1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 21 #include "llvm/CodeGen/GlobalISel/Utils.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/TargetFrameLowering.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetLowering.h" 26 #include "llvm/CodeGen/TargetOpcodes.h" 27 #include "llvm/CodeGen/TargetSubtargetInfo.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 #define DEBUG_TYPE "legalizer" 34 35 using namespace llvm; 36 using namespace LegalizeActions; 37 using namespace MIPatternMatch; 38 39 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 40 /// 41 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 42 /// with any leftover piece as type \p LeftoverTy 43 /// 44 /// Returns -1 in the first element of the pair if the breakdown is not 45 /// satisfiable. 46 static std::pair<int, int> 47 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 48 assert(!LeftoverTy.isValid() && "this is an out argument"); 49 50 unsigned Size = OrigTy.getSizeInBits(); 51 unsigned NarrowSize = NarrowTy.getSizeInBits(); 52 unsigned NumParts = Size / NarrowSize; 53 unsigned LeftoverSize = Size - NumParts * NarrowSize; 54 assert(Size > NarrowSize); 55 56 if (LeftoverSize == 0) 57 return {NumParts, 0}; 58 59 if (NarrowTy.isVector()) { 60 unsigned EltSize = OrigTy.getScalarSizeInBits(); 61 if (LeftoverSize % EltSize != 0) 62 return {-1, -1}; 63 LeftoverTy = LLT::scalarOrVector( 64 ElementCount::getFixed(LeftoverSize / EltSize), EltSize); 65 } else { 66 LeftoverTy = LLT::scalar(LeftoverSize); 67 } 68 69 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 70 return std::make_pair(NumParts, NumLeftover); 71 } 72 73 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 74 75 if (!Ty.isScalar()) 76 return nullptr; 77 78 switch (Ty.getSizeInBits()) { 79 case 16: 80 return Type::getHalfTy(Ctx); 81 case 32: 82 return Type::getFloatTy(Ctx); 83 case 64: 84 return Type::getDoubleTy(Ctx); 85 case 80: 86 return Type::getX86_FP80Ty(Ctx); 87 case 128: 88 return Type::getFP128Ty(Ctx); 89 default: 90 return nullptr; 91 } 92 } 93 94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 95 GISelChangeObserver &Observer, 96 MachineIRBuilder &Builder) 97 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 98 LI(*MF.getSubtarget().getLegalizerInfo()), 99 TLI(*MF.getSubtarget().getTargetLowering()) { } 100 101 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 102 GISelChangeObserver &Observer, 103 MachineIRBuilder &B) 104 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 105 TLI(*MF.getSubtarget().getTargetLowering()) { } 106 107 LegalizerHelper::LegalizeResult 108 LegalizerHelper::legalizeInstrStep(MachineInstr &MI, 109 LostDebugLocObserver &LocObserver) { 110 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 111 112 MIRBuilder.setInstrAndDebugLoc(MI); 113 114 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 115 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 116 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 117 auto Step = LI.getAction(MI, MRI); 118 switch (Step.Action) { 119 case Legal: 120 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 121 return AlreadyLegal; 122 case Libcall: 123 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 124 return libcall(MI, LocObserver); 125 case NarrowScalar: 126 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 127 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 128 case WidenScalar: 129 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 130 return widenScalar(MI, Step.TypeIdx, Step.NewType); 131 case Bitcast: 132 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 133 return bitcast(MI, Step.TypeIdx, Step.NewType); 134 case Lower: 135 LLVM_DEBUG(dbgs() << ".. Lower\n"); 136 return lower(MI, Step.TypeIdx, Step.NewType); 137 case FewerElements: 138 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 139 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 140 case MoreElements: 141 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 142 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 143 case Custom: 144 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 145 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 146 default: 147 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 148 return UnableToLegalize; 149 } 150 } 151 152 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 153 SmallVectorImpl<Register> &VRegs) { 154 for (int i = 0; i < NumParts; ++i) 155 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 156 MIRBuilder.buildUnmerge(VRegs, Reg); 157 } 158 159 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 160 LLT MainTy, LLT &LeftoverTy, 161 SmallVectorImpl<Register> &VRegs, 162 SmallVectorImpl<Register> &LeftoverRegs) { 163 assert(!LeftoverTy.isValid() && "this is an out argument"); 164 165 unsigned RegSize = RegTy.getSizeInBits(); 166 unsigned MainSize = MainTy.getSizeInBits(); 167 unsigned NumParts = RegSize / MainSize; 168 unsigned LeftoverSize = RegSize - NumParts * MainSize; 169 170 // Use an unmerge when possible. 171 if (LeftoverSize == 0) { 172 for (unsigned I = 0; I < NumParts; ++I) 173 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 174 MIRBuilder.buildUnmerge(VRegs, Reg); 175 return true; 176 } 177 178 if (MainTy.isVector()) { 179 unsigned EltSize = MainTy.getScalarSizeInBits(); 180 if (LeftoverSize % EltSize != 0) 181 return false; 182 LeftoverTy = LLT::scalarOrVector( 183 ElementCount::getFixed(LeftoverSize / EltSize), EltSize); 184 } else { 185 LeftoverTy = LLT::scalar(LeftoverSize); 186 } 187 188 // For irregular sizes, extract the individual parts. 189 for (unsigned I = 0; I != NumParts; ++I) { 190 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 191 VRegs.push_back(NewReg); 192 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 193 } 194 195 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 196 Offset += LeftoverSize) { 197 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 198 LeftoverRegs.push_back(NewReg); 199 MIRBuilder.buildExtract(NewReg, Reg, Offset); 200 } 201 202 return true; 203 } 204 205 void LegalizerHelper::insertParts(Register DstReg, 206 LLT ResultTy, LLT PartTy, 207 ArrayRef<Register> PartRegs, 208 LLT LeftoverTy, 209 ArrayRef<Register> LeftoverRegs) { 210 if (!LeftoverTy.isValid()) { 211 assert(LeftoverRegs.empty()); 212 213 if (!ResultTy.isVector()) { 214 MIRBuilder.buildMerge(DstReg, PartRegs); 215 return; 216 } 217 218 if (PartTy.isVector()) 219 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 220 else 221 MIRBuilder.buildBuildVector(DstReg, PartRegs); 222 return; 223 } 224 225 SmallVector<Register> GCDRegs; 226 LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy); 227 for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs)) 228 extractGCDType(GCDRegs, GCDTy, PartReg); 229 LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs); 230 buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs); 231 } 232 233 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 234 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 235 const MachineInstr &MI) { 236 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 237 238 const int StartIdx = Regs.size(); 239 const int NumResults = MI.getNumOperands() - 1; 240 Regs.resize(Regs.size() + NumResults); 241 for (int I = 0; I != NumResults; ++I) 242 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 243 } 244 245 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 246 LLT GCDTy, Register SrcReg) { 247 LLT SrcTy = MRI.getType(SrcReg); 248 if (SrcTy == GCDTy) { 249 // If the source already evenly divides the result type, we don't need to do 250 // anything. 251 Parts.push_back(SrcReg); 252 } else { 253 // Need to split into common type sized pieces. 254 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 255 getUnmergeResults(Parts, *Unmerge); 256 } 257 } 258 259 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 260 LLT NarrowTy, Register SrcReg) { 261 LLT SrcTy = MRI.getType(SrcReg); 262 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 263 extractGCDType(Parts, GCDTy, SrcReg); 264 return GCDTy; 265 } 266 267 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 268 SmallVectorImpl<Register> &VRegs, 269 unsigned PadStrategy) { 270 LLT LCMTy = getLCMType(DstTy, NarrowTy); 271 272 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 273 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 274 int NumOrigSrc = VRegs.size(); 275 276 Register PadReg; 277 278 // Get a value we can use to pad the source value if the sources won't evenly 279 // cover the result type. 280 if (NumOrigSrc < NumParts * NumSubParts) { 281 if (PadStrategy == TargetOpcode::G_ZEXT) 282 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 283 else if (PadStrategy == TargetOpcode::G_ANYEXT) 284 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 285 else { 286 assert(PadStrategy == TargetOpcode::G_SEXT); 287 288 // Shift the sign bit of the low register through the high register. 289 auto ShiftAmt = 290 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 291 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 292 } 293 } 294 295 // Registers for the final merge to be produced. 296 SmallVector<Register, 4> Remerge(NumParts); 297 298 // Registers needed for intermediate merges, which will be merged into a 299 // source for Remerge. 300 SmallVector<Register, 4> SubMerge(NumSubParts); 301 302 // Once we've fully read off the end of the original source bits, we can reuse 303 // the same high bits for remaining padding elements. 304 Register AllPadReg; 305 306 // Build merges to the LCM type to cover the original result type. 307 for (int I = 0; I != NumParts; ++I) { 308 bool AllMergePartsArePadding = true; 309 310 // Build the requested merges to the requested type. 311 for (int J = 0; J != NumSubParts; ++J) { 312 int Idx = I * NumSubParts + J; 313 if (Idx >= NumOrigSrc) { 314 SubMerge[J] = PadReg; 315 continue; 316 } 317 318 SubMerge[J] = VRegs[Idx]; 319 320 // There are meaningful bits here we can't reuse later. 321 AllMergePartsArePadding = false; 322 } 323 324 // If we've filled up a complete piece with padding bits, we can directly 325 // emit the natural sized constant if applicable, rather than a merge of 326 // smaller constants. 327 if (AllMergePartsArePadding && !AllPadReg) { 328 if (PadStrategy == TargetOpcode::G_ANYEXT) 329 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 330 else if (PadStrategy == TargetOpcode::G_ZEXT) 331 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 332 333 // If this is a sign extension, we can't materialize a trivial constant 334 // with the right type and have to produce a merge. 335 } 336 337 if (AllPadReg) { 338 // Avoid creating additional instructions if we're just adding additional 339 // copies of padding bits. 340 Remerge[I] = AllPadReg; 341 continue; 342 } 343 344 if (NumSubParts == 1) 345 Remerge[I] = SubMerge[0]; 346 else 347 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 348 349 // In the sign extend padding case, re-use the first all-signbit merge. 350 if (AllMergePartsArePadding && !AllPadReg) 351 AllPadReg = Remerge[I]; 352 } 353 354 VRegs = std::move(Remerge); 355 return LCMTy; 356 } 357 358 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 359 ArrayRef<Register> RemergeRegs) { 360 LLT DstTy = MRI.getType(DstReg); 361 362 // Create the merge to the widened source, and extract the relevant bits into 363 // the result. 364 365 if (DstTy == LCMTy) { 366 MIRBuilder.buildMerge(DstReg, RemergeRegs); 367 return; 368 } 369 370 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 371 if (DstTy.isScalar() && LCMTy.isScalar()) { 372 MIRBuilder.buildTrunc(DstReg, Remerge); 373 return; 374 } 375 376 if (LCMTy.isVector()) { 377 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 378 SmallVector<Register, 8> UnmergeDefs(NumDefs); 379 UnmergeDefs[0] = DstReg; 380 for (unsigned I = 1; I != NumDefs; ++I) 381 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 382 383 MIRBuilder.buildUnmerge(UnmergeDefs, 384 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 385 return; 386 } 387 388 llvm_unreachable("unhandled case"); 389 } 390 391 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 392 #define RTLIBCASE_INT(LibcallPrefix) \ 393 do { \ 394 switch (Size) { \ 395 case 32: \ 396 return RTLIB::LibcallPrefix##32; \ 397 case 64: \ 398 return RTLIB::LibcallPrefix##64; \ 399 case 128: \ 400 return RTLIB::LibcallPrefix##128; \ 401 default: \ 402 llvm_unreachable("unexpected size"); \ 403 } \ 404 } while (0) 405 406 #define RTLIBCASE(LibcallPrefix) \ 407 do { \ 408 switch (Size) { \ 409 case 32: \ 410 return RTLIB::LibcallPrefix##32; \ 411 case 64: \ 412 return RTLIB::LibcallPrefix##64; \ 413 case 80: \ 414 return RTLIB::LibcallPrefix##80; \ 415 case 128: \ 416 return RTLIB::LibcallPrefix##128; \ 417 default: \ 418 llvm_unreachable("unexpected size"); \ 419 } \ 420 } while (0) 421 422 switch (Opcode) { 423 case TargetOpcode::G_SDIV: 424 RTLIBCASE_INT(SDIV_I); 425 case TargetOpcode::G_UDIV: 426 RTLIBCASE_INT(UDIV_I); 427 case TargetOpcode::G_SREM: 428 RTLIBCASE_INT(SREM_I); 429 case TargetOpcode::G_UREM: 430 RTLIBCASE_INT(UREM_I); 431 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 432 RTLIBCASE_INT(CTLZ_I); 433 case TargetOpcode::G_FADD: 434 RTLIBCASE(ADD_F); 435 case TargetOpcode::G_FSUB: 436 RTLIBCASE(SUB_F); 437 case TargetOpcode::G_FMUL: 438 RTLIBCASE(MUL_F); 439 case TargetOpcode::G_FDIV: 440 RTLIBCASE(DIV_F); 441 case TargetOpcode::G_FEXP: 442 RTLIBCASE(EXP_F); 443 case TargetOpcode::G_FEXP2: 444 RTLIBCASE(EXP2_F); 445 case TargetOpcode::G_FREM: 446 RTLIBCASE(REM_F); 447 case TargetOpcode::G_FPOW: 448 RTLIBCASE(POW_F); 449 case TargetOpcode::G_FMA: 450 RTLIBCASE(FMA_F); 451 case TargetOpcode::G_FSIN: 452 RTLIBCASE(SIN_F); 453 case TargetOpcode::G_FCOS: 454 RTLIBCASE(COS_F); 455 case TargetOpcode::G_FLOG10: 456 RTLIBCASE(LOG10_F); 457 case TargetOpcode::G_FLOG: 458 RTLIBCASE(LOG_F); 459 case TargetOpcode::G_FLOG2: 460 RTLIBCASE(LOG2_F); 461 case TargetOpcode::G_FCEIL: 462 RTLIBCASE(CEIL_F); 463 case TargetOpcode::G_FFLOOR: 464 RTLIBCASE(FLOOR_F); 465 case TargetOpcode::G_FMINNUM: 466 RTLIBCASE(FMIN_F); 467 case TargetOpcode::G_FMAXNUM: 468 RTLIBCASE(FMAX_F); 469 case TargetOpcode::G_FSQRT: 470 RTLIBCASE(SQRT_F); 471 case TargetOpcode::G_FRINT: 472 RTLIBCASE(RINT_F); 473 case TargetOpcode::G_FNEARBYINT: 474 RTLIBCASE(NEARBYINT_F); 475 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 476 RTLIBCASE(ROUNDEVEN_F); 477 } 478 llvm_unreachable("Unknown libcall function"); 479 } 480 481 /// True if an instruction is in tail position in its caller. Intended for 482 /// legalizing libcalls as tail calls when possible. 483 static bool isLibCallInTailPosition(MachineInstr &MI, 484 const TargetInstrInfo &TII, 485 MachineRegisterInfo &MRI) { 486 MachineBasicBlock &MBB = *MI.getParent(); 487 const Function &F = MBB.getParent()->getFunction(); 488 489 // Conservatively require the attributes of the call to match those of 490 // the return. Ignore NoAlias and NonNull because they don't affect the 491 // call sequence. 492 AttributeList CallerAttrs = F.getAttributes(); 493 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 494 .removeAttribute(Attribute::NoAlias) 495 .removeAttribute(Attribute::NonNull) 496 .hasAttributes()) 497 return false; 498 499 // It's not safe to eliminate the sign / zero extension of the return value. 500 if (CallerAttrs.hasRetAttr(Attribute::ZExt) || 501 CallerAttrs.hasRetAttr(Attribute::SExt)) 502 return false; 503 504 // Only tail call if the following instruction is a standard return or if we 505 // have a `thisreturn` callee, and a sequence like: 506 // 507 // G_MEMCPY %0, %1, %2 508 // $x0 = COPY %0 509 // RET_ReallyLR implicit $x0 510 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 511 if (Next != MBB.instr_end() && Next->isCopy()) { 512 switch (MI.getOpcode()) { 513 default: 514 llvm_unreachable("unsupported opcode"); 515 case TargetOpcode::G_BZERO: 516 return false; 517 case TargetOpcode::G_MEMCPY: 518 case TargetOpcode::G_MEMMOVE: 519 case TargetOpcode::G_MEMSET: 520 break; 521 } 522 523 Register VReg = MI.getOperand(0).getReg(); 524 if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg()) 525 return false; 526 527 Register PReg = Next->getOperand(0).getReg(); 528 if (!PReg.isPhysical()) 529 return false; 530 531 auto Ret = next_nodbg(Next, MBB.instr_end()); 532 if (Ret == MBB.instr_end() || !Ret->isReturn()) 533 return false; 534 535 if (Ret->getNumImplicitOperands() != 1) 536 return false; 537 538 if (PReg != Ret->getOperand(0).getReg()) 539 return false; 540 541 // Skip over the COPY that we just validated. 542 Next = Ret; 543 } 544 545 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 546 return false; 547 548 return true; 549 } 550 551 LegalizerHelper::LegalizeResult 552 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 553 const CallLowering::ArgInfo &Result, 554 ArrayRef<CallLowering::ArgInfo> Args, 555 const CallingConv::ID CC) { 556 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 557 558 CallLowering::CallLoweringInfo Info; 559 Info.CallConv = CC; 560 Info.Callee = MachineOperand::CreateES(Name); 561 Info.OrigRet = Result; 562 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 563 if (!CLI.lowerCall(MIRBuilder, Info)) 564 return LegalizerHelper::UnableToLegalize; 565 566 return LegalizerHelper::Legalized; 567 } 568 569 LegalizerHelper::LegalizeResult 570 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 571 const CallLowering::ArgInfo &Result, 572 ArrayRef<CallLowering::ArgInfo> Args) { 573 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 574 const char *Name = TLI.getLibcallName(Libcall); 575 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 576 return createLibcall(MIRBuilder, Name, Result, Args, CC); 577 } 578 579 // Useful for libcalls where all operands have the same type. 580 static LegalizerHelper::LegalizeResult 581 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 582 Type *OpType) { 583 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 584 585 // FIXME: What does the original arg index mean here? 586 SmallVector<CallLowering::ArgInfo, 3> Args; 587 for (unsigned i = 1; i < MI.getNumOperands(); i++) 588 Args.push_back({MI.getOperand(i).getReg(), OpType, 0}); 589 return createLibcall(MIRBuilder, Libcall, 590 {MI.getOperand(0).getReg(), OpType, 0}, Args); 591 } 592 593 LegalizerHelper::LegalizeResult 594 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 595 MachineInstr &MI, LostDebugLocObserver &LocObserver) { 596 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 597 598 SmallVector<CallLowering::ArgInfo, 3> Args; 599 // Add all the args, except for the last which is an imm denoting 'tail'. 600 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 601 Register Reg = MI.getOperand(i).getReg(); 602 603 // Need derive an IR type for call lowering. 604 LLT OpLLT = MRI.getType(Reg); 605 Type *OpTy = nullptr; 606 if (OpLLT.isPointer()) 607 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 608 else 609 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 610 Args.push_back({Reg, OpTy, 0}); 611 } 612 613 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 614 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 615 RTLIB::Libcall RTLibcall; 616 unsigned Opc = MI.getOpcode(); 617 switch (Opc) { 618 case TargetOpcode::G_BZERO: 619 RTLibcall = RTLIB::BZERO; 620 break; 621 case TargetOpcode::G_MEMCPY: 622 RTLibcall = RTLIB::MEMCPY; 623 Args[0].Flags[0].setReturned(); 624 break; 625 case TargetOpcode::G_MEMMOVE: 626 RTLibcall = RTLIB::MEMMOVE; 627 Args[0].Flags[0].setReturned(); 628 break; 629 case TargetOpcode::G_MEMSET: 630 RTLibcall = RTLIB::MEMSET; 631 Args[0].Flags[0].setReturned(); 632 break; 633 default: 634 llvm_unreachable("unsupported opcode"); 635 } 636 const char *Name = TLI.getLibcallName(RTLibcall); 637 638 // Unsupported libcall on the target. 639 if (!Name) { 640 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " 641 << MIRBuilder.getTII().getName(Opc) << "\n"); 642 return LegalizerHelper::UnableToLegalize; 643 } 644 645 CallLowering::CallLoweringInfo Info; 646 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 647 Info.Callee = MachineOperand::CreateES(Name); 648 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0); 649 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 650 isLibCallInTailPosition(MI, MIRBuilder.getTII(), MRI); 651 652 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 653 if (!CLI.lowerCall(MIRBuilder, Info)) 654 return LegalizerHelper::UnableToLegalize; 655 656 if (Info.LoweredTailCall) { 657 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 658 659 // Check debug locations before removing the return. 660 LocObserver.checkpoint(true); 661 662 // We must have a return following the call (or debug insts) to get past 663 // isLibCallInTailPosition. 664 do { 665 MachineInstr *Next = MI.getNextNode(); 666 assert(Next && 667 (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) && 668 "Expected instr following MI to be return or debug inst?"); 669 // We lowered a tail call, so the call is now the return from the block. 670 // Delete the old return. 671 Next->eraseFromParent(); 672 } while (MI.getNextNode()); 673 674 // We expect to lose the debug location from the return. 675 LocObserver.checkpoint(false); 676 } 677 678 return LegalizerHelper::Legalized; 679 } 680 681 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 682 Type *FromType) { 683 auto ToMVT = MVT::getVT(ToType); 684 auto FromMVT = MVT::getVT(FromType); 685 686 switch (Opcode) { 687 case TargetOpcode::G_FPEXT: 688 return RTLIB::getFPEXT(FromMVT, ToMVT); 689 case TargetOpcode::G_FPTRUNC: 690 return RTLIB::getFPROUND(FromMVT, ToMVT); 691 case TargetOpcode::G_FPTOSI: 692 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 693 case TargetOpcode::G_FPTOUI: 694 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 695 case TargetOpcode::G_SITOFP: 696 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 697 case TargetOpcode::G_UITOFP: 698 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 699 } 700 llvm_unreachable("Unsupported libcall function"); 701 } 702 703 static LegalizerHelper::LegalizeResult 704 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 705 Type *FromType) { 706 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 707 return createLibcall(MIRBuilder, Libcall, 708 {MI.getOperand(0).getReg(), ToType, 0}, 709 {{MI.getOperand(1).getReg(), FromType, 0}}); 710 } 711 712 LegalizerHelper::LegalizeResult 713 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) { 714 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 715 unsigned Size = LLTy.getSizeInBits(); 716 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 717 718 switch (MI.getOpcode()) { 719 default: 720 return UnableToLegalize; 721 case TargetOpcode::G_SDIV: 722 case TargetOpcode::G_UDIV: 723 case TargetOpcode::G_SREM: 724 case TargetOpcode::G_UREM: 725 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 726 Type *HLTy = IntegerType::get(Ctx, Size); 727 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 728 if (Status != Legalized) 729 return Status; 730 break; 731 } 732 case TargetOpcode::G_FADD: 733 case TargetOpcode::G_FSUB: 734 case TargetOpcode::G_FMUL: 735 case TargetOpcode::G_FDIV: 736 case TargetOpcode::G_FMA: 737 case TargetOpcode::G_FPOW: 738 case TargetOpcode::G_FREM: 739 case TargetOpcode::G_FCOS: 740 case TargetOpcode::G_FSIN: 741 case TargetOpcode::G_FLOG10: 742 case TargetOpcode::G_FLOG: 743 case TargetOpcode::G_FLOG2: 744 case TargetOpcode::G_FEXP: 745 case TargetOpcode::G_FEXP2: 746 case TargetOpcode::G_FCEIL: 747 case TargetOpcode::G_FFLOOR: 748 case TargetOpcode::G_FMINNUM: 749 case TargetOpcode::G_FMAXNUM: 750 case TargetOpcode::G_FSQRT: 751 case TargetOpcode::G_FRINT: 752 case TargetOpcode::G_FNEARBYINT: 753 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 754 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 755 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 756 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 757 return UnableToLegalize; 758 } 759 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 760 if (Status != Legalized) 761 return Status; 762 break; 763 } 764 case TargetOpcode::G_FPEXT: 765 case TargetOpcode::G_FPTRUNC: { 766 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 767 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 768 if (!FromTy || !ToTy) 769 return UnableToLegalize; 770 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 771 if (Status != Legalized) 772 return Status; 773 break; 774 } 775 case TargetOpcode::G_FPTOSI: 776 case TargetOpcode::G_FPTOUI: { 777 // FIXME: Support other types 778 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 779 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 780 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 781 return UnableToLegalize; 782 LegalizeResult Status = conversionLibcall( 783 MI, MIRBuilder, 784 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 785 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 786 if (Status != Legalized) 787 return Status; 788 break; 789 } 790 case TargetOpcode::G_SITOFP: 791 case TargetOpcode::G_UITOFP: { 792 // FIXME: Support other types 793 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 794 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 795 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 796 return UnableToLegalize; 797 LegalizeResult Status = conversionLibcall( 798 MI, MIRBuilder, 799 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 800 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 801 if (Status != Legalized) 802 return Status; 803 break; 804 } 805 case TargetOpcode::G_BZERO: 806 case TargetOpcode::G_MEMCPY: 807 case TargetOpcode::G_MEMMOVE: 808 case TargetOpcode::G_MEMSET: { 809 LegalizeResult Result = 810 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver); 811 if (Result != Legalized) 812 return Result; 813 MI.eraseFromParent(); 814 return Result; 815 } 816 } 817 818 MI.eraseFromParent(); 819 return Legalized; 820 } 821 822 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 823 unsigned TypeIdx, 824 LLT NarrowTy) { 825 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 826 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 827 828 switch (MI.getOpcode()) { 829 default: 830 return UnableToLegalize; 831 case TargetOpcode::G_IMPLICIT_DEF: { 832 Register DstReg = MI.getOperand(0).getReg(); 833 LLT DstTy = MRI.getType(DstReg); 834 835 // If SizeOp0 is not an exact multiple of NarrowSize, emit 836 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 837 // FIXME: Although this would also be legal for the general case, it causes 838 // a lot of regressions in the emitted code (superfluous COPYs, artifact 839 // combines not being hit). This seems to be a problem related to the 840 // artifact combiner. 841 if (SizeOp0 % NarrowSize != 0) { 842 LLT ImplicitTy = NarrowTy; 843 if (DstTy.isVector()) 844 ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy); 845 846 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 847 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 848 849 MI.eraseFromParent(); 850 return Legalized; 851 } 852 853 int NumParts = SizeOp0 / NarrowSize; 854 855 SmallVector<Register, 2> DstRegs; 856 for (int i = 0; i < NumParts; ++i) 857 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 858 859 if (DstTy.isVector()) 860 MIRBuilder.buildBuildVector(DstReg, DstRegs); 861 else 862 MIRBuilder.buildMerge(DstReg, DstRegs); 863 MI.eraseFromParent(); 864 return Legalized; 865 } 866 case TargetOpcode::G_CONSTANT: { 867 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 868 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 869 unsigned TotalSize = Ty.getSizeInBits(); 870 unsigned NarrowSize = NarrowTy.getSizeInBits(); 871 int NumParts = TotalSize / NarrowSize; 872 873 SmallVector<Register, 4> PartRegs; 874 for (int I = 0; I != NumParts; ++I) { 875 unsigned Offset = I * NarrowSize; 876 auto K = MIRBuilder.buildConstant(NarrowTy, 877 Val.lshr(Offset).trunc(NarrowSize)); 878 PartRegs.push_back(K.getReg(0)); 879 } 880 881 LLT LeftoverTy; 882 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 883 SmallVector<Register, 1> LeftoverRegs; 884 if (LeftoverBits != 0) { 885 LeftoverTy = LLT::scalar(LeftoverBits); 886 auto K = MIRBuilder.buildConstant( 887 LeftoverTy, 888 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 889 LeftoverRegs.push_back(K.getReg(0)); 890 } 891 892 insertParts(MI.getOperand(0).getReg(), 893 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 894 895 MI.eraseFromParent(); 896 return Legalized; 897 } 898 case TargetOpcode::G_SEXT: 899 case TargetOpcode::G_ZEXT: 900 case TargetOpcode::G_ANYEXT: 901 return narrowScalarExt(MI, TypeIdx, NarrowTy); 902 case TargetOpcode::G_TRUNC: { 903 if (TypeIdx != 1) 904 return UnableToLegalize; 905 906 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 907 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 908 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 909 return UnableToLegalize; 910 } 911 912 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 913 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 914 MI.eraseFromParent(); 915 return Legalized; 916 } 917 918 case TargetOpcode::G_FREEZE: 919 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 920 case TargetOpcode::G_ADD: 921 case TargetOpcode::G_SUB: 922 case TargetOpcode::G_SADDO: 923 case TargetOpcode::G_SSUBO: 924 case TargetOpcode::G_SADDE: 925 case TargetOpcode::G_SSUBE: 926 case TargetOpcode::G_UADDO: 927 case TargetOpcode::G_USUBO: 928 case TargetOpcode::G_UADDE: 929 case TargetOpcode::G_USUBE: 930 return narrowScalarAddSub(MI, TypeIdx, NarrowTy); 931 case TargetOpcode::G_MUL: 932 case TargetOpcode::G_UMULH: 933 return narrowScalarMul(MI, NarrowTy); 934 case TargetOpcode::G_EXTRACT: 935 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 936 case TargetOpcode::G_INSERT: 937 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 938 case TargetOpcode::G_LOAD: { 939 auto &LoadMI = cast<GLoad>(MI); 940 Register DstReg = LoadMI.getDstReg(); 941 LLT DstTy = MRI.getType(DstReg); 942 if (DstTy.isVector()) 943 return UnableToLegalize; 944 945 if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) { 946 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 947 MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO()); 948 MIRBuilder.buildAnyExt(DstReg, TmpReg); 949 LoadMI.eraseFromParent(); 950 return Legalized; 951 } 952 953 return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy); 954 } 955 case TargetOpcode::G_ZEXTLOAD: 956 case TargetOpcode::G_SEXTLOAD: { 957 auto &LoadMI = cast<GExtLoad>(MI); 958 Register DstReg = LoadMI.getDstReg(); 959 Register PtrReg = LoadMI.getPointerReg(); 960 961 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 962 auto &MMO = LoadMI.getMMO(); 963 unsigned MemSize = MMO.getSizeInBits(); 964 965 if (MemSize == NarrowSize) { 966 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 967 } else if (MemSize < NarrowSize) { 968 MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO); 969 } else if (MemSize > NarrowSize) { 970 // FIXME: Need to split the load. 971 return UnableToLegalize; 972 } 973 974 if (isa<GZExtLoad>(LoadMI)) 975 MIRBuilder.buildZExt(DstReg, TmpReg); 976 else 977 MIRBuilder.buildSExt(DstReg, TmpReg); 978 979 LoadMI.eraseFromParent(); 980 return Legalized; 981 } 982 case TargetOpcode::G_STORE: { 983 auto &StoreMI = cast<GStore>(MI); 984 985 Register SrcReg = StoreMI.getValueReg(); 986 LLT SrcTy = MRI.getType(SrcReg); 987 if (SrcTy.isVector()) 988 return UnableToLegalize; 989 990 int NumParts = SizeOp0 / NarrowSize; 991 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 992 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 993 if (SrcTy.isVector() && LeftoverBits != 0) 994 return UnableToLegalize; 995 996 if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) { 997 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 998 MIRBuilder.buildTrunc(TmpReg, SrcReg); 999 MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO()); 1000 StoreMI.eraseFromParent(); 1001 return Legalized; 1002 } 1003 1004 return reduceLoadStoreWidth(StoreMI, 0, NarrowTy); 1005 } 1006 case TargetOpcode::G_SELECT: 1007 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 1008 case TargetOpcode::G_AND: 1009 case TargetOpcode::G_OR: 1010 case TargetOpcode::G_XOR: { 1011 // Legalize bitwise operation: 1012 // A = BinOp<Ty> B, C 1013 // into: 1014 // B1, ..., BN = G_UNMERGE_VALUES B 1015 // C1, ..., CN = G_UNMERGE_VALUES C 1016 // A1 = BinOp<Ty/N> B1, C2 1017 // ... 