     MIRBuilder.buildBitcast(Dst, NewVec);
2738     MI.eraseFromParent();
2739     return Legalized;
2740   }
2741 
2742   if (NewNumElts < OldNumElts) {
2743     if (NewEltSize % OldEltSize != 0)
2744       return UnableToLegalize;
2745 
2746     // This only depends on powers of 2 because we use bit tricks to figure out
2747     // the bit offset we need to shift to get the target element. A general
2748     // expansion could emit division/multiply.
2749     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2750       return UnableToLegalize;
2751 
2752     // Increasing the vector element size.
2753     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2754     //
2755     //   =>
2756     //
2757     // %cast = G_BITCAST %vec
2758     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2759     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2760     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2761     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2762     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2763     // %elt = G_TRUNC %elt_bits
2764 
2765     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2766     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2767 
2768     // Divide to get the index in the wider element type.
2769     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2770 
2771     Register WideElt = CastVec;
2772     if (CastTy.isVector()) {
2773       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2774                                                      ScaledIdx).getReg(0);
2775     }
2776 
2777     // Compute the bit offset into the register of the target element.
2778     Register OffsetBits = getBitcastWiderVectorElementOffset(
2779       MIRBuilder, Idx, NewEltSize, OldEltSize);
2780 
2781     // Shift the wide element to get the target element.
2782     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2783     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2784     MI.eraseFromParent();
2785     return Legalized;
2786   }
2787 
2788   return UnableToLegalize;
2789 }
2790 
2791 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2792 /// TargetReg, while preserving other bits in \p TargetReg.
2793 ///
2794 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2795 static Register buildBitFieldInsert(MachineIRBuilder &B,
2796                                     Register TargetReg, Register InsertReg,
2797                                     Register OffsetBits) {
2798   LLT TargetTy = B.getMRI()->getType(TargetReg);
2799   LLT InsertTy = B.getMRI()->getType(InsertReg);
2800   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2801   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2802 
2803   // Produce a bitmask of the value to insert
2804   auto EltMask = B.buildConstant(
2805     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2806                                    InsertTy.getSizeInBits()));
2807   // Shift it into position
2808   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2809   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2810 
2811   // Clear out the bits in the wide element
2812   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2813 
2814   // The value to insert has all zeros already, so stick it into the masked
2815   // wide element.
2816   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2817 }
2818 
2819 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2820 /// is increasing the element size, perform the indexing in the target element
2821 /// type, and use bit operations to insert at the element position. This is
2822 /// intended for architectures that can dynamically index the register file and
2823 /// want to force indexing in the native register size.
2824 LegalizerHelper::LegalizeResult
2825 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2826                                         LLT CastTy) {
2827   if (TypeIdx != 0)
2828     return UnableToLegalize;
2829 
2830   Register Dst = MI.getOperand(0).getReg();
2831   Register SrcVec = MI.getOperand(1).getReg();
2832   Register Val = MI.getOperand(2).getReg();
2833   Register Idx = MI.getOperand(3).getReg();
2834 
2835   LLT VecTy = MRI.getType(Dst);
2836   LLT IdxTy = MRI.getType(Idx);
2837 
2838   LLT VecEltTy = VecTy.getElementType();
2839   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2840   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2841   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2842 
2843   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2844   unsigned OldNumElts = VecTy.getNumElements();
2845 
2846   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2847   if (NewNumElts < OldNumElts) {
2848     if (NewEltSize % OldEltSize != 0)
2849       return UnableToLegalize;
2850 
2851     // This only depends on powers of 2 because we use bit tricks to figure out
2852     // the bit offset we need to shift to get the target element. A general
2853     // expansion could emit division/multiply.
2854     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2855       return UnableToLegalize;
2856 
2857     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2858     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2859 
2860     // Divide to get the index in the wider element type.
2861     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2862 
2863     Register ExtractedElt = CastVec;
2864     if (CastTy.isVector()) {
2865       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2866                                                           ScaledIdx).getReg(0);
2867     }
2868 
2869     // Compute the bit offset into the register of the target element.
2870     Register OffsetBits = getBitcastWiderVectorElementOffset(
2871       MIRBuilder, Idx, NewEltSize, OldEltSize);
2872 
2873     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2874                                                Val, OffsetBits);
2875     if (CastTy.isVector()) {
2876       InsertedElt = MIRBuilder.buildInsertVectorElement(
2877         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2878     }
2879 
2880     MIRBuilder.buildBitcast(Dst, InsertedElt);
2881     MI.eraseFromParent();
2882     return Legalized;
2883   }
2884 
2885   return UnableToLegalize;
2886 }
2887 
2888 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) {
2889   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2890   Register DstReg = LoadMI.getDstReg();
2891   Register PtrReg = LoadMI.getPointerReg();
2892   LLT DstTy = MRI.getType(DstReg);
2893   MachineMemOperand &MMO = LoadMI.getMMO();
2894   LLT MemTy = MMO.getMemoryType();
2895   MachineFunction &MF = MIRBuilder.getMF();
2896 
2897   unsigned MemSizeInBits = MemTy.getSizeInBits();
2898   unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes();
2899 
2900   if (MemSizeInBits != MemStoreSizeInBits) {
2901     if (MemTy.isVector())
2902       return UnableToLegalize;
2903 
2904     // Promote to a byte-sized load if not loading an integral number of
2905     // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
2906     LLT WideMemTy = LLT::scalar(MemStoreSizeInBits);
2907     MachineMemOperand *NewMMO =
2908         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy);
2909 
2910     Register LoadReg = DstReg;
2911     LLT LoadTy = DstTy;
2912 
2913     // If this wasn't already an extending load, we need to widen the result
2914     // register to avoid creating a load with a narrower result than the source.
2915     if (MemStoreSizeInBits > DstTy.getSizeInBits()) {
2916       LoadTy = WideMemTy;
2917       LoadReg = MRI.createGenericVirtualRegister(WideMemTy);
2918     }
2919 
2920     if (isa<GSExtLoad>(LoadMI)) {
2921       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
2922       MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits);
2923     } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == DstTy) {
2924       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
2925       // The extra bits are guaranteed to be zero, since we stored them that
2926       // way.  A zext load from Wide thus automatically gives zext from MemVT.
2927       MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits);
2928     } else {
2929       MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO);
2930     }
2931 
2932     if (DstTy != LoadTy)
2933       MIRBuilder.buildTrunc(DstReg, LoadReg);
2934 
2935     LoadMI.eraseFromParent();
2936     return Legalized;
2937   }
2938 
2939   // Big endian lowering not implemented.
2940   if (MIRBuilder.getDataLayout().isBigEndian())
2941     return UnableToLegalize;
2942 
2943   // This load needs splitting into power of 2 sized loads.
2944   //
2945   // Our strategy here is to generate anyextending loads for the smaller
2946   // types up to next power-2 result type, and then combine the two larger
2947   // result values together, before truncating back down to the non-pow-2
2948   // type.
2949   // E.g. v1 = i24 load =>
2950   // v2 = i32 zextload (2 byte)
2951   // v3 = i32 load (1 byte)
2952   // v4 = i32 shl v3, 16
2953   // v5 = i32 or v4, v2
2954   // v1 = i24 trunc v5
2955   // By doing this we generate the correct truncate which should get
2956   // combined away as an artifact with a matching extend.
2957 
2958   uint64_t LargeSplitSize, SmallSplitSize;
2959 
2960   if (!isPowerOf2_32(MemSizeInBits)) {
2961     // This load needs splitting into power of 2 sized loads.
2962     LargeSplitSize = PowerOf2Floor(MemSizeInBits);
2963     SmallSplitSize = MemSizeInBits - LargeSplitSize;
2964   } else {
2965     // This is already a power of 2, but we still need to split this in half.
2966     //
2967     // Assume we're being asked to decompose an unaligned load.
2968     // TODO: If this requires multiple splits, handle them all at once.
2969     auto &Ctx = MF.getFunction().getContext();
2970     if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
2971       return UnableToLegalize;
2972 
2973     SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
2974   }
2975 
2976   if (MemTy.isVector()) {
2977     // TODO: Handle vector extloads
2978     if (MemTy != DstTy)
2979       return UnableToLegalize;
2980 
2981     // TODO: We can do better than scalarizing the vector and at least split it
2982     // in half.
2983     return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType());
2984   }
2985 
2986   MachineMemOperand *LargeMMO =
2987       MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2988   MachineMemOperand *SmallMMO =
2989       MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2990 
2991   LLT PtrTy = MRI.getType(PtrReg);
2992   unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits());
2993   LLT AnyExtTy = LLT::scalar(AnyExtSize);
2994   auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy,
2995                                              PtrReg, *LargeMMO);
2996 
2997   auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()),
2998                                             LargeSplitSize / 8);
2999   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
3000   auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
3001   auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy,
3002                                              SmallPtr, *SmallMMO);
3003 
3004   auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
3005   auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
3006 
3007   if (AnyExtTy == DstTy)
3008     MIRBuilder.buildOr(DstReg, Shift, LargeLoad);
3009   else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) {
3010     auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
3011     MIRBuilder.buildTrunc(DstReg, {Or});
3012   } else {
3013     assert(DstTy.isPointer() && "expected pointer");
3014     auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
3015 
3016     // FIXME: We currently consider this to be illegal for non-integral address
3017     // spaces, but we need still need a way to reinterpret the bits.
3018     MIRBuilder.buildIntToPtr(DstReg, Or);
3019   }
3020 
3021   LoadMI.eraseFromParent();
3022   return Legalized;
3023 }
3024 
3025 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) {
3026   // Lower a non-power of 2 store into multiple pow-2 stores.
3027   // E.g. split an i24 store into an i16 store + i8 store.
3028   // We do this by first extending the stored value to the next largest power
3029   // of 2 type, and then using truncating stores to store the components.
3030   // By doing this, likewise with G_LOAD, generate an extend that can be
3031   // artifact-combined away instead of leaving behind extracts.
3032   Register SrcReg = StoreMI.getValueReg();
3033   Register PtrReg = StoreMI.getPointerReg();
3034   LLT SrcTy = MRI.getType(SrcReg);
3035   MachineFunction &MF = MIRBuilder.getMF();
3036   MachineMemOperand &MMO = **StoreMI.memoperands_begin();
3037   LLT MemTy = MMO.getMemoryType();
3038 
3039   unsigned StoreWidth = MemTy.getSizeInBits();
3040   unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes();
3041 
3042   if (StoreWidth != StoreSizeInBits) {
3043     if (SrcTy.isVector())
3044       return UnableToLegalize;
3045 
3046     // Promote to a byte-sized store with upper bits zero if not
3047     // storing an integral number of bytes.  For example, promote
3048     // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
3049     LLT WideTy = LLT::scalar(StoreSizeInBits);
3050 
3051     if (StoreSizeInBits > SrcTy.getSizeInBits()) {
3052       // Avoid creating a store with a narrower source than result.
3053       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
3054       SrcTy = WideTy;
3055     }
3056 
3057     auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth);
3058 
3059     MachineMemOperand *NewMMO =
3060         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy);
3061     MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO);
3062     StoreMI.eraseFromParent();
3063     return Legalized;
3064   }
3065 
3066   if (MemTy.isVector()) {
3067     // TODO: Handle vector trunc stores
3068     if (MemTy != SrcTy)
3069       return UnableToLegalize;
3070 
3071     // TODO: We can do better than scalarizing the vector and at least split it
3072     // in half.
3073     return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType());
3074   }
3075 
3076   unsigned MemSizeInBits = MemTy.getSizeInBits();
3077   uint64_t LargeSplitSize, SmallSplitSize;
3078 
3079   if (!isPowerOf2_32(MemSizeInBits)) {
3080     LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits());
3081     SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize;
3082   } else {
3083     auto &Ctx = MF.getFunction().getContext();
3084     if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
3085       return UnableToLegalize; // Don't know what we're being asked to do.
3086 
3087     SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
3088   }
3089 
3090   // Extend to the next pow-2. If this store was itself the result of lowering,
3091   // e.g. an s56 store being broken into s32 + s24, we might have a stored type
3092   // that's wider than the stored size.
3093   unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits());
3094   const LLT NewSrcTy = LLT::scalar(AnyExtSize);
3095 
3096   if (SrcTy.isPointer()) {
3097     const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits());
3098     SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0);
3099   }
3100 
3101   auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg);
3102 
3103   // Obtain the smaller value by shifting away the larger value.
3104   auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize);
3105   auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt);
3106 
3107   // Generate the PtrAdd and truncating stores.
3108   LLT PtrTy = MRI.getType(PtrReg);
3109   auto OffsetCst = MIRBuilder.buildConstant(
3110     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
3111   auto SmallPtr =
3112     MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst);
3113 
3114   MachineMemOperand *LargeMMO =
3115     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
3116   MachineMemOperand *SmallMMO =
3117     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
3118   MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO);
3119   MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO);
3120   StoreMI.eraseFromParent();
3121   return Legalized;
3122 }
3123 
3124 LegalizerHelper::LegalizeResult
3125 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
3126   switch (MI.getOpcode()) {
3127   case TargetOpcode::G_LOAD: {
3128     if (TypeIdx != 0)
3129       return UnableToLegalize;
3130     MachineMemOperand &MMO = **MI.memoperands_begin();
3131 
3132     // Not sure how to interpret a bitcast of an extending load.
3133     if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3134       return UnableToLegalize;
3135 
3136     Observer.changingInstr(MI);
3137     bitcastDst(MI, CastTy, 0);
3138     MMO.setType(CastTy);
3139     Observer.changedInstr(MI);
3140     return Legalized;
3141   }
3142   case TargetOpcode::G_STORE: {
3143     if (TypeIdx != 0)
3144       return UnableToLegalize;
3145 
3146     MachineMemOperand &MMO = **MI.memoperands_begin();
3147 
3148     // Not sure how to interpret a bitcast of a truncating store.
3149     if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3150       return UnableToLegalize;
3151 
3152     Observer.changingInstr(MI);
3153     bitcastSrc(MI, CastTy, 0);
3154     MMO.setType(CastTy);
3155     Observer.changedInstr(MI);
3156     return Legalized;
3157   }
3158   case TargetOpcode::G_SELECT: {
3159     if (TypeIdx != 0)
3160       return UnableToLegalize;
3161 
3162     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
3163       LLVM_DEBUG(
3164           dbgs() << "bitcast action not implemented for vector select\n");
3165       return UnableToLegalize;
3166     }
3167 
3168     Observer.changingInstr(MI);
3169     bitcastSrc(MI, CastTy, 2);
3170     bitcastSrc(MI, CastTy, 3);
3171     bitcastDst(MI, CastTy, 0);
3172     Observer.changedInstr(MI);
3173     return Legalized;
3174   }
3175   case TargetOpcode::G_AND:
3176   case TargetOpcode::G_OR:
3177   case TargetOpcode::G_XOR: {
3178     Observer.changingInstr(MI);
3179     bitcastSrc(MI, CastTy, 1);
3180     bitcastSrc(MI, CastTy, 2);
3181     bitcastDst(MI, CastTy, 0);
3182     Observer.changedInstr(MI);
3183     return Legalized;
3184   }
3185   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
3186     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
3187   case TargetOpcode::G_INSERT_VECTOR_ELT:
3188     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
3189   default:
3190     return UnableToLegalize;
3191   }
3192 }
3193 
3194 // Legalize an instruction by changing the opcode in place.
3195 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
3196     Observer.changingInstr(MI);
3197     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
3198     Observer.changedInstr(MI);
3199 }
3200 
3201 LegalizerHelper::LegalizeResult
3202 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
3203   using namespace TargetOpcode;
3204 
3205   switch(MI.getOpcode()) {
3206   default:
3207     return UnableToLegalize;
3208   case TargetOpcode::G_BITCAST:
3209     return lowerBitcast(MI);
3210   case TargetOpcode::G_SREM:
3211   case TargetOpcode::G_UREM: {
3212     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3213     auto Quot =
3214         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
3215                               {MI.getOperand(1), MI.getOperand(2)});
3216 
3217     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
3218     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
3219     MI.eraseFromParent();
3220     return Legalized;
3221   }
3222   case TargetOpcode::G_SADDO:
3223   case TargetOpcode::G_SSUBO:
3224     return lowerSADDO_SSUBO(MI);
3225   case TargetOpcode::G_UMULH:
3226   case TargetOpcode::G_SMULH:
3227     return lowerSMULH_UMULH(MI);
3228   case TargetOpcode::G_SMULO:
3229   case TargetOpcode::G_UMULO: {
3230     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
3231     // result.
3232     Register Res = MI.getOperand(0).getReg();
3233     Register Overflow = MI.getOperand(1).getReg();
3234     Register LHS = MI.getOperand(2).getReg();
3235     Register RHS = MI.getOperand(3).getReg();
3236     LLT Ty = MRI.getType(Res);
3237 
3238     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
3239                           ? TargetOpcode::G_SMULH
3240                           : TargetOpcode::G_UMULH;
3241 
3242     Observer.changingInstr(MI);
3243     const auto &TII = MIRBuilder.getTII();
3244     MI.setDesc(TII.get(TargetOpcode::G_MUL));
3245     MI.RemoveOperand(1);
3246     Observer.changedInstr(MI);
3247 
3248     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
3249     auto Zero = MIRBuilder.buildConstant(Ty, 0);
3250 
3251     // Move insert point forward so we can use the Res register if needed.
3252     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
3253 
3254     // For *signed* multiply, overflow is detected by checking:
3255     // (hi != (lo >> bitwidth-1))
3256     if (Opcode == TargetOpcode::G_SMULH) {
3257       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
3258       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
3259       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
3260     } else {
3261       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
3262     }
3263     return Legalized;
3264   }
3265   case TargetOpcode::G_FNEG: {
3266     Register Res = MI.getOperand(0).getReg();
3267     LLT Ty = MRI.getType(Res);
3268 
3269     // TODO: Handle vector types once we are able to
3270     // represent them.
3271     if (Ty.isVector())
3272       return UnableToLegalize;
3273     auto SignMask =
3274         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
3275     Register SubByReg = MI.getOperand(1).getReg();
3276     MIRBuilder.buildXor(Res, SubByReg, SignMask);
3277     MI.eraseFromParent();
3278     return Legalized;
3279   }
3280   case TargetOpcode::G_FSUB: {
3281     Register Res = MI.getOperand(0).getReg();
3282     LLT Ty = MRI.getType(Res);
3283 
3284     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3285     // First, check if G_FNEG is marked as Lower. If so, we may
3286     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3287     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3288       return UnableToLegalize;
3289     Register LHS = MI.getOperand(1).getReg();
3290     Register RHS = MI.getOperand(2).getReg();
3291     Register Neg = MRI.createGenericVirtualRegister(Ty);
3292     MIRBuilder.buildFNeg(Neg, RHS);
3293     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3294     MI.eraseFromParent();
3295     return Legalized;
3296   }
3297   case TargetOpcode::G_FMAD:
3298     return lowerFMad(MI);
3299   case TargetOpcode::G_FFLOOR:
3300     return lowerFFloor(MI);
3301   case TargetOpcode::G_INTRINSIC_ROUND:
3302     return lowerIntrinsicRound(MI);
3303   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3304     // Since round even is the assumed rounding mode for unconstrained FP
3305     // operations, rint and roundeven are the same operation.