1018 // AN = BinOp<Ty/N> BN, CN 1019 // A = G_MERGE_VALUES A1, ..., AN 1020 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1021 } 1022 case TargetOpcode::G_SHL: 1023 case TargetOpcode::G_LSHR: 1024 case TargetOpcode::G_ASHR: 1025 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1026 case TargetOpcode::G_CTLZ: 1027 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1028 case TargetOpcode::G_CTTZ: 1029 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1030 case TargetOpcode::G_CTPOP: 1031 if (TypeIdx == 1) 1032 switch (MI.getOpcode()) { 1033 case TargetOpcode::G_CTLZ: 1034 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1035 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1036 case TargetOpcode::G_CTTZ: 1037 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1038 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1039 case TargetOpcode::G_CTPOP: 1040 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1041 default: 1042 return UnableToLegalize; 1043 } 1044 1045 Observer.changingInstr(MI); 1046 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1047 Observer.changedInstr(MI); 1048 return Legalized; 1049 case TargetOpcode::G_INTTOPTR: 1050 if (TypeIdx != 1) 1051 return UnableToLegalize; 1052 1053 Observer.changingInstr(MI); 1054 narrowScalarSrc(MI, NarrowTy, 1); 1055 Observer.changedInstr(MI); 1056 return Legalized; 1057 case TargetOpcode::G_PTRTOINT: 1058 if (TypeIdx != 0) 1059 return UnableToLegalize; 1060 1061 Observer.changingInstr(MI); 1062 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1063 Observer.changedInstr(MI); 1064 return Legalized; 1065 case TargetOpcode::G_PHI: { 1066 // FIXME: add support for when SizeOp0 isn't an exact multiple of 1067 // NarrowSize. 1068 if (SizeOp0 % NarrowSize != 0) 1069 return UnableToLegalize; 1070 1071 unsigned NumParts = SizeOp0 / NarrowSize; 1072 SmallVector<Register, 2> DstRegs(NumParts); 1073 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1074 Observer.changingInstr(MI); 1075 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1076 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1077 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1078 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1079 SrcRegs[i / 2]); 1080 } 1081 MachineBasicBlock &MBB = *MI.getParent(); 1082 MIRBuilder.setInsertPt(MBB, MI); 1083 for (unsigned i = 0; i < NumParts; ++i) { 1084 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1085 MachineInstrBuilder MIB = 1086 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1087 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1088 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1089 } 1090 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1091 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1092 Observer.changedInstr(MI); 1093 MI.eraseFromParent(); 1094 return Legalized; 1095 } 1096 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1097 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1098 if (TypeIdx != 2) 1099 return UnableToLegalize; 1100 1101 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1102 Observer.changingInstr(MI); 1103 narrowScalarSrc(MI, NarrowTy, OpIdx); 1104 Observer.changedInstr(MI); 1105 return Legalized; 1106 } 1107 case TargetOpcode::G_ICMP: { 1108 Register LHS = MI.getOperand(2).getReg(); 1109 LLT SrcTy = MRI.getType(LHS); 1110 uint64_t SrcSize = SrcTy.getSizeInBits(); 1111 CmpInst::Predicate Pred = 1112 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1113 1114 // TODO: Handle the non-equality case for weird sizes. 1115 if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred)) 1116 return UnableToLegalize; 1117 1118 LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover) 1119 SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs; 1120 if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs, 1121 LHSLeftoverRegs)) 1122 return UnableToLegalize; 1123 1124 LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type. 1125 SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs; 1126 if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused, 1127 RHSPartRegs, RHSLeftoverRegs)) 1128 return UnableToLegalize; 1129 1130 // We now have the LHS and RHS of the compare split into narrow-type 1131 // registers, plus potentially some leftover type. 1132 Register Dst = MI.getOperand(0).getReg(); 1133 LLT ResTy = MRI.getType(Dst); 1134 if (ICmpInst::isEquality(Pred)) { 1135 // For each part on the LHS and RHS, keep track of the result of XOR-ing 1136 // them together. For each equal part, the result should be all 0s. For 1137 // each non-equal part, we'll get at least one 1. 1138 auto Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1139 SmallVector<Register, 4> Xors; 1140 for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) { 1141 auto LHS = std::get<0>(LHSAndRHS); 1142 auto RHS = std::get<1>(LHSAndRHS); 1143 auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0); 1144 Xors.push_back(Xor); 1145 } 1146 1147 // Build a G_XOR for each leftover register. Each G_XOR must be widened 1148 // to the desired narrow type so that we can OR them together later. 1149 SmallVector<Register, 4> WidenedXors; 1150 for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) { 1151 auto LHS = std::get<0>(LHSAndRHS); 1152 auto RHS = std::get<1>(LHSAndRHS); 1153 auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0); 1154 LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor); 1155 buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors, 1156 /* PadStrategy = */ TargetOpcode::G_ZEXT); 1157 Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end()); 1158 } 1159 1160 // Now, for each part we broke up, we know if they are equal/not equal 1161 // based off the G_XOR. We can OR these all together and compare against 1162 // 0 to get the result. 1163 assert(Xors.size() >= 2 && "Should have gotten at least two Xors?"); 1164 auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]); 1165 for (unsigned I = 2, E = Xors.size(); I < E; ++I) 1166 Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]); 1167 MIRBuilder.buildICmp(Pred, Dst, Or, Zero); 1168 } else { 1169 // TODO: Handle non-power-of-two types. 1170 assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?"); 1171 assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?"); 1172 Register LHSL = LHSPartRegs[0]; 1173 Register LHSH = LHSPartRegs[1]; 1174 Register RHSL = RHSPartRegs[0]; 1175 Register RHSH = RHSPartRegs[1]; 1176 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1177 MachineInstrBuilder CmpHEQ = 1178 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1179 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1180 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1181 MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH); 1182 } 1183 MI.eraseFromParent(); 1184 return Legalized; 1185 } 1186 case TargetOpcode::G_SEXT_INREG: { 1187 if (TypeIdx != 0) 1188 return UnableToLegalize; 1189 1190 int64_t SizeInBits = MI.getOperand(2).getImm(); 1191 1192 // So long as the new type has more bits than the bits we're extending we 1193 // don't need to break it apart. 1194 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1195 Observer.changingInstr(MI); 1196 // We don't lose any non-extension bits by truncating the src and 1197 // sign-extending the dst. 1198 MachineOperand &MO1 = MI.getOperand(1); 1199 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1200 MO1.setReg(TruncMIB.getReg(0)); 1201 1202 MachineOperand &MO2 = MI.getOperand(0); 1203 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1204 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1205 MIRBuilder.buildSExt(MO2, DstExt); 1206 MO2.setReg(DstExt); 1207 Observer.changedInstr(MI); 1208 return Legalized; 1209 } 1210 1211 // Break it apart. Components below the extension point are unmodified. The 1212 // component containing the extension point becomes a narrower SEXT_INREG. 1213 // Components above it are ashr'd from the component containing the 1214 // extension point. 1215 if (SizeOp0 % NarrowSize != 0) 1216 return UnableToLegalize; 1217 int NumParts = SizeOp0 / NarrowSize; 1218 1219 // List the registers where the destination will be scattered. 1220 SmallVector<Register, 2> DstRegs; 1221 // List the registers where the source will be split. 1222 SmallVector<Register, 2> SrcRegs; 1223 1224 // Create all the temporary registers. 1225 for (int i = 0; i < NumParts; ++i) { 1226 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1227 1228 SrcRegs.push_back(SrcReg); 1229 } 1230 1231 // Explode the big arguments into smaller chunks. 1232 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1233 1234 Register AshrCstReg = 1235 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1236 .getReg(0); 1237 Register FullExtensionReg = 0; 1238 Register PartialExtensionReg = 0; 1239 1240 // Do the operation on each small part. 1241 for (int i = 0; i < NumParts; ++i) { 1242 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1243 DstRegs.push_back(SrcRegs[i]); 1244 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1245 assert(PartialExtensionReg && 1246 "Expected to visit partial extension before full"); 1247 if (FullExtensionReg) { 1248 DstRegs.push_back(FullExtensionReg); 1249 continue; 1250 } 1251 DstRegs.push_back( 1252 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1253 .getReg(0)); 1254 FullExtensionReg = DstRegs.back(); 1255 } else { 1256 DstRegs.push_back( 1257 MIRBuilder 1258 .buildInstr( 1259 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1260 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1261 .getReg(0)); 1262 PartialExtensionReg = DstRegs.back(); 1263 } 1264 } 1265 1266 // Gather the destination registers into the final destination. 1267 Register DstReg = MI.getOperand(0).getReg(); 1268 MIRBuilder.buildMerge(DstReg, DstRegs); 1269 MI.eraseFromParent(); 1270 return Legalized; 1271 } 1272 case TargetOpcode::G_BSWAP: 1273 case TargetOpcode::G_BITREVERSE: { 1274 if (SizeOp0 % NarrowSize != 0) 1275 return UnableToLegalize; 1276 1277 Observer.changingInstr(MI); 1278 SmallVector<Register, 2> SrcRegs, DstRegs; 1279 unsigned NumParts = SizeOp0 / NarrowSize; 1280 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1281 1282 for (unsigned i = 0; i < NumParts; ++i) { 1283 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1284 {SrcRegs[NumParts - 1 - i]}); 1285 DstRegs.push_back(DstPart.getReg(0)); 1286 } 1287 1288 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1289 1290 Observer.changedInstr(MI); 1291 MI.eraseFromParent(); 1292 return Legalized; 1293 } 1294 case TargetOpcode::G_PTR_ADD: 1295 case TargetOpcode::G_PTRMASK: { 1296 if (TypeIdx != 1) 1297 return UnableToLegalize; 1298 Observer.changingInstr(MI); 1299 narrowScalarSrc(MI, NarrowTy, 2); 1300 Observer.changedInstr(MI); 1301 return Legalized; 1302 } 1303 case TargetOpcode::G_FPTOUI: 1304 case TargetOpcode::G_FPTOSI: 1305 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy); 1306 case TargetOpcode::G_FPEXT: 1307 if (TypeIdx != 0) 1308 return UnableToLegalize; 1309 Observer.changingInstr(MI); 1310 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1311 Observer.changedInstr(MI); 1312 return Legalized; 1313 } 1314 } 1315 1316 Register LegalizerHelper::coerceToScalar(Register Val) { 1317 LLT Ty = MRI.getType(Val); 1318 if (Ty.isScalar()) 1319 return Val; 1320 1321 const DataLayout &DL = MIRBuilder.getDataLayout(); 1322 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1323 if (Ty.isPointer()) { 1324 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1325 return Register(); 1326 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1327 } 1328 1329 Register NewVal = Val; 1330 1331 assert(Ty.isVector()); 1332 LLT EltTy = Ty.getElementType(); 1333 if (EltTy.isPointer()) 1334 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1335 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1336 } 1337 1338 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1339 unsigned OpIdx, unsigned ExtOpcode) { 1340 MachineOperand &MO = MI.getOperand(OpIdx); 1341 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1342 MO.setReg(ExtB.getReg(0)); 1343 } 1344 1345 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1346 unsigned OpIdx) { 1347 MachineOperand &MO = MI.getOperand(OpIdx); 1348 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1349 MO.setReg(ExtB.getReg(0)); 1350 } 1351 1352 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1353 unsigned OpIdx, unsigned TruncOpcode) { 1354 MachineOperand &MO = MI.getOperand(OpIdx); 1355 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1356 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1357 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1358 MO.setReg(DstExt); 1359 } 1360 1361 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1362 unsigned OpIdx, unsigned ExtOpcode) { 1363 MachineOperand &MO = MI.getOperand(OpIdx); 1364 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1365 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1366 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1367 MO.setReg(DstTrunc); 1368 } 1369 1370 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1371 unsigned OpIdx) { 1372 MachineOperand &MO = MI.getOperand(OpIdx); 1373 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1374 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1375 } 1376 1377 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1378 unsigned OpIdx) { 1379 MachineOperand &MO = MI.getOperand(OpIdx); 1380 1381 LLT OldTy = MRI.getType(MO.getReg()); 1382 unsigned OldElts = OldTy.getNumElements(); 1383 unsigned NewElts = MoreTy.getNumElements(); 1384 1385 unsigned NumParts = NewElts / OldElts; 1386 1387 // Use concat_vectors if the result is a multiple of the number of elements. 1388 if (NumParts * OldElts == NewElts) { 1389 SmallVector<Register, 8> Parts; 1390 Parts.push_back(MO.getReg()); 1391 1392 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1393 for (unsigned I = 1; I != NumParts; ++I) 1394 Parts.push_back(ImpDef); 1395 1396 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1397 MO.setReg(Concat.getReg(0)); 1398 return; 1399 } 1400 1401 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1402 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1403 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1404 MO.setReg(MoreReg); 1405 } 1406 1407 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1408 MachineOperand &Op = MI.getOperand(OpIdx); 1409 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1410 } 1411 1412 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1413 MachineOperand &MO = MI.getOperand(OpIdx); 1414 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1415 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1416 MIRBuilder.buildBitcast(MO, CastDst); 1417 MO.setReg(CastDst); 1418 } 1419 1420 LegalizerHelper::LegalizeResult 1421 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1422 LLT WideTy) { 1423 if (TypeIdx != 1) 1424 return UnableToLegalize; 1425 1426 Register DstReg = MI.getOperand(0).getReg(); 1427 LLT DstTy = MRI.getType(DstReg); 1428 if (DstTy.isVector()) 1429 return UnableToLegalize; 1430 1431 Register Src1 = MI.getOperand(1).getReg(); 1432 LLT SrcTy = MRI.getType(Src1); 1433 const int DstSize = DstTy.getSizeInBits(); 1434 const int SrcSize = SrcTy.getSizeInBits(); 1435 const int WideSize = WideTy.getSizeInBits(); 1436 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1437 1438 unsigned NumOps = MI.getNumOperands(); 1439 unsigned NumSrc = MI.getNumOperands() - 1; 1440 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1441 1442 if (WideSize >= DstSize) { 1443 // Directly pack the bits in the target type. 1444 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1445 1446 for (unsigned I = 2; I != NumOps; ++I) { 1447 const unsigned Offset = (I - 1) * PartSize; 1448 1449 Register SrcReg = MI.getOperand(I).getReg(); 1450 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1451 1452 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1453 1454 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1455 MRI.createGenericVirtualRegister(WideTy); 1456 1457 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1458 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1459 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1460 ResultReg = NextResult; 1461 } 1462 1463 if (WideSize > DstSize) 1464 MIRBuilder.buildTrunc(DstReg, ResultReg); 1465 else if (DstTy.isPointer()) 1466 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1467 1468 MI.eraseFromParent(); 1469 return Legalized; 1470 } 1471 1472 // Unmerge the original values to the GCD type, and recombine to the next 1473 // multiple greater than the original type. 1474 // 1475 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1476 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1477 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1478 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1479 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1480 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1481 // %12:_(s12) = G_MERGE_VALUES %10, %11 1482 // 1483 // Padding with undef if necessary: 1484 // 1485 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1486 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1487 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1488 // %7:_(s2) = G_IMPLICIT_DEF 1489 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1490 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1491 // %10:_(s12) = G_MERGE_VALUES %8, %9 1492 1493 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1494 LLT GCDTy = LLT::scalar(GCD); 1495 1496 SmallVector<Register, 8> Parts; 1497 SmallVector<Register, 8> NewMergeRegs; 1498 SmallVector<Register, 8> Unmerges; 1499 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1500 1501 // Decompose the original operands if they don't evenly divide. 1502 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1503 Register SrcReg = MI.getOperand(I).getReg(); 1504 if (GCD == SrcSize) { 1505 Unmerges.push_back(SrcReg); 1506 } else { 1507 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1508 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1509 Unmerges.push_back(Unmerge.getReg(J)); 1510 } 1511 } 1512 1513 // Pad with undef to the next size that is a multiple of the requested size. 1514 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1515 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1516 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1517 Unmerges.push_back(UndefReg); 1518 } 1519 1520 const int PartsPerGCD = WideSize / GCD; 1521 1522 // Build merges of each piece. 1523 ArrayRef<Register> Slicer(Unmerges); 1524 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1525 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1526 NewMergeRegs.push_back(Merge.getReg(0)); 1527 } 1528 1529 // A truncate may be necessary if the requested type doesn't evenly divide the 1530 // original result type. 1531 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1532 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1533 } else { 1534 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1535 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1536 } 1537 1538 MI.eraseFromParent(); 1539 return Legalized; 1540 } 1541 1542 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1543 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1544 LLT OrigTy = MRI.getType(OrigReg); 1545 LLT LCMTy = getLCMType(WideTy, OrigTy); 1546 1547 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1548 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1549 1550 Register UnmergeSrc = WideReg; 1551 1552 // Create a merge to the LCM type, padding with undef 1553 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1554 // => 1555 // %1:_(<4 x s32>) = G_FOO 1556 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1557 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1558 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1559 if (NumMergeParts > 1) { 1560 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1561 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1562 MergeParts[0] = WideReg; 1563 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1564 } 1565 1566 // Unmerge to the original register and pad with dead defs. 1567 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1568 UnmergeResults[0] = OrigReg; 1569 for (int I = 1; I != NumUnmergeParts; ++I) 1570 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1571 1572 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1573 return WideReg; 1574 } 1575 1576 LegalizerHelper::LegalizeResult 1577 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1578 LLT WideTy) { 1579 if (TypeIdx != 0) 1580 return UnableToLegalize; 1581 1582 int NumDst = MI.getNumOperands() - 1; 1583 Register SrcReg = MI.getOperand(NumDst).getReg(); 1584 LLT SrcTy = MRI.getType(SrcReg); 1585 if (SrcTy.isVector()) 1586 return UnableToLegalize; 1587 1588 Register Dst0Reg = MI.getOperand(0).getReg(); 1589 LLT DstTy = MRI.getType(Dst0Reg); 1590 if (!DstTy.isScalar()) 1591 return UnableToLegalize; 1592 1593 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1594 if (SrcTy.isPointer()) { 1595 const DataLayout &DL = MIRBuilder.getDataLayout(); 1596 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1597 LLVM_DEBUG( 1598 dbgs() << "Not casting non-integral address space integer\n"); 1599 return UnableToLegalize; 1600 } 1601 1602 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1603 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1604 } 1605 1606 // Widen SrcTy to WideTy. This does not affect the result, but since the 1607 // user requested this size, it is probably better handled than SrcTy and 1608 // should reduce the total number of legalization artifacts 1609 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1610 SrcTy = WideTy; 1611 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1612 } 1613 1614 // Theres no unmerge type to target. Directly extract the bits from the 1615 // source type 1616 unsigned DstSize = DstTy.getSizeInBits(); 1617 1618 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1619 for (int I = 1; I != NumDst; ++I) { 1620 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1621 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1622 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1623 } 1624 1625 MI.eraseFromParent(); 1626 return Legalized; 1627 } 1628 1629 // Extend the source to a wider type. 1630 LLT LCMTy = getLCMType(SrcTy, WideTy); 1631 1632 Register WideSrc = SrcReg; 1633 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1634 // TODO: If this is an integral address space, cast to integer and anyext. 1635 if (SrcTy.isPointer()) { 1636 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1637 return UnableToLegalize; 1638 } 1639 1640 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1641 } 1642 1643 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1644 1645 // Create a sequence of unmerges and merges to the original results. Since we 1646 // may have widened the source, we will need to pad the results with dead defs 1647 // to cover the source register. 1648 // e.g. widen s48 to s64: 1649 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1650 // 1651 // => 1652 // %4:_(s192) = G_ANYEXT %0:_(s96) 1653 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1654 // ; unpack to GCD type, with extra dead defs 1655 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1656 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1657 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1658 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1659 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1660 const LLT GCDTy = getGCDType(WideTy, DstTy); 1661 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1662 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1663 1664 // Directly unmerge to the destination without going through a GCD type 1665 // if possible 1666 if (PartsPerRemerge == 1) { 1667 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1668 1669 for (int I = 0; I != NumUnmerge; ++I) { 1670 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1671 1672 for (int J = 0; J != PartsPerUnmerge; ++J) { 1673 int Idx = I * PartsPerUnmerge + J; 1674 if (Idx < NumDst) 1675 MIB.addDef(MI.getOperand(Idx).getReg()); 1676 else { 1677 // Create dead def for excess components. 1678 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1679 } 1680 } 1681 1682 MIB.addUse(Unmerge.getReg(I)); 1683 } 1684 } else { 1685 SmallVector<Register, 16> Parts; 1686 for (int J = 0; J != NumUnmerge; ++J) 1687 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1688 1689 SmallVector<Register, 8> RemergeParts; 1690 for (int I = 0; I != NumDst; ++I) { 1691 for (int J = 0; J < PartsPerRemerge; ++J) { 1692 const int Idx = I * PartsPerRemerge + J; 1693 RemergeParts.emplace_back(Parts[Idx]); 1694 } 1695 1696 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1697 RemergeParts.clear(); 1698 } 1699 } 1700 1701 MI.eraseFromParent(); 1702 return Legalized; 1703 } 1704 1705 LegalizerHelper::LegalizeResult 1706 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1707 LLT WideTy) { 1708 Register DstReg = MI.getOperand(0).getReg(); 1709 Register SrcReg = MI.getOperand(1).getReg(); 1710 LLT SrcTy = MRI.getType(SrcReg); 1711 1712 LLT DstTy = MRI.getType(DstReg); 1713 unsigned Offset = MI.getOperand(2).getImm(); 1714 1715 if (TypeIdx == 0) { 1716 if (SrcTy.isVector() || DstTy.isVector()) 1717 return UnableToLegalize; 1718 1719 SrcOp Src(SrcReg); 1720 if (SrcTy.isPointer()) { 1721 // Extracts from pointers can be handled only if they are really just 1722 // simple integers. 1723 const DataLayout &DL = MIRBuilder.getDataLayout(); 1724 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1725 return UnableToLegalize; 1726 1727 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1728 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1729 SrcTy = SrcAsIntTy; 1730 } 1731 1732 if (DstTy.isPointer()) 1733 return UnableToLegalize; 1734 1735 if (Offset == 0) { 1736 // Avoid a shift in the degenerate case. 1737 MIRBuilder.buildTrunc(DstReg, 1738 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1739 MI.eraseFromParent(); 1740 return Legalized; 1741 } 1742 1743 // Do a shift in the source type. 1744 LLT ShiftTy = SrcTy; 1745 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1746 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1747 ShiftTy = WideTy; 1748 } 1749 1750 auto LShr = MIRBuilder.buildLShr( 1751 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1752 MIRBuilder.buildTrunc(DstReg, LShr); 1753 MI.eraseFromParent(); 1754 return Legalized; 1755 } 1756 1757 if (SrcTy.isScalar()) { 1758 Observer.changingInstr(MI); 1759 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1760 Observer.changedInstr(MI); 1761 return Legalized; 1762 } 1763 1764 if (!SrcTy.isVector()) 1765 return UnableToLegalize; 1766 1767 if (DstTy != SrcTy.getElementType()) 1768 return UnableToLegalize; 1769 1770 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1771 return UnableToLegalize; 1772 1773 Observer.changingInstr(MI); 1774 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1775 1776 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1777 Offset); 1778 widenScalarDst(MI, WideTy.getScalarType(), 0); 1779 Observer.changedInstr(MI); 1780 return Legalized; 1781 } 1782 1783 LegalizerHelper::LegalizeResult 1784 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1785 LLT WideTy) { 1786 if (TypeIdx != 0 || WideTy.isVector()) 1787 return UnableToLegalize; 1788 Observer.changingInstr(MI); 1789 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1790 widenScalarDst(MI, WideTy); 1791 Observer.changedInstr(MI); 1792 return Legalized; 1793 } 1794 1795 LegalizerHelper::LegalizeResult 1796 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, 1797 LLT WideTy) { 1798 if (TypeIdx == 1) 1799 return UnableToLegalize; // TODO 1800 1801 unsigned Opcode; 1802 unsigned ExtOpcode; 1803 Optional<Register> CarryIn = None; 1804 switch (MI.getOpcode()) { 1805 default: 1806 llvm_unreachable("Unexpected opcode!"); 1807 case TargetOpcode::G_SADDO: 1808 Opcode = TargetOpcode::G_ADD; 1809 ExtOpcode = TargetOpcode::G_SEXT; 1810 break; 1811 case TargetOpcode::G_SSUBO: 1812 Opcode = TargetOpcode::G_SUB; 1813 ExtOpcode = TargetOpcode::G_SEXT; 1814 break; 1815 case TargetOpcode::G_UADDO: 1816 Opcode = TargetOpcode::G_ADD; 1817 ExtOpcode = TargetOpcode::G_ZEXT; 1818 break; 1819 case TargetOpcode::G_USUBO: 1820 Opcode = TargetOpcode::G_SUB; 1821 ExtOpcode = TargetOpcode::G_ZEXT; 1822 break; 1823 case TargetOpcode::G_SADDE: 1824 Opcode = TargetOpcode::G_UADDE; 1825 ExtOpcode = TargetOpcode::G_SEXT; 1826 CarryIn = MI.getOperand(4).getReg(); 1827 break; 1828 case TargetOpcode::G_SSUBE: 1829 Opcode = TargetOpcode::G_USUBE; 1830 ExtOpcode = TargetOpcode::G_SEXT; 1831 CarryIn = MI.getOperand(4).getReg(); 1832 break; 1833 case TargetOpcode::G_UADDE: 1834 Opcode = TargetOpcode::G_UADDE; 1835 ExtOpcode = TargetOpcode::G_ZEXT; 1836 CarryIn = MI.getOperand(4).getReg(); 1837 break; 1838 case TargetOpcode::G_USUBE: 1839 Opcode = TargetOpcode::G_USUBE; 1840 ExtOpcode = TargetOpcode::G_ZEXT; 1841 CarryIn = MI.getOperand(4).getReg(); 1842 break; 1843 } 1844 1845 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 1846 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 1847 // Do the arithmetic in the larger type. 1848 Register NewOp; 1849 if (CarryIn) { 1850 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); 1851 NewOp = MIRBuilder 1852 .buildInstr(Opcode, {WideTy, CarryOutTy}, 1853 {LHSExt, RHSExt, *CarryIn}) 1854 .getReg(0); 1855 } else { 1856 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); 1857 } 1858 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1859 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 1860 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 1861 // There is no overflow if the ExtOp is the same as NewOp. 1862 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 1863 // Now trunc the NewOp to the original result. 1864 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1865 MI.eraseFromParent(); 1866 return Legalized; 1867 } 1868 1869 LegalizerHelper::LegalizeResult 1870 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1871 LLT WideTy) { 1872 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1873 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1874 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1875 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1876 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1877 // We can convert this to: 1878 // 1. Any extend iN to iM 1879 // 2. SHL by M-N 1880 // 3. [US][ADD|SUB|SHL]SAT 1881 // 4. L/ASHR by M-N 1882 // 1883 // It may be more efficient to lower this to a min and a max operation in 1884 // the higher precision arithmetic if the promoted operation isn't legal, 1885 // but this decision is up to the target's lowering request. 1886 Register DstReg = MI.getOperand(0).getReg(); 1887 1888 unsigned NewBits = WideTy.getScalarSizeInBits(); 1889 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1890 1891 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1892 // must not left shift the RHS to preserve the shift amount. 1893 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1894 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1895 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1896 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1897 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1898 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1899 1900 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1901 {ShiftL, ShiftR}, MI.getFlags()); 1902 1903 // Use a shift that will preserve the number of sign bits when the trunc is 1904 // folded away. 1905 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1906 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1907 1908 MIRBuilder.buildTrunc(DstReg, Result); 1909 MI.eraseFromParent(); 1910 return Legalized; 1911 } 1912 1913 LegalizerHelper::LegalizeResult 1914 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx, 1915 LLT WideTy) { 1916 if (TypeIdx == 1) 1917 return UnableToLegalize; 1918 1919 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO; 1920 Register Result = MI.getOperand(0).getReg(); 1921 Register OriginalOverflow = MI.getOperand(1).getReg(); 1922 Register LHS = MI.getOperand(2).getReg(); 1923 Register RHS = MI.getOperand(3).getReg(); 1924 LLT SrcTy = MRI.getType(LHS); 1925 LLT OverflowTy = MRI.getType(OriginalOverflow); 1926 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits(); 1927 1928 // To determine if the result overflowed in the larger type, we extend the 1929 // input to the larger type, do the multiply (checking if it overflows), 1930 // then also check the high bits of the result to see if overflow happened 1931 // there. 1932 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1933 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS}); 1934 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS}); 1935 1936 auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy}, 1937 {LeftOperand, RightOperand}); 1938 auto Mul = Mulo->getOperand(0); 1939 MIRBuilder.buildTrunc(Result, Mul); 1940 1941 MachineInstrBuilder ExtResult; 1942 // Overflow occurred if it occurred in the larger type, or if the high part 1943 // of the result does not zero/sign-extend the low part. Check this second 1944 // possibility first. 1945 if (IsSigned) { 1946 // For signed, overflow occurred when the high part does not sign-extend 1947 // the low part. 1948 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth); 1949 } else { 1950 // Unsigned overflow occurred when the high part does not zero-extend the 1951 // low part. 1952 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth); 1953 } 1954 1955 // Multiplication cannot overflow if the WideTy is >= 2 * original width, 1956 // so we don't need to check the overflow result of larger type Mulo. 1957 if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) { 1958 auto Overflow = 1959 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult); 1960 // Finally check if the multiplication in the larger type itself overflowed. 1961 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow); 1962 } else { 1963 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult); 1964 } 1965 MI.eraseFromParent(); 1966 return Legalized; 1967 } 1968 1969 LegalizerHelper::LegalizeResult 1970 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1971 switch (MI.getOpcode()) { 1972 default: 1973 return UnableToLegalize; 1974 case TargetOpcode::G_ATOMICRMW_XCHG: 1975 case TargetOpcode::G_ATOMICRMW_ADD: 1976 case TargetOpcode::G_ATOMICRMW_SUB: 1977 case TargetOpcode::G_ATOMICRMW_AND: 1978 case TargetOpcode::G_ATOMICRMW_OR: 1979 case TargetOpcode::G_ATOMICRMW_XOR: 1980 case TargetOpcode::G_ATOMICRMW_MIN: 1981 case TargetOpcode::G_ATOMICRMW_MAX: 1982 case TargetOpcode::G_ATOMICRMW_UMIN: 1983 case TargetOpcode::G_ATOMICRMW_UMAX: 1984 assert(TypeIdx == 0 && "atomicrmw with second scalar type"); 1985 Observer.changingInstr(MI); 1986 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1987 widenScalarDst(MI, WideTy, 0); 1988 Observer.changedInstr(MI); 1989 return Legalized; 1990 case TargetOpcode::G_ATOMIC_CMPXCHG: 1991 assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type"); 1992 Observer.changingInstr(MI); 1993 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1994 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1995 widenScalarDst(MI, WideTy, 0); 1996 Observer.changedInstr(MI); 1997 return Legalized; 1998 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: 1999 if (TypeIdx == 0) { 2000 Observer.changingInstr(MI); 2001 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2002 widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT); 2003 widenScalarDst(MI, WideTy, 0); 2004 Observer.changedInstr(MI); 2005 return Legalized; 2006 } 2007 assert(TypeIdx == 1 && 2008 "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type"); 2009 Observer.changingInstr(MI); 2010 widenScalarDst(MI, WideTy, 1); 2011 Observer.changedInstr(MI); 2012 return Legalized; 2013 case TargetOpcode::G_EXTRACT: 2014 return widenScalarExtract(MI, TypeIdx, WideTy); 2015 case TargetOpcode::G_INSERT: 2016 return widenScalarInsert(MI, TypeIdx, WideTy); 2017 case TargetOpcode::G_MERGE_VALUES: 2018 return widenScalarMergeValues(MI, TypeIdx, WideTy); 2019 case TargetOpcode::G_UNMERGE_VALUES: 2020 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 2021 case TargetOpcode::G_SADDO: 2022 case TargetOpcode::G_SSUBO: 2023 case TargetOpcode::G_UADDO: 2024 case TargetOpcode::G_USUBO: 2025 case TargetOpcode::G_SADDE: 2026 case TargetOpcode::G_SSUBE: 2027 case TargetOpcode::G_UADDE: 2028 case TargetOpcode::G_USUBE: 2029 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); 2030 case TargetOpcode::G_UMULO: 2031 case TargetOpcode::G_SMULO: 2032 return widenScalarMulo(MI, TypeIdx, WideTy); 2033 case TargetOpcode::G_SADDSAT: 2034 case TargetOpcode::G_SSUBSAT: 2035 case TargetOpcode::G_SSHLSAT: 2036 case TargetOpcode::G_UADDSAT: 2037 case TargetOpcode::G_USUBSAT: 2038 case TargetOpcode::G_USHLSAT: 2039 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 2040 case TargetOpcode::G_CTTZ: 2041 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2042 case TargetOpcode::G_CTLZ: 2043 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2044 case TargetOpcode::G_CTPOP: { 2045 if (TypeIdx == 0) { 2046 Observer.changingInstr(MI); 2047 widenScalarDst(MI, WideTy, 0); 2048 Observer.changedInstr(MI); 2049 return Legalized; 2050 } 2051 2052 Register SrcReg = MI.getOperand(1).getReg(); 2053 2054 // First extend the input. 2055 unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ || 2056 MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF 2057 ? TargetOpcode::G_ANYEXT 2058 : TargetOpcode::G_ZEXT; 2059 auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg}); 2060 LLT CurTy = MRI.getType(SrcReg); 2061 unsigned NewOpc = MI.getOpcode(); 2062 if (NewOpc == TargetOpcode::G_CTTZ) { 2063 // The count is the same in the larger type except if the original 2064 // value was zero. This can be handled by setting the bit just off 2065 // the top of the original type. 2066 auto TopBit = 2067 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 2068 MIBSrc = MIRBuilder.buildOr( 2069 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 2070 // Now we know the operand is non-zero, use the more relaxed opcode. 2071 NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF; 2072 } 2073 2074 // Perform the operation at the larger size. 2075 auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc}); 2076 // This is already the correct result for CTPOP and CTTZs 2077 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 2078 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 2079 // The correct result is NewOp - (Difference in widety and current ty). 2080 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 2081 MIBNewOp = MIRBuilder.buildSub( 2082 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 2083 } 2084 2085 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 2086 MI.eraseFromParent(); 2087 return Legalized; 2088 } 2089 case TargetOpcode::G_BSWAP: { 2090 Observer.changingInstr(MI); 2091 Register DstReg = MI.getOperand(0).getReg(); 2092 2093 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 2094 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2095 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 2096 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2097 2098 MI.getOperand(0).setReg(DstExt); 2099 2100 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2101 2102 LLT Ty = MRI.getType(DstReg); 2103 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2104 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 2105 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 2106 2107 MIRBuilder.buildTrunc(DstReg, ShrReg); 2108 Observer.changedInstr(MI); 2109 return Legalized; 2110 } 2111 case TargetOpcode::G_BITREVERSE: { 2112 Observer.changingInstr(MI); 2113 2114 Register DstReg = MI.getOperand(0).getReg(); 2115 LLT Ty = MRI.getType(DstReg); 2116 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2117 2118 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2119 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2120 MI.getOperand(0).setReg(DstExt); 2121 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2122 2123 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 2124 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 2125 MIRBuilder.buildTrunc(DstReg, Shift); 2126 Observer.changedInstr(MI); 2127 return Legalized; 2128 } 2129 case TargetOpcode::G_FREEZE: 2130 Observer.changingInstr(MI); 2131 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2132 widenScalarDst(MI, WideTy); 2133 Observer.changedInstr(MI); 2134 return Legalized; 2135 2136 case TargetOpcode::G_ABS: 2137 Observer.changingInstr(MI); 2138 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2139 widenScalarDst(MI, WideTy); 2140 Observer.changedInstr(MI); 2141 return Legalized; 2142 2143 case TargetOpcode::G_ADD: 2144 case TargetOpcode::G_AND: 2145 case TargetOpcode::G_MUL: 2146 case TargetOpcode::G_OR: 2147 case TargetOpcode::G_XOR: 2148 case TargetOpcode::G_SUB: 2149 // Perform operation at larger width (any extension is fines here, high bits 2150 // don't affect the result) and then truncate the result back to the 2151 // original type. 2152 Observer.changingInstr(MI); 2153 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2154 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2155 widenScalarDst(MI, WideTy); 2156 Observer.changedInstr(MI); 2157 return Legalized; 2158 2159 case TargetOpcode::G_SBFX: 2160 case TargetOpcode::G_UBFX: 2161 Observer.changingInstr(MI); 2162 2163 if (TypeIdx == 0) { 2164 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2165 widenScalarDst(MI, WideTy); 2166 } else { 2167 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2168 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2169 } 2170 2171 Observer.changedInstr(MI); 2172 return Legalized; 2173 2174 case TargetOpcode::G_SHL: 2175 Observer.changingInstr(MI); 2176 2177 if (TypeIdx == 0) { 2178 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2179 widenScalarDst(MI, WideTy); 2180 } else { 2181 assert(TypeIdx == 1); 2182 // The "number of bits to shift" operand must preserve its value as an 2183 // unsigned integer: 2184 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2185 } 2186 2187 Observer.changedInstr(MI); 2188 return Legalized; 2189 2190 case TargetOpcode::G_SDIV: 2191 case TargetOpcode::G_SREM: 2192 case TargetOpcode::G_SMIN: 2193 case TargetOpcode::G_SMAX: 2194 Observer.changingInstr(MI); 2195 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2196 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2197 widenScalarDst(MI, WideTy); 2198 Observer.changedInstr(MI); 2199 return Legalized; 2200 2201 case TargetOpcode::G_SDIVREM: 2202 Observer.changingInstr(MI); 2203 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2204 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2205 widenScalarDst(MI, WideTy); 2206 widenScalarDst(MI, WideTy, 1); 2207 Observer.changedInstr(MI); 2208 return Legalized; 2209 2210 case TargetOpcode::G_ASHR: 2211 case TargetOpcode::G_LSHR: 2212 Observer.changingInstr(MI); 2213 2214 if (TypeIdx == 0) { 2215 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 2216 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2217 2218 widenScalarSrc(MI, WideTy, 1, CvtOp); 2219 widenScalarDst(MI, WideTy); 2220 } else { 2221 assert(TypeIdx == 1); 2222 // The "number of bits to shift" operand must preserve its value as an 2223 // unsigned integer: 2224 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2225 } 2226 2227 Observer.changedInstr(MI); 2228 return Legalized; 2229 case TargetOpcode::G_UDIV: 2230 case TargetOpcode::G_UREM: 2231 case TargetOpcode::G_UMIN: 2232 case TargetOpcode::G_UMAX: 2233 Observer.changingInstr(MI); 2234 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2235 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2236 widenScalarDst(MI, WideTy); 2237 Observer.changedInstr(MI); 2238 return Legalized; 2239 2240 case TargetOpcode::G_UDIVREM: 2241 Observer.changingInstr(MI); 2242 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2243 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2244 widenScalarDst(MI, WideTy); 2245 widenScalarDst(MI, WideTy, 1); 2246 Observer.changedInstr(MI); 2247 return Legalized; 2248 2249 case TargetOpcode::G_SELECT: 2250 Observer.changingInstr(MI); 2251 if (TypeIdx == 0) { 2252 // Perform operation at larger width (any extension is fine here, high 2253 // bits don't affect the result) and then truncate the result back to the 2254 // original type. 2255 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2256 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2257 widenScalarDst(MI, WideTy); 2258 } else { 2259 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2260 // Explicit extension is required here since high bits affect the result. 2261 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2262 } 2263 Observer.changedInstr(MI); 2264 return Legalized; 2265 2266 case TargetOpcode::G_FPTOSI: 2267 case TargetOpcode::G_FPTOUI: 2268 Observer.changingInstr(MI); 2269 2270 if (TypeIdx == 0) 2271 widenScalarDst(MI, WideTy); 2272 else 2273 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2274 2275 Observer.changedInstr(MI); 2276 return Legalized; 2277 case TargetOpcode::G_SITOFP: 2278 Observer.changingInstr(MI); 2279 2280 if (TypeIdx == 0) 2281 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2282 else 2283 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2284 2285 Observer.changedInstr(MI); 2286 return Legalized; 2287 case TargetOpcode::G_UITOFP: 2288 Observer.changingInstr(MI); 2289 2290 if (TypeIdx == 0) 2291 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2292 else 2293 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2294 2295 Observer.changedInstr(MI); 2296 return Legalized; 2297 case TargetOpcode::G_LOAD: 2298 case TargetOpcode::G_SEXTLOAD: 2299 case TargetOpcode::G_ZEXTLOAD: 2300 Observer.changingInstr(MI); 2301 widenScalarDst(MI, WideTy); 2302 Observer.changedInstr(MI); 2303 return Legalized; 2304 2305 case TargetOpcode::G_STORE: { 2306 if (TypeIdx != 0) 2307 return UnableToLegalize; 2308 2309 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2310 if (!Ty.isScalar()) 2311 return UnableToLegalize; 2312 2313 Observer.changingInstr(MI); 2314 2315 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2316 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2317 widenScalarSrc(MI, WideTy, 0, ExtType); 2318 2319 Observer.changedInstr(MI); 2320 return Legalized; 2321 } 2322 case TargetOpcode::G_CONSTANT: { 2323 MachineOperand &SrcMO = MI.getOperand(1); 2324 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2325 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2326 MRI.getType(MI.getOperand(0).getReg())); 2327 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2328 ExtOpc == TargetOpcode::G_ANYEXT) && 2329 "Illegal Extend"); 2330 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2331 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2332 ? SrcVal.sext(WideTy.getSizeInBits()) 2333 : SrcVal.zext(WideTy.getSizeInBits()); 2334 Observer.changingInstr(MI); 2335 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2336 2337 widenScalarDst(MI, WideTy); 2338 Observer.changedInstr(MI); 2339 return Legalized; 2340 } 2341 case TargetOpcode::G_FCONSTANT: { 2342 MachineOperand &SrcMO = MI.getOperand(1); 2343 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2344 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2345 bool LosesInfo; 2346 switch (WideTy.getSizeInBits()) { 2347 case 32: 2348 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2349 &LosesInfo); 2350 break; 2351 case 64: 2352 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2353 &LosesInfo); 2354 break; 2355 default: 2356 return UnableToLegalize; 2357 } 2358 2359 assert(!LosesInfo && "extend should always be lossless"); 2360 2361 Observer.changingInstr(MI); 2362 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2363 2364 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2365 Observer.changedInstr(MI); 2366 return Legalized; 2367 } 2368 case TargetOpcode::G_IMPLICIT_DEF: { 2369 Observer.changingInstr(MI); 2370 widenScalarDst(MI, WideTy); 2371 Observer.changedInstr(MI); 2372 return Legalized; 2373 } 2374 case TargetOpcode::G_BRCOND: 2375 Observer.changingInstr(MI); 2376 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2377 Observer.changedInstr(MI); 2378 return Legalized; 2379 2380 case TargetOpcode::G_FCMP: 2381 Observer.changingInstr(MI); 2382 if (TypeIdx == 0) 2383 widenScalarDst(MI, WideTy); 2384 else { 2385 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2386 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2387 } 2388 Observer.changedInstr(MI); 2389 return Legalized; 2390 2391 case TargetOpcode::G_ICMP: 2392 Observer.changingInstr(MI); 2393 if (TypeIdx == 0) 2394 widenScalarDst(MI, WideTy); 2395 else { 2396 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2397 MI.getOperand(1).getPredicate())) 2398 ? TargetOpcode::G_SEXT 2399 : TargetOpcode::G_ZEXT; 2400 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2401 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2402 } 2403 Observer.changedInstr(MI); 2404 return Legalized; 2405 2406 case TargetOpcode::G_PTR_ADD: 2407 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2408 Observer.changingInstr(MI); 2409 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2410 Observer.changedInstr(MI); 2411 return Legalized; 2412 2413 case TargetOpcode::G_PHI: { 2414 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2415 2416 Observer.changingInstr(MI); 2417 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2418 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2419 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2420 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2421 } 2422 2423 MachineBasicBlock &MBB = *MI.getParent(); 2424 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2425 widenScalarDst(MI, WideTy); 2426 Observer.changedInstr(MI); 2427 return Legalized; 2428 } 2429 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2430 if (TypeIdx == 0) { 2431 Register VecReg = MI.getOperand(1).getReg(); 2432 LLT VecTy = MRI.getType(VecReg); 2433 Observer.changingInstr(MI); 2434 2435 widenScalarSrc( 2436 MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1, 2437 TargetOpcode::G_SEXT); 2438 2439 widenScalarDst(MI, WideTy, 0); 2440 Observer.changedInstr(MI); 2441 return Legalized; 2442 } 2443 2444 if (TypeIdx != 2) 2445 return UnableToLegalize; 2446 Observer.changingInstr(MI); 2447 // TODO: Probably should be zext 2448 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2449 Observer.changedInstr(MI); 2450 return Legalized; 2451 } 2452 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2453 if (TypeIdx == 1) { 2454 Observer.changingInstr(MI); 2455 2456 Register VecReg = MI.getOperand(1).getReg(); 2457 LLT VecTy = MRI.getType(VecReg); 2458 LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy); 2459 2460 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2461 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2462 widenScalarDst(MI, WideVecTy, 0); 2463 Observer.changedInstr(MI); 2464 return Legalized; 2465 } 2466 2467 if (TypeIdx == 2) { 2468 Observer.changingInstr(MI); 2469 // TODO: Probably should be zext 2470 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2471 Observer.changedInstr(MI); 2472 return Legalized; 2473 } 2474 2475 return UnableToLegalize; 2476 } 2477 case TargetOpcode::G_FADD: 2478 case TargetOpcode::G_FMUL: 2479 case TargetOpcode::G_FSUB: 2480 case TargetOpcode::G_FMA: 2481 case TargetOpcode::G_FMAD: 2482 case TargetOpcode::G_FNEG: 2483 case TargetOpcode::G_FABS: 2484 case TargetOpcode::G_FCANONICALIZE: 2485 case TargetOpcode::G_FMINNUM: 2486 case TargetOpcode::G_FMAXNUM: 2487 case TargetOpcode::G_FMINNUM_IEEE: 2488 case TargetOpcode::G_FMAXNUM_IEEE: 2489 case TargetOpcode::G_FMINIMUM: 2490 case TargetOpcode::G_FMAXIMUM: 2491 case TargetOpcode::G_FDIV: 2492 case TargetOpcode::G_FREM: 2493 case TargetOpcode::G_FCEIL: 2494 case TargetOpcode::G_FFLOOR: 2495 case TargetOpcode::G_FCOS: 2496 case TargetOpcode::G_FSIN: 2497 case TargetOpcode::G_FLOG10: 2498 case TargetOpcode::G_FLOG: 2499 case TargetOpcode::G_FLOG2: 2500 case TargetOpcode::G_FRINT: 2501 case TargetOpcode::G_FNEARBYINT: 2502 case TargetOpcode::G_FSQRT: 2503 case TargetOpcode::G_FEXP: 2504 case TargetOpcode::G_FEXP2: 2505 case TargetOpcode::G_FPOW: 2506 case TargetOpcode::G_INTRINSIC_TRUNC: 2507 case TargetOpcode::G_INTRINSIC_ROUND: 2508 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2509 assert(TypeIdx == 0); 2510 Observer.changingInstr(MI); 2511 2512 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2513 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2514 2515 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2516 Observer.changedInstr(MI); 2517 return Legalized; 2518 case TargetOpcode::G_FPOWI: { 2519 if (TypeIdx != 0) 2520 return UnableToLegalize; 2521 Observer.changingInstr(MI); 2522 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2523 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2524 Observer.changedInstr(MI); 2525 return Legalized; 2526 } 2527 case TargetOpcode::G_INTTOPTR: 2528 if (TypeIdx != 1) 2529 return UnableToLegalize; 2530 2531 Observer.changingInstr(MI); 2532 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2533 Observer.changedInstr(MI); 2534 return Legalized; 2535 case TargetOpcode::G_PTRTOINT: 2536 if (TypeIdx != 0) 2537 return UnableToLegalize; 2538 2539 Observer.changingInstr(MI); 2540 widenScalarDst(MI, WideTy, 0); 2541 Observer.changedInstr(MI); 2542 return Legalized; 2543 case TargetOpcode::G_BUILD_VECTOR: { 2544 Observer.changingInstr(MI); 2545 2546 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2547 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2548 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2549 2550 // Avoid changing the result vector type if the source element type was 2551 // requested. 2552 if (TypeIdx == 1) { 2553 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2554 } else { 2555 widenScalarDst(MI, WideTy, 0); 2556 } 2557 2558 Observer.changedInstr(MI); 2559 return Legalized; 2560 } 2561 case TargetOpcode::G_SEXT_INREG: 2562 if (TypeIdx != 0) 2563 return UnableToLegalize; 2564 2565 Observer.changingInstr(MI); 2566 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2567 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2568 Observer.changedInstr(MI); 2569 return Legalized; 2570 case TargetOpcode::G_PTRMASK: { 2571 if (TypeIdx != 1) 2572 return UnableToLegalize; 2573 Observer.changingInstr(MI); 2574 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2575 Observer.changedInstr(MI); 2576 return Legalized; 2577 } 2578 } 2579 } 2580 2581 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2582 MachineIRBuilder &B, Register Src, LLT Ty) { 2583 auto Unmerge = B.buildUnmerge(Ty, Src); 2584 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2585 Pieces.push_back(Unmerge.getReg(I)); 2586 } 2587 2588 LegalizerHelper::LegalizeResult 2589 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2590 Register Dst = MI.getOperand(0).getReg(); 2591 Register Src = MI.getOperand(1).getReg(); 2592 LLT DstTy = MRI.getType(Dst); 2593 LLT SrcTy = MRI.getType(Src); 2594 2595 if (SrcTy.isVector()) { 2596 LLT SrcEltTy = SrcTy.getElementType(); 2597 SmallVector<Register, 8> SrcRegs; 2598 2599 if (DstTy.isVector()) { 2600 int NumDstElt = DstTy.getNumElements(); 2601 int NumSrcElt = SrcTy.getNumElements(); 2602 2603 LLT DstEltTy = DstTy.getElementType(); 2604 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2605 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2606 2607 // If there's an element size mismatch, insert intermediate casts to match 2608 // the result element type. 2609 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2610 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2611 // 2612 // => 2613 // 2614 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2615 // %3:_(<2 x s8>) = G_BITCAST %2 2616 // %4:_(<2 x s8>) = G_BITCAST %3 2617 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2618 DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy); 2619 SrcPartTy = SrcEltTy; 2620 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2621 // 2622 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2623 // 2624 // => 2625 // 2626 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2627 // %3:_(s16) = G_BITCAST %2 2628 // %4:_(s16) = G_BITCAST %3 2629 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2630 SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy); 2631 DstCastTy = DstEltTy; 2632 } 2633 2634 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2635 for (Register &SrcReg : SrcRegs) 2636 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2637 } else 2638 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2639 2640 MIRBuilder.buildMerge(Dst, SrcRegs); 2641 MI.eraseFromParent(); 2642 return Legalized; 2643 } 2644 2645 if (DstTy.isVector()) { 2646 SmallVector<Register, 8> SrcRegs; 2647 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2648 MIRBuilder.buildMerge(Dst, SrcRegs); 2649 MI.eraseFromParent(); 2650 return Legalized; 2651 } 2652 2653 return UnableToLegalize; 2654 } 2655 2656 /// Figure out the bit offset into a register when coercing a vector index for 2657 /// the wide element type. This is only for the case when promoting vector to 2658 /// one with larger elements. 2659 // 2660 /// 2661 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2662 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2663 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2664 Register Idx, 2665 unsigned NewEltSize, 2666 unsigned OldEltSize) { 2667 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2668 LLT IdxTy = B.getMRI()->getType(Idx); 2669 2670 // Now figure out the amount we need to shift to get the target bits. 2671 auto OffsetMask = B.buildConstant( 2672 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2673 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2674 return B.buildShl(IdxTy, OffsetIdx, 2675 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2676 } 2677 2678 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2679 /// is casting to a vector with a smaller element size, perform multiple element 2680 /// extracts and merge the results. If this is coercing to a vector with larger 2681 /// elements, index the bitcasted vector and extract the target element with bit 2682 /// operations. This is intended to force the indexing in the native register 2683 /// size for architectures that can dynamically index the register file. 2684 LegalizerHelper::LegalizeResult 2685 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2686 LLT CastTy) { 2687 if (TypeIdx != 1) 2688 return UnableToLegalize; 2689 2690 Register Dst = MI.getOperand(0).getReg(); 2691 Register SrcVec = MI.getOperand(1).getReg(); 2692 Register Idx = MI.getOperand(2).getReg(); 2693 LLT SrcVecTy = MRI.getType(SrcVec); 2694 LLT IdxTy = MRI.getType(Idx); 2695 2696 LLT SrcEltTy = SrcVecTy.getElementType(); 2697 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2698 unsigned OldNumElts = SrcVecTy.getNumElements(); 2699 2700 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2701 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2702 2703 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2704 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2705 if (NewNumElts > OldNumElts) { 2706 // Decreasing the vector element size 2707 // 2708 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2709 // => 2710 // v4i32:castx = bitcast x:v2i64 2711 // 2712 // i64 = bitcast 2713 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2714 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2715 // 2716 if (NewNumElts % OldNumElts != 0) 2717 return UnableToLegalize; 2718 2719 // Type of the intermediate result vector. 2720 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2721 LLT MidTy = 2722 LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy); 2723 2724 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2725 2726 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2727 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2728 2729 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2730 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2731 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2732 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2733 NewOps[I] = Elt.getReg(0); 2734 } 2735 2736 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2737 MIRBuilder.buildBitcast(Dst, NewVec); 2738 MI.eraseFromParent(); 2739 return Legalized; 2740 } 2741 2742 if (NewNumElts < OldNumElts) { 2743 if (NewEltSize % OldEltSize != 0) 2744 return UnableToLegalize; 2745 2746 // This only depends on powers of 2 because we use bit tricks to figure out 2747 // the bit offset we need to shift to get the target element. A general 2748 // expansion could emit division/multiply. 2749 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2750 return UnableToLegalize; 2751 2752 // Increasing the vector element size. 2753 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2754 // 2755 // => 2756 // 2757 // %cast = G_BITCAST %vec 2758 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2759 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2760 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2761 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2762 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2763 // %elt = G_TRUNC %elt_bits 2764 2765 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2766 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2767 2768 // Divide to get the index in the wider element type. 2769 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2770 2771 Register WideElt = CastVec; 2772 if (CastTy.isVector()) { 2773 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2774 ScaledIdx).getReg(0); 2775 } 2776 2777 // Compute the bit offset into the register of the target element. 2778 Register OffsetBits = getBitcastWiderVectorElementOffset( 2779 MIRBuilder, Idx, NewEltSize, OldEltSize); 2780 2781 // Shift the wide element to get the target element. 2782 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2783 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2784 MI.eraseFromParent(); 2785 return Legalized; 2786 } 2787 2788 return UnableToLegalize; 2789 } 2790 2791 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2792 /// TargetReg, while preserving other bits in \p TargetReg. 2793 /// 2794 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2795 static Register buildBitFieldInsert(MachineIRBuilder &B, 2796 Register TargetReg, Register InsertReg, 2797 Register OffsetBits) { 2798 LLT TargetTy = B.getMRI()->getType(TargetReg); 2799 LLT InsertTy = B.getMRI()->getType(InsertReg); 2800 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2801 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2802 2803 // Produce a bitmask of the value to insert 2804 auto EltMask = B.buildConstant( 2805 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2806 InsertTy.getSizeInBits())); 2807 // Shift it into position 2808 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2809 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2810 2811 // Clear out the bits in the wide element 2812 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2813 2814 // The value to insert has all zeros already, so stick it into the masked 2815 // wide element. 2816 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2817 } 2818 2819 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2820 /// is increasing the element size, perform the indexing in the target element 2821 /// type, and use bit operations to insert at the element position. This is 2822 /// intended for architectures that can dynamically index the register file and 2823 /// want to force indexing in the native register size. 2824 LegalizerHelper::LegalizeResult 2825 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2826 LLT CastTy) { 2827 if (TypeIdx != 0) 2828 return UnableToLegalize; 2829 2830 Register Dst = MI.getOperand(0).getReg(); 2831 Register SrcVec = MI.getOperand(1).getReg(); 2832 Register Val = MI.getOperand(2).getReg(); 2833 Register Idx = MI.getOperand(3).getReg(); 2834 2835 LLT VecTy = MRI.getType(Dst); 2836 LLT IdxTy = MRI.getType(Idx); 2837 2838 LLT VecEltTy = VecTy.getElementType(); 2839 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2840 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2841 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2842 2843 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2844 unsigned OldNumElts = VecTy.getNumElements(); 2845 2846 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2847 if (NewNumElts < OldNumElts) { 2848 if (NewEltSize % OldEltSize != 0) 2849 return UnableToLegalize; 2850 2851 // This only depends on powers of 2 because we use bit tricks to figure out 2852 // the bit offset we need to shift to get the target element. A general 2853 // expansion could emit division/multiply. 