3306     changeOpcode(MI, TargetOpcode::G_FRINT);
3307     return Legalized;
3308   }
3309   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3310     Register OldValRes = MI.getOperand(0).getReg();
3311     Register SuccessRes = MI.getOperand(1).getReg();
3312     Register Addr = MI.getOperand(2).getReg();
3313     Register CmpVal = MI.getOperand(3).getReg();
3314     Register NewVal = MI.getOperand(4).getReg();
3315     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3316                                   **MI.memoperands_begin());
3317     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3318     MI.eraseFromParent();
3319     return Legalized;
3320   }
3321   case TargetOpcode::G_LOAD:
3322   case TargetOpcode::G_SEXTLOAD:
3323   case TargetOpcode::G_ZEXTLOAD:
3324     return lowerLoad(cast<GAnyLoad>(MI));
3325   case TargetOpcode::G_STORE:
3326     return lowerStore(cast<GStore>(MI));
3327   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3328   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3329   case TargetOpcode::G_CTLZ:
3330   case TargetOpcode::G_CTTZ:
3331   case TargetOpcode::G_CTPOP:
3332     return lowerBitCount(MI);
3333   case G_UADDO: {
3334     Register Res = MI.getOperand(0).getReg();
3335     Register CarryOut = MI.getOperand(1).getReg();
3336     Register LHS = MI.getOperand(2).getReg();
3337     Register RHS = MI.getOperand(3).getReg();
3338 
3339     MIRBuilder.buildAdd(Res, LHS, RHS);
3340     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3341 
3342     MI.eraseFromParent();
3343     return Legalized;
3344   }
3345   case G_UADDE: {
3346     Register Res = MI.getOperand(0).getReg();
3347     Register CarryOut = MI.getOperand(1).getReg();
3348     Register LHS = MI.getOperand(2).getReg();
3349     Register RHS = MI.getOperand(3).getReg();
3350     Register CarryIn = MI.getOperand(4).getReg();
3351     LLT Ty = MRI.getType(Res);
3352 
3353     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3354     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3355     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3356     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3357 
3358     MI.eraseFromParent();
3359     return Legalized;
3360   }
3361   case G_USUBO: {
3362     Register Res = MI.getOperand(0).getReg();
3363     Register BorrowOut = MI.getOperand(1).getReg();
3364     Register LHS = MI.getOperand(2).getReg();
3365     Register RHS = MI.getOperand(3).getReg();
3366 
3367     MIRBuilder.buildSub(Res, LHS, RHS);
3368     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3369 
3370     MI.eraseFromParent();
3371     return Legalized;
3372   }
3373   case G_USUBE: {
3374     Register Res = MI.getOperand(0).getReg();
3375     Register BorrowOut = MI.getOperand(1).getReg();
3376     Register LHS = MI.getOperand(2).getReg();
3377     Register RHS = MI.getOperand(3).getReg();
3378     Register BorrowIn = MI.getOperand(4).getReg();
3379     const LLT CondTy = MRI.getType(BorrowOut);
3380     const LLT Ty = MRI.getType(Res);
3381 
3382     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3383     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3384     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3385 
3386     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3387     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3388     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3389 
3390     MI.eraseFromParent();
3391     return Legalized;
3392   }
3393   case G_UITOFP:
3394     return lowerUITOFP(MI);
3395   case G_SITOFP:
3396     return lowerSITOFP(MI);
3397   case G_FPTOUI:
3398     return lowerFPTOUI(MI);
3399   case G_FPTOSI:
3400     return lowerFPTOSI(MI);
3401   case G_FPTRUNC:
3402     return lowerFPTRUNC(MI);
3403   case G_FPOWI:
3404     return lowerFPOWI(MI);
3405   case G_SMIN:
3406   case G_SMAX:
3407   case G_UMIN:
3408   case G_UMAX:
3409     return lowerMinMax(MI);
3410   case G_FCOPYSIGN:
3411     return lowerFCopySign(MI);
3412   case G_FMINNUM:
3413   case G_FMAXNUM:
3414     return lowerFMinNumMaxNum(MI);
3415   case G_MERGE_VALUES:
3416     return lowerMergeValues(MI);
3417   case G_UNMERGE_VALUES:
3418     return lowerUnmergeValues(MI);
3419   case TargetOpcode::G_SEXT_INREG: {
3420     assert(MI.getOperand(2).isImm() && "Expected immediate");
3421     int64_t SizeInBits = MI.getOperand(2).getImm();
3422 
3423     Register DstReg = MI.getOperand(0).getReg();
3424     Register SrcReg = MI.getOperand(1).getReg();
3425     LLT DstTy = MRI.getType(DstReg);
3426     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3427 
3428     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3429     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3430     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3431     MI.eraseFromParent();
3432     return Legalized;
3433   }
3434   case G_EXTRACT_VECTOR_ELT:
3435   case G_INSERT_VECTOR_ELT:
3436     return lowerExtractInsertVectorElt(MI);
3437   case G_SHUFFLE_VECTOR:
3438     return lowerShuffleVector(MI);
3439   case G_DYN_STACKALLOC:
3440     return lowerDynStackAlloc(MI);
3441   case G_EXTRACT:
3442     return lowerExtract(MI);
3443   case G_INSERT:
3444     return lowerInsert(MI);
3445   case G_BSWAP:
3446     return lowerBswap(MI);
3447   case G_BITREVERSE:
3448     return lowerBitreverse(MI);
3449   case G_READ_REGISTER:
3450   case G_WRITE_REGISTER:
3451     return lowerReadWriteRegister(MI);
3452   case G_UADDSAT:
3453   case G_USUBSAT: {
3454     // Try to make a reasonable guess about which lowering strategy to use. The
3455     // target can override this with custom lowering and calling the
3456     // implementation functions.
3457     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3458     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3459       return lowerAddSubSatToMinMax(MI);
3460     return lowerAddSubSatToAddoSubo(MI);
3461   }
3462   case G_SADDSAT:
3463   case G_SSUBSAT: {
3464     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3465 
3466     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3467     // since it's a shorter expansion. However, we would need to figure out the
3468     // preferred boolean type for the carry out for the query.
3469     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3470       return lowerAddSubSatToMinMax(MI);
3471     return lowerAddSubSatToAddoSubo(MI);
3472   }
3473   case G_SSHLSAT:
3474   case G_USHLSAT:
3475     return lowerShlSat(MI);
3476   case G_ABS:
3477     return lowerAbsToAddXor(MI);
3478   case G_SELECT:
3479     return lowerSelect(MI);
3480   case G_SDIVREM:
3481   case G_UDIVREM:
3482     return lowerDIVREM(MI);
3483   case G_FSHL:
3484   case G_FSHR:
3485     return lowerFunnelShift(MI);
3486   case G_ROTL:
3487   case G_ROTR:
3488     return lowerRotate(MI);
3489   GISEL_VECREDUCE_CASES_NONSEQ
3490     return lowerVectorReduction(MI);
3491   }
3492 }
3493 
3494 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3495                                                   Align MinAlign) const {
3496   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3497   // datalayout for the preferred alignment. Also there should be a target hook
3498   // for this to allow targets to reduce the alignment and ignore the
3499   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3500   // the type.
3501   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3502 }
3503 
3504 MachineInstrBuilder
3505 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3506                                       MachinePointerInfo &PtrInfo) {
3507   MachineFunction &MF = MIRBuilder.getMF();
3508   const DataLayout &DL = MIRBuilder.getDataLayout();
3509   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3510 
3511   unsigned AddrSpace = DL.getAllocaAddrSpace();
3512   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3513 
3514   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3515   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3516 }
3517 
3518 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3519                                         LLT VecTy) {
3520   int64_t IdxVal;
3521   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3522     return IdxReg;
3523 
3524   LLT IdxTy = B.getMRI()->getType(IdxReg);
3525   unsigned NElts = VecTy.getNumElements();
3526   if (isPowerOf2_32(NElts)) {
3527     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3528     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3529   }
3530 
3531   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3532       .getReg(0);
3533 }
3534 
3535 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3536                                                   Register Index) {
3537   LLT EltTy = VecTy.getElementType();
3538 
3539   // Calculate the element offset and add it to the pointer.
3540   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3541   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3542          "Converting bits to bytes lost precision");
3543 
3544   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3545 
3546   LLT IdxTy = MRI.getType(Index);
3547   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3548                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3549 
3550   LLT PtrTy = MRI.getType(VecPtr);
3551   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3552 }
3553 
3554 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3555     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3556   Register DstReg = MI.getOperand(0).getReg();
3557   LLT DstTy = MRI.getType(DstReg);
3558   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3559 
3560   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3561 
3562   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3563   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3564 
3565   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3566   MI.eraseFromParent();
3567   return Legalized;
3568 }
3569 
3570 // Handle splitting vector operations which need to have the same number of
3571 // elements in each type index, but each type index may have a different element
3572 // type.
3573 //
3574 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3575 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3576 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3577 //
3578 // Also handles some irregular breakdown cases, e.g.
3579 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3580 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3581 //             s64 = G_SHL s64, s32
3582 LegalizerHelper::LegalizeResult
3583 LegalizerHelper::fewerElementsVectorMultiEltType(
3584   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3585   if (TypeIdx != 0)
3586     return UnableToLegalize;
3587 
3588   const LLT NarrowTy0 = NarrowTyArg;
3589   const Register DstReg = MI.getOperand(0).getReg();
3590   LLT DstTy = MRI.getType(DstReg);
3591   LLT LeftoverTy0;
3592 
3593   // All of the operands need to have the same number of elements, so if we can
3594   // determine a type breakdown for the result type, we can for all of the
3595   // source types.
3596   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3597   if (NumParts < 0)
3598     return UnableToLegalize;
3599 
3600   SmallVector<MachineInstrBuilder, 4> NewInsts;
3601 
3602   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3603   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3604 
3605   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3606     Register SrcReg = MI.getOperand(I).getReg();
3607     LLT SrcTyI = MRI.getType(SrcReg);
3608     const auto NewEC = NarrowTy0.isVector() ? NarrowTy0.getElementCount()
3609                                             : ElementCount::getFixed(1);
3610     LLT NarrowTyI = LLT::scalarOrVector(NewEC, SrcTyI.getScalarType());
3611     LLT LeftoverTyI;
3612 
3613     // Split this operand into the requested typed registers, and any leftover
3614     // required to reproduce the original type.
3615     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3616                       LeftoverRegs))
3617       return UnableToLegalize;
3618 
3619     if (I == 1) {
3620       // For the first operand, create an instruction for each part and setup
3621       // the result.
3622       for (Register PartReg : PartRegs) {
3623         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3624         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3625                                .addDef(PartDstReg)
3626                                .addUse(PartReg));
3627         DstRegs.push_back(PartDstReg);
3628       }
3629 
3630       for (Register LeftoverReg : LeftoverRegs) {
3631         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3632         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3633                                .addDef(PartDstReg)
3634                                .addUse(LeftoverReg));
3635         LeftoverDstRegs.push_back(PartDstReg);
3636       }
3637     } else {
3638       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3639 
3640       // Add the newly created operand splits to the existing instructions. The
3641       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3642       // pieces.
3643       unsigned InstCount = 0;
3644       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3645         NewInsts[InstCount++].addUse(PartRegs[J]);
3646       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3647         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3648     }
3649 
3650     PartRegs.clear();
3651     LeftoverRegs.clear();
3652   }
3653 
3654   // Insert the newly built operations and rebuild the result register.
3655   for (auto &MIB : NewInsts)
3656     MIRBuilder.insertInstr(MIB);
3657 
3658   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3659 
3660   MI.eraseFromParent();
3661   return Legalized;
3662 }
3663 
3664 LegalizerHelper::LegalizeResult
3665 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3666                                           LLT NarrowTy) {
3667   if (TypeIdx != 0)
3668     return UnableToLegalize;
3669 
3670   Register DstReg = MI.getOperand(0).getReg();
3671   Register SrcReg = MI.getOperand(1).getReg();
3672   LLT DstTy = MRI.getType(DstReg);
3673   LLT SrcTy = MRI.getType(SrcReg);
3674 
3675   LLT NarrowTy0 = NarrowTy;
3676   LLT NarrowTy1;
3677   unsigned NumParts;
3678 
3679   if (NarrowTy.isVector()) {
3680     // Uneven breakdown not handled.
3681     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3682     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3683       return UnableToLegalize;
3684 
3685     NarrowTy1 = LLT::vector(NarrowTy.getElementCount(), SrcTy.getElementType());
3686   } else {
3687     NumParts = DstTy.getNumElements();
3688     NarrowTy1 = SrcTy.getElementType();
3689   }
3690 
3691   SmallVector<Register, 4> SrcRegs, DstRegs;
3692   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3693 
3694   for (unsigned I = 0; I < NumParts; ++I) {
3695     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3696     MachineInstr *NewInst =
3697         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3698 
3699     NewInst->setFlags(MI.getFlags());
3700     DstRegs.push_back(DstReg);
3701   }
3702 
3703   if (NarrowTy.isVector())
3704     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3705   else
3706     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3707 
3708   MI.eraseFromParent();
3709   return Legalized;
3710 }
3711 
3712 LegalizerHelper::LegalizeResult
3713 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3714                                         LLT NarrowTy) {
3715   Register DstReg = MI.getOperand(0).getReg();
3716   Register Src0Reg = MI.getOperand(2).getReg();
3717   LLT DstTy = MRI.getType(DstReg);
3718   LLT SrcTy = MRI.getType(Src0Reg);
3719 
3720   unsigned NumParts;
3721   LLT NarrowTy0, NarrowTy1;
3722 
3723   if (TypeIdx == 0) {
3724     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3725     unsigned OldElts = DstTy.getNumElements();
3726 
3727     NarrowTy0 = NarrowTy;
3728     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3729     NarrowTy1 = NarrowTy.isVector() ? LLT::vector(NarrowTy.getElementCount(),
3730                                                   SrcTy.getScalarSizeInBits())
3731                                     : SrcTy.getElementType();
3732 
3733   } else {
3734     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3735     unsigned OldElts = SrcTy.getNumElements();
3736 
3737     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3738       NarrowTy.getNumElements();
3739     NarrowTy0 =
3740         LLT::vector(NarrowTy.getElementCount(), DstTy.getScalarSizeInBits());
3741     NarrowTy1 = NarrowTy;
3742   }
3743 
3744   // FIXME: Don't know how to handle the situation where the small vectors
3745   // aren't all the same size yet.
3746   if (NarrowTy1.isVector() &&
3747       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3748     return UnableToLegalize;
3749 
3750   CmpInst::Predicate Pred
3751     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3752 
3753   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3754   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3755   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3756 
3757   for (unsigned I = 0; I < NumParts; ++I) {
3758     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3759     DstRegs.push_back(DstReg);
3760 
3761     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3762       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3763     else {
3764       MachineInstr *NewCmp
3765         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3766       NewCmp->setFlags(MI.getFlags());
3767     }
3768   }
3769 
3770   if (NarrowTy1.isVector())
3771     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3772   else
3773     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3774 
3775   MI.eraseFromParent();
3776   return Legalized;
3777 }
3778 
3779 LegalizerHelper::LegalizeResult
3780 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3781                                            LLT NarrowTy) {
3782   Register DstReg = MI.getOperand(0).getReg();
3783   Register CondReg = MI.getOperand(1).getReg();
3784 
3785   unsigned NumParts = 0;
3786   LLT NarrowTy0, NarrowTy1;
3787 
3788   LLT DstTy = MRI.getType(DstReg);
3789   LLT CondTy = MRI.getType(CondReg);
3790   unsigned Size = DstTy.getSizeInBits();
3791 
3792   assert(TypeIdx == 0 || CondTy.isVector());
3793 
3794   if (TypeIdx == 0) {
3795     NarrowTy0 = NarrowTy;
3796     NarrowTy1 = CondTy;
3797 
3798     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3799     // FIXME: Don't know how to handle the situation where the small vectors
3800     // aren't all the same size yet.
3801     if (Size % NarrowSize != 0)
3802       return UnableToLegalize;
3803 
3804     NumParts = Size / NarrowSize;
3805 
3806     // Need to break down the condition type
3807     if (CondTy.isVector()) {
3808       if (CondTy.getNumElements() == NumParts)
3809         NarrowTy1 = CondTy.getElementType();
3810       else
3811         NarrowTy1 =
3812             LLT::vector(CondTy.getElementCount().divideCoefficientBy(NumParts),
3813                         CondTy.getScalarSizeInBits());
3814     }
3815   } else {
3816     NumParts = CondTy.getNumElements();
3817     if (NarrowTy.isVector()) {
3818       // TODO: Handle uneven breakdown.
3819       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3820         return UnableToLegalize;
3821 
3822       return UnableToLegalize;
3823     } else {
3824       NarrowTy0 = DstTy.getElementType();
3825       NarrowTy1 = NarrowTy;
3826     }
3827   }
3828 
3829   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3830   if (CondTy.isVector())
3831     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3832 
3833   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3834   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3835 
3836   for (unsigned i = 0; i < NumParts; ++i) {
3837     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3838     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3839                            Src1Regs[i], Src2Regs[i]);
3840     DstRegs.push_back(DstReg);
3841   }
3842 
3843   if (NarrowTy0.isVector())
3844     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3845   else
3846     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3847 
3848   MI.eraseFromParent();
3849   return Legalized;
3850 }
3851 
3852 LegalizerHelper::LegalizeResult
3853 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3854                                         LLT NarrowTy) {
3855   const Register DstReg = MI.getOperand(0).getReg();
3856   LLT PhiTy = MRI.getType(DstReg);
3857   LLT LeftoverTy;
3858 
3859   // All of the operands need to have the same number of elements, so if we can
3860   // determine a type breakdown for the result type, we can for all of the
3861   // source types.
3862   int NumParts, NumLeftover;
3863   std::tie(NumParts, NumLeftover)
3864     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3865   if (NumParts < 0)
3866     return UnableToLegalize;
3867 
3868   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3869   SmallVector<MachineInstrBuilder, 4> NewInsts;
3870 
3871   const int TotalNumParts = NumParts + NumLeftover;
3872 
3873   // Insert the new phis in the result block first.
3874   for (int I = 0; I != TotalNumParts; ++I) {
3875     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3876     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3877     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3878                        .addDef(PartDstReg));
3879     if (I < NumParts)
3880       DstRegs.push_back(PartDstReg);
3881     else
3882       LeftoverDstRegs.push_back(PartDstReg);
3883   }
3884 
3885   MachineBasicBlock *MBB = MI.getParent();
3886   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3887   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3888 
3889   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3890 
3891   // Insert code to extract the incoming values in each predecessor block.
3892   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3893     PartRegs.clear();
3894     LeftoverRegs.clear();
3895 
3896     Register SrcReg = MI.getOperand(I).getReg();
3897     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3898     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3899 
3900     LLT Unused;
3901     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3902                       LeftoverRegs))
3903       return UnableToLegalize;
3904 
3905     // Add the newly created operand splits to the existing instructions. The
3906     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3907     // pieces.
3908     for (int J = 0; J != TotalNumParts; ++J) {
3909       MachineInstrBuilder MIB = NewInsts[J];
3910       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3911       MIB.addMBB(&OpMBB);
3912     }
3913   }
3914 
3915   MI.eraseFromParent();
3916   return Legalized;
3917 }
3918 
3919 LegalizerHelper::LegalizeResult
3920 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3921                                                   unsigned TypeIdx,
3922                                                   LLT NarrowTy) {
3923   if (TypeIdx != 1)
3924     return UnableToLegalize;
3925 
3926   const int NumDst = MI.getNumOperands() - 1;
3927   const Register SrcReg = MI.getOperand(NumDst).getReg();
3928   LLT SrcTy = MRI.getType(SrcReg);
3929 
3930   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3931 
3932   // TODO: Create sequence of extracts.
3933   if (DstTy == NarrowTy)
3934     return UnableToLegalize;
3935 
3936   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3937   if (DstTy == GCDTy) {
3938     // This would just be a copy of the same unmerge.
3939     // TODO: Create extracts, pad with undef and create intermediate merges.
3940     return UnableToLegalize;
3941   }
3942 
3943   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3944   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3945   const int PartsPerUnmerge = NumDst / NumUnmerge;
3946 
3947   for (int I = 0; I != NumUnmerge; ++I) {
3948     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3949 
3950     for (int J = 0; J != PartsPerUnmerge; ++J)
3951       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3952     MIB.addUse(Unmerge.getReg(I));
3953   }
3954 
3955   MI.eraseFromParent();
3956   return Legalized;
3957 }
3958 
3959 LegalizerHelper::LegalizeResult
3960 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx,
3961                                          LLT NarrowTy) {
3962   Register Result = MI.getOperand(0).getReg();
3963   Register Overflow = MI.getOperand(1).getReg();
3964   Register LHS = MI.getOperand(2).getReg();
3965   Register RHS = MI.getOperand(3).getReg();
3966 
3967   LLT SrcTy = MRI.getType(LHS);
3968   if (!SrcTy.isVector())
3969     return UnableToLegalize;
3970 
3971   LLT ElementType = SrcTy.getElementType();
3972   LLT OverflowElementTy = MRI.getType(Overflow).getElementType();
3973   const ElementCount NumResult = SrcTy.getElementCount();
3974   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3975 
3976   // Unmerge the operands to smaller parts of GCD type.
3977   auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS);
3978   auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS);
3979 
3980   const int NumOps = UnmergeLHS->getNumOperands() - 1;
3981   const ElementCount PartsPerUnmerge = NumResult.divideCoefficientBy(NumOps);
3982   LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy);
3983   LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType);
3984 
3985   // Perform the operation over unmerged parts.
3986   SmallVector<Register, 8> ResultParts;
3987   SmallVector<Register, 8> OverflowParts;
3988   for (int I = 0; I != NumOps; ++I) {
3989     Register Operand1 = UnmergeLHS->getOperand(I).getReg();
3990     Register Operand2 = UnmergeRHS->getOperand(I).getReg();
3991     auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy},
3992                                          {Operand1, Operand2});
3993     ResultParts.push_back(PartMul->getOperand(0).getReg());
3994     OverflowParts.push_back(PartMul->getOperand(1).getReg());
3995   }
3996 
3997   LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts);
3998   LLT OverflowLCMTy =
3999       LLT::scalarOrVector(ResultLCMTy.getElementCount(), OverflowElementTy);
4000 
4001   // Recombine the pieces to the original result and overflow registers.
4002   buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts);
4003   buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts);
4004   MI.eraseFromParent();
4005   return Legalized;
4006 }
4007 
4008 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
4009 // a vector
4010 //
4011 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
4012 // undef as necessary.
4013 //
4014 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
4015 //   -> <2 x s16>
4016 //
4017 // %4:_(s16) = G_IMPLICIT_DEF
4018 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
4019 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
4020 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
4021 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
4022 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
4023 LegalizerHelper::LegalizeResult
4024 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
4025                                           LLT NarrowTy) {
4026   Register DstReg = MI.getOperand(0).getReg();
4027   LLT DstTy = MRI.getType(DstReg);
4028   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4029   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
4030 
4031   // Break into a common type
4032   SmallVector<Register, 16> Parts;
4033   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
4034     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
4035 
4036   // Build the requested new merge, padding with undef.
4037   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
4038                                   TargetOpcode::G_ANYEXT);
4039 
4040   // Pack into the original result register.
4041   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4042 
4043   MI.eraseFromParent();
4044   return Legalized;
4045 }
4046 
4047 LegalizerHelper::LegalizeResult
4048 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
4049                                                            unsigned TypeIdx,
4050                                                            LLT NarrowVecTy) {
4051   Register DstReg = MI.getOperand(0).getReg();
4052   Register SrcVec = MI.getOperand(1).getReg();
4053   Register InsertVal;
4054   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
4055 
4056   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
4057   if (IsInsert)
4058     InsertVal = MI.getOperand(2).getReg();
4059 
4060   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
4061 
4062   // TODO: Handle total scalarization case.
4063   if (!NarrowVecTy.isVector())
4064     return UnableToLegalize;
4065 
4066   LLT VecTy = MRI.getType(SrcVec);
4067 
4068   // If the index is a constant, we can really break this down as you would
4069   // expect, and index into the target size pieces.
4070   int64_t IdxVal;
4071   auto MaybeCst =
4072       getConstantVRegValWithLookThrough(Idx, MRI, /*LookThroughInstrs*/ true,
4073                                         /*HandleFConstants*/ false);
4074   if (MaybeCst) {
4075     IdxVal = MaybeCst->Value.getSExtValue();
4076     // Avoid out of bounds indexing the pieces.
4077     if (IdxVal >= VecTy.getNumElements()) {
4078       MIRBuilder.buildUndef(DstReg);
4079       MI.eraseFromParent();
4080       return Legalized;
4081     }
4082 
4083     SmallVector<Register, 8> VecParts;
4084     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
4085 
4086     // Build a sequence of NarrowTy pieces in VecParts for this operand.
4087     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
4088                                     TargetOpcode::G_ANYEXT);
4089 
4090     unsigned NewNumElts = NarrowVecTy.getNumElements();
4091 
4092     LLT IdxTy = MRI.getType(Idx);
4093     int64_t PartIdx = IdxVal / NewNumElts;
4094     auto NewIdx =
4095         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
4096 
4097     if (IsInsert) {
4098       LLT PartTy = MRI.getType(VecParts[PartIdx]);
4099 
4100       // Use the adjusted index to insert into one of the subvectors.
4101       auto InsertPart = MIRBuilder.buildInsertVectorElement(
4102           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
4103       VecParts[PartIdx] = InsertPart.getReg(0);
4104 
4105       // Recombine the inserted subvector with the others to reform the result
4106       // vector.
4107       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
4108     } else {
4109       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
4110     }
4111 
4112     MI.eraseFromParent();
4113     return Legalized;
4114   }
4115 
4116   // With a variable index, we can't perform the operation in a smaller type, so
4117   // we're forced to expand this.
4118   //
4119   // TODO: We could emit a chain of compare/select to figure out which piece to
4120   // index.
4121   return lowerExtractInsertVectorElt(MI);
4122 }
4123 
4124 LegalizerHelper::LegalizeResult
4125 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx,
4126                                       LLT NarrowTy) {
4127   // FIXME: Don't know how to handle secondary types yet.
4128   if (TypeIdx != 0)
4129     return UnableToLegalize;
4130 
4131   // This implementation doesn't work for atomics. Give up instead of doing
4132   // something invalid.
4133   if (LdStMI.isAtomic())
4134     return UnableToLegalize;
4135 
4136   bool IsLoad = isa<GLoad>(LdStMI);
4137   Register ValReg = LdStMI.getReg(0);
4138   Register AddrReg = LdStMI.getPointerReg();
4139   LLT ValTy = MRI.getType(ValReg);
4140 
4141   // FIXME: Do we need a distinct NarrowMemory legalize action?
4142   if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) {
4143     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
4144     return UnableToLegalize;
4145   }
4146 
4147   int NumParts = -1;
4148   int NumLeftover = -1;
4149   LLT LeftoverTy;
4150   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
4151   if (IsLoad) {
4152     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
4153   } else {
4154     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
4155                      NarrowLeftoverRegs)) {
4156       NumParts = NarrowRegs.size();
4157       NumLeftover = NarrowLeftoverRegs.size();
4158     }
4159   }
4160 
4161   if (NumParts == -1)
4162     return UnableToLegalize;
4163 
4164   LLT PtrTy = MRI.getType(AddrReg);
4165   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
4166 
4167   unsigned TotalSize = ValTy.getSizeInBits();
4168 
4169   // Split the load/store into PartTy sized pieces starting at Offset. If this
4170   // is a load, return the new registers in ValRegs. For a store, each elements
4171   // of ValRegs should be PartTy. Returns the next offset that needs to be
4172   // handled.
4173   auto MMO = LdStMI.getMMO();
4174   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
4175                              unsigned Offset) -> unsigned {
4176     MachineFunction &MF = MIRBuilder.getMF();
4177     unsigned PartSize = PartTy.getSizeInBits();
4178     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
4179          Offset += PartSize, ++Idx) {
4180       unsigned ByteOffset = Offset / 8;
4181       Register NewAddrReg;
4182 
4183       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
4184 
4185       MachineMemOperand *NewMMO =
4186           MF.getMachineMemOperand(&MMO, ByteOffset, PartTy);
4187 
4188       if (IsLoad) {
4189         Register Dst = MRI.createGenericVirtualRegister(PartTy);
4190         ValRegs.push_back(Dst);
4191         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
4192       } else {
4193         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
4194       }
4195     }
4196 
4197     return Offset;
4198   };
4199 
4200   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
4201 
4202   // Handle the rest of the register if this isn't an even type breakdown.
4203   if (LeftoverTy.isValid())
4204     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
4205 
4206   if (IsLoad) {
4207     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
4208                 LeftoverTy, NarrowLeftoverRegs);
4209   }
4210 
4211   LdStMI.eraseFromParent();
4212   return Legalized;
4213 }
4214 
4215 LegalizerHelper::LegalizeResult
4216 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
4217                                       LLT NarrowTy) {
4218   assert(TypeIdx == 0 && "only one type index expected");
4219 
4220   const unsigned Opc = MI.getOpcode();
4221   const int NumDefOps = MI.getNumExplicitDefs();
4222   const int NumSrcOps = MI.getNumOperands() - NumDefOps;
4223   const unsigned Flags = MI.getFlags();
4224   const unsigned NarrowSize = NarrowTy.getSizeInBits();
4225   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
4226 
4227   assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 "
4228                                      "result and 1-3 sources or 2 results and "
4229                                      "1-2 sources");
4230 
4231   SmallVector<Register, 2> DstRegs;
4232   for (int I = 0; I < NumDefOps; ++I)
4233     DstRegs.push_back(MI.getOperand(I).getReg());
4234 
4235   // First of all check whether we are narrowing (changing the element type)
4236   // or reducing the vector elements
4237   const LLT DstTy = MRI.getType(DstRegs[0]);
4238   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
4239 
4240   SmallVector<Register, 8> ExtractedRegs[3];
4241   SmallVector<Register, 8> Parts;
4242 
4243   // Break down all the sources into NarrowTy pieces we can operate on. This may
4244   // involve creating merges to a wider type, padded with undef.
4245   for (int I = 0; I != NumSrcOps; ++I) {
4246     Register SrcReg = MI.getOperand(I + NumDefOps).getReg();
4247     LLT SrcTy = MRI.getType(SrcReg);
4248 
4249     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
4250     // For fewerElements, this is a smaller vector with the same element type.
4251     LLT OpNarrowTy;
4252     if (IsNarrow) {
4253       OpNarrowTy = NarrowScalarTy;
4254 
4255       // In case of narrowing, we need to cast vectors to scalars for this to
4256       // work properly
4257       // FIXME: Can we do without the bitcast here if we're narrowing?
4258       if (SrcTy.isVector()) {
4259         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
4260         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
4261       }
4262     } else {
4263       auto NarrowEC = NarrowTy.isVector() ? NarrowTy.getElementCount()
4264                                           : ElementCount::getFixed(1);
4265       OpNarrowTy = LLT::scalarOrVector(NarrowEC, SrcTy.getScalarType());
4266     }
4267 
4268     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
4269 
4270     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
4271     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
4272                         TargetOpcode::G_ANYEXT);
4273   }
4274 
4275   SmallVector<Register, 8> ResultRegs[2];
4276 
4277   // Input operands for each sub-instruction.
4278   SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register());
4279 
4280   int NumParts = ExtractedRegs[0].size();
4281   const unsigned DstSize = DstTy.getSizeInBits();
4282   const LLT DstScalarTy = LLT::scalar(DstSize);
4283 
4284   // Narrowing needs to use scalar types
4285   LLT DstLCMTy, NarrowDstTy;
4286   if (IsNarrow) {
4287     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
4288     NarrowDstTy = NarrowScalarTy;
4289   } else {
4290     DstLCMTy = getLCMType(DstTy, NarrowTy);
4291     NarrowDstTy = NarrowTy;
4292   }
4293 
4294   // We widened the source registers to satisfy merge/unmerge size
4295   // constraints. We'll have some extra fully undef parts.
4296   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
4297 
4298   for (int I = 0; I != NumRealParts; ++I) {
4299     // Emit this instruction on each of the split pieces.
4300     for (int J = 0; J != NumSrcOps; ++J)
4301       InputRegs[J] = ExtractedRegs[J][I];
4302 
4303     MachineInstrBuilder Inst;
4304     if (NumDefOps == 1)
4305       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
4306     else
4307       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs,
4308                                    Flags);
4309 
4310     for (int J = 0; J != NumDefOps; ++J)
4311       ResultRegs[J].push_back(Inst.getReg(J));
4312   }
4313 
4314   // Fill out the widened result with undef instead of creating instructions
4315   // with undef inputs.
4316   int NumUndefParts = NumParts - NumRealParts;
4317   if (NumUndefParts != 0) {
4318     Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0);
4319     for (int I = 0; I != NumDefOps; ++I)
4320       ResultRegs[I].append(NumUndefParts, Undef);
4321   }
4322 
4323   // Extract the possibly padded result. Use a scratch register if we need to do
4324   // a final bitcast, otherwise use the original result register.
4325   Register MergeDstReg;
4326   for (int I = 0; I != NumDefOps; ++I) {
4327     if (IsNarrow && DstTy.isVector())
4328       MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
4329     else
4330       MergeDstReg = DstRegs[I];
4331 
4332     buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]);
4333 
4334     // Recast to vector if we narrowed a vector
4335     if (IsNarrow && DstTy.isVector())
4336       MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg);
4337   }
4338 
4339   MI.eraseFromParent();
4340   return Legalized;
4341 }
4342 
4343 LegalizerHelper::LegalizeResult
4344 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
4345                                               LLT NarrowTy) {
4346   Register DstReg = MI.getOperand(0).getReg();
4347   Register SrcReg = MI.getOperand(1).getReg();
4348   int64_t Imm = MI.getOperand(2).getImm();
4349 
4350   LLT DstTy = MRI.getType(DstReg);
4351 
4352   SmallVector<Register, 8> Parts;
4353   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4354   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
4355 
4356   for (Register &R : Parts)
4357     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
4358 
4359   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4360 
4361   MI.eraseFromParent();
4362   return Legalized;
4363 }
4364 
4365 LegalizerHelper::LegalizeResult
4366 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4367                                      LLT NarrowTy) {
4368   using namespace TargetOpcode;
4369 
4370   switch (MI.getOpcode()) {
4371   case G_IMPLICIT_DEF:
4372     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
4373   case G_TRUNC:
4374   case G_AND:
4375   case G_OR:
4376   case G_XOR:
4377   case G_ADD:
4378   case G_SUB:
4379   case G_MUL:
4380   case G_PTR_ADD:
4381   case G_SMULH:
4382   case G_UMULH:
4383   case G_FADD:
4384   case G_FMUL:
4385   case G_FSUB:
4386   case G_FNEG:
4387   case G_FABS:
4388   case G_FCANONICALIZE:
4389   case G_FDIV:
4390   case G_FREM:
4391   case G_FMA:
4392   case G_FMAD:
4393   case G_FPOW:
4394   case G_FEXP:
4395   case G_FEXP2:
4396   case G_FLOG:
4397   case G_FLOG2:
4398   case G_FLOG10:
4399   case G_FNEARBYINT:
4400   case G_FCEIL:
4401   case G_FFLOOR:
4402   case G_FRINT:
4403   case G_INTRINSIC_ROUND:
4404   case G_INTRINSIC_ROUNDEVEN:
4405   case G_INTRINSIC_TRUNC:
4406   case G_FCOS:
4407   case G_FSIN:
4408   case G_FSQRT:
4409   case G_BSWAP:
4410   case G_BITREVERSE:
4411   case G_SDIV:
4412   case G_UDIV:
4413   case G_SREM:
4414   case G_UREM:
4415   case G_SDIVREM:
4416   case G_UDIVREM:
4417   case G_SMIN:
4418   case G_SMAX:
4419   case G_UMIN:
4420   case G_UMAX:
4421   case G_ABS:
4422   case G_FMINNUM:
4423   case G_FMAXNUM:
4424   case G_FMINNUM_IEEE:
4425   case G_FMAXNUM_IEEE:
4426   case G_FMINIMUM:
4427   case G_FMAXIMUM:
4428   case G_FSHL:
4429   case G_FSHR:
4430   case G_FREEZE:
4431   case G_SADDSAT:
4432   case G_SSUBSAT:
4433   case G_UADDSAT:
4434   case G_USUBSAT:
4435     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4436   case G_UMULO:
4437   case G_SMULO:
4438     return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy);
4439   case G_SHL:
4440   case G_LSHR:
4441   case G_ASHR:
4442   case G_SSHLSAT:
4443   case G_USHLSAT:
4444   case G_CTLZ:
4445   case G_CTLZ_ZERO_UNDEF:
4446   case G_CTTZ:
4447   case G_CTTZ_ZERO_UNDEF:
4448   case G_CTPOP:
4449   case G_FCOPYSIGN:
4450     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4451   case G_ZEXT:
4452   case G_SEXT:
4453   case G_ANYEXT:
4454   case G_FPEXT:
4455   case G_FPTRUNC:
4456   case G_SITOFP:
4457   case G_UITOFP:
4458   case G_FPTOSI:
4459   case G_FPTOUI:
4460   case G_INTTOPTR:
4461   case G_PTRTOINT:
4462   case G_ADDRSPACE_CAST:
4463     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4464   case G_ICMP:
4465   case G_FCMP:
4466     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4467   case G_SELECT:
4468     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4469   case G_PHI:
4470     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4471   case G_UNMERGE_VALUES:
4472     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4473   case G_BUILD_VECTOR:
4474     assert(TypeIdx == 0 && "not a vector type index");
4475     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4476   case G_CONCAT_VECTORS:
4477     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4478       return UnableToLegalize;
4479     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4480   case G_EXTRACT_VECTOR_ELT:
4481   case G_INSERT_VECTOR_ELT:
4482     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4483   case G_LOAD:
4484   case G_STORE:
4485     return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy);
4486   case G_SEXT_INREG:
4487     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4488   GISEL_VECREDUCE_CASES_NONSEQ
4489     return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4490   case G_SHUFFLE_VECTOR:
4491     return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy);
4492   default:
4493     return UnableToLegalize;
4494   }
4495 }
4496 
4497 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle(
4498     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4499   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
4500   if (TypeIdx != 0)
4501     return UnableToLegalize;
4502 
4503   Register DstReg = MI.getOperand(0).getReg();
4504   Register Src1Reg = MI.getOperand(1).getReg();
4505   Register Src2Reg = MI.getOperand(2).getReg();
4506   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4507   LLT DstTy = MRI.getType(DstReg);
4508   LLT Src1Ty = MRI.getType(Src1Reg);
4509   LLT Src2Ty = MRI.getType(Src2Reg);
4510   // The shuffle should be canonicalized by now.