2854 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2855 return UnableToLegalize; 2856 2857 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2858 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2859 2860 // Divide to get the index in the wider element type. 2861 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2862 2863 Register ExtractedElt = CastVec; 2864 if (CastTy.isVector()) { 2865 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2866 ScaledIdx).getReg(0); 2867 } 2868 2869 // Compute the bit offset into the register of the target element. 2870 Register OffsetBits = getBitcastWiderVectorElementOffset( 2871 MIRBuilder, Idx, NewEltSize, OldEltSize); 2872 2873 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2874 Val, OffsetBits); 2875 if (CastTy.isVector()) { 2876 InsertedElt = MIRBuilder.buildInsertVectorElement( 2877 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2878 } 2879 2880 MIRBuilder.buildBitcast(Dst, InsertedElt); 2881 MI.eraseFromParent(); 2882 return Legalized; 2883 } 2884 2885 return UnableToLegalize; 2886 } 2887 2888 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) { 2889 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2890 Register DstReg = LoadMI.getDstReg(); 2891 Register PtrReg = LoadMI.getPointerReg(); 2892 LLT DstTy = MRI.getType(DstReg); 2893 MachineMemOperand &MMO = LoadMI.getMMO(); 2894 LLT MemTy = MMO.getMemoryType(); 2895 MachineFunction &MF = MIRBuilder.getMF(); 2896 2897 unsigned MemSizeInBits = MemTy.getSizeInBits(); 2898 unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes(); 2899 2900 if (MemSizeInBits != MemStoreSizeInBits) { 2901 if (MemTy.isVector()) 2902 return UnableToLegalize; 2903 2904 // Promote to a byte-sized load if not loading an integral number of 2905 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 2906 LLT WideMemTy = LLT::scalar(MemStoreSizeInBits); 2907 MachineMemOperand *NewMMO = 2908 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy); 2909 2910 Register LoadReg = DstReg; 2911 LLT LoadTy = DstTy; 2912 2913 // If this wasn't already an extending load, we need to widen the result 2914 // register to avoid creating a load with a narrower result than the source. 2915 if (MemStoreSizeInBits > DstTy.getSizeInBits()) { 2916 LoadTy = WideMemTy; 2917 LoadReg = MRI.createGenericVirtualRegister(WideMemTy); 2918 } 2919 2920 if (isa<GSExtLoad>(LoadMI)) { 2921 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 2922 MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits); 2923 } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == DstTy) { 2924 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 2925 // The extra bits are guaranteed to be zero, since we stored them that 2926 // way. A zext load from Wide thus automatically gives zext from MemVT. 2927 MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits); 2928 } else { 2929 MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO); 2930 } 2931 2932 if (DstTy != LoadTy) 2933 MIRBuilder.buildTrunc(DstReg, LoadReg); 2934 2935 LoadMI.eraseFromParent(); 2936 return Legalized; 2937 } 2938 2939 // Big endian lowering not implemented. 2940 if (MIRBuilder.getDataLayout().isBigEndian()) 2941 return UnableToLegalize; 2942 2943 // This load needs splitting into power of 2 sized loads. 2944 // 2945 // Our strategy here is to generate anyextending loads for the smaller 2946 // types up to next power-2 result type, and then combine the two larger 2947 // result values together, before truncating back down to the non-pow-2 2948 // type. 2949 // E.g. v1 = i24 load => 2950 // v2 = i32 zextload (2 byte) 2951 // v3 = i32 load (1 byte) 2952 // v4 = i32 shl v3, 16 2953 // v5 = i32 or v4, v2 2954 // v1 = i24 trunc v5 2955 // By doing this we generate the correct truncate which should get 2956 // combined away as an artifact with a matching extend. 2957 2958 uint64_t LargeSplitSize, SmallSplitSize; 2959 2960 if (!isPowerOf2_32(MemSizeInBits)) { 2961 // This load needs splitting into power of 2 sized loads. 2962 LargeSplitSize = PowerOf2Floor(MemSizeInBits); 2963 SmallSplitSize = MemSizeInBits - LargeSplitSize; 2964 } else { 2965 // This is already a power of 2, but we still need to split this in half. 2966 // 2967 // Assume we're being asked to decompose an unaligned load. 2968 // TODO: If this requires multiple splits, handle them all at once. 2969 auto &Ctx = MF.getFunction().getContext(); 2970 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) 2971 return UnableToLegalize; 2972 2973 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; 2974 } 2975 2976 if (MemTy.isVector()) { 2977 // TODO: Handle vector extloads 2978 if (MemTy != DstTy) 2979 return UnableToLegalize; 2980 2981 // TODO: We can do better than scalarizing the vector and at least split it 2982 // in half. 2983 return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType()); 2984 } 2985 2986 MachineMemOperand *LargeMMO = 2987 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2988 MachineMemOperand *SmallMMO = 2989 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2990 2991 LLT PtrTy = MRI.getType(PtrReg); 2992 unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits()); 2993 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2994 auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy, 2995 PtrReg, *LargeMMO); 2996 2997 auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), 2998 LargeSplitSize / 8); 2999 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 3000 auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); 3001 auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy, 3002 SmallPtr, *SmallMMO); 3003 3004 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 3005 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 3006 3007 if (AnyExtTy == DstTy) 3008 MIRBuilder.buildOr(DstReg, Shift, LargeLoad); 3009 else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) { 3010 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 3011 MIRBuilder.buildTrunc(DstReg, {Or}); 3012 } else { 3013 assert(DstTy.isPointer() && "expected pointer"); 3014 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 3015 3016 // FIXME: We currently consider this to be illegal for non-integral address 3017 // spaces, but we need still need a way to reinterpret the bits. 3018 MIRBuilder.buildIntToPtr(DstReg, Or); 3019 } 3020 3021 LoadMI.eraseFromParent(); 3022 return Legalized; 3023 } 3024 3025 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) { 3026 // Lower a non-power of 2 store into multiple pow-2 stores. 3027 // E.g. split an i24 store into an i16 store + i8 store. 3028 // We do this by first extending the stored value to the next largest power 3029 // of 2 type, and then using truncating stores to store the components. 3030 // By doing this, likewise with G_LOAD, generate an extend that can be 3031 // artifact-combined away instead of leaving behind extracts. 3032 Register SrcReg = StoreMI.getValueReg(); 3033 Register PtrReg = StoreMI.getPointerReg(); 3034 LLT SrcTy = MRI.getType(SrcReg); 3035 MachineFunction &MF = MIRBuilder.getMF(); 3036 MachineMemOperand &MMO = **StoreMI.memoperands_begin(); 3037 LLT MemTy = MMO.getMemoryType(); 3038 3039 unsigned StoreWidth = MemTy.getSizeInBits(); 3040 unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes(); 3041 3042 if (StoreWidth != StoreSizeInBits) { 3043 if (SrcTy.isVector()) 3044 return UnableToLegalize; 3045 3046 // Promote to a byte-sized store with upper bits zero if not 3047 // storing an integral number of bytes. For example, promote 3048 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 3049 LLT WideTy = LLT::scalar(StoreSizeInBits); 3050 3051 if (StoreSizeInBits > SrcTy.getSizeInBits()) { 3052 // Avoid creating a store with a narrower source than result. 3053 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 3054 SrcTy = WideTy; 3055 } 3056 3057 auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth); 3058 3059 MachineMemOperand *NewMMO = 3060 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy); 3061 MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO); 3062 StoreMI.eraseFromParent(); 3063 return Legalized; 3064 } 3065 3066 if (MemTy.isVector()) { 3067 // TODO: Handle vector trunc stores 3068 if (MemTy != SrcTy) 3069 return UnableToLegalize; 3070 3071 // TODO: We can do better than scalarizing the vector and at least split it 3072 // in half. 3073 return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType()); 3074 } 3075 3076 unsigned MemSizeInBits = MemTy.getSizeInBits(); 3077 uint64_t LargeSplitSize, SmallSplitSize; 3078 3079 if (!isPowerOf2_32(MemSizeInBits)) { 3080 LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits()); 3081 SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize; 3082 } else { 3083 auto &Ctx = MF.getFunction().getContext(); 3084 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) 3085 return UnableToLegalize; // Don't know what we're being asked to do. 3086 3087 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; 3088 } 3089 3090 // Extend to the next pow-2. If this store was itself the result of lowering, 3091 // e.g. an s56 store being broken into s32 + s24, we might have a stored type 3092 // that's wider than the stored size. 3093 unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits()); 3094 const LLT NewSrcTy = LLT::scalar(AnyExtSize); 3095 3096 if (SrcTy.isPointer()) { 3097 const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits()); 3098 SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0); 3099 } 3100 3101 auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg); 3102 3103 // Obtain the smaller value by shifting away the larger value. 3104 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize); 3105 auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt); 3106 3107 // Generate the PtrAdd and truncating stores. 3108 LLT PtrTy = MRI.getType(PtrReg); 3109 auto OffsetCst = MIRBuilder.buildConstant( 3110 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 3111 auto SmallPtr = 3112 MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst); 3113 3114 MachineMemOperand *LargeMMO = 3115 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 3116 MachineMemOperand *SmallMMO = 3117 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 3118 MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO); 3119 MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO); 3120 StoreMI.eraseFromParent(); 3121 return Legalized; 3122 } 3123 3124 LegalizerHelper::LegalizeResult 3125 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 3126 switch (MI.getOpcode()) { 3127 case TargetOpcode::G_LOAD: { 3128 if (TypeIdx != 0) 3129 return UnableToLegalize; 3130 MachineMemOperand &MMO = **MI.memoperands_begin(); 3131 3132 // Not sure how to interpret a bitcast of an extending load. 3133 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 3134 return UnableToLegalize; 3135 3136 Observer.changingInstr(MI); 3137 bitcastDst(MI, CastTy, 0); 3138 MMO.setType(CastTy); 3139 Observer.changedInstr(MI); 3140 return Legalized; 3141 } 3142 case TargetOpcode::G_STORE: { 3143 if (TypeIdx != 0) 3144 return UnableToLegalize; 3145 3146 MachineMemOperand &MMO = **MI.memoperands_begin(); 3147 3148 // Not sure how to interpret a bitcast of a truncating store. 3149 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 3150 return UnableToLegalize; 3151 3152 Observer.changingInstr(MI); 3153 bitcastSrc(MI, CastTy, 0); 3154 MMO.setType(CastTy); 3155 Observer.changedInstr(MI); 3156 return Legalized; 3157 } 3158 case TargetOpcode::G_SELECT: { 3159 if (TypeIdx != 0) 3160 return UnableToLegalize; 3161 3162 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 3163 LLVM_DEBUG( 3164 dbgs() << "bitcast action not implemented for vector select\n"); 3165 return UnableToLegalize; 3166 } 3167 3168 Observer.changingInstr(MI); 3169 bitcastSrc(MI, CastTy, 2); 3170 bitcastSrc(MI, CastTy, 3); 3171 bitcastDst(MI, CastTy, 0); 3172 Observer.changedInstr(MI); 3173 return Legalized; 3174 } 3175 case TargetOpcode::G_AND: 3176 case TargetOpcode::G_OR: 3177 case TargetOpcode::G_XOR: { 3178 Observer.changingInstr(MI); 3179 bitcastSrc(MI, CastTy, 1); 3180 bitcastSrc(MI, CastTy, 2); 3181 bitcastDst(MI, CastTy, 0); 3182 Observer.changedInstr(MI); 3183 return Legalized; 3184 } 3185 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 3186 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 3187 case TargetOpcode::G_INSERT_VECTOR_ELT: 3188 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 3189 default: 3190 return UnableToLegalize; 3191 } 3192 } 3193 3194 // Legalize an instruction by changing the opcode in place. 3195 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 3196 Observer.changingInstr(MI); 3197 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 3198 Observer.changedInstr(MI); 3199 } 3200 3201 LegalizerHelper::LegalizeResult 3202 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 3203 using namespace TargetOpcode; 3204 3205 switch(MI.getOpcode()) { 3206 default: 3207 return UnableToLegalize; 3208 case TargetOpcode::G_BITCAST: 3209 return lowerBitcast(MI); 3210 case TargetOpcode::G_SREM: 3211 case TargetOpcode::G_UREM: { 3212 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3213 auto Quot = 3214 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 3215 {MI.getOperand(1), MI.getOperand(2)}); 3216 3217 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 3218 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 3219 MI.eraseFromParent(); 3220 return Legalized; 3221 } 3222 case TargetOpcode::G_SADDO: 3223 case TargetOpcode::G_SSUBO: 3224 return lowerSADDO_SSUBO(MI); 3225 case TargetOpcode::G_UMULH: 3226 case TargetOpcode::G_SMULH: 3227 return lowerSMULH_UMULH(MI); 3228 case TargetOpcode::G_SMULO: 3229 case TargetOpcode::G_UMULO: { 3230 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 3231 // result. 3232 Register Res = MI.getOperand(0).getReg(); 3233 Register Overflow = MI.getOperand(1).getReg(); 3234 Register LHS = MI.getOperand(2).getReg(); 3235 Register RHS = MI.getOperand(3).getReg(); 3236 LLT Ty = MRI.getType(Res); 3237 3238 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 3239 ? TargetOpcode::G_SMULH 3240 : TargetOpcode::G_UMULH; 3241 3242 Observer.changingInstr(MI); 3243 const auto &TII = MIRBuilder.getTII(); 3244 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 3245 MI.RemoveOperand(1); 3246 Observer.changedInstr(MI); 3247 3248 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 3249 auto Zero = MIRBuilder.buildConstant(Ty, 0); 3250 3251 // Move insert point forward so we can use the Res register if needed. 3252 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 3253 3254 // For *signed* multiply, overflow is detected by checking: 3255 // (hi != (lo >> bitwidth-1)) 3256 if (Opcode == TargetOpcode::G_SMULH) { 3257 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 3258 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 3259 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 3260 } else { 3261 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 3262 } 3263 return Legalized; 3264 } 3265 case TargetOpcode::G_FNEG: { 3266 Register Res = MI.getOperand(0).getReg(); 3267 LLT Ty = MRI.getType(Res); 3268 3269 // TODO: Handle vector types once we are able to 3270 // represent them. 3271 if (Ty.isVector()) 3272 return UnableToLegalize; 3273 auto SignMask = 3274 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 3275 Register SubByReg = MI.getOperand(1).getReg(); 3276 MIRBuilder.buildXor(Res, SubByReg, SignMask); 3277 MI.eraseFromParent(); 3278 return Legalized; 3279 } 3280 case TargetOpcode::G_FSUB: { 3281 Register Res = MI.getOperand(0).getReg(); 3282 LLT Ty = MRI.getType(Res); 3283 3284 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 3285 // First, check if G_FNEG is marked as Lower. If so, we may 3286 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 3287 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 3288 return UnableToLegalize; 3289 Register LHS = MI.getOperand(1).getReg(); 3290 Register RHS = MI.getOperand(2).getReg(); 3291 Register Neg = MRI.createGenericVirtualRegister(Ty); 3292 MIRBuilder.buildFNeg(Neg, RHS); 3293 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 3294 MI.eraseFromParent(); 3295 return Legalized; 3296 } 3297 case TargetOpcode::G_FMAD: 3298 return lowerFMad(MI); 3299 case TargetOpcode::G_FFLOOR: 3300 return lowerFFloor(MI); 3301 case TargetOpcode::G_INTRINSIC_ROUND: 3302 return lowerIntrinsicRound(MI); 3303 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 3304 // Since round even is the assumed rounding mode for unconstrained FP 3305 // operations, rint and roundeven are the same operation. 3306 changeOpcode(MI, TargetOpcode::G_FRINT); 3307 return Legalized; 3308 } 3309 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 3310 Register OldValRes = MI.getOperand(0).getReg(); 3311 Register SuccessRes = MI.getOperand(1).getReg(); 3312 Register Addr = MI.getOperand(2).getReg(); 3313 Register CmpVal = MI.getOperand(3).getReg(); 3314 Register NewVal = MI.getOperand(4).getReg(); 3315 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 3316 **MI.memoperands_begin()); 3317 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 3318 MI.eraseFromParent(); 3319 return Legalized; 3320 } 3321 case TargetOpcode::G_LOAD: 3322 case TargetOpcode::G_SEXTLOAD: 3323 case TargetOpcode::G_ZEXTLOAD: 3324 return lowerLoad(cast<GAnyLoad>(MI)); 3325 case TargetOpcode::G_STORE: 3326 return lowerStore(cast<GStore>(MI)); 3327 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 3328 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 3329 case TargetOpcode::G_CTLZ: 3330 case TargetOpcode::G_CTTZ: 3331 case TargetOpcode::G_CTPOP: 3332 return lowerBitCount(MI); 3333 case G_UADDO: { 3334 Register Res = MI.getOperand(0).getReg(); 3335 Register CarryOut = MI.getOperand(1).getReg(); 3336 Register LHS = MI.getOperand(2).getReg(); 3337 Register RHS = MI.getOperand(3).getReg(); 3338 3339 MIRBuilder.buildAdd(Res, LHS, RHS); 3340 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 3341 3342 MI.eraseFromParent(); 3343 return Legalized; 3344 } 3345 case G_UADDE: { 3346 Register Res = MI.getOperand(0).getReg(); 3347 Register CarryOut = MI.getOperand(1).getReg(); 3348 Register LHS = MI.getOperand(2).getReg(); 3349 Register RHS = MI.getOperand(3).getReg(); 3350 Register CarryIn = MI.getOperand(4).getReg(); 3351 LLT Ty = MRI.getType(Res); 3352 3353 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3354 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3355 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3356 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3357 3358 MI.eraseFromParent(); 3359 return Legalized; 3360 } 3361 case G_USUBO: { 3362 Register Res = MI.getOperand(0).getReg(); 3363 Register BorrowOut = MI.getOperand(1).getReg(); 3364 Register LHS = MI.getOperand(2).getReg(); 3365 Register RHS = MI.getOperand(3).getReg(); 3366 3367 MIRBuilder.buildSub(Res, LHS, RHS); 3368 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3369 3370 MI.eraseFromParent(); 3371 return Legalized; 3372 } 3373 case G_USUBE: { 3374 Register Res = MI.getOperand(0).getReg(); 3375 Register BorrowOut = MI.getOperand(1).getReg(); 3376 Register LHS = MI.getOperand(2).getReg(); 3377 Register RHS = MI.getOperand(3).getReg(); 3378 Register BorrowIn = MI.getOperand(4).getReg(); 3379 const LLT CondTy = MRI.getType(BorrowOut); 3380 const LLT Ty = MRI.getType(Res); 3381 3382 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3383 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3384 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3385 3386 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3387 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3388 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3389 3390 MI.eraseFromParent(); 3391 return Legalized; 3392 } 3393 case G_UITOFP: 3394 return lowerUITOFP(MI); 3395 case G_SITOFP: 3396 return lowerSITOFP(MI); 3397 case G_FPTOUI: 3398 return lowerFPTOUI(MI); 3399 case G_FPTOSI: 3400 return lowerFPTOSI(MI); 3401 case G_FPTRUNC: 3402 return lowerFPTRUNC(MI); 3403 case G_FPOWI: 3404 return lowerFPOWI(MI); 3405 case G_SMIN: 3406 case G_SMAX: 3407 case G_UMIN: 3408 case G_UMAX: 3409 return lowerMinMax(MI); 3410 case G_FCOPYSIGN: 3411 return lowerFCopySign(MI); 3412 case G_FMINNUM: 3413 case G_FMAXNUM: 3414 return lowerFMinNumMaxNum(MI); 3415 case G_MERGE_VALUES: 3416 return lowerMergeValues(MI); 3417 case G_UNMERGE_VALUES: 3418 return lowerUnmergeValues(MI); 3419 case TargetOpcode::G_SEXT_INREG: { 3420 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3421 int64_t SizeInBits = MI.getOperand(2).getImm(); 3422 3423 Register DstReg = MI.getOperand(0).getReg(); 3424 Register SrcReg = MI.getOperand(1).getReg(); 3425 LLT DstTy = MRI.getType(DstReg); 3426 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3427 3428 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3429 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3430 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3431 MI.eraseFromParent(); 3432 return Legalized; 3433 } 3434 case G_EXTRACT_VECTOR_ELT: 3435 case G_INSERT_VECTOR_ELT: 3436 return lowerExtractInsertVectorElt(MI); 3437 case G_SHUFFLE_VECTOR: 3438 return lowerShuffleVector(MI); 3439 case G_DYN_STACKALLOC: 3440 return lowerDynStackAlloc(MI); 3441 case G_EXTRACT: 3442 return lowerExtract(MI); 3443 case G_INSERT: 3444 return lowerInsert(MI); 3445 case G_BSWAP: 3446 return lowerBswap(MI); 3447 case G_BITREVERSE: 3448 return lowerBitreverse(MI); 3449 case G_READ_REGISTER: 3450 case G_WRITE_REGISTER: 3451 return lowerReadWriteRegister(MI); 3452 case G_UADDSAT: 3453 case G_USUBSAT: { 3454 // Try to make a reasonable guess about which lowering strategy to use. The 3455 // target can override this with custom lowering and calling the 3456 // implementation functions. 3457 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3458 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3459 return lowerAddSubSatToMinMax(MI); 3460 return lowerAddSubSatToAddoSubo(MI); 3461 } 3462 case G_SADDSAT: 3463 case G_SSUBSAT: { 3464 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3465 3466 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3467 // since it's a shorter expansion. However, we would need to figure out the 3468 // preferred boolean type for the carry out for the query. 3469 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3470 return lowerAddSubSatToMinMax(MI); 3471 return lowerAddSubSatToAddoSubo(MI); 3472 } 3473 case G_SSHLSAT: 3474 case G_USHLSAT: 3475 return lowerShlSat(MI); 3476 case G_ABS: 3477 return lowerAbsToAddXor(MI); 3478 case G_SELECT: 3479 return lowerSelect(MI); 3480 case G_SDIVREM: 3481 case G_UDIVREM: 3482 return lowerDIVREM(MI); 3483 case G_FSHL: 3484 case G_FSHR: 3485 return lowerFunnelShift(MI); 3486 case G_ROTL: 3487 case G_ROTR: 3488 return lowerRotate(MI); 3489 GISEL_VECREDUCE_CASES_NONSEQ 3490 return lowerVectorReduction(MI); 3491 } 3492 } 3493 3494 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3495 Align MinAlign) const { 3496 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3497 // datalayout for the preferred alignment. Also there should be a target hook 3498 // for this to allow targets to reduce the alignment and ignore the 3499 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3500 // the type. 3501 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3502 } 3503 3504 MachineInstrBuilder 3505 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3506 MachinePointerInfo &PtrInfo) { 3507 MachineFunction &MF = MIRBuilder.getMF(); 3508 const DataLayout &DL = MIRBuilder.getDataLayout(); 3509 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3510 3511 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3512 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3513 3514 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3515 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3516 } 3517 3518 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3519 LLT VecTy) { 3520 int64_t IdxVal; 3521 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3522 return IdxReg; 3523 3524 LLT IdxTy = B.getMRI()->getType(IdxReg); 3525 unsigned NElts = VecTy.getNumElements(); 3526 if (isPowerOf2_32(NElts)) { 3527 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3528 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3529 } 3530 3531 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3532 .getReg(0); 3533 } 3534 3535 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3536 Register Index) { 3537 LLT EltTy = VecTy.getElementType(); 3538 3539 // Calculate the element offset and add it to the pointer. 3540 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3541 assert(EltSize * 8 == EltTy.getSizeInBits() && 3542 "Converting bits to bytes lost precision"); 3543 3544 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3545 3546 LLT IdxTy = MRI.getType(Index); 3547 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3548 MIRBuilder.buildConstant(IdxTy, EltSize)); 3549 3550 LLT PtrTy = MRI.getType(VecPtr); 3551 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3552 } 3553 3554 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3555 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3556 Register DstReg = MI.getOperand(0).getReg(); 3557 LLT DstTy = MRI.getType(DstReg); 3558 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3559 3560 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3561 3562 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3563 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3564 3565 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3566 MI.eraseFromParent(); 3567 return Legalized; 3568 } 3569 3570 // Handle splitting vector operations which need to have the same number of 3571 // elements in each type index, but each type index may have a different element 3572 // type. 3573 // 3574 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3575 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3576 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3577 // 3578 // Also handles some irregular breakdown cases, e.g. 3579 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3580 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3581 // s64 = G_SHL s64, s32 3582 LegalizerHelper::LegalizeResult 3583 LegalizerHelper::fewerElementsVectorMultiEltType( 3584 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3585 if (TypeIdx != 0) 3586 return UnableToLegalize; 3587 3588 const LLT NarrowTy0 = NarrowTyArg; 3589 const Register DstReg = MI.getOperand(0).getReg(); 3590 LLT DstTy = MRI.getType(DstReg); 3591 LLT LeftoverTy0; 3592 3593 // All of the operands need to have the same number of elements, so if we can 3594 // determine a type breakdown for the result type, we can for all of the 3595 // source types. 3596 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3597 if (NumParts < 0) 3598 return UnableToLegalize; 3599 3600 SmallVector<MachineInstrBuilder, 4> NewInsts; 3601 3602 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3603 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3604 3605 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3606 Register SrcReg = MI.getOperand(I).getReg(); 3607 LLT SrcTyI = MRI.getType(SrcReg); 3608 const auto NewEC = NarrowTy0.isVector() ? NarrowTy0.getElementCount() 3609 : ElementCount::getFixed(1); 3610 LLT NarrowTyI = LLT::scalarOrVector(NewEC, SrcTyI.getScalarType()); 3611 LLT LeftoverTyI; 3612 3613 // Split this operand into the requested typed registers, and any leftover 3614 // required to reproduce the original type. 3615 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3616 LeftoverRegs)) 3617 return UnableToLegalize; 3618 3619 if (I == 1) { 3620 // For the first operand, create an instruction for each part and setup 3621 // the result. 3622 for (Register PartReg : PartRegs) { 3623 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3624 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3625 .addDef(PartDstReg) 3626 .addUse(PartReg)); 3627 DstRegs.push_back(PartDstReg); 3628 } 3629 3630 for (Register LeftoverReg : LeftoverRegs) { 3631 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3632 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3633 .addDef(PartDstReg) 3634 .addUse(LeftoverReg)); 3635 LeftoverDstRegs.push_back(PartDstReg); 3636 } 3637 } else { 3638 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3639 3640 // Add the newly created operand splits to the existing instructions. The 3641 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3642 // pieces. 3643 unsigned InstCount = 0; 3644 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3645 NewInsts[InstCount++].addUse(PartRegs[J]); 3646 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3647 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3648 } 3649 3650 PartRegs.clear(); 3651 LeftoverRegs.clear(); 3652 } 3653 3654 // Insert the newly built operations and rebuild the result register. 3655 for (auto &MIB : NewInsts) 3656 MIRBuilder.insertInstr(MIB); 3657 3658 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3659 3660 MI.eraseFromParent(); 3661 return Legalized; 3662 } 3663 3664 LegalizerHelper::LegalizeResult 3665 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3666 LLT NarrowTy) { 3667 if (TypeIdx != 0) 3668 return UnableToLegalize; 3669 3670 Register DstReg = MI.getOperand(0).getReg(); 3671 Register SrcReg = MI.getOperand(1).getReg(); 3672 LLT DstTy = MRI.getType(DstReg); 3673 LLT SrcTy = MRI.getType(SrcReg); 3674 3675 LLT NarrowTy0 = NarrowTy; 3676 LLT NarrowTy1; 3677 unsigned NumParts; 3678 3679 if (NarrowTy.isVector()) { 3680 // Uneven breakdown not handled. 3681 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3682 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3683 return UnableToLegalize; 3684 3685 NarrowTy1 = LLT::vector(NarrowTy.getElementCount(), SrcTy.getElementType()); 3686 } else { 3687 NumParts = DstTy.getNumElements(); 3688 NarrowTy1 = SrcTy.getElementType(); 3689 } 3690 3691 SmallVector<Register, 4> SrcRegs, DstRegs; 3692 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3693 3694 for (unsigned I = 0; I < NumParts; ++I) { 3695 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3696 MachineInstr *NewInst = 3697 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3698 3699 NewInst->setFlags(MI.getFlags()); 3700 DstRegs.push_back(DstReg); 3701 } 3702 3703 if (NarrowTy.isVector()) 3704 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3705 else 3706 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3707 3708 MI.eraseFromParent(); 3709 return Legalized; 3710 } 3711 3712 LegalizerHelper::LegalizeResult 3713 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3714 LLT NarrowTy) { 3715 Register DstReg = MI.getOperand(0).getReg(); 3716 Register Src0Reg = MI.getOperand(2).getReg(); 3717 LLT DstTy = MRI.getType(DstReg); 3718 LLT SrcTy = MRI.getType(Src0Reg); 3719 3720 unsigned NumParts; 3721 LLT NarrowTy0, NarrowTy1; 3722 3723 if (TypeIdx == 0) { 3724 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3725 unsigned OldElts = DstTy.getNumElements(); 3726 3727 NarrowTy0 = NarrowTy; 3728 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3729 NarrowTy1 = NarrowTy.isVector() ? LLT::vector(NarrowTy.getElementCount(), 3730 SrcTy.getScalarSizeInBits()) 3731 : SrcTy.getElementType(); 3732 3733 } else { 3734 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3735 unsigned OldElts = SrcTy.getNumElements(); 3736 3737 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3738 NarrowTy.getNumElements(); 3739 NarrowTy0 = 3740 LLT::vector(NarrowTy.getElementCount(), DstTy.getScalarSizeInBits()); 3741 NarrowTy1 = NarrowTy; 3742 } 3743 3744 // FIXME: Don't know how to handle the situation where the small vectors 3745 // aren't all the same size yet. 3746 if (NarrowTy1.isVector() && 3747 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3748 return UnableToLegalize; 3749 3750 CmpInst::Predicate Pred 3751 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3752 3753 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3754 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3755 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3756 3757 for (unsigned I = 0; I < NumParts; ++I) { 3758 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3759 DstRegs.push_back(DstReg); 3760 3761 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3762 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3763 else { 3764 MachineInstr *NewCmp 3765 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3766 NewCmp->setFlags(MI.getFlags()); 3767 } 3768 } 3769 3770 if (NarrowTy1.isVector()) 3771 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3772 else 3773 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3774 3775 MI.eraseFromParent(); 3776 return Legalized; 3777 } 3778 3779 LegalizerHelper::LegalizeResult 3780 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3781 LLT NarrowTy) { 3782 Register DstReg = MI.getOperand(0).getReg(); 3783 Register CondReg = MI.getOperand(1).getReg(); 3784 3785 unsigned NumParts = 0; 3786 LLT NarrowTy0, NarrowTy1; 3787 3788 LLT DstTy = MRI.getType(DstReg); 3789 LLT CondTy = MRI.getType(CondReg); 3790 unsigned Size = DstTy.getSizeInBits(); 3791 3792 assert(TypeIdx == 0 || CondTy.isVector()); 3793 3794 if (TypeIdx == 0) { 3795 NarrowTy0 = NarrowTy; 3796 NarrowTy1 = CondTy; 3797 3798 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3799 // FIXME: Don't know how to handle the situation where the small vectors 3800 // aren't all the same size yet. 3801 if (Size % NarrowSize != 0) 3802 return UnableToLegalize; 3803 3804 NumParts = Size / NarrowSize; 3805 3806 // Need to break down the condition type 3807 if (CondTy.isVector()) { 3808 if (CondTy.getNumElements() == NumParts) 3809 NarrowTy1 = CondTy.getElementType(); 3810 else 3811 NarrowTy1 = 3812 LLT::vector(CondTy.getElementCount().divideCoefficientBy(NumParts), 3813 CondTy.getScalarSizeInBits()); 3814 } 3815 } else { 3816 NumParts = CondTy.getNumElements(); 3817 if (NarrowTy.isVector()) { 3818 // TODO: Handle uneven breakdown. 3819 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3820 return UnableToLegalize; 3821 3822 return UnableToLegalize; 3823 } else { 3824 NarrowTy0 = DstTy.getElementType(); 3825 NarrowTy1 = NarrowTy; 3826 } 3827 } 3828 3829 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3830 if (CondTy.isVector()) 3831 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3832 3833 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3834 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3835 3836 for (unsigned i = 0; i < NumParts; ++i) { 3837 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3838 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3839 Src1Regs[i], Src2Regs[i]); 3840 DstRegs.push_back(DstReg); 3841 } 3842 3843 if (NarrowTy0.isVector()) 3844 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3845 else 3846 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3847 3848 MI.eraseFromParent(); 3849 return Legalized; 3850 } 3851 3852 LegalizerHelper::LegalizeResult 3853 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3854 LLT NarrowTy) { 3855 const Register DstReg = MI.getOperand(0).getReg(); 3856 LLT PhiTy = MRI.getType(DstReg); 3857 LLT LeftoverTy; 3858 3859 // All of the operands need to have the same number of elements, so if we can 3860 // determine a type breakdown for the result type, we can for all of the 3861 // source types. 3862 int NumParts, NumLeftover; 3863 std::tie(NumParts, NumLeftover) 3864 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3865 if (NumParts < 0) 3866 return UnableToLegalize; 3867 3868 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3869 SmallVector<MachineInstrBuilder, 4> NewInsts; 3870 3871 const int TotalNumParts = NumParts + NumLeftover; 3872 3873 // Insert the new phis in the result block first. 3874 for (int I = 0; I != TotalNumParts; ++I) { 3875 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3876 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3877 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3878 .addDef(PartDstReg)); 3879 if (I < NumParts) 3880 DstRegs.push_back(PartDstReg); 3881 else 3882 LeftoverDstRegs.push_back(PartDstReg); 3883 } 3884 3885 MachineBasicBlock *MBB = MI.getParent(); 3886 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3887 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3888 3889 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3890 3891 // Insert code to extract the incoming values in each predecessor block. 3892 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3893 PartRegs.clear(); 3894 LeftoverRegs.clear(); 3895 3896 Register SrcReg = MI.getOperand(I).getReg(); 3897 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3898 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3899 3900 LLT Unused; 3901 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3902 LeftoverRegs)) 3903 return UnableToLegalize; 3904 3905 // Add the newly created operand splits to the existing instructions. The 3906 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3907 // pieces. 3908 for (int J = 0; J != TotalNumParts; ++J) { 3909 MachineInstrBuilder MIB = NewInsts[J]; 3910 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3911 MIB.addMBB(&OpMBB); 3912 } 3913 } 3914 3915 MI.eraseFromParent(); 3916 return Legalized; 3917 } 3918 3919 LegalizerHelper::LegalizeResult 3920 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3921 unsigned TypeIdx, 3922 LLT NarrowTy) { 3923 if (TypeIdx != 1) 3924 return UnableToLegalize; 3925 3926 const int NumDst = MI.getNumOperands() - 1; 3927 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3928 LLT SrcTy = MRI.getType(SrcReg); 3929 3930 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3931 3932 // TODO: Create sequence of extracts. 3933 if (DstTy == NarrowTy) 3934 return UnableToLegalize; 3935 3936 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3937 if (DstTy == GCDTy) { 3938 // This would just be a copy of the same unmerge. 3939 // TODO: Create extracts, pad with undef and create intermediate merges. 3940 return UnableToLegalize; 3941 } 3942 3943 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3944 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3945 const int PartsPerUnmerge = NumDst / NumUnmerge; 3946 3947 for (int I = 0; I != NumUnmerge; ++I) { 3948 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3949 3950 for (int J = 0; J != PartsPerUnmerge; ++J) 3951 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3952 MIB.addUse(Unmerge.getReg(I)); 3953 } 3954 3955 MI.eraseFromParent(); 3956 return Legalized; 3957 } 3958 3959 LegalizerHelper::LegalizeResult 3960 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx, 3961 LLT NarrowTy) { 3962 Register Result = MI.getOperand(0).getReg(); 3963 Register Overflow = MI.getOperand(1).getReg(); 3964 Register LHS = MI.getOperand(2).getReg(); 3965 Register RHS = MI.getOperand(3).getReg(); 3966 3967 LLT SrcTy = MRI.getType(LHS); 3968 if (!SrcTy.isVector()) 3969 return UnableToLegalize; 3970 3971 LLT ElementType = SrcTy.getElementType(); 3972 LLT OverflowElementTy = MRI.getType(Overflow).getElementType(); 3973 const ElementCount NumResult = SrcTy.getElementCount(); 3974 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3975 3976 // Unmerge the operands to smaller parts of GCD type. 3977 auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS); 3978 auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS); 3979 3980 const int NumOps = UnmergeLHS->getNumOperands() - 1; 3981 const ElementCount PartsPerUnmerge = NumResult.divideCoefficientBy(NumOps); 3982 LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy); 3983 LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType); 3984 3985 // Perform the operation over unmerged parts. 3986 SmallVector<Register, 8> ResultParts; 3987 SmallVector<Register, 8> OverflowParts; 3988 for (int I = 0; I != NumOps; ++I) { 3989 Register Operand1 = UnmergeLHS->getOperand(I).getReg(); 3990 Register Operand2 = UnmergeRHS->getOperand(I).getReg(); 3991 auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy}, 3992 {Operand1, Operand2}); 3993 ResultParts.push_back(PartMul->getOperand(0).getReg()); 3994 OverflowParts.push_back(PartMul->getOperand(1).getReg()); 3995 } 3996 3997 LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts); 3998 LLT OverflowLCMTy = 3999 LLT::scalarOrVector(ResultLCMTy.getElementCount(), OverflowElementTy); 4000 4001 // Recombine the pieces to the original result and overflow registers. 4002 buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts); 4003 buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts); 4004 MI.eraseFromParent(); 4005 return Legalized; 4006 } 4007 4008 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces 4009 // a vector 4010 // 4011 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with 4012 // undef as necessary. 4013 // 4014 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 4015 // -> <2 x s16> 4016 // 4017 // %4:_(s16) = G_IMPLICIT_DEF 4018 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 4019 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 4020 // %7:_(<2 x s16>) = G_IMPLICIT_DEF 4021 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7 4022 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8 4023 LegalizerHelper::LegalizeResult 4024 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 4025 LLT NarrowTy) { 4026 Register DstReg = MI.getOperand(0).getReg(); 4027 LLT DstTy = MRI.getType(DstReg); 4028 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4029 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 4030 4031 // Break into a common type 4032 SmallVector<Register, 16> Parts; 4033 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 4034 extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg()); 4035 4036 // Build the requested new merge, padding with undef. 4037 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, 4038 TargetOpcode::G_ANYEXT); 4039 4040 // Pack into the original result register. 4041 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4042 4043 MI.eraseFromParent(); 4044 return Legalized; 4045 } 4046 4047 LegalizerHelper::LegalizeResult 4048 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 4049 unsigned TypeIdx, 4050 LLT NarrowVecTy) { 4051 Register DstReg = MI.getOperand(0).getReg(); 4052 Register SrcVec = MI.getOperand(1).getReg(); 4053 Register InsertVal; 4054 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 4055 4056 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 4057 if (IsInsert) 4058 InsertVal = MI.getOperand(2).getReg(); 4059 4060 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 4061 4062 // TODO: Handle total scalarization case. 4063 if (!NarrowVecTy.isVector()) 4064 return UnableToLegalize; 4065 4066 LLT VecTy = MRI.getType(SrcVec); 4067 4068 // If the index is a constant, we can really break this down as you would 4069 // expect, and index into the target size pieces. 4070 int64_t IdxVal; 4071 auto MaybeCst = 4072 getConstantVRegValWithLookThrough(Idx, MRI, /*LookThroughInstrs*/ true, 4073 /*HandleFConstants*/ false); 4074 if (MaybeCst) { 4075 IdxVal = MaybeCst->Value.getSExtValue(); 4076 // Avoid out of bounds indexing the pieces. 4077 if (IdxVal >= VecTy.getNumElements()) { 4078 MIRBuilder.buildUndef(DstReg); 4079 MI.eraseFromParent(); 4080 return Legalized; 4081 } 4082 4083 SmallVector<Register, 8> VecParts; 4084 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 4085 4086 // Build a sequence of NarrowTy pieces in VecParts for this operand. 4087 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 4088 TargetOpcode::G_ANYEXT); 4089 4090 unsigned NewNumElts = NarrowVecTy.getNumElements(); 4091 4092 LLT IdxTy = MRI.getType(Idx); 4093 int64_t PartIdx = IdxVal / NewNumElts; 4094 auto NewIdx = 4095 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 4096 4097 if (IsInsert) { 4098 LLT PartTy = MRI.getType(VecParts[PartIdx]); 4099 4100 // Use the adjusted index to insert into one of the subvectors. 4101 auto InsertPart = MIRBuilder.buildInsertVectorElement( 4102 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 4103 VecParts[PartIdx] = InsertPart.getReg(0); 4104 4105 // Recombine the inserted subvector with the others to reform the result 4106 // vector. 4107 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 4108 } else { 4109 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 4110 } 4111 4112 MI.eraseFromParent(); 4113 return Legalized; 4114 } 4115 4116 // With a variable index, we can't perform the operation in a smaller type, so 4117 // we're forced to expand this. 4118 // 4119 // TODO: We could emit a chain of compare/select to figure out which piece to 4120 // index. 4121 return lowerExtractInsertVectorElt(MI); 4122 } 4123 4124 LegalizerHelper::LegalizeResult 4125 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx, 4126 LLT NarrowTy) { 4127 // FIXME: Don't know how to handle secondary types yet. 4128 if (TypeIdx != 0) 4129 return UnableToLegalize; 4130 4131 // This implementation doesn't work for atomics. Give up instead of doing 4132 // something invalid. 4133 if (LdStMI.isAtomic()) 4134 return UnableToLegalize; 4135 4136 bool IsLoad = isa<GLoad>(LdStMI); 4137 Register ValReg = LdStMI.getReg(0); 4138 Register AddrReg = LdStMI.getPointerReg(); 4139 LLT ValTy = MRI.getType(ValReg); 4140 4141 // FIXME: Do we need a distinct NarrowMemory legalize action? 4142 if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) { 4143 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 4144 return UnableToLegalize; 4145 } 4146 4147 int NumParts = -1; 4148 int NumLeftover = -1; 4149 LLT LeftoverTy; 4150 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 4151 if (IsLoad) { 4152 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 4153 } else { 4154 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 4155 NarrowLeftoverRegs)) { 4156 NumParts = NarrowRegs.size(); 4157 NumLeftover = NarrowLeftoverRegs.size(); 4158 } 4159 } 4160 4161 if (NumParts == -1) 4162 return UnableToLegalize; 4163 4164 LLT PtrTy = MRI.getType(AddrReg); 4165 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 4166 4167 unsigned TotalSize = ValTy.getSizeInBits(); 4168 4169 // Split the load/store into PartTy sized pieces starting at Offset. If this 4170 // is a load, return the new registers in ValRegs. For a store, each elements 4171 // of ValRegs should be PartTy. Returns the next offset that needs to be 4172 // handled. 4173 auto MMO = LdStMI.getMMO(); 4174 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 4175 unsigned Offset) -> unsigned { 4176 MachineFunction &MF = MIRBuilder.getMF(); 4177 unsigned PartSize = PartTy.getSizeInBits(); 4178 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 4179 Offset += PartSize, ++Idx) { 4180 unsigned ByteOffset = Offset / 8; 4181 Register NewAddrReg; 4182 4183 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 4184 4185 MachineMemOperand *NewMMO = 4186 MF.getMachineMemOperand(&MMO, ByteOffset, PartTy); 4187 4188 if (IsLoad) { 4189 Register Dst = MRI.createGenericVirtualRegister(PartTy); 4190 ValRegs.push_back(Dst); 4191 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 4192 } else { 4193 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 4194 } 4195 } 4196 4197 return Offset; 4198 }; 4199 4200 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 4201 4202 // Handle the rest of the register if this isn't an even type breakdown. 4203 if (LeftoverTy.isValid()) 4204 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 4205 4206 if (IsLoad) { 4207 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 4208 LeftoverTy, NarrowLeftoverRegs); 4209 } 4210 4211 LdStMI.eraseFromParent(); 4212 return Legalized; 4213 } 4214 4215 LegalizerHelper::LegalizeResult 4216 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 4217 LLT NarrowTy) { 4218 assert(TypeIdx == 0 && "only one type index expected"); 4219 4220 const unsigned Opc = MI.getOpcode(); 4221 const int NumDefOps = MI.getNumExplicitDefs(); 4222 const int NumSrcOps = MI.getNumOperands() - NumDefOps; 4223 const unsigned Flags = MI.getFlags(); 4224 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 4225 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 4226 4227 assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 " 4228 "result and 1-3 sources or 2 results and " 4229 "1-2 sources"); 4230 4231 SmallVector<Register, 2> DstRegs; 4232 for (int I = 0; I < NumDefOps; ++I) 4233 DstRegs.push_back(MI.getOperand(I).getReg()); 4234 4235 // First of all check whether we are narrowing (changing the element type) 4236 // or reducing the vector elements 4237 const LLT DstTy = MRI.getType(DstRegs[0]); 4238 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 4239 4240 SmallVector<Register, 8> ExtractedRegs[3]; 4241 SmallVector<Register, 8> Parts; 4242 4243 // Break down all the sources into NarrowTy pieces we can operate on. This may 4244 // involve creating merges to a wider type, padded with undef. 4245 for (int I = 0; I != NumSrcOps; ++I) { 4246 Register SrcReg = MI.getOperand(I + NumDefOps).getReg(); 4247 LLT SrcTy = MRI.getType(SrcReg); 4248 4249 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 4250 // For fewerElements, this is a smaller vector with the same element type. 4251 LLT OpNarrowTy; 4252 if (IsNarrow) { 4253 OpNarrowTy = NarrowScalarTy; 4254 4255 // In case of narrowing, we need to cast vectors to scalars for this to 4256 // work properly 4257 // FIXME: Can we do without the bitcast here if we're narrowing? 4258 if (SrcTy.isVector()) { 4259 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 4260 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 4261 } 4262 } else { 4263 auto NarrowEC = NarrowTy.isVector() ? NarrowTy.getElementCount() 4264 : ElementCount::getFixed(1); 4265 OpNarrowTy = LLT::scalarOrVector(NarrowEC, SrcTy.getScalarType()); 4266 } 4267 4268 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 4269 4270 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 4271 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 4272 TargetOpcode::G_ANYEXT); 4273 } 4274 4275 SmallVector<Register, 8> ResultRegs[2]; 4276 4277 // Input operands for each sub-instruction. 4278 SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register()); 4279 4280 int NumParts = ExtractedRegs[0].size(); 4281 const unsigned DstSize = DstTy.getSizeInBits(); 4282 const LLT DstScalarTy = LLT::scalar(DstSize); 4283 4284 // Narrowing needs to use scalar types 4285 LLT DstLCMTy, NarrowDstTy; 4286 if (IsNarrow) { 4287 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 4288 NarrowDstTy = NarrowScalarTy; 4289 } else { 4290 DstLCMTy = getLCMType(DstTy, NarrowTy); 4291 NarrowDstTy = NarrowTy; 4292 } 4293 4294 // We widened the source registers to satisfy merge/unmerge size 4295 // constraints. We'll have some extra fully undef parts. 4296 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 4297 4298 for (int I = 0; I != NumRealParts; ++I) { 4299 // Emit this instruction on each of the split pieces. 4300 for (int J = 0; J != NumSrcOps; ++J) 4301 InputRegs[J] = ExtractedRegs[J][I]; 4302 4303 MachineInstrBuilder Inst; 4304 if (NumDefOps == 1) 4305 Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 4306 else 4307 Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs, 4308 Flags); 4309 4310 for (int J = 0; J != NumDefOps; ++J) 4311 ResultRegs[J].push_back(Inst.getReg(J)); 4312 } 4313 4314 // Fill out the widened result with undef instead of creating instructions 4315 // with undef inputs. 4316 int NumUndefParts = NumParts - NumRealParts; 4317 if (NumUndefParts != 0) { 4318 Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0); 4319 for (int I = 0; I != NumDefOps; ++I) 4320 ResultRegs[I].append(NumUndefParts, Undef); 4321 } 4322 4323 // Extract the possibly padded result. Use a scratch register if we need to do 4324 // a final bitcast, otherwise use the original result register. 4325 Register MergeDstReg; 4326 for (int I = 0; I != NumDefOps; ++I) { 4327 if (IsNarrow && DstTy.isVector()) 4328 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 4329 else 4330 MergeDstReg = DstRegs[I]; 4331 4332 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]); 4333 4334 // Recast to vector if we narrowed a vector 4335 if (IsNarrow && DstTy.isVector()) 4336 MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg); 4337 } 4338 4339 MI.eraseFromParent(); 4340 return Legalized; 4341 } 4342 4343 LegalizerHelper::LegalizeResult 4344 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 4345 LLT NarrowTy) { 4346 Register DstReg = MI.getOperand(0).getReg(); 4347 Register SrcReg = MI.getOperand(1).getReg(); 4348 int64_t Imm = MI.getOperand(2).getImm(); 4349 4350 LLT DstTy = MRI.getType(DstReg); 4351 4352 SmallVector<Register, 8> Parts; 4353 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4354 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 4355 4356 for (Register &R : Parts) 4357 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 4358 4359 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4360 4361 MI.eraseFromParent(); 4362 return Legalized; 4363 } 4364 4365 LegalizerHelper::LegalizeResult 4366 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 4367 LLT NarrowTy) { 4368 using namespace TargetOpcode; 4369 4370 switch (MI.getOpcode()) { 4371 case G_IMPLICIT_DEF: 4372 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 4373 case G_TRUNC: 4374 case G_AND: 4375 case G_OR: 4376 case G_XOR: 4377 case G_ADD: 4378 case G_SUB: 4379 case G_MUL: 4380 case G_PTR_ADD: 4381 case G_SMULH: 4382 case G_UMULH: 4383 case G_FADD: 4384 case G_FMUL: 4385 case G_FSUB: 4386 case G_FNEG: 4387 case G_FABS: 4388 case G_FCANONICALIZE: 4389 case G_FDIV: 4390 case G_FREM: 4391 case G_FMA: 4392 case G_FMAD: 4393 case G_FPOW: 4394 case G_FEXP: 4395 case G_FEXP2: 4396 case G_FLOG: 4397 case G_FLOG2: 4398 case G_FLOG10: 4399 case G_FNEARBYINT: 4400 case G_FCEIL: 4401 case G_FFLOOR: 4402 case G_FRINT: 4403 case G_INTRINSIC_ROUND: 4404 case G_INTRINSIC_ROUNDEVEN: 4405 case G_INTRINSIC_TRUNC: 4406 case G_FCOS: 4407 case G_FSIN: 4408 case G_FSQRT: 4409 case G_BSWAP: 4410 case G_BITREVERSE: 4411 case G_SDIV: 4412 case G_UDIV: 4413 case G_SREM: 4414 case G_UREM: 4415 case G_SDIVREM: 4416 case G_UDIVREM: 4417 case G_SMIN: 4418 case G_SMAX: 4419 case G_UMIN: 4420 case G_UMAX: 4421 case G_ABS: 4422 case G_FMINNUM: 4423 case G_FMAXNUM: 4424 case G_FMINNUM_IEEE: 4425 case G_FMAXNUM_IEEE: 4426 case G_FMINIMUM: 4427 case G_FMAXIMUM: 4428 case G_FSHL: 4429 case G_FSHR: 4430 case G_FREEZE: 4431 case G_SADDSAT: 4432 case G_SSUBSAT: 4433 case G_UADDSAT: 4434 case G_USUBSAT: 4435 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 4436 case G_UMULO: 4437 case G_SMULO: 4438 return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy); 4439 case G_SHL: 4440 case G_LSHR: 4441 case G_ASHR: 4442 case G_SSHLSAT: 4443 case G_USHLSAT: 4444 case G_CTLZ: 4445 case G_CTLZ_ZERO_UNDEF: 4446 case G_CTTZ: 4447 case G_CTTZ_ZERO_UNDEF: 4448 case G_CTPOP: 4449 case G_FCOPYSIGN: 4450 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 4451 case G_ZEXT: 4452 case G_SEXT: 4453 case G_ANYEXT: 4454 case G_FPEXT: 4455 case G_FPTRUNC: 4456 case G_SITOFP: 4457 case G_UITOFP: 4458 case G_FPTOSI: 4459 case G_FPTOUI: 4460 case G_INTTOPTR: 4461 case G_PTRTOINT: 4462 case G_ADDRSPACE_CAST: 4463 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 4464 case G_ICMP: 4465 case G_FCMP: 4466 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 4467 case G_SELECT: 4468 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 4469 case G_PHI: 4470 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 4471 case G_UNMERGE_VALUES: 4472 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4473 case G_BUILD_VECTOR: 4474 assert(TypeIdx == 0 && "not a vector type index"); 4475 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4476 case G_CONCAT_VECTORS: 4477 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4478 return UnableToLegalize; 4479 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4480 case G_EXTRACT_VECTOR_ELT: 4481 case G_INSERT_VECTOR_ELT: 4482 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4483 case G_LOAD: 4484 case G_STORE: 4485 return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy); 4486 case G_SEXT_INREG: 4487 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 4488 GISEL_VECREDUCE_CASES_NONSEQ 4489 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy); 4490 case G_SHUFFLE_VECTOR: 4491 return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy); 4492 default: 4493 return UnableToLegalize; 4494 } 4495 } 4496 4497 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle( 4498 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4499 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 4500 if (TypeIdx != 0) 4501 return UnableToLegalize; 4502 4503 Register DstReg = MI.getOperand(0).getReg(); 4504 Register Src1Reg = MI.getOperand(1).getReg(); 4505 Register Src2Reg = MI.getOperand(2).getReg(); 4506 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4507 LLT DstTy = MRI.getType(DstReg); 4508 LLT Src1Ty = MRI.getType(Src1Reg); 4509 LLT Src2Ty = MRI.getType(Src2Reg); 4510 // The shuffle should be canonicalized by now. 4511 if (DstTy != Src1Ty) 4512 return UnableToLegalize; 4513 if (DstTy != Src2Ty) 4514 return UnableToLegalize; 4515 4516 if (!isPowerOf2_32(DstTy.getNumElements())) 4517 return UnableToLegalize; 4518 4519 // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly. 4520 // Further legalization attempts will be needed to do split further. 4521 NarrowTy = 4522 DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2)); 4523 unsigned NewElts = NarrowTy.getNumElements(); 4524 4525 SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs; 4526 extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs); 4527 extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs); 4528 Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0], 4529 SplitSrc2Regs[1]}; 4530 4531 Register Hi, Lo; 4532 4533 // If Lo or Hi uses elements from at most two of the four input vectors, then 4534 // express it as a vector shuffle of those two inputs. Otherwise extract the 4535 // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR. 4536 SmallVector<int, 16> Ops; 4537 for (unsigned High = 0; High < 2; ++High) { 4538 Register &Output = High ? Hi : Lo; 4539 4540 // Build a shuffle mask for the output, discovering on the fly which 4541 // input vectors to use as shuffle operands (recorded in InputUsed). 4542 // If building a suitable shuffle vector proves too hard, then bail 4543 // out with useBuildVector set. 4544 unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered. 4545 unsigned FirstMaskIdx = High * NewElts; 4546 bool UseBuildVector = false; 4547 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4548 // The mask element. This indexes into the input. 4549 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4550 4551 // The input vector this mask element indexes into. 4552 unsigned Input = (unsigned)Idx / NewElts; 4553 4554 if (Input >= array_lengthof(Inputs)) { 4555 // The mask element does not index into any input vector. 4556 Ops.push_back(-1); 4557 continue; 4558 } 4559 4560 // Turn the index into an offset from the start of the input vector. 4561 Idx -= Input * NewElts; 4562 4563 // Find or create a shuffle vector operand to hold this input. 4564 unsigned OpNo; 4565 for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) { 4566 if (InputUsed[OpNo] == Input) { 4567 // This input vector is already an operand. 4568 break; 4569 } else if (InputUsed[OpNo] == -1U) { 4570 // Create a new operand for this input vector. 4571 InputUsed[OpNo] = Input; 4572 break; 4573 } 4574 } 4575 4576 if (OpNo >= array_lengthof(InputUsed)) { 4577 // More than two input vectors used! Give up on trying to create a 4578 // shuffle vector. Insert all elements into a BUILD_VECTOR instead. 4579 UseBuildVector = true; 4580 break; 4581 } 4582 4583 // Add the mask index for the new shuffle vector. 4584 Ops.push_back(Idx + OpNo * NewElts); 4585 } 4586 4587 if (UseBuildVector) { 4588 LLT EltTy = NarrowTy.getElementType(); 4589 SmallVector<Register, 16> SVOps; 4590 4591 // Extract the input elements by hand. 4592 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4593 // The mask element. This indexes into the input. 4594 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4595 4596 // The input vector this mask element indexes into. 4597 unsigned Input = (unsigned)Idx / NewElts; 4598 4599 if (Input >= array_lengthof(Inputs)) { 4600 // The mask element is "undef" or indexes off the end of the input. 4601 SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0)); 4602 continue; 4603 } 4604 4605 // Turn the index into an offset from the start of the input vector. 4606 Idx -= Input * NewElts; 4607 4608 // Extract the vector element by hand. 4609 SVOps.push_back(MIRBuilder 4610 .buildExtractVectorElement( 4611 EltTy, Inputs[Input], 4612 MIRBuilder.buildConstant(LLT::scalar(32), Idx)) 4613 .getReg(0)); 4614 } 4615 4616 // Construct the Lo/Hi output using a G_BUILD_VECTOR. 4617 Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0); 4618 } else if (InputUsed[0] == -1U) { 4619 // No input vectors were used! The result is undefined. 4620 Output = MIRBuilder.buildUndef(NarrowTy).getReg(0); 4621 } else { 4622 Register Op0 = Inputs[InputUsed[0]]; 4623 // If only one input was used, use an undefined vector for the other. 4624 Register Op1 = InputUsed[1] == -1U 4625 ? MIRBuilder.buildUndef(NarrowTy).getReg(0) 4626 : Inputs[InputUsed[1]]; 4627 // At least one input vector was used. Create a new shuffle vector. 4628 Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0); 4629 } 4630 4631 Ops.clear(); 4632 } 4633 4634 MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi}); 4635 MI.eraseFromParent(); 4636 return Legalized; 4637 } 4638 4639 static unsigned getScalarOpcForReduction(unsigned Opc) { 4640 unsigned ScalarOpc; 4641 switch (Opc) { 4642 case TargetOpcode::G_VECREDUCE_FADD: 4643 ScalarOpc = TargetOpcode::G_FADD; 4644 break; 4645 case TargetOpcode::G_VECREDUCE_FMUL: 4646 ScalarOpc = TargetOpcode::G_FMUL; 4647 break; 4648 case TargetOpcode::G_VECREDUCE_FMAX: 4649 ScalarOpc = TargetOpcode::G_FMAXNUM; 4650 break; 4651 case TargetOpcode::G_VECREDUCE_FMIN: 4652 ScalarOpc = TargetOpcode::G_FMINNUM; 4653 break; 4654 case TargetOpcode::G_VECREDUCE_ADD: 4655 ScalarOpc = TargetOpcode::G_ADD; 4656 break; 4657 case TargetOpcode::G_VECREDUCE_MUL: 4658 ScalarOpc = TargetOpcode::G_MUL; 4659 break; 4660 case TargetOpcode::G_VECREDUCE_AND: 4661 ScalarOpc = TargetOpcode::G_AND; 4662 break; 4663 case TargetOpcode::G_VECREDUCE_OR: 4664 ScalarOpc = TargetOpcode::G_OR; 4665 break; 4666 case TargetOpcode::G_VECREDUCE_XOR: 4667 ScalarOpc = TargetOpcode::G_XOR; 4668 break; 4669 case TargetOpcode::G_VECREDUCE_SMAX: 4670 ScalarOpc = TargetOpcode::G_SMAX; 4671 break; 4672 case TargetOpcode::G_VECREDUCE_SMIN: 4673 ScalarOpc = TargetOpcode::G_SMIN; 4674 break; 4675 case TargetOpcode::G_VECREDUCE_UMAX: 4676 ScalarOpc = TargetOpcode::G_UMAX; 4677 break; 4678 case TargetOpcode::G_VECREDUCE_UMIN: 4679 ScalarOpc = TargetOpcode::G_UMIN; 4680 break; 4681 default: 4682 llvm_unreachable("Unhandled reduction"); 4683 } 4684 return ScalarOpc; 4685 } 4686 4687 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions( 4688 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4689 unsigned Opc = MI.getOpcode(); 4690 assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD && 4691 Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL && 4692 "Sequential reductions not expected"); 4693 4694 if (TypeIdx != 1) 4695 return UnableToLegalize; 4696 4697 // The semantics of the normal non-sequential reductions allow us to freely 4698 // re-associate the operation. 4699 Register SrcReg = MI.getOperand(1).getReg(); 4700 LLT SrcTy = MRI.getType(SrcReg); 4701 Register DstReg = MI.getOperand(0).getReg(); 4702 LLT DstTy = MRI.getType(DstReg); 4703 4704 if (NarrowTy.isVector() && 4705 (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)) 4706 return UnableToLegalize; 4707 4708 unsigned ScalarOpc = getScalarOpcForReduction(Opc); 4709 SmallVector<Register> SplitSrcs; 4710 // If NarrowTy is a scalar then we're being asked to scalarize. 4711 const unsigned NumParts = 4712 NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements() 4713 : SrcTy.getNumElements(); 4714 4715 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs); 4716 if (NarrowTy.isScalar()) { 4717 if (DstTy != NarrowTy) 4718 return UnableToLegalize; // FIXME: handle implicit extensions. 