4511   if (DstTy != Src1Ty)
4512     return UnableToLegalize;
4513   if (DstTy != Src2Ty)
4514     return UnableToLegalize;
4515 
4516   if (!isPowerOf2_32(DstTy.getNumElements()))
4517     return UnableToLegalize;
4518 
4519   // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly.
4520   // Further legalization attempts will be needed to do split further.
4521   NarrowTy =
4522       DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2));
4523   unsigned NewElts = NarrowTy.getNumElements();
4524 
4525   SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs;
4526   extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs);
4527   extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs);
4528   Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0],
4529                         SplitSrc2Regs[1]};
4530 
4531   Register Hi, Lo;
4532 
4533   // If Lo or Hi uses elements from at most two of the four input vectors, then
4534   // express it as a vector shuffle of those two inputs.  Otherwise extract the
4535   // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
4536   SmallVector<int, 16> Ops;
4537   for (unsigned High = 0; High < 2; ++High) {
4538     Register &Output = High ? Hi : Lo;
4539 
4540     // Build a shuffle mask for the output, discovering on the fly which
4541     // input vectors to use as shuffle operands (recorded in InputUsed).
4542     // If building a suitable shuffle vector proves too hard, then bail
4543     // out with useBuildVector set.
4544     unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered.
4545     unsigned FirstMaskIdx = High * NewElts;
4546     bool UseBuildVector = false;
4547     for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4548       // The mask element.  This indexes into the input.
4549       int Idx = Mask[FirstMaskIdx + MaskOffset];
4550 
4551       // The input vector this mask element indexes into.
4552       unsigned Input = (unsigned)Idx / NewElts;
4553 
4554       if (Input >= array_lengthof(Inputs)) {
4555         // The mask element does not index into any input vector.
4556         Ops.push_back(-1);
4557         continue;
4558       }
4559 
4560       // Turn the index into an offset from the start of the input vector.
4561       Idx -= Input * NewElts;
4562 
4563       // Find or create a shuffle vector operand to hold this input.
4564       unsigned OpNo;
4565       for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
4566         if (InputUsed[OpNo] == Input) {
4567           // This input vector is already an operand.
4568           break;
4569         } else if (InputUsed[OpNo] == -1U) {
4570           // Create a new operand for this input vector.
4571           InputUsed[OpNo] = Input;
4572           break;
4573         }
4574       }
4575 
4576       if (OpNo >= array_lengthof(InputUsed)) {
4577         // More than two input vectors used!  Give up on trying to create a
4578         // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
4579         UseBuildVector = true;
4580         break;
4581       }
4582 
4583       // Add the mask index for the new shuffle vector.
4584       Ops.push_back(Idx + OpNo * NewElts);
4585     }
4586 
4587     if (UseBuildVector) {
4588       LLT EltTy = NarrowTy.getElementType();
4589       SmallVector<Register, 16> SVOps;
4590 
4591       // Extract the input elements by hand.
4592       for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4593         // The mask element.  This indexes into the input.
4594         int Idx = Mask[FirstMaskIdx + MaskOffset];
4595 
4596         // The input vector this mask element indexes into.
4597         unsigned Input = (unsigned)Idx / NewElts;
4598 
4599         if (Input >= array_lengthof(Inputs)) {
4600           // The mask element is "undef" or indexes off the end of the input.
4601           SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0));
4602           continue;
4603         }
4604 
4605         // Turn the index into an offset from the start of the input vector.
4606         Idx -= Input * NewElts;
4607 
4608         // Extract the vector element by hand.
4609         SVOps.push_back(MIRBuilder
4610                             .buildExtractVectorElement(
4611                                 EltTy, Inputs[Input],
4612                                 MIRBuilder.buildConstant(LLT::scalar(32), Idx))
4613                             .getReg(0));
4614       }
4615 
4616       // Construct the Lo/Hi output using a G_BUILD_VECTOR.
4617       Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0);
4618     } else if (InputUsed[0] == -1U) {
4619       // No input vectors were used! The result is undefined.
4620       Output = MIRBuilder.buildUndef(NarrowTy).getReg(0);
4621     } else {
4622       Register Op0 = Inputs[InputUsed[0]];
4623       // If only one input was used, use an undefined vector for the other.
4624       Register Op1 = InputUsed[1] == -1U
4625                          ? MIRBuilder.buildUndef(NarrowTy).getReg(0)
4626                          : Inputs[InputUsed[1]];
4627       // At least one input vector was used. Create a new shuffle vector.
4628       Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0);
4629     }
4630 
4631     Ops.clear();
4632   }
4633 
4634   MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi});
4635   MI.eraseFromParent();
4636   return Legalized;
4637 }
4638 
4639 static unsigned getScalarOpcForReduction(unsigned Opc) {
4640   unsigned ScalarOpc;
4641   switch (Opc) {
4642   case TargetOpcode::G_VECREDUCE_FADD:
4643     ScalarOpc = TargetOpcode::G_FADD;
4644     break;
4645   case TargetOpcode::G_VECREDUCE_FMUL:
4646     ScalarOpc = TargetOpcode::G_FMUL;
4647     break;
4648   case TargetOpcode::G_VECREDUCE_FMAX:
4649     ScalarOpc = TargetOpcode::G_FMAXNUM;
4650     break;
4651   case TargetOpcode::G_VECREDUCE_FMIN:
4652     ScalarOpc = TargetOpcode::G_FMINNUM;
4653     break;
4654   case TargetOpcode::G_VECREDUCE_ADD:
4655     ScalarOpc = TargetOpcode::G_ADD;
4656     break;
4657   case TargetOpcode::G_VECREDUCE_MUL:
4658     ScalarOpc = TargetOpcode::G_MUL;
4659     break;
4660   case TargetOpcode::G_VECREDUCE_AND:
4661     ScalarOpc = TargetOpcode::G_AND;
4662     break;
4663   case TargetOpcode::G_VECREDUCE_OR:
4664     ScalarOpc = TargetOpcode::G_OR;
4665     break;
4666   case TargetOpcode::G_VECREDUCE_XOR:
4667     ScalarOpc = TargetOpcode::G_XOR;
4668     break;
4669   case TargetOpcode::G_VECREDUCE_SMAX:
4670     ScalarOpc = TargetOpcode::G_SMAX;
4671     break;
4672   case TargetOpcode::G_VECREDUCE_SMIN:
4673     ScalarOpc = TargetOpcode::G_SMIN;
4674     break;
4675   case TargetOpcode::G_VECREDUCE_UMAX:
4676     ScalarOpc = TargetOpcode::G_UMAX;
4677     break;
4678   case TargetOpcode::G_VECREDUCE_UMIN:
4679     ScalarOpc = TargetOpcode::G_UMIN;
4680     break;
4681   default:
4682     llvm_unreachable("Unhandled reduction");
4683   }
4684   return ScalarOpc;
4685 }
4686 
4687 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4688     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4689   unsigned Opc = MI.getOpcode();
4690   assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&
4691          Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
4692          "Sequential reductions not expected");
4693 
4694   if (TypeIdx != 1)
4695     return UnableToLegalize;
4696 
4697   // The semantics of the normal non-sequential reductions allow us to freely
4698   // re-associate the operation.
4699   Register SrcReg = MI.getOperand(1).getReg();
4700   LLT SrcTy = MRI.getType(SrcReg);
4701   Register DstReg = MI.getOperand(0).getReg();
4702   LLT DstTy = MRI.getType(DstReg);
4703 
4704   if (NarrowTy.isVector() &&
4705       (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0))
4706     return UnableToLegalize;
4707 
4708   unsigned ScalarOpc = getScalarOpcForReduction(Opc);
4709   SmallVector<Register> SplitSrcs;
4710   // If NarrowTy is a scalar then we're being asked to scalarize.
4711   const unsigned NumParts =
4712       NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements()
4713                           : SrcTy.getNumElements();
4714 
4715   extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
4716   if (NarrowTy.isScalar()) {
4717     if (DstTy != NarrowTy)
4718       return UnableToLegalize; // FIXME: handle implicit extensions.
4719 
4720     if (isPowerOf2_32(NumParts)) {
4721       // Generate a tree of scalar operations to reduce the critical path.
4722       SmallVector<Register> PartialResults;
4723       unsigned NumPartsLeft = NumParts;
4724       while (NumPartsLeft > 1) {
4725         for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) {
4726           PartialResults.emplace_back(
4727               MIRBuilder
4728                   .buildInstr(ScalarOpc, {NarrowTy},
4729                               {SplitSrcs[Idx], SplitSrcs[Idx + 1]})
4730                   .getReg(0));
4731         }
4732         SplitSrcs = PartialResults;
4733         PartialResults.clear();
4734         NumPartsLeft = SplitSrcs.size();
4735       }
4736       assert(SplitSrcs.size() == 1);
4737       MIRBuilder.buildCopy(DstReg, SplitSrcs[0]);
4738       MI.eraseFromParent();
4739       return Legalized;
4740     }
4741     // If we can't generate a tree, then just do sequential operations.
4742     Register Acc = SplitSrcs[0];
4743     for (unsigned Idx = 1; Idx < NumParts; ++Idx)
4744       Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]})
4745                 .getReg(0);
4746     MIRBuilder.buildCopy(DstReg, Acc);
4747     MI.eraseFromParent();
4748     return Legalized;
4749   }
4750   SmallVector<Register> PartialReductions;
4751   for (unsigned Part = 0; Part < NumParts; ++Part) {
4752     PartialReductions.push_back(
4753         MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
4754   }
4755 
4756 
4757   // If the types involved are powers of 2, we can generate intermediate vector
4758   // ops, before generating a final reduction operation.
4759   if (isPowerOf2_32(SrcTy.getNumElements()) &&
4760       isPowerOf2_32(NarrowTy.getNumElements())) {
4761     return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4762   }
4763 
4764   Register Acc = PartialReductions[0];
4765   for (unsigned Part = 1; Part < NumParts; ++Part) {
4766     if (Part == NumParts - 1) {
4767       MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4768                             {Acc, PartialReductions[Part]});
4769     } else {
4770       Acc = MIRBuilder
4771                 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4772                 .getReg(0);
4773     }
4774   }
4775   MI.eraseFromParent();
4776   return Legalized;
4777 }
4778 
4779 LegalizerHelper::LegalizeResult
4780 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4781                                         LLT SrcTy, LLT NarrowTy,
4782                                         unsigned ScalarOpc) {
4783   SmallVector<Register> SplitSrcs;
4784   // Split the sources into NarrowTy size pieces.
4785   extractParts(SrcReg, NarrowTy,
4786                SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
4787   // We're going to do a tree reduction using vector operations until we have
4788   // one NarrowTy size value left.
4789   while (SplitSrcs.size() > 1) {
4790     SmallVector<Register> PartialRdxs;
4791     for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4792       Register LHS = SplitSrcs[Idx];
4793       Register RHS = SplitSrcs[Idx + 1];
4794       // Create the intermediate vector op.
4795       Register Res =
4796           MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4797       PartialRdxs.push_back(Res);
4798     }
4799     SplitSrcs = std::move(PartialRdxs);
4800   }
4801   // Finally generate the requested NarrowTy based reduction.
4802   Observer.changingInstr(MI);
4803   MI.getOperand(1).setReg(SplitSrcs[0]);
4804   Observer.changedInstr(MI);
4805   return Legalized;
4806 }
4807 
4808 LegalizerHelper::LegalizeResult
4809 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4810                                              const LLT HalfTy, const LLT AmtTy) {
4811 
4812   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4813   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4814   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4815 
4816   if (Amt.isNullValue()) {
4817     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4818     MI.eraseFromParent();
4819     return Legalized;
4820   }
4821 
4822   LLT NVT = HalfTy;
4823   unsigned NVTBits = HalfTy.getSizeInBits();
4824   unsigned VTBits = 2 * NVTBits;
4825 
4826   SrcOp Lo(Register(0)), Hi(Register(0));
4827   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4828     if (Amt.ugt(VTBits)) {
4829       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4830     } else if (Amt.ugt(NVTBits)) {
4831       Lo = MIRBuilder.buildConstant(NVT, 0);
4832       Hi = MIRBuilder.buildShl(NVT, InL,
4833                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4834     } else if (Amt == NVTBits) {
4835       Lo = MIRBuilder.buildConstant(NVT, 0);
4836       Hi = InL;
4837     } else {
4838       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4839       auto OrLHS =
4840           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4841       auto OrRHS = MIRBuilder.buildLShr(
4842           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4843       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4844     }
4845   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4846     if (Amt.ugt(VTBits)) {
4847       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4848     } else if (Amt.ugt(NVTBits)) {
4849       Lo = MIRBuilder.buildLShr(NVT, InH,
4850                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4851       Hi = MIRBuilder.buildConstant(NVT, 0);
4852     } else if (Amt == NVTBits) {
4853       Lo = InH;
4854       Hi = MIRBuilder.buildConstant(NVT, 0);
4855     } else {
4856       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4857 
4858       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4859       auto OrRHS = MIRBuilder.buildShl(
4860           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4861 
4862       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4863       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4864     }
4865   } else {
4866     if (Amt.ugt(VTBits)) {
4867       Hi = Lo = MIRBuilder.buildAShr(
4868           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4869     } else if (Amt.ugt(NVTBits)) {
4870       Lo = MIRBuilder.buildAShr(NVT, InH,
4871                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4872       Hi = MIRBuilder.buildAShr(NVT, InH,
4873                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4874     } else if (Amt == NVTBits) {
4875       Lo = InH;
4876       Hi = MIRBuilder.buildAShr(NVT, InH,
4877                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4878     } else {
4879       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4880 
4881       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4882       auto OrRHS = MIRBuilder.buildShl(
4883           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4884 
4885       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4886       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4887     }
4888   }
4889 
4890   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4891   MI.eraseFromParent();
4892 
4893   return Legalized;
4894 }
4895 
4896 // TODO: Optimize if constant shift amount.
4897 LegalizerHelper::LegalizeResult
4898 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4899                                    LLT RequestedTy) {
4900   if (TypeIdx == 1) {
4901     Observer.changingInstr(MI);
4902     narrowScalarSrc(MI, RequestedTy, 2);
4903     Observer.changedInstr(MI);
4904     return Legalized;
4905   }
4906 
4907   Register DstReg = MI.getOperand(0).getReg();
4908   LLT DstTy = MRI.getType(DstReg);
4909   if (DstTy.isVector())
4910     return UnableToLegalize;
4911 
4912   Register Amt = MI.getOperand(2).getReg();
4913   LLT ShiftAmtTy = MRI.getType(Amt);
4914   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4915   if (DstEltSize % 2 != 0)
4916     return UnableToLegalize;
4917 
4918   // Ignore the input type. We can only go to exactly half the size of the
4919   // input. If that isn't small enough, the resulting pieces will be further
4920   // legalized.
4921   const unsigned NewBitSize = DstEltSize / 2;
4922   const LLT HalfTy = LLT::scalar(NewBitSize);
4923   const LLT CondTy = LLT::scalar(1);
4924 
4925   if (auto VRegAndVal =
4926           getConstantVRegValWithLookThrough(Amt, MRI, true, false)) {
4927     return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy,
4928                                        ShiftAmtTy);
4929   }
4930 
4931   // TODO: Expand with known bits.
4932 
4933   // Handle the fully general expansion by an unknown amount.
4934   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4935 
4936   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4937   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4938   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4939 
4940   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4941   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4942 
4943   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4944   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4945   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4946 
4947   Register ResultRegs[2];
4948   switch (MI.getOpcode()) {
4949   case TargetOpcode::G_SHL: {
4950     // Short: ShAmt < NewBitSize
4951     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4952 
4953     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4954     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4955     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4956 
4957     // Long: ShAmt >= NewBitSize
4958     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4959     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4960 
4961     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4962     auto Hi = MIRBuilder.buildSelect(
4963         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4964 
4965     ResultRegs[0] = Lo.getReg(0);
4966     ResultRegs[1] = Hi.getReg(0);
4967     break;
4968   }
4969   case TargetOpcode::G_LSHR:
4970   case TargetOpcode::G_ASHR: {
4971     // Short: ShAmt < NewBitSize
4972     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4973 
4974     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4975     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4976     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4977 
4978     // Long: ShAmt >= NewBitSize
4979     MachineInstrBuilder HiL;
4980     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4981       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4982     } else {
4983       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4984       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4985     }
4986     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4987                                      {InH, AmtExcess});     // Lo from Hi part.