4719 4720 if (isPowerOf2_32(NumParts)) { 4721 // Generate a tree of scalar operations to reduce the critical path. 4722 SmallVector<Register> PartialResults; 4723 unsigned NumPartsLeft = NumParts; 4724 while (NumPartsLeft > 1) { 4725 for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) { 4726 PartialResults.emplace_back( 4727 MIRBuilder 4728 .buildInstr(ScalarOpc, {NarrowTy}, 4729 {SplitSrcs[Idx], SplitSrcs[Idx + 1]}) 4730 .getReg(0)); 4731 } 4732 SplitSrcs = PartialResults; 4733 PartialResults.clear(); 4734 NumPartsLeft = SplitSrcs.size(); 4735 } 4736 assert(SplitSrcs.size() == 1); 4737 MIRBuilder.buildCopy(DstReg, SplitSrcs[0]); 4738 MI.eraseFromParent(); 4739 return Legalized; 4740 } 4741 // If we can't generate a tree, then just do sequential operations. 4742 Register Acc = SplitSrcs[0]; 4743 for (unsigned Idx = 1; Idx < NumParts; ++Idx) 4744 Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]}) 4745 .getReg(0); 4746 MIRBuilder.buildCopy(DstReg, Acc); 4747 MI.eraseFromParent(); 4748 return Legalized; 4749 } 4750 SmallVector<Register> PartialReductions; 4751 for (unsigned Part = 0; Part < NumParts; ++Part) { 4752 PartialReductions.push_back( 4753 MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0)); 4754 } 4755 4756 4757 // If the types involved are powers of 2, we can generate intermediate vector 4758 // ops, before generating a final reduction operation. 4759 if (isPowerOf2_32(SrcTy.getNumElements()) && 4760 isPowerOf2_32(NarrowTy.getNumElements())) { 4761 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc); 4762 } 4763 4764 Register Acc = PartialReductions[0]; 4765 for (unsigned Part = 1; Part < NumParts; ++Part) { 4766 if (Part == NumParts - 1) { 4767 MIRBuilder.buildInstr(ScalarOpc, {DstReg}, 4768 {Acc, PartialReductions[Part]}); 4769 } else { 4770 Acc = MIRBuilder 4771 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]}) 4772 .getReg(0); 4773 } 4774 } 4775 MI.eraseFromParent(); 4776 return Legalized; 4777 } 4778 4779 LegalizerHelper::LegalizeResult 4780 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg, 4781 LLT SrcTy, LLT NarrowTy, 4782 unsigned ScalarOpc) { 4783 SmallVector<Register> SplitSrcs; 4784 // Split the sources into NarrowTy size pieces. 4785 extractParts(SrcReg, NarrowTy, 4786 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs); 4787 // We're going to do a tree reduction using vector operations until we have 4788 // one NarrowTy size value left. 4789 while (SplitSrcs.size() > 1) { 4790 SmallVector<Register> PartialRdxs; 4791 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) { 4792 Register LHS = SplitSrcs[Idx]; 4793 Register RHS = SplitSrcs[Idx + 1]; 4794 // Create the intermediate vector op. 4795 Register Res = 4796 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0); 4797 PartialRdxs.push_back(Res); 4798 } 4799 SplitSrcs = std::move(PartialRdxs); 4800 } 4801 // Finally generate the requested NarrowTy based reduction. 4802 Observer.changingInstr(MI); 4803 MI.getOperand(1).setReg(SplitSrcs[0]); 4804 Observer.changedInstr(MI); 4805 return Legalized; 4806 } 4807 4808 LegalizerHelper::LegalizeResult 4809 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4810 const LLT HalfTy, const LLT AmtTy) { 4811 4812 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4813 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4814 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4815 4816 if (Amt.isNullValue()) { 4817 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4818 MI.eraseFromParent(); 4819 return Legalized; 4820 } 4821 4822 LLT NVT = HalfTy; 4823 unsigned NVTBits = HalfTy.getSizeInBits(); 4824 unsigned VTBits = 2 * NVTBits; 4825 4826 SrcOp Lo(Register(0)), Hi(Register(0)); 4827 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4828 if (Amt.ugt(VTBits)) { 4829 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4830 } else if (Amt.ugt(NVTBits)) { 4831 Lo = MIRBuilder.buildConstant(NVT, 0); 4832 Hi = MIRBuilder.buildShl(NVT, InL, 4833 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4834 } else if (Amt == NVTBits) { 4835 Lo = MIRBuilder.buildConstant(NVT, 0); 4836 Hi = InL; 4837 } else { 4838 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4839 auto OrLHS = 4840 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4841 auto OrRHS = MIRBuilder.buildLShr( 4842 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4843 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4844 } 4845 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4846 if (Amt.ugt(VTBits)) { 4847 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4848 } else if (Amt.ugt(NVTBits)) { 4849 Lo = MIRBuilder.buildLShr(NVT, InH, 4850 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4851 Hi = MIRBuilder.buildConstant(NVT, 0); 4852 } else if (Amt == NVTBits) { 4853 Lo = InH; 4854 Hi = MIRBuilder.buildConstant(NVT, 0); 4855 } else { 4856 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4857 4858 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4859 auto OrRHS = MIRBuilder.buildShl( 4860 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4861 4862 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4863 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4864 } 4865 } else { 4866 if (Amt.ugt(VTBits)) { 4867 Hi = Lo = MIRBuilder.buildAShr( 4868 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4869 } else if (Amt.ugt(NVTBits)) { 4870 Lo = MIRBuilder.buildAShr(NVT, InH, 4871 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4872 Hi = MIRBuilder.buildAShr(NVT, InH, 4873 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4874 } else if (Amt == NVTBits) { 4875 Lo = InH; 4876 Hi = MIRBuilder.buildAShr(NVT, InH, 4877 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4878 } else { 4879 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4880 4881 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4882 auto OrRHS = MIRBuilder.buildShl( 4883 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4884 4885 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4886 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4887 } 4888 } 4889 4890 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4891 MI.eraseFromParent(); 4892 4893 return Legalized; 4894 } 4895 4896 // TODO: Optimize if constant shift amount. 4897 LegalizerHelper::LegalizeResult 4898 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4899 LLT RequestedTy) { 4900 if (TypeIdx == 1) { 4901 Observer.changingInstr(MI); 4902 narrowScalarSrc(MI, RequestedTy, 2); 4903 Observer.changedInstr(MI); 4904 return Legalized; 4905 } 4906 4907 Register DstReg = MI.getOperand(0).getReg(); 4908 LLT DstTy = MRI.getType(DstReg); 4909 if (DstTy.isVector()) 4910 return UnableToLegalize; 4911 4912 Register Amt = MI.getOperand(2).getReg(); 4913 LLT ShiftAmtTy = MRI.getType(Amt); 4914 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4915 if (DstEltSize % 2 != 0) 4916 return UnableToLegalize; 4917 4918 // Ignore the input type. We can only go to exactly half the size of the 4919 // input. If that isn't small enough, the resulting pieces will be further 4920 // legalized. 4921 const unsigned NewBitSize = DstEltSize / 2; 4922 const LLT HalfTy = LLT::scalar(NewBitSize); 4923 const LLT CondTy = LLT::scalar(1); 4924 4925 if (auto VRegAndVal = 4926 getConstantVRegValWithLookThrough(Amt, MRI, true, false)) { 4927 return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy, 4928 ShiftAmtTy); 4929 } 4930 4931 // TODO: Expand with known bits. 4932 4933 // Handle the fully general expansion by an unknown amount. 4934 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4935 4936 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4937 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4938 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4939 4940 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4941 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4942 4943 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4944 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4945 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4946 4947 Register ResultRegs[2]; 4948 switch (MI.getOpcode()) { 4949 case TargetOpcode::G_SHL: { 4950 // Short: ShAmt < NewBitSize 4951 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4952 4953 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4954 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4955 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4956 4957 // Long: ShAmt >= NewBitSize 4958 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4959 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4960 4961 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4962 auto Hi = MIRBuilder.buildSelect( 4963 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4964 4965 ResultRegs[0] = Lo.getReg(0); 4966 ResultRegs[1] = Hi.getReg(0); 4967 break; 4968 } 4969 case TargetOpcode::G_LSHR: 4970 case TargetOpcode::G_ASHR: { 4971 // Short: ShAmt < NewBitSize 4972 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4973 4974 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4975 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4976 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4977 4978 // Long: ShAmt >= NewBitSize 4979 MachineInstrBuilder HiL; 4980 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4981 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4982 } else { 4983 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4984 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4985 } 4986 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4987 {InH, AmtExcess}); // Lo from Hi part. 4988 4989 auto Lo = MIRBuilder.buildSelect( 4990 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4991 4992 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4993 4994 ResultRegs[0] = Lo.getReg(0); 4995 ResultRegs[1] = Hi.getReg(0); 4996 break; 4997 } 4998 default: 4999 llvm_unreachable("not a shift"); 5000 } 5001 5002 MIRBuilder.buildMerge(DstReg, ResultRegs); 5003 MI.eraseFromParent(); 5004 return Legalized; 5005 } 5006 5007 LegalizerHelper::LegalizeResult 5008 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 5009 LLT MoreTy) { 5010 assert(TypeIdx == 0 && "Expecting only Idx 0"); 5011 5012 Observer.changingInstr(MI); 5013 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 5014 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 5015 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 5016 moreElementsVectorSrc(MI, MoreTy, I); 5017 } 5018 5019 MachineBasicBlock &MBB = *MI.getParent(); 5020 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 5021 moreElementsVectorDst(MI, MoreTy, 0); 5022 Observer.changedInstr(MI); 5023 return Legalized; 5024 } 5025 5026 LegalizerHelper::LegalizeResult 5027 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 5028 LLT MoreTy) { 5029 unsigned Opc = MI.getOpcode(); 5030 switch (Opc) { 5031 case TargetOpcode::G_IMPLICIT_DEF: 5032 case TargetOpcode::G_LOAD: { 5033 if (TypeIdx != 0) 5034 return UnableToLegalize; 5035 Observer.changingInstr(MI); 5036 moreElementsVectorDst(MI, MoreTy, 0); 5037 Observer.changedInstr(MI); 5038 return Legalized; 5039 } 5040 case TargetOpcode::G_STORE: 5041 if (TypeIdx != 0) 5042 return UnableToLegalize; 5043 Observer.changingInstr(MI); 5044 moreElementsVectorSrc(MI, MoreTy, 0); 5045 Observer.changedInstr(MI); 5046 return Legalized; 5047 case TargetOpcode::G_AND: 5048 case TargetOpcode::G_OR: 5049 case TargetOpcode::G_XOR: 5050 case TargetOpcode::G_SMIN: 5051 case TargetOpcode::G_SMAX: 5052 case TargetOpcode::G_UMIN: 5053 case TargetOpcode::G_UMAX: 5054 case TargetOpcode::G_FMINNUM: 5055 case TargetOpcode::G_FMAXNUM: 5056 case TargetOpcode::G_FMINNUM_IEEE: 5057 case TargetOpcode::G_FMAXNUM_IEEE: 5058 case TargetOpcode::G_FMINIMUM: 5059 case TargetOpcode::G_FMAXIMUM: { 5060 Observer.changingInstr(MI); 5061 moreElementsVectorSrc(MI, MoreTy, 1); 5062 moreElementsVectorSrc(MI, MoreTy, 2); 5063 moreElementsVectorDst(MI, MoreTy, 0); 5064 Observer.changedInstr(MI); 5065 return Legalized; 5066 } 5067 case TargetOpcode::G_EXTRACT: 5068 if (TypeIdx != 1) 5069 return UnableToLegalize; 5070 Observer.changingInstr(MI); 5071 moreElementsVectorSrc(MI, MoreTy, 1); 5072 Observer.changedInstr(MI); 5073 return Legalized; 5074 case TargetOpcode::G_INSERT: 5075 case TargetOpcode::G_FREEZE: 5076 if (TypeIdx != 0) 5077 return UnableToLegalize; 5078 Observer.changingInstr(MI); 5079 moreElementsVectorSrc(MI, MoreTy, 1); 5080 moreElementsVectorDst(MI, MoreTy, 0); 5081 Observer.changedInstr(MI); 5082 return Legalized; 5083 case TargetOpcode::G_SELECT: 5084 if (TypeIdx != 0) 5085 return UnableToLegalize; 5086 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 5087 return UnableToLegalize; 5088 5089 Observer.changingInstr(MI); 5090 moreElementsVectorSrc(MI, MoreTy, 2); 5091 moreElementsVectorSrc(MI, MoreTy, 3); 5092 moreElementsVectorDst(MI, MoreTy, 0); 5093 Observer.changedInstr(MI); 5094 return Legalized; 5095 case TargetOpcode::G_UNMERGE_VALUES: { 5096 if (TypeIdx != 1) 5097 return UnableToLegalize; 5098 5099 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5100 int NumDst = MI.getNumOperands() - 1; 5101 moreElementsVectorSrc(MI, MoreTy, NumDst); 5102 5103 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 5104 for (int I = 0; I != NumDst; ++I) 5105 MIB.addDef(MI.getOperand(I).getReg()); 5106 5107 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 5108 for (int I = NumDst; I != NewNumDst; ++I) 5109 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 5110 5111 MIB.addUse(MI.getOperand(NumDst).getReg()); 5112 MI.eraseFromParent(); 5113 return Legalized; 5114 } 5115 case TargetOpcode::G_PHI: 5116 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 5117 case TargetOpcode::G_SHUFFLE_VECTOR: 5118 return moreElementsVectorShuffle(MI, TypeIdx, MoreTy); 5119 default: 5120 return UnableToLegalize; 5121 } 5122 } 5123 5124 LegalizerHelper::LegalizeResult 5125 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI, 5126 unsigned int TypeIdx, LLT MoreTy) { 5127 if (TypeIdx != 0) 5128 return UnableToLegalize; 5129 5130 Register DstReg = MI.getOperand(0).getReg(); 5131 Register Src1Reg = MI.getOperand(1).getReg(); 5132 Register Src2Reg = MI.getOperand(2).getReg(); 5133 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5134 LLT DstTy = MRI.getType(DstReg); 5135 LLT Src1Ty = MRI.getType(Src1Reg); 5136 LLT Src2Ty = MRI.getType(Src2Reg); 5137 unsigned NumElts = DstTy.getNumElements(); 5138 unsigned WidenNumElts = MoreTy.getNumElements(); 5139 5140 // Expect a canonicalized shuffle. 5141 if (DstTy != Src1Ty || DstTy != Src2Ty) 5142 return UnableToLegalize; 5143 5144 moreElementsVectorSrc(MI, MoreTy, 1); 5145 moreElementsVectorSrc(MI, MoreTy, 2); 5146 5147 // Adjust mask based on new input vector length. 5148 SmallVector<int, 16> NewMask; 5149 for (unsigned I = 0; I != NumElts; ++I) { 5150 int Idx = Mask[I]; 5151 if (Idx < static_cast<int>(NumElts)) 5152 NewMask.push_back(Idx); 5153 else 5154 NewMask.push_back(Idx - NumElts + WidenNumElts); 5155 } 5156 for (unsigned I = NumElts; I != WidenNumElts; ++I) 5157 NewMask.push_back(-1); 5158 moreElementsVectorDst(MI, MoreTy, 0); 5159 MIRBuilder.setInstrAndDebugLoc(MI); 5160 MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(), 5161 MI.getOperand(1).getReg(), 5162 MI.getOperand(2).getReg(), NewMask); 5163 MI.eraseFromParent(); 5164 return Legalized; 5165 } 5166 5167 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 5168 ArrayRef<Register> Src1Regs, 5169 ArrayRef<Register> Src2Regs, 5170 LLT NarrowTy) { 5171 MachineIRBuilder &B = MIRBuilder; 5172 unsigned SrcParts = Src1Regs.size(); 5173 unsigned DstParts = DstRegs.size(); 5174 5175 unsigned DstIdx = 0; // Low bits of the result. 5176 Register FactorSum = 5177 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 5178 DstRegs[DstIdx] = FactorSum; 5179 5180 unsigned CarrySumPrevDstIdx; 5181 SmallVector<Register, 4> Factors; 5182 5183 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 5184 // Collect low parts of muls for DstIdx. 5185 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 5186 i <= std::min(DstIdx, SrcParts - 1); ++i) { 5187 MachineInstrBuilder Mul = 5188 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 5189 Factors.push_back(Mul.getReg(0)); 5190 } 5191 // Collect high parts of muls from previous DstIdx. 5192 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 5193 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 5194 MachineInstrBuilder Umulh = 5195 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 5196 Factors.push_back(Umulh.getReg(0)); 5197 } 5198 // Add CarrySum from additions calculated for previous DstIdx. 5199 if (DstIdx != 1) { 5200 Factors.push_back(CarrySumPrevDstIdx); 5201 } 5202 5203 Register CarrySum; 5204 // Add all factors and accumulate all carries into CarrySum. 5205 if (DstIdx != DstParts - 1) { 5206 MachineInstrBuilder Uaddo = 5207 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 5208 FactorSum = Uaddo.getReg(0); 5209 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 5210 for (unsigned i = 2; i < Factors.size(); ++i) { 5211 MachineInstrBuilder Uaddo = 5212 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 5213 FactorSum = Uaddo.getReg(0); 5214 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 5215 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 5216 } 5217 } else { 5218 // Since value for the next index is not calculated, neither is CarrySum. 5219 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 5220 for (unsigned i = 2; i < Factors.size(); ++i) 5221 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 5222 } 5223 5224 CarrySumPrevDstIdx = CarrySum; 5225 DstRegs[DstIdx] = FactorSum; 5226 Factors.clear(); 5227 } 5228 } 5229 5230 LegalizerHelper::LegalizeResult 5231 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, 5232 LLT NarrowTy) { 5233 if (TypeIdx != 0) 5234 return UnableToLegalize; 5235 5236 Register DstReg = MI.getOperand(0).getReg(); 5237 LLT DstType = MRI.getType(DstReg); 5238 // FIXME: add support for vector types 5239 if (DstType.isVector()) 5240 return UnableToLegalize; 5241 5242 unsigned Opcode = MI.getOpcode(); 5243 unsigned OpO, OpE, OpF; 5244 switch (Opcode) { 5245 case TargetOpcode::G_SADDO: 5246 case TargetOpcode::G_SADDE: 5247 case TargetOpcode::G_UADDO: 5248 case TargetOpcode::G_UADDE: 5249 case TargetOpcode::G_ADD: 5250 OpO = TargetOpcode::G_UADDO; 5251 OpE = TargetOpcode::G_UADDE; 5252 OpF = TargetOpcode::G_UADDE; 5253 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) 5254 OpF = TargetOpcode::G_SADDE; 5255 break; 5256 case TargetOpcode::G_SSUBO: 5257 case TargetOpcode::G_SSUBE: 5258 case TargetOpcode::G_USUBO: 5259 case TargetOpcode::G_USUBE: 5260 case TargetOpcode::G_SUB: 5261 OpO = TargetOpcode::G_USUBO; 5262 OpE = TargetOpcode::G_USUBE; 5263 OpF = TargetOpcode::G_USUBE; 5264 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) 5265 OpF = TargetOpcode::G_SSUBE; 5266 break; 5267 default: 5268 llvm_unreachable("Unexpected add/sub opcode!"); 5269 } 5270 5271 // 1 for a plain add/sub, 2 if this is an operation with a carry-out. 5272 unsigned NumDefs = MI.getNumExplicitDefs(); 5273 Register Src1 = MI.getOperand(NumDefs).getReg(); 5274 Register Src2 = MI.getOperand(NumDefs + 1).getReg(); 5275 Register CarryDst, CarryIn; 5276 if (NumDefs == 2) 5277 CarryDst = MI.getOperand(1).getReg(); 5278 if (MI.getNumOperands() == NumDefs + 3) 5279 CarryIn = MI.getOperand(NumDefs + 2).getReg(); 5280 5281 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5282 LLT LeftoverTy, DummyTy; 5283 SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs; 5284 extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left); 5285 extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left); 5286 5287 int NarrowParts = Src1Regs.size(); 5288 for (int I = 0, E = Src1Left.size(); I != E; ++I) { 5289 Src1Regs.push_back(Src1Left[I]); 5290 Src2Regs.push_back(Src2Left[I]); 5291 } 5292 DstRegs.reserve(Src1Regs.size()); 5293 5294 for (int i = 0, e = Src1Regs.size(); i != e; ++i) { 5295 Register DstReg = 5296 MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i])); 5297 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 5298 // Forward the final carry-out to the destination register 5299 if (i == e - 1 && CarryDst) 5300 CarryOut = CarryDst; 5301 5302 if (!CarryIn) { 5303 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, 5304 {Src1Regs[i], Src2Regs[i]}); 5305 } else if (i == e - 1) { 5306 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, 5307 {Src1Regs[i], Src2Regs[i], CarryIn}); 5308 } else { 5309 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, 5310 {Src1Regs[i], Src2Regs[i], CarryIn}); 5311 } 5312 5313 DstRegs.push_back(DstReg); 5314 CarryIn = CarryOut; 5315 } 5316 insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy, 5317 makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy, 5318 makeArrayRef(DstRegs).drop_front(NarrowParts)); 5319 5320 MI.eraseFromParent(); 5321 return Legalized; 5322 } 5323 5324 LegalizerHelper::LegalizeResult 5325 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 5326 Register DstReg = MI.getOperand(0).getReg(); 5327 Register Src1 = MI.getOperand(1).getReg(); 5328 Register Src2 = MI.getOperand(2).getReg(); 5329 5330 LLT Ty = MRI.getType(DstReg); 5331 if (Ty.isVector()) 5332 return UnableToLegalize; 5333 5334 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 5335 unsigned DstSize = Ty.getSizeInBits(); 5336 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5337 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 5338 return UnableToLegalize; 5339 5340 unsigned NumDstParts = DstSize / NarrowSize; 5341 unsigned NumSrcParts = SrcSize / NarrowSize; 5342 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 5343 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 5344 5345 SmallVector<Register, 2> Src1Parts, Src2Parts; 5346 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 5347 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 5348 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 5349 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 5350 5351 // Take only high half of registers if this is high mul. 5352 ArrayRef<Register> DstRegs( 5353 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 5354 MIRBuilder.buildMerge(DstReg, DstRegs); 5355 MI.eraseFromParent(); 5356 return Legalized; 5357 } 5358 5359 LegalizerHelper::LegalizeResult 5360 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, 5361 LLT NarrowTy) { 5362 if (TypeIdx != 0) 5363 return UnableToLegalize; 5364 5365 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI; 5366 5367 Register Src = MI.getOperand(1).getReg(); 5368 LLT SrcTy = MRI.getType(Src); 5369 5370 // If all finite floats fit into the narrowed integer type, we can just swap 5371 // out the result type. This is practically only useful for conversions from 5372 // half to at least 16-bits, so just handle the one case. 5373 if (SrcTy.getScalarType() != LLT::scalar(16) || 5374 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u)) 5375 return UnableToLegalize; 5376 5377 Observer.changingInstr(MI); 5378 narrowScalarDst(MI, NarrowTy, 0, 5379 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT); 5380 Observer.changedInstr(MI); 5381 return Legalized; 5382 } 5383 5384 LegalizerHelper::LegalizeResult 5385 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 5386 LLT NarrowTy) { 5387 if (TypeIdx != 1) 5388 return UnableToLegalize; 5389 5390 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5391 5392 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 5393 // FIXME: add support for when SizeOp1 isn't an exact multiple of 5394 // NarrowSize. 5395 if (SizeOp1 % NarrowSize != 0) 5396 return UnableToLegalize; 5397 int NumParts = SizeOp1 / NarrowSize; 5398 5399 SmallVector<Register, 2> SrcRegs, DstRegs; 5400 SmallVector<uint64_t, 2> Indexes; 5401 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 5402 5403 Register OpReg = MI.getOperand(0).getReg(); 5404 uint64_t OpStart = MI.getOperand(2).getImm(); 5405 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5406 for (int i = 0; i < NumParts; ++i) { 5407 unsigned SrcStart = i * NarrowSize; 5408 5409 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 5410 // No part of the extract uses this subregister, ignore it. 5411 continue; 5412 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5413 // The entire subregister is extracted, forward the value. 5414 DstRegs.push_back(SrcRegs[i]); 5415 continue; 5416 } 5417 5418 // OpSegStart is where this destination segment would start in OpReg if it 5419 // extended infinitely in both directions. 5420 int64_t ExtractOffset; 5421 uint64_t SegSize; 5422 if (OpStart < SrcStart) { 5423 ExtractOffset = 0; 5424 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 5425 } else { 5426 ExtractOffset = OpStart - SrcStart; 5427 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 5428 } 5429 5430 Register SegReg = SrcRegs[i]; 5431 if (ExtractOffset != 0 || SegSize != NarrowSize) { 5432 // A genuine extract is needed. 5433 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5434 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 5435 } 5436 5437 DstRegs.push_back(SegReg); 5438 } 5439 5440 Register DstReg = MI.getOperand(0).getReg(); 5441 if (MRI.getType(DstReg).isVector()) 5442 MIRBuilder.buildBuildVector(DstReg, DstRegs); 5443 else if (DstRegs.size() > 1) 5444 MIRBuilder.buildMerge(DstReg, DstRegs); 5445 else 5446 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 5447 MI.eraseFromParent(); 5448 return Legalized; 5449 } 5450 5451 LegalizerHelper::LegalizeResult 5452 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 5453 LLT NarrowTy) { 5454 // FIXME: Don't know how to handle secondary types yet. 5455 if (TypeIdx != 0) 5456 return UnableToLegalize; 5457 5458 SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs; 5459 SmallVector<uint64_t, 2> Indexes; 5460 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5461 LLT LeftoverTy; 5462 extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs, 5463 LeftoverRegs); 5464 5465 for (Register Reg : LeftoverRegs) 5466 SrcRegs.push_back(Reg); 5467 5468 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5469 Register OpReg = MI.getOperand(2).getReg(); 5470 uint64_t OpStart = MI.getOperand(3).getImm(); 5471 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5472 for (int I = 0, E = SrcRegs.size(); I != E; ++I) { 5473 unsigned DstStart = I * NarrowSize; 5474 5475 if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5476 // The entire subregister is defined by this insert, forward the new 5477 // value. 5478 DstRegs.push_back(OpReg); 5479 continue; 5480 } 5481 5482 Register SrcReg = SrcRegs[I]; 5483 if (MRI.getType(SrcRegs[I]) == LeftoverTy) { 5484 // The leftover reg is smaller than NarrowTy, so we need to extend it. 5485 SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 5486 MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]); 5487 } 5488 5489 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 5490 // No part of the insert affects this subregister, forward the original. 5491 DstRegs.push_back(SrcReg); 5492 continue; 5493 } 5494 5495 // OpSegStart is where this destination segment would start in OpReg if it 5496 // extended infinitely in both directions. 5497 int64_t ExtractOffset, InsertOffset; 5498 uint64_t SegSize; 5499 if (OpStart < DstStart) { 5500 InsertOffset = 0; 5501 ExtractOffset = DstStart - OpStart; 5502 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 5503 } else { 5504 InsertOffset = OpStart - DstStart; 5505 ExtractOffset = 0; 5506 SegSize = 5507 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 5508 } 5509 5510 Register SegReg = OpReg; 5511 if (ExtractOffset != 0 || SegSize != OpSize) { 5512 // A genuine extract is needed. 5513 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5514 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 5515 } 5516 5517 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 5518 MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset); 5519 DstRegs.push_back(DstReg); 5520 } 5521 5522 uint64_t WideSize = DstRegs.size() * NarrowSize; 5523 Register DstReg = MI.getOperand(0).getReg(); 5524 if (WideSize > RegTy.getSizeInBits()) { 5525 Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize)); 5526 MIRBuilder.buildMerge(MergeReg, DstRegs); 5527 MIRBuilder.buildTrunc(DstReg, MergeReg); 5528 } else 5529 MIRBuilder.buildMerge(DstReg, DstRegs); 5530 5531 MI.eraseFromParent(); 5532 return Legalized; 5533 } 5534 5535 LegalizerHelper::LegalizeResult 5536 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 5537 LLT NarrowTy) { 5538 Register DstReg = MI.getOperand(0).getReg(); 5539 LLT DstTy = MRI.getType(DstReg); 5540 5541 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 5542 5543 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5544 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 5545 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5546 LLT LeftoverTy; 5547 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 5548 Src0Regs, Src0LeftoverRegs)) 5549 return UnableToLegalize; 5550 5551 LLT Unused; 5552 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 5553 Src1Regs, Src1LeftoverRegs)) 5554 llvm_unreachable("inconsistent extractParts result"); 5555 5556 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5557 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 5558 {Src0Regs[I], Src1Regs[I]}); 5559 DstRegs.push_back(Inst.getReg(0)); 5560 } 5561 5562 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5563 auto Inst = MIRBuilder.buildInstr( 5564 MI.getOpcode(), 5565 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 5566 DstLeftoverRegs.push_back(Inst.getReg(0)); 5567 } 5568 5569 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5570 LeftoverTy, DstLeftoverRegs); 5571 5572 MI.eraseFromParent(); 5573 return Legalized; 5574 } 5575 5576 LegalizerHelper::LegalizeResult 5577 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 5578 LLT NarrowTy) { 5579 if (TypeIdx != 0) 5580 return UnableToLegalize; 5581 5582 Register DstReg = MI.getOperand(0).getReg(); 5583 Register SrcReg = MI.getOperand(1).getReg(); 5584 5585 LLT DstTy = MRI.getType(DstReg); 5586 if (DstTy.isVector()) 5587 return UnableToLegalize; 5588 5589 SmallVector<Register, 8> Parts; 5590 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 5591 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 5592 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 5593 5594 MI.eraseFromParent(); 5595 return Legalized; 5596 } 5597 5598 LegalizerHelper::LegalizeResult 5599 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 5600 LLT NarrowTy) { 5601 if (TypeIdx != 0) 5602 return UnableToLegalize; 5603 5604 Register CondReg = MI.getOperand(1).getReg(); 5605 LLT CondTy = MRI.getType(CondReg); 5606 if (CondTy.isVector()) // TODO: Handle vselect 5607 return UnableToLegalize; 5608 5609 Register DstReg = MI.getOperand(0).getReg(); 5610 LLT DstTy = MRI.getType(DstReg); 5611 5612 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5613 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5614 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 5615 LLT LeftoverTy; 5616 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 5617 Src1Regs, Src1LeftoverRegs)) 5618 return UnableToLegalize; 5619 5620 LLT Unused; 5621 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 5622 Src2Regs, Src2LeftoverRegs)) 5623 llvm_unreachable("inconsistent extractParts result"); 5624 5625 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5626 auto Select = MIRBuilder.buildSelect(NarrowTy, 5627 CondReg, Src1Regs[I], Src2Regs[I]); 5628 DstRegs.push_back(Select.getReg(0)); 5629 } 5630 5631 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5632 auto Select = MIRBuilder.buildSelect( 5633 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 5634 DstLeftoverRegs.push_back(Select.getReg(0)); 5635 } 5636 5637 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5638 LeftoverTy, DstLeftoverRegs); 5639 5640 MI.eraseFromParent(); 5641 return Legalized; 5642 } 5643 5644 LegalizerHelper::LegalizeResult 5645 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 5646 LLT NarrowTy) { 5647 if (TypeIdx != 1) 5648 return UnableToLegalize; 5649 5650 Register DstReg = MI.getOperand(0).getReg(); 5651 Register SrcReg = MI.getOperand(1).getReg(); 5652 LLT DstTy = MRI.getType(DstReg); 5653 LLT SrcTy = MRI.getType(SrcReg); 5654 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5655 5656 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5657 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 5658 5659 MachineIRBuilder &B = MIRBuilder; 5660 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5661 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 5662 auto C_0 = B.buildConstant(NarrowTy, 0); 5663 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5664 UnmergeSrc.getReg(1), C_0); 5665 auto LoCTLZ = IsUndef ? 