4988 
4989     auto Lo = MIRBuilder.buildSelect(
4990         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4991 
4992     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4993 
4994     ResultRegs[0] = Lo.getReg(0);
4995     ResultRegs[1] = Hi.getReg(0);
4996     break;
4997   }
4998   default:
4999     llvm_unreachable("not a shift");
5000   }
5001 
5002   MIRBuilder.buildMerge(DstReg, ResultRegs);
5003   MI.eraseFromParent();
5004   return Legalized;
5005 }
5006 
5007 LegalizerHelper::LegalizeResult
5008 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
5009                                        LLT MoreTy) {
5010   assert(TypeIdx == 0 && "Expecting only Idx 0");
5011 
5012   Observer.changingInstr(MI);
5013   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
5014     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
5015     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
5016     moreElementsVectorSrc(MI, MoreTy, I);
5017   }
5018 
5019   MachineBasicBlock &MBB = *MI.getParent();
5020   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
5021   moreElementsVectorDst(MI, MoreTy, 0);
5022   Observer.changedInstr(MI);
5023   return Legalized;
5024 }
5025 
5026 LegalizerHelper::LegalizeResult
5027 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
5028                                     LLT MoreTy) {
5029   unsigned Opc = MI.getOpcode();
5030   switch (Opc) {
5031   case TargetOpcode::G_IMPLICIT_DEF:
5032   case TargetOpcode::G_LOAD: {
5033     if (TypeIdx != 0)
5034       return UnableToLegalize;
5035     Observer.changingInstr(MI);
5036     moreElementsVectorDst(MI, MoreTy, 0);
5037     Observer.changedInstr(MI);
5038     return Legalized;
5039   }
5040   case TargetOpcode::G_STORE:
5041     if (TypeIdx != 0)
5042       return UnableToLegalize;
5043     Observer.changingInstr(MI);
5044     moreElementsVectorSrc(MI, MoreTy, 0);
5045     Observer.changedInstr(MI);
5046     return Legalized;
5047   case TargetOpcode::G_AND:
5048   case TargetOpcode::G_OR:
5049   case TargetOpcode::G_XOR:
5050   case TargetOpcode::G_SMIN:
5051   case TargetOpcode::G_SMAX:
5052   case TargetOpcode::G_UMIN:
5053   case TargetOpcode::G_UMAX:
5054   case TargetOpcode::G_FMINNUM:
5055   case TargetOpcode::G_FMAXNUM:
5056   case TargetOpcode::G_FMINNUM_IEEE:
5057   case TargetOpcode::G_FMAXNUM_IEEE:
5058   case TargetOpcode::G_FMINIMUM:
5059   case TargetOpcode::G_FMAXIMUM: {
5060     Observer.changingInstr(MI);
5061     moreElementsVectorSrc(MI, MoreTy, 1);
5062     moreElementsVectorSrc(MI, MoreTy, 2);
5063     moreElementsVectorDst(MI, MoreTy, 0);
5064     Observer.changedInstr(MI);
5065     return Legalized;
5066   }
5067   case TargetOpcode::G_EXTRACT:
5068     if (TypeIdx != 1)
5069       return UnableToLegalize;
5070     Observer.changingInstr(MI);
5071     moreElementsVectorSrc(MI, MoreTy, 1);
5072     Observer.changedInstr(MI);
5073     return Legalized;
5074   case TargetOpcode::G_INSERT:
5075   case TargetOpcode::G_FREEZE:
5076     if (TypeIdx != 0)
5077       return UnableToLegalize;
5078     Observer.changingInstr(MI);
5079     moreElementsVectorSrc(MI, MoreTy, 1);
5080     moreElementsVectorDst(MI, MoreTy, 0);
5081     Observer.changedInstr(MI);
5082     return Legalized;
5083   case TargetOpcode::G_SELECT:
5084     if (TypeIdx != 0)
5085       return UnableToLegalize;
5086     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
5087       return UnableToLegalize;
5088 
5089     Observer.changingInstr(MI);
5090     moreElementsVectorSrc(MI, MoreTy, 2);
5091     moreElementsVectorSrc(MI, MoreTy, 3);
5092     moreElementsVectorDst(MI, MoreTy, 0);
5093     Observer.changedInstr(MI);
5094     return Legalized;
5095   case TargetOpcode::G_UNMERGE_VALUES: {
5096     if (TypeIdx != 1)
5097       return UnableToLegalize;
5098 
5099     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5100     int NumDst = MI.getNumOperands() - 1;
5101     moreElementsVectorSrc(MI, MoreTy, NumDst);
5102 
5103     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
5104     for (int I = 0; I != NumDst; ++I)
5105       MIB.addDef(MI.getOperand(I).getReg());
5106 
5107     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
5108     for (int I = NumDst; I != NewNumDst; ++I)
5109       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
5110 
5111     MIB.addUse(MI.getOperand(NumDst).getReg());
5112     MI.eraseFromParent();
5113     return Legalized;
5114   }
5115   case TargetOpcode::G_PHI:
5116     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
5117   case TargetOpcode::G_SHUFFLE_VECTOR:
5118     return moreElementsVectorShuffle(MI, TypeIdx, MoreTy);
5119   default:
5120     return UnableToLegalize;
5121   }
5122 }
5123 
5124 LegalizerHelper::LegalizeResult
5125 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI,
5126                                            unsigned int TypeIdx, LLT MoreTy) {
5127   if (TypeIdx != 0)
5128     return UnableToLegalize;
5129 
5130   Register DstReg = MI.getOperand(0).getReg();
5131   Register Src1Reg = MI.getOperand(1).getReg();
5132   Register Src2Reg = MI.getOperand(2).getReg();
5133   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5134   LLT DstTy = MRI.getType(DstReg);
5135   LLT Src1Ty = MRI.getType(Src1Reg);
5136   LLT Src2Ty = MRI.getType(Src2Reg);
5137   unsigned NumElts = DstTy.getNumElements();
5138   unsigned WidenNumElts = MoreTy.getNumElements();
5139 
5140   // Expect a canonicalized shuffle.
5141   if (DstTy != Src1Ty || DstTy != Src2Ty)
5142     return UnableToLegalize;
5143 
5144   moreElementsVectorSrc(MI, MoreTy, 1);
5145   moreElementsVectorSrc(MI, MoreTy, 2);
5146 
5147   // Adjust mask based on new input vector length.
5148   SmallVector<int, 16> NewMask;
5149   for (unsigned I = 0; I != NumElts; ++I) {
5150     int Idx = Mask[I];
5151     if (Idx < static_cast<int>(NumElts))
5152       NewMask.push_back(Idx);
5153     else
5154       NewMask.push_back(Idx - NumElts + WidenNumElts);
5155   }
5156   for (unsigned I = NumElts; I != WidenNumElts; ++I)
5157     NewMask.push_back(-1);
5158   moreElementsVectorDst(MI, MoreTy, 0);
5159   MIRBuilder.setInstrAndDebugLoc(MI);
5160   MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(),
5161                                 MI.getOperand(1).getReg(),
5162                                 MI.getOperand(2).getReg(), NewMask);
5163   MI.eraseFromParent();
5164   return Legalized;
5165 }
5166 
5167 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
5168                                         ArrayRef<Register> Src1Regs,
5169                                         ArrayRef<Register> Src2Regs,
5170                                         LLT NarrowTy) {
5171   MachineIRBuilder &B = MIRBuilder;
5172   unsigned SrcParts = Src1Regs.size();
5173   unsigned DstParts = DstRegs.size();
5174 
5175   unsigned DstIdx = 0; // Low bits of the result.
5176   Register FactorSum =
5177       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
5178   DstRegs[DstIdx] = FactorSum;
5179 
5180   unsigned CarrySumPrevDstIdx;
5181   SmallVector<Register, 4> Factors;
5182 
5183   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
5184     // Collect low parts of muls for DstIdx.
5185     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
5186          i <= std::min(DstIdx, SrcParts - 1); ++i) {
5187       MachineInstrBuilder Mul =
5188           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
5189       Factors.push_back(Mul.getReg(0));
5190     }
5191     // Collect high parts of muls from previous DstIdx.
5192     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
5193          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
5194       MachineInstrBuilder Umulh =
5195           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
5196       Factors.push_back(Umulh.getReg(0));
5197     }
5198     // Add CarrySum from additions calculated for previous DstIdx.
5199     if (DstIdx != 1) {
5200       Factors.push_back(CarrySumPrevDstIdx);
5201     }
5202 
5203     Register CarrySum;
5204     // Add all factors and accumulate all carries into CarrySum.
5205     if (DstIdx != DstParts - 1) {
5206       MachineInstrBuilder Uaddo =
5207           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
5208       FactorSum = Uaddo.getReg(0);
5209       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
5210       for (unsigned i = 2; i < Factors.size(); ++i) {
5211         MachineInstrBuilder Uaddo =
5212             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
5213         FactorSum = Uaddo.getReg(0);
5214         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
5215         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
5216       }
5217     } else {
5218       // Since value for the next index is not calculated, neither is CarrySum.
5219       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
5220       for (unsigned i = 2; i < Factors.size(); ++i)
5221         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
5222     }
5223 
5224     CarrySumPrevDstIdx = CarrySum;
5225     DstRegs[DstIdx] = FactorSum;
5226     Factors.clear();
5227   }
5228 }
5229 
5230 LegalizerHelper::LegalizeResult
5231 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
5232                                     LLT NarrowTy) {
5233   if (TypeIdx != 0)
5234     return UnableToLegalize;
5235 
5236   Register DstReg = MI.getOperand(0).getReg();
5237   LLT DstType = MRI.getType(DstReg);
5238   // FIXME: add support for vector types
5239   if (DstType.isVector())
5240     return UnableToLegalize;
5241 
5242   unsigned Opcode = MI.getOpcode();
5243   unsigned OpO, OpE, OpF;
5244   switch (Opcode) {
5245   case TargetOpcode::G_SADDO:
5246   case TargetOpcode::G_SADDE:
5247   case TargetOpcode::G_UADDO:
5248   case TargetOpcode::G_UADDE:
5249   case TargetOpcode::G_ADD:
5250     OpO = TargetOpcode::G_UADDO;
5251     OpE = TargetOpcode::G_UADDE;
5252     OpF = TargetOpcode::G_UADDE;
5253     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
5254       OpF = TargetOpcode::G_SADDE;
5255     break;
5256   case TargetOpcode::G_SSUBO:
5257   case TargetOpcode::G_SSUBE:
5258   case TargetOpcode::G_USUBO:
5259   case TargetOpcode::G_USUBE:
5260   case TargetOpcode::G_SUB:
5261     OpO = TargetOpcode::G_USUBO;
5262     OpE = TargetOpcode::G_USUBE;
5263     OpF = TargetOpcode::G_USUBE;
5264     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
5265       OpF = TargetOpcode::G_SSUBE;
5266     break;
5267   default:
5268     llvm_unreachable("Unexpected add/sub opcode!");
5269   }
5270 
5271   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
5272   unsigned NumDefs = MI.getNumExplicitDefs();
5273   Register Src1 = MI.getOperand(NumDefs).getReg();
5274   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
5275   Register CarryDst, CarryIn;
5276   if (NumDefs == 2)
5277     CarryDst = MI.getOperand(1).getReg();
5278   if (MI.getNumOperands() == NumDefs + 3)
5279     CarryIn = MI.getOperand(NumDefs + 2).getReg();
5280 
5281   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5282   LLT LeftoverTy, DummyTy;
5283   SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs;
5284   extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left);
5285   extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left);
5286 
5287   int NarrowParts = Src1Regs.size();
5288   for (int I = 0, E = Src1Left.size(); I != E; ++I) {
5289     Src1Regs.push_back(Src1Left[I]);
5290     Src2Regs.push_back(Src2Left[I]);
5291   }
5292   DstRegs.reserve(Src1Regs.size());
5293 
5294   for (int i = 0, e = Src1Regs.size(); i != e; ++i) {
5295     Register DstReg =
5296         MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i]));
5297     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
5298     // Forward the final carry-out to the destination register
5299     if (i == e - 1 && CarryDst)
5300       CarryOut = CarryDst;
5301 
5302     if (!CarryIn) {
5303       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
5304                             {Src1Regs[i], Src2Regs[i]});
5305     } else if (i == e - 1) {
5306       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
5307                             {Src1Regs[i], Src2Regs[i], CarryIn});
5308     } else {
5309       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
5310                             {Src1Regs[i], Src2Regs[i], CarryIn});
5311     }
5312 
5313     DstRegs.push_back(DstReg);
5314     CarryIn = CarryOut;
5315   }
5316   insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy,
5317               makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy,
5318               makeArrayRef(DstRegs).drop_front(NarrowParts));
5319 
5320   MI.eraseFromParent();
5321   return Legalized;
5322 }
5323 
5324 LegalizerHelper::LegalizeResult
5325 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
5326   Register DstReg = MI.getOperand(0).getReg();
5327   Register Src1 = MI.getOperand(1).getReg();
5328   Register Src2 = MI.getOperand(2).getReg();
5329 
5330   LLT Ty = MRI.getType(DstReg);
5331   if (Ty.isVector())
5332     return UnableToLegalize;
5333 
5334   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
5335   unsigned DstSize = Ty.getSizeInBits();
5336   unsigned NarrowSize = NarrowTy.getSizeInBits();
5337   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
5338     return UnableToLegalize;
5339 
5340   unsigned NumDstParts = DstSize / NarrowSize;
5341   unsigned NumSrcParts = SrcSize / NarrowSize;
5342   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
5343   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
5344 
5345   SmallVector<Register, 2> Src1Parts, Src2Parts;
5346   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
5347   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
5348   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
5349   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
5350 
5351   // Take only high half of registers if this is high mul.
5352   ArrayRef<Register> DstRegs(
5353       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
5354   MIRBuilder.buildMerge(DstReg, DstRegs);
5355   MI.eraseFromParent();
5356   return Legalized;
5357 }
5358 
5359 LegalizerHelper::LegalizeResult
5360 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
5361                                    LLT NarrowTy) {
5362   if (TypeIdx != 0)
5363     return UnableToLegalize;
5364 
5365   bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
5366 
5367   Register Src = MI.getOperand(1).getReg();
5368   LLT SrcTy = MRI.getType(Src);
5369 
5370   // If all finite floats fit into the narrowed integer type, we can just swap
5371   // out the result type. This is practically only useful for conversions from
5372   // half to at least 16-bits, so just handle the one case.
5373   if (SrcTy.getScalarType() != LLT::scalar(16) ||
5374       NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
5375     return UnableToLegalize;
5376 
5377   Observer.changingInstr(MI);
5378   narrowScalarDst(MI, NarrowTy, 0,
5379                   IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
5380   Observer.changedInstr(MI);
5381   return Legalized;
5382 }
5383 
5384 LegalizerHelper::LegalizeResult
5385 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
5386                                      LLT NarrowTy) {
5387   if (TypeIdx != 1)
5388     return UnableToLegalize;
5389 
5390   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5391 
5392   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5393   // FIXME: add support for when SizeOp1 isn't an exact multiple of
5394   // NarrowSize.
5395   if (SizeOp1 % NarrowSize != 0)
5396     return UnableToLegalize;
5397   int NumParts = SizeOp1 / NarrowSize;
5398 
5399   SmallVector<Register, 2> SrcRegs, DstRegs;
5400   SmallVector<uint64_t, 2> Indexes;
5401   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
5402 
5403   Register OpReg = MI.getOperand(0).getReg();
5404   uint64_t OpStart = MI.getOperand(2).getImm();
5405   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5406   for (int i = 0; i < NumParts; ++i) {
5407     unsigned SrcStart = i * NarrowSize;
5408 
5409     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
5410       // No part of the extract uses this subregister, ignore it.
5411       continue;
5412     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5413       // The entire subregister is extracted, forward the value.
5414       DstRegs.push_back(SrcRegs[i]);
5415       continue;
5416     }
5417 
5418     // OpSegStart is where this destination segment would start in OpReg if it
5419     // extended infinitely in both directions.
5420     int64_t ExtractOffset;
5421     uint64_t SegSize;
5422     if (OpStart < SrcStart) {
5423       ExtractOffset = 0;
5424       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
5425     } else {
5426       ExtractOffset = OpStart - SrcStart;
5427       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
5428     }
5429 
5430     Register SegReg = SrcRegs[i];
5431     if (ExtractOffset != 0 || SegSize != NarrowSize) {
5432       // A genuine extract is needed.
5433       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5434       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
5435     }
5436 
5437     DstRegs.push_back(SegReg);
5438   }
5439 
5440   Register DstReg = MI.getOperand(0).getReg();
5441   if (MRI.getType(DstReg).isVector())
5442     MIRBuilder.buildBuildVector(DstReg, DstRegs);
5443   else if (DstRegs.size() > 1)
5444     MIRBuilder.buildMerge(DstReg, DstRegs);
5445   else
5446     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
5447   MI.eraseFromParent();
5448   return Legalized;
5449 }
5450 
5451 LegalizerHelper::LegalizeResult
5452 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
5453                                     LLT NarrowTy) {
5454   // FIXME: Don't know how to handle secondary types yet.
5455   if (TypeIdx != 0)
5456     return UnableToLegalize;
5457 
5458   SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs;
5459   SmallVector<uint64_t, 2> Indexes;
5460   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5461   LLT LeftoverTy;
5462   extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs,
5463                LeftoverRegs);
5464 
5465   for (Register Reg : LeftoverRegs)
5466     SrcRegs.push_back(Reg);
5467 
5468   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5469   Register OpReg = MI.getOperand(2).getReg();
5470   uint64_t OpStart = MI.getOperand(3).getImm();
5471   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5472   for (int I = 0, E = SrcRegs.size(); I != E; ++I) {
5473     unsigned DstStart = I * NarrowSize;
5474 
5475     if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5476       // The entire subregister is defined by this insert, forward the new
5477       // value.
5478       DstRegs.push_back(OpReg);
5479       continue;
5480     }
5481 
5482     Register SrcReg = SrcRegs[I];
5483     if (MRI.getType(SrcRegs[I]) == LeftoverTy) {
5484       // The leftover reg is smaller than NarrowTy, so we need to extend it.
5485       SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
5486       MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]);
5487     }
5488 
5489     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
5490       // No part of the insert affects this subregister, forward the original.
5491       DstRegs.push_back(SrcReg);
5492       continue;
5493     }
5494 
5495     // OpSegStart is where this destination segment would start in OpReg if it
5496     // extended infinitely in both directions.
5497     int64_t ExtractOffset, InsertOffset;
5498     uint64_t SegSize;
5499     if (OpStart < DstStart) {
5500       InsertOffset = 0;
5501       ExtractOffset = DstStart - OpStart;
5502       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
5503     } else {
5504       InsertOffset = OpStart - DstStart;
5505       ExtractOffset = 0;
5506       SegSize =
5507         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
5508     }
5509 
5510     Register SegReg = OpReg;
5511     if (ExtractOffset != 0 || SegSize != OpSize) {
5512       // A genuine extract is needed.
5513       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5514       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
5515     }
5516 
5517     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
5518     MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset);
5519     DstRegs.push_back(DstReg);
5520   }
5521 
5522   uint64_t WideSize = DstRegs.size() * NarrowSize;
5523   Register DstReg = MI.getOperand(0).getReg();
5524   if (WideSize > RegTy.getSizeInBits()) {
5525     Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize));
5526     MIRBuilder.buildMerge(MergeReg, DstRegs);
5527     MIRBuilder.buildTrunc(DstReg, MergeReg);
5528   } else
5529     MIRBuilder.buildMerge(DstReg, DstRegs);
5530 
5531   MI.eraseFromParent();
5532   return Legalized;
5533 }
5534 
5535 LegalizerHelper::LegalizeResult
5536 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5537                                    LLT NarrowTy) {
5538   Register DstReg = MI.getOperand(0).getReg();
5539   LLT DstTy = MRI.getType(DstReg);
5540 
5541   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
5542 
5543   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5544   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5545   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5546   LLT LeftoverTy;
5547   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5548                     Src0Regs, Src0LeftoverRegs))
5549     return UnableToLegalize;
5550 
5551   LLT Unused;
5552   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5553                     Src1Regs, Src1LeftoverRegs))
5554     llvm_unreachable("inconsistent extractParts result");
5555 
5556   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5557     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5558                                         {Src0Regs[I], Src1Regs[I]});
5559     DstRegs.push_back(Inst.getReg(0));
5560   }
5561 
5562   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5563     auto Inst = MIRBuilder.buildInstr(
5564       MI.getOpcode(),
5565       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5566     DstLeftoverRegs.push_back(Inst.getReg(0));
5567   }
5568 
5569   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5570               LeftoverTy, DstLeftoverRegs);
5571 
5572   MI.eraseFromParent();
5573   return Legalized;
5574 }
5575 
5576 LegalizerHelper::LegalizeResult
5577 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5578                                  LLT NarrowTy) {
5579   if (TypeIdx != 0)
5580     return UnableToLegalize;
5581 
5582   Register DstReg = MI.getOperand(0).getReg();
5583   Register SrcReg = MI.getOperand(1).getReg();
5584 
5585   LLT DstTy = MRI.getType(DstReg);
5586   if (DstTy.isVector())
5587     return UnableToLegalize;
5588 
5589   SmallVector<Register, 8> Parts;
5590   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5591   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5592   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5593 
5594   MI.eraseFromParent();
5595   return Legalized;
5596 }
5597 
5598 LegalizerHelper::LegalizeResult
5599 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5600                                     LLT NarrowTy) {
5601   if (TypeIdx != 0)
5602     return UnableToLegalize;
5603 
5604   Register CondReg = MI.getOperand(1).getReg();
5605   LLT CondTy = MRI.getType(CondReg);
5606   if (CondTy.isVector()) // TODO: Handle vselect
5607     return UnableToLegalize;
5608 
5609   Register DstReg = MI.getOperand(0).getReg();
5610   LLT DstTy = MRI.getType(DstReg);
5611 
5612   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5613   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5614   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5615   LLT LeftoverTy;
5616   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5617                     Src1Regs, Src1LeftoverRegs))
5618     return UnableToLegalize;
5619 
5620   LLT Unused;
5621   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5622                     Src2Regs, Src2LeftoverRegs))
5623     llvm_unreachable("inconsistent extractParts result");
5624 
5625   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5626     auto Select = MIRBuilder.buildSelect(NarrowTy,
5627                                          CondReg, Src1Regs[I], Src2Regs[I]);
5628     DstRegs.push_back(Select.getReg(0));
5629   }
5630 
5631   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5632     auto Select = MIRBuilder.buildSelect(
5633       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5634     DstLeftoverRegs.push_back(Select.getReg(0));
5635   }
5636 
5637   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5638               LeftoverTy, DstLeftoverRegs);
5639 
5640   MI.eraseFromParent();
5641   return Legalized;
5642 }
5643 
5644 LegalizerHelper::LegalizeResult
5645 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5646                                   LLT NarrowTy) {
5647   if (TypeIdx != 1)
5648     return UnableToLegalize;
5649 
5650   Register DstReg = MI.getOperand(0).getReg();
5651   Register SrcReg = MI.getOperand(1).getReg();
5652   LLT DstTy = MRI.getType(DstReg);
5653   LLT SrcTy = MRI.getType(SrcReg);
5654   unsigned NarrowSize = NarrowTy.getSizeInBits();
5655 
5656   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5657     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5658 
5659     MachineIRBuilder &B = MIRBuilder;
5660     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5661     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5662     auto C_0 = B.buildConstant(NarrowTy, 0);
5663     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5664                                 UnmergeSrc.getReg(1), C_0);
5665     auto LoCTLZ = IsUndef ?
5666       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5667       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5668     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5669     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5670     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5671     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5672 
5673     MI.eraseFromParent();
5674     return Legalized;
5675   }
5676 
5677   return UnableToLegalize;
5678 }
5679 
5680 LegalizerHelper::LegalizeResult
5681 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5682                                   LLT NarrowTy) {
5683   if (TypeIdx != 1)
5684     return UnableToLegalize;
5685 
5686   Register DstReg = MI.getOperand(0).getReg();
5687   Register SrcReg = MI.getOperand(1).getReg();
5688   LLT DstTy = MRI.getType(DstReg);
5689   LLT SrcTy = MRI.getType(SrcReg);
5690   unsigned NarrowSize = NarrowTy.getSizeInBits();
5691 
5692   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5693     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5694 
5695     MachineIRBuilder &B = MIRBuilder;
5696     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5697     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5698     auto C_0 = B.buildConstant(NarrowTy, 0);
5699     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5700                                 UnmergeSrc.getReg(0), C_0);
5701     auto HiCTTZ = IsUndef ?
5702       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5703       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5704     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5705     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5706     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5707     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5708 
5709     MI.eraseFromParent();
5710     return Legalized;
5711   }
5712 
5713   return UnableToLegalize;
5714 }
5715 
5716 LegalizerHelper::LegalizeResult
5717 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5718                                    LLT NarrowTy) {
5719   if (TypeIdx != 1)
5720     return UnableToLegalize;
5721 
5722   Register DstReg = MI.getOperand(0).getReg();
5723   LLT DstTy = MRI.getType(DstReg);
5724   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5725   unsigned NarrowSize = NarrowTy.getSizeInBits();
5726 
5727   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5728     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5729 
5730     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5731     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5732     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5733 
5734     MI.eraseFromParent();
5735     return Legalized;
5736   }
5737 
5738   return UnableToLegalize;
5739 }
5740 
5741 LegalizerHelper::LegalizeResult
5742 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5743   unsigned Opc = MI.getOpcode();
5744   const auto &TII = MIRBuilder.getTII();
5745   auto isSupported = [this](const LegalityQuery &Q) {
5746     auto QAction = LI.getAction(Q).Action;
5747     return QAction == Legal || QAction == Libcall || QAction == Custom;
5748   };
5749   switch (Opc) {
5750   default:
5751     return UnableToLegalize;
5752   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5753     // This trivially expands to CTLZ.
5754     Observer.changingInstr(MI);
5755     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5756     Observer.changedInstr(MI);
5757     return Legalized;
5758   }
5759   case TargetOpcode::G_CTLZ: {
5760     Register DstReg = MI.getOperand(0).getReg();
5761     Register SrcReg = MI.getOperand(1).getReg();
5762     LLT DstTy = MRI.getType(DstReg);
5763     LLT SrcTy = MRI.getType(SrcReg);
5764     unsigned Len = SrcTy.getSizeInBits();
5765 
5766     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5767       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5768       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5769       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5770       auto ICmp = MIRBuilder.buildICmp(
5771           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5772       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5773       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5774       MI.eraseFromParent();
5775       return Legalized;
5776     }
5777     // for now, we do this:
5778     // NewLen = NextPowerOf2(Len);
5779     // x = x | (x >> 1);
5780     // x = x | (x >> 2);
5781     // ...
5782     // x = x | (x >>16);
5783     // x = x | (x >>32); // for 64-bit input
5784     // Upto NewLen/2
5785     // return Len - popcount(x);
5786     //
5787     // Ref: "Hacker's Delight" by Henry Warren
5788     Register Op = SrcReg;
5789     unsigned NewLen = PowerOf2Ceil(Len);
5790     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5791       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5792       auto MIBOp = MIRBuilder.buildOr(
5793           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5794       Op = MIBOp.getReg(0);
5795     }
5796     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5797     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5798                         MIBPop);
5799     MI.eraseFromParent();
5800     return Legalized;
5801   }
5802   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5803     // This trivially expands to CTTZ.
5804     Observer.changingInstr(MI);
5805     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5806     Observer.changedInstr(MI);
5807     return Legalized;
5808   }
5809   case TargetOpcode::G_CTTZ: {
5810     Register DstReg = MI.getOperand(0).getReg();
5811     Register SrcReg = MI.getOperand(1).getReg();
5812     LLT DstTy = MRI.getType(DstReg);
5813     LLT SrcTy = MRI.getType(SrcReg);
5814 
5815     unsigned Len = SrcTy.getSizeInBits();
5816     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5817       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5818       // zero.
5819       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5820       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5821       auto ICmp = MIRBuilder.buildICmp(
5822           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5823       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5824       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5825       MI.eraseFromParent();
5826       return Legalized;
5827     }
5828     // for now, we use: { return popcount(~x & (x - 1)); }
5829     // unless the target has ctlz but not ctpop, in which case we use:
5830     // { return 32 - nlz(~x & (x-1)); }
5831     // Ref: "Hacker's Delight" by Henry Warren
5832     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5833     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5834     auto MIBTmp = MIRBuilder.buildAnd(
5835         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5836     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5837         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5838       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5839       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5840                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5841       MI.eraseFromParent();
5842       return Legalized;
5843     }
5844     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5845     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5846     return Legalized;
5847   }
5848   case TargetOpcode::G_CTPOP: {
5849     Register SrcReg = MI.getOperand(1).getReg();
5850     LLT Ty = MRI.getType(SrcReg);
5851     unsigned Size = Ty.getSizeInBits();
5852     MachineIRBuilder &B = MIRBuilder;
5853 
5854     // Count set bits in blocks of 2 bits. Default approach would be
5855     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5856     // We use following formula instead:
5857     // B2Count = val - { (val >> 1) & 0x55555555 }
5858     // since it gives same result in blocks of 2 with one instruction less.
5859     auto C_1 = B.buildConstant(Ty, 1);
5860     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5861     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5862     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5863     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5864     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5865 
5866     // In order to get count in blocks of 4 add values from adjacent block of 2.
5867     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5868     auto C_2 = B.buildConstant(Ty, 2);
5869     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5870     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5871     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5872     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5873     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5874     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5875 
5876     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5877     // addition since count value sits in range {0,...,8} and 4 bits are enough
5878     // to hold such binary values. After addition high 4 bits still hold count
5879     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5880     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5881     auto C_4 = B.buildConstant(Ty, 4);
5882     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5883     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5884     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5885     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5886     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5887 
5888     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5889     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5890     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5891     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5892     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5893 
5894     // Shift count result from 8 high bits to low bits.
5895     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5896     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5897 
5898     MI.eraseFromParent();
5899     return Legalized;
5900   }
5901   }
5902 }
5903 
5904 // Check that (every element of) Reg is undef or not an exact multiple of BW.
5905 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5906                                         Register Reg, unsigned BW) {
5907   return matchUnaryPredicate(
5908       MRI, Reg,
5909       [=](const Constant *C) {
5910         // Null constant here means an undef.
5911         const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5912         return !CI || CI->getValue().urem(BW) != 0;
5913       },
5914       /*AllowUndefs*/ true);
5915 }
5916 
5917 LegalizerHelper::LegalizeResult
5918 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5919   Register Dst = MI.getOperand(0).getReg();
5920   Register X = MI.getOperand(1).getReg();
5921   Register Y = MI.getOperand(2).getReg();
5922   Register Z = MI.getOperand(3).getReg();
5923   LLT Ty = MRI.getType(Dst);
5924   LLT ShTy = MRI.getType(Z);
5925 
5926   unsigned BW = Ty.getScalarSizeInBits();
5927 
5928   if (!isPowerOf2_32(BW))
5929     return UnableToLegalize;
5930 
5931   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5932   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5933 
5934   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5935     // fshl X, Y, Z -> fshr X, Y, -Z
5936     // fshr X, Y, Z -> fshl X, Y, -Z
5937     auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5938     Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5939   } else {
5940     // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5941     // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5942     auto One = MIRBuilder.buildConstant(ShTy, 1);
5943     if (IsFSHL) {
5944       Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5945       X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5946     } else {
5947       X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5948       Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5949     }
5950 
5951     Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5952   }
5953 
5954   MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5955   MI.eraseFromParent();
5956   return Legalized;
5957 }
5958 
5959 LegalizerHelper::LegalizeResult
5960 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5961   Register Dst = MI.getOperand(0).getReg();
5962   Register X = MI.getOperand(1).getReg();
5963   Register Y = MI.getOperand(2).getReg();
5964   Register Z = MI.getOperand(3).getReg();
5965   LLT Ty = MRI.getType(Dst);
5966   LLT ShTy = MRI.getType(Z);
5967 
5968   const unsigned BW = Ty.getScalarSizeInBits();
5969   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5970 
5971   Register ShX, ShY;
5972   Register ShAmt, InvShAmt;
5973 
5974   // FIXME: Emit optimized urem by constant instead of letting it expand later.
5975   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5976     // fshl: X << C | Y >> (BW - C)
5977     // fshr: X << (BW - C) | Y >> C
5978     // where C = Z % BW is not zero
5979     auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5980     ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5981     InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5982     ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5983     ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5984   } else {
5985     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5986     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5987     auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5988     if (isPowerOf2_32(BW)) {
5989       // Z % BW -> Z & (BW - 1)
5990       ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5991       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5992       auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5993       InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5994     } else {
5995       auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5996       ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5997       InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5998     }
5999 
6000     auto One = MIRBuilder.buildConstant(ShTy, 1);
6001     if (IsFSHL) {
6002       ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
6003       auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
6004       ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
6005     } else {
6006       auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
6007       ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
6008       ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
6009     }
6010   }
6011 
6012   MIRBuilder.buildOr(Dst, ShX, ShY);
6013   MI.eraseFromParent();
6014   return Legalized;
6015 }
6016 
6017 LegalizerHelper::LegalizeResult
6018 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
6019   // These operations approximately do the following (while avoiding undefined
6020   // shifts by BW):
6021   // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6022   // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6023   Register Dst = MI.getOperand(0).getReg();
6024   LLT Ty = MRI.getType(Dst);
6025   LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
6026 
6027   bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
6028   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
6029 
6030   // TODO: Use smarter heuristic that accounts for vector legalization.
6031   if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
6032     return lowerFunnelShiftAsShifts(MI);
6033 
6034   // This only works for powers of 2, fallback to shifts if it fails.
6035   LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
6036   if (Result == UnableToLegalize)
6037     return lowerFunnelShiftAsShifts(MI);
6038   return Result;
6039 }
6040 
6041 LegalizerHelper::LegalizeResult
6042 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
6043   Register Dst = MI.getOperand(0).getReg();
6044   Register Src = MI.getOperand(1).getReg();
6045   Register Amt = MI.getOperand(2).getReg();
6046   LLT AmtTy = MRI.getType(Amt);
6047   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
6048   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
6049   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
6050   auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
6051   MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
6052   MI.eraseFromParent();
6053   return Legalized;
6054 }
6055 
6056 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
6057   Register Dst = MI.getOperand(0).getReg();
6058   Register Src = MI.getOperand(1).getReg();
6059   Register Amt = MI.getOperand(2).getReg();
6060   LLT DstTy = MRI.getType(Dst);
6061   LLT SrcTy = MRI.getType(Dst);
6062   LLT AmtTy = MRI.getType(Amt);
6063 
6064   unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
6065   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
6066 
6067   MIRBuilder.setInstrAndDebugLoc(MI);
6068 
6069   // If a rotate in the other direction is supported, use it.
6070   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
6071   if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
6072       isPowerOf2_32(EltSizeInBits))
6073     return lowerRotateWithReverseRotate(MI);
6074 
6075   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
6076   unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
6077   unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
6078   auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
6079   Register ShVal;
6080   Register RevShiftVal;
6081   if (isPowerOf2_32(EltSizeInBits)) {
6082     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6083     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6084     auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
6085     auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
6086     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
6087     auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
6088     RevShiftVal =
6089         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
6090   } else {
6091     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6092     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6093     auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
6094     auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
6095     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
6096     auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
6097     auto One = MIRBuilder.buildConstant(AmtTy, 1);
6098     auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
6099     RevShiftVal =
6100         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
6101   }
6102   MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
6103   MI.eraseFromParent();
6104   return Legalized;
6105 }
6106 
6107 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
6108 // representation.
6109 LegalizerHelper::LegalizeResult
6110 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
6111   Register Dst = MI.getOperand(0).getReg();
6112   Register Src = MI.getOperand(1).getReg();
6113   const LLT S64 = LLT::scalar(64);
6114   const LLT S32 = LLT::scalar(32);
6115   const LLT S1 = LLT::scalar(1);
6116 
6117   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
6118 
6119   // unsigned cul2f(ulong u) {
6120   //   uint lz = clz(u);
6121   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
6122   //   u = (u << lz) & 0x7fffffffffffffffUL;
6123   //   ulong t = u & 0xffffffffffUL;
6124   //   uint v = (e << 23) | (uint)(u >> 40);
6125   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
6126   //   return as_float(v + r);
6127   // }
6128 
6129   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
6130   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
6131 
6132   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
6133 
6134   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
6135   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
6136 
6137   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
6138   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
6139 
6140   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
6141   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
6142 
6143   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
6144 
6145   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
6146   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
6147 
6148   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
6149   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
6150   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
6151 
6152   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
6153   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
6154   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
6155   auto One = MIRBuilder.buildConstant(S32, 1);
6156 
6157   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
6158   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
6159   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
6160   MIRBuilder.buildAdd(Dst, V, R);
6161 
6162   MI.eraseFromParent();
6163   return Legalized;
6164 }
6165 
6166 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
6167   Register Dst = MI.getOperand(0).getReg();
6168   Register Src = MI.getOperand(1).getReg();
6169   LLT DstTy = MRI.getType(Dst);
6170   LLT SrcTy = MRI.getType(Src);
6171 
6172   if (SrcTy == LLT::scalar(1)) {
6173     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
6174     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6175     MIRBuilder.buildSelect(Dst, Src, True, False);
6176     MI.eraseFromParent();
6177     return Legalized;
6178   }
6179 
6180   if (SrcTy != LLT::scalar(64))
6181     return UnableToLegalize;
6182 
6183   if (DstTy == LLT::scalar(32)) {
6184     // TODO: SelectionDAG has several alternative expansions to port which may
6185     // be more reasonble depending on the available instructions. If a target
6186     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
6187     // intermediate type, this is probably worse.