5666 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 5667 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 5668 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5669 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 5670 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 5671 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 5672 5673 MI.eraseFromParent(); 5674 return Legalized; 5675 } 5676 5677 return UnableToLegalize; 5678 } 5679 5680 LegalizerHelper::LegalizeResult 5681 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 5682 LLT NarrowTy) { 5683 if (TypeIdx != 1) 5684 return UnableToLegalize; 5685 5686 Register DstReg = MI.getOperand(0).getReg(); 5687 Register SrcReg = MI.getOperand(1).getReg(); 5688 LLT DstTy = MRI.getType(DstReg); 5689 LLT SrcTy = MRI.getType(SrcReg); 5690 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5691 5692 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5693 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 5694 5695 MachineIRBuilder &B = MIRBuilder; 5696 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5697 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 5698 auto C_0 = B.buildConstant(NarrowTy, 0); 5699 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5700 UnmergeSrc.getReg(0), C_0); 5701 auto HiCTTZ = IsUndef ? 5702 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 5703 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 5704 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5705 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 5706 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 5707 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 5708 5709 MI.eraseFromParent(); 5710 return Legalized; 5711 } 5712 5713 return UnableToLegalize; 5714 } 5715 5716 LegalizerHelper::LegalizeResult 5717 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 5718 LLT NarrowTy) { 5719 if (TypeIdx != 1) 5720 return UnableToLegalize; 5721 5722 Register DstReg = MI.getOperand(0).getReg(); 5723 LLT DstTy = MRI.getType(DstReg); 5724 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 5725 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5726 5727 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5728 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 5729 5730 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 5731 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 5732 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 5733 5734 MI.eraseFromParent(); 5735 return Legalized; 5736 } 5737 5738 return UnableToLegalize; 5739 } 5740 5741 LegalizerHelper::LegalizeResult 5742 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 5743 unsigned Opc = MI.getOpcode(); 5744 const auto &TII = MIRBuilder.getTII(); 5745 auto isSupported = [this](const LegalityQuery &Q) { 5746 auto QAction = LI.getAction(Q).Action; 5747 return QAction == Legal || QAction == Libcall || QAction == Custom; 5748 }; 5749 switch (Opc) { 5750 default: 5751 return UnableToLegalize; 5752 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 5753 // This trivially expands to CTLZ. 5754 Observer.changingInstr(MI); 5755 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 5756 Observer.changedInstr(MI); 5757 return Legalized; 5758 } 5759 case TargetOpcode::G_CTLZ: { 5760 Register DstReg = MI.getOperand(0).getReg(); 5761 Register SrcReg = MI.getOperand(1).getReg(); 5762 LLT DstTy = MRI.getType(DstReg); 5763 LLT SrcTy = MRI.getType(SrcReg); 5764 unsigned Len = SrcTy.getSizeInBits(); 5765 5766 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5767 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 5768 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 5769 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 5770 auto ICmp = MIRBuilder.buildICmp( 5771 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 5772 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5773 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 5774 MI.eraseFromParent(); 5775 return Legalized; 5776 } 5777 // for now, we do this: 5778 // NewLen = NextPowerOf2(Len); 5779 // x = x | (x >> 1); 5780 // x = x | (x >> 2); 5781 // ... 5782 // x = x | (x >>16); 5783 // x = x | (x >>32); // for 64-bit input 5784 // Upto NewLen/2 5785 // return Len - popcount(x); 5786 // 5787 // Ref: "Hacker's Delight" by Henry Warren 5788 Register Op = SrcReg; 5789 unsigned NewLen = PowerOf2Ceil(Len); 5790 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 5791 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 5792 auto MIBOp = MIRBuilder.buildOr( 5793 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 5794 Op = MIBOp.getReg(0); 5795 } 5796 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 5797 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 5798 MIBPop); 5799 MI.eraseFromParent(); 5800 return Legalized; 5801 } 5802 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 5803 // This trivially expands to CTTZ. 5804 Observer.changingInstr(MI); 5805 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 5806 Observer.changedInstr(MI); 5807 return Legalized; 5808 } 5809 case TargetOpcode::G_CTTZ: { 5810 Register DstReg = MI.getOperand(0).getReg(); 5811 Register SrcReg = MI.getOperand(1).getReg(); 5812 LLT DstTy = MRI.getType(DstReg); 5813 LLT SrcTy = MRI.getType(SrcReg); 5814 5815 unsigned Len = SrcTy.getSizeInBits(); 5816 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5817 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 5818 // zero. 5819 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 5820 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 5821 auto ICmp = MIRBuilder.buildICmp( 5822 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 5823 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5824 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 5825 MI.eraseFromParent(); 5826 return Legalized; 5827 } 5828 // for now, we use: { return popcount(~x & (x - 1)); } 5829 // unless the target has ctlz but not ctpop, in which case we use: 5830 // { return 32 - nlz(~x & (x-1)); } 5831 // Ref: "Hacker's Delight" by Henry Warren 5832 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 5833 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 5834 auto MIBTmp = MIRBuilder.buildAnd( 5835 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 5836 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 5837 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 5838 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 5839 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 5840 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 5841 MI.eraseFromParent(); 5842 return Legalized; 5843 } 5844 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 5845 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 5846 return Legalized; 5847 } 5848 case TargetOpcode::G_CTPOP: { 5849 Register SrcReg = MI.getOperand(1).getReg(); 5850 LLT Ty = MRI.getType(SrcReg); 5851 unsigned Size = Ty.getSizeInBits(); 5852 MachineIRBuilder &B = MIRBuilder; 5853 5854 // Count set bits in blocks of 2 bits. Default approach would be 5855 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 5856 // We use following formula instead: 5857 // B2Count = val - { (val >> 1) & 0x55555555 } 5858 // since it gives same result in blocks of 2 with one instruction less. 5859 auto C_1 = B.buildConstant(Ty, 1); 5860 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 5861 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 5862 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 5863 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 5864 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 5865 5866 // In order to get count in blocks of 4 add values from adjacent block of 2. 5867 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 5868 auto C_2 = B.buildConstant(Ty, 2); 5869 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 5870 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 5871 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 5872 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 5873 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 5874 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 5875 5876 // For count in blocks of 8 bits we don't have to mask high 4 bits before 5877 // addition since count value sits in range {0,...,8} and 4 bits are enough 5878 // to hold such binary values. After addition high 4 bits still hold count 5879 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 5880 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 5881 auto C_4 = B.buildConstant(Ty, 4); 5882 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 5883 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 5884 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 5885 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 5886 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 5887 5888 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 5889 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 5890 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 5891 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 5892 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 5893 5894 // Shift count result from 8 high bits to low bits. 5895 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 5896 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 5897 5898 MI.eraseFromParent(); 5899 return Legalized; 5900 } 5901 } 5902 } 5903 5904 // Check that (every element of) Reg is undef or not an exact multiple of BW. 5905 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, 5906 Register Reg, unsigned BW) { 5907 return matchUnaryPredicate( 5908 MRI, Reg, 5909 [=](const Constant *C) { 5910 // Null constant here means an undef. 5911 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C); 5912 return !CI || CI->getValue().urem(BW) != 0; 5913 }, 5914 /*AllowUndefs*/ true); 5915 } 5916 5917 LegalizerHelper::LegalizeResult 5918 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) { 5919 Register Dst = MI.getOperand(0).getReg(); 5920 Register X = MI.getOperand(1).getReg(); 5921 Register Y = MI.getOperand(2).getReg(); 5922 Register Z = MI.getOperand(3).getReg(); 5923 LLT Ty = MRI.getType(Dst); 5924 LLT ShTy = MRI.getType(Z); 5925 5926 unsigned BW = Ty.getScalarSizeInBits(); 5927 5928 if (!isPowerOf2_32(BW)) 5929 return UnableToLegalize; 5930 5931 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5932 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5933 5934 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5935 // fshl X, Y, Z -> fshr X, Y, -Z 5936 // fshr X, Y, Z -> fshl X, Y, -Z 5937 auto Zero = MIRBuilder.buildConstant(ShTy, 0); 5938 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0); 5939 } else { 5940 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 5941 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 5942 auto One = MIRBuilder.buildConstant(ShTy, 1); 5943 if (IsFSHL) { 5944 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5945 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0); 5946 } else { 5947 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5948 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0); 5949 } 5950 5951 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0); 5952 } 5953 5954 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z}); 5955 MI.eraseFromParent(); 5956 return Legalized; 5957 } 5958 5959 LegalizerHelper::LegalizeResult 5960 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) { 5961 Register Dst = MI.getOperand(0).getReg(); 5962 Register X = MI.getOperand(1).getReg(); 5963 Register Y = MI.getOperand(2).getReg(); 5964 Register Z = MI.getOperand(3).getReg(); 5965 LLT Ty = MRI.getType(Dst); 5966 LLT ShTy = MRI.getType(Z); 5967 5968 const unsigned BW = Ty.getScalarSizeInBits(); 5969 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5970 5971 Register ShX, ShY; 5972 Register ShAmt, InvShAmt; 5973 5974 // FIXME: Emit optimized urem by constant instead of letting it expand later. 5975 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5976 // fshl: X << C | Y >> (BW - C) 5977 // fshr: X << (BW - C) | Y >> C 5978 // where C = Z % BW is not zero 5979 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5980 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5981 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0); 5982 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0); 5983 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0); 5984 } else { 5985 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 5986 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 5987 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1); 5988 if (isPowerOf2_32(BW)) { 5989 // Z % BW -> Z & (BW - 1) 5990 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0); 5991 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 5992 auto NotZ = MIRBuilder.buildNot(ShTy, Z); 5993 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0); 5994 } else { 5995 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5996 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5997 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0); 5998 } 5999 6000 auto One = MIRBuilder.buildConstant(ShTy, 1); 6001 if (IsFSHL) { 6002 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0); 6003 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One); 6004 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0); 6005 } else { 6006 auto ShX1 = MIRBuilder.buildShl(Ty, X, One); 6007 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0); 6008 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0); 6009 } 6010 } 6011 6012 MIRBuilder.buildOr(Dst, ShX, ShY); 6013 MI.eraseFromParent(); 6014 return Legalized; 6015 } 6016 6017 LegalizerHelper::LegalizeResult 6018 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) { 6019 // These operations approximately do the following (while avoiding undefined 6020 // shifts by BW): 6021 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6022 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6023 Register Dst = MI.getOperand(0).getReg(); 6024 LLT Ty = MRI.getType(Dst); 6025 LLT ShTy = MRI.getType(MI.getOperand(3).getReg()); 6026 6027 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 6028 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 6029 6030 // TODO: Use smarter heuristic that accounts for vector legalization. 6031 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower) 6032 return lowerFunnelShiftAsShifts(MI); 6033 6034 // This only works for powers of 2, fallback to shifts if it fails. 6035 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI); 6036 if (Result == UnableToLegalize) 6037 return lowerFunnelShiftAsShifts(MI); 6038 return Result; 6039 } 6040 6041 LegalizerHelper::LegalizeResult 6042 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) { 6043 Register Dst = MI.getOperand(0).getReg(); 6044 Register Src = MI.getOperand(1).getReg(); 6045 Register Amt = MI.getOperand(2).getReg(); 6046 LLT AmtTy = MRI.getType(Amt); 6047 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 6048 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 6049 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 6050 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt); 6051 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg}); 6052 MI.eraseFromParent(); 6053 return Legalized; 6054 } 6055 6056 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) { 6057 Register Dst = MI.getOperand(0).getReg(); 6058 Register Src = MI.getOperand(1).getReg(); 6059 Register Amt = MI.getOperand(2).getReg(); 6060 LLT DstTy = MRI.getType(Dst); 6061 LLT SrcTy = MRI.getType(Dst); 6062 LLT AmtTy = MRI.getType(Amt); 6063 6064 unsigned EltSizeInBits = DstTy.getScalarSizeInBits(); 6065 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 6066 6067 MIRBuilder.setInstrAndDebugLoc(MI); 6068 6069 // If a rotate in the other direction is supported, use it. 6070 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 6071 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) && 6072 isPowerOf2_32(EltSizeInBits)) 6073 return lowerRotateWithReverseRotate(MI); 6074 6075 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 6076 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR; 6077 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL; 6078 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1); 6079 Register ShVal; 6080 Register RevShiftVal; 6081 if (isPowerOf2_32(EltSizeInBits)) { 6082 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6083 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6084 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt); 6085 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC); 6086 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 6087 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC); 6088 RevShiftVal = 6089 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0); 6090 } else { 6091 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6092 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6093 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits); 6094 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC); 6095 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 6096 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt); 6097 auto One = MIRBuilder.buildConstant(AmtTy, 1); 6098 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One}); 6099 RevShiftVal = 6100 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0); 6101 } 6102 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal); 6103 MI.eraseFromParent(); 6104 return Legalized; 6105 } 6106 6107 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 6108 // representation. 6109 LegalizerHelper::LegalizeResult 6110 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 6111 Register Dst = MI.getOperand(0).getReg(); 6112 Register Src = MI.getOperand(1).getReg(); 6113 const LLT S64 = LLT::scalar(64); 6114 const LLT S32 = LLT::scalar(32); 6115 const LLT S1 = LLT::scalar(1); 6116 6117 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 6118 6119 // unsigned cul2f(ulong u) { 6120 // uint lz = clz(u); 6121 // uint e = (u != 0) ? 127U + 63U - lz : 0; 6122 // u = (u << lz) & 0x7fffffffffffffffUL; 6123 // ulong t = u & 0xffffffffffUL; 6124 // uint v = (e << 23) | (uint)(u >> 40); 6125 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 6126 // return as_float(v + r); 6127 // } 6128 6129 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 6130 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 6131 6132 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 6133 6134 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 6135 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 6136 6137 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 6138 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 6139 6140 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 6141 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 6142 6143 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 6144 6145 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 6146 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 6147 6148 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 6149 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 6150 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 6151 6152 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 6153 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 6154 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 6155 auto One = MIRBuilder.buildConstant(S32, 1); 6156 6157 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 6158 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 6159 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 6160 MIRBuilder.buildAdd(Dst, V, R); 6161 6162 MI.eraseFromParent(); 6163 return Legalized; 6164 } 6165 6166 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 6167 Register Dst = MI.getOperand(0).getReg(); 6168 Register Src = MI.getOperand(1).getReg(); 6169 LLT DstTy = MRI.getType(Dst); 6170 LLT SrcTy = MRI.getType(Src); 6171 6172 if (SrcTy == LLT::scalar(1)) { 6173 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 6174 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 6175 MIRBuilder.buildSelect(Dst, Src, True, False); 6176 MI.eraseFromParent(); 6177 return Legalized; 6178 } 6179 6180 if (SrcTy != LLT::scalar(64)) 6181 return UnableToLegalize; 6182 6183 if (DstTy == LLT::scalar(32)) { 6184 // TODO: SelectionDAG has several alternative expansions to port which may 6185 // be more reasonble depending on the available instructions. If a target 6186 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 6187 // intermediate type, this is probably worse. 6188 return lowerU64ToF32BitOps(MI); 6189 } 6190 6191 return UnableToLegalize; 6192 } 6193 6194 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 6195 Register Dst = MI.getOperand(0).getReg(); 6196 Register Src = MI.getOperand(1).getReg(); 6197 LLT DstTy = MRI.getType(Dst); 6198 LLT SrcTy = MRI.getType(Src); 6199 6200 const LLT S64 = LLT::scalar(64); 6201 const LLT S32 = LLT::scalar(32); 6202 const LLT S1 = LLT::scalar(1); 6203 6204 if (SrcTy == S1) { 6205 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 6206 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 6207 MIRBuilder.buildSelect(Dst, Src, True, False); 6208 MI.eraseFromParent(); 6209 return Legalized; 6210 } 6211 6212 if (SrcTy != S64) 6213 return UnableToLegalize; 6214 6215 if (DstTy == S32) { 6216 // signed cl2f(long l) { 6217 // long s = l >> 63; 6218 // float r = cul2f((l + s) ^ s); 6219 // return s ? -r : r; 6220 // } 6221 Register L = Src; 6222 auto SignBit = MIRBuilder.buildConstant(S64, 63); 6223 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 6224 6225 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 6226 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 6227 auto R = MIRBuilder.buildUITOFP(S32, Xor); 6228 6229 auto RNeg = MIRBuilder.buildFNeg(S32, R); 6230 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 6231 MIRBuilder.buildConstant(S64, 0)); 6232 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 6233 MI.eraseFromParent(); 6234 return Legalized; 6235 } 6236 6237 return UnableToLegalize; 6238 } 6239 6240 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 6241 Register Dst = MI.getOperand(0).getReg(); 6242 Register Src = MI.getOperand(1).getReg(); 6243 LLT DstTy = MRI.getType(Dst); 6244 LLT SrcTy = MRI.getType(Src); 6245 const LLT S64 = LLT::scalar(64); 6246 const LLT S32 = LLT::scalar(32); 6247 6248 if (SrcTy != S64 && SrcTy != S32) 6249 return UnableToLegalize; 6250 if (DstTy != S32 && DstTy != S64) 6251 return UnableToLegalize; 6252 6253 // FPTOSI gives same result as FPTOUI for positive signed integers. 6254 // FPTOUI needs to deal with fp values that convert to unsigned integers 6255 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 6256 6257 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 6258 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 6259 : APFloat::IEEEdouble(), 6260 APInt::getNullValue(SrcTy.getSizeInBits())); 6261 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 6262 6263 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 6264 6265 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 6266 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 6267 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 6268 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 6269 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 6270 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 6271 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 6272 6273 const LLT S1 = LLT::scalar(1); 6274 6275 MachineInstrBuilder FCMP = 6276 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 6277 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 6278 6279 MI.eraseFromParent(); 6280 return Legalized; 6281 } 6282 6283 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 6284 Register Dst = MI.getOperand(0).getReg(); 6285 Register Src = MI.getOperand(1).getReg(); 6286 LLT DstTy = MRI.getType(Dst); 6287 LLT SrcTy = MRI.getType(Src); 6288 const LLT S64 = LLT::scalar(64); 6289 const LLT S32 = LLT::scalar(32); 6290 6291 // FIXME: Only f32 to i64 conversions are supported. 6292 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 6293 return UnableToLegalize; 6294 6295 // Expand f32 -> i64 conversion 6296 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6297 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6298 6299 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 6300 6301 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 6302 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 6303 6304 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 6305 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 6306 6307 auto SignMask = MIRBuilder.buildConstant(SrcTy, 6308 APInt::getSignMask(SrcEltBits)); 6309 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 6310 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 6311 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 6312 Sign = MIRBuilder.buildSExt(DstTy, Sign); 6313 6314 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 6315 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 6316 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 6317 6318 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 6319 R = MIRBuilder.buildZExt(DstTy, R); 6320 6321 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 6322 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 6323 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 6324 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 6325 6326 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 6327 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 6328 6329 const LLT S1 = LLT::scalar(1); 6330 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 6331 S1, Exponent, ExponentLoBit); 6332 6333 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 6334 6335 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 6336 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 6337 6338 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 6339 6340 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 6341 S1, Exponent, ZeroSrcTy); 6342 6343 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 6344 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 6345 6346 MI.eraseFromParent(); 6347 return Legalized; 6348 } 6349 6350 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 6351 LegalizerHelper::LegalizeResult 6352 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 6353 Register Dst = MI.getOperand(0).getReg(); 6354 Register Src = MI.getOperand(1).getReg(); 6355 6356 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 6357 return UnableToLegalize; 6358 6359 const unsigned ExpMask = 0x7ff; 6360 const unsigned ExpBiasf64 = 1023; 6361 const unsigned ExpBiasf16 = 15; 6362 const LLT S32 = LLT::scalar(32); 6363 const LLT S1 = LLT::scalar(1); 6364 6365 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 6366 Register U = Unmerge.getReg(0); 6367 Register UH = Unmerge.getReg(1); 6368 6369 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 6370 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 6371 6372 // Subtract the fp64 exponent bias (1023) to get the real exponent and 6373 // add the f16 bias (15) to get the biased exponent for the f16 format. 6374 E = MIRBuilder.buildAdd( 6375 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 6376 6377 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 6378 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 6379 6380 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 6381 MIRBuilder.buildConstant(S32, 0x1ff)); 6382 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 6383 6384 auto Zero = MIRBuilder.buildConstant(S32, 0); 6385 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 6386 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 6387 M = MIRBuilder.buildOr(S32, M, Lo40Set); 6388 6389 // (M != 0 ? 0x0200 : 0) | 0x7c00; 6390 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 6391 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 6392 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 6393 6394 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 6395 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 6396 6397 // N = M | (E << 12); 6398 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 6399 auto N = MIRBuilder.buildOr(S32, M, EShl12); 6400 6401 // B = clamp(1-E, 0, 13); 6402 auto One = MIRBuilder.buildConstant(S32, 1); 6403 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 6404 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 6405 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 6406 6407 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 6408 MIRBuilder.buildConstant(S32, 0x1000)); 6409 6410 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 6411 auto D0 = MIRBuilder.buildShl(S32, D, B); 6412 6413 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 6414 D0, SigSetHigh); 6415 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 6416 D = MIRBuilder.buildOr(S32, D, D1); 6417 6418 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 6419 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 6420 6421 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 6422 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 6423 6424 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 6425 MIRBuilder.buildConstant(S32, 3)); 6426 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 6427 6428 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 6429 MIRBuilder.buildConstant(S32, 5)); 6430 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 6431 6432 V1 = MIRBuilder.buildOr(S32, V0, V1); 6433 V = MIRBuilder.buildAdd(S32, V, V1); 6434 6435 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 6436 E, MIRBuilder.buildConstant(S32, 30)); 6437 V = MIRBuilder.buildSelect(S32, CmpEGt30, 6438 MIRBuilder.buildConstant(S32, 0x7c00), V); 6439 6440 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 6441 E, MIRBuilder.buildConstant(S32, 1039)); 6442 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 6443 6444 // Extract the sign bit. 6445 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 6446 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 6447 6448 // Insert the sign bit 6449 V = MIRBuilder.buildOr(S32, Sign, V); 6450 6451 MIRBuilder.buildTrunc(Dst, V); 6452 MI.eraseFromParent(); 6453 return Legalized; 6454 } 6455 6456 LegalizerHelper::LegalizeResult 6457 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 6458 Register Dst = MI.getOperand(0).getReg(); 6459 Register Src = MI.getOperand(1).getReg(); 6460 6461 LLT DstTy = MRI.getType(Dst); 6462 LLT SrcTy = MRI.getType(Src); 6463 const LLT S64 = LLT::scalar(64); 6464 const LLT S16 = LLT::scalar(16); 6465 6466 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 6467 return lowerFPTRUNC_F64_TO_F16(MI); 6468 6469 return UnableToLegalize; 6470 } 6471 6472 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 6473 // multiplication tree. 6474 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 6475 Register Dst = MI.getOperand(0).getReg(); 6476 Register Src0 = MI.getOperand(1).getReg(); 6477 Register Src1 = MI.getOperand(2).getReg(); 6478 LLT Ty = MRI.getType(Dst); 6479 6480 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 6481 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 6482 MI.eraseFromParent(); 6483 return Legalized; 6484 } 6485 6486 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 6487 switch (Opc) { 6488 case TargetOpcode::G_SMIN: 6489 return CmpInst::ICMP_SLT; 6490 case TargetOpcode::G_SMAX: 6491 return CmpInst::ICMP_SGT; 6492 case TargetOpcode::G_UMIN: 6493 return CmpInst::ICMP_ULT; 6494 case TargetOpcode::G_UMAX: 6495 return CmpInst::ICMP_UGT; 6496 default: 6497 llvm_unreachable("not in integer min/max"); 6498 } 6499 } 6500 6501 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 6502 Register Dst = MI.getOperand(0).getReg(); 6503 Register Src0 = MI.getOperand(1).getReg(); 6504 Register Src1 = MI.getOperand(2).getReg(); 6505 6506 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 6507 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 6508 6509 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 6510 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 6511 6512 MI.eraseFromParent(); 6513 return Legalized; 6514 } 6515 6516 LegalizerHelper::LegalizeResult 6517 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 6518 Register Dst = MI.getOperand(0).getReg(); 6519 Register Src0 = MI.getOperand(1).getReg(); 6520 Register Src1 = MI.getOperand(2).getReg(); 6521 6522 const LLT Src0Ty = MRI.getType(Src0); 6523 const LLT Src1Ty = MRI.getType(Src1); 6524 6525 const int Src0Size = Src0Ty.getScalarSizeInBits(); 6526 const int Src1Size = Src1Ty.getScalarSizeInBits(); 6527 6528 auto SignBitMask = MIRBuilder.buildConstant( 6529 Src0Ty, APInt::getSignMask(Src0Size)); 6530 6531 auto NotSignBitMask = MIRBuilder.buildConstant( 6532 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 6533 6534 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); 6535 Register And1; 6536 if (Src0Ty == Src1Ty) { 6537 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); 6538 } else if (Src0Size > Src1Size) { 6539 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 6540 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 6541 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 6542 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); 6543 } else { 6544 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 6545 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 6546 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 6547 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); 6548 } 6549 6550 // Be careful about setting nsz/nnan/ninf on every instruction, since the 6551 // constants are a nan and -0.0, but the final result should preserve 6552 // everything. 