6188     return lowerU64ToF32BitOps(MI);
6189   }
6190 
6191   return UnableToLegalize;
6192 }
6193 
6194 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
6195   Register Dst = MI.getOperand(0).getReg();
6196   Register Src = MI.getOperand(1).getReg();
6197   LLT DstTy = MRI.getType(Dst);
6198   LLT SrcTy = MRI.getType(Src);
6199 
6200   const LLT S64 = LLT::scalar(64);
6201   const LLT S32 = LLT::scalar(32);
6202   const LLT S1 = LLT::scalar(1);
6203 
6204   if (SrcTy == S1) {
6205     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
6206     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6207     MIRBuilder.buildSelect(Dst, Src, True, False);
6208     MI.eraseFromParent();
6209     return Legalized;
6210   }
6211 
6212   if (SrcTy != S64)
6213     return UnableToLegalize;
6214 
6215   if (DstTy == S32) {
6216     // signed cl2f(long l) {
6217     //   long s = l >> 63;
6218     //   float r = cul2f((l + s) ^ s);
6219     //   return s ? -r : r;
6220     // }
6221     Register L = Src;
6222     auto SignBit = MIRBuilder.buildConstant(S64, 63);
6223     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
6224 
6225     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
6226     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
6227     auto R = MIRBuilder.buildUITOFP(S32, Xor);
6228 
6229     auto RNeg = MIRBuilder.buildFNeg(S32, R);
6230     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
6231                                             MIRBuilder.buildConstant(S64, 0));
6232     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
6233     MI.eraseFromParent();
6234     return Legalized;
6235   }
6236 
6237   return UnableToLegalize;
6238 }
6239 
6240 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
6241   Register Dst = MI.getOperand(0).getReg();
6242   Register Src = MI.getOperand(1).getReg();
6243   LLT DstTy = MRI.getType(Dst);
6244   LLT SrcTy = MRI.getType(Src);
6245   const LLT S64 = LLT::scalar(64);
6246   const LLT S32 = LLT::scalar(32);
6247 
6248   if (SrcTy != S64 && SrcTy != S32)
6249     return UnableToLegalize;
6250   if (DstTy != S32 && DstTy != S64)
6251     return UnableToLegalize;
6252 
6253   // FPTOSI gives same result as FPTOUI for positive signed integers.
6254   // FPTOUI needs to deal with fp values that convert to unsigned integers
6255   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
6256 
6257   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
6258   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
6259                                                 : APFloat::IEEEdouble(),
6260                     APInt::getNullValue(SrcTy.getSizeInBits()));
6261   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
6262 
6263   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
6264 
6265   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
6266   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
6267   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
6268   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
6269   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
6270   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
6271   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
6272 
6273   const LLT S1 = LLT::scalar(1);
6274 
6275   MachineInstrBuilder FCMP =
6276       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
6277   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
6278 
6279   MI.eraseFromParent();
6280   return Legalized;
6281 }
6282 
6283 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
6284   Register Dst = MI.getOperand(0).getReg();
6285   Register Src = MI.getOperand(1).getReg();
6286   LLT DstTy = MRI.getType(Dst);
6287   LLT SrcTy = MRI.getType(Src);
6288   const LLT S64 = LLT::scalar(64);
6289   const LLT S32 = LLT::scalar(32);
6290 
6291   // FIXME: Only f32 to i64 conversions are supported.
6292   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
6293     return UnableToLegalize;
6294 
6295   // Expand f32 -> i64 conversion
6296   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6297   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6298 
6299   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
6300 
6301   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
6302   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
6303 
6304   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
6305   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
6306 
6307   auto SignMask = MIRBuilder.buildConstant(SrcTy,
6308                                            APInt::getSignMask(SrcEltBits));
6309   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
6310   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
6311   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
6312   Sign = MIRBuilder.buildSExt(DstTy, Sign);
6313 
6314   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
6315   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
6316   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
6317 
6318   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
6319   R = MIRBuilder.buildZExt(DstTy, R);
6320 
6321   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
6322   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
6323   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
6324   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
6325 
6326   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
6327   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
6328 
6329   const LLT S1 = LLT::scalar(1);
6330   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
6331                                     S1, Exponent, ExponentLoBit);
6332 
6333   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
6334 
6335   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
6336   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
6337 
6338   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
6339 
6340   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
6341                                           S1, Exponent, ZeroSrcTy);
6342 
6343   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
6344   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
6345 
6346   MI.eraseFromParent();
6347   return Legalized;
6348 }
6349 
6350 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
6351 LegalizerHelper::LegalizeResult
6352 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
6353   Register Dst = MI.getOperand(0).getReg();
6354   Register Src = MI.getOperand(1).getReg();
6355 
6356   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
6357     return UnableToLegalize;
6358 
6359   const unsigned ExpMask = 0x7ff;
6360   const unsigned ExpBiasf64 = 1023;
6361   const unsigned ExpBiasf16 = 15;
6362   const LLT S32 = LLT::scalar(32);
6363   const LLT S1 = LLT::scalar(1);
6364 
6365   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
6366   Register U = Unmerge.getReg(0);
6367   Register UH = Unmerge.getReg(1);
6368 
6369   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
6370   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
6371 
6372   // Subtract the fp64 exponent bias (1023) to get the real exponent and
6373   // add the f16 bias (15) to get the biased exponent for the f16 format.
6374   E = MIRBuilder.buildAdd(
6375     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
6376 
6377   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
6378   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
6379 
6380   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
6381                                        MIRBuilder.buildConstant(S32, 0x1ff));
6382   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
6383 
6384   auto Zero = MIRBuilder.buildConstant(S32, 0);
6385   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
6386   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
6387   M = MIRBuilder.buildOr(S32, M, Lo40Set);
6388 
6389   // (M != 0 ? 0x0200 : 0) | 0x7c00;
6390   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
6391   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
6392   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
6393 
6394   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
6395   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
6396 
6397   // N = M | (E << 12);
6398   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
6399   auto N = MIRBuilder.buildOr(S32, M, EShl12);
6400 
6401   // B = clamp(1-E, 0, 13);
6402   auto One = MIRBuilder.buildConstant(S32, 1);
6403   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
6404   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
6405   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
6406 
6407   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
6408                                        MIRBuilder.buildConstant(S32, 0x1000));
6409 
6410   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
6411   auto D0 = MIRBuilder.buildShl(S32, D, B);
6412 
6413   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
6414                                              D0, SigSetHigh);
6415   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
6416   D = MIRBuilder.buildOr(S32, D, D1);
6417 
6418   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
6419   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
6420 
6421   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
6422   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
6423 
6424   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
6425                                        MIRBuilder.buildConstant(S32, 3));
6426   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
6427 
6428   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
6429                                        MIRBuilder.buildConstant(S32, 5));
6430   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
6431 
6432   V1 = MIRBuilder.buildOr(S32, V0, V1);
6433   V = MIRBuilder.buildAdd(S32, V, V1);
6434 
6435   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
6436                                        E, MIRBuilder.buildConstant(S32, 30));
6437   V = MIRBuilder.buildSelect(S32, CmpEGt30,
6438                              MIRBuilder.buildConstant(S32, 0x7c00), V);
6439 
6440   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
6441                                          E, MIRBuilder.buildConstant(S32, 1039));
6442   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
6443 
6444   // Extract the sign bit.
6445   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
6446   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
6447 
6448   // Insert the sign bit
6449   V = MIRBuilder.buildOr(S32, Sign, V);
6450 
6451   MIRBuilder.buildTrunc(Dst, V);
6452   MI.eraseFromParent();
6453   return Legalized;
6454 }
6455 
6456 LegalizerHelper::LegalizeResult
6457 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
6458   Register Dst = MI.getOperand(0).getReg();
6459   Register Src = MI.getOperand(1).getReg();
6460 
6461   LLT DstTy = MRI.getType(Dst);
6462   LLT SrcTy = MRI.getType(Src);
6463   const LLT S64 = LLT::scalar(64);
6464   const LLT S16 = LLT::scalar(16);
6465 
6466   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
6467     return lowerFPTRUNC_F64_TO_F16(MI);
6468 
6469   return UnableToLegalize;
6470 }
6471 
6472 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
6473 // multiplication tree.
6474 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
6475   Register Dst = MI.getOperand(0).getReg();
6476   Register Src0 = MI.getOperand(1).getReg();
6477   Register Src1 = MI.getOperand(2).getReg();
6478   LLT Ty = MRI.getType(Dst);
6479 
6480   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
6481   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
6482   MI.eraseFromParent();
6483   return Legalized;
6484 }
6485 
6486 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
6487   switch (Opc) {
6488   case TargetOpcode::G_SMIN:
6489     return CmpInst::ICMP_SLT;
6490   case TargetOpcode::G_SMAX:
6491     return CmpInst::ICMP_SGT;
6492   case TargetOpcode::G_UMIN:
6493     return CmpInst::ICMP_ULT;
6494   case TargetOpcode::G_UMAX:
6495     return CmpInst::ICMP_UGT;
6496   default:
6497     llvm_unreachable("not in integer min/max");
6498   }
6499 }
6500 
6501 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
6502   Register Dst = MI.getOperand(0).getReg();
6503   Register Src0 = MI.getOperand(1).getReg();
6504   Register Src1 = MI.getOperand(2).getReg();
6505 
6506   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
6507   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
6508 
6509   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
6510   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
6511 
6512   MI.eraseFromParent();
6513   return Legalized;
6514 }
6515 
6516 LegalizerHelper::LegalizeResult
6517 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
6518   Register Dst = MI.getOperand(0).getReg();
6519   Register Src0 = MI.getOperand(1).getReg();
6520   Register Src1 = MI.getOperand(2).getReg();
6521 
6522   const LLT Src0Ty = MRI.getType(Src0);
6523   const LLT Src1Ty = MRI.getType(Src1);
6524 
6525   const int Src0Size = Src0Ty.getScalarSizeInBits();
6526   const int Src1Size = Src1Ty.getScalarSizeInBits();
6527 
6528   auto SignBitMask = MIRBuilder.buildConstant(
6529     Src0Ty, APInt::getSignMask(Src0Size));
6530 
6531   auto NotSignBitMask = MIRBuilder.buildConstant(
6532     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6533 
6534   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6535   Register And1;
6536   if (Src0Ty == Src1Ty) {
6537     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6538   } else if (Src0Size > Src1Size) {
6539     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6540     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6541     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6542     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6543   } else {
6544     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6545     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6546     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6547     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6548   }
6549 
6550   // Be careful about setting nsz/nnan/ninf on every instruction, since the
6551   // constants are a nan and -0.0, but the final result should preserve
6552   // everything.
6553   unsigned Flags = MI.getFlags();
6554   MIRBuilder.buildOr(Dst, And0, And1, Flags);
6555 
6556   MI.eraseFromParent();
6557   return Legalized;
6558 }
6559 
6560 LegalizerHelper::LegalizeResult
6561 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6562   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6563     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6564 
6565   Register Dst = MI.getOperand(0).getReg();
6566   Register Src0 = MI.getOperand(1).getReg();
6567   Register Src1 = MI.getOperand(2).getReg();
6568   LLT Ty = MRI.getType(Dst);
6569 
6570   if (!MI.getFlag(MachineInstr::FmNoNans)) {
6571     // Insert canonicalizes if it's possible we need to quiet to get correct
6572     // sNaN behavior.
6573 
6574     // Note this must be done here, and not as an optimization combine in the
6575     // absence of a dedicate quiet-snan instruction as we're using an
6576     // omni-purpose G_FCANONICALIZE.
6577     if (!isKnownNeverSNaN(Src0, MRI))
6578       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6579 
6580     if (!isKnownNeverSNaN(Src1, MRI))
6581       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6582   }
6583 
6584   // If there are no nans, it's safe to simply replace this with the non-IEEE
6585   // version.
6586   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6587   MI.eraseFromParent();
6588   return Legalized;
6589 }
6590 
6591 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6592   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6593   Register DstReg = MI.getOperand(0).getReg();
6594   LLT Ty = MRI.getType(DstReg);
6595   unsigned Flags = MI.getFlags();
6596 
6597   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6598                                   Flags);
6599   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6600   MI.eraseFromParent();
6601   return Legalized;
6602 }
6603 
6604 LegalizerHelper::LegalizeResult
6605 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6606   Register DstReg = MI.getOperand(0).getReg();
6607   Register X = MI.getOperand(1).getReg();
6608   const unsigned Flags = MI.getFlags();
6609   const LLT Ty = MRI.getType(DstReg);
6610   const LLT CondTy = Ty.changeElementSize(1);
6611 
6612   // round(x) =>
6613   //  t = trunc(x);
6614   //  d = fabs(x - t);
6615   //  o = copysign(1.0f, x);
6616   //  return t + (d >= 0.5 ? o : 0.0);
6617 
6618   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
6619 
6620   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
6621   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
6622   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6623   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
6624   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
6625   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
6626 
6627   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
6628                                   Flags);
6629   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
6630 
6631   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
6632 
6633   MI.eraseFromParent();
6634   return Legalized;
6635 }
6636 
6637 LegalizerHelper::LegalizeResult
6638 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
6639   Register DstReg = MI.getOperand(0).getReg();
6640   Register SrcReg = MI.getOperand(1).getReg();
6641   unsigned Flags = MI.getFlags();
6642   LLT Ty = MRI.getType(DstReg);
6643   const LLT CondTy = Ty.changeElementSize(1);
6644 
6645   // result = trunc(src);
6646   // if (src < 0.0 && src != result)
6647   //   result += -1.0.
6648 
6649   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
6650   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6651 
6652   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
6653                                   SrcReg, Zero, Flags);
6654   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
6655                                       SrcReg, Trunc, Flags);
6656   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
6657   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
6658 
6659   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
6660   MI.eraseFromParent();
6661   return Legalized;
6662 }
6663 
6664 LegalizerHelper::LegalizeResult
6665 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
6666   const unsigned NumOps = MI.getNumOperands();
6667   Register DstReg = MI.getOperand(0).getReg();
6668   Register Src0Reg = MI.getOperand(1).getReg();
6669   LLT DstTy = MRI.getType(DstReg);
6670   LLT SrcTy = MRI.getType(Src0Reg);
6671   unsigned PartSize = SrcTy.getSizeInBits();
6672 
6673   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
6674   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
6675 
6676   for (unsigned I = 2; I != NumOps; ++I) {
6677     const unsigned Offset = (I - 1) * PartSize;
6678 
6679     Register SrcReg = MI.getOperand(I).getReg();
6680     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
6681 
6682     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
6683       MRI.createGenericVirtualRegister(WideTy);
6684 
6685     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
6686     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
6687     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
6688     ResultReg = NextResult;
6689   }
6690 
6691   if (DstTy.isPointer()) {
6692     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
6693           DstTy.getAddressSpace())) {
6694       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
6695       return UnableToLegalize;
6696     }
6697 
6698     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
6699   }
6700 
6701   MI.eraseFromParent();
6702   return Legalized;
6703 }
6704 
6705 LegalizerHelper::LegalizeResult
6706 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
6707   const unsigned NumDst = MI.getNumOperands() - 1;
6708   Register SrcReg = MI.getOperand(NumDst).getReg();
6709   Register Dst0Reg = MI.getOperand(0).getReg();
6710   LLT DstTy = MRI.getType(Dst0Reg);
6711   if (DstTy.isPointer())
6712     return UnableToLegalize; // TODO
6713 
6714   SrcReg = coerceToScalar(SrcReg);
6715   if (!SrcReg)
6716     return UnableToLegalize;
6717 
6718   // Expand scalarizing unmerge as bitcast to integer and shift.
6719   LLT IntTy = MRI.getType(SrcReg);
6720 
6721   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
6722 
6723   const unsigned DstSize = DstTy.getSizeInBits();
6724   unsigned Offset = DstSize;
6725   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
6726     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
6727     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
6728     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
6729   }
6730 
6731   MI.eraseFromParent();
6732   return Legalized;
6733 }
6734 
6735 /// Lower a vector extract or insert by writing the vector to a stack temporary
6736 /// and reloading the element or vector.
6737 ///
6738 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
6739 ///  =>
6740 ///  %stack_temp = G_FRAME_INDEX
6741 ///  G_STORE %vec, %stack_temp
6742 ///  %idx = clamp(%idx, %vec.getNumElements())
6743 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
6744 ///  %dst = G_LOAD %element_ptr
6745 LegalizerHelper::LegalizeResult
6746 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
6747   Register DstReg = MI.getOperand(0).getReg();
6748   Register SrcVec = MI.getOperand(1).getReg();
6749   Register InsertVal;
6750   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
6751     InsertVal = MI.getOperand(2).getReg();
6752 
6753   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6754 
6755   LLT VecTy = MRI.getType(SrcVec);
6756   LLT EltTy = VecTy.getElementType();
6757   if (!EltTy.isByteSized()) { // Not implemented.
6758     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
6759     return UnableToLegalize;
6760   }
6761 
6762   unsigned EltBytes = EltTy.getSizeInBytes();
6763   Align VecAlign = getStackTemporaryAlignment(VecTy);
6764   Align EltAlign;
6765 
6766   MachinePointerInfo PtrInfo;
6767   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6768                                         VecAlign, PtrInfo);
6769   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6770 
6771   // Get the pointer to the element, and be sure not to hit undefined behavior
6772   // if the index is out of bounds.
6773   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6774 
6775   int64_t IdxVal;
6776   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6777     int64_t Offset = IdxVal * EltBytes;
6778     PtrInfo = PtrInfo.getWithOffset(Offset);
6779     EltAlign = commonAlignment(VecAlign, Offset);
6780   } else {
6781     // We lose information with a variable offset.
6782     EltAlign = getStackTemporaryAlignment(EltTy);
6783     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6784   }
6785 
6786   if (InsertVal) {
6787     // Write the inserted element
6788     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6789 
6790     // Reload the whole vector.
6791     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6792   } else {
6793     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6794   }
6795 
6796   MI.eraseFromParent();
6797   return Legalized;
6798 }
6799 
6800 LegalizerHelper::LegalizeResult
6801 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6802   Register DstReg = MI.getOperand(0).getReg();
6803   Register Src0Reg = MI.getOperand(1).getReg();
6804   Register Src1Reg = MI.getOperand(2).getReg();
6805   LLT Src0Ty = MRI.getType(Src0Reg);
6806   LLT DstTy = MRI.getType(DstReg);
6807   LLT IdxTy = LLT::scalar(32);
6808 
6809   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6810 
6811   if (DstTy.isScalar()) {
6812     if (Src0Ty.isVector())
6813       return UnableToLegalize;
6814 
6815     // This is just a SELECT.
6816     assert(Mask.size() == 1 && "Expected a single mask element");
6817     Register Val;
6818     if (Mask[0] < 0 || Mask[0] > 1)
6819       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6820     else
6821       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6822     MIRBuilder.buildCopy(DstReg, Val);
6823     MI.eraseFromParent();
6824     return Legalized;
6825   }
6826 
6827   Register Undef;
6828   SmallVector<Register, 32> BuildVec;
6829   LLT EltTy = DstTy.getElementType();
6830 
6831   for (int Idx : Mask) {
6832     if (Idx < 0) {
6833       if (!Undef.isValid())
6834         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6835       BuildVec.push_back(Undef);
6836       continue;
6837     }
6838 
6839     if (Src0Ty.isScalar()) {
6840       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6841     } else {
6842       int NumElts = Src0Ty.getNumElements();
6843       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6844       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6845       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6846       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6847       BuildVec.push_back(Extract.getReg(0));
6848     }
6849   }
6850 
6851   MIRBuilder.buildBuildVector(DstReg, BuildVec);
6852   MI.eraseFromParent();
6853   return Legalized;
6854 }
6855 
6856 LegalizerHelper::LegalizeResult
6857 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6858   const auto &MF = *MI.getMF();
6859   const auto &TFI = *MF.getSubtarget().getFrameLowering();
6860   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6861     return UnableToLegalize;
6862 
6863   Register Dst = MI.getOperand(0).getReg();
6864   Register AllocSize = MI.getOperand(1).getReg();
6865   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6866 
6867   LLT PtrTy = MRI.getType(Dst);
6868   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6869 
6870   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6871   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6872   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6873 
6874   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6875   // have to generate an extra instruction to negate the alloc and then use
6876   // G_PTR_ADD to add the negative offset.
6877   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6878   if (Alignment > Align(1)) {
6879     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6880     AlignMask.negate();
6881     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6882     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6883   }
6884 
6885   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6886   MIRBuilder.buildCopy(SPReg, SPTmp);
6887   MIRBuilder.buildCopy(Dst, SPTmp);
6888 
6889   MI.eraseFromParent();
6890   return Legalized;
6891 }
6892 
6893 LegalizerHelper::LegalizeResult
6894 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6895   Register Dst = MI.getOperand(0).getReg();
6896   Register Src = MI.getOperand(1).getReg();
6897   unsigned Offset = MI.getOperand(2).getImm();
6898 
6899   LLT DstTy = MRI.getType(Dst);
6900   LLT SrcTy = MRI.getType(Src);
6901 
6902   if (DstTy.isScalar() &&
6903       (SrcTy.isScalar() ||
6904        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6905     LLT SrcIntTy = SrcTy;
6906     if (!SrcTy.isScalar()) {
6907       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6908       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6909     }
6910 
6911     if (Offset == 0)
6912       MIRBuilder.buildTrunc(Dst, Src);
6913     else {
6914       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6915       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6916       MIRBuilder.buildTrunc(Dst, Shr);
6917     }
6918 
6919     MI.eraseFromParent();
6920     return Legalized;
6921   }
6922 
6923   return UnableToLegalize;
6924 }
6925 
6926 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6927   Register Dst = MI.getOperand(0).getReg();
6928   Register Src = MI.getOperand(1).getReg();
6929   Register InsertSrc = MI.getOperand(2).getReg();
6930   uint64_t Offset = MI.getOperand(3).getImm();
6931 
6932   LLT DstTy = MRI.getType(Src);
6933   LLT InsertTy = MRI.getType(InsertSrc);
6934 
6935   if (InsertTy.isVector() ||
6936       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6937     return UnableToLegalize;
6938 
6939   const DataLayout &DL = MIRBuilder.getDataLayout();
6940   if ((DstTy.isPointer() &&
6941        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6942       (InsertTy.isPointer() &&
6943        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6944     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6945     return UnableToLegalize;
6946   }
6947 
6948   LLT IntDstTy = DstTy;
6949 
6950   if (!DstTy.isScalar()) {
6951     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6952     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6953   }
6954 
6955   if (!InsertTy.isScalar()) {
6956     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6957     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6958   }
6959 
6960   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6961   if (Offset != 0) {
6962     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6963     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6964   }
6965 
6966   APInt MaskVal = APInt::getBitsSetWithWrap(
6967       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6968 
6969   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6970   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6971   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6972 
6973   MIRBuilder.buildCast(Dst, Or);
6974   MI.eraseFromParent();
6975   return Legalized;
6976 }
6977 
6978 LegalizerHelper::LegalizeResult
6979 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6980   Register Dst0 = MI.getOperand(0).getReg();
6981   Register Dst1 = MI.getOperand(1).getReg();
6982   Register LHS = MI.getOperand(2).getReg();
6983   Register RHS = MI.getOperand(3).getReg();
6984   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6985 
6986   LLT Ty = MRI.getType(Dst0);
6987   LLT BoolTy = MRI.getType(Dst1);
6988 
6989   if (IsAdd)
6990     MIRBuilder.buildAdd(Dst0, LHS, RHS);
6991   else
6992     MIRBuilder.buildSub(Dst0, LHS, RHS);
6993 
6994   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6995 
6996   auto Zero = MIRBuilder.buildConstant(Ty, 0);
6997 
6998   // For an addition, the result should be less than one of the operands (LHS)
6999   // if and only if the other operand (RHS) is negative, otherwise there will
7000   // be overflow.
7001   // For a subtraction, the result should be less than one of the operands
7002   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7003   // otherwise there will be overflow.
7004   auto ResultLowerThanLHS =
7005       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
7006   auto ConditionRHS = MIRBuilder.buildICmp(
7007       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
7008 
7009   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
7010   MI.eraseFromParent();
7011   return Legalized;
7012 }
7013 
7014 LegalizerHelper::LegalizeResult
7015 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
7016   Register Res = MI.getOperand(0).getReg();
7017   Register LHS = MI.getOperand(1).getReg();
7018   Register RHS = MI.getOperand(2).getReg();
7019   LLT Ty = MRI.getType(Res);
7020   bool IsSigned;
7021   bool IsAdd;
7022   unsigned BaseOp;
7023   switch (MI.getOpcode()) {
7024   default:
7025     llvm_unreachable("unexpected addsat/subsat opcode");
7026   case TargetOpcode::G_UADDSAT:
7027     IsSigned = false;
7028     IsAdd = true;
7029     BaseOp = TargetOpcode::G_ADD;
7030     break;
7031   case TargetOpcode::G_SADDSAT:
7032     IsSigned = true;
7033     IsAdd = true;
7034     BaseOp = TargetOpcode::G_ADD;
7035     break;
7036   case TargetOpcode::G_USUBSAT:
7037     IsSigned = false;
7038     IsAdd = false;
7039     BaseOp = TargetOpcode::G_SUB;
7040     break;
7041   case TargetOpcode::G_SSUBSAT:
7042     IsSigned = true;
7043     IsAdd = false;
7044     BaseOp = TargetOpcode::G_SUB;
7045     break;
7046   }
7047 
7048   if (IsSigned) {
7049     // sadd.sat(a, b) ->
7050     //   hi = 0x7fffffff - smax(a, 0)
7051     //   lo = 0x80000000 - smin(a, 0)
7052     //   a + smin(smax(lo, b), hi)
7053     // ssub.sat(a, b) ->
7054     //   lo = smax(a, -1) - 0x7fffffff
7055     //   hi = smin(a, -1) - 0x80000000
7056     //   a - smin(smax(lo, b), hi)
7057     // TODO: AMDGPU can use a "median of 3" instruction here:
7058     //   a +/- med3(lo, b, hi)
7059     uint64_t NumBits = Ty.getScalarSizeInBits();
7060     auto MaxVal =
7061         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
7062     auto MinVal =
7063         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
7064     MachineInstrBuilder Hi, Lo;
7065     if (IsAdd) {
7066       auto Zero = MIRBuilder.buildConstant(Ty, 0);
7067       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
7068       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
7069     } else {
7070       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
7071       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
7072                                MaxVal);
7073       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
7074                                MinVal);
7075     }
7076     auto RHSClamped =
7077         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
7078     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
7079   } else {
7080     // uadd.sat(a, b) -> a + umin(~a, b)
7081     // usub.sat(a, b) -> a - umin(a, b)
7082     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
7083     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
7084     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
7085   }
7086 
7087   MI.eraseFromParent();
7088   return Legalized;
7089 }
7090 
7091 LegalizerHelper::LegalizeResult
7092 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
7093   Register Res = MI.getOperand(0).getReg();
7094   Register LHS = MI.getOperand(1).getReg();
7095   Register RHS = MI.getOperand(2).getReg();
7096   LLT Ty = MRI.getType(Res);
7097   LLT BoolTy = Ty.changeElementSize(1);
7098   bool IsSigned;
7099   bool IsAdd;
7100   unsigned OverflowOp;
7101   switch (MI.getOpcode()) {
7102   default:
7103     llvm_unreachable("unexpected addsat/subsat opcode");
7104   case TargetOpcode::G_UADDSAT:
7105     IsSigned = false;
7106     IsAdd = true;
7107     OverflowOp = TargetOpcode::G_UADDO;
7108     break;
7109   case TargetOpcode::G_SADDSAT:
7110     IsSigned = true;
7111     IsAdd = true;
7112     OverflowOp = TargetOpcode::G_SADDO;
7113     break;
7114   case TargetOpcode::G_USUBSAT:
7115     IsSigned = false;
7116     IsAdd = false;
7117     OverflowOp = TargetOpcode::G_USUBO;
7118     break;
7119   case TargetOpcode::G_SSUBSAT:
7120     IsSigned = true;
7121     IsAdd = false;
7122     OverflowOp = TargetOpcode::G_SSUBO;
7123     break;
7124   }
7125 
7126   auto OverflowRes =
7127       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
7128   Register Tmp = OverflowRes.getReg(0);
7129   Register Ov = OverflowRes.getReg(1);
7130   MachineInstrBuilder Clamp;
7131   if (IsSigned) {
7132     // sadd.sat(a, b) ->
7133     //   {tmp, ov} = saddo(a, b)
7134     //   ov ? (tmp >>s 31) + 0x80000000 : r
7135     // ssub.sat(a, b) ->
7136     //   {tmp, ov} = ssubo(a, b)
7137     //   ov ? (tmp >>s 31) + 0x80000000 : r
7138     uint64_t NumBits = Ty.getScalarSizeInBits();
7139     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
7140     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
7141     auto MinVal =
7142         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
7143     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
7144   } else {
7145     // uadd.sat(a, b) ->
7146     //   {tmp, ov} = uaddo(a, b)
7147     //   ov ? 0xffffffff : tmp
7148     // usub.sat(a, b) ->
7149     //   {tmp, ov} = usubo(a, b)
7150     //   ov ? 0 : tmp
7151     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
7152   }
7153   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
7154 
7155   MI.eraseFromParent();
7156   return Legalized;
7157 }
7158 
7159 LegalizerHelper::LegalizeResult
7160 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
7161   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
7162           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
7163          "Expected shlsat opcode!");
7164   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
7165   Register Res = MI.getOperand(0).getReg();
7166   Register LHS = MI.getOperand(1).getReg();
7167   Register RHS = MI.getOperand(2).getReg();
7168   LLT Ty = MRI.getType(Res);
7169   LLT BoolTy = Ty.changeElementSize(1);
7170 
7171   unsigned BW = Ty.getScalarSizeInBits();
7172   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
7173   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
7174                        : MIRBuilder.buildLShr(Ty, Result, RHS);
7175 
7176   MachineInstrBuilder SatVal;
7177   if (IsSigned) {
7178     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
7179     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
7180     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
7181                                     MIRBuilder.buildConstant(Ty, 0));
7182     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
7183   } else {
7184     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
7185   }
7186   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
7187   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
7188 
7189   MI.eraseFromParent();
7190   return Legalized;
7191 }
7192 
7193 LegalizerHelper::LegalizeResult
7194 LegalizerHelper::lowerBswap(MachineInstr &MI) {
7195   Register Dst = MI.getOperand(0).getReg();
7196   Register Src = MI.getOperand(1).getReg();
7197   const LLT Ty = MRI.getType(Src);
7198   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
7199   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
7200 
7201   // Swap most and least significant byte, set remaining bytes in Res to zero.
7202   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
7203   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
7204   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7205   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
7206 
7207   // Set i-th high/low byte in Res to i-th low/high byte from Src.
7208   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
7209     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
7210     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
7211     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
7212     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
7213     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
7214     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
7215     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
7216     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
7217     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
7218     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7219     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
7220     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
7221   }
7222   Res.getInstr()->getOperand(0).setReg(Dst);
7223 
7224   MI.eraseFromParent();
7225   return Legalized;
7226 }
7227 
7228 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
7229 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
7230                                  MachineInstrBuilder Src, APInt Mask) {
7231   const LLT Ty = Dst.getLLTTy(*B.getMRI());
7232   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
7233   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
7234   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
7235   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
7236   return B.buildOr(Dst, LHS, RHS);
7237 }
7238 
7239 LegalizerHelper::LegalizeResult
7240 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
7241   Register Dst = MI.getOperand(0).getReg();
7242   Register Src = MI.getOperand(1).getReg();
7243   const LLT Ty = MRI.getType(Src);
7244   unsigned Size = Ty.getSizeInBits();
7245 
7246   MachineInstrBuilder BSWAP =
7247       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
7248 
7249   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
7250   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
7251   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
7252   MachineInstrBuilder Swap4 =
7253       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
7254 
7255   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
7256   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
7257   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
7258   MachineInstrBuilder Swap2 =
7259       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
7260 
7261   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
7262   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
7263   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
7264   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
7265 
7266   MI.eraseFromParent();
7267   return Legalized;
7268 }
7269 
7270 LegalizerHelper::LegalizeResult
7271 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
7272   MachineFunction &MF = MIRBuilder.getMF();
7273 
7274   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
7275   int NameOpIdx = IsRead ? 1 : 0;
7276   int ValRegIndex = IsRead ? 0 : 1;
7277 
7278   Register ValReg = MI.getOperand(ValRegIndex).getReg();
7279   const LLT Ty = MRI.getType(ValReg);
7280   const MDString *RegStr = cast<MDString>(
7281     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
7282 
7283   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
7284   if (!PhysReg.isValid())
7285     return UnableToLegalize;
7286 
7287   if (IsRead)
7288     MIRBuilder.buildCopy(ValReg, PhysReg);
7289   else
7290     MIRBuilder.buildCopy(PhysReg, ValReg);
7291 
7292   MI.eraseFromParent();
7293   return Legalized;
7294 }
7295 
7296 LegalizerHelper::LegalizeResult
7297 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
7298   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
7299   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
7300   Register Result = MI.getOperand(0).getReg();
7301   LLT OrigTy = MRI.getType(Result);
7302   auto SizeInBits = OrigTy.getScalarSizeInBits();
7303   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
7304 
7305   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
7306   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
7307   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
7308   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
7309 
7310   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
7311   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
7312   MIRBuilder.buildTrunc(Result, Shifted);
7313 
7314   MI.eraseFromParent();
7315   return Legalized;
7316 }
7317 
7318 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
7319   // Implement vector G_SELECT in terms of XOR, AND, OR.
7320   Register DstReg = MI.getOperand(0).getReg();
7321   Register MaskReg = MI.getOperand(1).getReg();
7322   Register Op1Reg = MI.getOperand(2).getReg();
7323   Register Op2Reg = MI.getOperand(3).getReg();
7324   LLT DstTy = MRI.getType(DstReg);
7325   LLT MaskTy = MRI.getType(MaskReg);
7326   LLT Op1Ty = MRI.getType(Op1Reg);
7327   if (!DstTy.isVector())
7328     return UnableToLegalize;
7329 
7330   // Vector selects can have a scalar predicate. If so, splat into a vector and
7331   // finish for later legalization attempts to try again.
7332   if (MaskTy.isScalar()) {
7333     Register MaskElt = MaskReg;
7334     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
7335       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
7336     // Generate a vector splat idiom to be pattern matched later.
7337     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
7338     Observer.changingInstr(MI);
7339     MI.getOperand(1).setReg(ShufSplat.getReg(0));
7340     Observer.changedInstr(MI);
7341     return Legalized;
7342   }
7343 
7344   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
7345     return UnableToLegalize;
7346   }
7347 
7348   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
7349   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
7350   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
7351   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
7352   MI.eraseFromParent();
7353   return Legalized;
7354 }
7355 
7356 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
7357   // Split DIVREM into individual instructions.
7358   unsigned Opcode = MI.getOpcode();
7359 
7360   MIRBuilder.buildInstr(
7361       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
7362                                         : TargetOpcode::G_UDIV,
7363       {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7364   MIRBuilder.buildInstr(
7365       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
7366                                         : TargetOpcode::G_UREM,
7367       {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7368   MI.eraseFromParent();
7369   return Legalized;
7370 }
7371 
7372 LegalizerHelper::LegalizeResult
7373 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) {
7374   // Expand %res = G_ABS %a into:
7375   // %v1 = G_ASHR %a, scalar_size-1
7376   // %v2 = G_ADD %a, %v1
7377   // %res = G_XOR %v2, %v1
7378   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
7379   Register OpReg = MI.getOperand(1).getReg();
7380   auto ShiftAmt =
7381       MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
7382   auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
7383   auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
7384   MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
7385   MI.eraseFromParent();
7386   return Legalized;
7387 }
7388 
7389 LegalizerHelper::LegalizeResult
7390 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) {
7391   // Expand %res = G_ABS %a into:
7392   // %v1 = G_CONSTANT 0
7393   // %v2 = G_SUB %v1, %a
7394   // %res = G_SMAX %a, %v2
7395   Register SrcReg = MI.getOperand(1).getReg();
7396   LLT Ty = MRI.getType(SrcReg);
7397   auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0);
7398   auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0);
7399   MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub);
7400   MI.eraseFromParent();
7401   return Legalized;
7402 }
7403 
7404 LegalizerHelper::LegalizeResult
7405 LegalizerHelper::lowerVectorReduction(MachineInstr &MI) {
7406   Register SrcReg = MI.getOperand(1).getReg();
7407   LLT SrcTy = MRI.getType(SrcReg);
7408   LLT DstTy = MRI.getType(SrcReg);
7409 
7410   // The source could be a scalar if the IR type was <1 x sN>.
7411   if (SrcTy.isScalar()) {
7412     if (DstTy.getSizeInBits() > SrcTy.getSizeInBits())
7413       return UnableToLegalize; // FIXME: handle extension.
7414     // This can be just a plain copy.
7415     Observer.changingInstr(MI);
7416     MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY));
7417     Observer.changedInstr(MI);
7418     return Legalized;
7419   }
7420   return UnableToLegalize;;
7421 }
7422