6553 unsigned Flags = MI.getFlags(); 6554 MIRBuilder.buildOr(Dst, And0, And1, Flags); 6555 6556 MI.eraseFromParent(); 6557 return Legalized; 6558 } 6559 6560 LegalizerHelper::LegalizeResult 6561 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 6562 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 6563 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 6564 6565 Register Dst = MI.getOperand(0).getReg(); 6566 Register Src0 = MI.getOperand(1).getReg(); 6567 Register Src1 = MI.getOperand(2).getReg(); 6568 LLT Ty = MRI.getType(Dst); 6569 6570 if (!MI.getFlag(MachineInstr::FmNoNans)) { 6571 // Insert canonicalizes if it's possible we need to quiet to get correct 6572 // sNaN behavior. 6573 6574 // Note this must be done here, and not as an optimization combine in the 6575 // absence of a dedicate quiet-snan instruction as we're using an 6576 // omni-purpose G_FCANONICALIZE. 6577 if (!isKnownNeverSNaN(Src0, MRI)) 6578 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 6579 6580 if (!isKnownNeverSNaN(Src1, MRI)) 6581 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 6582 } 6583 6584 // If there are no nans, it's safe to simply replace this with the non-IEEE 6585 // version. 6586 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 6587 MI.eraseFromParent(); 6588 return Legalized; 6589 } 6590 6591 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 6592 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 6593 Register DstReg = MI.getOperand(0).getReg(); 6594 LLT Ty = MRI.getType(DstReg); 6595 unsigned Flags = MI.getFlags(); 6596 6597 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 6598 Flags); 6599 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 6600 MI.eraseFromParent(); 6601 return Legalized; 6602 } 6603 6604 LegalizerHelper::LegalizeResult 6605 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 6606 Register DstReg = MI.getOperand(0).getReg(); 6607 Register X = MI.getOperand(1).getReg(); 6608 const unsigned Flags = MI.getFlags(); 6609 const LLT Ty = MRI.getType(DstReg); 6610 const LLT CondTy = Ty.changeElementSize(1); 6611 6612 // round(x) => 6613 // t = trunc(x); 6614 // d = fabs(x - t); 6615 // o = copysign(1.0f, x); 6616 // return t + (d >= 0.5 ? o : 0.0); 6617 6618 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 6619 6620 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 6621 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 6622 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6623 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 6624 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 6625 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 6626 6627 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 6628 Flags); 6629 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 6630 6631 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 6632 6633 MI.eraseFromParent(); 6634 return Legalized; 6635 } 6636 6637 LegalizerHelper::LegalizeResult 6638 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 6639 Register DstReg = MI.getOperand(0).getReg(); 6640 Register SrcReg = MI.getOperand(1).getReg(); 6641 unsigned Flags = MI.getFlags(); 6642 LLT Ty = MRI.getType(DstReg); 6643 const LLT CondTy = Ty.changeElementSize(1); 6644 6645 // result = trunc(src); 6646 // if (src < 0.0 && src != result) 6647 // result += -1.0. 6648 6649 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 6650 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6651 6652 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 6653 SrcReg, Zero, Flags); 6654 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 6655 SrcReg, Trunc, Flags); 6656 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 6657 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 6658 6659 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 6660 MI.eraseFromParent(); 6661 return Legalized; 6662 } 6663 6664 LegalizerHelper::LegalizeResult 6665 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 6666 const unsigned NumOps = MI.getNumOperands(); 6667 Register DstReg = MI.getOperand(0).getReg(); 6668 Register Src0Reg = MI.getOperand(1).getReg(); 6669 LLT DstTy = MRI.getType(DstReg); 6670 LLT SrcTy = MRI.getType(Src0Reg); 6671 unsigned PartSize = SrcTy.getSizeInBits(); 6672 6673 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 6674 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 6675 6676 for (unsigned I = 2; I != NumOps; ++I) { 6677 const unsigned Offset = (I - 1) * PartSize; 6678 6679 Register SrcReg = MI.getOperand(I).getReg(); 6680 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 6681 6682 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 6683 MRI.createGenericVirtualRegister(WideTy); 6684 6685 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 6686 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 6687 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 6688 ResultReg = NextResult; 6689 } 6690 6691 if (DstTy.isPointer()) { 6692 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 6693 DstTy.getAddressSpace())) { 6694 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 6695 return UnableToLegalize; 6696 } 6697 6698 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 6699 } 6700 6701 MI.eraseFromParent(); 6702 return Legalized; 6703 } 6704 6705 LegalizerHelper::LegalizeResult 6706 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 6707 const unsigned NumDst = MI.getNumOperands() - 1; 6708 Register SrcReg = MI.getOperand(NumDst).getReg(); 6709 Register Dst0Reg = MI.getOperand(0).getReg(); 6710 LLT DstTy = MRI.getType(Dst0Reg); 6711 if (DstTy.isPointer()) 6712 return UnableToLegalize; // TODO 6713 6714 SrcReg = coerceToScalar(SrcReg); 6715 if (!SrcReg) 6716 return UnableToLegalize; 6717 6718 // Expand scalarizing unmerge as bitcast to integer and shift. 6719 LLT IntTy = MRI.getType(SrcReg); 6720 6721 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 6722 6723 const unsigned DstSize = DstTy.getSizeInBits(); 6724 unsigned Offset = DstSize; 6725 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 6726 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 6727 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 6728 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 6729 } 6730 6731 MI.eraseFromParent(); 6732 return Legalized; 6733 } 6734 6735 /// Lower a vector extract or insert by writing the vector to a stack temporary 6736 /// and reloading the element or vector. 6737 /// 6738 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 6739 /// => 6740 /// %stack_temp = G_FRAME_INDEX 6741 /// G_STORE %vec, %stack_temp 6742 /// %idx = clamp(%idx, %vec.getNumElements()) 6743 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 6744 /// %dst = G_LOAD %element_ptr 6745 LegalizerHelper::LegalizeResult 6746 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 6747 Register DstReg = MI.getOperand(0).getReg(); 6748 Register SrcVec = MI.getOperand(1).getReg(); 6749 Register InsertVal; 6750 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 6751 InsertVal = MI.getOperand(2).getReg(); 6752 6753 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 6754 6755 LLT VecTy = MRI.getType(SrcVec); 6756 LLT EltTy = VecTy.getElementType(); 6757 if (!EltTy.isByteSized()) { // Not implemented. 6758 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 6759 return UnableToLegalize; 6760 } 6761 6762 unsigned EltBytes = EltTy.getSizeInBytes(); 6763 Align VecAlign = getStackTemporaryAlignment(VecTy); 6764 Align EltAlign; 6765 6766 MachinePointerInfo PtrInfo; 6767 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 6768 VecAlign, PtrInfo); 6769 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 6770 6771 // Get the pointer to the element, and be sure not to hit undefined behavior 6772 // if the index is out of bounds. 6773 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 6774 6775 int64_t IdxVal; 6776 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 6777 int64_t Offset = IdxVal * EltBytes; 6778 PtrInfo = PtrInfo.getWithOffset(Offset); 6779 EltAlign = commonAlignment(VecAlign, Offset); 6780 } else { 6781 // We lose information with a variable offset. 6782 EltAlign = getStackTemporaryAlignment(EltTy); 6783 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 6784 } 6785 6786 if (InsertVal) { 6787 // Write the inserted element 6788 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 6789 6790 // Reload the whole vector. 6791 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 6792 } else { 6793 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 6794 } 6795 6796 MI.eraseFromParent(); 6797 return Legalized; 6798 } 6799 6800 LegalizerHelper::LegalizeResult 6801 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 6802 Register DstReg = MI.getOperand(0).getReg(); 6803 Register Src0Reg = MI.getOperand(1).getReg(); 6804 Register Src1Reg = MI.getOperand(2).getReg(); 6805 LLT Src0Ty = MRI.getType(Src0Reg); 6806 LLT DstTy = MRI.getType(DstReg); 6807 LLT IdxTy = LLT::scalar(32); 6808 6809 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 6810 6811 if (DstTy.isScalar()) { 6812 if (Src0Ty.isVector()) 6813 return UnableToLegalize; 6814 6815 // This is just a SELECT. 6816 assert(Mask.size() == 1 && "Expected a single mask element"); 6817 Register Val; 6818 if (Mask[0] < 0 || Mask[0] > 1) 6819 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 6820 else 6821 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 6822 MIRBuilder.buildCopy(DstReg, Val); 6823 MI.eraseFromParent(); 6824 return Legalized; 6825 } 6826 6827 Register Undef; 6828 SmallVector<Register, 32> BuildVec; 6829 LLT EltTy = DstTy.getElementType(); 6830 6831 for (int Idx : Mask) { 6832 if (Idx < 0) { 6833 if (!Undef.isValid()) 6834 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 6835 BuildVec.push_back(Undef); 6836 continue; 6837 } 6838 6839 if (Src0Ty.isScalar()) { 6840 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 6841 } else { 6842 int NumElts = Src0Ty.getNumElements(); 6843 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 6844 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 6845 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 6846 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 6847 BuildVec.push_back(Extract.getReg(0)); 6848 } 6849 } 6850 6851 MIRBuilder.buildBuildVector(DstReg, BuildVec); 6852 MI.eraseFromParent(); 6853 return Legalized; 6854 } 6855 6856 LegalizerHelper::LegalizeResult 6857 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 6858 const auto &MF = *MI.getMF(); 6859 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 6860 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 6861 return UnableToLegalize; 6862 6863 Register Dst = MI.getOperand(0).getReg(); 6864 Register AllocSize = MI.getOperand(1).getReg(); 6865 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 6866 6867 LLT PtrTy = MRI.getType(Dst); 6868 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 6869 6870 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 6871 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 6872 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 6873 6874 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 6875 // have to generate an extra instruction to negate the alloc and then use 6876 // G_PTR_ADD to add the negative offset. 6877 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 6878 if (Alignment > Align(1)) { 6879 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 6880 AlignMask.negate(); 6881 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 6882 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 6883 } 6884 6885 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 6886 MIRBuilder.buildCopy(SPReg, SPTmp); 6887 MIRBuilder.buildCopy(Dst, SPTmp); 6888 6889 MI.eraseFromParent(); 6890 return Legalized; 6891 } 6892 6893 LegalizerHelper::LegalizeResult 6894 LegalizerHelper::lowerExtract(MachineInstr &MI) { 6895 Register Dst = MI.getOperand(0).getReg(); 6896 Register Src = MI.getOperand(1).getReg(); 6897 unsigned Offset = MI.getOperand(2).getImm(); 6898 6899 LLT DstTy = MRI.getType(Dst); 6900 LLT SrcTy = MRI.getType(Src); 6901 6902 if (DstTy.isScalar() && 6903 (SrcTy.isScalar() || 6904 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 6905 LLT SrcIntTy = SrcTy; 6906 if (!SrcTy.isScalar()) { 6907 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 6908 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 6909 } 6910 6911 if (Offset == 0) 6912 MIRBuilder.buildTrunc(Dst, Src); 6913 else { 6914 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 6915 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 6916 MIRBuilder.buildTrunc(Dst, Shr); 6917 } 6918 6919 MI.eraseFromParent(); 6920 return Legalized; 6921 } 6922 6923 return UnableToLegalize; 6924 } 6925 6926 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 6927 Register Dst = MI.getOperand(0).getReg(); 6928 Register Src = MI.getOperand(1).getReg(); 6929 Register InsertSrc = MI.getOperand(2).getReg(); 6930 uint64_t Offset = MI.getOperand(3).getImm(); 6931 6932 LLT DstTy = MRI.getType(Src); 6933 LLT InsertTy = MRI.getType(InsertSrc); 6934 6935 if (InsertTy.isVector() || 6936 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 6937 return UnableToLegalize; 6938 6939 const DataLayout &DL = MIRBuilder.getDataLayout(); 6940 if ((DstTy.isPointer() && 6941 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 6942 (InsertTy.isPointer() && 6943 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 6944 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 6945 return UnableToLegalize; 6946 } 6947 6948 LLT IntDstTy = DstTy; 6949 6950 if (!DstTy.isScalar()) { 6951 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 6952 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 6953 } 6954 6955 if (!InsertTy.isScalar()) { 6956 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 6957 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 6958 } 6959 6960 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 6961 if (Offset != 0) { 6962 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 6963 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 6964 } 6965 6966 APInt MaskVal = APInt::getBitsSetWithWrap( 6967 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 6968 6969 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 6970 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 6971 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 6972 6973 MIRBuilder.buildCast(Dst, Or); 6974 MI.eraseFromParent(); 6975 return Legalized; 6976 } 6977 6978 LegalizerHelper::LegalizeResult 6979 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 6980 Register Dst0 = MI.getOperand(0).getReg(); 6981 Register Dst1 = MI.getOperand(1).getReg(); 6982 Register LHS = MI.getOperand(2).getReg(); 6983 Register RHS = MI.getOperand(3).getReg(); 6984 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 6985 6986 LLT Ty = MRI.getType(Dst0); 6987 LLT BoolTy = MRI.getType(Dst1); 6988 6989 if (IsAdd) 6990 MIRBuilder.buildAdd(Dst0, LHS, RHS); 6991 else 6992 MIRBuilder.buildSub(Dst0, LHS, RHS); 6993 6994 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 6995 6996 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6997 6998 // For an addition, the result should be less than one of the operands (LHS) 6999 // if and only if the other operand (RHS) is negative, otherwise there will 7000 // be overflow. 7001 // For a subtraction, the result should be less than one of the operands 7002 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7003 // otherwise there will be overflow. 7004 auto ResultLowerThanLHS = 7005 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 7006 auto ConditionRHS = MIRBuilder.buildICmp( 7007 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 7008 7009 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 7010 MI.eraseFromParent(); 7011 return Legalized; 7012 } 7013 7014 LegalizerHelper::LegalizeResult 7015 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 7016 Register Res = MI.getOperand(0).getReg(); 7017 Register LHS = MI.getOperand(1).getReg(); 7018 Register RHS = MI.getOperand(2).getReg(); 7019 LLT Ty = MRI.getType(Res); 7020 bool IsSigned; 7021 bool IsAdd; 7022 unsigned BaseOp; 7023 switch (MI.getOpcode()) { 7024 default: 7025 llvm_unreachable("unexpected addsat/subsat opcode"); 7026 case TargetOpcode::G_UADDSAT: 7027 IsSigned = false; 7028 IsAdd = true; 7029 BaseOp = TargetOpcode::G_ADD; 7030 break; 7031 case TargetOpcode::G_SADDSAT: 7032 IsSigned = true; 7033 IsAdd = true; 7034 BaseOp = TargetOpcode::G_ADD; 7035 break; 7036 case TargetOpcode::G_USUBSAT: 7037 IsSigned = false; 7038 IsAdd = false; 7039 BaseOp = TargetOpcode::G_SUB; 7040 break; 7041 case TargetOpcode::G_SSUBSAT: 7042 IsSigned = true; 7043 IsAdd = false; 7044 BaseOp = TargetOpcode::G_SUB; 7045 break; 7046 } 7047 7048 if (IsSigned) { 7049 // sadd.sat(a, b) -> 7050 // hi = 0x7fffffff - smax(a, 0) 7051 // lo = 0x80000000 - smin(a, 0) 7052 // a + smin(smax(lo, b), hi) 7053 // ssub.sat(a, b) -> 7054 // lo = smax(a, -1) - 0x7fffffff 7055 // hi = smin(a, -1) - 0x80000000 7056 // a - smin(smax(lo, b), hi) 7057 // TODO: AMDGPU can use a "median of 3" instruction here: 7058 // a +/- med3(lo, b, hi) 7059 uint64_t NumBits = Ty.getScalarSizeInBits(); 7060 auto MaxVal = 7061 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 7062 auto MinVal = 7063 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 7064 MachineInstrBuilder Hi, Lo; 7065 if (IsAdd) { 7066 auto Zero = MIRBuilder.buildConstant(Ty, 0); 7067 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 7068 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 7069 } else { 7070 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 7071 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 7072 MaxVal); 7073 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 7074 MinVal); 7075 } 7076 auto RHSClamped = 7077 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 7078 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 7079 } else { 7080 // uadd.sat(a, b) -> a + umin(~a, b) 7081 // usub.sat(a, b) -> a - umin(a, b) 7082 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 7083 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 7084 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 7085 } 7086 7087 MI.eraseFromParent(); 7088 return Legalized; 7089 } 7090 7091 LegalizerHelper::LegalizeResult 7092 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 7093 Register Res = MI.getOperand(0).getReg(); 7094 Register LHS = MI.getOperand(1).getReg(); 7095 Register RHS = MI.getOperand(2).getReg(); 7096 LLT Ty = MRI.getType(Res); 7097 LLT BoolTy = Ty.changeElementSize(1); 7098 bool IsSigned; 7099 bool IsAdd; 7100 unsigned OverflowOp; 7101 switch (MI.getOpcode()) { 7102 default: 7103 llvm_unreachable("unexpected addsat/subsat opcode"); 7104 case TargetOpcode::G_UADDSAT: 7105 IsSigned = false; 7106 IsAdd = true; 7107 OverflowOp = TargetOpcode::G_UADDO; 7108 break; 7109 case TargetOpcode::G_SADDSAT: 7110 IsSigned = true; 7111 IsAdd = true; 7112 OverflowOp = TargetOpcode::G_SADDO; 7113 break; 7114 case TargetOpcode::G_USUBSAT: 7115 IsSigned = false; 7116 IsAdd = false; 7117 OverflowOp = TargetOpcode::G_USUBO; 7118 break; 7119 case TargetOpcode::G_SSUBSAT: 7120 IsSigned = true; 7121 IsAdd = false; 7122 OverflowOp = TargetOpcode::G_SSUBO; 7123 break; 7124 } 7125 7126 auto OverflowRes = 7127 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 7128 Register Tmp = OverflowRes.getReg(0); 7129 Register Ov = OverflowRes.getReg(1); 7130 MachineInstrBuilder Clamp; 7131 if (IsSigned) { 7132 // sadd.sat(a, b) -> 7133 // {tmp, ov} = saddo(a, b) 7134 // ov ? (tmp >>s 31) + 0x80000000 : r 7135 // ssub.sat(a, b) -> 7136 // {tmp, ov} = ssubo(a, b) 7137 // ov ? (tmp >>s 31) + 0x80000000 : r 7138 uint64_t NumBits = Ty.getScalarSizeInBits(); 7139 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 7140 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 7141 auto MinVal = 7142 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 7143 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 7144 } else { 7145 // uadd.sat(a, b) -> 7146 // {tmp, ov} = uaddo(a, b) 7147 // ov ? 0xffffffff : tmp 7148 // usub.sat(a, b) -> 7149 // {tmp, ov} = usubo(a, b) 7150 // ov ? 0 : tmp 7151 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 7152 } 7153 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 7154 7155 MI.eraseFromParent(); 7156 return Legalized; 7157 } 7158 7159 LegalizerHelper::LegalizeResult 7160 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 7161 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 7162 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 7163 "Expected shlsat opcode!"); 7164 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 7165 Register Res = MI.getOperand(0).getReg(); 7166 Register LHS = MI.getOperand(1).getReg(); 7167 Register RHS = MI.getOperand(2).getReg(); 7168 LLT Ty = MRI.getType(Res); 7169 LLT BoolTy = Ty.changeElementSize(1); 7170 7171 unsigned BW = Ty.getScalarSizeInBits(); 7172 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 7173 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 7174 : MIRBuilder.buildLShr(Ty, Result, RHS); 7175 7176 MachineInstrBuilder SatVal; 7177 if (IsSigned) { 7178 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 7179 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 7180 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 7181 MIRBuilder.buildConstant(Ty, 0)); 7182 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 7183 } else { 7184 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 7185 } 7186 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 7187 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 7188 7189 MI.eraseFromParent(); 7190 return Legalized; 7191 } 7192 7193 LegalizerHelper::LegalizeResult 7194 LegalizerHelper::lowerBswap(MachineInstr &MI) { 7195 Register Dst = MI.getOperand(0).getReg(); 7196 Register Src = MI.getOperand(1).getReg(); 7197 const LLT Ty = MRI.getType(Src); 7198 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 7199 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 7200 7201 // Swap most and least significant byte, set remaining bytes in Res to zero. 7202 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 7203 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 7204 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 7205 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 7206 7207 // Set i-th high/low byte in Res to i-th low/high byte from Src. 7208 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 7209 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 7210 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 7211 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 7212 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 7213 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 7214 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 7215 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 7216 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 7217 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 7218 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 7219 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 7220 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 7221 } 7222 Res.getInstr()->getOperand(0).setReg(Dst); 7223 7224 MI.eraseFromParent(); 7225 return Legalized; 7226 } 7227 7228 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 7229 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 7230 MachineInstrBuilder Src, APInt Mask) { 7231 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 7232 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 7233 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 7234 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 7235 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 7236 return B.buildOr(Dst, LHS, RHS); 7237 } 7238 7239 LegalizerHelper::LegalizeResult 7240 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 7241 Register Dst = MI.getOperand(0).getReg(); 7242 Register Src = MI.getOperand(1).getReg(); 7243 const LLT Ty = MRI.getType(Src); 7244 unsigned Size = Ty.getSizeInBits(); 7245 7246 MachineInstrBuilder BSWAP = 7247 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 7248 7249 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 7250 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 7251 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 7252 MachineInstrBuilder Swap4 = 7253 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 7254 7255 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 7256 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 7257 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 7258 MachineInstrBuilder Swap2 = 7259 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 7260 7261 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 7262 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 7263 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 7264 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 7265 7266 MI.eraseFromParent(); 7267 return Legalized; 7268 } 7269 7270 LegalizerHelper::LegalizeResult 7271 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 7272 MachineFunction &MF = MIRBuilder.getMF(); 7273 7274 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 7275 int NameOpIdx = IsRead ? 1 : 0; 7276 int ValRegIndex = IsRead ? 0 : 1; 7277 7278 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 7279 const LLT Ty = MRI.getType(ValReg); 7280 const MDString *RegStr = cast<MDString>( 7281 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 7282 7283 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 7284 if (!PhysReg.isValid()) 7285 return UnableToLegalize; 7286 7287 if (IsRead) 7288 MIRBuilder.buildCopy(ValReg, PhysReg); 7289 else 7290 MIRBuilder.buildCopy(PhysReg, ValReg); 7291 7292 MI.eraseFromParent(); 7293 return Legalized; 7294 } 7295 7296 LegalizerHelper::LegalizeResult 7297 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 7298 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 7299 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 7300 Register Result = MI.getOperand(0).getReg(); 7301 LLT OrigTy = MRI.getType(Result); 7302 auto SizeInBits = OrigTy.getScalarSizeInBits(); 7303 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 7304 7305 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 7306 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 7307 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 7308 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 7309 7310 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 7311 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 7312 MIRBuilder.buildTrunc(Result, Shifted); 7313 7314 MI.eraseFromParent(); 7315 return Legalized; 7316 } 7317 7318 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 7319 // Implement vector G_SELECT in terms of XOR, AND, OR. 7320 Register DstReg = MI.getOperand(0).getReg(); 7321 Register MaskReg = MI.getOperand(1).getReg(); 7322 Register Op1Reg = MI.getOperand(2).getReg(); 7323 Register Op2Reg = MI.getOperand(3).getReg(); 7324 LLT DstTy = MRI.getType(DstReg); 7325 LLT MaskTy = MRI.getType(MaskReg); 7326 LLT Op1Ty = MRI.getType(Op1Reg); 7327 if (!DstTy.isVector()) 7328 return UnableToLegalize; 7329 7330 // Vector selects can have a scalar predicate. If so, splat into a vector and 7331 // finish for later legalization attempts to try again. 7332 if (MaskTy.isScalar()) { 7333 Register MaskElt = MaskReg; 7334 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) 7335 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); 7336 // Generate a vector splat idiom to be pattern matched later. 7337 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 7338 Observer.changingInstr(MI); 7339 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 7340 Observer.changedInstr(MI); 7341 return Legalized; 7342 } 7343 7344 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { 7345 return UnableToLegalize; 7346 } 7347 7348 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 7349 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 7350 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 7351 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 7352 MI.eraseFromParent(); 7353 return Legalized; 7354 } 7355 7356 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) { 7357 // Split DIVREM into individual instructions. 7358 unsigned Opcode = MI.getOpcode(); 7359 7360 MIRBuilder.buildInstr( 7361 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV 7362 : TargetOpcode::G_UDIV, 7363 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7364 MIRBuilder.buildInstr( 7365 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM 7366 : TargetOpcode::G_UREM, 7367 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7368 MI.eraseFromParent(); 7369 return Legalized; 7370 } 7371 7372 LegalizerHelper::LegalizeResult 7373 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) { 7374 // Expand %res = G_ABS %a into: 7375 // %v1 = G_ASHR %a, scalar_size-1 7376 // %v2 = G_ADD %a, %v1 7377 // %res = G_XOR %v2, %v1 7378 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 7379 Register OpReg = MI.getOperand(1).getReg(); 7380 auto ShiftAmt = 7381 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 7382 auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 7383 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 7384 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 7385 MI.eraseFromParent(); 7386 return Legalized; 7387 } 7388 7389 LegalizerHelper::LegalizeResult 7390 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) { 7391 // Expand %res = G_ABS %a into: 7392 // %v1 = G_CONSTANT 0 7393 // %v2 = G_SUB %v1, %a 7394 // %res = G_SMAX %a, %v2 7395 Register SrcReg = MI.getOperand(1).getReg(); 7396 LLT Ty = MRI.getType(SrcReg); 7397 auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0); 7398 auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0); 7399 MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub); 7400 MI.eraseFromParent(); 7401 return Legalized; 7402 } 7403 7404 LegalizerHelper::LegalizeResult 7405 LegalizerHelper::lowerVectorReduction(MachineInstr &MI) { 7406 Register SrcReg = MI.getOperand(1).getReg(); 7407 LLT SrcTy = MRI.getType(SrcReg); 7408 LLT DstTy = MRI.getType(SrcReg); 7409 7410 // The source could be a scalar if the IR type was <1 x sN>. 7411 if (SrcTy.isScalar()) { 7412 if (DstTy.getSizeInBits() > SrcTy.getSizeInBits()) 7413 return UnableToLegalize; // FIXME: handle extension. 7414 // This can be just a plain copy. 7415 Observer.changingInstr(MI); 7416 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY)); 7417 Observer.changedInstr(MI); 7418 return Legalized; 7419 } 7420 return UnableToLegalize;; 7421 } 7422